辅助线理论知识总结
八年级下册数学辅助线总结
八年级下册数学辅助线总结八年级下册数学辅助线总结如下:1. 辅助线的作用:辅助线可以帮助我们更好地理解和解决数学问题,特别是在几何图形的证明和计算过程中起到重要的作用。
2. 平行线的辅助线:当我们需要证明两条线段平行时,可以通过引入一条辅助线来简化证明过程。
常见的辅助线有平行于已知线段的线段、平行于已知直线的线段或射线等。
3. 垂直线的辅助线:当我们需要证明两条线段垂直时,可以通过引入一条辅助线来简化证明过程。
常见的辅助线有与已知线段垂直的线段、与已知直线垂直的线段或射线等。
4. 三角形的辅助线:在解决三角形相关问题时,可以通过引入一条辅助线来简化问题。
常见的辅助线有中位线、高线、角平分线、垂直平分线等。
5. 相似三角形的辅助线:当我们需要证明两个三角形相似时,可以通过引入一条辅助线来简化证明过程。
常见的辅助线有角平分线、高线、中位线等。
6. 三角形的边长关系:在计算三角形的边长时,可以通过引入一条辅助线来简化计算过程。
常见的辅助线有中线、角平分线等。
7. 圆的辅助线:在解决圆相关问题时,可以通过引入一条辅助线来简化问题。
常见的辅助线有半径、直径、切线等。
8. 辅助线的选择:在选择辅助线时,需要根据具体问题的要求和条件来确定,通常需要根据问题的特点和已知条件进行分析和判断。
选择合适的辅助线可以简化问题,提高解题效率。
总之,辅助线在数学中起到了重要的作用,可以帮助我们更好地理解和解决各种数学问题,但在使用辅助线时需要注意合理选择,根据问题的要求和条件进行分析和判断。
辅助线理论知识总结
第一篇:初中几何常见辅助线口诀人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形问题巧转换,变为△和□。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆形半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
注意点辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
第二篇:添辅助线的原理和方法添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
七年级数学辅助线知识点
七年级数学辅助线知识点摘要:一、引言二、辅助线的概念与作用1.辅助线的定义2.辅助线的作用三、辅助线的画法1.基本画法2.常见图形中的辅助线四、辅助线在几何问题中的应用1.证明问题2.计算问题五、辅助线在函数问题中的应用1.函数图象的绘制2.函数性质的证明六、总结与展望正文:一、引言辅助线是七年级数学中一个重要的知识点,它对解决几何和函数问题有着关键的作用。
本文将对辅助线的概念、画法和在各类问题中的应用进行详细的阐述。
二、辅助线的概念与作用1.辅助线的定义辅助线是指在几何图形中,为了方便计算和证明而引入的一条非已知线段。
辅助线可以帮助我们更好地理解图形的性质,找到解决问题的方法。
2.辅助线的作用辅助线的主要作用有以下几点:(1)通过辅助线,可以改变问题的叙述方式,使得问题更易于理解。
(2)辅助线可以将已知条件进行合理地转换,从而简化问题。
(3)辅助线可以用来表示图形的隐含性质,帮助我们更好地分析问题。
三、辅助线的画法1.基本画法辅助线的画法并没有固定的规则,但通常可以根据以下几点进行操作:(1)从已知点、线、角出发,按照一定的方向和长度画出辅助线。
(2)在图形的关键位置,如交点、中点、顶点等处作辅助线。
(3)根据已知条件,尽量选择与已知图形平行或垂直的辅助线。
2.常见图形中的辅助线在各种常见图形中,辅助线的画法也有所不同:(1)在平行四边形中,辅助线可以用来证明对角线相等或平分。
(2)在矩形中,辅助线可以用来证明对角线相等或垂直。
(3)在等腰三角形中,辅助线可以用来证明底边中线等于高线。
四、辅助线在几何问题中的应用1.证明问题辅助线在几何证明中有着广泛的应用,如全等三角形的证明、相似三角形的证明等。
通过画辅助线,可以将已知条件进行转换,使得问题变得更容易解决。
2.计算问题在几何计算问题中,辅助线也有很重要的作用。
通过辅助线,可以更方便地计算图形的面积、周长、角度等。
五、辅助线在函数问题中的应用1.函数图象的绘制在函数问题中,辅助线可以帮助我们更准确地绘制函数图象,从而更好地理解函数的性质。
美术课辅助线知识点
美术课辅助线知识点
利用辅助线可以正确的观察和理解物象的造型特征,把握物象结构,在大量的训练中逐步熟练掌握大致方向,从而达到准确会绘画的目的。
当你不知道怎么下笔绘画时,不妨试一下利用辅助线,辅助线永远不会让你偏离轨道!
今天我们来分享辅助线在绘画上能应用在什么地方:
1.确定五官位置的辅助线,在绘制面部、头部时,需要借助很多辅助线才可以保证面部的透视正确和五官比例正确。
2.确定动作范围的辅助线,有时候你会发现自己绘画的人物在整个画面中无论是大小还是位置都不太正确,那这个时候你就应该使用辅助线来框定绘画范围了。
3.保证左右对称的辅助线,绘制一些左右对称的物品时,可以使用中线辅助线来观察物体左右的一致性。
4.画出大致形状的辅助线,在绘制服饰时布料的形状是非常多变的,可以先画出辅助线,再细化表现出褶皱。
辅助线基础
初中必修辅助线基础思考:为什么添辅助线?1.揭示图形中隐含的性质:当条件与结论间的逻辑关系不明朗时,通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来。
以便取得过渡性的推论,达到推导出结论的目的。
⒉聚拢集中原则:通过添置适当的辅助线,将图形中分散,远离的元素,通过变换和转化,使他们相对集中,聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。
⒊化繁为简原则:对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,其逻辑关系不明朗,通过添置适当辅助线,把复杂图形分解成简单图形,从而达到化繁为简,化难为易的目的。
⒋发挥特殊点,线的作用:在题设条件所给的图形中,对尚未直接显现出来的各元素,通过添置适当辅助线,将那些特殊点,特殊线,特殊图形性质恰当揭示出来,并充分发挥这些特殊点,线的作用,达到化难为易,导出结论的目的。
⒌构造图形的作用:对一类几何证明,常须用到某种图形,这种图形在题设条件所给的图形中却没有发现,必须添置这些图形,才能导出结论,常用方法有构造出线段和角的和差倍分,新的三角形,直角三角形,等腰三角形等。
添辅助线的首要是:基于题目要求或题目所求。
添辅助线主要有两种情况:1、按定义添辅助线,如证明二直线垂直可延长使它们,相交后证交角为90°2、按基本图形添辅助线,借助基本图形的结论来推导新的结论。
初中数学学到的基本图形有如下这些:(1)平行线是个基本图形:(2)三角形中重要线段(如中位线、中垂线、角平分线、中线等)(3)等腰三角形及三角形中的重要线段:(4)直角三角形斜边上中线基本图形;(5)全等三角形:(6)相似三角形;(7)特殊角直角三角形:(8)圆相关(如直径、弦、弧、圆周角、圆心角等)其中第5、6、8项会通过专题再深入进行讲解。
作辅助线的常用方法及实例说明一、简单按定义证明,如线段关系(垂直、平行)二、证线段数量关系1、利用三角形三边关系证不等(首先要保证线段在同一个三角形中)说明:、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明 例1、已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE. 证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM +AN > MD +DE +NE;(1) 在△BDM 中,MB +MD >BD ; (2) 在△CEN 中,CN +NE >CE ; (3) 由(1)+(2)+(3)得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC(法二:)如图1-2, 延长BD 交 AC 于F ,延长CE 交BF 于G ,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF (三角形两边之和大于第三边)(1) GF +FC >GE +CE (同上)………………………………(2) DG +GE >DE (同上)……………………………………(3) 由(1)+(2)+(3)得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE∴AB +AC >BD +DE +EC 。
初中数学中考复习几何辅助线规律总结(共102条)
初中数学几何辅助线规律线、角、相交线、平行线【规律】1如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。
【规律】2平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分。
【规律】3如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。
【规律】4线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。
【规律】5有公共端点的n条射线所构成的交点的个数一共有n(n-1)个。
【规律】6如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个。
【规律】7如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。
【规律】8平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。
【规律】9互为邻补角的两个角平分线所成的角的度数为90°。
【规律】10平面上有n条直线相交,最多交点的个数为n(n-1)个。
【规律】11互为补角中较小角的余角等于这两个互为补角的角的差的一半。
【规律】12当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。
【规律】13已知AB∥DE,如图⑴~⑹,规律如下:【规律】14成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。
三角形部分【规律】15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。
注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。
【规律】16三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半。
【规律】17三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半。
12.17初中几何辅助线大全(潜心整理)(1)
初中几何协助线口诀三角形图中有角均分线,可向两边作垂线。
也可将图对折看,对称此后关系现。
角均分线平行线,等腰三角形来添。
角均分线加垂线,三线合一试一试看。
线段垂直均分线,常向两头把线连。
要证线段倍与半,延伸缩短可试验。
三角形中两中点,连结则成中位线。
三角形中有中线,延伸中线等中线。
四边形平行四边形出现,对称中心均分点。
梯形里面作高线,平移一腰试一试看。
平行挪动对角线,补成三角形常有。
证相像,比线段,添线平行成习惯。
等积式子比率换,找寻线段很重点。
直接证明有困难,等量代换少麻烦。
斜边上边作高线,比率中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上如有全部线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线认真辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角均分线梦圆假如碰到订交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点必定在上边。
要作等角添个圆,证明题目少困难。
协助线,是虚线,绘图注意勿改变。
若是图形较分别,对称旋转去实验。
基本作图很重点,平常掌握要娴熟。
解题还要多心眼,常常总结方法显。
切勿盲目乱添线,方法灵巧应多变。
剖析综合方法选,困难再多也会减。
虚心好学加苦练,成绩上涨成直线作协助线的方法一、中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延伸中线或中位线作协助线,使延伸的某一段等于中线或中位线;另一种协助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二、垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的均分线,能够把图形按轴对称的方法,并借助其余条件,而旋转 180 度,获得全等形,,这时协助线的做法就会应运而生。
其对称轴常常是垂线或角的均分线。
三、边边若相等,旋转做实验。
八年级下册数学辅助线总结
八年级下册数学辅助线总结
八年级下册数学辅助线总结如下:
1. 平行线辅助线:用于证明两条线段平行。
通过画一条与
已知线段平行的辅助线,然后利用平行线的性质进行证明。
2. 垂直线辅助线:用于证明两条线段垂直。
通过画一条与
已知线段垂直的辅助线,然后利用垂直线的性质进行证明。
3. 相等线段辅助线:用于证明两条线段相等。
通过画一条
与已知线段相等的辅助线,然后利用相等线段的性质进行
证明。
4. 三角形辅助线:用于证明三角形的性质。
例如,可以通
过画三角形的高、中线、角平分线等辅助线来证明三角形
的各个性质。
5. 对称线辅助线:用于证明图形的对称性质。
通过画一条
对称线,将图形分成两个对称的部分,然后利用对称性质
进行证明。
6. 中垂线辅助线:用于证明三角形的垂心、外心等特殊点
的性质。
通过画三角形的中垂线,可以找到垂心和外心,
并利用它们的性质进行证明。
7. 切线辅助线:用于证明圆的性质。
通过画一条切线,可
以利用切线与半径的垂直性质、切线与弦的夹角性质等进
行证明。
8. 平行四边形辅助线:用于证明平行四边形的性质。
通过
画一条对角线,可以将平行四边形分成两个相等的三角形,然后利用三角形的性质进行证明。
以上是八年级下册数学辅助线的总结,通过合理运用这些
辅助线,可以更方便地解决各种数学问题。
初中几何辅助线大全(很详细哦)
初中几何辅助线—克胜秘籍宇文皓月等腰三角形1.作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2.作一腰上的高;3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比方AB=AC+BD....这类的就是想法子作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往是保存结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,经常使用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形罕见。
证相似,比线段,添线平行成习惯。
数学中的辅助线
垂线
总结词
通过作线段或角的垂线,用于证明线段垂直或角为直角。
详细描述
垂线在几何问题中经常用到,通常通过作线段或角的垂线来证明线段垂直或角 为直角。垂线的作法是利用直角三角形的性质,构造直角三角形并作出高。
延长线
总结词
将线段延长,用于证明线段相等或角相等。
详细描述
延长线在几何问题中常用于证明线段相等或角相等。通过将线段延长,可以构造 出新的三角形或平行四边形,利用这些图形的性质进行证明。
构造中点
总结词
通过构造中点,用于证明线段相等或角相等。
详细描述
构造中点是几何问题中常用的辅助线作法。通过构造中点,可以构造出等腰三角形或平行四边形,利用这些图形 的性质进行证明。中点的作法可以通过取线段的中点或延长线段取中点实现。
03
辅助线在几何问题中的应用
证明线段相等
总结词
通过添加辅助线,将问题转化为已知条件或容易解决的问题 ,从而证明两条线段相等。
数学中的辅助线
目录
• 辅助线的定义和作用 • 常见辅助线的作法 • 辅助线在几何问题中的应用 • 辅助线在代数问题中的应用 • 如何寻找和添加辅助线
01
辅助线的定义和作用
定义
01
辅助线是指在几何图形中添加的 线段、射线或点,用以帮助解决 几何问题或简化复杂图形。
02
辅助线不是图形固有的组成部分 ,而是为了解题而人为添加的。
解决方程问题
总结词
辅助线在解决方程问题中起到关键作用,通过添加辅助线可以将复杂方程转化为简单方 程,从而简化解题过程。
详细描述
在解决一元二次方程、分式方程和二元一次方程等方程问题时,可以通过添加辅助线将 方程转化为更易于解决的形式。例如,在一元二次方程中,通过辅助线可以将方程的根
平行线常用辅助线知识点_概述说明以及解释
平行线常用辅助线知识点概述说明以及解释1. 引言1.1 概述在几何学中,平行线是指在同一个平面内永远不会相交的两条直线。
对于平行线的研究,人们发现通过引入一些辅助线能够更好地理解和证明平行线的性质,从而简化许多几何问题的解决过程。
1.2 说明平行线的性质平行线具有一些重要的性质。
首先,它们具有共面性,即两条平行线存在于同一个平面上。
其次,在给定直线外,与该直线平行的直线只有唯一一条。
此外,在给定直线上,存在无数与该直线平行且互不相交的直线。
利用这些性质,我们可以快速判断两条直线是否平行,并进行相关推断和证明。
1.3 辅助线的重要性辅助线在几何推导和证明中起到了至关重要的作用。
通过合理选择和应用辅助线,我们可以将原本复杂的几何问题转化为更简单、直观且易于解决的形式。
辅助线还能够帮助我们揭示隐藏在复杂图形背后的规律和特点,并为后续分析提供有效途径。
总之,在本文中,我们将重点介绍平行线常用的辅助线知识点,并通过实例来解析其应用。
通过全面理解和熟练运用这些辅助线知识点,读者将能够更好地理解平行线的特性,并在几何学习和问题解决中获得更高的效率和成果。
2. 平行线的辅助线知识点:2.1 垂直平分线:垂直平分线是指一个线段的中垂线与另一个线段相交于垂直平分线上。
在平行线的几何证明中,使用垂直平分线可以帮助我们得到一些有用的性质和结论。
例如,如果两条平行线被一条垂直平分线所截断,则截断处所形成的各对应角相等。
2.2 角平分线:角平分线是指从一个角的顶点出发,将这个角划分为两个相等的角,并且其划分位置在这个角的内部。
在证明平行关系时,使用角平分线能够帮助我们找到具有特定性质的几何图形。
例如,在证明两条直线平行时,当一条辅助角平分线与已知直线及其延长线相交时,可以推导出其他相关性质。
2.3 对称线:对称线是指将一个图形折叠成两半时能完全重合的折痕所在的那根过对称中心点(通常为一条直线)。
在使用对称性进行几何证明时,对称辅助会被广泛应用。
全等三角形辅助线总结3
图2-1D CBA图3-1FED CB A三角形全等辅助线探索一、基础知识点:1、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角 典型例题1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.2、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC 。
证明:由三角形内角和为180°可知:∠A=180°-∠ABC -∠ACB∠D=180°-∠DBC -∠DCB 又点D 为三角形ABC 内任意一点,可知:∠ABC>∠DBC、∠ACB>∠DCB∴∠ABC+∠ACB>∠DBC+∠DCB∴∠A=180°-∠ABC -∠ACB<∠D=180°-∠DBC -∠DCB,即∠BDC>∠BAC3、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如: 例:如图3-1:已知AD 为△ABC 的中线,且DE 平分∠ADB,DF 平分∠ADC, 求证:BE +CF >EF 。
过B 点作BG 平行AC 交FD 延长线于G,连接GF 因BG 平行AC ,则BD/CD=BG/CF=DG/DF又因D 是BC 中点即BD=DC ,则BG=CF,DG=DF因DE 、DF 分别平分∠ADB ,∠ADC,∠ADB+ADC=180度则∠EDF=∠EDA+∠ADf=∠ADB/2+∠ADC/2=(∠ADB+∠ADC)/2=180/2=90度 则∠EDG=180-∠EDF=180-90=90度又DE 为共边,DG=DF 则三角形EDG 与EDF 全等 则EG=EF因EG=EF,BG=CF ,EG<BE+BG (三角形两边之和大于第三边) 所以EF<BE+CF4、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。
初中奥数几何辅助线知识点归纳
初中奥数几何辅助线知识点归纳初中奥数几何辅助线知识点归纳首先、三角形的辅助线图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
其次、四边形的辅助线平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
最后、圆的.辅助线半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
初中几何辅助线大全(潜心整理)
初中几何辅助线口诀三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线作辅助线的方法一、中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二、垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三、边边若相等,旋转做实验。
中考辅助线总结大全
辅助线对于同学们来说都不陌生,解几何题的时候经常用到。
当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
所以我们要学会巧妙的添加辅助线。
一、添辅助线有二种情况:1.按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2.按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中几何辅助线大全很详细哦
初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇:初中几何常见辅助线口诀人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形问题巧转换,变为△和□。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆形半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
注意点辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
第二篇:添辅助线的原理和方法添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
(8)特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明(9)半圆上的圆周角出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。
二.基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。
4.圆中常用辅助线的添法在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。
(1)见弦作弦心距有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。
(2)见直径作圆周角在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。
(3)见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。
(4)两圆相切作公切线对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。
(5)两圆相交作公共弦对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。
第三篇:常见作辅助线的方法一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。
如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。
有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线。
九:面积找底高,多边变三边。
如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。
如遇多边形,想法割补成三角形;反之,亦成立。
另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。