2016-2017年八年级数学期中考试试题及答案

合集下载

人教版2016-2017八年级数学期中试(含答案)

人教版2016-2017八年级数学期中试(含答案)

第1页,共2页 第2页,共2页AC B DE 人教版2016-2017学年度第一学期 八年级数学期中考试试卷 一、选择题:(本题满分24分,每小题3分) 在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填在题后的括号内。

......... 1.下列各组线段能组成一个三角形的是( ). A .5cm ,8cm ,12cm B .2cm ,3cm ,6cm C. 3cm ,3cm ,6cm D.4cm ,7cm ,11cm 2.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等; ③周长相等的两个三角形全等;④全等的两个三角形一定重合。

其中正确的是( )。

A. ①②B. ②③C. ③④D. ①④3.在①34·34=316 ②(-3)4·(-3)3=-37 ③-32·(-3)2=-81 ④24+24=25四个式子中,计算正确的有( )A 、1个B 、2个C 、3个D 、4个 4.下列计算正确的是( )A 、x 2+x 3=2x 5B 、 x 2·x 3=2x 6C 、(-x 3)2=-x 6 D 、 x 6÷x 3=x 3 5.下列各式中,计算正确的是( ) A 、2363412a a a = B 、233(4)12a a a --=- C 、325236x x x = D 、235()()x x x --= 6.如图,∠B=∠D=90°,CB=CD ,∠1=40°,则∠2=( )。

A .40° B. 45° C. 60° D. 50°7.已知等腰三角形一个内角是70°,则另外两个内角的度数是( )A.55°, 55°B.70°, 40°C.55°, 55°或70°, 40°D.以上都不对8.下列各式中计算正确的是 ( )A 、(2p+3q )(-2p+3q)=4p 2-9q 2B 、( 12a 2b -b)2=14a 4b 2-12a 2b 2+b 2C 、(2p -3q )(-2p -3q)=-4p 2+9q 2D 、 ( -12a 2b -b)2=-14a 4b 2-a 2b 2-b 2 二 、填空题:(本题满分24分,每小题3分)9.一扇窗户打开后,用窗钩可将其固定,这里运用的几何原理为 。

人教版2016-2017年八年级上期中数学试卷含答案

人教版2016-2017年八年级上期中数学试卷含答案

八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。

2016-2017学年度第二学期期中检测八年级数学试题(含答案)

2016-2017学年度第二学期期中检测八年级数学试题(含答案)

2016-2017学年度第二学期期中检测八年级数学试题(全卷共120分,考试时间90分钟)一.选择题(本大题有8个小题,每小题3分,共24分,将正确选项填写在表格中相应位置)1.下列图形中,是中心对称图形的是(▲)A B C D2.下列调查中,适宜采用普查方式的是(▲)A.调查市场上某品牌老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对《徐州夜新闻》的认可情况3.下列调查的样本选取方式,最具有代表性的是(▲)A.在青少年中调查年度最受欢迎的男歌手B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间C.为了了解你所在学校的学生每天的上网时间,向八年级的同学进行调查D.对某市的出租司机进行体检,以此反映该市市民的健康状况4.下列事件中,属于确定事件的是(▲)A.掷一枚硬币,着地时反面向上B.买一张福利彩票中奖了C.投掷3枚骰子,面朝上的三个数字之和为18D.五边形的内角和为540度5.如图,E、F、G、H分别是□ABCD各边的中点,按不同方式连接分别得到图○1、○2中两个不同的阴影部分甲、乙,关于甲、乙两个阴影部分,下列叙述正确的是( ▲ )A .甲和乙都是平行四边形B .甲和乙都不是平行四边形C .甲是平行四边形,乙不是平行四边形D .甲不是平行四边形,乙是平 行四边形6. 如图,在菱形ABCD 中,AC =6,BD =8,则菱形的周长是( ▲ )A .24B .48C .40D .207. 若依次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ▲ )A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形 8. 如图,在□ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB 于E ,在线段AB 上,连接EF 、CF .则下列结论:○1∠BCD =2∠DCF ;○2∠ECF =∠CEF ;○3S △BEC =2S △CEF ;○4∠DFE =3∠AEF ,其中一定正确的是( ▲ )A .○1○2○4B .○1○2○4C .○1○2○3○4D .○2○3○4图(1)图(2)GF E HCDGF E HCDABBA 第5题图CDAB第6题图EFCDBA 第8题图二. 填空题(本大题有8个小题,每小题3分,共24分)9. 如图是某校参加各兴趣小组的学生人数分布扇形统计图,其中“演艺”兴趣小组一项所对应的角度是 ▲ °.10. 一只不透明的袋子里装有1个白球,3个黄球,6个红球,这些球除了颜色外都相同,将球搅匀,从中任意摸出1个球,有下列事件:○1该球是红球,○2该球是黄球,○3该球是白球.它们发生的概率分别记为P 1,P 2,P 3.则P 1,P 2,P 3的大小关系 ▲ .11. 在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在0.2,那么据此估计,袋子里的球的总数大约是 ▲ 个. 12. 在□ABCD 的周长是32cm ,AB =5cm ,那么AD = ▲ cm .13. 如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,AB =4,BC =6,则DE = ▲ . 14. 如图,在□ABCD 中,AD =6,点E 、F 分别是BD 、CD 的中点,则EF = ▲ . 15. 如图,G 为正方形ABCD 的边AD 上的一个动点,AE ⊥BG ,CF ⊥BG ,垂足分别为点E ,F ,已知AD =4,则AE 2+CF 2= ▲ .第9题图第13题图EABCD第14题图EF DABC第15题图FE CDABG16. 如图,在Rt △ABC 中,∠ACB =90,AC =3,BC =4,分别以AB 、AC 、BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1、S 2、S 3、S 4,则1234S S S S +++= ▲ .三. 解答题(本大题共8小题,共72分)17. (本题8分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A 、B 、C 、D .根据调查结果绘制了如下尚不完整的统计图.根据所给数据,解答下列问题: (1)本次问卷共随机调查了名学生,扇形统计图中m = . (2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?18. (本题8分)为了了解某中学初三年级650名学生升学考试的数学成绩,从中随机抽取了50名学生的数学成绩进行分析,并求得样本的平均成绩是93.5分.下面是根据抽取的学生数学成绩制作的统计表:分组频数累计频数 频率问卷情况条形统计图6168类型人数DCBA2468101214161820第16题图4321S S S S LMDMPQE F CAB60.5~70.5 正3 a70.5~80.5 正正6 0.1280.5~90.5 正正9 0.1890.5~100.5 正正正正17 0.34100.5~110.5 正正b 0.2110.5~120.5正5 0.1 合计501根据题中给出的条件回答下列问题: (1)表中的数据a = ,b = ;(2)在这次抽样调查中,样本是 ;(3)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为 人.19. (本题8分)在如图所示的网格纸中,建立了平面直角坐标系xOy ,点P (1,2),点A (2,5),B (-2,5),C (-2,3).(1) 以点P 为对称中心,画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 关于点P对称,并写出下列点的坐标:B ′ ,C ′ ; yB A(2) 多边形ABCA ′B ′C ′的面积是 .20. (本题8分)如图,在□ABCD 中, AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形. 证明:21. (本题8分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解:22. (本题10分)如图,在平面直角坐标系xOy 中,点A (3,4),B (5,0),C (0,第20题图FEDABCBCA EDF 第22题图-2).在第一象限找一点D ,使四边形AOBD 成为平行四边形, (1) 点D 的坐标是 ;(2) 连接OD ,线段OD 、AB 的关系是 ;(3) 若点P 在线段OD 上,且使PC +PB 最小,求点P 的坐标. 解:23. (本题10分)将两张完全相同的矩形纸片ABCD 、FBED 按如图方式放置,BD 为重合的对角线.重叠部分为四边形DHBG ,(1) 试判断四边形DHBG 为何种特殊的四边形,并说明理由; (2) 若AB =8,AD =4,求四边形DHBG 的面积. 解:(1) (2)xyO AB CEGHFCDAB第23题图24. (本题12分)如图,正方形ABCO 的边OA 、OC 分别在x 、y 轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度a (0°<a <90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG . (1)求证:△CBG ≌△CDG ;(2)求∠HCG 的度数;并判断线段HG 、OH 、BG 之间的数量关系,说明理由;(3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由. (1) 证明:(2)解:(3)解:x yOGHFEDACB第24题图2016-2017学年度第二学期第一次质量抽测八年级数学试题答案四.选择题(本大题有8个小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A C B D A D C B五.填空题(本大题有8个小题,每小题3分,共24分)9.108.10.P1>P2>P3.11.10.12.11.13.2.14.3.15.16.16.18.六.解答题(本大题共10小题,共72分)17.答案:(1)50,m=32;……4分(2)图略;……6分(3)1000(16%40%)100056%560⨯+=⨯=.答约有560人.……8分18.答案:(1)a=0.06,b=10;……4分(2)50名学生的数学成绩;……6分(3)221.……8分19.解:(1)B′(4,-1),C′(4,1),图, (4)分(其中图2分)(2)28.……8分xyB'C'CA'OB AP20. (本题8分)证明:(1)因为四边形ABCD 是平行四边形,所以AD =BC ,…1分因为AD ∥BC ,所以∠ADE =∠CBF ,……2分 因为AE ⊥BD ,CF ⊥BD ,所以∠AED =∠CFB =90°,…3分所以△ADE ≌△CBF ,……4分 所以AE =CF .……5分(2)因为AE ⊥BD ,CF ⊥BD ,所以∠AEF =∠CFE =90°,…6分 所以AE ∥CF ,……7分由(1)得AE =CF ,所以四边形AECF 是平行四边形.……8分 21. 解:因为EF ⊥EC ,所以∠CEF =90°,………………1分 所以∠AEF +∠DEC =90°,………………2分因为四边形ABCD 是矩形,所以∠A =∠D =90°,………………3分 所以∠AFE +∠AEF =90°,所以∠AFE =∠DEC ,………………4分又EF =EC ,所以△AEF ≌△DCE ,………………5分 所以AE =DC ,………………6分因为2(AD +DC )=32,所以2(AE +DE +AE )=32,………………7分 因为DE =4cm ,所以AE =6cm .………………8分第20题图FEDABC22. 解答:(1)(8,4),图.…………2分 (2)OD 与AB 互相垂直平分.图…………4分(3)连接AC 交OD 于点P ,点P 即是所求点.…………5分(有图也可以)设经过点O 、D 的函数表达式为1y k x =,则有方程148k =,所以112k =,所以直线OD 的函数表达式为12y x =.………………6分设过点C 、A 的一次函数表达式为2y k x b =+,则有方程组22,3 4.b k b =-⎧⎨+=⎩解得22,2.b k =-⎧⎨=⎩所以过点C 、A 的一次函数表达式为22y x =-,………………8分解方程组1,22 2.y y x ⎧=⎪⎨⎪=-⎩得4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P (43,23).………………10分xyEPO ADBCEGCD23. (本题10分)解:(1)四边形DHBG 是菱形.………………1分 理由如下:因为四边形ABCD 、FBED 是完全相同的矩形, 所以∠A =∠E =90°,AD =ED , …………2分 所以DA ⊥AB ,DE ⊥BE ,所以∠ABD =∠EBD ,………………3分 因为AB ∥CD ,DF ∥BE ,所以四边形DHBG 是平行四边形,∠HDB =∠EBD ,………………5分 所以∠HDB =∠ABD , 所以DH =BH , 所以□DHBG 是菱形.………………6分 (2)由(1),设DH =BH =x ,则AH =8-x ,在Rt △ADH 中,222AD AH DH +=,即得2224(8)x x +-=, 解得5x =,即BH =5,………………9分所以菱形DHBG 的面积为5420HB AD ??. (10)分24. (本题12分) 解:(1)证明:∵正方形ABCO 绕点C 旋转得到正方形yGFECBCDEF ,∴CD =CB ,∠CDG =∠CBG =90°.………2分在Rt △CDG 和Rt △CBG 中,CD =CB ,CG =CG ,∴△CDG ≌△CBG (HL ).………………3分(2)解:∵△CDG ≌△CBG ,∴∠DCG =∠BCG 12DCB =∠,DG =BG .……………4分在Rt △CHO 和Rt △CHD 中,CH =CH ,CO =CD ,∴△CHO ≌△CHD (HL ).……………5分∴∠OCH =∠DCH 12OCD =∠,OH =DH ,…6分∴∠HCG =∠HCD +∠GCD 11145222OCD DCB OCB =∠+∠=∠=︒,…7分HG =HD +DG =HO +BG .………………8分(3)解:四边形AEBD 可为矩形. 如图,连接BD 、DA 、AE 、EB ,因为四边形AEBD 若为矩形,则四边形AEBD 为平行四边形,且AB =ED ,则有AB 、ED 互相平分,即G 为AB 中点的时候.因为DG =BG ,所以此时同时满足DG =AG =EG =BG ,即平行四边形AEBD 对角线相等,则其为矩形.所以当G 点为AB 中点时,四边形AEBD 为矩形.………………10分 ∵四边形DAEB 为矩形,∴AG =EG =BG =DG . ∵AB =6,∴AG =BG =3.………………11分 设H 点的坐标为(x ,0),则HO =x , ∵OH =DH ,BG =DG ,∴HD =x ,DG =3.在Rt △HGA 中,∵HG =x +3,GA =3,HA =6-x ,∴(x +3)2=32+(6-x )2,∴x =2. ∴H 点的坐标为(2,0).………………12分。

2016-2017学年人教版初二上册数学期中考试试卷含答案

2016-2017学年人教版初二上册数学期中考试试卷含答案

初二数学2016-2017学年度第一学期期中质量检测班级 姓名 学号1. 下列各式中,从左到右的变形是因式分解的是( )A. 224)2)(2(y x y x y x -=-+ B. 1)(122--=--y x xy xy y x C. a 2-4ab+4b 2=(a -2b )2 D. ax+ay+a=a (x+y ) 2.计算24-的结果是( )A .8-B .18-C .116-D .1163. 月球的平均亮度只有太阳的0.00000215倍。

0.00000215用科学记数法可表示为( ) A .52.1510-⨯ B . 62.1510-⨯ C .72.1510-⨯ D .621.510-⨯4.下列各式中,正确的是( ).A . 1a b b ab b ++=B .22x y x y -++=- C.23193x x x -=-- D .222()x y x y x y x y --=++ 5. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠6.下列多项式能分解因式的有( )个2249y x +-; 2244b a ab +--; 296x x --; 1196422-+-y xy x A.0 B.1 C.2 D.37.若分式22xx -+的值是零,则x 的值是( )A .0x =B .2±=xC .2-=xD .2=x 8. 到三角形三条边距离相等的点是( )ABCDA.三条高线的交点B.三条中线的交点C.三个内角平分线的交点D.三边垂直平分线的交点 9.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC , 下列结论正确的是( )A .CD CB AD AB ->- B .CD CB AD AB -=-C .CD CB AD AB -<- D .AD AB -与CD CB -的大小关系不确定 10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( )A B CD二、填空题(本题共20分,每小题2分) 11.当x __________时,分式11x-有意义. 12. 如果7,0-==+xy y x ,则22xy y x += . 13. 若92++mx x 是一个完全平方式,则m = .14. 计算:a aa -+-111的结果是 . 15. 若b a b a -=+111,则 的值是 .16. 如图,△ABC ≌△ADE ,∠CAD=10°,∠B=25°,∠EAB=120°,则∠DFB=____________. 17. 如图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .18. 如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.C D A B ABDC3,111--+=-ba ab b a b a 则右下折沿虚线剪开剩余部分上折右折A(16) (17) (18)19. 已知b a 、满足等式2022++=b a x ,)2(4a b y -=,则y x 、的大小关系是 . 20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 . 三、计算题(共27分,20-21每小题3分,22-23每小题4分)21.分解因式:(1) y xy y x 442+- (2) ()()2233y x y x ---22.计算: (1) 11(1)1a a a a -++⋅- (2) x y x yyx x ⎛⎫+-÷ ⎪⎝⎭(3)()32227812393x x yy x y --⎡⎤⋅÷⎢⎥⎣⎦23.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中(m+3)(m+2)=0. 24.解方程: (1)512552x x x+=-- (2)四、作图题. (本题3分)25.某地区要在区域..S .内. (即∠COD 内部..) 建一个超市M ,如图,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等, 到两条公路OC ,OD 的距离也相等. 这个超市应该建在何处? (要求:尺规作图, 不写作法, 保留作图痕迹)五、解答题(共20分,每小题4分)26. 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.27.列方程解应用题八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。

2016—2017学年度第一学期八年级数学期中考试题带答案

2016—2017学年度第一学期八年级数学期中考试题带答案

2016—2017学年度第一学期八年级数学科期中检测题时刻:100分钟 总分值:100分 得分:一、选择题(每题2分,共28分)在以下各题的四个备选答案中,只有一个是正确的,请把你以为正确的答案的字母代号填写在下表相应题号的方格内.题 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答 案1.16的平方根是A . 4B .±14C .±4D .-4 2.以下说法正确的选项是A .4=±2 B. 64的立方根是±4 C. 7平方根是7 D. 0.01的算术平方根是0.1 3.以下实数中,无理数是A .45-B .16C .12D .0 4.以下运算中,正确的选项是A .624a a a ÷=B .532a a a =+C .33a a a ⋅= D .336()a a = 5.假设3,2mna a ==,那么3m na+=A .6B .54C .24D .12 6.比较23,3,11的大小,正确的选项是A .11<3<23B .23<11<3C .11<23<3D .3<11<237.以下因式分解正确的选项是A. 24414(1)1m m m m -+=-+B. 222()x y x y +=+C.222()2a b a ab b +=++ D. 241(12)(12)x x x -+=+- 8.一个多项式除以y x 22-,其商为y x y x 22353+-,那么此多项式为A .5342610x y x y --B .2435106y x y x +-C .2435106y x y x -D .5342610x y x y + 9.计算991000.125(8)⨯-的结果是A. 1B. 8C. -1D. -8 10.假设()()3x a x -+-的积不含x 的一次项,那么a 的值为 A. 3 B. -3 C .13 D. 13- 11.以下命题中,是真命题的为A .相等的角是对顶角B .三角形的一个外角等于两个内角之和C .若是两直线平行,那么内错角相等D .面积相等的两个三角形全等12.如图1,把一个等腰梯形剪成两块上底为b ,下底为a ,高为(a –b )的直角梯形(a >b )(如左图),拼成如右图所示的图形。

山东省菏泽市单县2016-2017学年八年级(上)期中数学试卷(解析版)

山东省菏泽市单县2016-2017学年八年级(上)期中数学试卷(解析版)

2016-2017学年山东省菏泽市单县八年级(上)期中数学试卷一、选择题(每题3分)1.下列图案属于轴对称图形的是()A.B.C.D.2.下列各式中,不论字母取何值时分式都有意义的是()A.B.C.D.3.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD4.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9)C.8(a2﹣9)(a2+6a+9)D.4(a﹣3)2(a+3)25.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°6.下列分式约分,正确的是()A.=a2B.=C.=D.=07.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.8.下列各式从左到右的变形正确的是()A.=B.﹣=C.=2a+1 D.=9.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或710.如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°二、填空题(每题4分)11.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在第象限.12.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB=(度)13.计算:=.14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=D C.其中所有正确结论的序号是.15.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,AE=3ED,如果AC=12cm,那么DE的长为cm.16.化简+的结果是.17.如图,已知△ABC≌△ADE,∠C=79°,DE⊥AB,则∠D的度数为.18.如图,长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,点Q是线段CD上的动点,则AQ+QP的最小值为.三、解答题19.如图,已知点B,E,C,F在一条直线上,AC∥DE,∠A=∠D,AB=DF,(1)试说明:△ABC≌△DEF;(2)若BF=13,EC=7,求BC的长.20.计算下列各题:(1)(﹣)2•()2+(﹣2ab)2(2)(x+3+)+.21.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.22.先化简,再求值:÷+,其中x的值满足x+1与x+6互为相反数.23.如图,把两个含有45°的三角尺如图放置,∠ECD=ACB=90°,且AB=AE,连接AD交BE于点P,试说明:(1)AD=BE;(2)AD平分∠BAE.24.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC 于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.2016-2017学年山东省菏泽市单县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分)1.下列图案属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选A.2.下列各式中,不论字母取何值时分式都有意义的是()A.B.C.D.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零列出不等式,可得答案.【解答】解:∵2x2+1>1,∴不论字母取何值都有意义,故选:D.3.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA 添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.4.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9)C.8(a2﹣9)(a2+6a+9)D.4(a ﹣3)2(a+3)2【考点】最简公分母;通分.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的最简公分母是4(a﹣3)(a+3)2,故选A.5.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°【考点】等腰三角形的判定.【分析】根据内角与相邻的外角的和等于180°求出∠A,再根据等腰三角形两底角相等解答.【解答】解:∵∠A的相邻外角是70°,∴∠A=180°﹣70°=110°,∵△ABC为等腰三角形,∴∠B==35°.故选B.6.下列分式约分,正确的是()A.=a2B.=C.=D.=0【考点】约分.【分析】根据分式的基本性质分别进行化简,即可得出答案.【解答】解:A、=a3,故本选项错误;B、=,故本选项错误;C、=,故本选项正确;D、=1,故本选项错误;故选C.7.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.8.下列各式从左到右的变形正确的是()A.=B.﹣=C.=2a+1D.=【考点】分式的基本性质.【分析】根据分子、分母、分式的值改变其中的两个的符号,分式的值不变,可得答案.【解答】解:=,故D符合题意;故选:D.9.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【考点】矩形的性质;全等三角形的判定.【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16﹣2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,,∴△ABF≌△DCE,由题意得:AF=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选C.10.如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°【考点】平行线的性质;轴对称的性质;翻折变换(折叠问题).【分析】先根据折叠的性质以及对顶角相等,得出∠A'FG=90°﹣40°=50°,再根据∠1+∠EFG=180°,可得∠1+∠1﹣50°=180°,进而得出∠1=115°.【解答】解:∵∠2=40°,∴∠FGA'=40°,又∵∠A'=∠A=90°,∴Rt△A'FG中,∠A'FG=90°﹣40°=50°,∴∠EFG=∠EFA'﹣50°,又∵∠1=∠EFA',∴∠EFG=∠1﹣50°,又∵∠1+∠EFG=180°,∴∠1+∠1﹣50°=180°,解得∠1=115°,故选:B.二、填空题(每题4分)11.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在第四象限.【考点】关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由题意,得2﹣a=1,b+5=3,解得a=1,b=﹣2,点C(a,b)在第四象限,故答案为:四.12.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB=60(度)【考点】等边三角形的判定与性质.【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【解答】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.13.计算:=2.【考点】分式的加减法.【分析】根据同分母分式相加减,分母不变,只把分子相加减求解即可.【解答】解:原式===2.故答案为2.14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=D C.其中所有正确结论的序号是①②③.【考点】全等三角形的判定与性质.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.15.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,AE=3ED,如果AC=12cm,那么DE的长为3cm.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得CE=DE.【解答】解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,∴CE=DE,∵AE=3ED,如果AC=12cm,∴AE=3EC,∴CE=DE=3cm,∵故答案为:3.16.化简+的结果是.【考点】分式的加减法.【分析】先通分、再根据分式的加法法则计算即可.【解答】解:原式=+=,故答案为:.17.如图,已知△ABC≌△ADE,∠C=79°,DE⊥AB,则∠D的度数为68°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得到AE=AC,∠DAE=∠BAC,根据三角形内角和定理求出∠DAB,根据垂直的定义计算即可.【解答】解:∵△ABC≌△ADE,∴AE=AC,∠DAE=∠BAC,∴∠EAC=180°﹣79°﹣79°=22°,∴∠DAB=22°,∵DE⊥AB,∴∠D=90°﹣22°=68°,故答案为:68°.18.如图,长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,点Q是线段CD上的动点,则AQ+QP的最小值为.【考点】轴对称﹣最短路线问题;矩形的性质.【分析】根据图形和题意,作点P关于直线CD的对称点P′,然后根据两点之间线段最短,可以解答本题.【解答】解:作点P关于直线CD的对称点P′,如右图所示,∵长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,∴AE=a+0.5a=1.5a,EP′=0.5b,tan30°=,∴b=,∵两点之间线段最短,∴AQ+QP的最小值就是线段AP′的长度,∵∠AEP′=90°,EP′=0.5b,AE=1.a,∴AP′====,故答案为:.三、解答题19.如图,已知点B,E,C,F在一条直线上,AC∥DE,∠A=∠D,AB=DF,(1)试说明:△ABC≌△DEF;(2)若BF=13,EC=7,求BC的长.【考点】全等三角形的判定与性质.【分析】(1)根据两角和其中的一角的对边对应相等的两个三角形全等即可判定.(2)根据全等三角形的性质可知BC=EF,推出BE=CF,由此即可解决问题.【解答】(1)证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),(2)∵△ABC≌△DEF,∴BC=EF,即BE+EC=EC+CF,∴BF=CF,∵BF=13,EC=7,∴BE+CF=BF﹣EC=6,∴BE=CF=3,∴BC=BE+EC=3+7=10.20.计算下列各题:(1)(﹣)2•()2+(﹣2ab)2(2)(x+3+)+.【考点】分式的混合运算.【分析】(1)根据分式乘除法法则即可化简运算.(2)根据因式分解以及分式的基本性质即可化简运算.【解答】解:(1)原式=•=(2)原式=(+)•=﹣•=1﹣x21.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.【考点】等腰三角形的性质.【分析】首先根据AB=AD=AE,DE=EC,得到∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,从而得到∠ADE=∠AED=∠C+∠EDC=2∠C,根据∠DAB=30°,求得∠B=∠ADB=75°,利用∠ADC=∠ADE+∠EDC=3∠C=105°,求得∠C即可.【解答】解:∵AB=AD=AE,DE=EC,∴∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,∴∠ADE=∠AED=∠C+∠EDC=2∠C,∵∠DAB=30°,∴∠B=∠ADB=75°,∴∠ADC=∠ADE+∠EDC=3∠C=105°,∴∠C=35°.22.先化简,再求值:÷+,其中x的值满足x+1与x+6互为相反数.【考点】分式的化简求值;相反数.【分析】先把除法变成乘法,算乘法,再算加法,最后代入求出即可.【解答】解:÷+=•+=+=,∵x的值满足x+1与x+6互为相反数,∴x+1+x+6=0,x+1=﹣(x+6),∴原式=﹣1.23.如图,把两个含有45°的三角尺如图放置,∠ECD=ACB=90°,且AB=AE,连接AD交BE于点P,试说明:(1)AD=BE;(2)AD平分∠BAE.【考点】全等三角形的判定与性质;三角形内角和定理;等腰三角形的性质.【分析】(1)由△ABC和△ECD为含45°的直角三角形,由此即可得出EC=DC、BC=AC,结合∠ECB=∠DCA=90°即可利用全等三角形的判定定理SAS证出△BCE≌△ACD,再根据全等三角形的性质即可得出结论;(2)由△BCE≌△ACD即可得出∠EBC=∠DAC,根据∠EBC+∠BEC=90°即可得出∠DAC+∠BEC=90°,结合三角形内角和定理即可得出∠APE=90°,再利用等腰三角形的三线合一即可证出AD平分∠BAE.【解答】证明:(1)∵两个含有45°的三角尺如图放置,∠ECD=ACB=90°,∴EC=DC,BC=A C.在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DA C.∵∠EBC+∠BEC=90°,∴∠DAC+∠BEC=90°,∴∠APE=90°,即AP⊥BE.又∵AB=AE,∴AD平分∠BAE.24.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC 于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【解答】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=6cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16cm,∴OA=0B=OC=5cm;(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.2017年4月1日。

2016-2017年山东省潍坊市寿光市八年级(下)期中数学试卷(解析版)

2016-2017年山东省潍坊市寿光市八年级(下)期中数学试卷(解析版)

2016-2017学年山东省潍坊市寿光市八年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)4的平方根是()A.16B.4C.±2D.22.(3分)下列二次根式中,能与合并的是()A.B.C.D.3.(3分)若(m+1)x﹣3>0是关于x的一元一次不等式,则m的值为()A.±1B.1C.﹣1D.04.(3分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个5.(3分)如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD 的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A.135°B.120°C.112.5°D.67.5°6.(3分)若a﹣b<0,则下列各式中一定正确的是()A.a>b B.ab>0C.D.﹣a>﹣b 7.(3分)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长分别为5,12,14C.三边长之比为3:4:5D.三边长分别为1,,8.(3分)等式=成立的条件是()A.a≠1B.a>1C.a≥2D.﹣1<a≤2 9.(3分)已知不等式2x﹣a≤0的正整数解恰好是1,2,3,4,5,那么a的取值范围是()A.a>10B.10≤a≤12C.10<a≤12D.10≤a<12 10.(3分)下列各数中是无理数的是()A.B.3.1415926C.D.11.(3分)如图,一架长为10m的梯子斜靠在一面墙上,梯子底端离墙6m,如果梯子的顶端下滑了2m,那么梯子底部在水平方向滑动了()A.2m B.2.5m C.3m D.3.5m12.(3分)某工厂要把27块棱长均为5cm的正方体铁块,并将这些熔化的铁块放在一起制作成一个大的正方体铁块,若熔化的过程中损耗忽略不计,则新铁块的棱长为()A.10cm B.12cm C.13cm D.15cm二、填空题(每小题3分,共18分)13.(3分)若代数式有意义,则字母x的取值范围是.14.(3分)在直角三角形中,两边长分别为3和4,则最长边的长度为.15.(3分)若不等式(n﹣2)x>﹣1的解集为x<﹣,则n的取值范围是.16.(3分)若对实数a、b、c、d规定运算=ad﹣bc,那么=.17.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是.18.(3分)如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,BC=7,且AB∥DE,则三角形DEC的周长是.三、解答题(12分+8分+10分+12分+12分=66分)19.(12分)(1)(﹣)÷×(2)4a2﹣7(3)(+5)(5﹣2)﹣(﹣)2.20.(8分)解不等式﹣≥,并把它的解集在数轴上表示出来.21.(10分)已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.22.(12分)在由6个边长为1的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)23.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D 为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.24.(12分)在某市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2016-2017学年山东省潍坊市寿光市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)4的平方根是()A.16B.4C.±2D.2【解答】解:4的平方根为±2.故选:C.2.(3分)下列二次根式中,能与合并的是()A.B.C.D.【解答】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选:B.3.(3分)若(m+1)x﹣3>0是关于x的一元一次不等式,则m的值为()A.±1B.1C.﹣1D.0【解答】解:依题意得:m2=1且m+1≠0,解得m=1.故选:B.4.(3分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选:C.5.(3分)如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD 的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A.135°B.120°C.112.5°D.67.5°【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,∠DBC=∠ABD=45°,∵四边形BEFD是菱形,∴∠EBF=∠DBC=22.5°,∴∠FPC=∠BCD+∠EBF=90°+∠22.5°=112.5°;故选:C.6.(3分)若a﹣b<0,则下列各式中一定正确的是()A.a>b B.ab>0C.D.﹣a>﹣b【解答】解:∵a﹣b<0,∴a<b,根据不等式的基本性质3可得:﹣a>﹣b;故选:D.7.(3分)满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长分别为5,12,14C.三边长之比为3:4:5D.三边长分别为1,,【解答】解:A、180°×=90°,是直角三角形,故此选项不合题意;B、52+122≠142,不能作为直角三角形的三边长,故本选项符合题意;C、32+42=52,能作为直角三角形的三边长,故本选项不符合题意;D、12+()2=()2,能作为直角三角形的三边长,故本选项不符合题意;故选:B.8.(3分)等式=成立的条件是()A.a≠1B.a>1C.a≥2D.﹣1<a≤2【解答】解:∵等式=成立,∴,解得:a≥2.故选:C.9.(3分)已知不等式2x﹣a≤0的正整数解恰好是1,2,3,4,5,那么a的取值范围是()A.a>10B.10≤a≤12C.10<a≤12D.10≤a<12【解答】解:解不等式2x﹣a≤0得:x≤a.根据题意得:5≤a<6,解得:10≤a<12.故选:D.10.(3分)下列各数中是无理数的是()A.B.3.1415926C.D.【解答】解:A、是有理数,故A不符合题意;B、是有理数,故B不符合题意;C、是有理数,故C不符合题意;D、是无理数,故D符合题意;故选:D.11.(3分)如图,一架长为10m的梯子斜靠在一面墙上,梯子底端离墙6m,如果梯子的顶端下滑了2m,那么梯子底部在水平方向滑动了()A.2m B.2.5m C.3m D.3.5m【解答】解:在Rt△ABO中:AO===8(米),∵梯子的顶端下滑了2m,∴AC=2米,∴CO=6米,在Rt△COD中:DO===8(米),∴BD=DO﹣BO=8﹣6=2(米),故选:A.12.(3分)某工厂要把27块棱长均为5cm的正方体铁块,并将这些熔化的铁块放在一起制作成一个大的正方体铁块,若熔化的过程中损耗忽略不计,则新铁块的棱长为()A.10cm B.12cm C.13cm D.15cm【解答】解:大正方体的体积为:27×53(cm3),新正方体的棱长为:=15(cm).故选:D.二、填空题(每小题3分,共18分)13.(3分)若代数式有意义,则字母x的取值范围是﹣3≤x<1或x>1.【解答】解:由代数式有意义,得.解得﹣3≤x<1或x>1,故答案为:﹣3≤x<1或x>1.14.(3分)在直角三角形中,两边长分别为3和4,则最长边的长度为4或5.【解答】解:①当4为斜边时,此时最长边为4.②当4是直角边时,斜边==5,此时最长边为5.故答案是:4或5.15.(3分)若不等式(n﹣2)x>﹣1的解集为x<﹣,则n的取值范围是n <2.【解答】解:两边都除以(n﹣2),不等号的方向改变,得n﹣2<0,解得n<2,故答案为:n<2.16.(3分)若对实数a、b、c、d规定运算=ad﹣bc,那么=2.【解答】解:=﹣1×﹣(﹣4)×=﹣2+4=2故答案为:2.17.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是24.【解答】解:∵AC是菱形ABCD的对角线,E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=3,∴BC=6,∴菱形ABCD的周长是4×6=24.故答案为24.18.(3分)如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,BC=7,且AB∥DE,则三角形DEC的周长是13.【解答】解:∵AD∥BC,AB∥DE,∴ABED是平行四边形,∴DE=CD=AB=5,EB=AD=4,∴EC=7﹣4=3,则△DEC的周长=DE+DC+EC=5+5+3=13.故答案是:13.三、解答题(12分+8分+10分+12分+12分=66分)19.(12分)(1)(﹣)÷×(2)4a2﹣7(3)(+5)(5﹣2)﹣(﹣)2.【解答】解:(1)原式=(5﹣3)××=2×=;(2)原式=a﹣7a=﹣6a;(3)原式=5﹣10+50﹣10﹣(5﹣2+2)=5﹣10+50﹣10﹣5+2﹣2=﹣3+33.20.(8分)解不等式﹣≥,并把它的解集在数轴上表示出来.【解答】解:3(3x+1)﹣8≥2(2x﹣5),9x+3﹣8≥4x﹣10,9x﹣5≥4x﹣10,5x≥﹣5,x≥﹣1,将解集表示在数轴上如下:21.(10分)已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.【解答】解:由题意得,b﹣c≥0且c﹣b≥0,所以,b≥c且c≥b,所以,b=c,所以,等式可变为+|a﹣c+1|=0,由非负数的性质,得,解得,所以,c=,a+b+c=++=,所以,a+b+c的平方根是±.22.(12分)在由6个边长为1的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)【解答】解:(1)如图(1),连接AC,,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,AB=BC,∴△ABC是直角三角形,∠ABC=90°,∴AB⊥BC∴AB与BC是垂直且相等.(2)∠α+∠β=45°.证明:如图(2),,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∵AB=BC,∴△ABC是等腰直角三角形,∴∠α+∠β=45°.23.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D 为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.24.(12分)在某市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.【解答】解:(1)设每台电脑x万元,每台电子白板y万元.根据题意,得,解得.答:每台电脑0.5万元,每台电子白板1.5万元.(2)设需购进电脑a台,则购进电子白板(30﹣a)台,则,解得15≤a≤17,即a=15,16,17.故共有三种方案:方案一:购进电脑15台,电子白板15台,总费用为0.5×15+1.5×15=30(万元);方案二:购进电脑16台,电子白板14台,总费用为0.5×16+1.5×14=29(万元);方案三:购进电脑17台,电子白板13台,总费用为0.5×17+1.5×13=28(万元).所以方案三费用最低.。

2016-2017学年常州市八年级上期中数学试卷含答案解析

2016-2017学年常州市八年级上期中数学试卷含答案解析

2016-2017学年江苏省常州市八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)下列图形中,是轴对称图形的是()A. B.C.D.2.(2分)等腰三角形的对称轴有()A.1条 B.2条 C.3条 D.6条3.(2分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC4.(2分)在△ABC中,∠A=50°,∠B=80°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形5.(2分)下列说法中正确的是()A.斜边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.有一边相等的两个等边三角形全等D.两条边相等的两个直角三角形全等6.(2分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.a2=1,b2=2,c2=3 B.b=c,∠A=45°C.∠A=∠B=3∠C D.a+b=2.5,a﹣b=1.6,c=27.(2分)如图,在△ABC中,点D是AB边上一点,且AB=AC=CD,则∠1与∠2之间的关系()A.3∠2﹣2∠1=180°B.2∠2+∠1=180°C.3∠2﹣∠1=180° D.∠1=2∠28.(2分)如图,在△ABC中,∠A=90°,点D是BC的中点,过点D作DE⊥DF分别AB、AC于点E、F.若BE=1.5,CF=2,则EF的长是()A.2.4 B.2.5 C.3 D.3.5二、填空题(每小题2分,共20分)9.(2分)已知△ABC≌△DEF(A、B、C分别对应D、E、F),若∠A=50°,∠E=72°,则∠F为°.10.(2分)一个等腰三角形的两边长分别为2和5,则它的周长为.11.(2分)如图是某天下午小明在镜中看到身后墙上的时钟情况,则实际时间大约是.12.(2分)如图,由Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为cm2.13.(2分)如图,在△ABC中,D是BC上的一点,∠CAD=∠BAE=30°,AE=AB,∠E=∠B,则∠ADC 的度数为°.14.(2分)某园林里有两棵相距8米的树,一棵高8米,另一棵高2米.若有一只鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少要飞米.15.(2分)如图,在△ABC中,∠C=90°,AC=5,BC=12,AB的垂直平分线分别交BC、AB于点D、E,则CD的长为.16.(2分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=°.17.(2分)如图,等边△ABC中,∠ABC和∠ACB的角平分线交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若BE=5,则AE的长为.18.(2分)一个直角三角形的一条边长为5,另两条边长之差为3,则这个直角三角形的面积为.三、作图题(其中第19题6分,第20题7分,共13分)19.(6分)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.20.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.(2)将△ABC沿直线l翻折得到△A′B′C′.试画出△A′B′C′.(3)画出点P,使得点P到点D、A′的距离相等,且到边AB、AA′的距离相等.四、解答题(共51分)21.(8分)如图,点C为AB中点,CD∥BE,AD∥CE.求证:△ACD≌△CBE.22.(8分)如图,线段AD与BC相交于点E,点E是AD的中点,AB=DC=AD.求证:AC=BD且AC∥BD.23.(8分)为了测量校园内旗杆的高度,小强先将升旗的绳子拉直到旗杆底端,并在与旗杆低端齐平的绳子处做好标记,测得剩余绳子的长度为0.5米,然后将绳子低端拉至离旗杆底端3.5米处(绳子被拉直且低端恰好与地面接触).请你算出旗杆的高度.24.(8分)如图,CD是△ABC的中线,CE是△ABC的高,若AC=9,BC=12,AB=15.(1)求CD的长.(2)求DE的长.25.(9分)如图,AD是△ABC的中线,AB=AC,∠BAC=45°.过点C作CE⊥AB于点E,交AD于点F.试判断AF与CD之间的关系,并说明理由.26.(10分)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.2016-2017学年江苏省常州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)下列图形中,是轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.2.(2分)等腰三角形的对称轴有()A.1条 B.2条 C.3条 D.6条【解答】解:一般等腰三角形有一条对称轴,故选:A.3.(2分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC【解答】解:A、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS);故A正确;B、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(AAS);故A正确;C、在△ABD和△ACD中,,∵ASS不能证明三角形全等,故C错误;D、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SAS);故D正确;故选C.4.(2分)在△ABC中,∠A=50°,∠B=80°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∠C=180°﹣∠A﹣∠B=50°.故△ABC是等腰三角形,故选B.5.(2分)下列说法中正确的是()A.斜边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.有一边相等的两个等边三角形全等D.两条边相等的两个直角三角形全等【解答】解:A、全等的两个直角三角形的判定只有一条边对应相等不行,故本选项错误;B、只有两条边对应相等,找不出第三个相等的条件,即两三角形不全等,故本选项错误;C、有一边相等的两个等边三角形全等,根据SSS均能判定它们全等,故此选项正确;D、有两条边对应相等的两个直角三角形,不能判定两直角三角形全,故选项错误;故选:C.6.(2分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.a2=1,b2=2,c2=3 B.b=c,∠A=45°C.∠A=∠B=3∠C D.a+b=2.5,a﹣b=1.6,c=2【解答】解:A、∵1+2=3,即a2+b2=c2,∴△ABC是直角三角形,则选项错误;B、∵b=c,∴∠B=∠C==67.5°,△ABS不是直角三角形,选项正确;C、∵∠A=∠B=3∠C,∴设∠C=x°,则∠A=3x°,∠B=2x°,根据题意得x+3x+2x=180°,∴x=30,则∠A=90°,∠B=60°,∠C=30°,△ABC是直角三角形,选项错误;D、根据题意得,解得:,∵22+0.452=2.052,∴b2+c2=a2,∴△ABC是直角三角形,选项错误.故选B.7.(2分)如图,在△ABC中,点D是AB边上一点,且AB=AC=CD,则∠1与∠2之间的关系()A.3∠2﹣2∠1=180°B.2∠2+∠1=180°C.3∠2﹣∠1=180° D.∠1=2∠2【解答】解:∵AC=CD,∴∠2=∠A,∵AB=AC,∴∠B=∠ACB,∵∠2=∠B+∠1,∴∠ACD=180°﹣2∠2,∠B=∠2﹣∠1,∴2(∠2﹣∠1)+∠2=180°,∴3∠2﹣2∠1=180°,故选A.8.(2分)如图,在△ABC中,∠A=90°,点D是BC的中点,过点D作DE⊥DF分别AB、AC于点E、F.若BE=1.5,CF=2,则EF的长是()A.2.4 B.2.5 C.3 D.3.5【解答】解:延长FD至点G,使得DG=DF,连接BG,EG,∵在△CDF和△BDG中,,∴△CDF≌△BDG(SAS),∴BG=CF=2,∠C=∠DBG,∵∠C+∠ABC=90°,∴∠DBG+∠ABC=90°,即∠ABG=90°,∵DE⊥FG,DF=DG,∴EF=EG===2.5.故选B.二、填空题(每小题2分,共20分)9.(2分)已知△ABC≌△DEF(A、B、C分别对应D、E、F),若∠A=50°,∠E=72°,则∠F为58°.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=50°,∵∠E=72°,∴∠F=180°﹣50°﹣72°=58°,故答案为:58.10.(2分)一个等腰三角形的两边长分别为2和5,则它的周长为12.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.11.(2分)如图是某天下午小明在镜中看到身后墙上的时钟情况,则实际时间大约是8:05.【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,故此时的实际时刻是8:05,故答案为:8:05.12.(2分)如图,由Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为64cm2.【解答】解:∵S M=AB2,S N=AC2,又∵AC2+AB2=BC2=8×8=64,∴M与正方形N的面积之和为64cm2.13.(2分)如图,在△ABC中,D是BC上的一点,∠CAD=∠BAE=30°,AE=AB,∠E=∠B,则∠ADC 的度数为75°.【解答】解:∵∠CAD=∠BAE=30°,∴∠CAD+∠BAD=∠BAD+∠BAE,即∠BAC=∠DAE,在△ABC和△AED中∴△ABC≌△AED(ASA),∴AD=AC,∴∠ACD=∠ADC,∵∠CAD=30°,∴∠ADC=75°,故答案为:75.14.(2分)某园林里有两棵相距8米的树,一棵高8米,另一棵高2米.若有一只鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少要飞10米.【解答】解:如图,过点A作AE⊥CD于点E,∵AB⊥BD,CD⊥BD,AE⊥CD,∴四边形ABDE是矩形.∵AB=2米,CD=BD=8米,∴AE=BD=8米,CE=8﹣2=6米,∴AC===10(米).故答案为:10.15.(2分)如图,在△ABC中,∠C=90°,AC=5,BC=12,AB的垂直平分线分别交BC、AB于点D、E,则CD的长为.【解答】解:∵DE为AB的垂直平分线,∴AD=BD,∵在△ABC中,∠C=90°,AC=5,BC=12,设CD的长为x,则BD=12﹣x,在Rt△ACE中,由勾股定理得:x2+52=(12﹣x)2,解得:x=.故答案为:.16.(2分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=135°.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠3=∠BAC,在Rt△ABC中,∠BAC+∠1=90°,∴∠1+∠3=90°,由图可知,△ABF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.17.(2分)如图,等边△ABC中,∠ABC和∠ACB的角平分线交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若BE=5,则AE的长为10.【解答】解:∵BO、CO是∠ABC、∠ACB的角平分线,∴∠OBE=∠OBC,∠OCF=∠BCO,又∵EF∥BC,∴∠OBC=∠BOE,∠BCO=∠COF,∴∠OBE=∠BOE,∠COF=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,∵等边△ABC,BE=5,∴AE=EF=BE+CF=2BE=10,故答案为1018.(2分)一个直角三角形的一条边长为5,另两条边长之差为3,则这个直角三角形的面积为4或.【解答】或4解:①当5为斜边长时,设较短的一个直角边长为x,则另一直角边的长为:x+3.由勾股定理得:x2+(x+3)2=52.解得:x=(负值舍去).∴x=,∴x+3=,∴直角三角形的面积=××=4;②当5为直角边长时,设较短的一个直角边长为x,则斜边长为:x+3.根据题意得:x2+52=(x+3)2.解得:x=,∴直角三角形的面积=×5×=;故答案为:4或.三、作图题(其中第19题6分,第20题7分,共13分)19.(6分)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.【解答】画对任意三种即可..20.(7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.(2)将△ABC沿直线l翻折得到△A′B′C′.试画出△A′B′C′.(3)画出点P,使得点P到点D、A′的距离相等,且到边AB、AA′的距离相等.【解答】解:(1)如图,点C为所作点;(2)如图,△A′B′C′为所作三角形;(3)如图,点P为所作点.四、解答题(共51分)21.(8分)如图,点C为AB中点,CD∥BE,AD∥CE.求证:△ACD≌△CBE.【解答】证明:∵点C是AB的中点,∴AC=CB∵CD∥BE,∴∠ACD=∠B∵AD∥CE,∴∠A=∠BCE在△ACD和△CBE中∴△ACD≌△CBE(ASA)22.(8分)如图,线段AD与BC相交于点E,点E是AD的中点,AB=DC=AD.求证:AC=BD且AC∥BD.【解答】证明:∵点E是AD的中点,∴AE=ED=AD,∵AB=DC=AD,∴AB=AE,ED=CD,∴∠ABE=∠AEB,∠DCE=∠DEC,∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABC和△DCB中,∴△ABC≌△DCB (SAS),∴AC=BD,∠ACB=∠DBC∴AC∥BD.23.(8分)为了测量校园内旗杆的高度,小强先将升旗的绳子拉直到旗杆底端,并在与旗杆低端齐平的绳子处做好标记,测得剩余绳子的长度为0.5米,然后将绳子低端拉至离旗杆底端3.5米处(绳子被拉直且低端恰好与地面接触).请你算出旗杆的高度.【解答】解:设旗杆的高度为x米,则绳子的长度为(x+0.5)米,根据题意可得:x2+3.52=(x+0.5)2,解这个方程得:x=12.答:旗杆的高度为12米.24.(8分)如图,CD是△ABC的中线,CE是△ABC的高,若AC=9,BC=12,AB=15.(1)求CD的长.(2)求DE的长.【解答】解:(1)由AB=15,BC=12得AB2﹣BC2=225﹣144=81.由AC2=81得AB2﹣BC2=AC2即:AB2=BC2+AC2,∴∠ACB=90°,∵点D是AB的中点,∴CD=AB=7.5;=AC•BC=AB•CE,(2)由∠ACB=90°可得:S△ABC∴×9×12=×15CE,解得:CE=7.2,Rt△CDE中:DE==2.1.25.(9分)如图,AD是△ABC的中线,AB=AC,∠BAC=45°.过点C作CE⊥AB于点E,交AD于点F.试判断AF与CD之间的关系,并说明理由.【解答】解:AF⊥DC且AF=2CD,∵CE⊥AB,∴∠BEC=∠AEC=90°,∴∠ECB+∠B=90°,又∵∠BAC=45°,∴∠ACE=45°,∴∠BAC=∠ACE,∴AE=EC,∵AB=AC,AD是△ABC的中线,∴BC=2DC,AD⊥BC,即有:AF⊥CD,∴∠ADC=∠ADB=90°,∴∠BAD+∠B=90°,∴∠BAD=∠BCE,在△AEF和△CEB中,,∴△AEF≌△CEB,∴AF=BC,∴AF=2CD.26.(10分)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.【解答】解:(1)∵∠ACB=90°,点D是AB的中点∴AD=BD=CD=AB.∴∠ACD=∠A=75°.∴∠ADC=30°.∵△A′CD由△ACD沿CD翻折得到,∴△A′CD≌△ACD.∴AD=AD,∠A′DC=∠ADC=30°.∴AD=A′D=DB,∠ADA′=60°.∴∠A′DB=120°.∴∠DBA′=∠DA′B=30°.∴∠ADC=∠DBA'.∴CD∥A′B.(2)连接AA′∵AD=A′D,∠ADA′=60°,∴△ADA′是等边三角形.∴AA′=AD=AB,∠DAA′=60°.∴∠AA′B=180°﹣∠A′AB﹣∠ABA′=90°. ∵AB=4, ∴AA′=2. ∴由勾股定理得:A′B2=AB2﹣AA′2=42﹣22=12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学试卷
(满分:120分答题时间:90分钟)
题号一二三四五六总分
得分
一、
得分
选择题(每小题2分,共12分)
1.下列交通标志中,是轴对称图形的是()
2.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()
A.72°
B.45°
C.36°
D.30°
3.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有()
A.3个
B.2个
C.1个
D.0个
4.如图,在下列条件中,不能证明△ABD≌△ACD的是()
A.BD=DC,AB=AC
B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD
D.∠B=∠C,BD=DC
第4题第5题
5.如图,DE⊥AC,垂足为E,CE=AE.若AB=12cm,BC=10cm,则△BCD的周长是()
A.22cm
B.16cm
C.23cm
D.25cm
6.等腰三角形的两边分别为3和6,则这个三角形的周长是()
A.12
B.15
C.9
D.12或15
八年级数学试卷第1页(共8页)
二、填空题(每小题3分,共24分)
7.若点P(m,m-1)在x 轴上,则点P 关于x 轴对称的点的坐标为 . 8.一个多边形的每一个外角都等于36°,则该多边形的内角和等于 . 9.如图,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N.PM =PN ,若∠BOC =30°,则∠AOB = . 10.如图,在△ABC 和△FED 中,AD =FC ,AB =FE ,当添加条件 时,就可得到 △ABC ≌△FED.(只需填写一个你认为正确的条件)
11.从长为3cm 、5cm 、7cm 、10cm 的四根木条中选出三根组成三角形,共有 种选法. 12.若等腰三角形一腰上的高与另一腰的夹角为40°,则它的底角为 . 13.如图,△ABC 为等边三角形,AD 为BC 边上的高,E 为AC 边上的一点,且AE=AD ,则 ∠EDC = .
14.如图,在等边△ABC 中,点D 、E 分别在边AB 、BC 上.把△BDE 沿直线DE 翻折,使点 B 落在点B ′处,DB ′、EB ′分别与AC 交于点F 、G.若∠ADF =80°,则∠EGC = .
三、解答题(每小题5分,共20分) 15.如图,两个四边形关于直线 对称,∠C =90°, 试写出a ,b 的长度,并求出∠G 的度数.
第14题
第13题
得分 第9题
第10题
得分 第15题
八年级数学试卷 第2页 (共8页)
16.如图,已知AD、BC相交于点O,AB=CD,AD=CB.求证:∠A=∠C.
17.如图,16个相同的小正方形拼成一个正方形网格,现将其中的两个小方格涂黑.请你
用两种不同的方法分别在图中再涂黑两个小方格,使它们成为轴对称图形.
18.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于y轴对称的△A
1B
1
C
1
.
(2)写出点A
1,B
1
,C
1
的坐标(直接写出答案).
A
1
B
1
C
1
(3)△A
1B
1
C
1
的面积为 .
第16题
第17题
第18题
八年级数学试卷第3页(共8页)
四、解答题(每小题7分,共28分)
得分
19.在△ABC中,∠BAC=50°,∠B=45°,AD是△ABC的一条角平分线,
求∠ADB的度数.
第19题
20.如图:△ABC和△EAD中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE.
求证:△ABD≌△AEC.
第20题
八年级数学试卷第4页(共8页)
21.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三
个关系式:①AD=BC;②DE=CF;③BE∥AF.
(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的结论.
(2)选择(1)中你写出的一个正确结论,说明它正确的理由.
第21题
22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证△ADC≌△CEB. (2)AD=5cm,DE=3cm,求BE的长度.
第22题
八年级数学试卷第5页(共8页)
23.已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF ∥BC 交AB 于点E ,交 AC 于点F.求证:BE+CF =EF.
24.如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠
求证:=ED EF .
第23题
八年级数学试卷 第6页 (共8页)
A
D
C
B
第24题
F
25.两个等腰直角三角形的三角板如图①所示放置,图②是由它抽象出的几何图形,
点B、C、E在同一条直线上,连接DC、EC.
(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.
第25题
八年级数学试卷第7页(共8页)
26.如图,△ABC是等边三角形,点M是BC上任意一点,点N是CA上任意一点,
且BM=CN,直线BN与AM相交于点Q,就下面给出的两种情况,猜测∠BQM等于多少度,并利用图②证明结论的正确性.
第26题
八年级数学试卷第8页(共8页)
八年级数学答案
一、1.A 2.C 3.C 4.D 5.A 6.B
二、(7)(1,0) (8) 1440° (9) 60° (10)答案不唯一 (11)二种 (12) 65°或25°
(13) 15° (14) 80°
三、 15.cm a 5= cm b 4= ∠G=55° 16.连接BD ∵△ABD ≌△CDB (SSS) ∴∠A=∠C
等. 18.(2)A(-1,2) B(-3,1) C(2,-1)
(3)面积为4.5 19.∠ADB=70°
20.证明:∵∠BAC=∠EAD ∴∠BAC-∠BAE=∠EAD-∠BAE ∴∠BAD=∠EAC △BAD ≌ △EAC(SAS)
21.(1) ① 、③=② ② ③=① (2)略
22.(1)∵∠ACB=90° ∴∠ACD+∠BCE=90° ∵AD ⊥CE ∴∠ACD+∠CAD=90° ∴∠BCE=∠CAD 又∵AC=BC △ADC ≌△CEB (AAS ) (2) ∵△ADC ≌△CEB ∴BE=CD AD=CE=500cm 又∵DE=3cm ∴CD=2cm ∴BE=2cm
23.证明 ∵BD 是∠ABC 解平分线 ∴∠EBD=∠CBD 又∵EF ∥BC ∴∠CBD=∠EDB ∴∠EDB=∠EBD ∴BE=DE 同理 DF=CF ∴BE+CF=DE+DF=EF
24.AD=AG AD ⊥AG 证明:∵BE 、CF 是AC 、AB 边上高 ∴∠AFC=∠AEB=90°
∴∠ABE+∠BAC=∠ACF+∠BAC ∴∠ABE=∠ACF 又∵AB=CG BD=AC ∴△ABD≌△ACG ∵AD=AG ∴∠BAD=∠CGA ∵∠CGA+∠GAF=90°
∵∠BAD+∠GAF=90°∴AG⊥AD
25.(1)△ABE≌△ACD 证明:∵∠BAC=∠EAD ∴∠BAC+∠CAE=∠EAD+∠CAE
∴∠BAE=∠CAD 又∵AB=AC AD=AE ∴△ABE≌△ACD(SAS)
(2)∠ADC=∠AEB (AE、DC交点为P)
∠APD=∠CPE ∴∠APD+∠ADC=90°∴∠AEB+∠CPE=90°∴DC⊥BE 26.∠BQM=60°
证明:∵△ABC是等边三角形∴AB=AC ∠ABC=∠BCA=∠ACB=60°又 BM=CN ∵△ABM≌△BCN(SAS) ∴∠M=∠N
又∠NAQ=∠MAC ∴∠BQM=∠N+∠NAQ=∠M+∠MAC=∠ACB=60°。

相关文档
最新文档