两个变量的线性相关关系

合集下载

变量间的相互关系和两个变量的线性相关

变量间的相互关系和两个变量的线性相关
2、下列图形中两个变量具有相关关系的是
( C)
(A) y
(B) y
o y (C)
x
o
y (D)
o
x
o
.
x
x
11
思考:当人的年龄增加时,体内脂肪含量到底是
以什么方式增加的呢? y
脂 肪 含 量 40
这些点大致分 布在一条直线附近, 像这样如果散点图 中的点的分布从整
35
体上看大致在一条
30
直线附近我们就称
不同点:函数关系是一种确定的关系;而相关
关系是一种非确定关系。
.
2
练习:
1、探究下面变量间的关系: (1).球的体积与该球的半径; (2).粮食的产量与施肥量; (3).小麦的亩产量与光照; (4).匀速行驶车辆的行驶距离与时间;
2、下列两变量中具有相关关系的是( D )
A、角度和它的余弦值 B、正方形的边长和面积 C、成人的身高和视力 D 、身高和体重
对具有相关关系的两个变量进行统计分析的方法
叫回归分析 ,相关关系是进行回归分析的基础,同时,
也是散点图的基础。
.
5
知识探究(二):散点图
【问题】在一次对人体脂肪含量和年龄关系的研究
中,研究人员获得了一组样本数据:
年龄 23 27 39 41 45 49 50 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
.
6
脂肪含量
思考:为了确定年龄和人体脂肪含量之间的更
明确的关系,我们需要对数据进行分析,通过 作图可以对两个变量之间的关系有一个直观的 印象.以x轴表示年龄,y轴表示脂肪含量,你 能在直角坐标系中描出样本数据对应的图形吗?

两个变量的线性相关

两个变量的线性相关

xi2 nx 2
i 1
i 1
n
时,总体偏差 Q (yi yˆi )2为最小,这样就得到 i1
了回归方程,这种求回归方程的方法叫做最小二
乘法.
思考5:利用计算器或计算机可求得年龄和人体 脂肪含量的样本数据的回归方程为
y 0.577x 0.448,由此我们可以根据一
个人个年龄预测其体内脂肪含量的百分比的回
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
脂肪含量
思考1:在各种各样的散点图中,有些散点图中的 点是杂乱分布的,有些散点图中的点的分布有一 定的规律性,年龄和人体脂肪含量的样本数据的 散点图中的点的分布有什么特点?
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
这些点大致分布在一条直线附近.
脂肪含量
思考2:如果散点图中的点的分布,从整体上看大 致在一条直线附近,则称这两个变量之间具有线 性相关关系,这条直线叫做回归直线.
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
思考3:对一组具有线性相关关系的样本数据,你 认为其回归直线是一条还是几条?
脂肪含量
一条
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
ห้องสมุดไป่ตู้识探究(二):回归方程
在直角坐标系中,任何一条直线都有相应的方程, 回归直线的方程称为回归方程.对一组具有线性相 关关系的样本数据,如果能够求出它的回归方程, 那么我们就可以比较具体、清楚地了解两个相关 变量的内在联系,并根据回归方程对总体进行估 计.

判断两个变量之间是否存在相关关系的方法

判断两个变量之间是否存在相关关系的方法

判断两个变量之间是否存在相关关系的方法为了判断两个变量之间是否存在相关关系,我们需要使用相关分析方法。

在实践中,我们通常使用皮尔逊相关系数来评估两个变量之间的线性相关性。

接下来将从以下几个方面讨论如何进行相关分析:1. 相关分析的基础2. 皮尔逊相关系数3. 相关系数的解释相关分析是一种经验性方法,用于评估两个变量之间的关系。

如果两个变量之间存在相关关系,我们可以使用一个变量来预测另一个变量的值。

相关关系可以是正相关(两个变量变化方向相同),也可以是负相关(两个变量变化方向相反)。

相关分析可以通过如下两种方式进行:1. 可以通过绘制散点图来判断两个变量之间是否存在相关关系。

如果图中的点沿着一条线分布,那么两个变量之间就存在线性相关关系。

2. 通过计算皮尔逊相关系数来评估两个变量之间的相关性。

r = (nΣxy - ΣxΣy) /sqrt([nΣx^2 –(Σx)^2][nΣy^2 –(Σy)^2])其中,x和y分别是两个变量的值,n是样本大小。

r的值介于-1和+1之间。

当r为正值时,两个变量之间存在正相关关系;当r为负值时,两个变量之间存在负相关关系。

当r=0时,两个变量之间不存在任何相关关系。

皮尔逊相关系数的计算方法基于统计理论,假设数据是正态分布的。

因此在实践中,我们应该先检查数据的分布情况,以确定是否可以使用该方法进行相关分析。

当我们计算出皮尔逊相关系数后,需要对该系数进行解释。

通常,我们根据相关系数的绝对值大小来评估两个变量之间的相关性:- r=±1:完全的线性相关- r=±0.8:非常强的线性相关- r=±0.6:强的线性相关- r=±0.4:中等的线性相关- r=±0.2:弱的线性相关- r=0:不存在线性相关关系需要注意的是,在解释相关系数时,我们通常只关注其数值大小,而不是其正负号。

例如,r=0.9和r=-0.9都表示存在非常强的线性相关关系。

两个变量的线性相关

两个变量的线性相关

正相关与负相关
具有相关关系的两个变量中,如果一个变量的值由小 变大时,令一个变量的值也由小变大,这种相关称为正 相关。反之,如果一个变量的值由小到大时,令一个变 量的值由大到小,这种相关称为负相关。
判断下列变量之间的关系:
1. 降雪量与交通事故的发生率之间的 关系。
2. 出租车费与行驶的里程。 3. 人的身高和体重。 4. 房屋面积与房屋价格。 5. 学生的身高与学生的学习成绩; 6.铁球的大小与质量
3.一般情况下两个变量之间的相关关系成正相关或 负相关,类似于函数的单调性.
课堂练习:
1.设一个回归方程为y=3-1.2x,则变量x增加一个单位时
( A)
A.y平均增加1.2个单位 B.y平均增加1.2个单位
C.x+a,x=1.2,y=0.9,b=-0.5 则
保证这条直线与所有点的距离之和 最小,这条直线叫做回归直线
最小二乘法就是基于这种想法。
问题:
用什么样的方法刻画点与直线的距离会方便有效?
设直线方程为y=a+bx,样本点A(xi,yi)
y
yi a bxi 2
0
xi , yi
y a bx
xi , a bxi
我们用它来表示二者之间的接近程度
问题:回归直线方程中b的正负与散点图点的 变化趋势有什么关系?
问题:变量间的关系有几种?
函数关系
正相关:b>0
线性相关
相关关系
负相关:b<0
非线性相关
不相关
小结:
1.对于两个变量之间的关系,有函数关系和相关关 系两种,其中函数关系是一种确定性关系,相关关系 是一种非确定性关系.
2.散点图能直观反映两个相关变量之间的大致变化 趋势

线性相关是什么意思

线性相关是什么意思

线性相关是什么意思线性相关是指两个变量的线性关系。

它指的是两个变量之间的变化是根据它们之间的线性关系而产生的。

这可以看作一个图表,其中X轴和Y轴分别代表变量A和变量B。

如果两个变量之间存在线性关系,也就是说如果变量A发生变化,那么变量B也会发生相应的改变,从而反映他们之间的线性关系。

线性相关的实际应用是总体分析和统计分析的基础和需要,可以帮助我们探索两个变量之间的相互作用。

它有助于我们从更深层次来理解总体的运作机制。

此外,线性间接解释了变量之间的因果关系,有助于我们更有效地解释复杂的数据,并预测将来的变化。

线性相关通常是基于统计学分析,利用数学工具,例如线性回归分析和最小二乘法,来确定这种变量之间的线性关系。

经过统计学分析,可以计算出系数,系数的值可以反映变量之间的线性关系的强弱。

线性相关常被用于回归分析,以确定某个变量的变化速度,并用来预测另一个变量将来的变化情况。

例如,两个变量A和B可能表示销售额和价格。

利用线性回归模型,可以计算出当价格升高一个单位时,销售额会相应上升多少,进而使用该数字进行预测,即在未来某一价格水平下的预期销售额。

另一方面,相关性也可能提供有关变量之间的因果关系的信息。

可以用来证明变量X的变化是否是变量Y的原因。

比如,当A和B之间存在负线性关系时,表明A的变化可能会导致B的变化,这可以帮助研究者推断出变量A的变化可能是导致变量B的原因。

线性相关的概念和应用可以广泛应用于商业,科学,教育和各种学科。

例如,在商业分析中,可以使用它来确定价格,消费者偏好习惯和消费者行为之间的线性关系,以决定某项商品或服务在市场上的价值。

在科学研究中,可以使用它来测量温度,压力和其他重要参数之间的线性关系,以获得更多的实验数据支持。

在教育中,线性相关也可以帮助教育者更全面地了解学生的成长,例如研究学生的学习时间和学习成绩之间的相互关系,可以帮助更好地指导教育实践。

总之,线性相关是一个重要的统计概念,它可以帮助我们从一个更宏观的视角来理解总体问题,并有助于解释和预测变量之间的线性关系。

两个变量的线性相关 (11)

两个变量的线性相关 (11)

2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关1.变量间的相关关系 (1)相关关系的定义变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,那么这两个变量之间的关系叫做相关关系,两个变量之间的关系分为函数关系和相关关系.(2)散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形叫做散点图.(3)正相关与负相关①正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.②负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.2.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程. (3)最小二乘法:求线性回归方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.其中,b ^是线性回归方程的斜率,a ^是线性回归方程在y 轴上的截距.1.下列两个变量具有相关关系的是( ) A .角度和它的余弦值 B .圆的半径和该圆的面积 C .正n 边形的边数和它的内角和 D .居民的收入与存款D [A 、B 、C 中两变量是确定的函数关系.]2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为( )A .y ^=1.5x +2 B .y ^=-1.5x +2 C .y ^=1.5x -2 D .y ^=-1.5x -2B [由散点图知,变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,故只有B 选项符合.]3.5位学生的数学成绩和物理成绩如下表:A .是函数关系B .是相关关系,但相关性很弱C .具有较好的相关关系,且是正相关D .具有较好的相关关系,且是负相关C [数学成绩x 和物理成绩y 的散点图如图所示.从图上可以看出数学成绩和物理成绩具有较好的相关关系,且成正相关.] 4.设有一个回归方程为y ^=2-1.5x ,则变量x 每增加1个单位时,y 平均减少________个单位.1.5 [因为y ^=2-1.5x ,所以变量x 每增加1个单位时,y 1-y 2=[2-1.5(x +1)]-(2-1.5x )=-1.5,所以y 平均减少1.5个单位.](2)判断y与x是否具有线性相关关系.[解](1)散点图如图所示.(2)由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.相关关系的判断方法(1)两个变量x和y具有相关关系的判断方法①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断;②表格、关系式法:结合表格或关系式进行判断;③经验法:借助积累的经验进行分析判断.(2)判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.1.下列关系中,属于相关关系的是________(填序号).①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.②④[在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.]1.任意两个统计数据是否均可以作出散点图? [提示] 任意两个统计数据均可以作出散点图. 2.任何一组数据都可以由最小二乘法得出回归方程吗?[提示] 用最小二乘法求回归方程的前提是先判断所给数据具有线性相关关系,否则求回归方程是无意义的.3.回归系数b ^的含义是什么?[提示] (1)b ^代表x 每增加一个单位,y 的平均增加单位数,而不是增加单位数.(2)当b ^>0时,两个变量呈正相关关系,含义为:x 每增加一个单位,y 平均增加b ^个单位数;当b ^<0时,两个变量呈负相关关系,含义为:x 每增加一个单位,y 平均减少b ^个单位数.【例2】 一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下: 零件数x (个) 10 20 30 40 50 60 70 80 90 100 加工时间y (分)626875818995102108115122(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程.思路点拨:画散点图→确定相关关系→求回归直线系数→写回归直线方程. [解] (1)画散点图如下:由上图可知y与x具有线性相关关系.(2)列表、计算:i 1 2 3 4 5 6 7 8 9 10 x i10 20 30 40 50 60 70 80 90 100 y i62 68 75 81 89 95 102 108 115 122x i y i620 1 360 2 250 3 240 4 450 5 700 7 140 8 6401035012200 a^=y-b^x=91.7-0.668×55=54.96.即所求的回归直线方程为:y^=0.668x+54.96.求回归直线方程的步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)(5)代入公式计算b ^,a ^,公式为(6)写出回归直线方程y ^=b ^x +a ^.2.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8y30 40 60 50 70(1)画出散点图;(2)求回归方程.[解](1)散点图如图所示.(2)列出下表,并用科学计算器进行有关计算.i 1 2 3 4 5x i 2 4 5 6 8y i30 40 60 50 70x i y i 60 160 300 300 560 x 2i416253664x =5,y =50,∑5i =1 x 2i =145,∑5i =1i i y i =1 380于是可得,b ^===6.5,a ^=y -b ^x =50-6.5×5=17.5. 于是所求的回归方程是y ^=6.5x +17.5.回归方程的应用学生 A B C D E 总成绩x 428 383 421 364 362 数学成绩y 7865716461(2)求y 对x 的线性回归方程(结果保留到小数点后3位数字); (3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩. [解] (1)散点图如图所示:(2)由题中数据计算可得 x =391.6,y=67.8,∑5i =1x 2i =770654,∑5i =1x i y i =133 548.代入公式得b ^=133 548-5×391.6×67.8770 654-5×391.62≈0.204,a ^=67.8-0.204×391.6≈-12.086,所以y 对x 的线性回归方程为y ^=-12.086+0.204x .(3)由(2)得当总成绩为450分时,y ^=-12.086+0.204×450≈80,即这个学生的数学成绩大约为80分.利用线性回归方程解题的常见思路及注意点(1)利用回归直线过样本点的中心,可以求参数问题,参数可涉及回归方程或样本点数据.(2)利用回归方程中系数b ^的意义,分析实际问题.(3)利用回归直线进行预测,此时需关注两点;①所得的值只是一个估计值,不是精确值;②变量x 与y 成线性相关关系时,线性回归方程才有意义,否则即使求出线性回归方程也是毫无意义的,用其估计和预测的量也是不可信的.3.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720.(1)求月储蓄y (千元)关于月收入x (千元)的线性回归方程; (2)若该居民区某家庭的月收入为7千元,预测该家庭的月储蓄. [解] (1)由题意知n =10,x =1n ∑10i =1x i =110×80=8,y =1n ∑n i =1y i =110×20=2,又∑ni =1x 2i -n x 2=720-10×82=80,∑10i =1x i y i -n x y =184-10×8×2=24,由此得b ^=2480=0.3,a ^=y -b ^y =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)将x =7代入线性回归方程,可以得到该家庭的月储蓄约为y ^=0.3×7-0.4=1.7(千元).1.判断变量之间有无相关关系,简便可行的方法就是绘制散点图.根据散点图,可看出两个变量是否具有相关关系,是否线性相关,是正相关还是负相关.2.求回归直线的方程时应注意的问题(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验.如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的.(2)用公式计算a ^,b ^的值时,要先算出b ^,然后才能算出a ^.3.利用回归方程,我们可以进行估计和预测.若回归方程为y ^=b ^x +a ^,则x=x 0处的估计值为y ^0=b ^x 0+a ^.1.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)相关关系是两个变量之间的一种确定的关系. ( ) (2)回归直线方程一定过样本中心点.( )(3)选取一组数据的部分点得到的回归方程与由整组数据得到的回归方程一定相同.( )[★答案★] (1)× (2)√ (3)×2.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( )A .不能小于0B .不能大于0C .不能等于0D .只能小于0C [当b ^=0时,不具有相关关系,b ^可以大于0,也可以小于0.]3.若施化肥量x (千克/亩)与水稻产量y (千克/亩)的回归方程为y ^=5x +250,当施化肥量为80千克/亩时,预计水稻产量为亩产________千克左右.650 [当x =80时,y ^=400+250=650.]4.2019年元旦前夕,某市统计局统计了该市2018年10户家庭的年收入和年饮食支出的统计资料如下表:年饮食支出y (万元) 0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3如果已知y 与x 是线性相关的,求回归方程.(参考数据:∑10i =1x i y i =117.7,∑10i =1x 2i =406)[解] 依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98, 又∵∑10i =1x i y i =117.7,∑10i =1x 2i =406,∴b ^=≈0.17,a ^=y -b ^ x =0.81,∴y ^=0.17x +0.81. ∴所求的回归方程为y ^=0.17x +0.81.。

两个变量间的线性相关及回归方程的求法专题

两个变量间的线性相关及回归方程的求法专题

两个变量间的线性相关及回归方程的求法专题一、如何认识两个变量间的相关关系相关关系我们可以从以下三个方面加以认识:(1)相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.例如正方形面积S与边长x之间的关系2xS就是函数关系.即对于边长x的每一个确定的值,都有面积S的惟一确定的值与之对应.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.例如人的身高与年龄;商品的销售额与广告费等等都是相关关系.(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如有人发现,对于在校儿童,身高与阅读技能有很强的相关关系.然而学会新词并不能使儿童马上长高,而是涉及到第三个因素——年龄,当儿童长大一些,他们的阅读能力会提高而且由于长大身高也会高些.(3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化.例如正方形面积S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计.相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还可使我们对函数关系的认识上升到一个新的高度.二、如何判断两个变量线性相关关系1、利用变量相关关系的概念利用变量相关关系的概念判断时,一般是看当一个变量的值一定时,另一个变量是否带有确定性,两个变量之间的关系具有确定关系--函数关系;两个变量之间的关系具有随机性,不确定性--相关关系。

例1、在下列各个量与量的关系中:①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④家庭的收入与支出之间的关系;⑤某户家庭用电量与水费之间的关系。

2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关

2.3.1 变量之间的相关关系   2.3.2   两个变量的线性相关

2.3 变量间的相关关系 2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关考点 学习目标核心素养 相关关系的概念理解两个变量的相关关系的概念 数学抽象 散点图 会作散点图,并利用散点图判断两个变量之间是否具有相关关系逻辑推理、数学建模回归直线方程会求回归直线方程数学运算问题导学(1)相关关系分为哪两种? (2)什么叫散点图?(3)什么叫回归直线?求回归直线的方法及步骤是什么?1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关①正相关:散点图中的点散布在从左下角到右上角的区域; ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程. (3)最小二乘法求回归直线方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.其中b ^是回归方程的斜率,a ^是回归方程在y 轴上的截距. ■名师点拨 (1)散点图的作用散点图形象地反映了各对数据的密切程度.根据散点图中点的分布趋势分析两个变量之间的关系,可直观地判断并得出结论.(2)回归直线的性质由a ^=y --b ^x -可知回归直线一定经过点(x -,y -),因此点(x -,y -)通常称为样本点的中心,其中,x -,y -分别是变量x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数.(3)线性相关关系强弱的定性分析线性相关关系的强弱体现在散点图中就是样本点越集中在某条直线附近,两变量的线性相关关系越强;样本点在某条直线附近越分散,两变量的线性相关关系越弱.判断正误(对的打“√”,错的打“×”) (1)线性回归方程必经过点(x -,y -).( )(2)对于方程y ^=b ^x +a ^,x 增加一个单位时,y 平均增加b ^个单位.( ) (3)样本数据中x =0时,可能有y =a ^.( ) (4)样本数据中x =0时,一定有y =a ^.( )解析:根据回归直线方程的意义知,(1)(2)都正确,而(3)(4)中,样本数据x =0时,y 的值可能为a ^,也可能不是a ^,故(3)正确.答案:(1)√ (2)√ (3)√ (4)×下列各图中所示的两个变量具有相关关系的是( )A .(1)(2)B .(1)(3)C .(2)(4)D .(2)(3)解析:选D.(1)为函数关系;(2)(3)为相关关系;(4)中,因为点分布得比较分散,两者之间无相关关系.5位学生的数学成绩和物理成绩如下表: 学科 A B C D E 数学 80 75 70 65 60 物理7066686462A .是函数关系B .是相关关系,但相关性很弱C .具有较好的相关关系,且是正相关D .具有较好的相关关系,且是负相关解析:选C.数学成绩x 和物理成绩y 的散点图如图所示.从图上可以看出数学成绩和物理成绩具有较好的相关关系,且成正相关. 设有一个回归方程为y ^=2-1.5x ,则变量x 每增加1个单位时,y 平均减少____________个单位.,解析:因为y ^=2-1.5x ,所以变量x 每增加1个单位时,y 1-y 2=[2-1.5(x +1)]-(2-1.5x )=-1.5,所以y 平均减少1.5个单位.答案:1.5相关关系的判断以下是在某地搜集到的不同楼盘新房屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:房屋面积x(m2)11511080135105销售价格y(万元)24.821.619.429.222(2)判断新房屋的销售价格和房屋面积之间是否具有相关关系?如果有相关关系,是正相关还是负相关?【解】(1)数据对应的散点图如图所示:(2)通过以上数据对应的散点图可以判断,新房屋的销售价格和房屋的面积之间具有相关关系,且是正相关.相关关系的判断方法(1)两个变量x和y具有相关关系的判断方法①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断;②表格、关系式法:结合表格或关系式进行判断;③经验法:借助积累的经验进行分析判断.(2)判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.[易错警示]在解答本题过程中,易出现如下错误:虽然五点中有四点大致分布在一条直线附近,但第二个点离这条直线太远,所以两个变量不相关,导致错误的原因是没有看主流点,而过分关注了不影响大局的个别点.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图所示.由这个散点图可以判断()A.变量x与y正相关B.变量x与y不相关C.变量x与y负相关D.变量x与y是函数关系解析:选C.由这个散点图可以判断,变量x与y负相关,故选C.线性回归方程的求法下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 345 6y 2.534 4.5 (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^. 【解】(1)散点图如图.(2)x-=3+4+5+64=4.5,y-=2.5+3+4+4.54=3.5,∑i=14x i y i=3×2.5+4×3+5×4+6×4.5=66.5,∑i=14x2i=32+42+52+62=86,所以b ^=∑4i =1x i y i -4x -y-∑4i =1x 2i -4x-2=66.5-4×4.5×3.586-4×4.52=0.7, a ^=y --b ^x -=3.5-0.7×4.5=0.35. 所以所求的线性回归方程为y ^=0.7x +0.35.如果把例题中的y 的值2.5及4.5分别改为2和5,如何求回归直线方程? 解:散点坐标分别为(3,2),(4,3),(5,4),(6,5). 可验证这四点共线, 斜率k =3-24-3=1,所以直线方程为y -2=x -3, 即回归直线方程为y ^=x -1.求线性回归方程的步骤(1)计算平均数x -,y -.(5)用a ^=y --b ^x -,求a ^. (6)写出回归方程.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量x之间的相关关系,现取了8对观测值,计算得:则y 关于x 的回归直线方程是( )A.y ^=11.47+2.62x B.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x解析:选A.利用题目中的已知条件可以求出x -=6.5,y -=28.5,然后利用回归直线方程的计算公式得b ^=∑8i =1x i y i -8x -y-∑8i =1x 2i -8x-2=1 849-8×6.5×28.5478-8×6.52≈2.62, a ^=y --b ^x -=11.47,因此回归直线方程为y ^=11.47+2.62x .线性回归方程的应用(2020·黑龙江省大庆铁人中学期末考试)某班主任为了对本班学生的月考成绩进行分析,从全班40名同学中随机抽取一个容量为6的样本进行分析.随机抽取6位同学的数学、物理分数对应如表:学生编号 1 2 3 4 5 6 数学分数x 60 70 80 85 90 95 物理分数y728088908595(1) (2)如果具有线性相关性,求出线性回归方程(系数精确到0.1);如果不具有线性相关性,请说明理由;(3)如果班里的某位同学数学成绩为50,请预测这位同学的物理成绩.【解】 (1)画出散点图:通过图象可以看出物理成绩y 与数学成绩x 之间具有线性相关性. (2)x -=16×(60+70+80+85+90+95)=80,y -=16×(72+80+88+90+85+95)=85,故b ^=0.6,a ^=37.故回归方程是y =0.6x +37. (3)当x =50时,解得y =67.故数学成绩为50,预测这位同学的物理成绩是67.利用线性回归方程解题的常见思路及注意点(1)利用回归直线过样本点的中心,可以求参数问题,参数可涉及回归方程或样本点数据.(2)利用回归方程中系数b ^的意义,分析实际问题.(3)利用回归直线进行预测,此时需关注两点:①所得的值只是一个估计值,不是精确值;②变量x 与y 成线性相关关系时,线性回归方程才有意义,否则即使求出线性回归方程也是毫无意义的,用其估计和预测的量也是不可信的.(2020·江西省临川第一中学期末考试)我国西部某贫困地区2011年至2017年农村居民家庭人均年收入y (千元)的数据如下表:年份 2011 2012 2013 2014 2015 2016 2017 年份代号x 1 2 3 4 5 6 7 人均年收入y2.93.33.64.44.85.25.9(2)利用(1)中的回归方程,预测该地区2019年农村居民家庭人均年收入将达到多少千元.解:(1)依题意x -=4,y -=4.3,从而b ^=0.5,a ^=y --b ^x -=4.3-0.5×4=2.3, 故所求线性回归方程为y ^=0.5x +2.3. (2)令x =9,得y ^=0.5×9+2.3=6.8.预测该地区在2019年农村居民家庭人均年收入为6.8千元.1.我们常说“吸烟有害健康”,吸烟与健康之间的关系是( ) A .正相关 B .负相关 C .无相关D .不确定解析:选B.烟吸得越多,则健康程度越差.2.关于回归直线方程y ^=a ^+b ^x 的叙述正确的是( ) ①反映y ^与x 之间的函数关系; ②反映y 与x 之间的函数关系; ③表示y ^与x 之间的不确定关系;④表示最接近y 与x 之间真实关系的一条直线. A .①② B .②③ C .③④ D .①④解析:选D.y ^=a ^+b ^x 表示y ^与x 之间的函数关系,而不是y 与x 之间的函数关系,它反映的关系最接近y 与x 之间的真实关系.故①④正确.3.在最小二乘法中,用来刻画各个样本点到直线y =a ^+b ^x 的“距离”的量是( ) A .|y i -y -| B .(y i -y -)2 C .|y i -(a ^+b ^x i )|D .[y i -(a ^+b ^x i )]2解析:选D.最小二乘法的定义明确给出,用[y i -(a ^+b ^x i )]2来刻画各个样本点与这条直线之间的“距离”(即二者之间的接近程度),用它们的和表示所有样本点与这条直线的接近程度.4.已知工厂加工零件的个数x 与花费时间y (h)之间的线性回归方程为y ^=0.01x +0.5,则加工200个零件大约需要________小时.解析:将200代入线性回归方程y ^=0.01x +0.5, 得y ^=2.5. 答案:2.5[A 基础达标]1.如图所示是具有相关关系的两个变量的一组数据的散点图,去掉哪个点后,两个变量的相关关系更明显( )A .DB .EC .FD .A解析:选C.A 、B 、C 、D 、E 五点分布在一条直线附近且贴近该直线,而F 点离得远,故去掉点F .2.(2020·江西省上饶市期末统考)某车间为了规定工时定额,需要确定加工零件所花费用的时间,为此进行了5次实验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程为y ^=7.8x +40.2.零件数x (个) 1 23 4 5 加工时间y (min)50677179A .55B .55.8C .59D .51解析:选 D.设表中模糊的数据为m .由表中的数据可得x -=1+2+3+4+55=3,y -=50+m +67+71+795=267+m5,又由回归直线的方程为y ^=7.8x +40.2,所以267+m 5=7.8×3+40.2,解得m =51.即表中模糊的数据为51.故选D.3.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( ) A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关解析:选C.因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′解析:选C.由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,从而b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑6i =1x i y i -6x -·y-∑6i =1x 2i -6x-2=58-6×72×13691-6×⎝⎛⎭⎫722=57,a ^=y --b ^x -=136-57×72=-13,所以b ^<b ′,a ^>a ′. 5.(2020·广西钦州市期末考试)若回归直线y ^=b ^x +a ^的斜率估值为1.23,样本中心点为(4,5),当x =2时,估计y 的值为____________.解析:因为回归直线y ^=b ^x +a ^的斜率估值为1.23,所以b ^=1.23,y ^=1.23x +a ^. 因为样本中心点为(4,5),所以5=1.23×4+a ^,a ^=0.08,y ^=1.23x +0.08, 代入x =2,y =1.23×2+0.08=2.54. 答案:2.546.(2020·湖北省宜昌市葛洲坝中学期末考试)某公司借助手机微信平台推广自己的产品,对今年前5个月的微信推广费用x 与利润额y (单位:百万元)进行了初步统计,得到下列表格中的数据:x 2 4 5 6 8 y304060p70经计算,月微信推广费用x 与月利润额y 满足线性回归方程y ^=6.5x +17.5,则p 的值为____________.解析:由题中数据可得x -=2+4+5+6+85=5,y -=30+40+60+p +705=200+p5.由线性回归方程y ^=6.5x +17.5经过样本中心(x -,y -), 有200+p 5=6.5×5+17.5,解得p =50.答案:507.对某台机器购置后的运营年限x (x =1,2,3,…)与当年利润y 的统计分析知具备线性相关关系,线性回归方程为y ^=10.47-1.3x ,估计该台机器使用________年最合算.解析:只要预计利润不为负数,使用该机器就算合算,即y ^≥0,所以10.47-1.3x ≥0,解得x ≤8.05,所以该台机器使用8年最合算.答案:88.(2020·湖南省张家界市期末联考)为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如表:x 1 2 3 4 5 y86542(1)求x -,y -;(2)求y 关于x 的线性回归方程y ^=b ^x +a ^; (3)若年产量为4.5吨,试预测该农产品的价格.解:(1)计算可得x -=1+2+3+4+55=3,y -=8+6+5+4+25=5.(2)b ^=∑5i =1x i y i -5x -y-∑5i =1x 2i -5x-2=61-5×3×555-5×32=-1.4, 因为线性回归直线过(x -,y -),则a ^=y --b ^x -=5-(-1.4×3)=9.2, 故y 关于x 的线性回归方程是y ^=-1.4x +9.2. (3)当x =4.5时,y ^=-1.4×4.5+9.2=2.9(千元/吨).9.(2020·河北省石家庄市期末考试)在一段时间内,分5次测得某种商品的价格x (万元)和需求量y (吨)之间的一组数据为(1)根据上表数据,求出回归直线方程y =b x +a ;(2)试根据(1)中求出的回归方程预估当价格为1.9万元时,需求量大约是多少吨?(参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -n x -y -∑n i =1x 2i -n (x )-2,a ^=y --b ^x -)解:(1)因为x -=15×9=1.8,y -=15×37=7.4,∑i =15 x i y i =62,∑i =15x 2i =16.6,所以 b ^=∑5i =1x i y i -5x -y-∑5i =1x 2i -5(x )-2=62-5×1.8×7.416.6-5×1.82=-11.5, a ^=y --b ^x -=7.4+11.5×1.8=28.1, 故y 对x 的线性回归方程为y ^=28.1-11.5x . (2)y =28.1-11.5×1.9=6.25(吨).所以如果价格为1.9万元,则需求量大约是6.25吨.[B 能力提升]10.对两个变量的四组数据进行统计,获得以下散点图,关于两个变量相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3解析:选A.由相关系数的定义以及散点图的含义,可知r 2<r 4<0<r 3<r 1.11.期中考试后,某校高三(9)班班主任对全班65名学生的成绩(单位:分)进行分析,得到数学成绩y 关于总成绩x 的回归直线方程为y ^=6+0.4x .由此可以估计:若2名同学的总成绩相差50分,则他们的数学成绩大约相差________分.解析:设两名同学的总成绩分别为x 1,x 2,则对应的数学成绩估计为y ^1=6+0.4x 1,y ^2=6+0.4x 2,所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20.答案:2012.(2020·湖北省宜昌县域高中协同发展共同体期末考试)为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料:组号 1 2 3 4 5 温差x (℃) 10 11 13 12 8 发芽数y (颗)2325302616组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -n x -y -∑n i =1x 2i -n x-2,a ^=y --b ^x -)解:(1)由题意:x -=11+13+123=12,y -=25+30+263=27,b ^=∑3i =1 (x i -x -)(y i -y -)∑3i =1 (x i -x -)2=(x 1-x -)(y 1-y -)+(x 2-x -)(y 2-y -)+(x 3-x -)(y 3-y -)(x 1-x -)2+(x 2-x -)2+(x 3-x -)2=(11-12)×(25-27)+(13-12)×(30-27)+(12-12)×(26-27)(11-12)2+(13-12)2+(12-12)2=52, a ^=y --b ^x -=27-52×12=-3,故回归直线方程为y ^=52x -3.(2)当x =10时,y =52×10-3=22,|22-23|=1<2,当x =8时,y =52×8-3=17,|17-16|=1<2,所以(1)中所得的回归直线方程是可靠的.13.(选做题)(2019·黑龙江省牡丹江市第一高级中学期末考试)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i=xi,w-=18i=18w i.(1)根据散点图判断,y=a+bx与y=c+d x哪一个适宜作为年销售量y关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为解:(1)由散点图可以判断,y=c+d x适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的线性回归方程.由于d=108.81.6=68,c^=y--d^w-=563-68×6.8=100.6,所以y关于w的线性回归方程为y^=100.6+68w,因此y关于x的回归方程为y^=100.6+68x.(3)(ⅰ)由(2)知,当x=49时,年销售量y的预报值y^=100.6+6849=576.6,年利润z的预报值z^=576.6×0.2-49=66.32.(ⅱ)根据(2)的结果知,年利润z的预报值z^=0.2(100.6+68x)-x=-x+13.6x+20.12.所以当x=13.62=6.8,即x=46.24时,z^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。

第三节 变量间的相关关系、统计案例(数学建模八)

第三节 变量间的相关关系、统计案例(数学建模八)
3.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的 是 ( C ) A.x与y正相关,x与z负相关 B.x与y正相关,x与z正相关 C.x与y负相关,x与z负相关 D.x与y负相关,x与z正相关 答案 C 由y=-0.1x+1,知x与y负相关,即y随x的增大而减小,又y与z正 相关,所以z随y的增大而增大,所以z随x的增大而减小,即x与z负相关,故 选C.
A.①② B.②③ C.③④ D.①④
答案 D
^^ ^
^
^
解析 由回归直线方程 y = bx+ a,知当 b>0时,y与x正相关;当 b<0时,y与x负
相关,∴①④一定不正确.故选D.
考点突破 栏目索引
方法技巧 判定两个变量正、负相关性的方法 (1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从 左上角到右下角,两个变量负相关. (2)相关系数:r>0时,正相关:r<0时,负相关. (3)线性回归方程: b^ >0时,正相关: b^ <0时,负相关.
教材研读 栏目索引
(3)线性相关关系、回归直线 如果散点图中点的分布从整体上看大致在⑤ 一条直线附近 ,就称这 两个变量之间具有线性相关关系,这条直线叫做回归直线. (4)最小二乘法 求回归直线,使得样本数据的点到它的⑥ 距离的平方和最小 的方法 叫做最小二乘法.
教材研读 栏目索引
(5)回归方程
考点突破 栏目索引
(1)依据折线图计算相关系数r(精确到0.01),并据此判断是否可用线性回 归模型拟合y与x的关系.(若|r|>0.75,则线性相关程度很高,可用线性回归 模型拟合) (2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分

两个变量的相关性

两个变量的相关性
4
xiyi=3×2.5+4×3+4×5+6×4.5=66.5(吨 2),
i=1
4
xi2=32+42+52+62=86(吨 2),
i=1
4
xiyi-4 x ·y
i=1
∴^b=
4
=66.58-6-4×4×3.45.×52 4.5=0.7,
xi2-4 x 2
i=1
^a= y -^b x =3.5-0.7×4.5=0.35,∴^y=0.7x+0.35.
方法,即使得样本数据的点到回归直线的距离的
_平__方__和__最__小__的方法叫做最小二乘法.
回归直线通过样本点的中心,对照平均数与样本数据 之间的关系,你能说说回归直线与散点图中各点之间的关 系吗? 提示 假设样本点为(x1,y1)(x2,y2),…,(xn,yn),记 x =
n1i=n1xi, y =n1i=n1yi,则( x , y )为样本点的中心,回归直线一
规律方法 (1)函数关系是一种确定性关系,如匀速直线 运动中路程s与时间t的关系;相关关系是一种非确定性关 系,如一块农田的水稻产量与施肥量之间的关系. (2)判断两个变量是否是相关关系的关键是看这两个变量 之间是否具有不确定性.
题型二 求线性回归方程
【例2】某地10户家庭的年收入和年饮食支出的统计资料如
规律方法 1.判断两个变量 x 和 y 间是否具有线性相关关 系,常用的简便方法就是绘制散点图,如果发现点的分布从 整体上看大致在一条直线附近,那么这两个变量就是线性相 关的.否则,所求直线方程毫无意义. 2.求回归方程的步骤
n
n
(1)计算 x , y ,xi2,xiyi
i=1
i=1
n
xiyi-n x y

两个变量之间的线性关系

两个变量之间的线性关系
感谢观看
其中,xi和yi分别是两个变量 的观测值,x̄和ȳ分别是它们
的均值。
相关系数的解释
01
02
03
相关系数的绝对值大小 表示两个变量之间的线 性关系的强度,绝对值 越接近1表示关系越强。
相关系数的正负号表示 线性关系的方向,正号 表示正相关,负号表示
负相关。
相关系数只衡量线性关 系,对于非线性关系无
法准确描述。
两个变量之间的线性 关系
目录
• 线性关系的定义 • 线性回归分析 • 线性相关系数 • 线性预测与决策 • 案例分析
01
线性关系的定义
什么是线性关系
线性关系是指两个变量之间存在一种 关系,其中一个变量(自变量)的变 化会导致另一个变量(因变量)按照 一定的比例变化。
在线性关系中,自变量和因变量之间 的关系可以用一条直线来描述,因此 称为线性关系。
案例二:气温与空调销量的线性关系
总结词:负相关
详细描述:气温与空调销量之间存在负相关关系。当气温升高时,人们对空调的需求增加,空调销量随之上升。反之,当气 温降低时,空调销量则会下降。这种关系可以用一条直线表示,斜率为负,表示两个变量呈负相关。
案例三:GDP与人口数量的线性关系
总结词
不完全正相关
03
预测值与实际值之间的差距最小化。
线性回归模型的建立
01
线性回归模型的建立需要收集两个变量之间的观测数据,并确定因变 量和自变量之间的关系。
02
在建立模型之前,需要对数据进行探索性分析和预处理,包括缺失值 处理、异常值处理、数据转换等。
03
线性回归模型的一般形式为:Y = β0 + β1X + ε,其中Y是因变量, X是自变量,β0和β1是回归系数,ε是误差项。

线性相关

线性相关

0.964
即基础代谢与体重之间的相关系数为0.964,呈正相关, 说明基础代谢随体重的增加而升高
三、相关系数的统计推断
(一)假设检验方法: 查表法
按自由度υ=n-2查r界值表,如果样本相关系数r大于界值,
则具有统计学意义,线性相关关系存在
t检验法
tr
r0 sr
υ=n-2
sr
1 r2 n2
例3 继例2中算得r=0.964后,试检验相关是 否具有统计学意义
• 例4 某地研究2~7岁急性白血病患儿的血小 板数与出血症状程度之间的相关性,结果见 表2,试用秩相关进行分析
表2 急性白血病患儿的血小板(109/L)和出血症状
病人编号 血小板数 秩次 p2 出血症状
X
p
Y
(1)
(2)
(3) (4) (5)
1
121
1 1 +++
2
138
2 4 ++
3
165
39
当n>50时,也可采用前面Pearson相关系 数的检验公式--t检验法
例5 对例4的秩相关系数作假设检验
• 例4中算得rs 0.442 查 rs 临界值表, rs r12,0.1 0.503 ,按 0.05的水准,不能拒 绝 H0 ,可以认为急性白血病患儿的出血症 状与血小板数之间无相关关系
3000
3500
4000
4500
基础代谢
5000
5500
图 14名中年健康妇女的基础代谢与体重的散点图
线性相关(linear correlation)
• 又称简单相关(simple correlation) • 是指两个随机变量X、Y之间呈直线型变化趋势

相关系数r的两个公式

相关系数r的两个公式

相关系数r的两个公式相关系数是统计学中一种用来衡量两个变量之间关联程度的指标。

它反映了两个变量之间的线性关系程度,范围介于-1和1之间。

如果相关系数接近1,说明两个变量正相关强烈;如果接近-1,说明两个变量负相关强烈;如果接近0,说明两个变量无线性关系。

下面将介绍相关系数r的两种计算公式。

第一种公式是皮尔逊相关系数公式:皮尔逊相关系数公式用于计算两个连续变量之间的相关性。

公式如下:r = Σ((x_i - x̄)(y_i - ȳ)) / sqrt(Σ(x_i - x̄)^2) *sqrt(Σ(y_i - ȳ)^2)其中,r表示相关系数,x_i和y_i表示变量x和y的观测值,x̄和ȳ表示变量x和y的平均值。

皮尔逊相关系数的计算过程可以分为三个步骤:1. 计算每个变量的观测值与其平均值之差。

2. 将这些差值相乘。

3. 将乘积的总和除以两个变量差值的平方和的乘积。

第二种公式是斯皮尔曼相关系数公式:斯皮尔曼相关系数公式用于计算两个有序变量之间的相关性。

公式如下:r_s = 1 - (6Σd_i^2) / (n(n^2 - 1))其中,r_s表示斯皮尔曼相关系数,d_i表示两个变量之间的差异,n表示变量的个数。

斯皮尔曼相关系数的计算过程可以分为四个步骤:1. 将变量的观测值按照大小顺序进行排列,并赋予相应的秩次。

2. 计算每个变量的秩次之差。

3. 将差值平方并求和。

4. 根据公式计算斯皮尔曼相关系数。

相关系数r的两种公式可以应用于不同类型的数据分析中。

皮尔逊相关系数适用于连续变量且满足线性关系的情况,而斯皮尔曼相关系数更适合于有序变量或非线性关系的情况。

在实际应用中,相关系数可以帮助我们理解变量之间的关系,并预测它们的变化趋势。

例如,在市场调研中,我们可以使用相关系数来分析广告投放与销售额之间的关系,从而确定最有效的市场推广策略。

同时,相关系数的值还可以用来评估模型的拟合程度。

如果相关系数接近1或-1,则说明模型的拟合效果较好;如果接近0,则表示模型的拟合效果较差。

线性相关的三种判断方法

线性相关的三种判断方法

线性相关的三种判断方法
现代社会,由于互联网的发展,线性相关性变得越来越重要,也越来越受到关注。

线性相关是指一组变量之间的相互关系,一般来讲,当数据具有线性关系时,两个变量会呈现线性增长或线性下降。

那么如何确定变量有线性关系呢?本文将介
绍线性相关性的三种判断方法。

首先,最简单的方法就是散点图法,它是一种图形化分析方法,可以用来发现
数据变量之间的线性关系。

其次,还可以使用相关性分析法,这是一种数据分析方法,能够准确地揭示两个变量之间的相关性,通常可以使用相关性系数衡量两个变量的线性Oneness程度来发现线性关系;最后,还可以使用回归分析法来确定线性关系,它可以对现有数据进行拟合,并产生一个可以刻画数据间线性Oneness的线性回归模型。

总结起来,线性相关的三种判断方法有散点图法、相关性分析法和回归分析法,它们都通过检测变量的相关性来发现线性关系。

该类方法在比较定量分析两个变量之间的关系时,一直是使用较为常见的分析办法。

2020年高中数学必修三第二章《统计》2.3.1变量之间的相关关系-2.3.2两个变量的线性相关

2020年高中数学必修三第二章《统计》2.3.1变量之间的相关关系-2.3.2两个变量的线性相关

2020年高中数学必修三第二章《统计》2.3.1变量之间的相关关系2.3.2两个变量的线性相关学习目标 1.了解变量间的相关关系,会画散点图;2.根据散点图,能判断两个变量是否具有相关关系;3.了解线性回归思想,会求回归直线的方程.知识点一变量间的相关关系思考1粮食产量与施肥量间的相关关系是正相关还是负相关?答案在施肥不过量的情况下,施肥越多,粮食产量越高,所以是正相关.思考2怎样判断一组数据是否具有线性相关关系?答案画出散点图,若点大致分布在一条直线附近,就说明这两个变量具有线性相关关系,否则不具有线性相关关系.梳理1.相关关系的定义变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,那么这两个变量之间的关系叫做相关关系,两个变量之间的关系分为函数关系和相关关系.2.散点图将样本中n个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形叫做散点图.3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.知识点二两个变量的线性相关思考任何一组数据都可以由最小二乘法得出线性回归方程吗?答案用最小二乘法求线性回归方程的前提是先判断所给数据是否具有线性相关关系(可利用散点图来判断),否则求出的线性回归方程是无意义的.梳理 回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程. (3)最小二乘法:求线性回归方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b ^x ,其中,b ^是线性回归方程的斜率,a ^是线性回归方程在y 轴上的截距.类型一 相关关系的判断与应用 命题角度1 判断两个变量的相关性例1 为了研究质量对弹簧长度的影响,对6根相同的弹簧进行测量,所得数据如下:判断它们是否有相关关系,若有,判断是正相关还是负相关. 解 散点图如图:由散点图可以看出两个变量对应的点大致分布在一条直线附近,因此可以得出结论:质量与弹簧长度这两个变量具有相关关系,且它们是正相关关系.反思与感悟在研究两个变量之间是否存在某种关系时,必须从散点图入手,对于散点图,可以作出如下判断:(1)如果所有的样本点都落在某一函数曲线上,那么就用该函数来描述变量之间的关系,即变量之间具有函数关系;(2)如果所有的样本点都落在某一直线附近,那么变量之间就有线性相关关系;(3)如果散点图中的点的分布几乎没有什么规律,那么这两个变量之间不具有相关关系,即两个变量之间是相互独立的.跟踪训练1下表是某地的年降雨量与年平均气温的统计表,判断两者是否具有相关关系,求线性回归方程有意义吗?解以x轴为年平均气温,y轴为年降雨量,可得相应的散点图如图.因为图中各点并不在一条直线的附近,所以两者不具有线性相关关系,没必要用回归直线进行拟合,即使用公式法求出线性回归方程也是没有意义的.命题角度2函数关系与相关关系的区别与联系例2下列关系中,是相关关系的是________.①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.答案②④解析①中,正方形的边长与面积之间的关系是函数关系;②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人达到一定年龄后,身高就不发生明显变化了,所以它们不具有相关关系;④中,降雪量与交通事故的发生率之间具有相关关系. 反思与感悟 相关关系与函数关系的区别与联系如表所示:跟踪训练2 下列图形中两个变量具有相关关系的是( )答案 C解析A 是一种函数关系;B 也是一种函数关系;C 中从散点图中可看出所有点看上去都在某条直线附近波动,具有相关关系,而且是一种线性相关;D 中所有的点在散点图中没有显示任何关系,因此变量间是不相关的. 类型二 回归直线的求解与应用例3 一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器运转速度的变化而变化,下表为抽样试验的结果:(1)画出散点图;(2)如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系;(3)在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内? 解 (1)散点图如图所示:(2)近似直线如图所示:(3)由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.引申探究1.本例(3)中近似方程不变,若每增加一个单位的转速,生产有缺点的零件数近似增加多少? 解 因为y =5170x -67,所以当x 增加一个单位时,y 大约增加5170.2.本例(3)中近似方程不变,每小时生产有缺点的零件件数是7,估计机器的转速. 解 因为y =5170x -67,所以当y =7时,7=5170x -67,解得x ≈11.反思与感悟 求线性回归方程的一般步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x ,y,∑i =1nx 2i ,∑i =1nx i y i .(5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x2,a ^=y -b ^x .(6)写出线性回归方程y ^=b ^x +a ^.跟踪训练3 (1)变量y 与x 满足线性回归方程y ^=b ^x +a ^,现在将y 的单位由厘米变为米,x的单位由毫米变为米,则在新的线性回归方程y ^=b ^*x +a ^*中,b ^*是b ^的____________倍.(2)为了均衡教育资源,加大对偏远地区的教育投入,调查了某地区若干户家庭的年收入x (单位:万元)和年教育支出y (单位:万元),调查显示年收入x 与年教育支出y 具有相关关系,并由调查数据得到y 对x 的线性回归方程为y ^=0.15x +0.2.由线性回归方程可知,家庭年收入每增加1万元,年教育支出平均增加________万元. 答案 (1)10 (2)0.15解析 (1)由回归系数公式知,当y 的值变为原来的10-2倍,x 的值变为原来的10-3倍时,b^*的值应为原来的10倍.(2)回归直线的斜率为0.15,所以家庭年收入每增加1万元,年教育支出平均增加0.15万元.1.设有一个线性回归方程为y ^=2-1.5x ,则变量x 增加1个单位时,y 平均( ) A .增加1.5个单位 B .增加2个单位 C .减少1.5个单位 D .减少2个单位答案 C2.由三点(3,10),(7,20),(11,24)确定的线性回归方程为( ) A.y ^=1.75x -5.75 B.y ^=1.75x +5.75 C.y ^=-1.75x +5.75 D.y ^=-1.75x -5.75答案 B解析 设线性回归方程为y ^=b ^x +a ^, 则b ^=x 1y 1+x 2y 2+x 3y 3-3x y x 21+x 22+x 23-3x2=3×10+7×20+11×24-3×7×189+49+121-3×49=1.75,a ^=y -b ^x =18-1.75×7=5.75. 故y ^=1.75x +5.75,故选B.3.某地区近10年居民的年收入x 与年支出y 之间的关系大致符合y ^=0.8x +0.1(单位:亿元),预计今年该地区居民收入为15亿元,则今年支出估计是________亿元. 答案 12.1解析 将x =15代入y ^=0.8x +0.1,得y ^=12.1.4.某市居民2012~2016年家庭年平均收入x (单位:万元)与年平均支出y (单位:万元)的统计资料如表所示:根据统计资料,居民家庭年平均收入的中位数是__________万元,家庭年平均收入与年平均支出有________线性相关关系. 答案 13 正解析 考查中位数的定义,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时需取中间两数的平均数.由统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.5.某5名学生的总成绩和数学成绩(单位:分)如表所示:(1)画出散点图;(2)求y 对x 的线性回归方程(结果保留到小数点后3位数字); (3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩. 解 (1)散点图如图所示:(2)由题中数据计算可得x =391.6,y =67.8,∑i =15x 2i =770 654,∑i =15x i y i =133 548.代入公式得b ^=133 548-5×391.6×67.8770 654-5×391.62≈0.204,a ^=67.8-0.204×391.6≈-12.086,所以y 对x 的线性回归方程为y ^=-12.086+0.204x .(3)由(2)得当总成绩为450分时,y ^=-12.086+0.204×450≈80,即这个学生的数学成绩大约为80分.1.判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图.根据散点图,可以很容易看出两个变量是否具有相关关系,是不是线性相关,是正相关还是负相关. 2.求线性回归方程时应注意的问题(1)知道x 与y 成线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出线性回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的. (2)用公式计算a ^、b ^的值时,要先计算b ^,然后才能算出a ^.3.利用回归方程,我们可以进行估计和预测.若回归方程为y ^=b ^x +a ^,则x =x 0处的估计值为y ^0=b ^x 0+a ^.40分钟课时作业一、选择题1.某商品销售量y (件)与销售价格x (元/件)负相关,则其线性回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200答案 A解析 x 的系数为负数,表示负相关,排除B 、D ,由实际意义可知x >0,y >0,C 中,散点图在第四象限无意义,故选A.2.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 答案 D解析 由柱形图可知:A 、B 、C 均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,所以D 不正确.3.对变量x ,y 有观测数据(x i ,y i )(i =1,2,3,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,3,…,10),得散点图2,由这两个散点图可以判断( )A .y 与x 正相关,v 与u 正相关B .y 与x 正相关,v 与u 负相关C .y 与x 负相关,v 与u 正相关D .y 与x 负相关,v 与u 负相关 答案 C解析 根据散点图直接进行判断.4.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5 D.y ^=-0.3x +4.4答案 A解析 由变量x 与y 正相关知C 、D 均错,又回归直线经过样本点的中心(3,3.5),代入验证得A 正确,B 错误.故选A. 5.已知x 与y 之间的一组数据:若y 与x 线性相关,则y 与x 的回归直线y ^=b ^x +a ^必过( ) A .点(2,2) B .点(1.5,0) C .点(1,2) D .点(1.5,4)答案 D 解析 ∵x =0+1+2+34=1.5,y =1+3+5+74=4, ∴回归直线必过点(1.5,4).故选D. 6.已知x ,y 的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x +132,则b ^等于( )A .-12B.12 C .-110D.110答案 A 解析 ∵x =2+3+43=3,y =6+4+53=5, ∴回归直线过点(3,5),∴5=3b ^+132,∴b ^=-12,故选A.二、填空题7.为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的数据,计算得回归方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.答案 6解析 x =3+4+5+6+75=5,y =2.5+3+4+4.5+c 5=14+c 5,代入回归方程中得14+c5=0.85×5-0.25,解得c =6.8.如图所示的五组数据(x ,y )中,去掉________后,剩下的四组数据相关性增强.答案 (4,10)解析 去掉点(4,10)后,其余四点大致在一条直线附近,相关性增强. 9.在一次试验中测得(x ,y )的四组数据如下:根据上表可得线性回归方程y ^=-5x +a ^,据此模型预报当x =20时,y 的值为________. 答案 26.5解析 x =16+17+18+194=17.5,y =50+34+41+314=39,∴回归直线过点(17.5,39), ∴39=-5×17.5+a ^, ∴a ^=126.5,∴当x =20时,y =-5×20+126.5=26.5.10.某工厂对某产品的产量与成本的资料分析后有如下数据:由表中数据得到的线性回归方程y ^=b ^x +a ^中b ^=1.1,预测当产量为9千件时,成本约为________万元. 答案 14.5解析 由表中数据得x =4,y =9,代入线性回归方程得a ^=4.6,∴当x =9时,y ^=1.1×9+4.6=14.5. 三、解答题11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求两变量之间的回归方程y ^=b ^x +a ^;(2)利用(1)中所求出的回归方程预测该地第6年的粮食需求量. 解 (1)由所给数据得 x =3,y =5.8,b ^=∑i =15(x i -x )(y i -y )∑i =15(x i -x )2=1.1,a ^=y -b ^x =2.5, ∴y ^=1.1x +2.5.故所求的回归方程为y ^=1.1x +2.5. (2)第6年的粮食需求量约为 y ^=1.1×6+2.5=9.1(万吨).12.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求月储蓄y (千元)关于月收入x (千元)的线性回归方程; (2)若该居民区某家庭的月收入为7千元,预测该家庭的月储蓄. 解 (1)由题意知n =10,x =1n ∑i =110x i =110×80=8,y =1n ∑i =110y i =110×20=2,又∑i =110x 2i -n x 2=720-10×82=80, ∑i =110x i y i -n x y =184-10×8×2=24,由此得b ^=2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)将x =7代入线性回归方程,可以得到该家庭的月储蓄约为y ^=0.3×7-0.4=1.7(千元). 13.为了分析某高三学生的学习状态,对其下一阶段的学习提供指导性建议,现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩(单位:分).(1)他的数学成绩与物理成绩哪个更稳定?并说明理由;(2)已知该学生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少分,并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.解 (1)x =100+-12-17+17-8+8+127=100,y =100+-6-9+8-4+4+1+67=100,s 2数学=142,s 2物理=2507,因为s 2数学>s 2物理, 所以他的物理成绩更稳定.(2)由于x 与y 之间具有线性相关关系,经计算得b ^=0.5,a ^=100-0.5×100=50. 所以线性回归方程为y ^=0.5x +50. 当y =115时,x =130. 估计他的数学成绩是130分.建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.。

变量之间相关关系两个变量线性相关

变量之间相关关系两个变量线性相关

脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
方案3.如果多取几对点,确定多条直线,再求出这些直线的斜率和截距的 平均值作为回归直线的斜率和截距而得回归方程. 如图:
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
(1)画出散点图; (2)从散点图中发现气温与热饮杯数之间关系的一般规律; (3)求回归方程; (4)如果某天的气温是2℃,预测这天卖出的热饮杯数.
摄 ( ℃ 氏 ) 温 度 - 5 0 4 7 1 2 1 5 1 92 32 7 3 1 3 6 热 饮 杯 数 1 5 61 5 01 3 2 1 2 8 1 3 0 1 1 61 0 48 99 3 7 6 5 4
对一组具有线性相关关系的样本数据:(x1,y1),(x2, y2),…,(xn,yn),如何求回归方程?
yˆ bˆx aˆ
yˆ bˆx aˆ
n
( xi x )( y i y )
bˆ i 1
n
(xi x )2
i 1
n
xiyi n x y
i 1 n
,
x
2 i
nx 2
i 1
aˆ y bˆ x
这些点散布在从左下角到右上角的区域,对于两个变
量的这种相关关系,我们将它称为正相关.
如果两个变量成负相关,从整体上看这两个变量的变化 趋势如何?
一个变量随另一个变量的变大而变小,散点图中的点 散布在从左上角到右下角的区域.
例1 在下列两个变量的关系中,哪些是相关关系? ①正方形边长与面积之间的关系; ②作文水平与课外阅读量之间的关系; ③人的身高与年龄之间的关系; ④降雪量与交通事故的发生率之间的关系. ②③④
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个变量的线性相关关系
练习:
1.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.
(1(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程
y bx
a =+ ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)
2.某地区家庭调查资料得到,每户平均年收入为8800元,每户平均年消费支出为6000元,支出对于收入的回归方程的斜率b 为0.8
(1)求支出对于收入的回归系数a ;
(2)收入每增加1元,支出平均增加多少元?
3.某种产品的广告费支出x (单位:百万元)与销售额y (单位:百万元)之间
(2)求线性回归方程;
(3)预测当广告费支出为7百万元时的销售额
1.(2)由系数公式可知,2
66.54 4.5 3.566.5634.5, 3.5,0.75864 4.5x y b -⨯⨯-=====-⨯ 93.50.70.352
a =-⨯=,所以线性回归方程为0.70.35y x =+; (3)x=100时,0.70.3570.35y x =+=,所以预测生产100吨甲产品的
生产能耗比技术改造前降低19.65吨标准煤.。

相关文档
最新文档