连云港市海州区2017-2018学年八年级上期末数学试卷含参考答案

合集下载

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。

江苏省连云港市八年级上学期数学期末试卷

江苏省连云港市八年级上学期数学期末试卷

江苏省连云港市八年级上学期数学期末试卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) (2017·岳麓模拟) 下列图形中,不是轴对称图形的是( )A.B. C.D. 2. (2 分) (2018·长沙) 下列长度的三条线段,能组成三角形的是( ) A . 4cm,5cm,9cm B . 8cm,8cm,15cm C . 5cm,5cm,10cm D . 6cm,7cm,14cm 3. (2 分) 长度单位 1 纳米=10-9 米,目前发现一种新型病毒直径为 25100 纳米,用科学记数法表示该病毒 直径是( ) A . 2.51×10-5 米 B . 25.1×10-6 米 C . 0.251×10-4 米 D . 2.51×10-4 米4. (2 分) 计算的结果是( )A.B.C.D.第 1 页 共 16 页5. (2 分) (2012·贺州) 分式方程的解是( )A.3B . ﹣3C . ±3D . 无解6. (2 分) (2018·南宁) 如图,∠ACD 是△ABC 的外角,CE 平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于( )A . 40° B . 45° C . 50° D . 55° 7. (2 分) (2017 八上·上杭期末) 和三角形三个顶点的距离相等的点是( ) A . 三条角平分线的交点 B . 三边中线的交点 C . 三边上高所在直线的交点 D . 三边的垂直平分线的交点 8. (2 分) (2016·凉山) 下列计算正确的是( ) A . 2a+3b=5ab B . (﹣2a2b)3=﹣6a6b3C . + =3 D . (a+b)2=a2+b2 9. (2 分) (2017 七下·高台期末) 如图:AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,则还需添加的 一个条件有( )种.A.1 B.2第 2 页 共 16 页C.3 D.4 10. (2 分) (2017·邵阳模拟) 如图,AB∥CD,AD=CD,∠1=70°30',则∠2 的度数是( )A . 40°30' B . 39°30' C . 40° D . 39° 11. (2 分) (2017 七下·防城港期中) 下面四个图形中,∠1=∠2 一定成立的是( )A.B.C.D. 12. (2 分) (2019 八下·武侯期末) 武侯区某学校计划选购甲,乙两种图书为“初中数学分享学习课堂之生 讲生学”初赛的奖品.已知甲图书的单价是乙图书单价的 1.5 倍,用 600 元单独购买甲种图书比单独购买乙种图书 少 10 本,设乙种图书的价为 x 元,依据题意列方程正确的是( ) A. B. C. D.二、 填空题 (共 6 题;共 6 分)13. (1 分) (2018 八上·郑州期中) 点 P(2,a-3)在第四象限,则 a 的取值范围是________.第 3 页 共 16 页14. (1 分) 已知分式,当时无意义,当 x =2 时值为 0,则 a+b = ________ .15. (1 分) 一般地,从 n 边形的一个顶点出发,可以作(n-3)条对角线,它们将 n 边形分为________个三角形,因此 n 边形的内角和是________个三角形的内角的和,即 n 边形的内角和等于________.16. (1 分) (2018 八上·天台月考)(1) 计算:的结果等于 1;(2) 已知,,则代数式的值是 1.17. (1 分) (2020 七下·郏县期末) 如图,在中,,.点 为 的中点, 为边 上一动点(不与 、 点重合),以点 为直角顶点、以射线 为一边作,另一条直角边与边交于点 (不与 、 点重合),分别连接 、 ,下列结论中正结论是________.(把所有正确结论的序号都填在横线上)①;②是等腰直角三角形;③无论点 、 的位置如何,总有成立;④四边形的面积随着点 、 的位置不同发生变化.18. (1 分) (2019 八上·涵江月考) 如图.在△ABC 中,∠B=∠C=50°,D 是 BC 的中点,DE⊥AB, DF⊥AC, 则∠BAD=________.三、 解答题 (共 7 题;共 55 分)19. (15 分) (2019 八下·温江期中) (1) 分解因式:(2) 解不等式组:并把它的解集在数轴上表示出来.20. (10 分) (2017 七下·盐都期中) 计算:(1);第 4 页 共 16 页(2).21. (2 分) (2020·岐山模拟) 如图,在中,F 为 BC 边上一点,过点 F 作且延长 BC 至点 E 使连接 DE.求证:.22. (10 分) (2019 八下·苏州期中) (1) (2) 23. (10 分) (2020 七上·长宁期末) 解方程: 24. (6 分) (2019 八下·南岸期中) 某工厂,甲负责加工 A 型零件,乙负责加工 B 型零件.已知甲加工 60 个 A 型零件所用时间和乙加工 80 个 B 型零件所用时间相同,每天甲、乙两人共加工两种零件 35 个. (1) 求甲、乙每天各加工多少个零件; (2) 根据市场预测估计,加工一个 A 型零件所获得的利润为 35 元/件,加工一个 B 型零件所获得的利润每件 比 A 型少 5 元,现在需要加工甲、乙两种零件共 300 个且要求所获得的总利润不低于 9850 元,求至少应该生产多 少个 A 型零件? 25. (2 分) (2019·定兴模拟) 老师布置了一个作业,如下: 已知:如图 1▱ABCD 的对角线 AC 的垂直平分线 EF 交 AD 于点 F , 交 BC 于点 E , 交 AC 于点 O 求证:四边形 AECF 是菱形.某同学写出了如图 2 所示的证明过程,老师说该同学的作业是不正确,请你解答下列问题: (1) 能找出该同学不正确原因吗?请你指出来; (2) 请你给出本题的正确证明过程.第 5 页 共 16 页一、 单选题 (共 12 题;共 24 分)答案:1-1、 考点:参考答案解析: 答案:2-1、 考点:解析: 答案:3-1、 考点: 解析:第 6 页 共 16 页答案:4-1、 考点:解析: 答案:5-1、 考点:解析: 答案:6-1、 考点:解析:第 7 页 共 16 页答案:7-1、 考点: 解析: 答案:8-1、 考点:解析: 答案:9-1、 考点: 解析:第 8 页 共 16 页答案:10-1、 考点: 解析:第 9 页 共 16 页答案:11-1、 考点:解析: 答案:12-1、 考点:解析:二、 填空题 (共 6 题;共 6 分)答案:13-1、 考点:解析: 答案:14-1、第 10 页 共 16 页考点:解析:答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共7题;共55分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:。

江苏省连云港市八年级上学期期末数学试卷

江苏省连云港市八年级上学期期末数学试卷

江苏省连云港市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)算术平方根等于它相反数的数是()A . 0B . 1C . 0或1D . 0或±12. (2分)下列语句:①-1是1的平方根。

②带根号的数都是无理数。

③-1的立方根是.④的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5。

⑦有理数和数轴上的点一一对应。

其中正确的有()A . 2个B . 3个C . 4个D . 5个3. (2分) (2017八上·丛台期末) 若点P(1,a)与Q(b,2)关于x轴对称,则代数式(a+b)2017的值为()A . ﹣1B . 1C . ﹣2D . 24. (2分)(2020·乾县模拟) 在同一平面直角坐标系中,直线y=4x-1与直线y=-x+b的交点不可能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2018九上·阜宁期末) 下列统计量中,能够刻画一组数据的离散程度的是()A . 方差或标准差B . 平均数或中位数C . 众数或频率D . 频数或众数6. (2分) (2019八上·福田期末) 一次函数的图象大致是A .B .C .D .7. (2分) (2017八下·长春期末) 如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E的度数是()A . 45°B . 30°C . 20°D . 15°8. (2分) (2017八下·新野期末) 在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为()A . 3B . 5C . 2或3D . 3或59. (2分) (2018九下·滨湖模拟) 某校春季运动会比赛中,八年级(1)班、(2)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(2)班得分比为6:5;乙同学说:(1)班得分比(2)班得分的2倍少40分.若甲、乙两名同学的说法都正确,设(1)班得x分,(2)班得y分,根据题意所列的方程组应为()A .B .C .D .10. (2分) (2020八下·玉州期末) 如图,一次函数与一次函数的图象交于点,则关于x的不等式的解集是()A .B .C .D .二、填空题 (共9题;共11分)11. (3分) (2019七上·南浔月考) 平方根等于它本身的数是________,算术平方根等于它本身的数是________,立方根等于它本身的数是________.12. (1分) (2018八上·镇江月考) 无论a取什么实数,点A(2a ,6a+1)都在直线l上,则直线l的表达式是________.13. (1分) (2020八下·南昌期中) 如图,在菱形ABCD中,点E为AB上一点,DE=AD ,连接EC .若∠ADE =36°,则∠BCE的度数为________.14. (1分) (2019八下·鄞州期末) 小明利用公式计算5个数据的方差,则这5个数据的标准差的值是________.15. (1分) (2016七下·港南期中) 如果方程组的解是方程3x﹣4y+a=6的解,那么a的值是________.16. (1分) (2020八上·集贤期末) 若是一个整数,则x可取的最小正整数是3.________(判断对错)17. (1分)甲、乙两名学生在5次数学考试中,得分如下:甲:89,85,91,95,90;乙:98,82,80,95,95.________ 的成绩比较稳定.18. (1分) (2019八上·平川期中) 如图,正方体的底面边长分别为2cm和3cm,高为5cm.若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.19. (1分)如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为________.三、计算题 (共2题;共20分)20. (15分)(2011·宜宾)(1)计算:3(﹣π)0﹣ +(﹣1)2011(2)先化简,再求值:,其中x= -3.(3)如图,平行四边形ABCD的对角线AC、BD交于点O,E、F在AC上,G、H在BD上,且AF=CE,BH=DG.求证:GF∥HE.21. (5分) (2019七下·古冶期中) 解方程组:四、解答题 (共7题;共75分)22. (5分) (2015七下·启东期中) 小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图甲所示,小红看见了,说:“我来试一试”.结果小红七拼八凑,拼成如图乙所示的正方形,怎么中间还留下一个洞,恰好是边长为2mm的小正方形!你能算出每个长方形的长和宽是多少吗?23. (15分) (2017九上·开原期末) 某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格x(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?24. (10分) (2017八上·雅安期末) 某商场代销甲、乙两种商品,其中甲种商品进价为120元/件,售价为130元/件,乙种商品进价为100元/件,售价为150元/件.(1)若商场用36000元购进这两种商品若干,销售完后可获利润6000元,则该商场购进甲、乙两种商品各多少件?(列方程组解答)(2)若商场购进这两种商品共100件,设购进甲种商品x件,两种商品销售后可获总利润为y元,请写出y 与x的函数关系式(不要求写出自变量x的范围),并指出购进甲种商品件数x逐渐增加时,总利润y是增加还是减少?25. (10分)(2020·平顶山模拟) 已知,如图AB是圆O的直径,射线AM⊥AB于点A.点D在AM上,连接OD 交圆O于点E,过点D作DC=DA.交圆O于点C(A,C不重合),连接BC,CE.(1)求证:CD是圆O的切线;(2)若四边形OECB是菱形,圆O的直径AB=2,求AD的长.26. (15分)(2017·双桥模拟) 为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.张刚按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)张刚在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设张刚获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果张刚想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?27. (15分)(2017·苏州模拟) 如图,已知四边形ABCD中,AD∥BC,AB=AD.(1)用直尺和圆规作∠BAD的平分线AE,AE与BC相交于点E.(保留作图痕迹,不写作法);(2)求证:四边形ABED是菱形;(3)若∠B+∠C=90°,BC=18,CD=12,求菱形ABED的面积.28. (5分)如图,一次函数y=x+4的图像经过A(﹣1,a),B(b,1)两点.在x轴上找一点P,使PA+PB 的值最小,求满足条件的点P的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、计算题 (共2题;共20分)20-1、20-2、20-3、21-1、四、解答题 (共7题;共75分) 22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、。

江苏省连云港市八年级上学期期末数学试卷 (解析版)

江苏省连云港市八年级上学期期末数学试卷 (解析版)

江苏省连云港市八年级上学期期末数学试卷 (解析版) 一、选择题1.4的平方根是( )A .2B .2±C .2D .2±2.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m 3.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x = B .||y x = C .1y x = D .412x y = 4.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形5.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .56.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒ 7.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( )A .(1,1)-B .(1,1)-C .(2,2)-D .(2,2)- 8.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( )A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位 9.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1210.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.5二、填空题11.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.12.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 13.如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,若18AB =,12AC =,ABC ∆的面积等于30,则DE =_______.14.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.15.点A (2,-3)关于x 轴对称的点的坐标是______.16.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.17.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.18.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.19.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.20.如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为_____.三、解答题21.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?22.先化简,再求值:(1﹣11a -)÷2244a a a a -+-,其中2. 23.已知25a =+25b =(1)22a b ab +;(2)223a ab b -+24.证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.25.小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y (km )与出发时间t (h )之间的函数关系如图1中线段AB 所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s (km )与出发时间t (h )之间的函数关系式如图2中折线段CD ﹣DE ﹣EF 所示.(1)小明骑自行车的速度为 km/h 、妈妈骑电动车的速度为 km/h ;(2)解释图中点E 的实际意义,并求出点E 的坐标;(3)求当t 为多少时,两车之间的距离为18km .四、压轴题26.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.27.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.28.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)29.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.30.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)点Q 为直线y =kx +b 上一动点,当点Q 运动到何位置时△OBQ 的面积等于272?请求出点Q 的坐标;(3)在y 轴上是否存在点P 使△PAB 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】±解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 2.D解析:D【解析】【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4 m,最后利用勾股定理得BC的长度即可.【详解】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=5-3=2m,∵OC=6m,∴DC=6-2=4m,∴由勾股定理得:22+,34∴旗杆的高度为5+5=10m,故选:D.【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.3.C解析:C【解析】【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数.【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x =,y 是x 的函数,故正确; D. 412x y =,y 不是x 的函数,故错误; 故选C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.4.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.5.C解析:C【解析】【分析】延长CE 交AD 于F ,连接BD ,先判定△ABC ∽△CAF ,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF 为△ABD 的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD 的长.【详解】解:如图,延长CE 交AD 于F ,连接BD ,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE 为中线, ∴CE=AE=BE=1 2.52AB =, ∴∠ACF=∠BAC ,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE ,∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,2222245 1.45AB BD -=-=, 故选:C .【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题. 6.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称,∴∠A =∠A ′=30°,∠C =∠C ′=60°;∴∠B =180°−30°-60°=90°.故选:C .【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.7.B解析:B【解析】【分析】联立两直线解析式,解方程组即可.【详解】联立34y x y x -⎧⎨-⎩==, 解得11x y ⎧⎨-⎩==, 所以,点P 的坐标为(1,-1).故选B .【点睛】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.8.D解析:D【解析】【分析】根据近似数的精确度求解.【详解】解:1.36×105精确到千位.故选:D .【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.9.B解析:B【解析】【分析】将点(﹣2,1)代入y =kx 即可求出k 的值.【详解】解:∵正比例函数y =kx 的图象经过点(﹣2,1),∴1=﹣2k ,解得k =﹣12, 故选:B .【点睛】 本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.10.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.二、填空题11.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.12.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233ab , 故答案为:-1且5233a b ,.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.13.2【解析】【分析】延长AC,过D 点作DF⊥AF 于F ,根据角平分线的性质得到DE=DF,由即可求出.【详解】解:如图延长AC,过D 点作DF⊥AC 于F∵是的角平分线,DE⊥AB,∴DE解析:2【解析】【分析】延长AC ,过D 点作DF ⊥AF 于F ,根据角平分线的性质得到DE=DF,由ABC ABD ACD S S S =+即可求出.【详解】解:如图延长AC ,过D 点作DF ⊥AC 于F∵AD 是ABC ∆的角平分线,DE⊥AB,∴DE =DF∵ABC ABD ACD SS S =+=30 ∴113022AB DE DF AC ⋅+⋅= ∵18AB =,12AC = ,DE =DF∴1118123022DE DE ⨯⋅+⨯= 得到 DE=2故答案为:2.此题主要考查了角平分线的性质,熟记概念是解题的关键.14.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.15.(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x 轴,y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.16..【解析】【分析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.17.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.18.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=AB,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22,当点D 运动到点C 时,2,∴点E移动的路线长为cm.19.【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,解析:【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故答案为:12.【点睛】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.20.k=±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y =kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当解析:k=±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y=kx+4(k≠0)与直线AB平行时,②当直线y=kx+4(k≠0)与直线AB不平行时分别进行解答即可.【详解】一次函数y=kx+4(k≠0)图象一定过(0,4)点,①当直线y=kx+4(k≠0)与直线AB平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3, ∴一次函数y =kx +4(k ≠0)中的k =1;②当直线y =kx +4(k ≠0)与直线AB 不平行时,如图2,根据题意,直线y =kx +4(k ≠0)垂直平分线段AB ,此时一定经过点C ,∴点C 的坐标为(4,0),代入得,4k +4=0,解得,k =﹣1,因此,k =1或k =﹣1.故答案为:k =±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k 值相等和一次函数的图象和性质是解决问题的关键.三、解答题21.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x 元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x 元,则每支圆珠笔(2)x +元.假设能买到相同数量的笔,则30452x x =+. 解这个方程,得4x =.经检验,4x =是原方程的解.但是,3047.5÷=, 7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.22.原式=2a a -. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(1)-4;(2)21【解析】【分析】(1)根据a ,b 的值求出a+b ,ab 的值,再根据a 2+b 2=(a+b )2-2ab ,代入计算即可; (2)根据(1)得出的a+b ,ab 的值,再根据代入计算即可.【详解】(1)∵2a =+2b =∴4a b +=,222525251ab, ∴22=144ab aa b a b b (2)由(1)得4a b +=,1ab =-,∴223a ab b -+2225a ab b ab25a b ab245121=【点睛】此题考查了二次根式的化简求值,用到的知识点是二次根式的性质、完全平方公式、平方差公式,关键是对要求的式子进行化简.24.见解析【解析】【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,AH DKAB DE=⎧⎨=⎩,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,AB DEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS)【点睛】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.25.(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(95,1445);(3)12或3 2【解析】【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度=362.25=16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:369 205=,点E的纵坐标为:95×16=1445∴点E(95,1445);(3)根据题意得,(16+20)t=(36﹣18)或(16+20)t=36+18,解得:t=12或t=32,答:当t为12或32时,两车之间的距离为18km.【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.四、压轴题26.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.27.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【解析】【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH AF,∵在Rt△AEF中,AE2=AF2+EF2,AF)2+EF)2=2AE2,∴EH2+CH2=2AE2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.28.(1)见解析;(2)CD AD+BD,理由见解析;(3)CD+BD【解析】【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠BAC =90°,AD =AE ,∴DE =2AD ,∵CD =DE +CE ,∴CD =2AD +BD ; (3)作AH ⊥CD 于H .∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD =CE ,∵∠DAE =120°,AD =AE ,∴∠ADH =30°,∴AH =12AD , ∴DH 22AD AH -3, ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD 3+BD ,故答案为:CD 3+BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.29.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828-,0).【解析】【分析】(1)根据(42,0)A ,(0,2)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=2,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解; (2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。

连云港市八年级上学期期末数学试卷 (解析版)

连云港市八年级上学期期末数学试卷 (解析版)

连云港市八年级上学期期末数学试卷 (解析版)一、选择题 1.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴2.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .3.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对4.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >05.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等6.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( )A .总体B .个体C .样本D .样本容量 7.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 8.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°9.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1210.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)二、填空题11.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.12.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.13.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.14.比较大小:10_____3.(填“>”、“=”或“<”)15.点(2,1)P 关于x 轴对称的点P'的坐标是__________.16. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.17.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.18.如图,在ABC ∆中,AB AC =,4BC =,其面积为12,AC 的垂直平分线EF 分别交AB ,AC 边于点E ,F .若点D 为BC 边的中点,点P 为线段EF 上的一个动点,则PCD ∆周长的最小值为______.19.当x =_____时,分式22x x x-+值为0. 20.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,OA =6,OC =3.∠DOE =45°,OD ,OE 分别交BC ,AB 于点D ,E ,且CD =2,则点E 坐标为_____.三、解答题21.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.22.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________; (2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案)23.计算或求值(1)计算:(2a+3b )(2a ﹣b );(2)计算:(2x+y ﹣1)2;(3)当a =2,b =﹣8,c =5时,求代数式242b b ac a-+-的值; (4)先化简,再求值:(m+252m --)243m m -⨯-,其中m =12-. 24.阅读下列材料: ∵4<5<9,即2<5<3∴5的整数部分为2,小数部分为5﹣2请根据材料提示,进行解答:(1)7的整数部分是 .(2)7的小数部分为m ,11的整数部分为n ,求m +n ﹣7的值.25.如图,AD ∥BC ,∠A =90°,E 是AB 上的一点,且AD =BE ,∠1=∠2.(1)求证:△ADE ≌△BEC ;(2)若AD =3,AB =9,求△ECD 的面积.四、压轴题26.如图,直线2y x m =-+交x 轴于点A ,直线122y x =+交x 轴于点B ,并且这两条直线相交于y 轴上一点C ,CD 平分ACB ∠交x 轴于点D .(1)求ABC的面积.(2)判断ABC的形状,并说明理由.(3)点E是直线BC上一点,CDE△是直角三角形,求点E的坐标.27.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.28.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.①请直接写出∠AEB的度数为_____;②试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E 在同-直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数线段CM、AE、BE之间的数量关系,并说明理由.29.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.30.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D.【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 2.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.3.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.4.D解析:D【解析】,错误.画函数的图象,选项A,点(1,0)代入函数,01由图可知,B,C错误,D,正确. 选D.5.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.6.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.7.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.8.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.9.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键. 10.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题11..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.12.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.13.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.14.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出【详解】∵32=9<10,3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.15.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】P关于x轴对称的点P'的坐标是(2,-1)点(2,1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;16.30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°,故答案为30°.17.22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 18.8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求周长的最小值 解析:8【解析】【分析】连接AP ,AD ,根据等腰三角形三线合一可知AD 为△ABC 的高线,求出AD 的长度.根据垂直平分线的性质AP=PC,由两点之间线段最短可知AP+PD 最短AD,由此可求PCD ∆周长的最小值【详解】解:如下图,连接AP ,AD.∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,DC=122BC =, 1141222ABC S BC AD AD ∴=⋅=⨯⨯=, 解得AD=6, ∵EF 是线段AC 的垂直平分线,∴AP=PC,∴DP+PC=DP+AP≥AD=6.∴PCD ∆周长=DP+PC+DC,当DP+PC=6时周长最短,最短为6+2=8.故答案为:8.【点睛】本题考查等腰三角形的性质,垂直平分线的性质,两点之间线段最短.能根据垂直平分线的性质和两点之间线段最短求得DP+PC的最小值是解决此题的关键.19.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;而分式值为0,即分子2﹣x=0,解得:x=2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.20.(,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,解析:(65,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,通过证明△ODC∽△FDH,可得HF HDOC CD,即可求解.【详解】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,∵∠EOF=45°,EF⊥EO,∴∠EOF=∠EFO=45°,∴OE=EF,∵∠AOE+∠AEO=90°,∠AEO+∠GEF=90°,∴∠GEF=∠AOE,且∠OAE=∠G=90°,OE=EF,∴△AEO≌△GEF(AAS)∴AE=GF,EG=AO=6,∴BG=EG﹣BE=6﹣(3﹣AE)=3+AE,∵FH⊥BC,∠G=∠CBG=90°,∴四边形BGFH是矩形,∴BH=GF=AE,BG=HF=3+AE,HF∥BG∥OC,∴HD=BD﹣BH=4﹣AE,∵HF∥OC,∴△ODC∽△FDH,∴HF HD OC CD=,∴3432AE AE +-=∴AE=65,∴点E(65,6)故答案为:(65,6)【点睛】此题主要考查利用全等三角形和相似三角形的判定与性质判定矩形在平面直角坐标系中的坐标,解题关键是利用其性质构建方程.三、解答题21.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=-60x+540(8≤x≤9).【解析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D ,E 点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h ,快车速度为4xkm/h ,∴(3x+4x )×4=560,x=20,∴快车的速度是80km/h ,慢车的速度是60km/h .(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km ,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km , ∴D (8,60),∵慢车往返各需4小时,∴E (9,0),设DE 的解析式为:y=kx+b ,∴90860k b k b +⎧⎨+⎩==, 解得:60540k b -⎧⎨⎩==. ∴线段DE 所表示的y 与x 之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D ,E 点坐标是解题关键.22.(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425 【解析】【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标;(2)分三种情况讨论等腰三角形的情况,得出点P 的坐标;(3)根据PE AB ⊥,点A '在直线PE 上,得到EAG OPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP , 设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE【详解】AB=,解:(1)∵点B坐标为6,0,点A是y轴正半轴上一点,且10∴ABO是直角三角形,根据勾股定理有:2222AO AB BO,1068∴点A的坐标为()0,8;(2)∵ABP△是等腰三角形,当BP AB时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x ∴根据勾股定理有:222OP AO AP += 即:22286x x 解之得:73x = ∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上, ∴AEG △和GOP 是直角三角形,EGA OGP ∴EAG OPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA ∴'FAO FAO ,'FAE FAE ∴'EAG EAO则有:'OPG EAO ∴'AOP 是等腰三角形,则有'8OP OA , ∴22228882AP AO OP ,设BE x =,则有6AEx ,根据勾股定理,有: 22222BP BE EP AP AE 即:2222688210x x 解之得:425BEx 【点睛】 本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.23.(1)4a 2+4ab ﹣3b 2;(2)4x 2+4xy+y 2﹣4x ﹣2y ﹣1;(34)﹣2m ﹣6,-5【解析】【分析】(1)利用多项式乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出24b ac -,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式26m =--,然后把m 的值代入计算即可.【详解】解:(1)原式224263a ab ab b =-+-22443a ab b =+-; (2)原式2(2)2(2)1x y x y =+-+-2244421x xy y x y =++---;(3)224(8)42524b ac -=--⨯⨯=,= (4)原式(2)(2)52(2)[]23m m m m m +---=--- (3)(3)2(2)23m m m m m +--=--- 2(3)m =-+26m =--,当12m =-时,原式12()652=-⨯--=-.【点睛】本题考查了多项式乘法和、分式的化简求值以及代数式求值.掌握整式乘法和分式运算法则熟练运算是解题关键.24.(1)2;(2)1【解析】【分析】(1<(2<<,进而得出答案.【详解】解:(1<∴23<<,2.故答案为:2;(2)由(1)可得出,2m =,<,∴n =3,∴231m n +-=+=. 【点睛】本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根.25.(1)见解析;(2)452【解析】【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由已知我们可求得BE 、AE 的长,再利用勾股定理求得ED 的长,利用三角形面积公式解答即可.【详解】(1)∵AD ∥BC ,∠A =90°,∠1=∠2,∴∠A =∠B =90°,DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中 AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.又∵AD =3,AB =9,∴BE =AD =3,AE =9﹣3=6.∵∠1=∠2,∴ED =EC∴△CDE 的面积=14522⨯=. 【点睛】 此题主要考查全等三角形的判定与性质的运用,熟练掌握,即可解题.四、压轴题26.(1)5;(2)直角三角形,理由见解析;(3)44,33E ⎛⎫- ⎪⎝⎭或82,33E ⎛⎫- ⎪⎝⎭【解析】【分析】(1)先求出直线122y x =+与x 轴的交点B 的坐标和与y 轴的交点C 的坐标,把点C 代入直线2y x m =-+,求出m 的值,再求它与x 轴的交点A 的坐标,ABC 的面积用AB 乘OC 除以2得到;(2)用勾股定理求出BC 的平方,AC 的平方,再根据AB 的平方,用勾股定理的逆定理证明ABC 是直角三角形;(3)先根据角平分线求出D 的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E 的坐标.【详解】解:(1)令0x =,则10222y =⨯+=, ∴()0,2C ,令0y =,则1202x +=,解得4x =-, ∴()4,0B -,将()0,2C 代入2y x m =-+,得2m =,∴22y x =-+,令0y =,则220x -+=,解得1x =,∴1,0A ,∴5AB =,2OC =, ∴152ABC S AB OC =⋅=△;(2)根据勾股定理,222224220BC BO OC =+=+=,22222125AC AO OC =+=+=,且22525AB ==,∴222AB BC AC =+,则ABC 是直角三角形;(3)∵CD 平分ACB ∠, ∴12AD AC BD BC ==, ∴1533AD AB ==, ∴23OD AD OA =-=, ∴2,03D ⎛⎫- ⎪⎝⎭①如图,CED ∠是直角,过点E 作EN x ⊥轴于点N ,过点C 作CM EN ⊥于点M , 由(2)知,90ACB ∠=︒,∵CD 平分ACB ∠,∴45ECD ∠=︒,∴CDE △是等腰直角三角形,∴CE DE =,∵90NED MEC ∠+∠=︒,90NED NDE ∠+∠=︒,∴MEC NDE ∠=∠,在DNE △和EMC △中,NDE MEC DNE EMC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DNE EMC AAS ≅,设DN EM x ==,EN CM y ==,根据图象列式:DO DN CM EN EM CO +=⎧⎨+=⎩,即232x y x y ⎧+=⎪⎨⎪+=⎩,解得2343x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴43EN CM ==, ∴44,33E ⎛⎫- ⎪⎝⎭;②如图,CDE ∠是直角,过点E 作EG x ⊥轴于点G ,同理CDE △是等腰直角三角形,且可以证得()CDO DEG AAS ≅,∴2DG CO ==,23EG DO ==, ∴28233GO GD DO =+=+=, ∴82,33E ⎛⎫- ⎪⎝⎭,综上:44,33E ⎛⎫-⎪⎝⎭,82,33E ⎛⎫- ⎪⎝⎭. 【点睛】 本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解.27.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()45,4-,()45,4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形.(3)存在.此时Q 点坐标为()-,()4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.28.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM= ME ,∴DE = 2CM .∴AE = DE+AD=2CM+BE .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.29.(123【解析】【分析】(1)分别过点B,C向l1作垂线,交l1于M,N两点,证明△ABM≌△CAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,证明△AMB≌△CAN,得到CN=AM,再通过△PBM和△QCN算出PM和NQ的值,得到AP,最后在△APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明△BCN≌△CAM,得到CN=AM,在△BPN和△AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.【详解】解:(1)如图,分别过点B,C向l1作垂线,交l1于M,N两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA,在△ABM和△CAN中,===AMB CNAMAB NCAAB AC∠∠⎧⎪∠∠⎨⎪⎩,∴△ABM≌△CAN(AAS),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,。

最新江苏省2017-2018年八年级上期末考试数学试题含答案

最新江苏省2017-2018年八年级上期末考试数学试题含答案

第一学期期末考试卷八年级数学试题注意事项:1.本卷考试时间为100分钟,满分100分.2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中是轴对称图形的是-------------------------------------------------------( )A .(1)、(2)B .(1)、(3)C .(1)、(4)D .(2)、(3)2.下列实数中,是无理数的为--------------------------------------------------------------------( )AB .13C .0D .3-3.在△ABC 中和△DEF 中,已知BC =EF ,∠C =∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是-------------------------------------------------------------------------( ) A 、AC =DF B 、AB =DE C 、∠A =∠D D 、∠B =∠E4.满足下列条件的△ABC 不是..直角三角形的是----------------------------------------------( ) A 、1=a 、2=b , 3=cB 、1=a 、2=b , 5=cC 、a ∶b ∶c =3∶4∶5D 、∠A ∶∠B ∶∠C =3∶4∶5 5.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是------------------------------------------------------------------------------------------------------( )A .B .C .D .6.设正比例函数mx y 的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m 的值为-----------------------------------------------------------------------------------------------( )A.2B.-2C. 4D.-47.如图,在平面直角坐标系中,点P 坐标为(-4,3),以点B (-1,0)为圆心,以BP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于-----------( )A 、-6和-5之间B 、-5和-4之间C 、-4和-3之间D 、-3和-2之间8. 在平面直角坐标系中,点A(1,1),B(3,3),动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为------------------------------------------------------( ) A.2 B.3 C.4 D.5(第7题)DCB A二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是10.点A (—3,4)关于y 轴对称的点的坐标是 .11.地球上七大洲的总面积约为149 480 000km 2,把这个数值精确到千万位,并用科学计数法表示为 . 12. 函数2-=x y 中自变量x 的取值范围是_____ ________13. 如图,在等腰三角形ABC 中,AC AB =,DE 垂直平分AB ,已知∠ADE =40º,则∠DBC= ︒.14.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为15.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8.则△ABC 的周长为(第15题)16.如图,直线b kx y +=与x 轴交于点(2,0),若y <0时,则x 的取值范围是 17.已知点P (1-a ,5+a )在第二象限,且到y 轴的距离为2,则点P 的坐标为 .18.函数y =kx +b (k ≠0)的图象平行于直线y =3x +2,且交y 轴于点(0,-1),则其函数表达式是 .19.已知点A (1,5),B (3,-1),点M 在x 轴上,当AM ﹣BM 最大时,点M 的坐标为 .三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(本题每小题3分,共9分)第13题)(第14题) (第16题)(第19题)(1)计算:()232279--+(2)求0942=-x 中x 的值. (3)求()813=-x 中x 的值.\21.(本题共6分)已知某正数的两个平方根分别是3+a 和152-a ,b 的立方根是2-.求a b --的算术平方根.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:⑴、△ABC≌△ADC ;⑵、AC垂直平分BD.23.(本题共6分)(1)近年来,江苏省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的张村、李村之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到张、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)(2)如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于与.第(1)题24.(本题共6分)如图,一次函数y =(m+1)x +32的图像与x 轴的负半轴相交于点A ,与y轴相交于点B ,且△OAB 面积为43. (1)求m 的值及点A 的坐标;(2)过点B 作直线BP 与x 轴的正半轴相交于点P ,且OP =3OA函数表达式 .第(2)题25.(本题共6分)如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;⑵若BC=6,AC=8,求CE的长.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是千米/小时,乙比甲晚出发小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?27.(本题共7分)如图,直线72+-=x y 与x 轴、y 轴分别相交于点C 、B ,与直线x y 23=相交于点A . ⑴ 求A 点坐标; ⑵ 如果在y 轴上存在一点P ,使△OAP 是以OA 为底边的等腰三角形,则P 点坐标是 ;⑶ 在直线72+-=x y 上是否存在点Q ,使△OAQ 的面积等于6,若存在,请求出Q 点的坐标,若不存在,请说明理由.八年级数学参考答案及评分标准一、选择题:(每小题3分,共24分)1.C;2.A;3.B;4.D;5.D;6.B;7.A;8.B;二、细心填一填(本大题共有11小题,每题2分,共22分.)9.4或-4;10.()4,3;11.8105.1⨯;12.x ≥2;13.15︒;14.3;15.48;16.x>2;17.()4,2-;18. y =3x -1;19.(3.5,0)三、解答题(本大题共8小题,共54分.)20.(本题每小题3分,共9分)解:(1)原式=3+3―2--------------------------------------2分=4-------------------------------3分⑵ 492=x ---------1分 解之得:23±=x (1 解1分) ------------- 3分 (3)21=-x --------------------------------2分 ∴3=x -----------------------------3分21.(本题共6分)解:由题意得,(3+a )+(152-a )=0 解得a=4….. …………………..2分∵b 的立方根是2-,∴b=-8……………………….…….4分∴a b --的算术平方根为2……………………… ………6分22.(本题共6分)⑴证明:在△ABC 与△ADC 中,⎪⎩⎪⎨⎧===AC AC CD CB AD AB∴△ABC ≌△ADC (SSS )-------------------------------------------------------3分 ⑵∵△ABC ≌△ADC∴∠BAC =∠DAC---------------------------------------------------------------------5分 又∵AB =AD∴AC 垂直平分BD---------------------------------------------------------------------6分23.(本题共6分)(1)题完成角平分线和线段的垂直平分线共2分(只完成一个得1分),标出点P ;(2)题:画图(各1分),面积是4和25(各1分). 24.(本题共6分)(1)由点B (0,32)得OB =32………………………………………1分 ∵S △OAB =43,∴12×OA ×OB =43,得OA =1,∴A (-1,0)……2分 把点A (-1,0)代入y =(m +1)x +23得m =21. ……………3分 (2)∵OP =3OA ,∴OP =3,∴点P 的坐标为(3,0)………… 4分设直线BP 的函数表达式为y =kx +b ,代入P (3,0)、B (0,32), 得⎪⎩⎪⎨⎧==+2303b b k ,解得⎪⎩⎪⎨⎧=-=2321b k ,直线BP 的函数表达式为y =21-x +32 … 6分 25.(本题共6分)⑴解:∵折叠,∴DE 垂直平分AB ,∴BE =AE∴∠A =∠ABE--------------------------------------------------------------------1分 又∵∠C =90º,ED ⊥AB ,DE =CE ,∴∠CBE =∠ABE-∴∠A =∠ABE =∠CBE--------------------------------------------------2分 又∵∠A +∠ABE +∠CBE =90º∴∠A =30º------------------------------------------------------------------------3分 ⑵解:设CE =x ,则AE =AC -CE =8-x∴BE =AE =8-x -------------------------------------------------------------4分 又∵∠C =90º∴222BE CE BC =+∴()22286x x -=+-----------------------------------------------------------5分 ∴47=x ,即CE =47--------------------------------------------------------6分 26.(本题共8分)⑴5,1---------------2分 ⑵t s 5=甲,20-20t s =乙,--------4分(3)⎩⎨⎧-==20205t s t s 解之:⎪⎪⎩⎪⎪⎨⎧==32034s t ∴34小时-----6分 20402033-=千米---------------8分27.(本题共7分)解:⑴解方程组:⎪⎩⎪⎨⎧=+-=x y x y 2372- 解之得:⎩⎨⎧==32y x ∴A 点坐标是()3,2----------------------------------------------1分⑵P 点坐标是⎪⎭⎫ ⎝⎛613,0------------------------------------------3分 ⑶存在 ∵6421<=∆AOC S ,67>=∆AO B S ∴Q 点有两个位置:Q 在线段AB 上和AC 的延长线上,设点Q 的坐标是()y x ,当Q 点在线段AB 上:作QD ⊥y 轴于点D ,则QD =x x =,∴167=-=-=∆∆∆O AQ O AD O BQ S S S , ∴121=⨯QD OB ,即127=x ,∴72=x ,把72=x 代入72+-=x y ,得745=y ∴Q 的坐标是⎪⎭⎫ ⎝⎛745,72------------------------------------------------------------------5分 当Q 点在AC 的延长线上时,作QD ⊥x 轴于点D ,则QD =y y -=, ∴434216=-=-=∆∆∆OAC OAQ OCQ S S S , ∴1324OC QD ∙=,即()7344y ⨯-=,∴37y =-,把37y =-代入72+-=x y ,得267x =∴Q 的坐标是263,77⎛⎫- ⎪⎝⎭ 综上所述:点Q 是坐标是⎪⎭⎫ ⎝⎛745,72或263,77⎛⎫- ⎪⎝⎭-----------------------------7分。

初中数学最新-江苏省连云港2018学年八年级数学上册期

初中数学最新-江苏省连云港2018学年八年级数学上册期

2018-2018学年江苏省连云港市东海县八年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.2的算术平方根是( )A.B.2 C.±D.±22.下列图案中,是轴对称图形的个数有( )A.1个B.2个C.3个D.4个3.以下列各组数为边的三角形中,是直角三角形的有( )(1)3,4,5 (2)1,2,3 (3)32,22,52(4)0.18,0.18,0.18.A.1个B.2个C.3个D.4个4.直线y=x﹣1的图象经过( )A.第二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第一、二、三象限5.已知点P(a+1,2﹣a)到y轴的距离为2,则点P的坐标是( )A.(﹣2,5)B.(1,1)C.(2,1)D.(﹣2,5)或(2,1)6.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )A.B.C.D.7.如图,在等边三角形ABC中,中线AD、BE交于F,则图中共有等腰三角形共有( )A.3个B.4个C.5个D.6个8.如图,在等腰Rt△ABC和等腰Rt△ADE中,∠BAC=∠DAE=90°,点C、D、E在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④BE2=2(AD2+AB2).其中,结论正确的个数是( )A.4 B.3 C.2 D.1二、填空题(每小题3分,共30分)9.若一个数的立方根是﹣3,则这个数是__________.10.化简:||=__________.11.点A(﹣3,2)关于x轴的对称点A′的坐标为__________.12.已知等腰三角形的一个内角是70°,则它的底角为__________.13.如图,AB=AC,D、E分别在AC、AB上,要使△ABD≌△ACE,则还需要添加的一个条件是__________(填写一个条件即可).14.已知点A(0,m)和点B(1,n)都在函数y=﹣3x+b的图象上,则m__________n.(在横线上填“>”、“<”或“=”)15.一次函数y1=kx与y2=x+a的图象如图所示,则x+a<kx<0的解集是__________.16.已知一次函数y=ax+b,若2a+b=1,则它的图象必经过的一点坐标为__________.17.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为__________.18.如图,点A,A1,A2,…都在直线y=x上,点B,B1,B2,B3,…都在x轴上,且△ABB1,△A1B1B2,△A2B2B3,…都是等腰直角三角形,若按如此规律排列下去,已知B(1,0),则A2018的坐标为__________.三、解答题(本大题共9个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:+(﹣)3﹣(2)已知4x2﹣9=0,求x的值.20.已知函数3x+2y=1(1)将其改成y=kx+b的形式为__________.(2)判断点B(﹣5,3)是否在这个函数的图象上.21.如图,4×4方格中每个小正方形的边长都为1.(1)图1中正方形ABCD的面积为__________,边长为__________.(3)在图2的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上).22.如图,已知在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,ED=DC.求证:AB=AC.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=的图象相交于点(2,a).(1)求一次函数y=kx+b的表达式;(2)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.24.已知:如图,E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)求∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长.25.某空调公司推销员的月收入y(元)与每月的销售量x(件)成一次函数关系,当他售出10件时月收入为800元,当他售出20件时月收入为1300元.(1)求y与x之间的函数关系式.(2)若想获得至少3800元的月收入,则该推销员每月至少要推销多少件空调?26.(16分)甲、乙两名运动员进行长袍训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图1所示(甲为线段AB,乙为折线ACB),根据图象所提供的信息解答问题:(1)他们在进行__________米的长跑训练,甲的速度是__________,乙前15分钟的速度是__________;(2)分别求甲、乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式;(3)试求x为何值时,两人相距100米?(4)若设甲乙两人之间的距离为s(米),试根据题意在图2所示的坐标系中绘制出s(米)与跑步时间t(分)之间的函数图象.27.(16分)如图,在平面直角坐标系中,点A(1,4),点B(4,0),点C(1,0).(1)点D为射线CO上的一动点,若△DAB为等腰三角形,请直接写出此时点D的坐标.(2)在y轴上,是否存在一点E,使得△EAB的面积△CAB的面积相等?若存在,求出点E的坐标;若不存在,说明理由.(3)在y轴上,是否存在一点F,使得△FAB的周长最小?若存在,求出点F的坐标;若不存在,说明理由.2018-2018学年江苏省连云港市东海县八年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.2的算术平方根是( )A.B.2 C.±D.±2【考点】算术平方根.【分析】根据平方与开平方互为逆运算,可得一个数的算术平方根.【解答】解:,2的算术平方根是,故选:A.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.2.下列图案中,是轴对称图形的个数有( )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:四个图形都是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.以下列各组数为边的三角形中,是直角三角形的有( )(1)3,4,5 (2)1,2,3 (3)32,22,52(4)0.18,0.18,0.18.A.1个B.2个C.3个D.4个【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:(1)∵32+42=52,∴是直角三角形,故(1)正确;(2)∵12+22≠32,∴不是直角三角形,故(2)错误;(3)∵(32)2+(22)2≠(52)2,∴不是直角三角形,故(3)错误;(4)∵0.182+0.182=0.182,∴是直角三角形,故(4)正确.根据勾股定理的逆定理,只有(1)和(4)正确.故选:B.【点评】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.4.直线y=x﹣1的图象经过( )A.第二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第一、二、三象限【考点】一次函数图象与系数的关系.【分析】由y=x﹣1可知直线与y轴交于(0,﹣1)点,且y随x的增大而增大,可判断直线所经过的象限.【解答】解:直线y=x﹣1与y轴交于(0,﹣1)点,且k=1>0,y随x的增大而增大,∴直线y=x﹣1的图象经过第一、三、四象限.故选C.【点评】本题考查了一次函数的性质.关键是根据图象与y轴的交点位置,函数的增减性判断图象经过的象限.5.已知点P(a+1,2﹣a)到y轴的距离为2,则点P的坐标是( )A.(﹣2,5)B.(1,1)C.(2,1)D.(﹣2,5)或(2,1)【考点】点的坐标.【分析】根据点到y轴的距离是横坐标的绝对值,可得a的值,可得点的坐标.【解答】解:由点P(a+1,2﹣a)到y轴的距离为2,得a+1=2或a+1=﹣2.解得a=1,或a=﹣3.点P的坐标是(2,1)或(﹣2,5),故选:D.【点评】本题考查了点的坐标,利用点到y轴的距离是横坐标的绝对值得出a的值是解题关键.6.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )A.B.C.D.【考点】作图—复杂作图.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.7.如图,在等边三角形ABC中,中线AD、BE交于F,则图中共有等腰三角形共有( )A.3个B.4个C.5个D.6个【考点】等边三角形的性质;等腰三角形的判定.【分析】利用等边三角形三线关系以及等边三角形的性质得出即可.【解答】解:∵在等边三角形ABC中,中线AD、BE交于F,∴AD⊥BC,BE⊥AC,∠ABE=∠CBE=∠BAD=∠CAD=30°,DE为△ABC中位线,∴DE∥AB,∴∠BED=∠ADE=30°,∠EDC=60°,∴∠BAF=∠FBA=30°,∠FDE=∠FED=30°,∠EAD=∠ADE=30°,∠DBE=∠DEB=30°,∴△FAB,△FDE,△ADE,△BDE是等腰三角形,∵∠EDC=∠C=60°,∴△ABC,△DCE是等边三角形,则图中共有等腰三角形共有6个.故选:D.【点评】此题主要考查了等边三角形的性质,根据已知得出各角度数是解题关键.8.如图,在等腰Rt△ABC和等腰Rt△ADE中,∠BAC=∠DAE=90°,点C、D、E在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④BE2=2(AD2+AB2).其中,结论正确的个数是( )A.4 B.3 C.2 D.1【考点】全等三角形的判定与性质;等腰直角三角形.【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;③由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°,进而得出结论;④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出结论.【解答】解:如图:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确;②∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴②正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴③正确;④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故选B.【点评】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.二、填空题(每小题3分,共30分)9.若一个数的立方根是﹣3,则这个数是﹣27.【考点】立方根.【分析】根据立方根的定义解答即可.【解答】解:∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3.∴这个数是﹣27.故答案为:﹣27.【点评】本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.10.化简:||=.【考点】实数的性质.【专题】计算题.【分析】要先判断出<0,再根据绝对值的定义即可求解.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.11.点A(﹣3,2)关于x轴的对称点A′的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(﹣3,2)关于x轴对称的点的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.已知等腰三角形的一个内角是70°,则它的底角为55°或70°.【考点】等腰三角形的性质;三角形内角和定理.【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【解答】解:∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴其一个底角的度数是55°或70°.故答案为:55°或70°.【点评】此题考查了等腰三角形的性质.此题比较简单,注意等边对等角的性质的应用,注意分类讨论思想的应用.13.如图,AB=AC,D、E分别在AC、AB上,要使△ABD≌△ACE,则还需要添加的一个条件是∠B=∠C(答案不唯一)(填写一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】可添加条件:∠B=∠C,再有条件AB=AC,∠A=∠A可利用ASA证明△ABD≌△ACE.【解答】解:可添加条件:∠B=∠C,理由如下:∵在△ABD和△ACE中,,∴△ABD≌△ACE(ASA).故答案为:∠B=∠C(答案不唯一).【点评】此题主要考查了全等三角形的判定方法,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.已知点A(0,m)和点B(1,n)都在函数y=﹣3x+b的图象上,则m>n.(在横线上填“>”、“<”或“=”)【考点】一次函数图象上点的坐标特征.【分析】根据一次函数y=kx+b的性质,当k<0时,y随x的增大而减小,即可得出m,n 的大小关系即可.【解答】解:∵k=﹣3>0,∴y将随x的增大而减小,∵0<1,∴m>n.故答案为:>.【点评】此题主要考查了一次函数的增减性,比较简单.解答此题的关键是熟知一次函数y=kx+b(k≠0)的增减性,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.15.一次函数y1=kx与y2=x+a的图象如图所示,则x+a<kx<0的解集是0<x<1.【考点】一次函数与一元一次不等式.【分析】由函数图象可知,当0<x<1时一次函数y1=kx的图象在x轴的下方且在一次函数y2=x+a的图象的上方,故可得出结论.【解答】解:∵当0<x<1时一次函数y1=kx的图象在x轴的下方且在一次函数y2=x+a的图象的上方,∴不等式组x+a<kx<0的解集是0<x<1.故答案为0<x<1.【点评】本题考查的是一次函数与一元一次不等式组,能利用数形结合求出不等式组的取值范围是解答此题的关键.16.已知一次函数y=ax+b,若2a+b=1,则它的图象必经过的一点坐标为(2,1).【考点】一次函数图象上点的坐标特征.【分析】由2a﹣b=1得到b=2a﹣1,把b=2a﹣1代入解析式整理得(x+2)a=y+1,接着解关于a的不定方程得到x=﹣2,y=﹣1,于是可判断它的图象必经过点(﹣2,﹣1).【解答】解:∵2a+b=1,∴b=﹣2a+1,∴y=ax﹣2a+1,∴(x﹣2)a=y﹣1,∵a为不等于0的任意数,∴x﹣2=0,y﹣1=0,解得x=2,y=1,∴它的图象必经过点(2,1).故答案为(2,1).【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.17.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为14或4.【考点】勾股定理的应用.【专题】分类讨论.【分析】根据勾股定理可分别求得BD与CD的长,从而不难求得BC的长.【解答】解:∵AD为边BC上的高,AB=13,AD=12,AC=15,∴BD==5,CD==9,当AD在△ABC外部时,BC=CD﹣BD=4.当AD在△ABC内部时,B′C=CD+BD=14.故答案为:14或4.【点评】此题主要考查学生对勾股定理的运用能力,易错点为学生容易忽略掉另外一种情况.18.如图,点A,A1,A2,…都在直线y=x上,点B,B1,B2,B3,…都在x轴上,且△ABB1,△A1B1B2,△A2B2B3,…都是等腰直角三角形,若按如此规律排列下去,已知B(1,0),则A2018的坐标为(22018,22018).【考点】规律型:点的坐标.【分析】根据规律得出OB1=2,OB2=4,OB3=8,OB4=16,OB5=32,所以可得OB n=2n,再由等腰直角三角形的性质可得A n B n=OB n,进而解答即可.【解答】解:∵△ABO,△AB1B,…,△A n B n B n+1都是等腰直角三角形,∵OB=1,∴AB=1,∴OB2=2,进而得出OB3=8,OB4=16,OB5=16,∴OB n=2n,∴OB2018=22018,∴A n B n=OB n=22018,即点A2018的坐标为(22018,22018),故答案为:(22018,22018).【点评】此题考查一次函数图象上点的坐标特征,等腰直角三角形的性质,关键是根据规律得出OB n=2n进行解答.三、解答题(本大题共9个小题,共96分,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:+(﹣)3﹣(2)已知4x2﹣9=0,求x的值.【考点】实数的运算;平方根.【专题】计算题;实数.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【解答】解:(1)原式=4﹣5﹣4=﹣5;(2)方程整理得:x2=,开方得:x=±.【点评】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.20.已知函数3x+2y=1(1)将其改成y=kx+b的形式为.(2)判断点B(﹣5,3)是否在这个函数的图象上.【考点】一次函数图象上点的坐标特征.【分析】(1)根据一次函数的解析式解答即可;(2)把点B代入解析式即可.【解答】解:(1)函数3x+2y=1改成y=kx+b的形式为;故答案为:;(2)因为当x=﹣5时,y=≠3,所以点B不在这个函数的图象上.【点评】本题考查了待定系数法求一次函数解析式.此题比较简单,解答此题的关键是熟知函数图象上点的坐标一定适合此函数的解析式.21.如图,4×4方格中每个小正方形的边长都为1.(1)图1中正方形ABCD的面积为5,边长为.(3)在图2的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上).【考点】勾股定理.【专题】作图题.【分析】(1)由勾股定理求出正方形ABCD的面积=AB2=12+22=5,即可得出边长AB=;(2)由勾股定理求出面积为8的正方形的边长=2,化成正方形即可.【解答】解:(1)正方形ABCD的面积=AB2=12+22=5,边长AB=;故答案为:5,;(2)面积为8的正方形的边长==2,面积为8的正方形如图所示.【点评】本题考查了勾股定理、正方形的性质;熟练掌握正方形的性质,由勾股定理求出正方形的面积好边长是解决问题的关键.22.如图,已知在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,ED=DC.求证:AB=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据SAS得出△ADE≌△ADC,得出∠E=∠C,再根据∠E=∠B,得出∠B=∠C,进而证出AB=AC.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△ADE和△ADC中,,∴△ADE≌△ADC (SAS),∴∠E=∠C,又∵∠E=∠B,∴∠B=∠C,∴AB=AC.【点评】本题考查了全等三角形的判定和性质,用到的知识点是全等三角形的判定、全等三角形的性质以及等腰三角形的性质,关键是证出△ADE≌△ADC.23.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=的图象相交于点(2,a).(1)求一次函数y=kx+b的表达式;(2)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.【考点】两条直线相交或平行问题.【分析】(1)首先利用待定系数法求出a的值,进而得到交点坐标,然后再利用待定系数法把(﹣1,﹣5)与(2,1)代入一次函数y=kx+b计算出k、b的值,进而得到一次函数表达式;(2)根据一次函数解析式可得y=2x﹣3与y轴交点坐标,然后再利用三角形的面积公式计算出三角形面积.【解答】解:(1)∵正比例函数y=经过点(2,a),∴a=×2=1,∵一次函数y=kx+b的图象经过点(﹣1,﹣5)与(2,1),∴,∴解得,∴y=2x﹣3;(3)如图:S=×3×2=3.【点评】此题主要考查了待定系数法求一次函数解析式,以及三角形的面积计算,关键是正确得到交点的坐标,求出一次函数解析式.24.已知:如图,E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)求∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长.【考点】全等三角形的判定与性质.【专题】计算题;图形的全等.【分析】(1)在三角形ABE与三角形ABC中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证;(2)由FD与BC平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF为角平分线得到一对角相等,再由AF=AF,利用ASA得到三角形ABE与三角形ADF全等,利用全等三角形对应边相等得到AB=AD,由AC﹣AD求出DC的长即可.【解答】(1)证明:在△ABE中,∠ABE=180°﹣∠BAE﹣∠AEB,在△ABC中,∠C=180°﹣∠BAC﹣∠ABC,∵∠AEB=∠ABC,∠BAE=∠BAC,∴∠ABE=∠C;(2)解:∵FD∥BC,∴∠ADF=∠C,又∠ABE=∠C,∴∠ABE=∠ADF,∵AF平分∠BAE,∴∠BAF=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AB=AD,∵AB=8,AC=10,∴DC=AC﹣AD=10﹣8=2.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.25.某空调公司推销员的月收入y(元)与每月的销售量x(件)成一次函数关系,当他售出10件时月收入为800元,当他售出20件时月收入为1300元.(1)求y与x之间的函数关系式.(2)若想获得至少3800元的月收入,则该推销员每月至少要推销多少件空调?【考点】一次函数的应用.【专题】经济问题.【分析】(1)由题意可以设出y与x之间的函数关系式,根据题目中的数据可以得到函数的解析式,从而可以解答本题;(2)由题意可得相应的不等式,解不等式即可解答本题.【解答】解:(1)设y与x之间的函数关系式是:y=kx+b,,解得k=50,b=300.即y与x之间的函数关系式是:y=50x+300;(2)由题意可得,50x+300≥3800解得x≥70,即若想获得至少3800元的月收入,则该推销员每月至少要推销70件空调.【点评】本题考查一次函数的应用,解题的关键是明确题意列出相应的函数关系式,利用关系式解答问题.26.(16分)甲、乙两名运动员进行长袍训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数图象如图1所示(甲为线段AB,乙为折线ACB),根据图象所提供的信息解答问题:(1)他们在进行5000米的长跑训练,甲的速度是250米/分,乙前15分钟的速度是200米/分;(2)分别求甲、乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式;(3)试求x为何值时,两人相距100米?(4)若设甲乙两人之间的距离为s(米),试根据题意在图2所示的坐标系中绘制出s(米)与跑步时间t(分)之间的函数图象.【考点】一次函数的应用.【专题】行程问题.【分析】(1)由函数图象可以得到他们进行的是多少米的长跑训练和甲的速度和乙前15分钟的速度分别是多少;(2)根据函数图象分别设出各段的函数解析式,根据函数图象中的数据可以求出各段的函数解析式;(3)由题意可以知道两人相距100米有两种情况,分别写出相应的关系式即可解答本题;(4)画出相应的函数图象关键是求出15钟时两人相距最远,算出这个最远距离,从而可以画出相应的函数图象.【解答】解:(1)由图象可得,他们在进行5000米的长跑训练,甲20分钟跑了5000米,乙前15分钟跑了(5000﹣2000)米,则甲的速度为:5000÷20=250米/分,乙的速度为:3000÷15=200米/分,故答案为:5000,250米/分,200米/分;(2)设线段AC对应的函数解析式为:y=kx+b,则解得k=﹣250,b=5000,∴线段AC对应的函数解析式是:y=﹣250x+5000(0≤x≤20);设线段AB对应的函数解析式为:y=mx+n,则解得,m=﹣200,n=5000,∴线段AB对应的函数解析式是:y=﹣200x+5000(0≤x≤15),设线段BC对应的函数解析式为:y=ax+c,则解得,a=﹣400,c=8000,∴线段BC对应的函数解析式是:y=﹣400x+8000(15<x≤20);由上可得,甲距终点的路程y(米)与跑步时间x(分)之间的函数关系式是:y=﹣250x+5000(0≤x≤20);乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式是:y=;(3)由题意可得,﹣200x+5000﹣(﹣250x+5000)=100或﹣400x+8000﹣(﹣250x+5000)=100,解得,x=2或x=,即当x=2或x=,两人相距100米;(4)由题意和函数图象可得,当x=15时,两人相距最远,最远的距离为:﹣200×15+5000﹣(﹣250×15+5000)=750米,故s(米)与跑步时间t(分)之间的函数图象如下图2所示:.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件即可.27.(16分)如图,在平面直角坐标系中,点A(1,4),点B(4,0),点C(1,0).(1)点D为射线CO上的一动点,若△DAB为等腰三角形,请直接写出此时点D的坐标.(2)在y轴上,是否存在一点E,使得△EAB的面积△CAB的面积相等?若存在,求出点E的坐标;若不存在,说明理由.(3)在y轴上,是否存在一点F,使得△FAB的周长最小?若存在,求出点F的坐标;若不存在,说明理由.【考点】一次函数综合题.【专题】综合题;一次函数及其应用.【分析】(1)根据A,B,C坐标,求出AC与BC的长,再利用勾股定理求出AB的长,如图1所示,分三种情况考虑:若AB=AD′=5;若BD=AB=5;若AD″=BD″,分别求出D 坐标即可;(2)在y轴上,存在一点E,使得△EAB的面积△CAB的面积相等,理由为:由(1)得直线AB对应的函数关系式为y=﹣x+,过点C作直线AB的平行线,交y轴于点E,如图2所示,设出CE解析式为y=﹣x+c,把C坐标代入求出c的值,确定出CE解析式,求出CE与x轴的交点坐标E坐标;同理,过点(7,0)作直线AB的平行线,求出E坐标,综上,得到满足题意E坐标即可;(3)在y轴上,存在一点F,使得△FAB的周长最小,作出A关于y轴的对称点A1,连接BA1,与y轴交于点F,此时AF+BF最小,即△FAB的周长最小,求出直线CF解析式,确定出直线CF与y轴交点坐标即为F坐标.【解答】解:(1)∵A(1,4),B(4,0),C(1,0),∴AC=4,BC=3,在Rt△ABC中,根据勾股定理得:AB==5,如图1所示,分三种情况考虑:若AB=AD′=5,由对称性得到D′(﹣2,0);若BD=AB=5,可得OD=BD﹣OB=5﹣4=1,即D(﹣1,0);若AD″=BD″,此时D″为线段AB的垂直平分线与x轴的交点,设直线AB解析式为y=mx+n,把A与B坐标代入得:,解得:m=﹣,n=,即AB解析式为y=﹣x+,由A(1,4),B(4,0)得到线段AB中点坐标为(,2),∴线段AB垂直平分线方程为y﹣2=(x﹣),令y=0,得到x=﹣,即D″(﹣,0),综上,D的坐标为(﹣1,0)或(﹣2,0)或(﹣,0);(2)在y轴上,存在一点E,使得△EAB的面积△CAB的面积相等,理由为:由(1)得直线AB对应的函数关系式为y=﹣x+,过点C作直线AB的平行线,交y轴于点E,如图2所示,设直线CE的函数关系式为y=﹣x+c,∵点C在直线CE上,∴把C(1,0)代入得:0=﹣×1+c,解得:c=,∴点E的坐标为(0,),同理,过点(7,0)作直线AB的平行线,得点E的坐标为(0,),综上,存在点E,且点E的坐标为(0,)或(0,);(3)在y轴上,存在F,使得△FAB的周长最小,如图3所示,点A关于y轴的对称点A1的坐标为(﹣1,4).连接A1B交y轴于点F,连接AF,此时△FAB的周长最小,设直线A1B的函数关系式为y=mx+n,则有,解得:,∴直线A1B的函数关系式为y=﹣x+,则点F的坐标为(0,).【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,勾股定理,等腰三角形的性质坐标与图形性质,对称的性质,以及平行线的性质,熟练掌握待定系数法是解本题的关键.。

(完整word版)2017-2018八年级数学上期末试题含答案

(完整word版)2017-2018八年级数学上期末试题含答案

一.选择题(共12小题,满分36分,每小题3分)1.以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D AD=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是() A.180°B.220°C.240°D.300°5.下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6D.(﹣1)0=16.如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x 7.(3分)下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()9.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.如图,已知∠1=∠2,要得到△ABD≌△ACD,从下列条件中补选一个,则错误选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)分解因式:x3﹣4x2﹣12x= _________ .14.(4分)若分式方程:有增根,则k= _________ .15.(4分)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________ .(只需填一个即可)16.(4分)如图,在△A BC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_______ 度.17.(4分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________ .三.解答题(共7小题,满分64分)18.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案一.选择题(共12小题,满分36分,每小题3分)1.(3分))在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE 考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4C.(ab3)2=ab6D.(﹣1)0=1考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析:A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.解答:解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.6.(3分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是( )A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.解答:解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.点评:本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)下列式子变形是因式分解的是( )A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)考点:因式分解的意义.分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做8.(3分)若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)化简的结果是()A.x+1B.x﹣1C.﹣x D.x 考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2。

2017-2018学年第一学期期末八年级数学试题参考答案及评分标准

2017-2018学年第一学期期末八年级数学试题参考答案及评分标准

2017—2018学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.(7,9); 12.89-; 13.±8; 14.4; 15.九; 16.80°; 17.1.9; 18.72°. 三、解答题:(共46分)19.解:222693293x x x x x x-+-÷--+=2(3)(3)2(3)(3)3x x x x x x -+-+-- ……………………………………… 4分 = 2x -. ………………………………………… 5分 当2018x =-时,原式=-2018-2=-2020. ……………………………… 6分20.解:(1)23215)()ab ab a b --÷-( =362215a b a b a b --÷ ………………………………… 2分=321625a b ---- ………………………………… 3分 =1b. ………………………………… 4分(2)222)()()6x y x y x y y +-+--( =22222446x xy y x y y ++-+- ………………………………………6分 =24xy y -. ………………………………………7分 21.解:(1)4811m -=22(91)(91)m m +- ………………………………… 2分 =2(91)(31)(31)m m m ++-. ………………………………… 4分 (2)43242025ab ab ab -+=22(42025)ab b b -+ ………………………………… 5分=22(25)ab b - . ………………………………… 7分22.解:设第二组的攀登速度为x m/min ,根据题意,列出方程600600201.2x x+=………………………………… 3分 解得 x =20 ………………………………… 4分经检验,x =20是原方程的解. ………………………………… 5分此时,1.2x =24 ………………………………… 6分 答:第一组的速度为24m/min 第二组的速度为20m/min ;如果山高是h m ,第一组的攀登速度是第二组的a 倍,并比第二组早t min 到达峰顶,则第一组的速度为ah h t -m/min 第二组的速度为ah hat-m/min. …………………………… 8分 23.(1)解:∵△AOB 和△BCE 是等边三角形,∴BE =BC ,BA =BO ,∠EBC =∠ABO =∠AOB =60°,………………………… 3分 ∴∠EBC +∠ABC =∠ABO +∠ABC ,即∠EBA =∠CBO ,…………………… 4分 ∴△EBA ≌△CBO (SAS) ……………………………………… 5分 ∴∠EAB =∠AOB =60°. ……………………………………… 6分(2)如果点C 再向左移动3个单位长度,则点F 的位置变化情况是 保持不变 . ……………………………………… 8分24. (1)图中共有 2 个等腰三角形,共有 6 对全等三角形;………2分 (2)证明:∵AD ⊥BC ,BE ⊥AC ,∴∠AEF =∠CEF =90°, ∠BDF =∠CDF =90°,∴∠CEF =∠CDF =90°, ∠AEF =∠BDF =90°,………………3分 在△CEF 和△CDF 中90,CEF CDF EF DF CF CF ∠=∠=︒⎧⎪=⎨⎪=⎩,∴△CEF ≌△CDF (HL) ……………………………………… 5分 ∴∠ACG =∠BCG ,CE =CD . …………………………………… 6分 在△AEF 和△BDF 中90,AEF BDF EF DF EFA DFB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BDF (ASA) ……………………………………… 8分 ∴AE =BD ,∴CE +AE =CD +BD ,即AC =BC ,……………………………… 9分 又∠ACG =∠BCG ,∴CG 垂直平分AB . ……………………………………… 10分。

江苏省连云港市海州区八年级(上)期末数学试卷

江苏省连云港市海州区八年级(上)期末数学试卷

八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.如图图形中,不是轴对称图形的是( )A. B. C. D.2.在平面直角坐标系中,点P(2,-5)关于x轴对称的点的坐标为( )A. (−2,5)B. (2,5)C. (−2,−5)D. (2,−5)3.以下列各组数为边长,能构成直角三角形的是( )A. 1,2,3B. 4,5,6C. 2,3,5D. 32,42,524.关于8的叙述:①8是无理数;②在数轴上不存在表示8的点;③8表示8的立方根;④与8最接近的整数是4,其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个5.在平面直角坐标系中,一次函数y=-2x+1的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.如图,BF=EC,∠B=∠E,请问添加下面哪个条件不能判断△ABC≌△DEF( )A. ∠A=∠DB. AB=EDC.DF//AC D. AC=DF7.下列一次函数中,y随x的增大而减小的是( )A. y=x−3B. y=1−xC. y=2xD. y=3x+28.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2019次,点P依次落在点P1,P2,P3,…P2019的位置,则点P2019的横坐标为( )A. 20l9B. 2020C. 2018.5D. 2019.5二、填空题(本大题共8小题,共24.0分)9.49的平方根是______.10. 1.0239精确到百分位的近似值是______.11.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是______.12.如图,△ABC中,AB=AC,AB的垂直平分线交AC于D,若△ABC的周长为36,BC=13则△BCD周长为______.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是______cm.14.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是______.15.如图,已知过点P(4,3)的光线,经x轴上一点A反射后的射线过点Q(0,5),则点A的坐标是______.16.在平面直角坐标系中,已知直线y=-43x+4与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标为______.三、计算题(本大题共1小题,共10.0分)17.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.四、解答题(本大题共9小题,共92.0分)18.(1)求式中x的值:(x-5)3+3=-61(2)计算:20190+9-321619.已知:如图,AC与BD相交于点O,AC⊥BC,AD⊥BD,垂足分别为点C、D,且AC=BD.求证:OA=OB.20.若正比例函数y=-2x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为-3.(1)求该一次函数的解析式;(2)直接写出方程组y=−2xy=x+m的解.21.如图是规格为8×8的正方形网格,每个小方格都是边长为1的正方形.(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4);(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是______.(3)画出△ABC关于y轴对称的△A′B′C′.22.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.23.某长途客运公司规定每位旅客可以免费托运一定重量的行李,超过部分则需缴交行李托运费.行李费托运费y(元)与行李重量x(千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)每位旅客最多可以免费托运多少千克行李?(3)某旅客行托运行李100千克,应交多少行李托运费?24.已等腰Rt△ABC中,∠BAC=90°.点D从点B出发沿射线BC移动,以AD为腰作等腰Rt△ADE,∠DAE=90°.连接CE.(1)如图,求证:△ACE≌△ABD;(2)点D运动时,∠BCE的度数是否发生变化?若不变化,求它的度数;若变化,说明理由;(3)若AC=8,当CD=1时,请直接写出DE的长.25.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为______km;图中点C的实际意义为:______;慢车的速度为______,快车的速度为______;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km.(4)若第三列快车也从乙地出发驶往甲地,速度与第一列快车相同.如果第三列快车不能比慢车晚到,求第三列快车比慢车最多晚出发多少小时?26.如图①所示,直线L:y=kx+5k与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,试确定直线L解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,连接OQ,过A、B 两点分别作AM⊥OQ于M,BN⊥OQ于N,若BN=3,求MN的长;(3)当K取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想△ABP的面积是否改变,若不改变,请求出其值;若改变,请说明理由.(4)当K取不同的值时,点B在y轴正半轴上运动,以AB为边在第二象限作等腰直角△ABE,则动点E在直线______上运动.(直接写出直线的表达式)答案和解析1.【答案】D【解析】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确.故选:D.直接根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:点P(2,-5)关于x轴对称的点是:(2,5).故选:B.利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得出结论.此题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).3.【答案】C【解析】解:A、∵12+22≠32,∴该三角形不是直角三角形,故此选项不符合题意;B、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;C、∵()2+()2=()2,∴该三角形是直角三角形,故此选项符合题意;D、∵(32)2+(42)2≠(52)2,∴该三角形不是直角三角形,故此选项不符合题意.故选:C.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.【答案】A【解析】解:①是无理数是正确的;②在数轴上存在表示的点,原来的说法是错误的;③表示8的立方根,原来的说法是错误的;④与最接近的整数是3,原来的说法是错误的.故选:A.根据无理数的定义,数轴上的点与实数是一一对应的关系,立方根的定义,估算无理数的大小的夹逼法即可求解.考查了实数与数轴,无理数,立方根,估算无理数的大小,关键是熟练掌握计算法则计算即可求解.5.【答案】C【解析】解:∵一次函数y=-2x+1,k=-2<0,b=1>0,∴该函数经过第一、二、四象限,不经过第三象限,故选:C.根据一次函数的性质可以函数y=-2x+1经过哪几个象限,不经过哪个象限,本题得以解决.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.【答案】D【解析】解:A、添加∠A=∠D,可用AAS判定△ABC≌△DEF.B、添加AB=ED,可用SAS判定△ABC≌△DEF;C、添加DF∥AC,可证得∠C=∠F,用AAS判定△ABC≌△DEF;D、添加AC=DF,SSA不能判定△ABC≌△DEF.故选:D.三角形全等条件中必须是三个元素,并且一定有一组对应边相等,做题时要根据已知条件结合判定方法逐个验证.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.7.【答案】B【解析】解:在y=kx+b中,当k<0时,y随x的增大而减小,在y=x-3、y=2x和y=3x+2中,k的值分别为1、2、3,∴函数y=x-3、y=2x和y=3x+2中,y随x的增大而增大,在y=1-x中,k=-1<0,∴y随x的增大而减小,故选:B.根据一次函数的增减性逐项判断即可.本题主要考查一次函数的性质,掌握一次函数函数的增减性是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.8.【答案】C【解析】解:由题意可知P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,P2017、P2018的横坐标是2017,P2019的横坐标是2018.5,故选:C.根据图形的翻转,分别得出P1、P2、P3…的横坐标,再根据规律即可得出各个点的横坐标,进一步得出答案即可.本题考查翻折变换,等边三角形的性质及坐标与图形性质,根据题意得出P1、P2、P3…的横坐标,得出规律是解答此题的关键.9.【答案】±7【解析】解:49的平方根是±7.故答案为:±7.根据平方根的定义解答.本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.【答案】1.02【解析】解:1.0239≈1.02,故答案为:1.02.根据四舍五入法可以将题目中的数据精确到百分位,本题得以解决.本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.11.【答案】(-1,1)【解析】解:将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A'的坐标为(1-2,-2+3),即(-1,1),故答案为:(-1,1).根据向左平移横坐标减,向上平移纵坐标加求解即可.本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.【答案】24.5【解析】解:∵DE是AB的垂直平分线,∴BD=AD,∴CD=AC-AD=AC-BD,∴△BDC的周长=BC+BD+AC-BD=BC+AC,∵BC=13,AC=AB=(36-13)÷2=11.5,∴△BDC的周长=CB+AC=13+11.5=24.5.故答案为:24.5.先根据线段垂直平分线的性质求出AD=BD,再通过等量代换求出CD=AC-BD即可求解.本题考查的是线段垂直平分线的性质,属较简单题目.解答此题的关键是求出△BDC的周长=BC+AC,这也是此题的突破点.13.【答案】8【解析】解:6×2=12(cm),由勾股定理得=20(cm),则玻璃棒露在容器外的长度的最小值是28-20=8(cm).故答案为8.先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.14.【答案】x>3【解析】解:当x>3时,x+b>kx+6,即不等式x+b>kx+6的解集为x>3.故答案为:x>3.观察函数图象得到当x>3时,函数y=x+b的图象都在y=kx+6的图象上方,所以关于x的不等式x+b>kx+6的解集为x>3.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15.【答案】(52,0)【解析】解:作PB⊥x轴于B,设点A的坐标是(a,0),∵∠AOQ=∠ABP=90°,∠QAO=∠PAB,∴△AOQ∽△ABP,∴=,即=,解得,a=,则点A的坐标是(,0),故答案为:(,0).作PB⊥x轴于B,设点A的坐标是(a,0),证明△AOQ∽△ABP,根据相似三角形的性质列出比例式,代入计算求出a,得到答案.本题考查的是相似三角形的判定和性质、坐标与图形性质,掌握相似三角形的判定定理和性质定理是解题的关键.16.【答案】(0,1.5)或(0,-6)【解析】解:①若B'在x轴左半轴,过C作CD⊥AB于D,如图1,对于直线y=-x+4,令x=0,得y=4;令y=0,x=3,∴A(3,0),B(0,4),即OA=3,OB=4,∴AB=5,又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,∴AC平分∠OAB,∴CD=CO=n,则BC=4-n,∴DA=OA=3,∴DB=5-3=2,在Rt△BCD中,DC2+BD2=BC2,∴n2+22=(4-n)2,解得n=1.5,∴点C的坐标为(0,1.5).②若B′在x轴右半轴,如图,则AB′=AB=5,设OC=x,则CB′=CB=x+4,OB′=OA+AB′=3+5=8,在Rt△OCB′中,OB′2+OC2=CB′2,即82+x2=(x+4)2,解得:x=6,即可得此时点C的坐标为(0,-6).故答案为:(0,1.5)或(0,-6).分两种情况讨论:①当B′在x轴负半轴上时,过C作CD⊥AB于D,先求出A,B的坐标,分别为(3,0),(0,4),得到AB的长,再根据折叠的性质得到AC 平分∠OAB,得到CD=CO=n,DA=OA=3,则DB=5-3=2,BC=4-n,在Rt△BCD 中,利用勾股定理得到n的方程,解方程求出n即可.②当B'在x轴正半轴上时,设OC=x,在Rt△OCB′中,利用勾股定理可求出x的值.本题考查了翻折变换的性质及求直线与坐标轴交点的坐标的方法:分别令x=0或y=0,求对应的y或x的值,也考查了勾股定理的应用,难度较大.17.【答案】解:设AB=AB′=x,由题意可得出:B′E=1.4-0.6=0.8(m),则AE=AB-0.8,在Rt△AEB中,∵AE2+BE2=AB2,∴(x-0.8)2+2.42=x2解得:x=4,答:秋千AB的长为4m.【解析】设AB=x,在Rt△AEB中,利用勾股定理,构建方程即可解决问题本题考查勾股定理的应用,解题的关键是学会利用勾股定理构建方程解决问题,属于中考常考题型.18.【答案】解:(1)(x-5)3+3=-61(x-5)3=-64,则x-5=-4,解得:x=1;(2)20190+9-3216=1+3-6=-2.【解析】(1)直接利用立方根的性质分别化简得出答案;(2)直接利用零指数幂的性质以及二次根式的性质以及立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】证明:∵AC⊥BC,AD⊥BD,∴∠C=∠D=90°.在Rt△ABC和Rt△BAD中,AC=BDAB=BA,∴Rt△ABC≌Rt△BAD,∴∠ABD=∠CAB,∴OA=OB.【解析】欲证明OA=OB,只要证明∠OAB=∠OBA,只要证明Rt△ABC≌Rt△BAD即可;本题考查全等三角形的判定和性质、等腰三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【答案】解:(1)将x=-3代入y=-2x,得y=6,则点A坐标为(-3,6).将A(-3,6)代入y=x+m,得-3+m=6,解得m=9,所以一次函数的解析式为y=x+9;(2)方程组y=−2xy=x+m的解为x=−3y=6.【解析】(1)先将x=-3代入y=-2x,求出y的值,得到点A坐标,再将点A坐标代入y=x+m,利用待定系数法可得一次函数的解析式;(2)方程组的解就是正比例函数y=-2x的图象与一次函数y=x+m的交点,根据交点坐标即可写出方程组的解.此题主要考查了一次函数与二元一次方程(组)的关系及待定系数法求解析式,难度适中.21.【答案】(-1,1)【解析】解:(1)如图所示:(2)如图所示,点C即为所求,点C的坐标为(-1,1),故答案为:(-1,1).(3)如图所示,△A′B′C′即为所求.(1)根据点A的坐标可建立平面直角坐标系;(2)根据等腰三角形的定义和性质及勾股定理可得点C的位置;(3)根据轴对称的定义和性质作出三顶点关于y轴的对称点,再首尾顺次连接即可得.本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点及等腰三角形的判定与性质.22.【答案】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∠DBG=∠DCFBD=CD∠BDG=∠CDF∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【解析】(1)先利用ASA判定△BGD≌△CFD,从而得出BG=CF;(2)再利用全等的性质可得GD=FD,再有DE⊥GF,从而得出EG=EF,两边和大于第三边从而得出BE+CF>EF.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.【答案】解:(1)设AB所在直线函数关系式为y=kx+b.∵A(60,6),B(80,10)∴60k+b=680k+b=10∴k=15,b=-6.∴所求直线AB的函数关系式为y=15x−6.(2)令y=0,则15x−6=0,∴x=30.即每位旅客最多可以免费托运30千克行李.(3)当x=100时,y=15×100−6=14.即某旅客行托运行李100千克应交行李托运费14元.【解析】(1)利用待定系数法求解即可.(2)实质是求y=0时x的值,直接代入求算即可.(3)实质是求当y=100时x的值,直接代入求算即可.主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.24.【答案】解:(1)∵△ABC和△ADE都是等腰Rt△,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ACE和△ABD中,AC=AB∠CAE=∠BADAE=AD,∴△ACE≌△ABD;(2)∵△ACE≌△ABD,∴∠ACE=∠ABD=45°,∴∠BCE=∠BCA+∠ACE=45°+45°=90°;∴∠BCE的度数不变,为90°;(3)①点D在线段BC上时,如图1,∵AB=AC=8,∠BAC=90°,∴BC=4.∵CD=1,∴BD=3.∵△ACE≌△ABD,∴CE=BD=3.∵∠BCE=90°,∴DE=CD2+EC2=12+32=10;②点D在线段BC延长线上时,如图2,∵AB=AC=8,∠BAC=90°,∴BC=4.∵CD=1,∴BD=5.∵△ACE≌△ABD,∴CE=BD=5.∵∠BCE=90°,∴∠ECD=90°,∴DE=CD2+EC2=12+52=26.综上所述:DE的长为10或26.【解析】(1)由△ABC和△ADE都是等腰Rt△可得,AB=AC,AD=AE,∠BAC=∠DAE=90°,则有∠BAD=∠CAE,从而可证到△ACE≌△ABD;(2)由△ACE≌△ABD可得∠ACE=∠ABD=45°,从而得到∠BCE=∠BCA+∠ACE=90°;(3)可分点D在线段BC上时(如图1)和点D在线段BC延长线上时(如图2)两种情况讨论,在Rt△ABC中运用勾股定理可求出BC,从而得到BD,由△ACE≌△ABD可得CE=BD,在Rt△DCE中运用勾股定理就可求出DE.本题主要考查了全等三角形的判定与性质、勾股定理等知识,需要注意的是由于D从点B出发沿射线BC移动,需分情况讨论.25.【答案】960 当慢车行驶6h时,快车到达乙地 80km/h 160km/h【解析】解:(1)由图象可知,甲、乙两地之间的距离是960km;图中点C的实际意义是:当慢车行驶6 h时,快车到达乙地;慢车的速度是:960km÷12h=80km/h;快车的速度是:960km÷6h=160km/h;故答案为:960;当慢车行驶6 h时,快车到达乙地;80km/h;160km/h;(2)根据题意,两车行驶960km相遇,所用时间=4(h),所以点B的坐标为(4,0),两小时两车相距2×(160+80)=480(km),所以点C的坐标为(6,480).设线段BC所表示的y与x之间的函数关系式为y=kx+b,把(4,0),(6,480)代入得,解得.所以,线段BC所表示的y与x之间的函数关系式为y=240x-960,自变量x的取值范围是4≤x≤6.(3)分为两种情况:①设第二列快车出发ah,与慢车相距200km,则4×80+80a-200=160a,解得:a=1.5,即第二列快车出发1.5h,与慢车相距200km;②第二列开车追上慢车以后再超过慢车200km.设第二列快车出发ah,与慢车相距200km,则160a-80a=4×80+200,得a=6.5>6,(因为快车到达甲地仅需6小时,所以a=6.5舍去)综合这两种情况得出:第二列快车出发1.5h,与慢车相距200km.(4)设第三列快车在慢车出发t h后出发.则t+≤,解得:t≤6.故第三列快车比慢车最多晚出发6小时.(1)根据图象即可看出甲乙两地之间的距离,根据图可知:慢车行驶的时间是12h、快车行驶的时间是6h,根据速度公式求出速度即可;(2)设线段BC所表示的y与x之间的函数关系式为y=kx+b,根据所显示的数据求出B和C的坐标,代入求出即可;(3)分为两种情况:①设第二列快车出发ah,与慢车相距200km,根据题意得出方程4×80+80a-200=160a,求出即可;②第二列开车追上慢车以后再超过慢车200km,设第二列快车出发ah,与慢车相距200km,则160a-80a=4×80+200,求出即可;(4)设第三列快车在慢车出发th后出发.得出不等式t+≤,求出不等式的解集即可.本题考查了一次函数的应用,解此题的关键是能根据题意得出关系式,即把实际问题转化成数学式子来表示出来,题目综合比较强,是一道有一定难度的题目.26.【答案】y=-x+5【解析】解:(1)∵直线L:y=mx+5m,∴A(-5,0),B(0,5m),由OA=OB得5m=5,m=1,∴直线解析式为:y=x+5.(2)在△AMO和△OBN中,∴△AMO≌△ONB.∴AM=ON=4,∴BN=OM=3.∴MN=OM+ON=7,(3)如图,作EK⊥y轴于K点.先证△ABO≌△BEK,∴OA=BK,EK=OB.再证△PBF≌△PKE,∴PK=PB.∴PB=BK=OA.S△ABP==(4)如图3,∵A(-5,0),B(0,5k),∴OA=BK=5,EK=OB=5k,∴OK=OB+BK=5k+5,∴点E(-5k,5k+5),∵动点E在直线y=-x+5上运动.故答案为:y=-x+5.(1)是求直线解析式的运用,会把点的坐标转化为线段的长度;(2)由OA=OB得到启发,证明∴△AMO≌△ONB,用对应线段相等求长度;(3)通过两次全等,寻找相等线段,并进行转化,求PB的长.本题重点考查了直角坐标系里的全等关系,充分运用坐标系里的垂直关系证明全等,本题也涉及一次函数图象的实际应用问题.。

江苏省连云港市 八年级(上)期末数学试卷(含答案)

江苏省连云港市 八年级(上)期末数学试卷(含答案)

2017-2018学年江苏省连云港市灌云县八年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共7小题,共21.0分)1.已知一次函数y=(m-1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是()A. m>0B. m<0C. m>1D. m<12.下列A、B、C、D四组图形中,是全等图形的一组是()A. B.C. D.3.下列各组数中,能构成直角三角形的是()A. 1,√2,√2B. 6,8,10C. 4,5,9D. 5,12,184.下列√2、0、0.565656…、1、-0.010010001…(每两个1之间增加1个0)各数中,3无理数的个数为()A. 1B. 2C. 3D. 45.在平面直角坐标系中,点P(-2,-3)向右移动3个单位长度后的坐标是()A. (−5,−3)B. (1,−3)C. (1,0)D. (−2,0)6.下列奥运会会徽,是轴对称图形的是()A. B.C. D.7.由四舍五入得到的近似数8.01×104,精确到()A. 10 000B. 100C. 0.01D. 0.000 1二、填空题(本大题共6小题,共24.0分)8.点P(-4,2)关于x轴对称的点Q的坐标______.9.当直线y=kx+b与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b为______.10.如图,每个小正方形的边长都为1,则△ABC的三边长a、b、c的大小关系是______.11.已知如图,在平面直角坐标系中,x轴上的动点P(x,0)到定点A(0,2)、B(3,1)的距离分别为PA和PB,求PA+PB的最小值为______.12.点(2,3)在哪个象限______.13.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为______.三、计算题(本大题共3小题,共32.0分)14.甲汽车出租公司按每100千米150元收取租车费;乙汽车出租公司按每100千米50元收取租车费,另加管理费800元设甲家收取租车费y1元、乙家收取的租车费y2元.(1)分别求出y1元、y2元与所使用的里程x千米之间的函数关系式;(2)判断x在什么范围内,乙家收取的租车费y2元较甲家y元较少.15.已知一辆快车与一辆慢车沿着相同路线从甲地到乙地,同起点同方向,所行路程与所用的时间的函数图象如图所示:y表示离开出发点的距离.(单位:千米)(1)快车比慢车迟出发______小时,早到______小时;(2)求两车的速度;(3)求甲乙两地的距离;(4)求图中图中直线AB的解析式,并说出点C表示的实际意义.16. 求下列各式中x 的值.(1)x 2=3 (2)x 3=-64四、解答题(本大题共3小题,共32.0分)17. (1)请在所给的平面直角坐标系中画出一次函数y 1=x -1和y 2=-2x +5画出函数的图象;(2)根据图象直接写出{y +2x =5y−x=−1的解为______; (3)利用图象求两条直线与x 轴所围成图形的面积.18. 已知如图:AB ∥CD ,AB =CD ,BF =CE ,点B 、F 、E 、C 在一条直线上,求证:(1)△ABE ≌△DCF ; (2)AE ∥FD .19.活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CD.求证:△ABC≌△DCE.活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.如图3,连接MB,找出图中的全等三角形,并说明理由;活动三:已知如图,点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.答案和解析1.【答案】D【解析】解:∵一次函数y=(m-1)x的图象上两点A(x1,y1),B(x2,y2),且x1>x2时,有y1<y2∴m-1<0∴m<1故选:D.根据一次函数的增减性可求解.本题考查了一次函数图象上点的坐标特征,利用一次函数增减性解决问题是本题的关键.2.【答案】C【解析】解:由全等形的概念可知:A、B中的两个图形大小不同,D中的形状不同,C 则完全相同,故选:C.认真观察图形,可以看出选项中只有C中的两个可以平移后重合,其它三个大小或形状不一致.本题考查的是全等形的识别,做题时要注意运用定义,注意观察题中图形,属于较容易的基础题.3.【答案】B【解析】解:A、12+()2≠()2,故不是直角三角形;B、62+82=102,能构成直角三角形;C、42+52≠92,故不是直角三角形;D、52+122≠182,故不是直角三角形.故选:B.欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4.【答案】B【解析】解:、0、0.565656…、、-0.010010001…(每两个1之间增加1个0)各数中,无理数有:、-0.010010001…(每两个1之间增加1个0),共2个.故选:B.根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.本题考查了无理数,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.【答案】B【解析】解:平移后点P的横坐标为-2+3=1,纵坐标不变为-3;所以点P(-2,-3)向右平移3个单位长度后的坐标为(1,-3).故选:B.让点P的横坐标加3,纵坐标不变即可.本题考查了坐标与图形的变化--平移,平移变换是中考的常考点,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.【答案】C【解析】解:∵A.此图形一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项错误;B:此图形一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项错误;C.此图形一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项正确;D:此图形一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项错误;故选:C.根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,即可判断出.此题主要考查了轴对称图形的定义,根据定义得出图形形状是解决问题的关键.7.【答案】B【解析】解:近似数8.01×104精确到百位.故选:B.根据近似数的精确度求解.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.8.【答案】(-4,-2)【解析】解:点P(-4,2)关于x轴对称的点Q的坐标为:(-4,-2).故答案为:(-4,-2).直接利用关于x轴对称点的性质得出答案.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.9.【答案】y=2x-4【解析】解:∵直线y=kx+b与y=2x-2平行,∴k=2,把(3,2)代入y=2x+b,得6+b=2,解得b=-4,∴y=kx+b的表达式是y=2x-4.故答案为:y=2x-4.先根据两直线平行即可得到k=2,然后把(3,2)代入y=2x+b中,求出b即可.本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.10.【答案】c<a<b【解析】解:在图中,每个小正方形的边长为1,则a==,c=4,b==5,c2=16,a2=17,b2=25,c2<a2<b2,故c<a<b,故答案为c<a<b.观察图形根据勾股定理分别计算出a、b、c的值,因为a、b、c大于0,所以分别求a2、b2、c2比较大小即可比较a、b、c的大小.本题考查了勾股定理的灵活运用,考查了实数大小的比较,本题中正确的把比较a、b、c的值转化为比较c2、a2、b2的值是解题的关键.11.【答案】3√2【解析】【分析】作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小.本题考查轴对称-最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.【解答】解:作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小.∵PA+PB=PA+PB′=AB′==3,故答案为3.12.【答案】第一象限【解析】解:点(2,3)在第一象限.故答案为:第一象限.直接利用点的坐标特点进而得出答案.此题主要考查了点的坐标,正确记忆点的坐标特点是解题关键.13.【答案】B10【解析】解:小刚家位于某住宅楼A座16层,记为:A16,按这种方法,那么小红家住B 座10层,可记为B10.故答案填:B10.明确对应关系,然后解答.本题较为简单,主要是参照小刚家命名的方式来解决.14.【答案】解:(1)y1=1.5x,y2=0.5x+800;(2)当y1<y2时,乙家收取的租车费y2元较甲家y元较少;1.5x<0.5x+800解得x<800;答:当汽车行驶路程为小于800千米时,乙家收取的租车费y2元较甲家y元较少.【解析】(1)根据题意,即可求得两种方式所付费用y(元)与租用路程x千米之间的函数关系式;(2)由y1<y2时,可得出不等式,解不等式即可求得答案.此题考查了一次函数的实际应用.此题难度适中,解题的关键是理解题意,找到等量关系求得函数解析式,注意不等式思想的应用.15.【答案】2;4【解析】解:(1)慢车比快车早出发2小时,快车比慢车早4小时到达;故答案为:2;4;(2)设快车追上慢车时,慢车行驶了x小时,则慢车的速度可以表示为千米/小时,快车的速度为千米/小时,根据两车行驶的路程相等,可以列出方程,解得x=6(小时).所以慢车的速度为千米/小时,快车的速度为千米/小时;(3)两地间的路程为70×18=1260千米.(4)设直线AB的解析式为:y=kx+b,可得:,解得:,所以直线AB的解析式为:y=105x-210,点C表示的实际意义是两车在420千米处相遇.(1)根据图中,快,慢车的函数图象可得出结果.(2)求出的快车追上慢车时走的时间,可知道慢车和快车在相遇时分别用了多少小时,已知这段路程是276千米,因此根据速度=路程÷时间,即可求出两车的速度.(3)求出的两车的速度,从图中又知道了两车走完全程用的时间,因此,可以得出甲乙两地的路程.(4)结合图象解答即可.此题考查一次函数的应用,关键是通过考查一次函数的应用来考查从图象上获取信息的能力.16.【答案】解:(1)x2=3,开方得:x=±√3;(2)x3=-64,开立方得:x=-4.【解析】利用平方根,立方根定义计算即可求出值.此题考查了立方根,以及平方根,熟练掌握各自的性质是解本题的关键.x=217.【答案】{y=1【解析】解:(1)如图,(2)的解为;故答案为;(3)解方程-2x+5=0得x=,则直线y=-2x+5与x轴的交点坐标为(,0),解方程x-1=0得x=1,则直线y=x-1与x轴的交点坐标为(1,0),所以两条直线与x轴所围成图形的面积=×(-1)×1=.(1)利用描点法画出一次函数y1=x-1和y2=-2x+5的图象;(2)找出两函数图象的交点坐标即可;(3)先计算出两条直线与x轴的交点坐标,然后利用三角形面积公式求解.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.【答案】证明:(1)∵AB∥CD,∴∠B=∠C,∵BF=CE,∴BF-EF=CE-EF,即BE=CF,在△ABE和△DCF中{AB=CD ∠B=∠C BE=CF,∴△ABE≌△DCF;(2)由(1)得△ABE≌△DCF,∴∠AEB=∠DFE,∴AE∥DF.【解析】(1)根据平行线性质求出∠B=∠C,求出BE=CF,根据SAS推出两三角形全等即可;(2)根据全等三角形的性质和平行线的判定证明即可.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.【答案】活动一:证明:如图1中,∵AB⊥AD,DE⊥AD,BC⊥CE,∴∠A=∠D=∠BCE=90°,∴∠B+∠ACB=90°,∠ACB+∠ECD=90°,∴∠B=∠ECD,∵AB=CD,∴△ABC≌△DCE.活动二:解:结论:△ACB≌△CBM.理由:∵∠CNM=90°,∠CMN=30°,∴∠MCN=60°,∵∠BCN=15°,∴∠MCB=45°,∵∠A=45°,∴∠A=∠BCM,∵AB=CM,AC=CB,∴△ACB≌△CBM(ASA).活动三:解:作AH⊥y轴于H.∵C(0,2),∴OC=2,∵∠AHC=∠COB=∠ACB=90°,∴∠HAC+∠ACH=90°,∠ACH+∠BCO=90°,∴∠HAC=∠BCO,∵AC=CB,∴△ACH≌△CBO,∴AH=OC=2,∴点A到y的距离为定值,∴点A在平行于y轴的射线上运动,射线与y轴之间的距离为2(如图中虚线);【解析】活动一:利用同角的余角相等,证明∠B=∠ECD,根据ASA即可证明;活动二:结论:△ACB≌△CBM.根据ASA即可证明;活动三:作AH⊥y轴于H.只要证明△ACH≌△CBO,可得AH=OC=2,推出点A到y的距离为定值,推出点A在平行于y轴的射线上运动,射线与y轴之间的距离为2(如图中虚线);本题考查了三角形综合题,全等三角形的判定及性质、坐标与图形性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

连云港市八年级(上)期末数学试卷解析版

连云港市八年级(上)期末数学试卷解析版

连云港市八年级(上)期末数学试卷解析版一、选择题1.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( ) A .31y x =-+ B .32y x =-+C .31y x =--D .32y x =--2.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 3.已知等腰三角形的两边长分别为3和4,则它的周长为( )A .10B .11C .10或11D .74.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .6 5.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( ) A .10cmB .7cmC .6cmD .6cm 或7cm6.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .47.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .28.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( ) A .它精确到百位 B .它精确到0.01 C .它精确到千分位D .它精确到千位9.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( ) A .﹣2B .﹣12C .2D .1210.下列各数:4,﹣3.14,227,2π,3无理数有( ) A .1个B .2个C .3个D .4个二、填空题11.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm . 12.已知关于x 的方程211x mx -=-的解是正数,则m 的取值范围为__________. 13.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.14.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.15.点()2,3A 关于y 轴对称点的坐标是______.16.等腰三角形的顶角为76°,则底角等于__________. 17.化简:23(3)2716--+=_____.18.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .19.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.20.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。

2017-2018学年度上期八年级期末调研考试题数学考试参考答案及评分意见

2017-2018学年度上期八年级期末调研考试题数学考试参考答案及评分意见

2017-2018学年度上期八年级期末考试题数学参考答案及评分意见A卷(共100分)第I卷(选择题,共30分)第Ⅱ卷(非选择题,共70分)二、填空题(本题共4小题,每小题4分,共16分)11. 1; 12. 10; 13.-3; 14. <;三、解答下列各题(共54分.15题每题6分,16题6分,17--20题每题9分)()10123π-⎛⎫-- ⎪⎝⎭解:原式=31322---+…………4分(每算对一个给1分)=3-…………6分(2)2186334-⨯⎪⎪⎭⎫⎝⎛+解:原式=228188⨯-+…………3分(每算对一个给1分)=242322-+…………5分=2…………6分16.⎩⎨⎧=-=+4325yxyx解:①×3+②得85=x③…………3分把③代入①得2825=+y89-=y…………5分①②∴原方程组的解为⎪⎪⎩⎪⎪⎨⎧-==8985y x …………6分(注:(2)小题用其他方法得出正确答案也得满分)17.解:(1).分分4125302518030,18022525//⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅︒=︒-︒-︒=∠∴︒=∠∠-∠-︒=∠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅︒=∠∴︒=∠∠=∠∴BDE DBE DBE DEB BDE DEB EBC EBC DEB BCDE(2)分中,由勾股定理得:在52213EC EF R 902222⋅⋅⋅⋅⋅⋅⋅⋅⋅=-=-=∆︒=∠=∠∴⊥FC EFC t EFC EFB BCEF分分中,由勾股定理得:在9252252121754)22()62(BE BF R 2222⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⨯⨯=⋅=∴⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+=∴=-=-=∆∆EF BC S FC BF BC EF BEF t BEC 18.解:设(1)班有x 人,(2)班有y 人, ………1分根据题意得:⎩⎨⎧=+=+13401214104y x y x ………5分解得⎩⎨⎧==5846y x ………7分联合起来购票费用为:104×10=1040(元)能省的费用为:1340-1040=300(元) ………8分答:(1)班有46人,(2)班有58人,联合起来购票能省300元. ………9分19.(1) 40人 , 30 ; ………2分(每空1分) (2) 36° ,条形图如上图;………4分 (3)观察条形统计图,∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;………………………………………5分∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有1515152+=,∴这组数据的中位数为15.………………………………………7分 ∵1341410151116121731540x ⨯+⨯+⨯+⨯+⨯== ,∴这组数据的平均数为15………………………………………9分;20. 解:(1)把点A (,1a -)代入正比例函数y=12x -, 得1=1()2a -⨯-, ………………………1分解得2a =∴A(2,1-) ……… ………2分 ∵3y kx =+过点A (2,1-)1231k k ∴=-+∴=∴一次函数的表达式3+=x y ………………3分 (2)直线AO 向下平移3个单位后直线CD 的表达式为:132y x =-- ………4分 联立列方程组得,⎪⎩⎪⎨⎧--=+=3213x y x y ………………5分解得⎩⎨⎧-=-=14y x ………………………………………6分∴点C 坐标(-4,-1); ………………………………………7分(3) ∵AE//y 轴,∴点A 与点E 的横坐标相同,即设E (-2,m), ∵E (-2,m)在直线132y x =--上, ∴1(2)322m =-⨯--=-∴ E (-2,-2), …………………………………………8分 ∴AE=1-(-2)=3 ∴S △ACE =21×3×2=3. …………………………………………9分 B 卷(50分)一、填空题(20分,每小题4分)21. 2 ,3 ; 22. 22 ,23;23.569 ;24. ①②④⑥ ;25. 4 ,422-n ;二、(本题满分8分)26.解:(1)由题意得:)1(1800)8(2200)13(20002300-+-+-+=x x x x y ……… 2分即:41800100+-=x y ()81≤≤x (自变量取值范围不写要扣1分)………3分 (2)由题意得:4150041800100=+-x解之得: 3=x ………………………………………4分方案如下:甲地A 型汽车3辆,B 型汽车10辆;乙地A 型汽车5辆,B 型汽车2辆。

江苏省连云港市八年级上学期数学期末考试试卷

江苏省连云港市八年级上学期数学期末考试试卷

江苏省连云港市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题下面每小题给出的四个选项中,只有一个是正确的,请选出 (共10题;共20分)1. (2分) (2018八上·紫金期中) 下列点在x轴上的是()A . (0,1)B . (1,1)C . (1,-1)D . (-1,0)2. (2分)下列图形具有稳定性的是()A . 正方形B . 矩形C . 平行四边形D . 直角三角形3. (2分)等腰三角形两边长分别为 3,7,则它的周长为()A . 13B . 17C . 13或17D . 不能确定4. (2分)命题“关于x的一元二次方程x2+bx+1=0,必有实数解.”是假命题.则在下列选项中,可以作为反例的是()A . b=﹣3B . b=﹣2C . b=﹣1D . b=25. (2分) (2016八上·灌阳期中) 如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A . 25°B . 30°C . 35°D . 40°6. (2分)等腰三角形的一个角是80°,则它顶角的度数是()A . 80°B . 80°或20°C . 80°或50°D . 20°7. (2分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1 ,其中正确的个数是()A . 0B . 1C . 2D . 38. (2分)等腰三角形的一个外角是80°,则其底角是().A . 100°B . 100°或40°C . 40°D . 80°9. (2分) (2019八上·鄞州期中) 关于的不等式组有四个整数解,则的取值范围是A .B .C .D .10. (2分)在平面直角坐标系中,点A(-2,4),点B(4,2),在x轴上取一点P,使点P到点A和点B 的距离之和最小,则点P的坐标是()A . (-2,0)B . (2,0)C . (4,0)D . (0,0)二、填空题 (共6题;共6分)11. (1分)若,则 ac2________ bc2。

江苏省连云港市海州区2017-2018学年八年级上期末数学试卷(有答案)【精品好卷】

江苏省连云港市海州区2017-2018学年八年级上期末数学试卷(有答案)【精品好卷】

江苏省连云港市海州区八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,43.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA7.下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)二、填空题(每小题3分,满分24分)9.16的平方根是.10.圆周率π=3.1415926…精确到千分位的近似数是.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=m.12.一次函数y=﹣3x+2的图象不经过第象限.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=28°,则∠ADE=°.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是.三、解答题(共10小题,满分102分)17.(10分)(1)求式中x的值:(x+4)3+2=25(2)计算:20180﹣+18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.19.(8分)已知一次函数y=kx+2与y=x﹣1的图象相交,交点的横坐标为2.(1)求k的值;(2)直接写出二元一次方程组的解.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?26.(14分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.2017-2018学年江苏省连云港市海州区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,4【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不可以构成直角三角形,故A选项错误;B、22+32≠42,不可以构成直角三角形,故B选项错误;C、12+()2=()2,可以构成直角三角形,故C选项正确;D、()2+()2≠42,可以构成直角三角形,故D选项错误.故选:C.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量【分析】根据常量与变量的定义即可判断.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【点评】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点(﹣3,2)关于y轴对称的点的坐标是(3,2),故选:A.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.【分析】根据无理数的定义进行估算解答即可.【解答】解:A.﹣<﹣1,故错误;B.﹣<﹣1,故错误;C.﹣1<,故正确;D.>2,故错误;故选:C.【点评】此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故D选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x【分析】根据一次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选:B.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x 的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【解答】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,),点P5的坐标为(5,3),2018÷4=504…2,∴P2018的坐标为(3,5),故选:B.【点评】本题考查的是点的坐标、坐标与图形变化﹣对称,正确找出点的坐标的变化规律是解题的关键.二、填空题(每小题3分,满分24分)9.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.圆周率π=3.1415926…精确到千分位的近似数是 3.142.【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【解答】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点评】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=5m.【分析】根据题意直接利用勾股定理得出AB的长.【解答】解:由题意可得:AB==5(m).故答案为:5.【点评】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.12.一次函数y=﹣3x+2的图象不经过第三象限.【分析】根据一次函数的性质容易得出结论.【解答】解:因为解析式y=﹣3x+2中,﹣3<0,2>0,图象过一、二、四象限,故图象不经过第三象限.故答案为:三【点评】在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=28°,则∠ADE=34°.【分析】先根据三角形内角和定理计算出∠B=62°,再根据折叠的性质得∠DEC=∠B=62°,然后根据三角形外角性质求∠ADE的度数.【解答】解:∵∠ACB=90°,∠A=28°,∴∠B=90°﹣28°=62°,∵沿CD折叠△CBD,使点B恰好落在AC边上的点E处,∴∠DEC=∠B=62°,∵∠DEC=∠A+∠ADE,∴∠ADE=62°﹣28°=34°.故答案为34°.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是﹣1.【分析】根据垂直的定义得到∠ABC=90°,根据勾股定理得到AC==,求得AD=AC﹣CD=﹣1,根据圆的性质得到AE=AD,即可得到结论.【解答】解:∵BC⊥AB,∴∠ABC=90°,∵AB=2,BC=1,∴AC==,∵CD=BC,∴AD=AC﹣CD=﹣1,∵AE=AD,∴AE=﹣1,∴点E表示的实数是﹣1.故答案为:﹣1.【点评】本题考查了勾股定理,实数与数轴,圆的性质,正确掌握勾股定理是解题的关键.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2.【分析】根据函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),然后根据图象即可得到不等式3x+b>ax﹣3的解集.【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),∴不等式3x+b>ax﹣3的解集是x>﹣2,故答案为:x>﹣2.【点评】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是(2,0).【分析】找点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,先求出直线AC'的解析式,继而可得出点D的坐标.【解答】解:作点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,∵点C'坐标为(0,﹣2),点A坐标为(6,4),∴直线C'A的解析式为:y=x﹣2,故点D的坐标为(2,0).故答案为:(2,0).【点评】本题主要考查了最短线路问题,解题的关键是根据“两点之间,线段最短”,并且利用了正方形的轴对称性.三、解答题(共10小题,满分102分)17.(10分)(1)求式中x的值:(x+4)3+2=25(2)计算:20180﹣+【分析】(1)移项后计算等式的右边,再利用立方根的定义计算可得;(2)先计算零指数幂、算术平方根和立方根,再计算加减可得.【解答】解:(1)∵(x+4)3+2=25,∴(x+4)3=23,则x+4=,∴x=﹣4;(2)原式=1﹣2﹣5=﹣6.【点评】本题主要考查实数的运算,解题的关键是掌握零指数幂、算术平方根和立方根的定义与运算法则.18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD,∴AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,熟练掌握全等三角形的判定方法是解决问题的关键.19.(8分)已知一次函数y=kx+2与y=x﹣1的图象相交,交点的横坐标为2.(1)求k的值;(2)直接写出二元一次方程组的解.【分析】(1)先将x=2代入y=x﹣1,求出y的值,得到交点坐标,再将交点坐标代入y=kx+2,利用待定系数法可求得k的值;(2)方程组的解就是一次函数y=kx+2与y=x﹣1的交点,根据交点坐标即可写出方程组的解.【解答】解:(1)将x=2代入y=x﹣1,得y=1,则交点坐标为(2,1).将(2,1)代入y=kx+2,得2k+2=1,解得k=;(2)二元一次方程组的解为.【点评】此题主要考查了一次函数与二元一次方程组的关系及待定系数法求字母系数,难度适中.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是(a+4,﹣b).【分析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,﹣b).故答案为:(a+4,﹣b).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.【分析】(1)连接AC,先根据勾股定理求出AC的长,再求出AD的长,结合勾股定理的逆定理得到∠D是直角;=S△ABC+S△ADC即可得出结论.(2)由S四边形ABCD【解答】解:(1)∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角;=S△ABC+S△ADC(2)S四边形ABCD=•AB•BC+•AD•DC=234(m2).【点评】本题考查的是勾股定理的应用,熟知勾股定理的应用是解答此题的关键.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2,即2CD2=AD2+DB2.【解答】证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?【分析】(1)当0<x≤6时,根据“水费=用水量×2”即可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×5+(用水量﹣6)×3”即可得出y与x的函数关系式;(3)经分析,当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x ﹣6中,求出x值,此题得解.【解答】解:(1)根据题意可知:当0<x≤6时,y=2x;(2)根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6;(3)∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列出函数关系式;(2)根据数量关系列出函数关系式;(3)代入y=27求出x值.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,根据勾股定理列方程即可得到结论;(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t ﹣4,BE=5﹣4=1,根据勾股定理列方程即可得到结论;【解答】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,∴当t=时,P在△ABC的角平分线上.【点评】本题考查了勾股定理,关键是根据等腰三角形的判定,三角形的面积解答.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为20分钟,小聪返回学校的速度为0.2千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?【分析】(1)由函数图象的数据可以求出小聪在图书馆查阅资料的时间为20分钟,由速度=路程÷时间就可以得出小聪返回学校的速度;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为y=kx,由待定系数法求出其解即可;(3)分类讨论,当小聪、小明同时出发后,在小聪到达图书馆之前、当小聪、小明在相遇之前及当小聪、小明在相遇之后,分别求出来即可.【解答】解:(1)由题意,得小聪在图书馆查阅资料的时间为20分钟.小聪返回学校的速度为4÷20=0.2千米/分钟.故答案为:20,0.2;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为s=kt,由题意,得4=60k,解得:k=.∴所求函数表达式为s=t.(3)小聪、小明同时出发后,在小聪到达图书馆之前,两人相距0.4千米时,0.4÷(0.2﹣)=3;当小聪从图书馆返回时:设直线BC的解析式为s=k1t+b,由题意,得,解得:∴直线BC的函数式为:.当小聪、小明在相遇之前,刚好可以“互相望见”时,即两人相距0.4千米时,﹣t=0.4,解得t=;当小聪、小明在相遇之后,刚好可以“互相望见”时,即两人相距0.4千米时,t﹣=0.4,解得t=.∴所以两人可以“互相望见”的时间为:﹣=3(分钟)综上可知,两人可以“互相望见”的总时间为3+3=6(分钟).【点评】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的关系的运用,解答时求出函数的解析式是关键.26.(14分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.【分析】操作:根据余角的性质,可得∠ACD=∠CBE,根据全等三角形的判定,可得答案;应用(1)根据自变量与函数值的对应关系,可得A、B点坐标,根据全等三角形的判定与性质,可得CD,BD的长,根据待定系数法,可得AC的解析式;(2)根据全等三角形的性质,可得关于a的方程,根据解方程,可得答案.【解答】解:操作:如图1:,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(1)∵直线y=x+4与y轴交于点A,与x轴交于点B,∴A(0,4)、B(﹣3,0).如图2:,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴在△BDC和△AOB中,,△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=4.OD=OB+BD=3+4=7,∴C点坐标为(﹣7,3).设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得l2的函数表达式为y=x+4;(2)由题意可知,点Q是直线y=2x﹣6上一点.如图3:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(2a﹣6)=8﹣a,解得a=4如图4:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=2a﹣12,FQ=8﹣a.在△AQE和△QPF中,,△AQE≌△QPF(AAS),AE=QF,即2a﹣12=8﹣a,解得a=;综上所述:A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.【点评】本题考查了一次函数综合题,利用余角的性质得出∠ACD=∠CBE是解题关键,又利用了全等三角形的判定;利用了全等三角形的性质得出CD,BD的长是解题关键,又利用了待定系数法求函数解析式;利用全等三角形的性质得出关于a的方程是解题关键,要分类讨论,以防遗漏.。

2017-2018学年第一学期期末检测八年级数学试题(附答案)

2017-2018学年第一学期期末检测八年级数学试题(附答案)

2017--2018学年度第一学期期末检测八年级数学试题全卷满分150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题(共12小题,每小题4分,共48分)1、第24届冬季奥林匹克运动会,将于2022年02月04–2022年02月20日在中华人民共和国北京市和张家口市联合举行。

在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是( )A B C D2、下列各组线段,能组成三角形的是( )A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,8cm3、在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( )A. 150°B. 135°C. 120°D. 100°4、下列运算结果正确的是()。

A B: C: D:A.2≠aB.0≠aC.02≠≠a a 且D.一切实数 6、若()()A b a b a +-=+22,则A 为( )A. 2abB. -2abC. 4abD. -4ab 7、下列各式能用平方差公式分解因式的有( ) ①x 2+y 2;②x 2-y 2;③-x 2-y 2;④-x 2+y 2;⑤-x 2+2xy-y 2. A 、1个B 、2个C 、3个D 、4个8、如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从4321,,,P P P P 四个点中找出符合条件的点P ,则点P 有( )个。

连云港市海州区八年级数学(上)期末试卷及答案

连云港市海州区八年级数学(上)期末试卷及答案

八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1.在平面直角坐标系中,在x轴上的点是( )A.(﹣1,2) B.(﹣2,﹣3)C.(0,3)D.(﹣3,0)2.下列是勾股数的一组是( )A.4,5,6 B.5,7,12 C.3,4,5 D.12,13,153.如图银行标志中,是轴对称图形的个数为( )A.4个B.3个C.2个D.1个4.在下列各数,3π,,6.1010010001…,中,无理数的个数是( ) A.5 B.4 C.3 D.25.一次函数y=﹣x﹣1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6.如图,用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是( )A.SAS B.ASA C.AAS D.SSS7.用图象法解方程组时,下图中正确的是( )A.B.C.D.8.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )A.B.C.D.二、填空题(每小题4分,满分40分)9.4的平方根是__________.10.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈__________.11.点A(﹣5,3)关于y轴对称的点的坐标是__________.12.将点(4,﹣2)向右平移3个单位长度得到点的坐标是__________.13.若正比例函数的图象经过点(3,﹣6),则其函数关系式为__________.14.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为__________.15.已知点M(1,a)和点N(﹣2,b)是一次函数y=﹣3x+1图象上的两点,则a与b的大小关系是__________.16.如图,长方形OABC的边OA长为1,边AB长为,OC在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴上原点左边于一点D,则点D表示的实数是__________.17.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式0<k2x<k1x+b的解集为__________.18.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为__________.三、解答题(共8大题,满分86分)19.(1)求式中的x的值:(x+2)3+4=﹣23;(2)计算:++(﹣)﹣1.20.如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;(2)求正方形CDEF的面积.21.如图:AB=CD,AE=DF,CE=F B.求证:AE∥DF.22.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用第(1)小题中y2与x的函数关系式,分析该公司的盈亏情况.(注:总投资=前期投资+后期其他投资,总利润=总产值﹣总投资)24.课堂上,某老师给出一道数学题:如图1所示,D点在AB上,E点在AC的延长线上,且BD=CE,连接DE交BC于F,若F点是DE的中点,证明:AB=A C.小明的思路是:过D作DG∥AE,交BC于点G,如图2;小丽的思路是过E作EH∥AB,交BC的延长线于点H,如图3.请根据小明或小丽的思路任选一种完成该题的证明过程.25.某汽车公司有豪华和普通两种客车在甲、乙两城市之间运营.已知每隔1小时有一辆豪华客车从甲城开往乙城,如图所示,OA是第一辆豪华客车离开甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象,BC是一辆从乙城开往甲城的普通客车距甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象.请根据图中提供的信息,解答下列问题:(1)点B的横坐标0.5的意义是普通客车发车时间比第一辆豪华客车发车时间__________小时,点B 的纵坐标480的意义是__________.(2)请你在原图中直接画出第二辆豪华客车离开甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象.(3)若普通客车的速度为80千米/时.①求BC的函数表达式,并写出自变量t的取值范围;②求第二辆豪华客车出发后多长时间与普通客车相遇;③直接写出这辆普通客车在行驶途中与迎面而来的相邻两辆豪华客车相遇的间隔时间.26.(14分)如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM 上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.2019—2020学年江苏省连云港市海州区八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1.在平面直角坐标系中,在x轴上的点是( )A.(﹣1,2)B.(﹣2,﹣3)C.(0,3)D.(﹣3,0)【考点】点的坐标.【分析】根据x轴上点的纵坐标等于零,可得答案.【解答】解:A、(﹣1,2)在第二象限,故A错误;B、(﹣2,﹣3)在第三象限,故B错误;C、(0,3)在y轴上,故C错误;D、(﹣3,0)在x轴上,故D正确;故选:D.【点评】本题考查了点的坐标,x轴上点的纵坐标等于零,y轴上点的横坐标等于零.2.下列是勾股数的一组是( )A.4,5,6 B.5,7,12 C.3,4,5 D.12,13,15【考点】勾股数.【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、∵42+52=41≠62,∴此选项不符合题意;B、∵52+72=74≠122,∴此选项不符合题意;C、∵32+42=52,且3,4,5都是正整数,∴此选项符合题意;D、∵122+132≠152,∴此选项不符合题意.故选:C.【点评】本题考查了勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数.一组勾股数必须同时满足两个条件:①三个数都是正整数,②两个较小正整数的平方和等于最大的正整数的平方,这两个条件同时成立,缺一不可.3.如图银行标志中,是轴对称图形的个数为( )A.4个B.3个C.2个D.1个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第1,2,4个图形是轴对称图形,共3个.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.在下列各数,3π,,6.1010010001…,中,无理数的个数是( )A.5 B.4 C.3 D.2【考点】无理数.【分析】无理数就是无限不循环小数.有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,3π,6.1010010001…,是无理数,无理数的个数是4个;故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.一次函数y=﹣x﹣1不经过的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【专题】压轴题.【分析】由于k=1>0,b=﹣1,由此可以确定函数的图象经过的象限.【解答】解:∵y=﹣x﹣1,∴k=﹣1<0,b=﹣1<0,∴它的图象选B经过的象限是第二、三、四象限,不经过第一象限.故选A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.6.如图,用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的判定;作图—基本作图.【分析】利用三角形全等的判定证明.【解答】解:从角平分线的作法得出,△AFD与△AED的三边全部相等,则△AFD≌△AE D.故选D.【点评】考查了全等三角形的判定,关键是根据三边对应相等的两个三角形全等(SSS)这一判定定理.7.用图象法解方程组时,下图中正确的是( )A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】将方程组的两个方程,化为y=kx+b的形式;然后再根据两个一次函数的解析式,判断符合条件的函数图象.【解答】解:解方程组的两个方程可以转化为:y=x﹣2和y=﹣2x+4;只有C符合这两个函数的图象.故选C.【点评】一般地,每个二元一次方程组都对应着两个一次函数,也就是两条直线.从“数”的角度看,解方程组就是求使两个函数值相等的自变量的值以及此时的函数值.从“形”的角度看,解方程组就是相当于确定两条直线的交点坐标.8.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )A.B.C.D.【考点】动点问题的函数图象.【专题】数形结合.【分析】求出CE的长,然后分①点P在AD上时,利用三角形的面积公式列式得到y与x的函数关﹣S△ADP﹣S△CEP列式整理得到y与x的关系式;③系;②点P在CD上时,根据S△APE=S梯形AECD点P在CE上时,利用三角形的面积公式列式得到y与x的关系式,然后选择答案即可.【解答】解:∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵点E是BC边上靠近点B的三等分点,∴CE=×3=2,①点P在AD上时,△APE的面积y=x•2=x(0≤x≤3),②点P在CD上时,S△APE=S﹣S△ADP﹣S△CEP,梯形AECD=(2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+﹣5+x,=﹣x+,∴y=﹣x+(3<x≤5),③点P在CE上时,S△APE=×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故选:A.【点评】本题考查了动点问题函数图象,读懂题目信息,根据点P的位置的不同分三段列式求出y与x的关系式是解题的关键.二、填空题(每小题4分,满分40分)9.4的平方根是±2.【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈3.142.【考点】近似数和有效数字.【分析】把圆周率π=3.1415926…的万分位上的数字进行四舍五入即可.【解答】解:圆周率π=3.1415926…≈3.142(精确到0.001).故答案为:3.142.【点评】本题考查了近似数和有效数字,精确度的意义,近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.近似数精确到哪一位,应当看末位数字实际在哪一位.11.点A(﹣5,3)关于y轴对称的点的坐标是(5,3).【考点】关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:∵平面直角坐标系中关于y轴对称的点的坐标特点:横坐标相反数,纵坐标不变,可得:点A(﹣5,3)关于y轴的对称点的坐标是(5,3).故答案为(5,3).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.将点(4,﹣2)向右平移3个单位长度得到点的坐标是(7,﹣2).【考点】坐标与图形变化-平移.【分析】把点(4,﹣2)的横坐标加3,纵坐标不变即可得到对应点的坐标.【解答】解:∵将点(4,﹣2)向右平移3个单位长度,∴得到的点的坐标是(4+3,﹣2),即:(7,﹣2),故答案为(7,﹣2).【点评】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.若正比例函数的图象经过点(3,﹣6),则其函数关系式为y=﹣2x.【考点】待定系数法求正比例函数解析式.【分析】设正比例函数的解析式是y=kx,把点(3,﹣6)代入即可求得k的值,从而求解.【解答】解:设正比例函数的解析式是y=kx(k≠0),把(3,﹣6)代入得:3k=6,解得:k=﹣2.则函数的解析式是:y=﹣2x.故答案是:y=﹣2x.【点评】本题考查了待定系数法求函数的解析式,待定系数法是求函数的解析式的基本方法.14.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8.【考点】线段垂直平分线的性质.【专题】压轴题.【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.【点评】本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相应线段相等并进行等量代换.15.已知点M(1,a)和点N(﹣2,b)是一次函数y=﹣3x+1图象上的两点,则a与b的大小关系是a<b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣3<0,∴y随x的增大而减小,∵1>﹣2,∴a<b.故答案是:a<b.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.16.如图,长方形OABC的边OA长为1,边AB长为,OC在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴上原点左边于一点D,则点D表示的实数是﹣2.【考点】实数与数轴;勾股定理.【专题】计算题.【分析】根据勾股定理计算出OB长度,根据弧的性质知OB=O D.进而求出答案.【解答】解:∵长方形OABC的边OA长为1,边AB长为,∴OB==2,∵OB=OD,∴OD=2,∵O为原点,点D在原点左侧,∴点D表示的实数是﹣2.故答案为:﹣2.【点评】题目考查了实数与数轴,通过勾股定理为桥梁,计算数轴上点所表示的数.题目整体较为简单,适合随堂训练.17.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式0<k2x<k1x+b的解集为﹣1<x<0.【考点】一次函数与一元一次不等式.【分析】根据函数与不等式的关系:l2在l1下方且在x轴上方部分,可得答案.【解答】解:由图象,得关于x的不等式0<k2x<k1x+b的解集为﹣1<x<0,故答案为:﹣1<x<0.【点评】本题考查了一次函数与一元一次不等式,l2在l1下方且在x轴上方部分是不等式组的解集.18.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为1或3.【考点】一次函数综合题.【分析】分两种情况:①当点F在DC之间时,作出辅助线,求出点F的坐标即可求出k的值;②当点F与点C重合时求出点F的坐标即可求出k的值.【解答】解:①如图,作AG⊥EF交EF于点G,连接AE,∵AF平分∠DFE,∴DF=AG=2,在RT△ADF和RT△AGF中,,∴RT△ADF≌RT△AGF(HL),∴DF=FG,∵点E是BC边的中点,∴BE=CE=1,∴AE==,∴GE==1,∴在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2﹣DF)2+1,解得DF=,∴点F(,2),把点F的坐标代入y=kx得:2=k,解得k=3;②当点F与点C重合时,∵四边形ABCD是正方形,∴AF平分∠DFE,∴F(2,2),把点F的坐标代入y=kx得:2=2k,解得k=1.故答案为:1或3.【点评】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k.三、解答题(共8大题,满分86分)19.(1)求式中的x的值:(x+2)3+4=﹣23(2)计算:++(﹣)﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题;实数.【分析】(1)方程整理后,利用立方根定义计算即可求出解;(2)原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:(1)方程整理得:(x+2)3=﹣27,开立方得:x+2=﹣3,解得:x=﹣5;(2)原式=5﹣2﹣6=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,建立平面直角坐标系,正方形ABFG和正方形CDEF中,使点B、C的坐标分别为(﹣4,0)和(0,0)(1)写出A,D,E,F的坐标;(2)求正方形CDEF的面积.【考点】坐标与图形性质.【分析】(1)先利用点B和点C的坐标画出直角坐标系,然后根据点的坐标的意义即可得到点A、D、E、F的坐标;(2)利用正方形的面积公式和勾股定理解答即可.【解答】解:(1)如图:A(﹣6,3),D(2,1),E(1,3),F(﹣1,2);(2)因为CD=,所以正方形CDEF的面积=5.【点评】本题考查了坐标与图形性质:利用点的坐标求相应的线段长和判断线段与坐标轴的位置关系;记住坐标系中各特殊点的坐标特征.21.如图:AB=CD,AE=DF,CE=F B.求证:AE∥DF.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】如图,首先证明CF=BE,此为解题的关键性结论;证明△ABE≌△DCF,得到∠AEF=∠DFE,即可解决问题.【解答】证明:如图,∵CE=BF,∴CF=BE;在△ABE与△DCF中,,∴△ABE≌△DCF(SSS),∴∠AEF=∠DFE,∴AE∥DF.【点评】该题主要考查了全等三角形的判定、平行线的判定等几何知识点及其应用问题;解题的方法是深入观察图形,准确找出图形中隐含的等量关系;解题的关键是灵活运用全等三角形的判定等几何知识点来分析、判断、推理或解答.22.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【考点】勾股定理的应用.【分析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=C A.设AC为x,则OC=9﹣x,根据勾股定理即可得出结论.【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=C A.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.23.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用第(1)小题中y2与x的函数关系式,分析该公司的盈亏情况.(注:总投资=前期投资+后期其他投资,总利润=总产值﹣总投资)【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接列出两个函数解析式;(2)再把x=900代入y2中可求出盈利额,负则说明亏损,正则说明盈利;(3)利用y2的解析式,让y2>0则可算出生产多少会盈利,y2=0不亏损也不盈利,y2<0则会亏损.【解答】解:(1)根据题意,y1=0.3x+200,y2=0.5x﹣(0.3x+200)=0.2x﹣200;(2)把x=900代入y2中,可得y2=0.2×900﹣200=﹣20<0,∴当总产量为900台时,公司会亏损,亏损额为20万元;(3)根据题意,当0.2x﹣200<0时,解得x<1000,说明总产量小于1000台时,公司会亏损;当0.2x﹣200>0时,解得x>1000,说明总产量大于1000台时,公司会盈利;当0.2x﹣200=0时,解得x=1000,说明总产量等于1000台时,公司不会亏损也不会盈利.【点评】本题利用了总投资=前期投资+后期其他投资,总利润=总产值﹣总投资.以及解不等式的有关知识.(大于0、等于0、小于0的含义要弄清楚).24.课堂上,某老师给出一道数学题:如图1所示,D点在AB上,E点在AC的延长线上,且BD=CE,连接DE交BC于F,若F点是DE的中点,证明:AB=A C.小明的思路是:过D作DG∥AE,交BC于点G,如图2;小丽的思路是过E作EH∥AB,交BC的延长线于点H,如图3.请根据小明或小丽的思路任选一种完成该题的证明过程.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】图2,根据平行线求出∠DGF=∠ECF,∠GDF=∠E,根据AAS推出△DFG≌△EFC,根据全等三角形的性质得出DG=CE,求出BD=DG,求出∠B=∠ACB即可;图3,根据平行线的性质得出∠B=∠H,根据AAS推出△BDF≌△HEF,根据全等三角形的性质得出EH=BD,求出∠B=∠ACB即可.【解答】证明:图2,∵DG∥AE,∴∠DGF=∠ECF,∠GDF=∠E,∵F点是DE的中点,∴DF=EF,∵在△DFG和△EFC中∴△DFG≌△EFC(AAS),∴DG=CE,∵BD=CE,∴BD=DG,∴∠B=∠DGB,∵DG∥AE,∴∠DGB=∠ACB,∴∠B=∠ACB,∴AB=AC;图3,∵EH∥AB,∴∠B=∠H,在△BDF和△HEF中∴△BDF≌△HEF(AAS),∴EH=BD,∵BD=CE,∴CE=EH,∴∠H=∠HCE,∵∠H=∠B,∠HCE=∠ACB,∴∠B=∠ACB,∴AB=A C.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等.25.某汽车公司有豪华和普通两种客车在甲、乙两城市之间运营.已知每隔1小时有一辆豪华客车从甲城开往乙城,如图所示,OA是第一辆豪华客车离开甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象,BC是一辆从乙城开往甲城的普通客车距甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象.请根据图中提供的信息,解答下列问题:(1)点B的横坐标0.5的意义是普通客车发车时间比第一辆豪华客车发车时间晚0.5小时,点B的纵坐标480的意义是甲、乙两城相距480km.(2)请你在原图中直接画出第二辆豪华客车离开甲城的路程s(单位:千米)与运行时间t(单位:时)的函数图象.(3)若普通客车的速度为80千米/时.①求BC的函数表达式,并写出自变量t的取值范围;②求第二辆豪华客车出发后多长时间与普通客车相遇;③直接写出这辆普通客车在行驶途中与迎面而来的相邻两辆豪华客车相遇的间隔时间.【考点】一次函数的应用.【专题】应用题.【分析】(1)利用两点法代入BC点坐标即可求出解析式;(2)写出第二辆豪华客车的函数解析式,与普通客车联立解方程组;(3)求出与普通客车相遇的时间在上一问的基础上求差就可以.【解答】解:(1)晚0.5,甲、乙两城相距480km.(2)(3)①设直线BC的解析式为s=kt+b,∵B(0.5,480),C(6.5,0),∴,解得:,∴s=﹣80t+520,自变量t的取值范围是0.5≤t≤6.5.②设直线MN的解析式为s=kt+b,∵M(1,0),N(5,480),∴,解得,∴s=120t﹣120.由①可知直线BC解析式为s=﹣80t+520,∴120t﹣120=﹣80t+520,解得t=3.2,∴3.2﹣1=2.2.答:第二辆豪华客车出发2.2h后与普通客车相遇.③根据题意,普通客车的解析式为y=120t,∴120t=520﹣80t,解得t=2.6h,3.2﹣2.6=0.6小时(或36分钟).故答案为:晚0.6h;甲、乙两城相距300km.【点评】本题考查了一次函数的应用,信息量比较大考查点也比较多,有待定系数法求一次函数解析式,还有一次函数与二元一次方程组的应用,因此熟练掌握教材基础知识和基本技能对学习好数学非常重要.26.(14分)如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM 上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.【解答】解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).【点评】本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.。

江苏省连云港市八年级(上)期末数学试卷(含答案)

江苏省连云港市八年级(上)期末数学试卷(含答案)

江苏省连云港市八年级(上)期末数学试卷(含答案) 一、选择题 1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .323.如图,数轴上的点P 表示的数可能是( )A .3B .21+C .71-D .51+ 4.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm 5.若一个数的平方等于4,则这个数等于( )A .2±B .2C .16±D .16 6.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( ) A . B . C . D .7.在平面直角坐标系中,点(1,2)P 到原点的距离是( )A .1B 3C .2D 58.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE的长为( )A .32xB .23xC .33xD .3x9.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.5 10.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .二、填空题11.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.12.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km )13.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.14.如图,直线483y x =-+与x 轴,y 轴分别交于点A 和B ,M 是OB 上的一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式为_____.15.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC 边上一动点,则DP长的最小值为.16.若分式293xx--的值为0,则x的值为_______.17.已知某地的地面气温是20℃,如果每升高1000m气温下降6℃,则气温t(℃)与高度h(m)的函数关系式为_____.18.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)和(3,0),点C是y 轴上的一个动点,连接AC、BC,则△ABC周长的最小值是_____.19.若函数y=kx+3的图象经过点(3,6),则k=_____.20.如图,等腰Rt△OAB,∠AOB=90°,斜边AB交y轴正半轴于点C,若A(3,1),则点C的坐标为_____.三、解答题21.计算:(1)()03420121+---; (2)138332+-+. 22.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.23.如图,在ABC ∆中,AD BC ⊥,15AB =,12AD =,13AC =.求BC 的长.24.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长25米,求木杆断裂处离地面多少米?25.如图,点D 是△ABC 内部的一点,BD=CD ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,且BE=CF .求证:AB=AC .四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式;②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.28.如图,在△ABC 中,AB =AC =18cm ,BC =10cm ,AD =2BD .(1)如果点P 在线段BC 上以2cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过2s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?29.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T (x ,y )的纵坐标y 与横坐标x 的函数关系式:(3)若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.30.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设运动时间为t 秒,则CP=12-3t ,BQ=t ,根据题意得到12-3t=t ,解得:t=3,故选B .【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】2211 2,∴点A.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.3.B解析:B【解析】【分析】先换算出每项的值,全部保留三位小数,然后观察数轴上P点的位置,逐项判断即可开.【详解】≈1.732≈1.414 2.236≈2.646,所以A项≈1.732,B项≈2.414,C项≈1.646,D项≈3.236观察数轴上P点的位置,B项正确.故选B.【点睛】本题主要考查实数与数轴上的点的对应关系,掌握实数与数轴之间一一对应的关系,估算出每个二次根式的值是解题的关键.4.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.5.A解析:A【解析】【分析】平方为4,由此可得出答案.【详解】±2.所以这个数是:±2.故选:A.【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.6.B解析:B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.7.D解析:D【解析】【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P =故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.8.D解析:D【解析】【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.【详解】解:∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,AB=BC ,∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE , ∴∠E=∠CDE ,∵∠E+∠CDE=∠ACB ,∴∠E=30°=∠DBC ,∴BD=DE ,∵BD 是AC 中线,CD=x ,∴AD=DC=x ,∵△ABC 是等边三角形,∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:22(2)3BD x x x =-=3DE BD x ∴==故选:D .【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.9.B解析:B【解析】【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,∵四边形ABCD 是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG 2+BG 2=AB 2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG 和△CDH 中,AB =CD =10AG =CH =8BG =DH =6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,GH===故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.10.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.二、填空题11.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.12.4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.13.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.14.【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得与的长,BM=,然后设MO=x ,由在Rt △中,,即可得方程,继而求得M 的坐标,然后利用待定系数法 解析:132y x =-+ 【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得'AB 与'OB 的长,BM='B M ,然后设MO=x ,由在Rt △'OMB 中,222OM OB B M ''+=,即可得方程,继而求得M 的坐标,然后利用待定系数法即可求得答案.【详解】令y=0得:x=6,令x=0得y=8,∴点A 的坐标为:(6,0),点B 坐标为:(0,8),∵∠AOB=90°,∴10=,由折叠的性质,得:AB='AB =10,∴OB '=AB '-OA=10-6=4,设MO=x ,则MB=MB '=8-x ,在Rt △OMB '中,222OM OB B M '+=,即2224(8)x x +=-,解得:x=3,∴M(0,3),设直线AM的解析式为y=km+b,代入A(6,0),M(0,3)得:603k bb+=⎧⎨=⎩解得:123kb⎧=-⎪⎨⎪=⎩∴直线AM的解析式为:132y x=-+【点睛】本题考查了折叠的性质,待定系数法,勾股定理,解决本题的关键正确理解题意,熟练掌握折叠的性质,能够由折叠得到相等的角和边,能够利用勾股定理求出直角三角形中未知的边.15.4【解析】如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,∵BD⊥DC,∠A=90°,∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,∴∠C+∠CDE=90°,∠CDE+解析:4【解析】如图,过点D作DE⊥BC于点E,当DP=DE时,DP最小,∵BD⊥DC,∠A=90°,∴∠DEB=∠DEC=90°=∠A,∠BDC=90°,∴∠C+∠CDE=90°,∠CDE+∠BDE=90°,∴∠BDE=∠C,又∵∠ADB=∠C,∴∠ADB=∠BDE,∴在△ABD和△EBD中A DEBADB BDEBD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DE=AD=4,即DP的最小值为4.16.-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2 解析:-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:29=030 xx⎧-⎨-≠⎩,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.18.【解析】【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点,连接交y 轴于点C,点C解析:513+【解析】【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点'⊥轴于E,由勾股定理求出A B',即可得出结C,点C即为使AC+BC最小的点,作A E x果.【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB222+3=13要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,点C即为使AC+BC最小的点,'⊥轴于E,作A E x由对称的性质得:AC=A C',则AC+BC=A B',A E'=3,OE=1,∴BE=4,由勾股定理得:A B'22+=,345∴△ABC的周长的最小值为13+5.故答案为:13+5.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.19.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),∴336k+=,解得:k=1.故答案为:1.20.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴3 31k bk b-+=⎧⎨+=⎩,解得:1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x=0时,y=52,∴点C的坐标为(0,52),故答案为:(0,52).【点睛】此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式.三、解答题21.(1)4;(2.【解析】【分析】(1)先进行开平方,0次幂以及开立方运算,再进行加减运算即可;(2)先化简各个含根号的式子,再合并即可得出结果【详解】解:(1)原式=2+1+1=4;(2)原式.【点睛】本题考查实数的相关运算,掌握基本运算法则是解题的关键.22.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴==77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.23.BC=14.【解析】【分析】根据垂直的性质和勾股定理,先求出线段BD 的长度,再求出线段CD 的长度,最后求和即可.【详解】解:AD BC ⊥,90ADB ADC ∴∠=∠=︒∴在Rt ABD ∆中,9BD ===∴在Rt ACD ∆中,5CD ∴==9514BC BD CD =+=+=∴【点睛】本题考查了垂直的性质,勾股定理,解决本题的关键是正确理解垂直的性质,熟练掌握勾股定理中三边之间的关系.24.木杆断裂处离地面12米.【解析】【分析】设木杆断裂处离地面x 米,根据勾股定理列出方程求解即可.【详解】解:设木杆断裂处离地面x 米,由题意得:x 2+52=(25−x )2,解得x =12,答:木杆断裂处离地面12米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合思想的应用.25.证明见解析.【解析】【分析】欲证明AB =AC ,只要证明∠ABC =∠ACB 即可,根据“HL ”证明Rt △BDE ≌Rt △CDF ,由全等三角形的性质可证∠EBD =∠FCD ,再由等腰三角形的性质∠DBC =∠DCB ,从而可证∠ABC =∠ACB .【详解】∵DE ⊥AB ,DF ⊥AC ,∴∠BED=∠CFD=90°.在Rt △BDE 和Rt △CDF 中,∴Rt △BDE ≌Rt △CDF (HL ),∴∠EBD=∠FCD ,∵BD=CD ,∴∠DBC=∠DCB ,∴∠DBC+∠EBD=∠DCB+∠FCD ,即∠ABC=∠ACB ,∴AB=AC .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.四、压轴题26.(1)5y x =+;(2)223)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =.∴由勾股定理,2222OM OA AM =-=.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO ∆与OBN ∆中,90BON OAM AMO BNO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS ∴∆≅∆.22BN OM ∴==..(3)如图所示:过点E 作EG y ⊥轴于G 点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG =OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===.【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.27.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=-即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6. 故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.28.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【解析】【分析】(1)①由“SAS”可证△BPD ≌△CQP ;②由全等三角形的性质可得BP=PC=12BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.【详解】 解:(1)①△BPD 与△CQP 全等,理由如下:∵AB =AC =18cm ,AD =2BD ,∴AD =12cm ,BD =6cm ,∠B =∠C ,∵经过2s 后,BP =4cm ,CQ =4cm ,∴BP =CQ ,CP =6cm =BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =PC =12BC =5cm ,BD =CQ =6cm , ∴t =52, ∴点Q 的运动速度=612552=cm /s ,∴当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇, 由题意可得:125x ﹣2x =36, 解得:x =90, 点P 沿△ABC 跑一圈需要181810232++=(s ) ∴90﹣23×3=21(s ),∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.29.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2,∴点T的坐标为(73,2),故答案为:(73,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=33a+,y=023a++,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣13;(3)设点E的坐标为(a,a+2),则点T的坐标为(33a+,23a+),当∠THD=90°时,点E与点T的横坐标相同,∴33a+=a,解得,a=32,此时点E的坐标为(32,72),当∠TDH=90°时,点T与点D的横坐标相同,∴33a+=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(32,72)或(6,8)【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.30.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC=,利用AAS得到AFH CAD∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD=,再EK AD⊥,交DG延长线于点K,同理可得到AD EK=,等量代换得到FK EH=,再由一对直角相等且对顶角相等,利用AAS得到FHG EKG≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1)∵FH AG⊥,90AEH EAH∴∠+∠=︒,90FAC∠=︒,90FAH CAD∴∠+∠=︒,AFH CAD∴∠=∠,在AFH∆和CAD∆中,90AHF ADCAFH CADAF AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AFH CAD AAS∴∆≅∆,(2)由(1)得AFH CAD∆≅∆,FH AD∴=,作FK AG⊥,交AG延长线于点K,如图;同理得到AEK ABD∆≅∆,EK AD∴=,FH EK∴=,在EKG∆和FHG∆中,90EKG FHGEGK FGHEK FH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EKG FHG AAS∴∆≅∆,EG FG∴=.即点G是EF的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.。

连云港市海州区2017-2018学年八年级上期末数学试卷含答案解析

连云港市海州区2017-2018学年八年级上期末数学试卷含答案解析

第二次碰到正方形的边时的点为 P 2…,第n 次碰到正方形的边时的点为P n ,则P 2018 2017-2018学年江苏省连云港市海州区八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1 •下列“Q (表情”中属于轴对称图形的是() A. • • B I C.= D .厉匡 2•下列四组线段中,可以构成直角三角形的是() A . 4, 5, 6 B. 2, 3, 4 C. 1,凭、壬 D . 一,_, 43•小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,贝擞据 中的变量是( )A .金额 B.数量 C.单价 D .金额和数量4.在平面直角坐标系中,点 M (-3,2)关于y 轴对称的点的坐标为( A . (3, 2) B. (3,- 2)C. (- 3,- 2) D . (-3, 2)5.下列无理数中,在-1与2之间的是( )A . - _ B.- 丁 C. 7 D.- 6.如图,已知AB=AD 那么添加下列一个条件后,仍无法判定△ AB3A ADC 的是( )B.Z BACK DACC.Z B=Z D=90° D .Z BCA=/ DCA 7.下列一次函数中,y 随x 增大而增大的是( A . y=- 3x B. y=x - 2 C. y=— 2x+3 D . y=3- x金额 数量/升单价尻丿P (2, 0)出发,沿所示方向运动,每当小球碰到正方形 OABC 的 边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为8.如图,弹性小球从 P i ,的坐标是( )A. (5, 3)B. (3, 5)C. (0, 2)D. (2, 0)二、填空题(每小题3分,满分24分)9. ___________________ 16的平方根是.10. ______________________________________________ 圆周率n =3.1415926精确到千分位的近似数是____________________________________ .11. 如图,起重机吊运物体,/ ABC=90.若BC=12m AC=13m则AB= __________ m.12. ____________________________________ 一次函数y=-3x+2的图象不经过第___________________________________________ 象限.13. 如图,在△ ABC中,/ ACB=90,沿CD折叠△ CBD使点B恰好落在AC边上的点E处.若/ A=28,则/ ADE ________ ,14. 如图,在数轴上,点A、B表示的数分别为0、2,BC丄AB于点B,且BC=1,连接AC,在AC上截取CD=BC以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是_______ .15. ______________________________ 如图,已知函数y=3x+b和y=ax- 3的图象交于点P(- 2,- 5),则根据图象可得不等式3x+b>ax- 3的解集是.16•如图,平面直角坐标系中有三点A (6, 4)、B (4, 6)、C (0, 2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是__________ .许丿o5三、解答题(共10小题,满分102分)17. (10 分)(1)求式中x 的值:(x+4) 3+2=25(2)计算:2018°- ;+■ ■■-18. (8分)如图,点A、F、C D在同一条直线上,已知AF=DC / A=Z D, BC// EF,求证:AB=DE19. (8分)已知一次函数y=kx+2与y=x- 1的图象相交,交点的横坐标为2.(1)求k的值;(2)直接写出二元一次方程组“ 一的解.|y=x-l20. (10分)如图,在平面直角坐标系中,已知△ ABC的三个顶点的坐标分别为A(-3,5), B (- 2, 1), C (- 1, 3).(1)画出△ ABC关于x轴的对称图形△ A1B1C1;(2)画出△ A1B1C1沿x轴向右平移4个单位长度后得到的△ A2B2C2;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年江苏省连云港市海州区八年级(上)期末数学试卷一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,43.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA7.下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)二、填空题(每小题3分,满分24分)9.16的平方根是.10.圆周率π=3.1415926…精确到千分位的近似数是.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=m.12.一次函数y=﹣3x+2的图象不经过第象限.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=28°,则∠ADE=°.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是.三、解答题(共10小题,满分102分)17.(10分)(1)求式中x的值:(x+4)3+2=25(2)计算:20180﹣+18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.19.(8分)已知一次函数y=kx+2与y=x﹣1的图象相交,交点的横坐标为2.(1)求k的值;(2)直接写出二元一次方程组的解.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?26.(14分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.2017-2018学年江苏省连云港市海州区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)1.下列“QQ表情”中属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.1,D.,,4【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不可以构成直角三角形,故A选项错误;B、22+32≠42,不可以构成直角三角形,故B选项错误;C、12+()2=()2,可以构成直角三角形,故C选项正确;D、()2+()2≠42,可以构成直角三角形,故D选项错误.故选:C.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量【分析】根据常量与变量的定义即可判断.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【点评】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.4.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点(﹣3,2)关于y轴对称的点的坐标是(3,2),故选:A.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.5.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.【分析】根据无理数的定义进行估算解答即可.【解答】解:A.﹣<﹣1,故错误;B.﹣<﹣1,故错误;C.﹣1<,故正确;D.>2,故错误;故选:C.【点评】此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.6.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故D选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x【分析】根据一次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选:B.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.8.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2018的坐标是()A.(5,3)B.(3,5)C.(0,2)D.(2,0)【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【解答】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,),点P5的坐标为(5,3),2018÷4=504…2,∴P2018的坐标为(3,5),故选:B.【点评】本题考查的是点的坐标、坐标与图形变化﹣对称,正确找出点的坐标的变化规律是解题的关键.二、填空题(每小题3分,满分24分)9.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.圆周率π=3.1415926…精确到千分位的近似数是 3.142.【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【解答】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点评】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.11.如图,起重机吊运物体,∠ABC=90°.若BC=12m,AC=13m,则AB=5m.【分析】根据题意直接利用勾股定理得出AB的长.【解答】解:由题意可得:AB==5(m).故答案为:5.【点评】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.12.一次函数y=﹣3x+2的图象不经过第三象限.【分析】根据一次函数的性质容易得出结论.【解答】解:因为解析式y=﹣3x+2中,﹣3<0,2>0,图象过一、二、四象限,故图象不经过第三象限.故答案为:三【点评】在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.13.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=28°,则∠ADE=34°.【分析】先根据三角形内角和定理计算出∠B=62°,再根据折叠的性质得∠DEC=∠B=62°,然后根据三角形外角性质求∠ADE的度数.【解答】解:∵∠ACB=90°,∠A=28°,∴∠B=90°﹣28°=62°,∵沿CD折叠△CBD,使点B恰好落在AC边上的点E处,∴∠DEC=∠B=62°,∵∠DEC=∠A+∠ADE,∴∠ADE=62°﹣28°=34°.故答案为34°.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是﹣1.【分析】根据垂直的定义得到∠ABC=90°,根据勾股定理得到AC==,求得AD=AC﹣CD=﹣1,根据圆的性质得到AE=AD,即可得到结论.【解答】解:∵BC⊥AB,∴∠ABC=90°,∵AB=2,BC=1,∴AC==,∵CD=BC,∴AD=AC﹣CD=﹣1,∵AE=AD,∴AE=﹣1,∴点E表示的实数是﹣1.故答案为:﹣1.【点评】本题考查了勾股定理,实数与数轴,圆的性质,正确掌握勾股定理是解题的关键.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2.【分析】根据函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),然后根据图象即可得到不等式3x+b>ax﹣3的解集.【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),∴不等式3x+b>ax﹣3的解集是x>﹣2,故答案为:x>﹣2.【点评】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是(2,0).【分析】找点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,先求出直线AC'的解析式,继而可得出点D的坐标.【解答】解:作点C关于x轴的对称点C',连接AC',则AC'与x轴的交点即为点D的位置,∵点C'坐标为(0,﹣2),点A坐标为(6,4),∴直线C'A的解析式为:y=x﹣2,故点D的坐标为(2,0).故答案为:(2,0).【点评】本题主要考查了最短线路问题,解题的关键是根据“两点之间,线段最短”,并且利用了正方形的轴对称性.三、解答题(共10小题,满分102分)17.(10分)(1)求式中x的值:(x+4)3+2=25(2)计算:20180﹣+【分析】(1)移项后计算等式的右边,再利用立方根的定义计算可得;(2)先计算零指数幂、算术平方根和立方根,再计算加减可得.【解答】解:(1)∵(x+4)3+2=25,∴(x+4)3=23,则x+4=,∴x=﹣4;(2)原式=1﹣2﹣5=﹣6.【点评】本题主要考查实数的运算,解题的关键是掌握零指数幂、算术平方根和立方根的定义与运算法则.18.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.【分析】欲证明AB=DE,只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD,∴AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,熟练掌握全等三角形的判定方法是解决问题的关键.19.(8分)已知一次函数y=kx+2与y=x﹣1的图象相交,交点的横坐标为2.(1)求k的值;(2)直接写出二元一次方程组的解.【分析】(1)先将x=2代入y=x﹣1,求出y的值,得到交点坐标,再将交点坐标代入y=kx+2,利用待定系数法可求得k的值;(2)方程组的解就是一次函数y=kx+2与y=x﹣1的交点,根据交点坐标即可写出方程组的解.【解答】解:(1)将x=2代入y=x﹣1,得y=1,则交点坐标为(2,1).将(2,1)代入y=kx+2,得2k+2=1,解得k=;(2)二元一次方程组的解为.【点评】此题主要考查了一次函数与二元一次方程组的关系及待定系数法求字母系数,难度适中.20.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是(a+4,﹣b).【分析】(1)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,﹣b).故答案为:(a+4,﹣b).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.21.(10分)如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.【分析】(1)连接AC,先根据勾股定理求出AC的长,再求出AD的长,结合勾股定理的逆定理得到∠D是直角;=S△ABC+S△ADC即可得出结论.(2)由S四边形ABCD【解答】解:(1)∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角;=S△ABC+S△ADC(2)S四边形ABCD=•AB•BC+•AD•DC=234(m2).【点评】本题考查的是勾股定理的应用,熟知勾股定理的应用是解答此题的关键.22.(10分)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB 边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2,即2CD2=AD2+DB2.【解答】证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.23.(10分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?【分析】(1)当0<x≤6时,根据“水费=用水量×2”即可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×5+(用水量﹣6)×3”即可得出y与x的函数关系式;(3)经分析,当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x ﹣6中,求出x值,此题得解.【解答】解:(1)根据题意可知:当0<x≤6时,y=2x;(2)根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6;(3)∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列出函数关系式;(2)根据数量关系列出函数关系式;(3)代入y=27求出x值.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键.24.(10分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,根据勾股定理列方程即可得到结论;(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t ﹣4,BE=5﹣4=1,根据勾股定理列方程即可得到结论;【解答】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,∴当t=时,P在△ABC的角平分线上.【点评】本题考查了勾股定理,关键是根据等腰三角形的判定,三角形的面积解答.25.(12分)小聪和小明沿同一条笔直的马路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为20分钟,小聪返回学校的速度为0.2千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式;(3)若设两人在路上相距不超过0.4千米时称为可以“互相望见”,则小聪和小明可以“互相望见”的时间共有多少分钟?【分析】(1)由函数图象的数据可以求出小聪在图书馆查阅资料的时间为20分钟,由速度=路程÷时间就可以得出小聪返回学校的速度;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为y=kx,由待定系数法求出其解即可;(3)分类讨论,当小聪、小明同时出发后,在小聪到达图书馆之前、当小聪、小明在相遇之前及当小聪、小明在相遇之后,分别求出来即可.【解答】解:(1)由题意,得小聪在图书馆查阅资料的时间为20分钟.小聪返回学校的速度为4÷20=0.2千米/分钟.故答案为:20,0.2;(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数表达式为s=kt,由题意,得4=60k,解得:k=.∴所求函数表达式为s=t.(3)小聪、小明同时出发后,在小聪到达图书馆之前,两人相距0.4千米时,0.4÷(0.2﹣)=3;当小聪从图书馆返回时:设直线BC的解析式为s=k1t+b,由题意,得,解得:∴直线BC的函数式为:.当小聪、小明在相遇之前,刚好可以“互相望见”时,即两人相距0.4千米时,﹣t=0.4,解得t=;当小聪、小明在相遇之后,刚好可以“互相望见”时,即两人相距0.4千米时,t﹣=0.4,解得t=.∴所以两人可以“互相望见”的时间为:﹣=3(分钟)综上可知,两人可以“互相望见”的总时间为3+3=6(分钟).【点评】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的关系的运用,解答时求出函数的解析式是关键.26.(14分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.【分析】操作:根据余角的性质,可得∠ACD=∠CBE,根据全等三角形的判定,可得答案;应用(1)根据自变量与函数值的对应关系,可得A、B点坐标,根据全等三角形的判定与性质,可得CD,BD的长,根据待定系数法,可得AC的解析式;(2)根据全等三角形的性质,可得关于a的方程,根据解方程,可得答案.【解答】解:操作:如图1:,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(1)∵直线y=x+4与y轴交于点A,与x轴交于点B,∴A(0,4)、B(﹣3,0).如图2:,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴在△BDC和△AOB中,,△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=4.OD=OB+BD=3+4=7,∴C点坐标为(﹣7,3).设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得l2的函数表达式为y=x+4;(2)由题意可知,点Q是直线y=2x﹣6上一点.如图3:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(2a﹣6)=8﹣a,解得a=4如图4:,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=2a﹣12,FQ=8﹣a.在△AQE和△QPF中,,△AQE≌△QPF(AAS),AE=QF,即2a﹣12=8﹣a,解得a=;综上所述:A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.【点评】本题考查了一次函数综合题,利用余角的性质得出∠ACD=∠CBE是解题关键,又利用了全等三角形的判定;利用了全等三角形的性质得出CD,BD的长是解题关键,又利用了待定系数法求函数解析式;利用全等三角形的性质得出关于a的方程是解题关键,要分类讨论,以防遗漏.。

相关文档
最新文档