矩阵键盘设计实验报告材料

合集下载

4x4矩阵键盘设计报告

4x4矩阵键盘设计报告

4x4矩阵键盘设计报告1.引言1.1 概述概述:4x4矩阵键盘是一种常用的输入设备,广泛应用于各种电子产品中。

本报告旨在介绍4x4矩阵键盘的设计理念、技术实现以及使用体验,并对其设计优势进行分析。

同时,将收集用户反馈,展望未来对4x4矩阵键盘的发展趋势进行探讨。

通过本报告的阐述,读者可以更加全面地了解4x4矩阵键盘的设计与应用,为相关产品的设计与开发提供参考和借鉴。

1.2 文章结构本报告将分为引言、正文和结论三个部分。

引言部分将概述本设计报告的目的和重要性,介绍文章结构和各部分内容的主要内容。

正文部分将详细介绍设计理念、技术实现和使用体验,通过分析和阐述设计的过程和特点,展现4x4矩阵键盘设计的全面性和独特性。

结论部分将对设计的优势进行总结,考虑用户反馈和展望未来的发展方向,以期为4x4矩阵键盘的设计提供参考和启示。

文章1.3 目的:本报告的目的是介绍我们设计的4x4矩阵键盘,并分析其设计理念、技术实现和使用体验。

通过本报告,读者可以了解我们的设计思路和创新之处,以及用户在使用过程中的反馈和建议。

同时,我们还会对该键盘的设计优势进行评估,并展望未来可能的发展方向。

通过本报告的阐述,我们希望能够为相关领域的学习和研究提供有益的参考和启发。

2.正文2.1 设计理念设计理念部分的内容:在设计4x4矩阵键盘时,我们以用户体验和便捷性为设计理念的核心。

我们希望设计一款符合人体工程学的键盘,使用户在使用过程中能够感受到舒适和便捷。

同时,我们也注重键盘的美学设计,希望能够设计出外观时尚,符合当代审美的产品。

此外,我们也考虑了键盘的功能多样性,希望能够满足不同用户的需求,提供更好的用户体验。

因此,在设计理念上,我们以用户体验和功能多样性为重点,致力于设计出一款符合人体工程学、外观时尚、功能多样的4x4矩阵键盘。

2.2 技术实现在本节中,我们将讨论4x4矩阵键盘的技术实现。

我们首先考虑到了键盘的布局和排列,通过设计合理的矩阵布局,我们可以实现较小尺寸的键盘同时保证较高的按键准确性。

实验四 键盘实验

实验四  键盘实验

实验四矩阵键盘控制接口设计实验一、实验目的1、掌握MAX+plus 软件的使用方法。

2、掌握层次化设计方法:底层为文本文件,顶层为图形文件。

3、了解用12 位按健输入开关来设计并实现一个3 x 4 矩阵键盘接口控制器。

了解弹跳消除电路的工作原理。

二、实验设备1、计算机2、MAX+plus II软件及实验箱三、实验原理该实验系统中没有矩阵键盘,可以用12 位按键开关来实现矩阵键盘的功能。

当按键被按下时改按键的节点会呈现‘0’状态,反之为‘1’。

将12 个键进行编码后就可以实现距阵键盘的功能。

键盘编码电路:由于每个按键开关都是独立的,故有12 路输入,3X4 键盘有12 个键值,4位二进制数即可表示全部状态。

因此,键盘编码电路为12 输入4 输出编码器。

12 个按键可分为10 个数字键和2 个功能键。

数字键主要用来输入数字,功能键一般实现一些特殊用途(如确认、清除等)。

4 位输出从0~9 表示10 个数字键,11 和12 表示两个功能键。

弹跳消除电路:因为按键开关是机械式结构,在开关切换的瞬间会在接触点出现来回弹跳的现象,对于激活关闭一般电器并不会有何影响,但对于灵敏度较高的电路,却有可能产生误动作而出错。

跳现象产生的原因可从下图说明。

虽然只是按下按键一次然后放开,然而实际产生的按键信号却不只跳动一次,经过取样的检查后将会造成误判,以为按键两次。

弹跳现象产生错误的抽样结果如果调整抽样频率可以发现弹跳现象获得了改善。

因此在开关输入信号处必须加上弹跳消除电路,避免误操作信号的发生。

注意:弹跳消除电路所使用脉冲信号的频率必须要选用合适,频率太低则按键反应痴动,频率太高则起不到消除弹跳的作用,而且消除弹跳电路设计的不同对频率也有不同的要求。

数码管采用共阴极:段码表四、实验内容1、用12 个按键开关实现矩阵键盘,当按下某一键时在数码管上显示对应的键值。

2、分析仿真示例程序理解弹跳消除的实现原理。

3、通过改变CLK 信号,理解时钟信号对弹跳消除的影响。

矩阵键盘设计实验报告之欧阳歌谷创编

矩阵键盘设计实验报告之欧阳歌谷创编

南京林业大学欧阳歌谷(2021.02.01)实验报告基于AT89C51单片机4x4矩阵键盘接口电路设计课程机电一体化设计基础院系机械电子工程学院班级学号姓名指导老师杨雨图2013年9月26日一、实验目的1、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。

2、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。

3、掌握利用Keil51软件对程序进行编译。

4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。

5、会根据实际功能,正确选择单片机功能接线,编制正确程序。

对实验结果能做出分析和解释,能写出符合规格的实验报告。

二、实验要求通过实训,学生应达到以下几方面的要求:素质要求1.以积极认真的态度对待本次实训,遵章守纪、团结协作。

2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立工作能力。

能力要求1.模拟电路的理论知识2.脉冲与数字电路的理念知识3.通过模拟、数字电路实验有一定的动手能力4.能熟练的编写8951单片机汇编程序5.能够熟练的运用仿真软件进行仿真三、实验工具1、软件:Proteus软件、keil51。

2、硬件:PC机,串口线,并口线,单片机开发板四、实验内容1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格元器件的作用。

2、用keil51测试软件编写AT89C51单片机汇编程序3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。

4、运用仿真软件对电路进行仿真。

五.实验基本步骤1、用Proteus绘制“矩阵键盘扫描”电路原理图。

2、编写程序使数码管显示当前闭合按键的键值。

3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状态和按键开关的对应关系。

4、用keil51软件编写程序,并生成HEX文件。

5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。

6、用通用编程器或ISP下载HEX程序到MCU。

7、检查验证结果。

矩阵式键盘实验报告材料

矩阵式键盘实验报告材料

矩阵键盘实验报告姓名佘成刚学号 2010302001班级 08041202时间 2016.01.20一、实验目的1.学习矩列式键盘工作原理;2.学习矩列式接口的程序设计。

二、实验设备普中HC6800ESV20开发板三、实验要求要求实现:用4*4矩阵键盘,用按键形式输入学号,在数码管上显示对应学号。

四、实验原理工作原理:矩阵式由行线和列线组成,按键位于行、列的交叉点上。

如图所示,一个 4*4 的行、列结构可以构成一个由 16 个按键的键盘。

很明显,在按键数量较多的场合,矩阵式键盘与独立式键盘相比,要节省很多的 I/0 口。

(1)矩阵式键盘工作原理按键设置在行、列交节点上,行、列分别连接到按键开关的两端。

行线通过下拉电阻接到 GND 上。

平时无按键动作时,行线处于低电平状态,而当有按键按下时,行线电平状态将由与此行线相连的列线电平决定。

列线电平如果为低,行线电平为高,列线电平如果为高,则行线电平则为低。

这一点是识别矩阵式键盘是否被按下的关键所在。

因此,各按键彼此将相互发生影响,所以必须将行、列线信号配合起来并作适当的处理,才能确定闭合键的位置。

(2)按键识别方法下面以3 号键被按下为例,来说明此键是如何被识别出来的。

前已述及,键被按下时,与此键相连的行线电平将由与此键相连的列线电平决定,而行线电平在无键按下时处于高电平状态。

如果让所有列线处于高电平那么键按下与否不会引起行线电平的状态变化,始终是高电平,所以,让所有列线处于高电平是没法识别出按键的。

现在反过来,让所有列线处于低电平,很明显,按下的键所在行电平将也被置为低电平,根据此变化,便能判定该行一定有键被按下。

但我们还不能确定是这一行的哪个键被按下。

所以,为了进一步判定到底是哪—列的键被按下,可在某一时刻只让一条列线处于低电平,而其余所有列线处于高电平。

当第 1 列为低电平,其余各列为高电平时,因为是键 3 被按下,所以第 1 行仍处于高电平状态;当第 2 列为低电平,其余各列为高电平时,同样我们会发现第 1 行仍处于高电平状态,直到让第 4 列为低电平,其余各列为高电平时,因为是 3 号键被按下,所以第 1 行的高电平转换到第 4 列所处的低电平,据此,我们确信第 1 行第 4 列交叉点处的按键即3 号键被按下。

课程设计报告矩阵键盘控制

课程设计报告矩阵键盘控制

北华航天工业学院《EDA技术综合设计》课程设计报告报告题目:矩阵键盘控制接口设计作者所在系部:电子工程系作者所在专业:电子信息工程作者所在班级:作者姓名:作者学号:0指导教师姓名:完成时间:2009-12-18内容摘要本课程设计所用实验器材主要有计算机和北京精仪达盛科技有限公司的EL教学实验箱。

经编译、仿真,检查无误并且符合设计要求后,正确的将脉冲源、FLEX10K \ EPF10K10LC84-3芯片、5行×6列薄膜轻触按键键盘、数码管按设计要求连接好。

将程序下载到实验箱的FLEX10K \ EPF10K10LC84-3芯片中,则可观察到预期的实验效果,即当按下某一键时,在数码管上显示该键对应的键值。

本课程设计需设计键盘接口消抖动元件(底层文本)和矩阵键盘接口电路(顶层文本)。

在顶层文本中包含扫描信号发生模块、按键消抖动模块、按键译码模块、寄存器-选择器模块和数码管的译码模块。

关键词:VHDL语言 EDA技术按键消抖动电路键盘扫描电路键值译码电路按键码存储电路显示键值电路目录一概述 (5)二方案设计与论证 (5)三单元电路设计 (6)1.键盘接口消抖动元件 (6)2.时钟产生电路 (6)3.键盘扫描电路 (7)4.键盘译码电路 (7)5.寄存器_选择器模块电路 (7)6.译码模块电路 (7)四器件编程与下载 (8)五性能测试与分析 (16)六实验设备 (16)七心得体会 (16)八参考文献 (17)课程设计任务书一、概述本课程设计的基本原理是在时钟信号的控制下,使数码管上显示所按下的键值,并且能够保持直到下一个按键被按下。

首先,构思一个8×4的矩阵键盘控制顶层电路的模块划分图兼端口及内部信号定义图,再用VHDL语言编辑文本程序,需先录入底层文件(键盘接口消抖动元件DEBOUNCING的描述)再录入键盘接口电路主程序,保存编译并检查程序是否有语法错误,再仿真观察波形是否符合所预期的设计要求,当一切都满足要求后,即可将程序下载到实验箱的FLEX10K \ EPF10K10LC84-3芯片中。

微机原理课题设计实验报告之矩阵式键盘数字密码锁

微机原理课题设计实验报告之矩阵式键盘数字密码锁

微机系统与应用课程设计报告班级:学号:姓名:实验地点:E楼Ⅱ区311实验时间:矩阵式键盘数字密码锁设计一 . 实验目的1.掌握微机系统总线与各芯片管脚连接方法,提高接口扩展硬件电路的连接能力。

2.初步掌握键盘扫描,密码修改和计时报警程序的编写方法。

3.掌握通过矩阵式键盘扫描实现密码锁功能的设计思路和实现方法。

二.实验内容矩阵式键盘数字密码锁设计,根据设定好的密码,采用4x4矩阵键盘实现密码的输入功能。

当密码输入正确之后,锁就打开(绿灯亮),10秒之后,锁自动关闭(红灯亮);如果连续输入三次密码不正确,就锁定按键5秒钟,同时发出报警(黄灯闪),5秒后,解除按键锁定,恢复密码输入。

数字密码锁操作键盘参考上面设定,也可以自行设计键盘。

用户初始密码为“123456”,系统加电运行后,密码锁初始状态为常闭(红灯亮),用户可以选择开锁或修改密码:如果选择开锁就按“Open”键,系统提示输入密码,输入用户密码+“#”键后,如果密码正确,就打开锁(绿灯亮),系统等待10秒,然后重新关闭密码锁,若密码错,提示重新输入,连续三次错误,提示警告词同时报警(黄灯闪),锁定键盘5秒,然后重新进入初始状态;如果选择修改密码就按”Modify Secret”键,系统提示输入旧密码,输入旧密码+“#”键后,如果正确,系统提示输入新密码,输入新密码+“#”后,新密码起效,重新进入初始状态;如果旧密码错,不能修改密码,密码锁直接进入初始状态。

三.实验基本任务1)具有开锁、修改用户密码等基本的密码锁功能。

2)对于超过3次密码密码错误,锁定键盘5秒,系统报警。

5秒后解除锁定。

4)通过LCD字符液晶和LED指示灯(红,绿,黄)实时显示相关信息。

5)用户密码为6位数字,显示采用“*”号表示。

6)码锁键盘设计合理,功能完善,方便用户使用。

本次实验还做了附加的任务( 1)增加了管理员(Admin)功能,如果用户忘记密码可向管理员求助。

管理员密码为8位数字(系统内预先已设定),管理员按“Admin”键后,系统提示输入管理员密码,输入管理员密码+“#”键后,如果正确,系统自动恢复用户初始密码为“123456”;如果错误,程序停止运行,系统退出。

矩阵键盘输入实验

矩阵键盘输入实验

实验十三矩阵键盘输入实验一、点阵式液晶屏显示模块介绍1、基本结构字符型液晶板上排列着若干个5×7或5×10点阵的字符显示位,每个显示位可显示一个字符,从规格上分为每行8,16,24,40,80位,有一行二行和四行三类。

内存中192种字符包括英文大小写字母,数字和书写符号等。

用户还可以自定义4个5×10或8个5×7点阵的字符。

PCB上有14个引线端,其中有8条数据线,三条控制线,三条电源线,见表5-20。

可与8051相接,通过送入数据和指令可对显示方式和显示内容作出选择。

见表13-12、指令功能其中RS和R/W共同决定选择哪一个寄存器,如表5-21所示,而DB7~DB0则决定指令功能,指令共11种,它们是:清除,返回,输入方式放置,显示开关控制,移位控制,功能设置,CGRAM地址设置,DDRAM地址设置,读忙标志和地址,写数据倒CG/DDRAM,读数据由CG/DDRAM 。

3、特点重量轻:<100g体积小:约100mm厚功耗低:10~15mW显示内容丰富:内存192种字符(包括ASCⅡ码)。

可自定义8或4种字符指令功能强:可组合成各种输入、显示、移位方式以满足不同要求接口方便简单:可与4或8位微处理器相连RAM功能:80位的屏幕存储工作温度:0~50℃和-20~70℃两种可靠性高:寿命是50000小时(25℃)4、工作时序见图13-1。

二、指令说明1、清屏命令格式:清除屏幕显示,并置地址计数器AC为0。

2、返回命令格式置DDRAM即显示RAM的地址为0。

显示返回到原始位置。

3、输出方式设置 命令格式:设置光标的移动方向,并指定整体显示是否移动。

其中I/D 如为1,则是增量方式,如为0,则是减量方式;S 如为1,则位移,如为0,则不位移。

4、显示开关控制 命令格式:其中:•D 控制的整体显示的开与关,D =1,则开显示,D=0,则关显示。

•C 控制光标的开与关,C=1,光标开,否则光标关。

矩阵键盘实验报告

矩阵键盘实验报告

自主学习用实验矩阵键盘识别实验
一、实验目的
1、掌握 4×4 矩阵键盘的工作原理和键盘的扫描方式。

2、掌握键盘的去抖方法和键盘应用程序的设计。

二、实验设备
1、PC 机一台;
2、开放式模块化单片机教学实验箱一台;
3、USB 下载线一根。

三、实验内容
自行编制程序,用 51 单片机实现 4×4 矩阵键盘扫描,采用线反转法;并实现当S11按下时在数码管上显值“0”,当S12按下时在数码管上显值“1”……,即依次将 S11 至S26按下,在数码管上依次显示十六进制数“0-F”,矩阵键盘原理图如图1-1 所示。

单片机与数码管接口电路原理图如图 1-2 所示。

图 1-1 矩阵键盘接口电路
图 1-2 数码管接口电路原理图
四、思考题
1.画出所编程序的流程图;
2.若要实现2×4 矩阵键盘,软硬件作如何修改。

答:将行线P2^3, P2^4接线去掉。

程序对应部分P2=0xfd; P2=0xfe;删掉。

3.实验中有何故障、问题出现,是否得到解决?如何解决的?问题:显示值对应出错。

原来是共阳段码和共阴段码弄相反了。

矩阵键盘设计实验报告材料

矩阵键盘设计实验报告材料

南京林业大学实验报告基于AT89C51单片机4x4矩阵键盘接口电路设计课程机电一体化设计基础院系机械电子工程学院班级学号姓名指导老师雨图2013年9月26日一、实验目的1、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。

2、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。

3、掌握利用Keil51软件对程序进行编译。

4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。

5、会根据实际功能,正确选择单片机功能接线,编制正确程序。

对实验结果能做出分析和解释,能写出符合规格的实验报告。

二、实验要求通过实训,学生应达到以下几方面的要求:素质要求1.以积极认真的态度对待本次实训,遵章守纪、团结协作。

2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立工作能力。

能力要求1.模拟电路的理论知识2.脉冲与数字电路的理念知识3.通过模拟、数字电路实验有一定的动手能力4.能熟练的编写8951单片机汇编程序5.能够熟练的运用仿真软件进行仿真三、实验工具1、软件:Proteus软件、keil51。

2、硬件:PC机,串口线,并口线,单片机开发板四、实验容1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格元器件的作用。

2、用keil51测试软件编写AT89C51单片机汇编程序3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。

4、运用仿真软件对电路进行仿真。

五.实验基本步骤1、用Proteus绘制“矩阵键盘扫描”电路原理图。

2、编写程序使数码管显示当前闭合按键的键值。

3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状态和按键开关的对应关系。

4、用keil51软件编写程序,并生成HEX文件。

5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。

6、用通用编程器或ISP下载HEX程序到MCU。

7、检查验证结果。

六、实验具体容使用单片机的P1口与矩阵式键盘连接时,可以将P1口低4位的4条端口线定义为行线,P1口高4位的4条端口线定义为列线,形成4*4键盘,可以配置16个按键,将单片机P2口与七段数码管连接,当按下矩阵键盘任意键时,数码管显示该键所在的键号。

汇编实验之矩阵 键盘

汇编实验之矩阵 键盘

计算机原理实验室实验报告课程名称:姓名学号班级成绩设备名称及软件环境实验名称矩阵键盘实验日期一.实验内容掌握4×4矩阵式键盘程序识别原理及4×4矩阵式键盘按键的设计方法。

二.理论分析或算法分析用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。

4×4矩阵式键盘识别电路原理图:键盘中对应按键的序号排列:电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。

(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。

三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)1、4×4矩阵键盘识别处理。

2、每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。

键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。

键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。

两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。

3、程序流程图:4、汇编源程序:;;;;;;;;;;定义单元;;;;;;;;;;COUNT EQU 30H;;;;;;;;;;入口地址;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHRETIORG 0013HRETIORG 001BHRETIORG 0023HRETIORG 002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG 0100H START: LCALL CHUSHIHUALCALL PANDUANLCALL XIANSHILJMP START ;;;;;;;;;;初始化程序;;;;;;;;;;CHUSHIHUA: MOV COUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;;PANDUAN: MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW1LCALL DELAY10MSJZ SW1MOV A,P3ANL A,#0FHCJNE A,#0EH,K1MOV COUNT,#0LJMP DKK1: CJNE A,#0DH,K2MOV COUNT,#4LJMP DKK2: CJNE A,#0BH,K3MOV COUNT,#12 K4: NOPLJMP DKSW1: MOV P3,#0FFHCLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW2LCALL DELAY10MS JZ SW2MOV A,P3ANL A,#0FHCJNE A,#0EH,K5 MOV COUNT,#1 LJMP DKK5: CJNE A,#0DH,K6MOV COUNT,#5 LJMP DKK6: CJNE A,#0BH,K7MOV COUNT,#9 LJMP DKK7: CJNE A,#07H,K8MOV COUNT,#13 K8: NOPLJMP DKSW2: MOV P3,#0FFHCLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW3LCALL DELAY10MS JZ SW3MOV A,P3ANL A,#0FHCJNE A,#0EH,K9 MOV COUNT,#2 LJMP DKK9: CJNE A,#0DH,KAMOV COUNT,#6 LJMP DKKA: CJNE A,#0BH,KBMOV COUNT,#14 KC: NOPLJMP DKSW3: MOV P3,#0FFHCLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ SW4LCALL DELAY10MS JZ SW4MOV A,P3ANL A,#0FHCJNE A,#0EH,KD MOV COUNT,#3LJMP DKKD: CJNE A,#0DH,KEMOV COUNT,#7LJMP DKKE: CJNE A,#0BH,KFMOV COUNT,#11 LJMP DKKF: CJNE A,#07H,KGMOV COUNT,#15 KG: NOPLJMP DKSW4: LJMP PANDUANDK: RET;;;;;;;;;;显示程序;;;;;;;;;;XIANSHI: MOV A,COUNTMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ALCALL DELAYSK: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ SKRET;;;;;;;;;;10ms延时程序;;;;;;;;;;DELAY10MS: MOV R6,#20D1: MOV R7,#248DJNZ R6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;;DELAY: MOV R5,#20LOOP: LCALL DELAY10MSDJNZ R5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB 7FH,6FH,77H,7CH,39H,5EH,79H,71H;;;;;;;;;;结束标志;;;;;;;;;;END八、C语言源程序#include<AT89X51.H>unsigned char code table[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};void main(void){ unsigned char i,j,k,key;while(1){ P3=0xff; //给P3口置1//P3_4=0; //给P3.4这条线送入0//i=P3;i=i&0x0f; //屏蔽低四位//if(i!=0x0f) //看是否有按键按下//{ for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);if(i!=0x0f) //再次判断按键是否按下//{ switch(i) //看是和P3.4相连的四个按键中的哪个// { case 0x0e:key=0;break;case 0x0d:key=1;break;case 0x0b:key=2;break;case 0x07:key=3;break;}P0=table[key]; //送数到P0口显示//}P3=0xff;P3_5=0; //读P3.5这条线//i=P3;i=i&0x0f; //屏蔽P3口的低四位//if(i!=0x0f) //读P3.5这条线上看是否有按键按下// { for(j=50;j>0;j--) //延时//for(k=200;k>0;k--);i=P3; //再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){ switch(i) //如果有,显示相应的按键//{ case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}P0=table[key]; //送入P0口显示//}}P3=0xff;P3_6=0; //读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=8;break;case 0x0d:key=9;break;case 0x0b:break;case 0x07:key=11;break;}P0=table[key];}}P3=0xff;P3_7=0; //读P3.7这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){ for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){ switch(i){ case 0x0e:key=12;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}P0=table[key];}}}}四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)五.结论报告提交日期(注意:内容写不下时允许表格添加新行。

矩阵按键实训报告

矩阵按键实训报告

一、实训背景随着电子技术的飞速发展,按键技术在电子设备中的应用越来越广泛。

矩阵按键因其结构紧凑、易于扩展等优点,被广泛应用于各类电子设备中。

为了提高学生对矩阵按键原理和应用的理解,本次实训选取了矩阵按键作为实训内容。

二、实训目的1. 理解矩阵按键的原理和结构;2. 掌握矩阵按键的驱动程序编写;3. 学会使用矩阵按键实现简单功能;4. 提高学生的动手能力和实践能力。

三、实训内容1. 矩阵按键原理与结构矩阵按键是一种利用行列交叉原理来检测按键状态的按键电路。

它由若干行和列组成,通过行列交叉的交叉点连接按键。

当按键被按下时,相应的行和列被连接,从而实现按键的识别。

2. 矩阵按键驱动程序编写以51单片机为例,介绍矩阵按键驱动程序的编写方法。

(1)初始化矩阵按键:设置行线为输出,列线为输入,并对行线进行上拉。

(2)扫描按键:从第一行开始,依次将行线置低电平,其他行线置高电平,然后读取列线的状态。

如果列线为低电平,则表示该行对应的按键被按下。

(3)消抖处理:为了避免按键抖动引起的误判,需要对按键状态进行消抖处理。

3. 使用矩阵按键实现简单功能以一个简单的计算器为例,介绍使用矩阵按键实现计算器功能的方法。

(1)设计计算器界面:根据计算器的功能需求,设计按键布局。

(2)编写按键扫描程序:根据按键布局,编写按键扫描程序,实现按键的识别。

(3)编写功能实现程序:根据计算器的功能需求,编写功能实现程序,如加、减、乘、除等。

四、实训过程1. 实训准备:准备51单片机开发板、矩阵按键模块、电源等实验器材。

2. 矩阵按键原理与结构学习:通过查阅资料,了解矩阵按键的原理和结构。

3. 矩阵按键驱动程序编写:根据实训要求,编写矩阵按键驱动程序。

4. 矩阵按键功能实现:使用矩阵按键实现计算器功能,包括按键扫描、消抖处理、功能实现等。

5. 实验调试:对实验程序进行调试,确保程序正常运行。

五、实训总结通过本次实训,我掌握了矩阵按键的原理和结构,学会了矩阵按键驱动程序的编写,以及使用矩阵按键实现简单功能的方法。

实验5-独立键盘和矩阵键盘

实验5-独立键盘和矩阵键盘

实验5 独立键盘和矩阵键盘一、实验目的1、学会用C语言进行独立按键应用程序的设计。

2、学会用C语言进行矩阵按键应用程序的设计。

二、实验内容1、独立按键:对四个独立按键编写程序:当按k1时,8个LED同时100ms闪烁;当按k2时,8个LED从左到右流水灯显示;当按k3时,8个LED从右到左流水灯显示;当按k4时,8各LED同时从两侧向中间逐步点亮,之后再从中间向两侧逐渐熄灭;2、矩阵按键:采用键盘扫描方式,顺序按下矩阵键盘后,在一个数码管上顺序显示0~F,采用静态显示即可。

3、提高部分(独立按键、定时器、数码管动态扫描):编写程序,实现下面的功能。

用数码管的两位显示一个十进制数,变化范围为00~59,开始时显示00,每按一次k1,数值加1;每按一次k2,数值减1;每按一次k3,数值归零;按下k4,利用定时器功能使数值开始自动每秒加1;再按一次k4,数值停止自动加1,保持显示原数。

三、实验步骤1、硬件连接(1)使用MicroUSB数据线,将实验开发板与微型计算机连接起来;(2)在实验开发板上,用数据线将相应接口连接起来;2、程序烧入软件的使用使用普中ISP软件将HEX文件下载至单片机芯片内。

查看结果是否正确。

四、实验结果——源代码1. #include "reg52.h"typedef unsigned char u8;typedef unsigned int u16;#define LED P2sbit key1=P3^1;sbit key2=P3^0;sbit key3=P3^2;sbit key4=P3^3;const char tab[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; u8 code begMid[]={0x7e, 0xbd,0xdb,0xe7, 0xdb, 0xbd, 0x7e}; void Delay(u16 i){ while(i--);}void KeyDown(){u8 i;if(key2==0){Delay(1000);if(key2==0){for(i=0;i<8;i++){LED=tab[i];Delay(50000);}while(!key2);}LED=0xff;}else if(key1==0){Delay(1000);if(key1==0)for(i=0;i<3;i++){LED=0x00;Delay(10000);LED=0xff;Delay(10000);}}}}void Int0Init(){IT0=1;EX0=1;EA=1;}void Int1Init(){IT1=1;EX1=1;EA=1;} void main(){Int0Init();Int1Init();while(1){KeyDown();}}void Int0() interrupt 0{u8 i;if(key3==0){Delay(1000);if(key3==0)for(i=7;i>=0;i--){LED=tab[i];Delay(50000);}}}}void Int1() interrupt 2{u8 i;if(key4==0){Delay(1000);if(key4==0){for(i=0;i<=6;i++){LED=begMid[i];Delay(50000);}}}}2.#include "reg52.h"typedef unsigned int u16;typedef unsigned char u8;#define GPIO_DIG P0#define GPIO_KEY P1sbit LSA=P2^2;sbit LSB=P2^3;sbit LSC=P2^4;u8 KeyValue;u8 code smgduan[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//??0~F?? void delay(u16 i){while(i--);}void KeyDown(void){char a=0;GPIO_KEY=0x0f;if(GPIO_KEY!=0x0f){delay(1000);if(GPIO_KEY!=0x0f){GPIO_KEY=0X0F;switch(GPIO_KEY){case(0X07): KeyValue=0;break;case(0X0b): KeyValue=1;break;case(0X0d): KeyValue=2;break;case(0X0e): KeyValue=3;break;}GPIO_KEY=0XF0;switch(GPIO_KEY){case(0X70): KeyValue=KeyValue;break;case(0Xb0): KeyValue=KeyValue+4;break;case(0Xd0): KeyValue=KeyValue+8;break;case(0Xe0): KeyValue=KeyValue+12;break;}while((a<50)&&(GPIO_KEY!=0xf0)){delay(1000);a++;}}}}void main(){LSA=0;LSB=0;LSC=0;while(1){KeyDown();GPIO_DIG=smgduan[KeyValue];}}3.#include <reg52.h>typedef unsigned int u16;typedef unsigned char u8;#define KEYPORT P3sbit LSA=P2^2;sbit LSB=P2^3;sbit LSC=P2^4;sbit key1=P3^1;sbit key2=P3^0;sbit key3=P3^2;sbit key4=P3^3;u16 t;u8 sec;u8 DisplayData[2];u8 code smgduan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; void Time1Init(){TMOD |= 0x10;TH1=0Xd8;TL1=0Xf0;EA=1;ET1=1;}void delay(u16 i){while(i--); }void DigDisplay(){u8 i;for(i=0;i<2;i++){switch(i){case 0:LSA=0;LSB=0;LSC=0;break;case 1:LSA=1;LSB=0;LSC=0;break;}P0=DisplayData[i];delay(100);P0=0x00;}}void datapros(){DisplayData[0]=smgduan[sec%10];DisplayData[1]=smgduan[sec/10];}void main(){Time1Init();while(1){if(key4==0){delay(1000);if(key4==0){TR1=!TR1;while(key4==0);}}if(key3==0){delay(1000);if(key3==0){sec=0;while(key3==0);}}if(key2==0){delay(1000);if(key2==0){sec--;while(key2==0);}}if(key1==0){delay(1000);if(key1==0){sec++;while(key1==0);}}}}void Time1() interrupt 2{TH1=0Xd8;TL1=0Xf0;t++;if(t==100){t=0;sec++;if(sec>=60){sec=0;}}datapros();DigDisplay();}五、实验体会——结果分析1、独立按键:位定义四个按键key1、key2、key3、key4,宏定义LED为P2口,tab数组保存流水灯D0-D7依次点亮的数值,begMid数组保存流水灯同时从两侧向中间逐步点亮,之后再从中间向两侧逐渐熄灭的赋值方式。

微机原理课设-矩阵式键盘数字密码锁设计

微机原理课设-矩阵式键盘数字密码锁设计

微机原理课程设计课程实验报告实验名称矩阵式键盘数字密码锁设计一、实验目的1. 掌握微机系统总线与各芯片管脚连接方法,提高接口扩展硬件电路的连接能力。

2. 初步掌握键盘扫描,密码修改和计时报警程序的编写方法。

3. 掌握通过矩阵式键盘扫描实现密码锁功能的设计思路和实现方法。

二、实验所用仪器(或实验环境)Win7计算机微机一台(Pentium 4)ISA–PCI 转接卡星研集成环境软件8255芯片12864J液晶显示器矩阵键盘三、实验基本原理及步骤(或方案设计及理论计算)1.课程设计的内容:根据设定好的密码,采用4x4矩阵键盘实现密码的输入功能。

当密码输入正确之后,锁就打开(绿灯亮),10秒之后,锁自动关闭(红灯亮);如果连续输入三次密码不正确,就锁定按键5秒钟,同时发出报警(黄灯闪),5秒后,解除按键锁定,恢复密码输入。

2.基本功能要求1)具有开锁、修改用户密码等基本的密码锁功能。

2)对于超过3次密码,密码错误,锁定键盘5秒,系统报警。

5秒后解除锁定。

4)通过LCD字符液晶和LED指示灯(红,绿,黄)实时显示相关信息。

5)用户密码为6位数字,显示采用“*”号表示。

6)密码锁键盘设计合理,功能完善,方便用户使用。

3.流程设计:4.具体实现:针对上机设备上的4×4矩阵键盘,我们分别设计功能。

密码锁用户初始密码为123456,管理员初始密码为12345678。

系统启动后,密码锁处于关闭状态,点击open按键选择开启密码锁功能,系统提示输入密码,若输入正确,则系统发出连续的四次蜂鸣并打开锁(绿灯亮10s),系统等待10 秒,然后重新关闭密码锁。

若密码错误则提示重新输入密码,若使用del按键,则所有密码清空,重新输入,若输入三次密码错误,则系统提示警告词同时发出长蜂鸣警报(黄灯闪),锁定键盘5 秒,然后重新进入初始状态。

若输入Modify功能,系统提示输入旧密码,输入旧密码+“#”键后,如果正确,系统提示输入新密码,输入新密码+“#”后,新密码起效,重新进入初始状态;如果旧密码错,不能修改密码,密码锁直接进入初始状态。

实验8-矩阵键盘扫描实验

实验8-矩阵键盘扫描实验
}
//查询按键键值
key = Key_Scan() ;
if( key != 0xff )
printf( "Interrupt occur... K%d is pressed!\n", key ) ;
//重新初始化IO口
rGPGCON = rGPGCON & (~((3<<12)|(3<<4))) | ((1<<12)|(1<<4)) ;//GPG6,2 set output
6.EINT19、EINT11、EINT2、EINT0中断开启
}
6.2键盘中断响应
void __irq KeyISR(void)
{
1.GPG13、GPG11、GPF2、GPF0设为input端口
2.清楚中断EINT19、EINT11、EINT2、EINT0
3.键盘扫描Key_Scan(),并在串口输出
else if( (rGPGDAT&(1<< 3)) == 0 )return 14 ;
else if( (rGPGDAT&(1<<11)) == 0 )return 13 ;
//扫描键盘第2列K11、K8、K5、K2
rGPGDAT = rGPGDAT & (~((1<<6)|(1<<2))) | (0<<6) | (1<<2) ;//GPG6 output 0;GPG2 output 1
rEXTINT0 &= ~(7|(7<<8));
rEXTINT0 |= (2|(2<<8));//set eint0,2 falling edge int

实验4 矩阵键盘的使用

实验4  矩阵键盘的使用
*函数名: main
*函数功能:主函数
*输入:无
*输出:无
*******************************************************************************/
void main(void)
{
while(1)
{
KeyDown();
GPIO_DIG = ~DIG_CODE[KeyValue];
ORG 0000H
MOV SP,#6FH
MOV R0,#5;延时0.5秒
LOOP1:MOV R1,#200
LOOP2:MOV R2,#250
DJNZ R2,$
DJNZ R1,LOOP2
DJNZ R0,LOOP1
MOV DPTR,#4003H ;8255初始化
MOV A,#10000001B; A口、B口方式0输出,C口高4位输出,低4位输入
MOVX @DPTR,A
LOOP3:LCALL DISP;调用显示子程序DIS,设显示子程序入口为DISP
LCALL KEY;调用键盘扫描子程序,设键盘扫描子程序入口为KEY
CJNE A,#0FFH,LOOP4;如果有键按下转
SJMP LOOP3
LOOP4:MOV 20H,21H
MOV 21H,22H
入口:行列关键值码放在累加器A中,高4位是列驱动码(被扫描列的对应位为0,其余位均为1),低4位是行状态(按下键的对应位为0,其余位均为1)。
出口:键码放在A中带出。
占用:R1、A、PSW、DPTR。
程序清单如下:
;查键值子程序,起始地址为KEY20
KEY20:PUSH ACC;暂存关键值
MOV R1,#00H;查键值自变量清0

矩阵键盘资料(在实验五十中)

矩阵键盘资料(在实验五十中)

TECHISHINE
有了表 50-2,要写出键盘译码电路的 VHDL 程序就非常容易了,尤其针对有表可以对照
的电路设计,只要使用 CASE-WHEN 或 WHNE-ELSE 语句,便可轻松完成设计。
表 50-2 键盘参数表
SEL2~SEL0 KIN3~KIN0
对应的 键盘译 按键功 按键 码输出 能
010
1101
REG 10010 功能键
1011
C
01100 字母 C
表 50-1 按键位置与数码关系
122
Beijing Techshine Technology Co.
TECHISHINE
SEL2~SEL0 000
KIN3~KIN0 1110 1101 1011
对应的按键 0 6
LAST
0111
CTRL
1110
1
1101
7
001
1011
STEP
0111
EMPTY1
5
1101
B
111
1011
ENTER
0111
NONE
光靠矩阵键盘是无法正确地完成输入工作的,另外还需搭配以下几个电路模块: 1、 时钟产生电路
当一个系统中使用不同操作频率的脉冲波形时,最方便的方法就是利用一个自由计数器 来产生各种频率。本电路中就使用三种不同频率的工作脉冲波形。它们分别是:系统时钟(它 是系统内部所有时钟的提供者,频率最高)、弹跳消除取样信号、键盘扫描信号和七段显示器 扫描信号。在很多的电路设计中,键盘扫描信号和七段显示器扫描信号可以使用相同的时钟 信号,本设计也采用此方法。
Beijing Techshine Technology Co.

[整理]33矩阵按键

[整理]33矩阵按键

单片机原理及应用实验报告实验名称: 3x3 矩阵式键盘组员:实验成绩:指导老师:实验日期:实验地点:实验报告一、实验目的用键盘的按键控制数码管显示的对应值二、实验原理(1)实验原理单片机的 P3 口用于键盘的连接,键盘中,行、列线分别连接到按键开关的两端。

通过键盘处理程序确定有无按键暗下,判断哪一个按键按下,还要消除按键在闭合或断开时的抖动。

两个并行口中,一个使按键逐行动态接地,另一个并行口输入按键状态,才以此确定闭合键的位置。

(2)矩阵式按键的特点每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和 CPU 通信。

因此可分别对行号和列三、系统仿真图当键盘按键按下 0 时仿真图如下:按键 5 时:按键 8 时:四、心得体会在矩阵键盘设计中,我们一定要注意 P3 口与键盘的连线一定要正确。

同时要注意消除按键在闭合或断开时的抖动。

通过单片机课程设计,让我们熟练的应用了两种软件。

设计主要是用 AT89C51 这个芯片来实现,这次设计让我们深刻体会到细心的重要性。

五、源码附录ORG 00HMAIN:MO V P3,#0FE HJNB P3.5,KEY0 JNB P3.6,KEY1 JNB P3.7,KEY2MO V P3,#0FD HJNB P3.5,KEY3 JNB P3.6,KEY4 JNB P3.7,KEY5MO V P3,#0FB HJNB P3.5,KEY6JNB P3.6,KEY7 JNB P3.7,KEY8 SJMP MAIN KEY0:MOV P2,#3FH LCALL DELAY SJMP MAIN KEY1:MOV P2,#06H LCALL DELAY SJMP MAIN KEY2:MOV P2,#5BH LCALL DELAYSJMP MAIN KEY3:MOV P2,#4FH LCALL DELAY SJMP MAIN KEY4:MOV P2,#66H LCALL DELAY SJMP MAINKEY5:MOV P2,#6DHLCALL DELAY SJMP MAIN KEY6:MOV P2,#7DH LCALL DELAY SJMP MAINKEY7:MOV P2,#07H LCALL DELAY SJMP MAIN-------------KEY8:MOV P2,#7FH------------- LCALL DELAYSJMP MAINDELAY:R7,#60DLY1:R6,#100 R6,$ MOVDJNZ DJNZ MOV。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。

按其它键退出。

2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。

可定义“A”键为“+”键,“B”键为“=”键。

二、实验目的1、学习独立式按键的查询识别方法。

2、非编码矩阵键盘的行反转法识别方法。

三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。

2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。

3、识别键的闭合,通常采用行扫描法和行反转法。

行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。

行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。

然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。

这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。

由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。

行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京林业大学
实验报告
基于AT89C51
单片机4x4矩阵键盘接口电路设计
课程机电一体化设计基础
院系机械电子工程学院
班级
学号
姓名
指导老师杨雨图
2013年9月26日
一、实验目的
1、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。

2、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。

3、掌握利用Keil51软件对程序进行编译。

4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。

5、会根据实际功能,正确选择单片机功能接线,编制正确程序。

对实验结果
能做出分析和解释,能写出符合规格的实验报告。

二、实验要求
通过实训,学生应达到以下几方面的要求:
素质要求
1.以积极认真的态度对待本次实训,遵章守纪、团结协作。

2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立
工作能力。

能力要求
1.模拟电路的理论知识
2.脉冲与数字电路的理念知识
3.通过模拟、数字电路实验有一定的动手能力
4.能熟练的编写8951单片机汇编程序
5.能够熟练的运用仿真软件进行仿真
三、实验工具
1、软件:Proteus软件、keil51。

2、硬件:PC机,串口线,并口线,单片机开发板
四、实验内容
1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格
元器件的作用。

2、用keil51测试软件编写AT89C51单片机汇编程序
3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。

4、运用仿真软件对电路进行仿真。

五.实验基本步骤
1、用Proteus绘制“矩阵键盘扫描”电路原理图。

2、编写程序使数码管显示当前闭合按键的键值。

3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状
态和按键开关的对应关系。

4、用keil51软件编写程序,并生成HEX文件。

5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。

6、用通用编程器或ISP下载HEX程序到MCU。

7、检查验证结果。

六、实验具体内容
使用单片机的P1口与矩阵式键盘连接时,可以将P1口低4位的4条端口线定义为行线,P1口高4位的4条端口线定义为列线,形成4*4键盘,可以配置16个按键,将单片机P2口与七段数码管连接,当按下矩阵键盘任意键时,数码管显示该键所在的键号。

1、电路图
2、程序流程图
3、程序源码
ORG 00H ; 起始地址00H
K1:
MOV P1, #0F0H ; 设置P1.4~P1.7为输入端口
MOV A, P1 ; 从P1读取所有列的值
ANL A, #11110000B ; 屏蔽掉无用的低4位,非列值
CJNE A, #11110000B, K1 ; 查询直到所有的按钮释放
K2:
CALL DELAY ; 调用20ms延时子程序(省略)
MOV A, P1 ; 从P1读取状态,看有没有按钮被按下
ANL A, #11110000B ; 屏蔽掉无用的低4位,非列值
CJNE A, #11110000B, OVER ; 如果有按钮按下,跳到OVER
JMP K2 ; 循环检测
OVER:
CALL DELAY ; 延时20ms防止抖动
MOV A, P1 ; 从P1读取状态
ANL A, #11110000B ; 屏蔽掉无用的位
CJNE A, #11110000B, OVER1 ; 如果有按钮按下,找到行
JMP K2 ; 如果没有按钮按下,循环扫描
OVER1:
MOV P1, #11111110B ; 第0行输出低电平
MOV A, P1 ; 读所有的列
ANL A, #11110000B ; 屏蔽掉无用的位
CJNE A, #11110000B, ROW_0 ; 如果第0行有按钮按下,找列
MOV P1, #11111101B ; 第1行输出低电平
MOV A, P1 ; 读所有的列
ANL A, #11110000B ; 屏蔽掉无用的位
CJNE A, #11110000B, ROW_1 ; 如果第1行有按钮按下,找列
MOV P1, #11111011B ; 第2行输出低电平
MOV A, P1 ; 读所有的列
ANL A, #11110000B ; 屏蔽掉无用的位
CJNE A, #11110000B, ROW_2 ; 如果第2行有按钮按下,找列
MOV P1, #11110111B ; 第3行输出低电平
MOV A, P1 ; 读所有的列
ANL A, #11110000B ; 屏蔽掉无用的位
CJNE A, #11110000B, ROW_3 ; 如果第3 行有按钮按下,找列
LJMP K2 ; 如果没有,则循环
ROW_0:
MOV DPTR, #KCODE0 ; 设置DPTR=第0行的起始地址
SJMP FIND ; 找列
ROW_1:
MOV DPTR, #KCODE1 ; 设置DPTR=第1行的起始地址
SJMP FIND ; 找列
ROW_2:
MOV DPTR, #KCODE2 ; 设置DPTR=第2行的起始地址
SJMP FIND ; 找列
ROW_3:
MOV DPTR, #KCODE3 ; 设置DPTR=第3行的起始地址FIND:
SWAP A
FIND1:
RRC A ; 看看是否进位C为0
JNC MATCH ; 如果是0,就跳到MA TCH找键值
INC DPTR ; DPTR加1
SJMP FIND1 ; 循环查找
MATCH:
CLR A ; A=0
MOVC A, @A+DPTR ; 用DPTR在数据表中找到键值装入A
CLR P2.7 ;置P2.0口为低,显示数字
MOV P0, A ; 显示键值
LJMP K1 ; 循环
DELAY: ;延时子程序,1ms
MOV R1, #2
D1:
MOV R2, #248
DJNZ R2, $
DJNZ R1, D1
RET
; 键值保存在以下的数据表中,可根据系统实际需要进行修改
ORG 300H ; 数据表起始地址
//KCODE0: DB 80H, 0C0H, 0C0H, 0C0H ; 第0行
KCODE0: DB 0C0H,0F9H,0A4H,0B0H ; 第0行
KCODE1: DB 99H,92H,82H,0F8H ; 第1行
KCODE2: DB 80H,90H,88H,83H ; 第2行
KCODE3: DB 0C6H,0A1H,86H,8EH ; 第3行
END
4、仿真实验结果
当矩阵键盘的0号键被按下时,P0口的七段数码管显示的数据为0.如下图1所以:
图1
当矩阵键盘的3号键被按下时,P0口的七段数码管显示的数据为3.如下图2所以:
图2
当矩阵键盘的D号键被按下时,P0口的七段数码管显示的数据为d.如下图3所以:
图3
当矩阵键盘的F号键被按下时,P0口的七段数码管显示的数据为F.如下图4所以:
图4
5、实验板运行结果
当矩阵键盘的9号键被按下时,P0口的七段数码管显示的数据为9.如下图5所以:
图5。

相关文档
最新文档