2016-2017年八年级数学期中考试试题及答案
人教版2016-2017八年级数学期中试(含答案)
第1页,共2页 第2页,共2页AC B DE 人教版2016-2017学年度第一学期 八年级数学期中考试试卷 一、选择题:(本题满分24分,每小题3分) 在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填在题后的括号内。
......... 1.下列各组线段能组成一个三角形的是( ). A .5cm ,8cm ,12cm B .2cm ,3cm ,6cm C. 3cm ,3cm ,6cm D.4cm ,7cm ,11cm 2.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等; ③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是( )。
A. ①②B. ②③C. ③④D. ①④3.在①34·34=316 ②(-3)4·(-3)3=-37 ③-32·(-3)2=-81 ④24+24=25四个式子中,计算正确的有( )A 、1个B 、2个C 、3个D 、4个 4.下列计算正确的是( )A 、x 2+x 3=2x 5B 、 x 2·x 3=2x 6C 、(-x 3)2=-x 6 D 、 x 6÷x 3=x 3 5.下列各式中,计算正确的是( ) A 、2363412a a a = B 、233(4)12a a a --=- C 、325236x x x = D 、235()()x x x --= 6.如图,∠B=∠D=90°,CB=CD ,∠1=40°,则∠2=( )。
A .40° B. 45° C. 60° D. 50°7.已知等腰三角形一个内角是70°,则另外两个内角的度数是( )A.55°, 55°B.70°, 40°C.55°, 55°或70°, 40°D.以上都不对8.下列各式中计算正确的是 ( )A 、(2p+3q )(-2p+3q)=4p 2-9q 2B 、( 12a 2b -b)2=14a 4b 2-12a 2b 2+b 2C 、(2p -3q )(-2p -3q)=-4p 2+9q 2D 、 ( -12a 2b -b)2=-14a 4b 2-a 2b 2-b 2 二 、填空题:(本题满分24分,每小题3分)9.一扇窗户打开后,用窗钩可将其固定,这里运用的几何原理为 。
人教版2016-2017年八年级上期中数学试卷含答案
八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。
2016-2017学年度第二学期期中检测八年级数学试题(含答案)
2016-2017学年度第二学期期中检测八年级数学试题(全卷共120分,考试时间90分钟)一.选择题(本大题有8个小题,每小题3分,共24分,将正确选项填写在表格中相应位置)1.下列图形中,是中心对称图形的是(▲)A B C D2.下列调查中,适宜采用普查方式的是(▲)A.调查市场上某品牌老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对《徐州夜新闻》的认可情况3.下列调查的样本选取方式,最具有代表性的是(▲)A.在青少年中调查年度最受欢迎的男歌手B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间C.为了了解你所在学校的学生每天的上网时间,向八年级的同学进行调查D.对某市的出租司机进行体检,以此反映该市市民的健康状况4.下列事件中,属于确定事件的是(▲)A.掷一枚硬币,着地时反面向上B.买一张福利彩票中奖了C.投掷3枚骰子,面朝上的三个数字之和为18D.五边形的内角和为540度5.如图,E、F、G、H分别是□ABCD各边的中点,按不同方式连接分别得到图○1、○2中两个不同的阴影部分甲、乙,关于甲、乙两个阴影部分,下列叙述正确的是( ▲ )A .甲和乙都是平行四边形B .甲和乙都不是平行四边形C .甲是平行四边形,乙不是平行四边形D .甲不是平行四边形,乙是平 行四边形6. 如图,在菱形ABCD 中,AC =6,BD =8,则菱形的周长是( ▲ )A .24B .48C .40D .207. 若依次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ▲ )A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形 8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:○1∠BCD =2∠DCF ;○2∠ECF =∠CEF ;○3S △BEC =2S △CEF ;○4∠DFE =3∠AEF ,其中一定正确的是( ▲ )A .○1○2○4B .○1○2○4C .○1○2○3○4D .○2○3○4图(1)图(2)GF E HCDGF E HCDABBA 第5题图CDAB第6题图EFCDBA 第8题图二. 填空题(本大题有8个小题,每小题3分,共24分)9. 如图是某校参加各兴趣小组的学生人数分布扇形统计图,其中“演艺”兴趣小组一项所对应的角度是 ▲ °.10. 一只不透明的袋子里装有1个白球,3个黄球,6个红球,这些球除了颜色外都相同,将球搅匀,从中任意摸出1个球,有下列事件:○1该球是红球,○2该球是黄球,○3该球是白球.它们发生的概率分别记为P 1,P 2,P 3.则P 1,P 2,P 3的大小关系 ▲ .11. 在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在0.2,那么据此估计,袋子里的球的总数大约是 ▲ 个. 12. 在□ABCD 的周长是32cm ,AB =5cm ,那么AD = ▲ cm .13. 如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,AB =4,BC =6,则DE = ▲ . 14. 如图,在□ABCD 中,AD =6,点E 、F 分别是BD 、CD 的中点,则EF = ▲ . 15. 如图,G 为正方形ABCD 的边AD 上的一个动点,AE ⊥BG ,CF ⊥BG ,垂足分别为点E ,F ,已知AD =4,则AE 2+CF 2= ▲ .第9题图第13题图EABCD第14题图EF DABC第15题图FE CDABG16. 如图,在Rt △ABC 中,∠ACB =90,AC =3,BC =4,分别以AB 、AC 、BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则1234S S S S +++= ▲ .三. 解答题(本大题共8小题,共72分)17. (本题8分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题: (1)本次问卷共随机调查了名学生,扇形统计图中m = . (2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?18. (本题8分)为了了解某中学初三年级650名学生升学考试的数学成绩,从中随机抽取了50名学生的数学成绩进行分析,并求得样本的平均成绩是93.5分.下面是根据抽取的学生数学成绩制作的统计表:分组频数累计频数 频率问卷情况条形统计图6168类型人数DCBA2468101214161820第16题图4321S S S S LMDMPQE F CAB60.5~70.5 正3 a70.5~80.5 正正6 0.1280.5~90.5 正正9 0.1890.5~100.5 正正正正17 0.34100.5~110.5 正正b 0.2110.5~120.5正5 0.1 合计501根据题中给出的条件回答下列问题: (1)表中的数据a = ,b = ;(2)在这次抽样调查中,样本是 ;(3)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为 人.19. (本题8分)在如图所示的网格纸中,建立了平面直角坐标系xOy ,点P (1,2),点A (2,5),B (-2,5),C (-2,3).(1) 以点P 为对称中心,画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 关于点P对称,并写出下列点的坐标:B ′ ,C ′ ; yB A(2) 多边形ABCA ′B ′C ′的面积是 .20. (本题8分)如图,在□ABCD 中, AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形. 证明:21. (本题8分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解:22. (本题10分)如图,在平面直角坐标系xOy 中,点A (3,4),B (5,0),C (0,第20题图FEDABCBCA EDF 第22题图-2).在第一象限找一点D ,使四边形AOBD 成为平行四边形, (1) 点D 的坐标是 ;(2) 连接OD ,线段OD 、AB 的关系是 ;(3) 若点P 在线段OD 上,且使PC +PB 最小,求点P 的坐标. 解:23. (本题10分)将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1) 试判断四边形DHBG 为何种特殊的四边形,并说明理由; (2) 若AB =8,AD =4,求四边形DHBG 的面积. 解:(1) (2)xyO AB CEGHFCDAB第23题图24. (本题12分)如图,正方形ABCO 的边OA 、OC 分别在x 、y 轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度a (0°<a <90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG . (1)求证:△CBG ≌△CDG ;(2)求∠HCG 的度数;并判断线段HG 、OH 、BG 之间的数量关系,说明理由;(3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由. (1) 证明:(2)解:(3)解:x yOGHFEDACB第24题图2016-2017学年度第二学期第一次质量抽测八年级数学试题答案四.选择题(本大题有8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A C B D A D C B五.填空题(本大题有8个小题,每小题3分,共24分)9.108.10.P1>P2>P3.11.10.12.11.13.2.14.3.15.16.16.18.六.解答题(本大题共10小题,共72分)17.答案:(1)50,m=32;……4分(2)图略;……6分(3)1000(16%40%)100056%560⨯+=⨯=.答约有560人.……8分18.答案:(1)a=0.06,b=10;……4分(2)50名学生的数学成绩;……6分(3)221.……8分19.解:(1)B′(4,-1),C′(4,1),图, (4)分(其中图2分)(2)28.……8分xyB'C'CA'OB AP20. (本题8分)证明:(1)因为四边形ABCD 是平行四边形,所以AD =BC ,…1分因为AD ∥BC ,所以∠ADE =∠CBF ,……2分 因为AE ⊥BD ,CF ⊥BD ,所以∠AED =∠CFB =90°,…3分所以△ADE ≌△CBF ,……4分 所以AE =CF .……5分(2)因为AE ⊥BD ,CF ⊥BD ,所以∠AEF =∠CFE =90°,…6分 所以AE ∥CF ,……7分由(1)得AE =CF ,所以四边形AECF 是平行四边形.……8分 21. 解:因为EF ⊥EC ,所以∠CEF =90°,………………1分 所以∠AEF +∠DEC =90°,………………2分因为四边形ABCD 是矩形,所以∠A =∠D =90°,………………3分 所以∠AFE +∠AEF =90°,所以∠AFE =∠DEC ,………………4分又EF =EC ,所以△AEF ≌△DCE ,………………5分 所以AE =DC ,………………6分因为2(AD +DC )=32,所以2(AE +DE +AE )=32,………………7分 因为DE =4cm ,所以AE =6cm .………………8分第20题图FEDABC22. 解答:(1)(8,4),图.…………2分 (2)OD 与AB 互相垂直平分.图…………4分(3)连接AC 交OD 于点P ,点P 即是所求点.…………5分(有图也可以)设经过点O 、D 的函数表达式为1y k x =,则有方程148k =,所以112k =,所以直线OD 的函数表达式为12y x =.………………6分设过点C 、A 的一次函数表达式为2y k x b =+,则有方程组22,3 4.b k b =-⎧⎨+=⎩解得22,2.b k =-⎧⎨=⎩所以过点C 、A 的一次函数表达式为22y x =-,………………8分解方程组1,22 2.y y x ⎧=⎪⎨⎪=-⎩得4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P (43,23).………………10分xyEPO ADBCEGCD23. (本题10分)解:(1)四边形DHBG 是菱形.………………1分 理由如下:因为四边形ABCD 、FBED 是完全相同的矩形, 所以∠A =∠E =90°,AD =ED , …………2分 所以DA ⊥AB ,DE ⊥BE ,所以∠ABD =∠EBD ,………………3分 因为AB ∥CD ,DF ∥BE ,所以四边形DHBG 是平行四边形,∠HDB =∠EBD ,………………5分 所以∠HDB =∠ABD , 所以DH =BH , 所以□DHBG 是菱形.………………6分 (2)由(1),设DH =BH =x ,则AH =8-x ,在Rt △ADH 中,222AD AH DH +=,即得2224(8)x x +-=, 解得5x =,即BH =5,………………9分所以菱形DHBG 的面积为5420HB AD ??. (10)分24. (本题12分) 解:(1)证明:∵正方形ABCO 绕点C 旋转得到正方形yGFECBCDEF ,∴CD =CB ,∠CDG =∠CBG =90°.………2分在Rt △CDG 和Rt △CBG 中,CD =CB ,CG =CG ,∴△CDG ≌△CBG (HL ).………………3分(2)解:∵△CDG ≌△CBG ,∴∠DCG =∠BCG 12DCB =∠,DG =BG .……………4分在Rt △CHO 和Rt △CHD 中,CH =CH ,CO =CD ,∴△CHO ≌△CHD (HL ).……………5分∴∠OCH =∠DCH 12OCD =∠,OH =DH ,…6分∴∠HCG =∠HCD +∠GCD 11145222OCD DCB OCB =∠+∠=∠=︒,…7分HG =HD +DG =HO +BG .………………8分(3)解:四边形AEBD 可为矩形. 如图,连接BD 、DA 、AE 、EB ,因为四边形AEBD 若为矩形,则四边形AEBD 为平行四边形,且AB =ED ,则有AB 、ED 互相平分,即G 为AB 中点的时候.因为DG =BG ,所以此时同时满足DG =AG =EG =BG ,即平行四边形AEBD 对角线相等,则其为矩形.所以当G 点为AB 中点时,四边形AEBD 为矩形.………………10分 ∵四边形DAEB 为矩形,∴AG =EG =BG =DG . ∵AB =6,∴AG =BG =3.………………11分 设H 点的坐标为(x ,0),则HO =x , ∵OH =DH ,BG =DG ,∴HD =x ,DG =3.在Rt △HGA 中,∵HG =x +3,GA =3,HA =6-x ,∴(x +3)2=32+(6-x )2,∴x =2. ∴H 点的坐标为(2,0).………………12分。
2016-2017学年人教版初二上册数学期中考试试卷含答案
初二数学2016-2017学年度第一学期期中质量检测班级 姓名 学号1. 下列各式中,从左到右的变形是因式分解的是( )A. 224)2)(2(y x y x y x -=-+ B. 1)(122--=--y x xy xy y x C. a 2-4ab+4b 2=(a -2b )2 D. ax+ay+a=a (x+y ) 2.计算24-的结果是( )A .8-B .18-C .116-D .1163. 月球的平均亮度只有太阳的0.00000215倍。
0.00000215用科学记数法可表示为( ) A .52.1510-⨯ B . 62.1510-⨯ C .72.1510-⨯ D .621.510-⨯4.下列各式中,正确的是( ).A . 1a b b ab b ++=B .22x y x y -++=- C.23193x x x -=-- D .222()x y x y x y x y --=++ 5. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠6.下列多项式能分解因式的有( )个2249y x +-; 2244b a ab +--; 296x x --; 1196422-+-y xy x A.0 B.1 C.2 D.37.若分式22xx -+的值是零,则x 的值是( )A .0x =B .2±=xC .2-=xD .2=x 8. 到三角形三条边距离相等的点是( )ABCDA.三条高线的交点B.三条中线的交点C.三个内角平分线的交点D.三边垂直平分线的交点 9.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC , 下列结论正确的是( )A .CD CB AD AB ->- B .CD CB AD AB -=-C .CD CB AD AB -<- D .AD AB -与CD CB -的大小关系不确定 10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( )A B CD二、填空题(本题共20分,每小题2分) 11.当x __________时,分式11x-有意义. 12. 如果7,0-==+xy y x ,则22xy y x += . 13. 若92++mx x 是一个完全平方式,则m = .14. 计算:a aa -+-111的结果是 . 15. 若b a b a -=+111,则 的值是 .16. 如图,△ABC ≌△ADE ,∠CAD=10°,∠B=25°,∠EAB=120°,则∠DFB=____________. 17. 如图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .18. 如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.C D A B ABDC3,111--+=-ba ab b a b a 则右下折沿虚线剪开剩余部分上折右折A(16) (17) (18)19. 已知b a 、满足等式2022++=b a x ,)2(4a b y -=,则y x 、的大小关系是 . 20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 . 三、计算题(共27分,20-21每小题3分,22-23每小题4分)21.分解因式:(1) y xy y x 442+- (2) ()()2233y x y x ---22.计算: (1) 11(1)1a a a a -++⋅- (2) x y x yyx x ⎛⎫+-÷ ⎪⎝⎭(3)()32227812393x x yy x y --⎡⎤⋅÷⎢⎥⎣⎦23.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中(m+3)(m+2)=0. 24.解方程: (1)512552x x x+=-- (2)四、作图题. (本题3分)25.某地区要在区域..S .内. (即∠COD 内部..) 建一个超市M ,如图,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等, 到两条公路OC ,OD 的距离也相等. 这个超市应该建在何处? (要求:尺规作图, 不写作法, 保留作图痕迹)五、解答题(共20分,每小题4分)26. 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.27.列方程解应用题八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。
2016—2017学年度第一学期八年级数学期中考试题带答案
2016—2017学年度第一学期八年级数学科期中检测题时刻:100分钟 总分值:100分 得分:一、选择题(每题2分,共28分)在以下各题的四个备选答案中,只有一个是正确的,请把你以为正确的答案的字母代号填写在下表相应题号的方格内.题 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答 案1.16的平方根是A . 4B .±14C .±4D .-4 2.以下说法正确的选项是A .4=±2 B. 64的立方根是±4 C. 7平方根是7 D. 0.01的算术平方根是0.1 3.以下实数中,无理数是A .45-B .16C .12D .0 4.以下运算中,正确的选项是A .624a a a ÷=B .532a a a =+C .33a a a ⋅= D .336()a a = 5.假设3,2mna a ==,那么3m na+=A .6B .54C .24D .12 6.比较23,3,11的大小,正确的选项是A .11<3<23B .23<11<3C .11<23<3D .3<11<237.以下因式分解正确的选项是A. 24414(1)1m m m m -+=-+B. 222()x y x y +=+C.222()2a b a ab b +=++ D. 241(12)(12)x x x -+=+- 8.一个多项式除以y x 22-,其商为y x y x 22353+-,那么此多项式为A .5342610x y x y --B .2435106y x y x +-C .2435106y x y x -D .5342610x y x y + 9.计算991000.125(8)⨯-的结果是A. 1B. 8C. -1D. -8 10.假设()()3x a x -+-的积不含x 的一次项,那么a 的值为 A. 3 B. -3 C .13 D. 13- 11.以下命题中,是真命题的为A .相等的角是对顶角B .三角形的一个外角等于两个内角之和C .若是两直线平行,那么内错角相等D .面积相等的两个三角形全等12.如图1,把一个等腰梯形剪成两块上底为b ,下底为a ,高为(a –b )的直角梯形(a >b )(如左图),拼成如右图所示的图形。
山东省菏泽市单县2016-2017学年八年级(上)期中数学试卷(解析版)
2016-2017学年山东省菏泽市单县八年级(上)期中数学试卷一、选择题(每题3分)1.下列图案属于轴对称图形的是()A.B.C.D.2.下列各式中,不论字母取何值时分式都有意义的是()A.B.C.D.3.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD4.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9)C.8(a2﹣9)(a2+6a+9)D.4(a﹣3)2(a+3)25.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°6.下列分式约分,正确的是()A.=a2B.=C.=D.=07.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.8.下列各式从左到右的变形正确的是()A.=B.﹣=C.=2a+1 D.=9.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或710.如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°二、填空题(每题4分)11.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在第象限.12.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB=(度)13.计算:=.14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=D C.其中所有正确结论的序号是.15.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,AE=3ED,如果AC=12cm,那么DE的长为cm.16.化简+的结果是.17.如图,已知△ABC≌△ADE,∠C=79°,DE⊥AB,则∠D的度数为.18.如图,长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,点Q是线段CD上的动点,则AQ+QP的最小值为.三、解答题19.如图,已知点B,E,C,F在一条直线上,AC∥DE,∠A=∠D,AB=DF,(1)试说明:△ABC≌△DEF;(2)若BF=13,EC=7,求BC的长.20.计算下列各题:(1)(﹣)2•()2+(﹣2ab)2(2)(x+3+)+.21.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.22.先化简,再求值:÷+,其中x的值满足x+1与x+6互为相反数.23.如图,把两个含有45°的三角尺如图放置,∠ECD=ACB=90°,且AB=AE,连接AD交BE于点P,试说明:(1)AD=BE;(2)AD平分∠BAE.24.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC 于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.2016-2017学年山东省菏泽市单县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分)1.下列图案属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选A.2.下列各式中,不论字母取何值时分式都有意义的是()A.B.C.D.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零列出不等式,可得答案.【解答】解:∵2x2+1>1,∴不论字母取何值都有意义,故选:D.3.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA 添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.4.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9)C.8(a2﹣9)(a2+6a+9)D.4(a ﹣3)2(a+3)2【考点】最简公分母;通分.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的最简公分母是4(a﹣3)(a+3)2,故选A.5.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°【考点】等腰三角形的判定.【分析】根据内角与相邻的外角的和等于180°求出∠A,再根据等腰三角形两底角相等解答.【解答】解:∵∠A的相邻外角是70°,∴∠A=180°﹣70°=110°,∵△ABC为等腰三角形,∴∠B==35°.故选B.6.下列分式约分,正确的是()A.=a2B.=C.=D.=0【考点】约分.【分析】根据分式的基本性质分别进行化简,即可得出答案.【解答】解:A、=a3,故本选项错误;B、=,故本选项错误;C、=,故本选项正确;D、=1,故本选项错误;故选C.7.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.8.下列各式从左到右的变形正确的是()A.=B.﹣=C.=2a+1D.=【考点】分式的基本性质.【分析】根据分子、分母、分式的值改变其中的两个的符号,分式的值不变,可得答案.【解答】解:=,故D符合题意;故选:D.9.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【考点】矩形的性质;全等三角形的判定.【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16﹣2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,,∴△ABF≌△DCE,由题意得:AF=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选C.10.如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°【考点】平行线的性质;轴对称的性质;翻折变换(折叠问题).【分析】先根据折叠的性质以及对顶角相等,得出∠A'FG=90°﹣40°=50°,再根据∠1+∠EFG=180°,可得∠1+∠1﹣50°=180°,进而得出∠1=115°.【解答】解:∵∠2=40°,∴∠FGA'=40°,又∵∠A'=∠A=90°,∴Rt△A'FG中,∠A'FG=90°﹣40°=50°,∴∠EFG=∠EFA'﹣50°,又∵∠1=∠EFA',∴∠EFG=∠1﹣50°,又∵∠1+∠EFG=180°,∴∠1+∠1﹣50°=180°,解得∠1=115°,故选:B.二、填空题(每题4分)11.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在第四象限.【考点】关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由题意,得2﹣a=1,b+5=3,解得a=1,b=﹣2,点C(a,b)在第四象限,故答案为:四.12.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB=60(度)【考点】等边三角形的判定与性质.【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【解答】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.13.计算:=2.【考点】分式的加减法.【分析】根据同分母分式相加减,分母不变,只把分子相加减求解即可.【解答】解:原式===2.故答案为2.14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=D C.其中所有正确结论的序号是①②③.【考点】全等三角形的判定与性质.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.15.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,AE=3ED,如果AC=12cm,那么DE的长为3cm.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得CE=DE.【解答】解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,∴CE=DE,∵AE=3ED,如果AC=12cm,∴AE=3EC,∴CE=DE=3cm,∵故答案为:3.16.化简+的结果是.【考点】分式的加减法.【分析】先通分、再根据分式的加法法则计算即可.【解答】解:原式=+=,故答案为:.17.如图,已知△ABC≌△ADE,∠C=79°,DE⊥AB,则∠D的度数为68°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得到AE=AC,∠DAE=∠BAC,根据三角形内角和定理求出∠DAB,根据垂直的定义计算即可.【解答】解:∵△ABC≌△ADE,∴AE=AC,∠DAE=∠BAC,∴∠EAC=180°﹣79°﹣79°=22°,∴∠DAB=22°,∵DE⊥AB,∴∠D=90°﹣22°=68°,故答案为:68°.18.如图,长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,点Q是线段CD上的动点,则AQ+QP的最小值为.【考点】轴对称﹣最短路线问题;矩形的性质.【分析】根据图形和题意,作点P关于直线CD的对称点P′,然后根据两点之间线段最短,可以解答本题.【解答】解:作点P关于直线CD的对称点P′,如右图所示,∵长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,∴AE=a+0.5a=1.5a,EP′=0.5b,tan30°=,∴b=,∵两点之间线段最短,∴AQ+QP的最小值就是线段AP′的长度,∵∠AEP′=90°,EP′=0.5b,AE=1.a,∴AP′====,故答案为:.三、解答题19.如图,已知点B,E,C,F在一条直线上,AC∥DE,∠A=∠D,AB=DF,(1)试说明:△ABC≌△DEF;(2)若BF=13,EC=7,求BC的长.【考点】全等三角形的判定与性质.【分析】(1)根据两角和其中的一角的对边对应相等的两个三角形全等即可判定.(2)根据全等三角形的性质可知BC=EF,推出BE=CF,由此即可解决问题.【解答】(1)证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),(2)∵△ABC≌△DEF,∴BC=EF,即BE+EC=EC+CF,∴BF=CF,∵BF=13,EC=7,∴BE+CF=BF﹣EC=6,∴BE=CF=3,∴BC=BE+EC=3+7=10.20.计算下列各题:(1)(﹣)2•()2+(﹣2ab)2(2)(x+3+)+.【考点】分式的混合运算.【分析】(1)根据分式乘除法法则即可化简运算.(2)根据因式分解以及分式的基本性质即可化简运算.【解答】解:(1)原式=•=(2)原式=(+)•=﹣•=1﹣x21.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.【考点】等腰三角形的性质.【分析】首先根据AB=AD=AE,DE=EC,得到∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,从而得到∠ADE=∠AED=∠C+∠EDC=2∠C,根据∠DAB=30°,求得∠B=∠ADB=75°,利用∠ADC=∠ADE+∠EDC=3∠C=105°,求得∠C即可.【解答】解:∵AB=AD=AE,DE=EC,∴∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,∴∠ADE=∠AED=∠C+∠EDC=2∠C,∵∠DAB=30°,∴∠B=∠ADB=75°,∴∠ADC=∠ADE+∠EDC=3∠C=105°,∴∠C=35°.22.先化简,再求值:÷+,其中x的值满足x+1与x+6互为相反数.【考点】分式的化简求值;相反数.【分析】先把除法变成乘法,算乘法,再算加法,最后代入求出即可.【解答】解:÷+=•+=+=,∵x的值满足x+1与x+6互为相反数,∴x+1+x+6=0,x+1=﹣(x+6),∴原式=﹣1.23.如图,把两个含有45°的三角尺如图放置,∠ECD=ACB=90°,且AB=AE,连接AD交BE于点P,试说明:(1)AD=BE;(2)AD平分∠BAE.【考点】全等三角形的判定与性质;三角形内角和定理;等腰三角形的性质.【分析】(1)由△ABC和△ECD为含45°的直角三角形,由此即可得出EC=DC、BC=AC,结合∠ECB=∠DCA=90°即可利用全等三角形的判定定理SAS证出△BCE≌△ACD,再根据全等三角形的性质即可得出结论;(2)由△BCE≌△ACD即可得出∠EBC=∠DAC,根据∠EBC+∠BEC=90°即可得出∠DAC+∠BEC=90°,结合三角形内角和定理即可得出∠APE=90°,再利用等腰三角形的三线合一即可证出AD平分∠BAE.【解答】证明:(1)∵两个含有45°的三角尺如图放置,∠ECD=ACB=90°,∴EC=DC,BC=A C.在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DA C.∵∠EBC+∠BEC=90°,∴∠DAC+∠BEC=90°,∴∠APE=90°,即AP⊥BE.又∵AB=AE,∴AD平分∠BAE.24.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC 于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【解答】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=6cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16cm,∴OA=0B=OC=5cm;(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.2017年4月1日。
2016-2017年山东省潍坊市寿光市八年级(下)期中数学试卷(解析版)
2016-2017学年山东省潍坊市寿光市八年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)4的平方根是()A.16B.4C.±2D.22.(3分)下列二次根式中,能与合并的是()A.B.C.D.3.(3分)若(m+1)x﹣3>0是关于x的一元一次不等式,则m的值为()A.±1B.1C.﹣1D.04.(3分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个5.(3分)如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD 的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A.135°B.120°C.112.5°D.67.5°6.(3分)若a﹣b<0,则下列各式中一定正确的是()A.a>b B.ab>0C.D.﹣a>﹣b 7.(3分)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长分别为5,12,14C.三边长之比为3:4:5D.三边长分别为1,,8.(3分)等式=成立的条件是()A.a≠1B.a>1C.a≥2D.﹣1<a≤2 9.(3分)已知不等式2x﹣a≤0的正整数解恰好是1,2,3,4,5,那么a的取值范围是()A.a>10B.10≤a≤12C.10<a≤12D.10≤a<12 10.(3分)下列各数中是无理数的是()A.B.3.1415926C.D.11.(3分)如图,一架长为10m的梯子斜靠在一面墙上,梯子底端离墙6m,如果梯子的顶端下滑了2m,那么梯子底部在水平方向滑动了()A.2m B.2.5m C.3m D.3.5m12.(3分)某工厂要把27块棱长均为5cm的正方体铁块,并将这些熔化的铁块放在一起制作成一个大的正方体铁块,若熔化的过程中损耗忽略不计,则新铁块的棱长为()A.10cm B.12cm C.13cm D.15cm二、填空题(每小题3分,共18分)13.(3分)若代数式有意义,则字母x的取值范围是.14.(3分)在直角三角形中,两边长分别为3和4,则最长边的长度为.15.(3分)若不等式(n﹣2)x>﹣1的解集为x<﹣,则n的取值范围是.16.(3分)若对实数a、b、c、d规定运算=ad﹣bc,那么=.17.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.18.(3分)如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,BC=7,且AB∥DE,则三角形DEC的周长是.三、解答题(12分+8分+10分+12分+12分=66分)19.(12分)(1)(﹣)÷×(2)4a2﹣7(3)(+5)(5﹣2)﹣(﹣)2.20.(8分)解不等式﹣≥,并把它的解集在数轴上表示出来.21.(10分)已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.22.(12分)在由6个边长为1的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)23.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D 为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.24.(12分)在某市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2016-2017学年山东省潍坊市寿光市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)4的平方根是()A.16B.4C.±2D.2【解答】解:4的平方根为±2.故选:C.2.(3分)下列二次根式中,能与合并的是()A.B.C.D.【解答】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选:B.3.(3分)若(m+1)x﹣3>0是关于x的一元一次不等式,则m的值为()A.±1B.1C.﹣1D.0【解答】解:依题意得:m2=1且m+1≠0,解得m=1.故选:B.4.(3分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选:C.5.(3分)如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD 的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A.135°B.120°C.112.5°D.67.5°【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,∠DBC=∠ABD=45°,∵四边形BEFD是菱形,∴∠EBF=∠DBC=22.5°,∴∠FPC=∠BCD+∠EBF=90°+∠22.5°=112.5°;故选:C.6.(3分)若a﹣b<0,则下列各式中一定正确的是()A.a>b B.ab>0C.D.﹣a>﹣b【解答】解:∵a﹣b<0,∴a<b,根据不等式的基本性质3可得:﹣a>﹣b;故选:D.7.(3分)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长分别为5,12,14C.三边长之比为3:4:5D.三边长分别为1,,【解答】解:A、180°×=90°,是直角三角形,故此选项不合题意;B、52+122≠142,不能作为直角三角形的三边长,故本选项符合题意;C、32+42=52,能作为直角三角形的三边长,故本选项不符合题意;D、12+()2=()2,能作为直角三角形的三边长,故本选项不符合题意;故选:B.8.(3分)等式=成立的条件是()A.a≠1B.a>1C.a≥2D.﹣1<a≤2【解答】解:∵等式=成立,∴,解得:a≥2.故选:C.9.(3分)已知不等式2x﹣a≤0的正整数解恰好是1,2,3,4,5,那么a的取值范围是()A.a>10B.10≤a≤12C.10<a≤12D.10≤a<12【解答】解:解不等式2x﹣a≤0得:x≤a.根据题意得:5≤a<6,解得:10≤a<12.故选:D.10.(3分)下列各数中是无理数的是()A.B.3.1415926C.D.【解答】解:A、是有理数,故A不符合题意;B、是有理数,故B不符合题意;C、是有理数,故C不符合题意;D、是无理数,故D符合题意;故选:D.11.(3分)如图,一架长为10m的梯子斜靠在一面墙上,梯子底端离墙6m,如果梯子的顶端下滑了2m,那么梯子底部在水平方向滑动了()A.2m B.2.5m C.3m D.3.5m【解答】解:在Rt△ABO中:AO===8(米),∵梯子的顶端下滑了2m,∴AC=2米,∴CO=6米,在Rt△COD中:DO===8(米),∴BD=DO﹣BO=8﹣6=2(米),故选:A.12.(3分)某工厂要把27块棱长均为5cm的正方体铁块,并将这些熔化的铁块放在一起制作成一个大的正方体铁块,若熔化的过程中损耗忽略不计,则新铁块的棱长为()A.10cm B.12cm C.13cm D.15cm【解答】解:大正方体的体积为:27×53(cm3),新正方体的棱长为:=15(cm).故选:D.二、填空题(每小题3分,共18分)13.(3分)若代数式有意义,则字母x的取值范围是﹣3≤x<1或x>1.【解答】解:由代数式有意义,得.解得﹣3≤x<1或x>1,故答案为:﹣3≤x<1或x>1.14.(3分)在直角三角形中,两边长分别为3和4,则最长边的长度为4或5.【解答】解:①当4为斜边时,此时最长边为4.②当4是直角边时,斜边==5,此时最长边为5.故答案是:4或5.15.(3分)若不等式(n﹣2)x>﹣1的解集为x<﹣,则n的取值范围是n <2.【解答】解:两边都除以(n﹣2),不等号的方向改变,得n﹣2<0,解得n<2,故答案为:n<2.16.(3分)若对实数a、b、c、d规定运算=ad﹣bc,那么=2.【解答】解:=﹣1×﹣(﹣4)×=﹣2+4=2故答案为:2.17.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是24.【解答】解:∵AC是菱形ABCD的对角线,E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=3,∴BC=6,∴菱形ABCD的周长是4×6=24.故答案为24.18.(3分)如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,BC=7,且AB∥DE,则三角形DEC的周长是13.【解答】解:∵AD∥BC,AB∥DE,∴ABED是平行四边形,∴DE=CD=AB=5,EB=AD=4,∴EC=7﹣4=3,则△DEC的周长=DE+DC+EC=5+5+3=13.故答案是:13.三、解答题(12分+8分+10分+12分+12分=66分)19.(12分)(1)(﹣)÷×(2)4a2﹣7(3)(+5)(5﹣2)﹣(﹣)2.【解答】解:(1)原式=(5﹣3)××=2×=;(2)原式=a﹣7a=﹣6a;(3)原式=5﹣10+50﹣10﹣(5﹣2+2)=5﹣10+50﹣10﹣5+2﹣2=﹣3+33.20.(8分)解不等式﹣≥,并把它的解集在数轴上表示出来.【解答】解:3(3x+1)﹣8≥2(2x﹣5),9x+3﹣8≥4x﹣10,9x﹣5≥4x﹣10,5x≥﹣5,x≥﹣1,将解集表示在数轴上如下:21.(10分)已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.【解答】解:由题意得,b﹣c≥0且c﹣b≥0,所以,b≥c且c≥b,所以,b=c,所以,等式可变为+|a﹣c+1|=0,由非负数的性质,得,解得,所以,c=,a+b+c=++=,所以,a+b+c的平方根是±.22.(12分)在由6个边长为1的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)【解答】解:(1)如图(1),连接AC,,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,AB=BC,∴△ABC是直角三角形,∠ABC=90°,∴AB⊥BC∴AB与BC是垂直且相等.(2)∠α+∠β=45°.证明:如图(2),,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∵AB=BC,∴△ABC是等腰直角三角形,∴∠α+∠β=45°.23.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D 为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.24.(12分)在某市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.【解答】解:(1)设每台电脑x万元,每台电子白板y万元.根据题意,得,解得.答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a台,则购进电子白板(30﹣a)台,则,解得15≤a≤17,即a=15,16,17.故共有三种方案:方案一:购进电脑15台,电子白板15台,总费用为0.5×15+1.5×15=30(万元);方案二:购进电脑16台,电子白板14台,总费用为0.5×16+1.5×14=29(万元);方案三:购进电脑17台,电子白板13台,总费用为0.5×17+1.5×13=28(万元).所以方案三费用最低.。
2016-2017学年常州市八年级上期中数学试卷含答案解析
2016-2017学年江苏省常州市八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)下列图形中,是轴对称图形的是()A. B.C.D.2.(2分)等腰三角形的对称轴有()A.1条 B.2条 C.3条 D.6条3.(2分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC4.(2分)在△ABC中,∠A=50°,∠B=80°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形5.(2分)下列说法中正确的是()A.斜边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.有一边相等的两个等边三角形全等D.两条边相等的两个直角三角形全等6.(2分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.a2=1,b2=2,c2=3 B.b=c,∠A=45°C.∠A=∠B=3∠C D.a+b=2.5,a﹣b=1.6,c=27.(2分)如图,在△ABC中,点D是AB边上一点,且AB=AC=CD,则∠1与∠2之间的关系()A.3∠2﹣2∠1=180°B.2∠2+∠1=180°C.3∠2﹣∠1=180° D.∠1=2∠28.(2分)如图,在△ABC中,∠A=90°,点D是BC的中点,过点D作DE⊥DF分别AB、AC于点E、F.若BE=1.5,CF=2,则EF的长是()A.2.4 B.2.5 C.3 D.3.5二、填空题(每小题2分,共20分)9.(2分)已知△ABC≌△DEF(A、B、C分别对应D、E、F),若∠A=50°,∠E=72°,则∠F为°.10.(2分)一个等腰三角形的两边长分别为2和5,则它的周长为.11.(2分)如图是某天下午小明在镜中看到身后墙上的时钟情况,则实际时间大约是.12.(2分)如图,由Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为cm2.13.(2分)如图,在△ABC中,D是BC上的一点,∠CAD=∠BAE=30°,AE=AB,∠E=∠B,则∠ADC 的度数为°.14.(2分)某园林里有两棵相距8米的树,一棵高8米,另一棵高2米.若有一只鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少要飞米.15.(2分)如图,在△ABC中,∠C=90°,AC=5,BC=12,AB的垂直平分线分别交BC、AB于点D、E,则CD的长为.16.(2分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=°.17.(2分)如图,等边△ABC中,∠ABC和∠ACB的角平分线交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若BE=5,则AE的长为.18.(2分)一个直角三角形的一条边长为5,另两条边长之差为3,则这个直角三角形的面积为.三、作图题(其中第19题6分,第20题7分,共13分)19.(6分)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.20.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.(2)将△ABC沿直线l翻折得到△A′B′C′.试画出△A′B′C′.(3)画出点P,使得点P到点D、A′的距离相等,且到边AB、AA′的距离相等.四、解答题(共51分)21.(8分)如图,点C为AB中点,CD∥BE,AD∥CE.求证:△ACD≌△CBE.22.(8分)如图,线段AD与BC相交于点E,点E是AD的中点,AB=DC=AD.求证:AC=BD且AC∥BD.23.(8分)为了测量校园内旗杆的高度,小强先将升旗的绳子拉直到旗杆底端,并在与旗杆低端齐平的绳子处做好标记,测得剩余绳子的长度为0.5米,然后将绳子低端拉至离旗杆底端3.5米处(绳子被拉直且低端恰好与地面接触).请你算出旗杆的高度.24.(8分)如图,CD是△ABC的中线,CE是△ABC的高,若AC=9,BC=12,AB=15.(1)求CD的长.(2)求DE的长.25.(9分)如图,AD是△ABC的中线,AB=AC,∠BAC=45°.过点C作CE⊥AB于点E,交AD于点F.试判断AF与CD之间的关系,并说明理由.26.(10分)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.2016-2017学年江苏省常州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)下列图形中,是轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.2.(2分)等腰三角形的对称轴有()A.1条 B.2条 C.3条 D.6条【解答】解:一般等腰三角形有一条对称轴,故选:A.3.(2分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC【解答】解:A、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS);故A正确;B、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(AAS);故A正确;C、在△ABD和△ACD中,,∵ASS不能证明三角形全等,故C错误;D、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SAS);故D正确;故选C.4.(2分)在△ABC中,∠A=50°,∠B=80°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∠C=180°﹣∠A﹣∠B=50°.故△ABC是等腰三角形,故选B.5.(2分)下列说法中正确的是()A.斜边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.有一边相等的两个等边三角形全等D.两条边相等的两个直角三角形全等【解答】解:A、全等的两个直角三角形的判定只有一条边对应相等不行,故本选项错误;B、只有两条边对应相等,找不出第三个相等的条件,即两三角形不全等,故本选项错误;C、有一边相等的两个等边三角形全等,根据SSS均能判定它们全等,故此选项正确;D、有两条边对应相等的两个直角三角形,不能判定两直角三角形全,故选项错误;故选:C.6.(2分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.a2=1,b2=2,c2=3 B.b=c,∠A=45°C.∠A=∠B=3∠C D.a+b=2.5,a﹣b=1.6,c=2【解答】解:A、∵1+2=3,即a2+b2=c2,∴△ABC是直角三角形,则选项错误;B、∵b=c,∴∠B=∠C==67.5°,△ABS不是直角三角形,选项正确;C、∵∠A=∠B=3∠C,∴设∠C=x°,则∠A=3x°,∠B=2x°,根据题意得x+3x+2x=180°,∴x=30,则∠A=90°,∠B=60°,∠C=30°,△ABC是直角三角形,选项错误;D、根据题意得,解得:,∵22+0.452=2.052,∴b2+c2=a2,∴△ABC是直角三角形,选项错误.故选B.7.(2分)如图,在△ABC中,点D是AB边上一点,且AB=AC=CD,则∠1与∠2之间的关系()A.3∠2﹣2∠1=180°B.2∠2+∠1=180°C.3∠2﹣∠1=180° D.∠1=2∠2【解答】解:∵AC=CD,∴∠2=∠A,∵AB=AC,∴∠B=∠ACB,∵∠2=∠B+∠1,∴∠ACD=180°﹣2∠2,∠B=∠2﹣∠1,∴2(∠2﹣∠1)+∠2=180°,∴3∠2﹣2∠1=180°,故选A.8.(2分)如图,在△ABC中,∠A=90°,点D是BC的中点,过点D作DE⊥DF分别AB、AC于点E、F.若BE=1.5,CF=2,则EF的长是()A.2.4 B.2.5 C.3 D.3.5【解答】解:延长FD至点G,使得DG=DF,连接BG,EG,∵在△CDF和△BDG中,,∴△CDF≌△BDG(SAS),∴BG=CF=2,∠C=∠DBG,∵∠C+∠ABC=90°,∴∠DBG+∠ABC=90°,即∠ABG=90°,∵DE⊥FG,DF=DG,∴EF=EG===2.5.故选B.二、填空题(每小题2分,共20分)9.(2分)已知△ABC≌△DEF(A、B、C分别对应D、E、F),若∠A=50°,∠E=72°,则∠F为58°.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=50°,∵∠E=72°,∴∠F=180°﹣50°﹣72°=58°,故答案为:58.10.(2分)一个等腰三角形的两边长分别为2和5,则它的周长为12.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.11.(2分)如图是某天下午小明在镜中看到身后墙上的时钟情况,则实际时间大约是8:05.【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,故此时的实际时刻是8:05,故答案为:8:05.12.(2分)如图,由Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为64cm2.【解答】解:∵S M=AB2,S N=AC2,又∵AC2+AB2=BC2=8×8=64,∴M与正方形N的面积之和为64cm2.13.(2分)如图,在△ABC中,D是BC上的一点,∠CAD=∠BAE=30°,AE=AB,∠E=∠B,则∠ADC 的度数为75°.【解答】解:∵∠CAD=∠BAE=30°,∴∠CAD+∠BAD=∠BAD+∠BAE,即∠BAC=∠DAE,在△ABC和△AED中∴△ABC≌△AED(ASA),∴AD=AC,∴∠ACD=∠ADC,∵∠CAD=30°,∴∠ADC=75°,故答案为:75.14.(2分)某园林里有两棵相距8米的树,一棵高8米,另一棵高2米.若有一只鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少要飞10米.【解答】解:如图,过点A作AE⊥CD于点E,∵AB⊥BD,CD⊥BD,AE⊥CD,∴四边形ABDE是矩形.∵AB=2米,CD=BD=8米,∴AE=BD=8米,CE=8﹣2=6米,∴AC===10(米).故答案为:10.15.(2分)如图,在△ABC中,∠C=90°,AC=5,BC=12,AB的垂直平分线分别交BC、AB于点D、E,则CD的长为.【解答】解:∵DE为AB的垂直平分线,∴AD=BD,∵在△ABC中,∠C=90°,AC=5,BC=12,设CD的长为x,则BD=12﹣x,在Rt△ACE中,由勾股定理得:x2+52=(12﹣x)2,解得:x=.故答案为:.16.(2分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=135°.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠3=∠BAC,在Rt△ABC中,∠BAC+∠1=90°,∴∠1+∠3=90°,由图可知,△ABF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.17.(2分)如图,等边△ABC中,∠ABC和∠ACB的角平分线交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若BE=5,则AE的长为10.【解答】解:∵BO、CO是∠ABC、∠ACB的角平分线,∴∠OBE=∠OBC,∠OCF=∠BCO,又∵EF∥BC,∴∠OBC=∠BOE,∠BCO=∠COF,∴∠OBE=∠BOE,∠COF=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,∵等边△ABC,BE=5,∴AE=EF=BE+CF=2BE=10,故答案为1018.(2分)一个直角三角形的一条边长为5,另两条边长之差为3,则这个直角三角形的面积为4或.【解答】或4解:①当5为斜边长时,设较短的一个直角边长为x,则另一直角边的长为:x+3.由勾股定理得:x2+(x+3)2=52.解得:x=(负值舍去).∴x=,∴x+3=,∴直角三角形的面积=××=4;②当5为直角边长时,设较短的一个直角边长为x,则斜边长为:x+3.根据题意得:x2+52=(x+3)2.解得:x=,∴直角三角形的面积=×5×=;故答案为:4或.三、作图题(其中第19题6分,第20题7分,共13分)19.(6分)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.【解答】画对任意三种即可..20.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.(2)将△ABC沿直线l翻折得到△A′B′C′.试画出△A′B′C′.(3)画出点P,使得点P到点D、A′的距离相等,且到边AB、AA′的距离相等.【解答】解:(1)如图,点C为所作点;(2)如图,△A′B′C′为所作三角形;(3)如图,点P为所作点.四、解答题(共51分)21.(8分)如图,点C为AB中点,CD∥BE,AD∥CE.求证:△ACD≌△CBE.【解答】证明:∵点C是AB的中点,∴AC=CB∵CD∥BE,∴∠ACD=∠B∵AD∥CE,∴∠A=∠BCE在△ACD和△CBE中∴△ACD≌△CBE(ASA)22.(8分)如图,线段AD与BC相交于点E,点E是AD的中点,AB=DC=AD.求证:AC=BD且AC∥BD.【解答】证明:∵点E是AD的中点,∴AE=ED=AD,∵AB=DC=AD,∴AB=AE,ED=CD,∴∠ABE=∠AEB,∠DCE=∠DEC,∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABC和△DCB中,∴△ABC≌△DCB (SAS),∴AC=BD,∠ACB=∠DBC∴AC∥BD.23.(8分)为了测量校园内旗杆的高度,小强先将升旗的绳子拉直到旗杆底端,并在与旗杆低端齐平的绳子处做好标记,测得剩余绳子的长度为0.5米,然后将绳子低端拉至离旗杆底端3.5米处(绳子被拉直且低端恰好与地面接触).请你算出旗杆的高度.【解答】解:设旗杆的高度为x米,则绳子的长度为(x+0.5)米,根据题意可得:x2+3.52=(x+0.5)2,解这个方程得:x=12.答:旗杆的高度为12米.24.(8分)如图,CD是△ABC的中线,CE是△ABC的高,若AC=9,BC=12,AB=15.(1)求CD的长.(2)求DE的长.【解答】解:(1)由AB=15,BC=12得AB2﹣BC2=225﹣144=81.由AC2=81得AB2﹣BC2=AC2即:AB2=BC2+AC2,∴∠ACB=90°,∵点D是AB的中点,∴CD=AB=7.5;=AC•BC=AB•CE,(2)由∠ACB=90°可得:S△ABC∴×9×12=×15CE,解得:CE=7.2,Rt△CDE中:DE==2.1.25.(9分)如图,AD是△ABC的中线,AB=AC,∠BAC=45°.过点C作CE⊥AB于点E,交AD于点F.试判断AF与CD之间的关系,并说明理由.【解答】解:AF⊥DC且AF=2CD,∵CE⊥AB,∴∠BEC=∠AEC=90°,∴∠ECB+∠B=90°,又∵∠BAC=45°,∴∠ACE=45°,∴∠BAC=∠ACE,∴AE=EC,∵AB=AC,AD是△ABC的中线,∴BC=2DC,AD⊥BC,即有:AF⊥CD,∴∠ADC=∠ADB=90°,∴∠BAD+∠B=90°,∴∠BAD=∠BCE,在△AEF和△CEB中,,∴△AEF≌△CEB,∴AF=BC,∴AF=2CD.26.(10分)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.【解答】解:(1)∵∠ACB=90°,点D是AB的中点∴AD=BD=CD=AB.∴∠ACD=∠A=75°.∴∠ADC=30°.∵△A′CD由△ACD沿CD翻折得到,∴△A′CD≌△ACD.∴AD=AD,∠A′DC=∠ADC=30°.∴AD=A′D=DB,∠ADA′=60°.∴∠A′DB=120°.∴∠DBA′=∠DA′B=30°.∴∠ADC=∠DBA'.∴CD∥A′B.(2)连接AA′∵AD=A′D,∠ADA′=60°,∴△ADA′是等边三角形.∴AA′=AD=AB,∠DAA′=60°.∴∠AA′B=180°﹣∠A′AB﹣∠ABA′=90°. ∵AB=4, ∴AA′=2. ∴由勾股定理得:A′B2=AB2﹣AA′2=42﹣22=12.。
2016-2017学年人教版八年级上期中数学试卷含答案解析
第 5 页(共 15 页)
2.下面四个图形中,线段 BD 是△ABC 的高的是( )
A.
B.
分线、中线和高. 【分析】根据三角形高的定义进行判断. 【解答】解:线段 BD 是△ABC 的高,则过点 B 作对边 AC 的垂线,则垂线段 BD 为△ ABC 的高. 故选 A.
3.三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是 () A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cm C.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm 【考点】三角形三边关系. 【分析】根据三角形的三边关系对各选项进行逐一分析即可. 【解答】解:A、∵2+3=5,∴不能组成三角形,故本选项错误; B、∵10﹣ 5<6<10+5,∴能组成三角形,故本选项正确; C、∵1+1=2<3,∴不能组成三角形,故本选项错误; D、∵3+4=7<9,∴不能组成三角形,故本选项错误. 故选 B.
2016-2017 学年重庆市 XX 中学八年级(上)期中数学试卷
一.选择题(每小题 3 分,共 30 分) 1.计算(﹣ x)2•x3 所得的结果是( ) A.x5 B.﹣ x5 C.x6 D.﹣ x6 2.下面四个图形中,线段 BD 是△ABC 的高的是( )
A.
B.
C.
D.
3.三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是 () A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cm C.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm 4.计算﹣ (﹣ 3a2b3)4 的结果是( ) A.81a8b12 B.12a6b7 C.﹣ 12a6b7 D.﹣ 81a8b12 5.如图,将两根钢条 AA′、BB′的中点 O 连在一起,使 AA′、BB′可以绕着点 O 自由转 动,就做成了一个测量工件,由三角形全等得出 A′B′的长等于内槽宽 AB;那么判定△ OAB≌△OA′B′的理由是( )
2016-2017年安徽省合肥市包河区八年级(上)数学期中试卷及参考答案
2016-2017学年安徽省合肥市包河区八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)已知点A(a+1,4),B(3,2a+2),若直线AB∥x轴,则a的值为()A.2 B.1 C.﹣4 D.﹣33.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)4.(3分)弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,图象如图所示,则弹簧不挂物体时的长度是()A.9cm B.10cm C.10.5cm D.11cm5.(3分)若m<0,n>0,则一次函数y=mx+n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC 边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°7.(3分)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣28.(3分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣39.(3分)甲、乙两地相距180km,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.10.(3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.二、填空题(每小题4分,共20分)11.(4分)函数y=中,自变量x的取值范围是.12.(4分)一等腰三角形,一边长为9cm,另一边长为4cm,则等腰三角形的周长是cm.13.(4分)如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.14.(4分)如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=度.15.(4分)在直角坐标系中,直线y=x+1与y轴交于点A1,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…,则S5的值为.三、解答题(共50分)16.(5分)已知y﹣2与x成正比例,且当x=1,y=﹣6,求y与x的关系式.17.(5分)画出函数y=2x+4的图象,利用图象:(1)求不等式2x+4<0的解集;(2)若﹣2≤y≤6,求x的取值范围.18.(6分)△ABC中,∠B=40°,∠C=70°,AD平分∠BAC,AE⊥BC,垂足为E.求∠DAE的度数.19.(8分)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.20.(8分)如图,直线l1:y1=2x+3,直线l2:y2=﹣2x﹣1,l1与x轴交于点A,l2与x轴交于点B,l1,l2交于点C.(1)求△ABC的面积;(2)在直线l2上存在异于点C点另一个点P,且△ABP与△ABC的面积相等,求P点的坐标.21.(8分)某校运动会需购买A、B两种奖品共100件.A、B两种奖品单价分别为10元、15元.设购买A种奖品m件,购买两种奖品的总费用为W元.(1)写出W(元)与m(件)之间的函数关系式;(2)若购买两种奖品的总费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,求出自变量m的取值范围,并确定最少费用W的值.22.(10分)1号气球从海拔5米处出发,以1m/min的速度上升.于此同时,2号气球从海拔15米处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球上升时间为xmin(0≤x≤50)(1)根据题意,填写下表:(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)上升多少时间后,两个气球所在位置的海拔高度相差5米?2016-2017学年安徽省合肥市包河区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.2.(3分)已知点A(a+1,4),B(3,2a+2),若直线AB∥x轴,则a的值为()A.2 B.1 C.﹣4 D.﹣3【解答】解:∵直线AB∥ox轴,∴2a+2=4,解得a=1.故选:B.3.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选:A.4.(3分)弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,图象如图所示,则弹簧不挂物体时的长度是()A.9cm B.10cm C.10.5cm D.11cm【解答】解:设解析式为y=kx+b,把(5,12.5)(20,20)代入得:,解得:,则函数关系式为:y=x+10,当x=0时,y=10.故选:B.5.(3分)若m<0,n>0,则一次函数y=mx+n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:根据题意,在一次函数y=mx+n中,m<0,n>0,则函数的图象过一、二、四象限,不过第三象限,故选:C.6.(3分)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC 边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.7.(3分)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣2【解答】解:设一次函数的解析式为y=kx+t(k≠0),∵直线l过点(﹣2,3).点(0,a),(﹣1,b),(c,﹣1),∴斜率k===,即k==b﹣3=,∵直线l经过一、二、三象限,∴k>0,∴a>3,b>3,c<﹣2.故选:D.8.(3分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣3【解答】解:∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,∴关于x的不等式﹣x+m>nx+4n的解集为x<﹣2,∵y=nx+4n=0时,x=﹣4,∴nx+4n>0的解集是x>﹣4,∴﹣x+m>nx+4n>0的解集是﹣4<x<﹣2,∴关于x的不等式﹣x+m>nx+4n>0的整数解为﹣3,故选:D.9.(3分)甲、乙两地相距180km,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.10.(3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是B;故选:B.二、填空题(每小题4分,共20分)11.(4分)函数y=中,自变量x的取值范围是x≠1.【解答】解:由题意,得1﹣x≠0,解得x≠1,故答案为:x≠1.12.(4分)一等腰三角形,一边长为9cm,另一边长为4cm,则等腰三角形的周长是22cm.【解答】解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,此时等腰三角形的周长是4cm+9cm+9cm=22cm故答案为:22.13.(4分)如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2.【解答】解:从图象得到,当x>﹣2时,y=3x+b的图象对应的点在函数y=ax﹣3的图象上面,∴不等式3x+b>ax﹣3的解集为:x>﹣2.故答案为:x>﹣2.14.(4分)如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=40度.【解答】解:∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B=40°.故答案为:40°.15.(4分)在直角坐标系中,直线y=x+1与y轴交于点A1,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…,则S5的值为128.【解答】解:令一次函数y=x+1中x=0,则y=1,∴点A1的坐标为(0,1),OA1=1.∵四边形A n B n C n C n﹣1(n为正整数)均为正方形,∴A1B1=OC1=1,A2B2=C1C2=2,A3B3=C2C3=4,….令一次函数y=x+1中x=1,则y=2,即A2C1=2,∴A2B1=A2C1﹣A1B1=1=A1B1,∴tan∠A2A1B1=1.∵A n C n﹣1⊥x轴,∴tan∠A nA nB n=1.+1∴A2B1=OC1,A3B2=C1C2,A4B3=C2C3,….∴S1==,S2==2,S3==8,…,∴S n=22n﹣3(n为正整数).当n=5时,S5=27=128.故答案为:128.三、解答题(共50分)16.(5分)已知y﹣2与x成正比例,且当x=1,y=﹣6,求y与x的关系式.【解答】解:设y与x的关系式为:y﹣2=kx,则﹣6﹣2=k,解得,k=﹣8,则y与x的关系式为y=﹣8x+2.17.(5分)画出函数y=2x+4的图象,利用图象:(1)求不等式2x+4<0的解集;(2)若﹣2≤y≤6,求x的取值范围.【解答】解:当x=0时,y=4,当y=0时,x=﹣2,∴A(0,4),B(﹣2,0),作直线AB:(1)由图象得:不等式2x+4<0的解为:x<﹣2;(2)由图象得:﹣2≤y≤6,x的取值范围为:﹣3≤x≤1.18.(6分)△ABC中,∠B=40°,∠C=70°,AD平分∠BAC,AE⊥BC,垂足为E.求∠DAE的度数.【解答】解:∵∠B=40°,∠C=70°,∴∠BAC=180°﹣40°﹣70°=70°∵AD平分∠BAC,∴∠BAD=∠BAC=35°∵AE⊥BC,∴∠BEA=90°.∵∠B=40°,∴∠BAE=180°﹣90°﹣40°=50°∴∠DAE=∠BAE﹣∠BAD=50°﹣35°=15°.19.(8分)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.【解答】解:(1)P2(3,3).(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴,解得.∴直线l所表示的一次函数的表达式为y=2x﹣3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∵2×6﹣3=9,∴点P3在直线l上.20.(8分)如图,直线l1:y1=2x+3,直线l2:y2=﹣2x﹣1,l1与x轴交于点A,l2与x轴交于点B,l1,l2交于点C.(1)求△ABC的面积;(2)在直线l2上存在异于点C点另一个点P,且△ABP与△ABC的面积相等,求P点的坐标.【解答】解:(1)把x=0代入y1=2x+3,可得y1=3,所以点A的坐标为(0,3);把x=0代入y2=﹣2x﹣1,可得y2=﹣1,所以点B的坐标为(0,﹣1);联立两个方程可得:,解得:,所以点C的坐标为(﹣1,1);所以△ABC的面积=;(2)∵点C到y轴的距离=1,△ABP与△ABC的面积相等,∴点P到y轴的距离=1,把x=1代入y2=﹣2x﹣1中,可得y2=﹣3,所以点P的坐标为(1,﹣3).21.(8分)某校运动会需购买A、B两种奖品共100件.A、B两种奖品单价分别为10元、15元.设购买A种奖品m件,购买两种奖品的总费用为W元.(1)写出W(元)与m(件)之间的函数关系式;(2)若购买两种奖品的总费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,求出自变量m的取值范围,并确定最少费用W的值.【解答】解:(1)设购买A种奖品m件,购买两种奖品的总费用为W元,则购买B种奖品(100﹣m)件,根据题意得:W=10m+15(100﹣m)=﹣5m+1500.(2)根据题意得:,解得:70≤m≤75.∵﹣5<0,∴W随m值的增大而减小,∴当m=75时,W取最小值,最小值为1125.22.(10分)1号气球从海拔5米处出发,以1m/min的速度上升.于此同时,2号气球从海拔15米处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球上升时间为xmin(0≤x≤50)(1)根据题意,填写下表:(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)上升多少时间后,两个气球所在位置的海拔高度相差5米?【解答】解:(1)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=40时,m1=40+5=45;当x=6时,m2=3+15=18,故答案为:45,x+5,18;(2)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度.(3)分两种情况:①2号探测气球比1号探测气球海拔高5米,根据题意得(0.5x+15)﹣(x+5)=5,解得x=10;②1号探测气球比2号探测气球海拔高5米,根据题意得(x+5)﹣(0.5x+15)=5,解得x=30.答:当两个气球所在位置的海拔相差5米时,这时气球上升了10分或30分.。
最新2016-2017人教版八年级上册数学期中考试试卷及答案--正版
2016-2017 人教版第一學期 八年級數學期中試卷一.用心選一選:(每小題3分,共30分)1.下列各式是因式分解且完全正確の是( )A .ab +ac +d =b a (+c )+dB .)1(23-=-x x x x C .(a +2)(a -2)=2a -4 D .2a -1=(a +1)(a -1) 2.醫學研究發現一種新病毒の直徑約為0.000043毫米,這個數用科學記數法表 示為( )A. 41043.0-⨯ B. 41043.0⨯ C. 5103.4-⨯ D. 5103.4⨯3. 下列各式:()xxx x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )個。
A .2 B. 3 C. 4 D. 5 4. 多項式 2233449-18-36a x a x a x 各項の公因式是( )A .22a xB .33a xC .229a xD .449a x5. 如圖,用三角尺可按下面方法畫角平分線:在已知の∠AOBの兩邊上分別取點M 、N ,使OM =ON ,再分別過點M 、N 作OA 、OB の垂線,交點為P ,畫射線OP .可證得△POM ≌△PON ,OP 平分∠AOB .以上依畫法證明 △POM ≌△PON 根據の是( ) A .SSS B .HL C .AAS D .SAS6. 甲、乙二人做某種機械零件,已知甲每小時比乙多做6個,甲做90個所用の時間與乙做60個所用の時間相等。
如果設甲每小時做x 個零件,那麼下面所列方程中正確の是( ). A.9060-6x x = B. 90606x x =+ C. 90606x x =+ D. 9060-6x x=7. 如圖,已知△ABC ,則甲、乙、丙三個三角形中和△ABC 全等の是( )baca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 乙和丙C. 只有丙D. 甲和乙8. 下列各式中,正確の是( )A .122b a b a =++ B .2112236d cd cd cd++= C . -a b a bc c++= D .222-4-2(-2)a a a a += 9.如圖,正方形ABCD の邊長為4,將一個足夠大の直角三角板の直角頂點放於點A 處,該三角板の兩條直角邊與CD 交於點F ,與CB 延長線交於點E .四邊形AECF の面積是( )A. 16 B .4 C .8 D. 1210.在數學活動課上,小明提出這樣一個問題:如右圖, ∠B =∠C = 90︒, E 是BC の中點, DE 平分∠ADC, ∠CED = 35︒, 則∠EAB の度數 是 ( )A .65︒B .55︒C .45︒D .35︒二.細心填一填:(每小題3分,共24分) . 11.計算:2220042003-= .ED CBA12. 04= 212-⎛⎫- ⎪⎝⎭= ()312a b -=13. 如果分式 242x x -+ の值是零,那麼x の值是 _________________ .14. 將一張長方形紙片按如圖所示の方式折疊,BC BD ,為折痕, 則CBD ∠の度數為_ _.15. 計算: 2422x x x --- = __________________. 16. 如圖,AC 、BD 相交於點O ,∠A =∠D ,請你再補充一個條件, 使得△AOB ≌△DOC ,你補充の條件是 .17. 如圖,點P 是∠BAC の平分線AD 上一點,PE ⊥AC 於點E . 已知PE =3,則點P 到AB の距離是_________________.18. 在平面直角坐標系中,已知點A (1,2),B (5,5),C (5,2),存在點E , 使△ACE 和△ACB 全等,寫出所有滿足條件のE 點の坐標 .三.用心做一做(19、20題每題3分,21、22、23題每題4分,共26分)19.因式分解: 24a -32a +64 20.計算:3222)()(---⋅a ab (結果寫成分式)21.計算: (1) 22819369269a a a a a a a --+÷⋅++++ (2) (m 1+n1)÷nn m +22.解分式方程:(1)3221+=x x (2)214111x x x +-=--23. 先化簡: 21x +21+x +1x -1⎛⎫÷ ⎪⎝⎭,再選擇一個恰當の數代入求值.四.應用題(本題5分)24. 甲乙兩站相距1200千米,貨車與客車同時從甲站出發開往乙站,已知客車の速度是貨車速度の2倍,結果客車比貨車早6小時到達乙站,求客車與貨車の速度分別是多少?解:DCB五、作圖題(本題2分)25.畫圖 (不用寫作法,要保留作圖痕跡......)尺規作圖:求作AOB∠の角平分線OC.六、解答題:(28題5分,其他每題4分,共17分)26.已知,如圖,在△AFD和△CEB中,點A,E,F,C在同一直線上,AE=CF,DF=BE,AD=CB. 求證:AD∥BC.27.已知:如圖,AB=AD,AC=AE,且BA⊥AC,DA⊥AE.求證:(1)∠B=∠D (2) AM=AN.28.如圖,已知∠1=∠2,P為BN上の一點,PF⊥BC於F,PA=PC,求證:∠PCB+∠BAP=180º.29. 已知:在平面直角坐標系中,△ABCの頂點A、C別在y軸、x軸上,且∠ACB=90°,AC=BC.(1)如圖1,當(0,2),(1,0)A C-,點B則點Bの坐標為;(2)如圖2,當點C在x軸正半軸上運動,點A在y軸正半軸上運動,點B在第四象限時,作BD⊥y軸於點D,試判斷OABDOC+與OABDOC-哪一個是定值,並說明定值是多少?請證明你の結論.F CFDCBAEO附加題1.選擇題:以右圖方格紙中の3個格點為頂點,有多少個不全等の三角形( ) A .6 B .7 C .8 D .92.填空題:考察下列命題:(1)全等三角形の對應邊上の中線、高線、角平分線對應相等;(2)兩邊和其中一邊上の中線對應相等の兩個三角形全等;(3)兩邊和第三邊上の中線對應相等の兩個三角形全等;(4)兩角和其中一角の角平分線對應相等の兩個三角形全等;(5)兩角和第三角の角平分線對應相等の兩個三角形全等;(6)兩邊和其中一邊上の高線對應相等の兩個三角形全等;(7)兩邊和第三邊上の高線對應相等の兩個三角形全等;其中正確の命題是 (填寫序號).3.解答題:我們知道,假分數可以化為帶分數. 例如: 83=223+=223. 在分式中,對於只含有一個字母の分式,當分子の次數大於或等於分母の次數時,我們稱之為“假分式”;當分子の次數小於分母の次數時,我們稱之為“真分式”. 例如:11x x -+,21x x -這樣の分式就是假分式;31x + ,221xx + 這樣の分式就是真分式 . 類似の,假分式也可以化為帶分式(即:整式與真分式和の形式). 例如:1(1)22=1111x x x x x -+-=-+++; 22111(1)1111111x x x )x x x x x x -++-+===++----(. (1)將分式12x x -+化為帶分式; (2)若分式211x x -+の值為整數,求x の整數值;解:參考答案1-5 DCACB 6-10 ABDBD 11 . 4007 12. 1, 4, 338a b - 13. -2 14 . 90︒ 15. 2 16. OC OB ,或CD AB ,或===OD OA17. 3 18.(5,-1),(1,5),(1,-1) 19. 2)4(4-a 20. 48b a21. (1)-2 (2)1m 22. (1) x=1 (2)無解 23. -1 24. x=625.略 26. SSS 證全等 27.(1)SAS 證全等 (2)ASA 證全等 28. 過點P 作PE 垂直BA 於點E ,HL 證全等. 29.(1) (3,-1) (2)OC BDOA-是定值.附加題1.選擇題: C2.填空題: 正確の命題是 1,2,3,4 ,5 3.解答題:解:(1)12331222x x x x x -(+)-==-+++; (2)2121332111x x x x x -(+)-==-+++. 當211x x -+為整數時,31x +也為整數.1x ∴+可取得の整數值為1±、3±.x ∴の可能整數值為0,-2,2,-4.。
浙江省2016 2017年八年级下期中数学试卷及答案
浙江省2016-2017年八年级下期中数学试卷及答案.2016-2017学年第二学期期中试题卷(八年级数学学科)考试时间:120分钟满分:100分一、选择题(本题有10个小题,每小题2分,共20分)1.要使式子有意义,则的取值范围是x x2?) (B.C.A.0x?2xx??2? D.2x?23=02x2.用配方法解一元二次方程x --)时,方程变形正确的是(22x )=4 C.(Bx A.(-1)=2 .(x -122=7 )x-1 D.(-1)=1) 3.下列运算正确的是(A、B、13?23?22?(?2)、、 DC,211??(?11)22221?333?2??2??2ABCD4.已知平行四边形中,∠B=4∠A则∠C=( )2A.18°B.36°C.72°D.144°5.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是( )A.180,160 B.160,180 C.160,160 D.180,1806.下列条件不能判定四边形ABCD是平行四..边形的是().A.AB∥CD , AD∥BCB.AD=BC, AB=CDAD=BC, CD ∥AB.CD,∠∠A=C B=∠.∠D.用反证法证明命题“三角形中必有一个7首先应该假设这°”内角小于或等于60时,个三角形中()3A.有一个内角小于60°°B.每一个内角都小于6060°角大于C.有一个内权D.每一个内角都大于60°8.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在( )A. 第一象限B. 第二象限第四象限. D第三象限C.的根的情况描述9.关于x的方程20?x1?k?kx2?)正确的是(为任何实数,方程都没有实数根A . k为任何实数,方程都有两个不相B . k 等的实数根为任何实数,方程都有两个相等C . k的实数根的取值不同,方程根的情况根据D. k分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种42时,我+4=0x-1)-5(x-1)10.解方程(,则x-1=y 们可以将x-1看成一个整体,设2当=4.=1,yy 原方程可化为-5y+4=0,解得y 21时,即y=4,解得x-1=1x=2;当y=1时,即分,共3二,填空题(共10小题,每小题 分)30 11.计算 2?8)(50?45.有一个正多边形的每一个外角都等于12 ___ ___边形。
2016-2017第一学期期中八年级数学测试试题含详尽答案
学校:___________姓名:___________班级:___________考号:___________
第 I 卷(选择题)
请点击修改第 I 卷的文字说明 评卷人 得分 一、选择题(每小题 3 分,共 45 分) 1.9 的算术平方根是( ) A.﹣3 B.±3 C.3 D. 13. 已知 a、 b、 c 是三角形的三边长, 如果满足 (a﹣6) +
5.二次根式 (- 3) 的值是( A. -3 B. 3 或-3 C. 9
6.要使式子 2 x 有意义,则 x 的取值范围是( A.x>0 B.x≥-2 C.x≥2
7.估计 5 1 介于( ) 2 A.0.4 与 0.5 之间 B.0.5 与 0.6 之间 C. 0.6 与 0.7 之间 D.0.7 与 0.8 之间 8.在直角坐标中,点 P(2,﹣3)所在的象限是( )
2
=0, 则三角形的形状是(
)
A.底与腰不相等的等腰三角形 B.等边三角形 C.钝角三角形 D.直角三角形 14.在平面直角坐标系中,点 P(2,-3)关于 x 轴对称的点的坐标是( ) A.(-2,-3) B.(2,3) C.(-2,3) D.(2,-3) 15.如图,直角三角形两直角边分别为 5 厘米、12 厘米,那么斜边上的高是 ( A、6 厘米 B、 8 厘米 C、
)
2.27 的立方根是( ) A.3 B.﹣3 C.9 D.﹣9 3.下列二次根式中,属于最简二次根式的是( )
80 厘米 13
D、
60 厘米 13
1 x A. 2
B. 8
C. x
2
D.
x +1
2
5
12
第 II 卷(非选择题)
4. 16 的算术平方根是( ) A.4 和﹣4 B.2 和﹣2
2016--2017八年级数学期中考试试题及答案
八年级数学试卷(满分:90分答题时间:100分钟)题号一二三四五六总分得分一、得分选择题(每小题2分,共12分)1.下列交通标志中,是轴对称图形的是()2.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72°B.45°C.36°D.30°3.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()A.3个B.2个C.1个D.0个4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC第4题第5题5.如图,DE⊥AC,垂足为E,CE=AE.若AB=12cm,BC=10cm,则△BCD的周长是()A.22cmB.16cmC.23cmD.25cm6.等腰三角形的两边分别为3和6,则这个三角形的周长是()A.12B.15C.9D.12或15二、填空题(每小题3分,共24分)7.若点P(m,m-1)在x 轴上,则点P 关于x 轴对称的点的坐标为 . 8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 . 9.如图,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N.PM =PN ,若∠BOC =30°,则∠AOB = . 10.如图,在△ABC 和△FED 中,AD =FC ,AB =FE ,当添加条件 时,就可得到 △ABC ≌△FED.(只需填写一个你认为正确的条件)11.从长为3cm 、5cm 、7cm 、10cm 的四根木条中选出三根组成三角形,共有 种选法. 12.若等腰三角形一腰上的高与另一腰的夹角为40°,则它的底角为 . 13.如图,△ABC 为等边三角形,AD 为BC 边上的高,E 为AC 边上的一点,且AE=AD ,则 ∠EDC = .14.如图,在等边△ABC 中,点D 、E 分别在边AB 、BC 上.把△BDE 沿直线DE 翻折,使点 B 落在点B ′处,DB ′、EB ′分别与AC 交于点F 、G.若∠ADF =80°,则∠EGC = .三、解答题(每小题5分,共20分) 15.如图,两个四边形关于直线 对称,∠C =90°, 16.试写出a ,b 的长度,并求出∠G 的度数. 第14题第13题得分 第9题第10题得分 第15题16.如图,已知AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.17.如图,16个相同的小正方形拼成一个正方形网格,现将其中的两个小方格涂黑.请你用两种不同的方法分别在图中再涂黑两个小方格,使它们成为轴对称图形.18.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写出答案).A1B1C1(3)△A1B1C1的面积为 .第16题第17题第18题19.在△ABC 中,∠BAC =50°,∠B=45°,AD 是△ABC 的一条角平分线,求∠ADB 的度数.四、解答题(每小题7分,共28分) 20.如图:△ABC 和△EAD 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连接BD ,CE. 求证:△ABD ≌△AEC. 第19题得分 第20题 八年级数学试卷 第3页 (共8页)八年级数学试卷第4页(共8页)21.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论.(2)选择(1)中你写出的一个正确结论,说明它正确的理由.第21题22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证△ADC≌△CEB. (2)AD=5cm,DE=3cm,求BE的长度.第22题五、解答题(每小题8分,共16分) 23.已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF ∥BC 交AB 于点E ,交 AC 于点F.求证:BE+CF =EF.24.如图14,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠求证:=ED EF .得分 第23题八年级数学试卷 第5页 (共8页)ADE CB图24F六、解答题(每小题10分,共20分)得分25.两个等腰直角三角形的三角板如图①所示放置,图②是由它抽象出的几何图形,点B、C、E在同一条直线上,连接DC、EC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.第25题26.如图,△ABC是等边三角形,点M是BC上任意一点,点N是CA上任意一点,且BM=CN,直线BN与AM相交于点Q,就下面给出的两种情况,猜测∠BQM等于多少度,并利用图②说明结论的正确性.第26题八年级数学答案一、1.A 2.C 3.C 4.D 5.A 6.B 二、(7)(1,0) (8) 1440° (9) 60° (10)答案不唯一 (11)二种 (12) 65°或25°(13) 15° (14) 80°三、 15.cm a 5= cm b 4= ∠G=55° 16.连接BD ∵△ABD ≌△CDB (SSS) ∴∠A=∠C等. 18.(2)A(-1,2) B(-3,1) C(2,-1)(3)面积为4.5 19.∠ADB=70°20.证明:∵∠BAC=∠EAD ∴∠BAC-∠BAE=∠EAD-∠BAE ∴∠BAD=∠EAC △BAD ≌ △EAC(SAS)21.(1) ① 、③=② ② ③=① (2)略22.(1)∵∠ACB=90° ∴∠ACD+∠BCE=90° ∵AD ⊥CE ∴∠ACD+∠CAD=90° ∴∠BCE=∠CAD 又∵AC=BC △ADC ≌△CEB (AAS ) (2) ∵△ADC ≌△CEB ∴BE=CD AD=CE=500cm 又∵DE=3cm ∴CD=2cm ∴BE=2cm23.证明 ∵BD 是∠ABC 解平分线 ∴∠EBD=∠CBD 又∵EF ∥BC ∴∠CBD=∠EDB ∴∠EDB=∠EBD ∴BE=DE 同理 DF=CF ∴BE+CF=DE+DF=EF八年级数学试卷 第8页 (共8页)24.AD=AG AD⊥AG 证明:∵BE、CF是AC、AB边上高∴∠AFC=∠AEB=90°∴∠ABE+∠BAC=∠ACF+∠BAC ∴∠ABE=∠ACF 又∵AB=CG BD=AC ∴△ABD≌△ACG ∵AD=AG ∴∠BAD=∠CGA ∵∠CGA+∠GAF=90°∵∠BAD+∠GAF=90°∴AG⊥AD25.(1)△ABE≌△ACD 证明:∵∠BAC=∠EAD ∴∠BAC+∠CAE=∠EAD+∠CAE∴∠BAE=∠CAD 又∵AB=AC AD=AE ∴△ABE≌△ACD(SAS)(2)∠ADC=∠AEB (AE、DC交点为P)∠APD=∠CPE ∴∠APD+∠ADC=90°∴∠AEB+∠CPE=90°∴DC⊥BE 26.∠BQM=60°证明:∵△ABC是等边三角形∴AB=AC ∠ABC=∠BCA=∠ACB=60°又 BM=CN ∵△ABM≌△BCN(SAS) ∴∠M=∠N又∠NAQ=∠MAC ∴∠BQM=∠N+∠NAQ=∠M+∠MAC=∠ACB=60°。
学八级(下)期中数学试卷两套汇编三附答案解析
2016-2017学年八年级(下)期中数学试卷两套汇编三附答案解析八年级(下)期中数学试卷一、选择题(本大题12个小题,每小题4分,共48分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.二次根式有意义的条件是()A.x>3 B.x>﹣3C.x≥﹣3 D.x≥33.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=54.已知一次函数y=﹣x+b,过点(﹣8,﹣2),那么一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6C.y=﹣x﹣10 D.y=﹣x﹣15.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于()A.1 B.2C.3 D.46.已知函数y=(a﹣1)x的图象过一、三象限,那么a的取值范围是()A.a>1 B.a<1C.a>0 D.a<07.菱形ABCD的两条对角线相交于O,若AC=6,BD=8,则菱形ABCD的周长是()A.B.20C.24 D.8.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B.C.D.9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<3 B.C.x<D.x>310.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积是()A.8 B.10C.20 D.3211.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3 D.无法确定12.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH= BC,③OD=BF,④∠CHF=45°.正确结论的个数为()A.4个B.3个C.2个D.1个二、填空(本大题6个小题,每题4分,共24分)13.计算﹣=.14.函数y=﹣2x+3的图象经不过第象限.15.矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为.16.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是m.17.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.18.=2, =3, =4,…观察下列各式:请你找出其中规律,并将第n (n≥1)个等式写出来.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤19.计算:.20.如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)直接判断以A,B,A1,B1为顶点的四边形的形状.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21.化简求值:.22.如图,已知ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.23.如图,一次函数y=kx+b的图象经过点A和点B.(1)求该一次函数的解析式;(2)求该函数与两坐标轴所围成的直角三角形的面积.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)当∠A的大小满足什么条件时,四边形BECD是正方形?(不需要证明)五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?26.如图,在正方形ABCD中,点E是AB中点,点F是AD上一点,且DE=CF,ED、FC交于点G,连接BG,BH平分∠GBC交FC于H,连接DH.(1)若DE=10,求线段AB的长;(2)求证:DE﹣HG=EG.参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.二次根式有意义的条件是()A.x>3 B.x>﹣3C.x≥﹣3 D.x≥3【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选C.【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a≥0.3.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.已知一次函数y=﹣x+b,过点(﹣8,﹣2),那么一次函数的解析式为()A.y=﹣x﹣2 B.y=﹣x﹣6C.y=﹣x﹣10 D.y=﹣x﹣1【考点】待定系数法求一次函数解析式.【专题】计算题;整式.【分析】把已知点坐标代入一次函数解析式求出b的值,即可确定出一次函数解析式.【解答】解:把(﹣8,﹣2)代入y=﹣x+b得:﹣2=8+b,解得:b=﹣10,则一次函数解析式为y=﹣x﹣10,故选C【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.5.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于()A.1 B.2C.3 D.4【考点】平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.6.已知函数y=(a﹣1)x的图象过一、三象限,那么a的取值范围是()A.a>1 B.a<1C.a>0 D.a<0【考点】正比例函数的性质.【分析】根据正比例函数y=(a﹣1)x的图象经过第一、三象限列出关于a的不等式a﹣1>0,通过解该不等式即可求得a的取值范围.【解答】解:∵正比例函数y=(a﹣1)x的图象经过第一、三象限,∴a﹣1>0,∴a>1,故选A【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.菱形ABCD的两条对角线相交于O,若AC=6,BD=8,则菱形ABCD的周长是()A.B.20C.24 D.【考点】菱形的性质.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:∵菱形ABCD的两条对角线相交于O,AC=6,BD=8,由菱形对角线互相垂直平分,∴BO=OD=4,AO=OC=3,∴AB==5,故菱形的周长为20,故选:B.【点评】本题考查了勾股定理在直角三角形中的运用,以与菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.8.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A. B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=x+k的图象经过一、二、三象限,故选A【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b >0时函数的图象在一、二、三象限.9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<3 B.C.x<D.x>3【考点】一次函数与一元一次不等式.【分析】观察图象,写出直线y=2x在直线y=ax+4的下方所对应的自变量的范围即可.【解答】解:把x=m,y=3代入y=2x,解得:m=1.5,当x<1.5时,2x<ax+4,即不等式2x<ax+4的解集为x<1.5.故选C【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积是()A.8 B.10C.20 D.32【考点】翻折变换(折叠问题).【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【解答】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选B.【点评】本题通过折叠变换考查学生的逻辑思维能力.11.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3 D.无法确定【考点】一次函数图象上点的坐标特征.【分析】分别把各点代入一次函数y=﹣1.5x+3,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点(﹣3,y1)、(﹣1,y2)、(2,y3)在一次函数y=﹣1.5x+3的图象上,∴y1=﹣1.5×(﹣3)+3=7.5;y2=﹣1.5×(﹣1)+3=1.5;y3=﹣1.5×2+3=0,∵7.5>1.5>0,∴y1>y2>y3.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中:①OH∥BF,②GH= BC,③OD=BF,④∠CHF=45°.正确结论的个数为()A.4个B.3个C.2个D.1个【考点】正方形的性质.【分析】根据已知对各个结论进行分析,从而确定正确的个数.①作EJ⊥BD于J,连接EF,由全等三角形的判定定理可得△DJE≌△ECF,再由平行线的性质得出OH是△DBF的中位线即可得出结论;②根据OH是△BFD的中位线,得出GH=CF,由GH<BC,可得出结论;③易证得△ODH是等腰三角形,继而证得OD=BF;④根据四边形ABCD是正方形,BE是∠DBC的平分线可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出结论.【解答】解:作EJ⊥BD于J,连接EF∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF;故①正确;∴OH=BF,∠DOH=∠CBD=45°,∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故②错误.∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故④正确;∴∠ODH=∠BDC+∠CDF=67.5°,∴∠OHD=180°﹣∠ODH﹣∠DOH=67.5°,∴∠ODH=∠OHD,∴OD=OH=BF;故③正确.故选B.【点评】此题考查了全等三角形的判定和性质、等腰三角形的判定与性质以与正方形的性质.解答此题的关键是作出辅助线,构造等腰直角三角形,利用等腰直角三角形的性质结合角平分线的性质逐步解答.二、填空(本大题6个小题,每题4分,共24分)13.计算﹣=.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣=.故答案为:.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以与同类二次根式的合并.14.函数y=﹣2x+3的图象经不过第一二四象限.【考点】一次函数的性质.【分析】根据一次函数的性质解答即可.【解答】解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴此函数的图象经过第一二四象限.故答案为:一二四.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.15.矩形的两条对角线所夹的锐角为60°,较短的边长为12,则对角线长为24 .【考点】矩形的性质.【分析】由矩形的性质得出OA=OB,证明△AOB是等边三角形,得出OA=OB=AB=12,即可得出对角线的长.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=12,∴AC=BD=24.故答案为:24.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.16.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是16 m.【考点】勾股定理的应用.【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10(米).所以大树的高度是10+6=16(米).故答案为:16.【点评】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.17.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.【考点】勾股定理;直角三角形斜边上的中线;勾股定理的逆定理.【分析】本题考查勾股定理的逆定理和直角三角形的性质,利用了勾股定理的逆定理和直角三角形的性质求解.【解答】解:观察图形AB==,AC==3,BC==2∴AC2+BC2=AB2,∴三角形为直角三角形,∵直角三角形中斜边上的中线等于斜边的一半∴CD=.【点评】解决此类题目要熟记斜边上的中线等于斜边的一半.注意勾股定理的应用.18.=2, =3, =4,…观察下列各式:请你找出其中规律,并将第n (n≥1)个等式写出来=(n+1).【考点】二次根式的性质与化简.【专题】规律型.【分析】根据观察,可发现规律,根据规律,可得答案.【解答】解:由=2, =3, =4,…得=(n+1),故答案为: =(n+1).【点评】本题考查了二次根式的性质与化简,观察发现规律是解题关键.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤19.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣1+1﹣3=3﹣4+2+1﹣3=﹣【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.20.如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)直接判断以A,B,A1,B1为顶点的四边形的形状.【考点】作图-旋转变换.【分析】(1)由于△OAB绕O点旋转180°得到△OA1B1,利用关于原点中心对称的点的坐标特征得到A1,B1的坐标,然后描点,再连结OB1、OA1和A1B1即可;(2)根据中心对称的性质得OA=OA1,OB=OB1,则利用对角线互相平分得四边形为平行四边形可判断四边形ABA1B1为平行四边形.【解答】解:(1)如图,A1(3,4),B1(0,2);(2)以A,B,A1,B1为顶点的四边形为平行四边形,理由如下:∵△OAB绕O点旋转180°得到△OA1B1,∴点A与点A1关于原点对称,点B与点B1关于原点对称,∴OA=OA1,OB=OB1,∴四边形ABA1B1为平行四边形.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21.化简求值:.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x、y的值代入进行计算即可.【解答】解:原式=x2?=x2??=﹣.当x=1+,y=1﹣时,原式=﹣3﹣2.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.22.如图,已知ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.【考点】平行四边形的性质.【专题】证明题.【分析】由四边形ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,易证得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,∵AE平分∠BAD,CF平分∠BCD,∴∠EAB=∠BAD,∠FCD=∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴BE=DF.∵AD=BC,∴AF=EC.【点评】此题考查了平行四边形的性质以与全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.23.如图,一次函数y=kx+b的图象经过点A和点B.(1)求该一次函数的解析式;(2)求该函数与两坐标轴所围成的直角三角形的面积.【考点】待定系数法求一次函数解析式.【分析】(1)把点A、B的坐标代入一次函数解析式,列出关于k、b的方程组,通过解方程组求得它们的值;(2)结合一次函数解析式求得该直线与坐标轴的交点,然后由三角形的面积公式进行解答.【解答】解:(1)将A与B代入一次函数解析式得:,解得:,则一次函数解析式为:y=﹣2x+1;(2)由(1)得到一次函数解析式为:y=﹣2x+1,所以该直线与坐标轴的交点坐标是(0,1),(,0),所以该函数与两坐标轴所围成的直角三角形的面积为:×1×=.【点评】本题考查了待定系数法求一次函数解析式,坐标与图形的性质,属于基础题,不过需要学生具备一定的读图能力.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)当∠A的大小满足什么条件时,四边形BECD是正方形?(不需要证明)【考点】四边形综合题.【分析】(1)由BC⊥AC,DE⊥BC,得到DE∥AC,从而判断出四边形ADEC是平行四边形.即可,(2)先判断出△BFD≌△CFE,再判断出BC和DE垂直且互相平分,得到四边形BECD是菱形.(3)先判断出∠CDB=90°,从而得到有一个角是直角的菱形是正方形.【解答】(1)证明:∵直线m∥AB,∴EC∥AD.又∵∠ACB=90°,∴BC⊥AC.又∵DE⊥BC,∴DE∥AC.∵EC∥AD,DE∥AC,∴四边形ADEC是平行四边形.∴CE=AD.(2)当点D是AB中点时,四边形BECD是菱形.证明:∵D是AB中点,DE∥AC(已证),∴F为BC中点,∴BF=CF.∵直线m∥AB,∴∠ECF=∠DBF.∵∠BFD=∠CFE,∴△BFD≌△CFE.∴DF=EF.∵DE⊥BC,∴BC和DE垂直且互相平分.∴四边形BECD是菱形.(3)当∠A的大小是45°时,四边形BECD是正方形.理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.【点评】此题是四边形综合题,主要考查了全等三角形的性质和判定,平行四边形的性质和判定,菱形的判定,正方形的判定,解本题的关键是四边形BECD是菱形.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1 + 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.26.(2013?永川区校级二模)如图,在正方形ABCD中,点E是AB中点,点F是AD上一点,且DE=CF,ED、FC交于点G,连接BG,BH平分∠GBC交FC于H,连接DH.(1)若DE=10,求线段AB的长;(2)求证:DE﹣HG=EG.【考点】正方形的性质;全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形;圆周角定理.【分析】(1)设AE=x,则AD=2x,在直角三角形AED中利用勾股定理即可求出x的值,进而求出AB的长;(2)利用已知得出B、C、G、E四点共圆,得出BG=BC,进而得到BH是GC的中垂线,再利用△BHC ≌△CGD,得出GH=DG即可证明DE﹣HG=EG.【解答】(1)解:设AE=x,则AD=2x,∵四边形ABCD是正方形,∴∠A=90°,∴x2+(2x)2=102,∴x=2,∴AB=2AE=4;(2)证明:在正方形ABCD中,易证RT△CDF≌RT△DAE,∴∠FCD=∠ADE,∴∠GDC+∠DCF=90°,∴∠DGC=∠CGE=90°,∴∠EGC=∠EBC=90°,∴∠EGC+∠EBC=180°,∴B、C、G、E四点共圆,∠AED=∠BCG,连EC,∴∠BGC=∠BEC,∵BE=EA,BC=AD,∴RT△BCE≌RT△ADE,∴∠AED=∠BEC,∴∠BGC=∠AED,∴∠BGC=∠BCG,∴BG=BC,又∵BH平分∠GBC,∴BH是GC的中垂线,∴GH=HC,∴GH=DG,∴△DGH是等腰直角三角形,即:DE﹣HG=EG.【点评】此题主要考查了全等三角形的判定与四点共圆的性质与判定,根据已知得出B、C、G、E四点共圆,以与BG是GC的中垂线是解题关键.八年级(下)期中数学试卷一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1.若有意义,则x的取值范围()A.x>2 B.x≤C.x≠D.x≤22.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.7C.5和7 D.25或73.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25C.6,8,10 D.9,12,154.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC5.已知二次根式中最简二次根式共有()A.1个B.2个C.3个D.4个6.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm7.如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为16,则AC与BD的和是()A.10 B.16C.20 D.228.如图字母B所代表的正方形的面积是()A.12 B.13C.144 D.1949.如果最简根式与是同类二次根式,那么使有意义的x的取值范围是()A.x≤10 B.x≥10C.x<10 D.x>1010.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB中点,若OE=3,则菱形ABCD的周长是()A.12 B.18C.24 D.3011.矩形一个内角的平分线把矩形的一边分成3cm和5cm,则矩形的周长为()A.16cm B.22cm或26cm C.26cm D.以上都不对12.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7C.2a﹣15 D.无法确定二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上).13.已知平行四边形ABCD中,∠B=70°,则∠A=,∠D=.14.若直角三角形的两直角边的长分别为a、b,且满足+(b﹣4)2=0,则该直角三角形的斜边长为.15.若a=++2,则a=,b=.16.小玲要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则最长边上的高为cm.17.如图,将一个边长分别为4cm、8cm的矩形纸片ABCD折叠,使C点与A点重合,则EB的长是.18.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.三、解答题(请在答题纸中各题对应的空间写出必要的过程).19.计算:(1).(2)(3)先化简,再求值:,其中x=.20.如图,墙A处需要维修,A处距离墙脚C处8米,墙下是一条宽BC为6米的小河,现要架一架梯子维修A处的墙体,现有一架12米长的梯子,问这架梯子能否到达墙的A处?NN#21.已知a、b、c满足(a﹣3)2++|c﹣5|=0.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.22.如图所示,在?ABCD中,点E,F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已知标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接;(2)猜想:=;(3)证明.23.已知:如图,?ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.24.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分﹣1,根据以上的内容,解答下面的问题:(1)的整数部分是,小数部分是;(2)1+的整数部分是,小数部分是;(3)若设2+整数部分是x,小数部分是y,求x﹣y的值.。
2016-2017学年安徽省宿州市埇桥区八年级(下)期中数学试卷含答案
2016-2017学年安徽省宿州市埇桥区八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)不等式x>2的解集在数轴上表示正确是()A.B.C.D.2.(4分)在平面直角坐标系内,将△ABC进行平移后得到△A′B′C′,其中点A(2,1)的对应点A′为(﹣2,﹣1),那么△ABC是()A.向右平移了4个单位长度B.向左平移了4个单位长度C.向上平移了4个单位长度D.向下平移了4个单位长度3.(4分)下列图形中,是中心对称图形的是()A.B.C.D.4.(4分)如图,在CD上找一点P,使得它到OA、OB的距离相等,则应找到()A.线段CD的中点B.CD与∠AOB平分线的交点C.OC垂直平分线与CD的交点D.OD垂直平分线与CD的交点5.(4分)在△ABC中,∠A、∠B、∠C的对边长分别为a、b、c,且a2+c2=b2,则△ABC()A.∠A为直角B.∠B为直角C.∠C为直角D.不是直角三角形6.(4分)如图,将△ABC绕点C按顺时针方向旋转至△A′B′C′,使点A′落在BC的延长线上,已知∠A=30°,∠B=40°,则旋转角为()A.10°B.35°C.70° D.110°7.(4分)如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.8.(4分)如图,BD为△ABC的角平分线,EF垂直平分边BC,交BC 于点E,交BD于点F,连接CF,若∠A+∠ACF=90°,则∠FCB等于()A.30°B.35°C.40° D.45°9.(4分)不等式组有解,则a的取值范围是()A.a≤3 B.a<3.5 C.a<4 D.a≤510.(4分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51° C.51.5°D.52.5°二、填空题(本小题共4小题,每小题5分,共20分)11.(5分)不等式3x+2<8的解集是.12.(5分)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC=.13.(5分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE 交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.14.(5分)如图,直线y=﹣x+m与y=nx+b(n≠0)的交点的横坐标为﹣2,有下列结论:①当x=﹣2时,两个函数的值相等;②b=4n;③关于x的不等式nx+b>0的解集为x>﹣4;④x>﹣2是关于x的不等式﹣x+m>nx+b的解集,其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、(本大题共2小题,每小题8分,共16分)15.(8分)解不等式,并把解在数轴上表示出来.16.(8分)解不等式组并写出它的正整数解.四、(本大题共2小题,每小题8分,共16分)17.(8分)将含有30°角的直角三角板OAB如图所示放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,求点A的对应点A′的坐标.18.(8分)如图,已知△ABC:(1)AC的长等于;(2)若将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是;(3)若将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C1,则A 点对应点A1的坐标是;(4)在图中画出第(2)问中△A′B′C′或第(3)问中△A1B1C1的图形.五、(本大题共2小题,每小题10分,共20分)19.(10分)如图,AD是∠BAC平分线,点E在AB上,且AE=AC,EF∥BC交AC于点F,AD与CE交于点G,与EF交于点H.(1)证明:AD垂直平分CE;(2)若∠BCE=40°,求∠EHD的度数.20.(10分)已知点P(a﹣4,﹣+3)关于原点的对称点在第四象限.(1)求a、b的取值范围;(2)在(1)的范围内,当a、b取最大整数且a、b为直角三角形的两边长,求此直角三角形的周长.六、(本题满分12分)21.(12分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.七、(本题满分12分)22.(12分)六一国际儿童节即将来临,某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具每件的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中只选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.八、(本题满分14分)23.(14分)如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°,△COD固定不动,△AOB绕着O点逆时针旋转a(0°<α<180°).(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).2016-2017学年安徽省宿州市埇桥区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2011•娄底模拟)不等式x>2的解集在数轴上表示正确是()A.B.C.D.【分析】根据不等式组解集在数轴上的表示方法就可得到.【解答】解:x>2的解集表示在数轴上2右边的数构成的集合,在数轴上表示为:故应选D.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.(4分)(2017春•埇桥区期中)在平面直角坐标系内,将△ABC进行平移后得到△A′B′C′,其中点A(2,1)的对应点A′为(﹣2,﹣1),那么△ABC是()A.向右平移了4个单位长度B.向左平移了4个单位长度C.向上平移了4个单位长度D.向下平移了4个单位长度【分析】根据平移前后点A(2,1)与A′为(﹣2,﹣1)的坐标得到平移规律,即可得到结论.【解答】解:∵将△ABC进行平移后得到△A′B′C′,其中点A(2,1)的对应点A′为(﹣2,﹣1),∴△ABC是向左平移了4个单位长度,向下平移了2个单位长度,故选B.【点评】此题主要考查了坐标与图形的变化,关键是掌握平移中点的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.3.(4分)(2017•祁阳县三模)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(4分)(2017春•埇桥区期中)如图,在CD上找一点P,使得它到OA、OB的距离相等,则应找到()A.线段CD的中点B.CD与∠AOB平分线的交点C.OC垂直平分线与CD的交点D.OD垂直平分线与CD的交点【分析】根据角平分线的性质解答即可.【解答】解:∵点P到OA、OB的距离相等,∴点P在∠AOB平分线上,∴点P是CD与∠AOB平分线的交点,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.(4分)(2017春•埇桥区期中)在△ABC中,∠A、∠B、∠C的对边长分别为a、b、c,且a2+c2=b2,则△ABC()A.∠A为直角B.∠B为直角C.∠C为直角D.不是直角三角形【分析】由a2+c2=b2可得出△ABC为直角三角形且b为斜边,进而可得出∠B为直角,此题得解.【解答】解:∵a2+c2=b2,∴△ABC为直角三角形,且b为斜边,∴∠B为直角.故选B.【点评】本题考查了勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.”是解题的关键.6.(4分)(2017春•埇桥区期中)如图,将△ABC绕点C按顺时针方向旋转至△A′B′C′,使点A′落在BC的延长线上,已知∠A=30°,∠B=40°,则旋转角为()A.10°B.35°C.70° D.110°【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=30°,∠B=40°,∴∠ACA′=∠A+∠B=30°+40°=70°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴旋转角为70°,故选C.【点评】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△A′B′C.7.(4分)(2016•江西模拟)如图,在正方形网格中有△ABC,△ABC 绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.【分析】根据△ABC绕着点O逆时针旋转90°,得出各对应点的位置判断即可;【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.【点评】本题考查了旋转的性质,知道想要确定旋转后的图形①要确定旋转的方向②要确定旋转的大小是解题的关键.8.(4分)(2017春•埇桥区期中)如图,BD为△ABC的角平分线,EF垂直平分边BC,交BC于点E,交BD于点F,连接CF,若∠A+∠ACF=90°,则∠FCB等于()A.30°B.35°C.40° D.45°【分析】设∠ABD=∠CBD=x°,则∠ABC=2x°,根据线段垂直平分线性质求出BF=CF,推出∠FCB=∠CBD,根据三角形内角和定理得出方程,求出方程的解即可.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,设∠ABD=∠CBD=x°,则∠ABC=2x°,∵EF是BC的垂直平分线,∴BF=CF,∴∠FCB=∠CBD=x°,∵∠A+∠ACF=90°,∴90°+x°+2x°=180°,解得:x=30,∴∠FCB=30°,故选A.【点评】本题考查了三角形内角和定理,线段垂直平分线性质的应用,能求出BF=CF是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.(4分)(2017春•埇桥区期中)不等式组有解,则a的取值范围是()A.a≤3 B.a<3.5 C.a<4 D.a≤5【分析】分别解每个不等式组求得x的范围,依据不等式组有解得出关于a的不等式,解不等式即可得.【解答】解:解不等式3+2x>a,得:x>,解不等式2x﹣1≤0,得:x≤,∵不等式组有解,∴<,解得:a<4,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(4分)(2016•滨州)如图,△ABC中,D为AB上一点,E为BC 上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51° C.51.5°D.52.5°【分析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.【点评】本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.二、填空题(本小题共4小题,每小题5分,共20分)11.(5分)(2017春•埇桥区期中)不等式3x+2<8的解集是x<2.【分析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【解答】解:不等式3x+2<8移项得,3x<6,系数化1得,x<2,故答案为x<2.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.(5分)(2017春•埇桥区期中)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC=.【分析】先根据30°角所对的直角边等于斜边的一半得出AB=2BC=2,再利用勾股定理即可求解.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,∴AC===.故答案为.【点评】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.同时考查了勾股定理.13.(5分)(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.【分析】根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.【解答】解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.【点评】本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.14.(5分)(2017春•埇桥区期中)如图,直线y=﹣x+m与y=nx+b(n≠0)的交点的横坐标为﹣2,有下列结论:①当x=﹣2时,两个函数的值相等;②b=4n;③关于x的不等式nx+b>0的解集为x>﹣4;④x>﹣2是关于x的不等式﹣x+m>nx+b的解集,其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【分析】①由两直线交点的横坐标为﹣2,即可得出当x=﹣2时,两个函数的值相等,结论①正确;②由点(﹣4,0)在直线y=nx+b上,可得出b=4n,结论②正确;③当x>﹣4时,直线y=nx+b在x轴上方,由此可得出关于x的不等式nx+b>0的解集为x>﹣4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x>﹣2是关于x的不等式﹣x+m<nx+b的解集,结论④错误.综上所述即可得出结论.【解答】解:①∵直线y=﹣x+m与y=nx+b(n≠0)的交点的横坐标为﹣2,∴当x=﹣2时,两个函数的值相等,结论①正确;②∵点(﹣4,0)在直线y=nx+b上,∴﹣4n+b=0,∴b=4n,结论②正确;③∵当x>﹣4时,直线y=nx+b在x轴上方,∴关于x的不等式nx+b>0的解集为x>﹣4,结论③正确;④∵当x>﹣2时,直线y=nx+b在直线y=﹣x+m的上方,∴x>﹣2是关于x的不等式﹣x+m<nx+b的解集,结论④错误.故答案为:①②③.【点评】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.三、(本大题共2小题,每小题8分,共16分)15.(8分)(2011•衢州)解不等式,并把解在数轴上表示出来.【分析】根据不等式的性质得到3(x﹣1)≤1+x,推出2x≤4,即可求出不等式的解集.【解答】解:去分母,得3(x﹣1)≤1+x,整理,得2x≤4,∴x≤2.在数轴上表示为:.【点评】本题主要考查对解一元一次不等式,在数轴上表示不等式的解集,不等式的性质等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键.16.(8分)(2017春•埇桥区期中)解不等式组并写出它的正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,继而可得其正整数解.【解答】解:解不等式2(x﹣3)<6﹣2x,得:x<3,解不等式x+1>,得:x>﹣7,∴不等式组的解集为﹣7<x<3,则该不等式组的正整数解为1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、(本大题共2小题,每小题8分,共16分)17.(8分)(2017春•埇桥区期中)将含有30°角的直角三角板OAB 如图所示放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,求点A的对应点A′的坐标.【分析】过A′作A′C⊥x轴于C,根据旋转得出∠AOA′=75°,OA=OA′=2,求出∠A′OC=45°,推出OC=A′C,解直角三角形求出OC和A′C,即可得出答案.【解答】解:如图,过A′作A′C⊥x轴于C,∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA=OA′=2,∵∠AOB=30°,∴∠A′OC=45°,∴OC=A′C=OA′sin45°=2×=,∴A′的坐标为(,).【点评】本题考查了坐标与图形变化和旋转,能正确画出图形是解此题的关键.18.(8分)(2011•广州模拟)如图,已知△ABC:(1)AC的长等于;(2)若将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是(1,2);(3)若将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C1,则A1(4)在图中画出第(2)问中△A′B′C′或第(3)问中△A1B1C1的图形.【分析】(1)由图形可知:A(﹣1,2),C(0,﹣1),根据勾股定理求出AC即可;(2)根据A(﹣1,2)和平移的性质得到﹣1+2=1,即可求出A点的对应点A′的坐标;(3)根据作图﹣旋转变换得到A 1落在X轴上,且AC=CA1=,根据OC=1,求出OA1=3,即可得到答案;(4)根据平移的性质和旋转变换的性质,根据△ABC的顶点的坐标特点求出对应点的坐标,画出即可.【解答】解:(1)由图形可知:A(﹣1,2),C(0,﹣1),由勾股定理得:AC==,故答案为:.(2)A(﹣1,2),∵将△ABC向右平移2个单位得到△A′B′C′,∴﹣1+2=1,故答案为:(1,2).(3)根据图形旋转,A 1落在X轴上,且AC=CA1=,∵OC=1,∴OA1=3,∴A1(3,0),故答案为:(3,0).(4)如图:△A′B′C′或△A1B1C1,∴△A′B′C′或△A1B1C1即为所求作的图形.【点评】本题主要考查对勾股定理,作图﹣平移变换的性质,作图﹣旋转变换的性质等知识点的理解和掌握,能根据性质正确画图是解此题的关键,题型较好,比较典型.五、(本大题共2小题,每小题10分,共20分)19.(10分)(2017春•埇桥区期中)如图,AD是∠BAC平分线,点E在AB上,且AE=AC,EF∥BC交AC于点F,AD与CE交于点G,与EF交于点H.(1)证明:AD垂直平分CE;(2)若∠BCE=40°,求∠EHD的度数.【分析】(1)根据等腰三角形三线合一的性质即可证明AD垂直平分CE;(2)由(1)可知点D为CE垂直平分线上的点,则CD=DE,∠DCE=∠DEC.由EF∥BC,可得∠DCE=∠CEF=∠DEC,则EG平分∠DEF.再证明∠EDH=∠EHD,然后由∠BCE=40°,得出∠DEH=2∠BCE=80°,进而求出∠EHD=(180°﹣80°)=50°.【解答】(1)证明:∵AE=AC,AD是∠BAC平分线,∴AD垂直平分CE;(2)解:由(1)可知点D为CE垂直平分线上的点,∴CD=DE,∴∠DCE=∠DEC.∵EF∥BC,∴∠DCE=∠CEF=∠DEC,∴EG平分∠DEF.∵EG⊥AD,∴△DEH是等腰三角形,且ED=EH,∴∠EDH=∠EHD,∵∠BCE=40°,∴∠DEH=2∠BCE=80°,∴∠EHD=(180°﹣80°)=50°.【点评】本题考查了等腰三角形的性质,线段垂直平分线的性质,平行线的性质,三角形内角和定理,掌握性质与定理是解题的关键.20.(10分)(2017春•埇桥区期中)已知点P(a﹣4,﹣+3)关于原点的对称点在第四象限.(1)求a、b的取值范围;(2)在(1)的范围内,当a、b取最大整数且a、b为直角三角形的两边长,求此直角三角形的周长.【分析】(1)根据关于原点对称的点的坐标性质、结合题意列出不等式,解不等式即可;(2)分a=3、b=5为直角边和b=5为斜边两种情况,根据勾股定理计算即可.【解答】解:(1)点P(a﹣4,﹣+3)关于原点的对称点为(﹣a+4,﹣3),由题意得,﹣a+4>0,﹣3<0,解得,a<4,b<6;(2)∵a<4,b<6,∴a的最大整数为3,b的最大整数为5,当a=3、b=5为直角边时,斜边长==,则此直角三角形的周长为:8+;当b=5为斜边时,另一个直角边为4,则此直角三角形的周长为:12.【点评】本题考查的是勾股定理的应用、关于原点对称的点的坐标性质,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.六、(本题满分12分)21.(12分)(2013•沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【解答】(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.七、(本题满分12分)22.(12分)(2017春•埇桥区期中)六一国际儿童节即将来临,某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具每件的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中只选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.【分析】(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;(2)分情况:不大于20件;大于20件;分别列出函数关系式即可;(3)设购进玩具x件(x>20),分别表示出甲种和乙种玩具消费,建立不等式解决问题.【解答】解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得,解得.答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x﹣20)×30×0.7=21x+180;(3)设购进玩具a件(a>20),则乙种玩具消费27a元;当27a=21a+180,则a=30所以当购进玩具正好30件,选择购其中一种即可;当27a>21a+180,则a>30所以当购进玩具超过30件,选择购甲种玩具省钱;当27a<21a+180,则a<30所以当购进玩具少于30件,多于20件,选择购乙种玩具省钱.【点评】此题考查二元一次方程组,一次函数,一元一次不等式的运用,解决本题的关键是理解题意,正确列式解决问题.八、(本题满分14分)23.(14分)(2017春•埇桥区期中)如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°,△COD固定不动,△AOB绕着O点逆时针旋转a(0°<α<180°).(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC= 120°;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).【分析】(1)由∠BOD=60°,∠DOC=∠AOB=90°推出∠AOD=∠BOC=30°,推出∠AOC=∠AOD+∠DOC=30°+90°=120°即可;(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.如图2中,若0°<α<90°,由∠AOD=α,推出∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC﹣∠AOD=90°﹣α,推出∠BOD+∠AOC=90°+α+90°﹣α=180°即可证明;(3)结论仍然成立.如图3中,由∠AOB=∠COD=90°,又∠BOD+∠AOC+∠AOB+∠COD=360°,即可推出∠BOD+∠AOC=360°﹣∠AOB﹣∠COD=360°﹣90°﹣90°=180°;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),当α为45°或60°或90°或105°或135°或150°时,两个三角形至少有一组边所在直线垂直;【解答】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC﹣∠AOD=90°﹣α,∴∠BOD+∠AOC=90°+α+90°﹣α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°﹣∠AOB﹣∠COD=360°﹣90°﹣90°=180°.(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),当α为45°或60°或90°或105°或135°或150°时,两个三角形至少有一组边所在直线垂直.【点评】本题考查旋转变换、直角三角形的性质、周角、两直线垂直等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.。
2016—2017年八年级下册 数学期中试卷及答案解析
2016—2017年八年级第二学期数学期中试卷班别________姓名________分数_________一.选择题(每题3分,共30分)1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤32.下列属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.=2 B.3+=3C.+=D.+=34.如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1 B.2 C.3 D.4.85.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线相等C.有两边及一角对应相等的两个三角形全等D.平行四边形是轴对称图形6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cm B.4 cmC.cm D.3 cm7.如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,CB=6,DH⊥AB于H,则AH等于()C.D.A.B.A.4 B.3 C.D.29.如图,在□ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3C.4 D.510.如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于()A.18 B.16 C.15 D.14二.填空题(每小题3分,共24分)11.=,(﹣)2=,=12.已知a=﹣,b=+,求a2+b2的值为.13.如图1 ,P(3,4)是直角坐标系中一点,则P到原点的距离是.图1 图2 图314.如图2,在□ABCD中,对角线AC与BD相交于点O,请添加一个条件,使□ABCD成为菱形(写出符合题意的一个条件即可)15.如图3,△ABC中,AC=15,AB=13,BC=14,则BC边上的高AD=.16.已知,在菱形ABCD中,AC=8,BD=6,则菱形的周长是.17.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为cm2.18.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.三.解答题(共44分)19.化简与计算:(每小题5分,共10分)(1)2﹣6+3(2)×+3×220.(8分)如图,在△ABC中,∠ACB=90°,CD⊥AB于D(1)若AB=5cm,BC=3cm,求CD的长;(2)若BD=2,AD=4,求CD的长.21.(8分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.22.(8分)如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC 是矩形.23.(10分)如图,□ABCD中,AC与BD相交于点O,∠ABD=2∠DBC,AE⊥BD于点E.(1)若∠ADB=25°,求∠BAE的度数;(2)求证:AB=2OE.2016—2017年八年级下册数学期中试卷参考答案与试题解析一.选择题(共10小题)1.(2017•无锡一模)若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤3【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,a﹣3≥0,解得a≥3.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.(2016秋•新华区期末)下列属于最简二次根式的是()A.B. C. D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式3.(2017•平顶山一模)下列计算正确的是()A.=2 B.3+=3C.+=D.+=3【分析】根据二次根式的加减法进行计算即可.【解答】解:A、=2,故A错误;B、3+不能合并,故B错误;C、+不能合并,故C错误;D、+=3+,故D正确,【点评】本题考查了二次根式的加减,掌握二次根式加减法的法则是解题的关键.4.(2017春•孝南区校级月考)如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1 B.2 C.3 D.4.8=AC•AB=BC•AD,【分析】先根据AB=8,AC=6,∠CAB=90°,利用勾股定理可求BC,再根据S△ABC可求AD.【解答】解:如右图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,∴BC===10,又∵S=AC•AB=BC•AD,△ABC∴6×8=10AD,∴AD=4.8.故选D.【点评】本题考查了勾股定理.注意直角三角形面积的两种求法,等于两直角边乘积的一半,也等于斜边乘以斜边上高的积的一半.5.(2017•启东市一模)下列语句正确的是()【分析】由菱形的判定、矩形的性质、全等三角形的判定、平行四边形的性质分别进行判断,即可得出结论.【解答】解:A、对角线互相垂直的四边形是菱形,不正确;B、矩形的对角线相等,正确;C、有两边及一角对应相等的两个三角形全等,不正确;D、平行四边形是轴对称图形,不正确;故选:B.【点评】本题考查了菱形的判定、矩形的性质、全等三角形的判定、平行四边形的性质;熟练掌握有关判定定理和性质定理是解决问题的关键.6.(2017春•武昌区校级月考)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()【分析】先求出S A、S B、S C的值,再根据勾股定理的几何意义求出D的面积,从而求出正方形D 的边长.【解答】解:∵S A=6×6=36cm2,S B=5×5=25cm2,S C=5×5=25cm2,又∵S A+S B+S C+S D=10×10,∴36+25+25+S D=100,∴S D=14,∴正方形D的边长为cm.故选:A.【点评】本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.7.(2017•东光县一模)如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,CB=6,DH⊥AB 于H,则AH等于()A.B.C.D.【分析】先祝你四边形ABCD是菱形,根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵平行四边形ABCD中,对角线AC⊥BD,∴四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==,故选A.【点评】此题考查了平行四边形的性质、菱形的判定与性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.8.(2017•新野县一模)如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为()A.4 B.3 C.D.2【分析】利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE=DC=AB求出即可.【解答】解:∵在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠BCE,AB=DC,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=7,AE=4,∴DE=DC=AB=3.故选:B.【点评】此题主要考查了平行四边形的性质以及角平分线的性质,得出DE=DC=AB是解题关键.9.(2017•黔东南州模拟)如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.10.(2016•五指山校级模拟)如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于()A.18 B.16 C.15 D.14【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,进而△ABD的周长.【解答】解:菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB=5,∴△ABD的周长等于5+5+6=16,故选B.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.二.填空题(共8小题)11.(2017秋•海宁市校级月考)=2,(﹣)2=3,=4.【分析】根据二次根式的乘除法法则和二次根式的性质计算即可.【解答】解:==2,(﹣)2=3,=4,故答案为:2;3;4.【点评】本题考查的是二次根式的乘除法,掌握二次根式的乘除法法则是解题的关键.12.(2017春•上虞区校级月考)已知a=﹣,b=+,求a2+b2的值为10.【分析】把已知条件代入求值.【解答】解:原式=(﹣)2+(+)2=5﹣2+5+2=10.故本题答案为:10.【点评】此题直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.13.(2017春•上虞区校级月考)如图P(3,4)是直角坐标系中一点,则P到原点的距离是5.【分析】根据两点间的距离公式便可解答.【解答】解:∵P点坐标为(3,4),∴OP==5.【点评】本题考查的是点在平面直角坐标系中坐标的几何意义及两点间的距离公式.14.(2016春•潮南区期末)如图,在▱ABCD中,对角线AC与BD相交于点O,请添加一个条件AB=AD,使▱ABCD成为菱形(写出符合题意的一个条件即可)【分析】根据邻边相等的平行四边形是菱形可得添加条件AB=AD.【解答】解:添加AB=AD,∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD成为菱形.故答案为:AB=AD.【点评】此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.15.(2017春•启东市校级月考)△ABC中,AC=15,AB=13,BC=14,则BC边上的高AD=12.【分析】AD为高,那么题中有两个直角三角形.AD在这两个直角三角形中,设BD为未知数,可利用勾股定理都表示出AD长.求得BD长,再根据勾股定理求得AD长.【解答】解:设BD=x,则CD=14﹣x,在Rt△ABD中,AD2+x2=132,在Rt△ADC中,AD2=152﹣(14﹣x)2,则有132﹣x2=152﹣(14﹣x)2,132﹣x2=152﹣196+28x﹣x2,解得x=5,在Rt△ABD中,AD==12.故答案为:12.【点评】本题考查了勾股定理,解决本题的关键在于利用两个直角三角形的公共边找到突破点.主要利用了勾股定理进行解答.16.(2017•大连模拟)已知,在菱形ABCD中,AC=8,BD=6,则菱形的周长是20.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中根据勾股定理,可以求得AB的长,即可得出菱形ABCD的周长.【解答】解:如图所示,∵在菱形ABCD中,AC=8,BD=6,∴∠AOB=90°,AO=4,BO=3,∴Rt△AOB中,AB=5,∴菱形ABCD的周长=5×4=20.故答案为:20.【点评】本题考查了菱形各边长相等的性质,以及勾股定理在直角三角形中的运用,根据勾股定理计算出菱形的边长是解题的关键.17.(2017•长春一模)一个菱形的周长为52cm,一条对角线长为10cm,则其面积为120cm2.【分析】先由菱形ABCD的周长求出边长,再根据菱形的性质求出OA,然后由勾股定理求出OB,即可得出BD,再根据菱形的面积等于对角线乘积的一半计算即可.【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,OA=AC=5,OB=BD,∵菱形ABCD的周长为52cm,∴AB=13cm,在Rt△AOB中,根据勾股定理得:OB===12cm,∴BD=2OB=24cm,∴菱形ABCD的面积=×10×24=120cm2,故答案为120.【点评】本题考查了菱形的性质以及勾股定理的运用;熟练掌握菱形的性质和运用勾股定理计算是解决问题的关键.18.(2016•盐城)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【分析】延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,由菱形的性质和已知条件得出∠MFD=30°,设MD=x,则DF=2x,FM=x,得出MG=x+1,由勾股定理得出(x+1)2+(x)2=(2﹣2x)2,解方程得出DF=0.6,AF=1.4,求出AH=AF=0.7,FH=,证明△DCB是等边三角形,得出BG⊥CD,由勾股定理求出BG=,设BE=y,则GE=2﹣y,由勾股定理得出()2+y2=(2﹣y)2,解方程求出y=0.25,得出AE、EH,再由勾股定理求出EF即可.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.【点评】本题考查了菱形的性质、翻折变换的性质、勾股定理、等边三角形的判定与性质等知识;本题综合性强,难度较大,运用勾股定理得出方程是解决问题的关键.三.解答题(共5小题)19.(2017春•黄陂区月考)计算:(1)×+3×2(2)2﹣6+3.【分析】(1)二次根式乘法法则即可化简求值(2)将各二次根式化为最简二次根式,然后合并同类二次根式.【解答】解:(1)原式=7+30=37(2)原式=4﹣2+12=14【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.20.(2017春•武昌区校级月考)如图,在△ABC中,∠ACB=90°,CD⊥AB于D(1)若AB=5cm,BC=3cm,求CD的长;(2)若BD=2,AD=4,求CD的长.【分析】(1)首先根据勾股定理求得直角三角形的另一直角边,再根据直角三角形的面积公式求得斜边上的高CD;(2)利用等角的余角相等得到∠B=∠ACD,则利用有两组角对应相等的两三角形相似可判断△ADC ∽△CDB;利用相似比得到=,然后利用比例性质求CD.【解答】解:(1)在直角三角形ABC中,AC===4(cm),根据直角三角形的面积公式,得CD===(cm)故CD的长为cm;(2)∵CD⊥AB于D,∴∠CDA=∠CDB=90°,∴∠BCD+∠B=90°∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠B=∠ACD,∴△ADC∽△CDB,∴=,即=,∴CD=2.【点评】本题考查了勾股定理,相似三角形的判定与性质,要熟练运用勾股定理以及直角三角形的面积公式,直角三角形斜边上的高等于两条直角边的乘积除以斜边.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;再运用相似三角形的性质时主要利用相似比进行几何计算.21.(2017•邵阳县一模)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.【分析】根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.22.(2016春•历下区期末)如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.【分析】根据平行四边形的判定推出四边形OBEC是平行四边形,根据菱形性质求出∠AOB=90°,根据矩形的判定推出即可.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形.【点评】本题考查了菱形性质,平行四边形的判定,矩形的判定的应用,主要考查学生的推理能力.23.(2013•沙坪坝区模拟)如图,▱ABCD中,AC与BD相交于点O,∠ABD=2∠DBC,AE⊥BD于点E.(1)若∠ADB=25°,求∠BAE的度数;(2)求证:AB=2OE.【分析】(1)根据平行四边形的对边平行可得AD∥BC,再根据两直线平行,内错角相等可得∠DBC=∠ADB,然后求出∠ABD,再根据直角三角形两锐角互余列式计算即可求出∠BAE;(2)取AB的中点F,连接EF、OF,根据直角三角形斜边上的中线等于斜边的一半可得EF=BF=AB,根据等边对等角可得∠ABD=∠BEF,根据三角形的中位线平行于第三边并且等于第三边的一半可得OF∥BC,根据两直线平行,内错角相等可得∠DBC=∠EOF,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠EFO=∠EOF,再根据等角对等边可得EF=OE,从而得证.【解答】(1)解:在▱ABCD中,AD∥BC,∴∠DBC=∠ADB,∵∠ABD=2∠DBC,∠ADB=25°,∴∠ABD=2×25°=50°,∵AE⊥BD,∴∠BAE=90°﹣∠ABD=90°﹣50°=40°;(2)证明:如图,取AB的中点F,连接EF、OF,∵AE⊥BD,∴EF=BF=AB,∴∠ABD=∠BEF,∵AO=CO,∴OF是△ABC的中位线,∴OF∥BC,∴∠DBC=∠EOF,根据三角形的外角性质,∠BEF=∠EFO+∠EOF,又∵∠ABD=2∠DBC,∴∠EFO=∠EOF,∴EF=OE,∴OE=AB,∴AB=2OE.【点评】本题考查了平行四边形的对边平行,对角线互相平分的性质,直角三角形斜边上的中线等于斜边的一半,三角形的中位线平行于第三边并且等于第三边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,作辅助线是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试卷
(满分:120分答题时间:90分钟)
题号一二三四五六总分
得分
一、
得分
选择题(每小题2分,共12分)
1.下列交通标志中,是轴对称图形的是()
2.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()
A.72°
B.45°
C.36°
D.30°
3.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()
A.3个
B.2个
C.1个
D.0个
4.如图,在下列条件中,不能证明△ABD≌△ACD的是()
A.BD=DC,AB=AC
B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD
D.∠B=∠C,BD=DC
第4题第5题
5.如图,DE⊥AC,垂足为E,CE=AE.若AB=12cm,BC=10cm,则△BCD的周长是()
A.22cm
B.16cm
C.23cm
D.25cm
6.等腰三角形的两边分别为3和6,则这个三角形的周长是()
A.12
B.15
C.9
D.12或15
八年级数学试卷第1页(共8页)
二、填空题(每小题3分,共24分)
7.若点P(m,m-1)在x 轴上,则点P 关于x 轴对称的点的坐标为 . 8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 . 9.如图,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N.PM =PN ,若∠BOC =30°,则∠AOB = . 10.如图,在△ABC 和△FED 中,AD =FC ,AB =FE ,当添加条件 时,就可得到 △ABC ≌△FED.(只需填写一个你认为正确的条件)
11.从长为3cm 、5cm 、7cm 、10cm 的四根木条中选出三根组成三角形,共有 种选法. 12.若等腰三角形一腰上的高与另一腰的夹角为40°,则它的底角为 . 13.如图,△ABC 为等边三角形,AD 为BC 边上的高,E 为AC 边上的一点,且AE=AD ,则 ∠EDC = .
14.如图,在等边△ABC 中,点D 、E 分别在边AB 、BC 上.把△BDE 沿直线DE 翻折,使点 B 落在点B ′处,DB ′、EB ′分别与AC 交于点F 、G.若∠ADF =80°,则∠EGC = .
三、解答题(每小题5分,共20分) 15.如图,两个四边形关于直线 对称,∠C =90°, 试写出a ,b 的长度,并求出∠G 的度数.
第14题
第13题
得分 第9题
第10题
得分 第15题
八年级数学试卷 第2页 (共8页)
16.如图,已知AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.
17.如图,16个相同的小正方形拼成一个正方形网格,现将其中的两个小方格涂黑.请你
用两种不同的方法分别在图中再涂黑两个小方格,使它们成为轴对称图形.
18.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于y轴对称的△A
1B
1
C
1
.
(2)写出点A
1,B
1
,C
1
的坐标(直接写出答案).
A
1
B
1
C
1
(3)△A
1B
1
C
1
的面积为 .
第16题
第17题
第18题
八年级数学试卷第3页(共8页)
四、解答题(每小题7分,共28分)
得分
19.在△ABC中,∠BAC=50°,∠B=45°,AD是△ABC的一条角平分线,
求∠ADB的度数.
第19题
20.如图:△ABC和△EAD中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE.
求证:△ABD≌△AEC.
第20题
八年级数学试卷第4页(共8页)
21.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三
个关系式:①AD=BC;②DE=CF;③BE∥AF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论.
(2)选择(1)中你写出的一个正确结论,说明它正确的理由.
第21题
22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证△ADC≌△CEB. (2)AD=5cm,DE=3cm,求BE的长度.
第22题
八年级数学试卷第5页(共8页)
23.已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF ∥BC 交AB 于点E ,交 AC 于点F.求证:BE+CF =EF.
24.如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠
求证:=ED EF .
第23题
八年级数学试卷 第6页 (共8页)
A
D
C
B
第24题
F
25.两个等腰直角三角形的三角板如图①所示放置,图②是由它抽象出的几何图形,
点B、C、E在同一条直线上,连接DC、EC.
(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.
第25题
八年级数学试卷第7页(共8页)
26.如图,△ABC是等边三角形,点M是BC上任意一点,点N是CA上任意一点,
且BM=CN,直线BN与AM相交于点Q,就下面给出的两种情况,猜测∠BQM等于多少度,并利用图②证明结论的正确性.
第26题
八年级数学试卷第8页(共8页)
八年级数学答案
一、1.A 2.C 3.C 4.D 5.A 6.B
二、(7)(1,0) (8) 1440° (9) 60° (10)答案不唯一 (11)二种 (12) 65°或25°
(13) 15° (14) 80°
三、 15.cm a 5= cm b 4= ∠G=55° 16.连接BD ∵△ABD ≌△CDB (SSS) ∴∠A=∠C
等. 18.(2)A(-1,2) B(-3,1) C(2,-1)
(3)面积为4.5 19.∠ADB=70°
20.证明:∵∠BAC=∠EAD ∴∠BAC-∠BAE=∠EAD-∠BAE ∴∠BAD=∠EAC △BAD ≌ △EAC(SAS)
21.(1) ① 、③=② ② ③=① (2)略
22.(1)∵∠ACB=90° ∴∠ACD+∠BCE=90° ∵AD ⊥CE ∴∠ACD+∠CAD=90° ∴∠BCE=∠CAD 又∵AC=BC △ADC ≌△CEB (AAS ) (2) ∵△ADC ≌△CEB ∴BE=CD AD=CE=500cm 又∵DE=3cm ∴CD=2cm ∴BE=2cm
23.证明 ∵BD 是∠ABC 解平分线 ∴∠EBD=∠CBD 又∵EF ∥BC ∴∠CBD=∠EDB ∴∠EDB=∠EBD ∴BE=DE 同理 DF=CF ∴BE+CF=DE+DF=EF
24.AD=AG AD ⊥AG 证明:∵BE 、CF 是AC 、AB 边上高 ∴∠AFC=∠AEB=90°
∴∠ABE+∠BAC=∠ACF+∠BAC ∴∠ABE=∠ACF 又∵AB=CG BD=AC ∴△ABD≌△ACG ∵AD=AG ∴∠BAD=∠CGA ∵∠CGA+∠GAF=90°
∵∠BAD+∠GAF=90°∴AG⊥AD
25.(1)△ABE≌△ACD 证明:∵∠BAC=∠EAD ∴∠BAC+∠CAE=∠EAD+∠CAE
∴∠BAE=∠CAD 又∵AB=AC AD=AE ∴△ABE≌△ACD(SAS)
(2)∠ADC=∠AEB (AE、DC交点为P)
∠APD=∠CPE ∴∠APD+∠ADC=90°∴∠AEB+∠CPE=90°∴DC⊥BE 26.∠BQM=60°
证明:∵△ABC是等边三角形∴AB=AC ∠ABC=∠BCA=∠ACB=60°又 BM=CN ∵△ABM≌△BCN(SAS) ∴∠M=∠N
又∠NAQ=∠MAC ∴∠BQM=∠N+∠NAQ=∠M+∠MAC=∠ACB=60°。