2006年初一下学期期中考试数学试卷(一)_4

合集下载

湖南省岳阳市汨罗市2023-2024学年七年级上学期期中考试数学试卷(含答案)

湖南省岳阳市汨罗市2023-2024学年七年级上学期期中考试数学试卷(含答案)

2023年-2024学年度第一学期义务教育学业水平监测七年级数学科时量:120分钟总分:120分一、选择题(共10小题,每小题3分,共30分)1.中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作500-年,那么公元2023年应记作()A.2023-年.B.1523+年.C.2023+年.D.2523+年.2.下列各数不是有理数的是()A.1.21B.2- C.2πD.123.12023-的相反数是()A.12023B.12023-C.2023- D.20234.在汨罗市委、市政府“捐资助学、众筹兴教”号召下,汨罗市各镇及部门单位持续发力,商会、企业、爱心人士及全市人民共同努力和无私奉献,截至2023年3月,全市教育基金累计已超10001万元,10001万用科学计数法表示为()A.41000110⨯ B.81.000110⨯ C.71.000110⨯ D.90.1000110⨯5.下列各组数中,相等的一组是()A.()1--与1-- B.23-与()23-C.()34-与34- D.223与223⎛⎫⎪⎝⎭6.下列各组式子中,是同类项的是().A 2a b 与2b aB.ab -与3baC.22a bc 与25a bD.ab -与22ab -7.下列计算正确的是()A.347a a a += B.22a a -= C.23a a a+= D.43a a a-=8.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:今有共买物,人出八,盈三;人出七,不足四人.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x 人,则表示物价的代数式()A.83-x B.83x + C.74x - D.()74x +9.下列说法正确的是()A.25xy -的系数是5- B.单项式x 的系数为1,次数为0C.多项式42242a a b b -+是四次三项式D.222xyz π-的次数为610.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示,即:122=,224=,328=,4216=,5232=,……,请你推算123452023222222+++++⋅⋅⋅⋅⋅⋅+的个位数字是()A.8B.6C.4D.2二、填空题(共6小题,每小题3分,共18分)11.如果|x |=4,则x 的值是_____.12.在数轴上,位于10-与2之间的整数有______个.13.若221m m -=,则2324m m +-的值是______.14.已知多项式128m x x -++是关于x 的二次三项式,则m m =_____.15.用符号()a b ,表示a b 、两数中较小的一个数,用符号[]a b ,表示a b 、两数中较大的一个数,计算[]()211 2.5----,,=_______.16.化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为110 时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷,丁烷的分子结构式如图所示,则第7个庚烷分子结构式中“H ”的个数是_________.三、解答题(共9小题,17,18,19每小题6分,20,21每小题8分,22,23每小题9分,24,25每小题10分,共72分)17.将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来.2、3-、()2.5--、()1+-、0、()2---18.计算:(1)135134612⎛⎫-+÷⎪⎝⎭(2)()()20232110.54-+-⨯-19.已知a 、b 互为相反数,c 、d 互为倒数,m 到原点距离为3,求3a bcd m cd++-的值.20.先化简,再求值:()()2232261a b a b ---+﹐其中1a =,2023b =.21.已知:232101A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若3A B -的值与y 的取值无关,求x 的值.22.已知有理数a ,b ,c在数轴上的位置如图所示,且a b =.(1)a b +=,a b=;(2)b c +0,bc0,()()+-b c a b 0(用“>”或“=”或“<”填空);(3)求b c a c +--的值.23.“十一”期间,汨罗市多个景区人气“爆棚”,屈子文化园“国潮楚韵与你狂欢”、长乐古镇甜酒滑翔、池山巅“达摩秘境”……让游客感受集文化、体验、休闲于一体的旅游行程.景区在7天中每天游客的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数),若9月30日的游客人数为1万人,人均消费100元.日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化单0.7+0.9+0.6+0.4-0.8-0.2+ 1.4-位:万人(1)10月4日的游客人数为万人.(2)七天内游客人数最多的是;游客人数为万人.(3)请帮景区计算“十一”期间所有游客在景区的总消费是多少万元?24.定义新运算:11a b a b *=-,1a b ab⊗=(右边的运算为平常的加、减、乘、除).例如:114373721*=-=,11373721⊗==⨯.若a b a b ⊗=*,则称有理数a ,b 为“隔一数对”.例如:1123236⊗==⨯,11123236*=-=,2323⊗=*,所以2,3就是一对“隔一数对”.(1)下列各组数是“隔一数对”的是;(请填序号)①1a =,2b =;②1a =-,1b =;③43a =-,13b =-(2)计算:()()()()34343141531415-*--⊗+-*-;(3)已知两个连续的非零整数都是“隔一数对”,计算1223344520222023⊗+⊗+⊗+⊗+⋅⋅⋅+⊗.25.已知:b 是最小的正整数,且a 、b 满足()250c a b -++=,请回答问题:(1)请直接写出a 、b 、c 的值:=a ;b =;c =.(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 在数轴上运动,点A 到点B 的距离是,点B 到点C 的距离是,点P 到点A 、B 、C 的距离之和的最小值是.(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动,则经过t 秒钟时,请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出它的值.2023年-2024学年度第一学期义务教育学业水平监测七年级数学科时量:120分钟总分:120分一、选择题(共10小题,每小题3分,共30分)【1题答案】C【2题答案】C【3题答案】A【4题答案】B【5题答案】C【6题答案】B【7题答案】C【8题答案】A【9题答案】C【10题答案】C二、填空题(共6小题,每小题3分,共18分)【11题答案】4【12题答案】11【13题答案】5【14题答案】27【15题答案】3.5【16题答案】16三、解答题(共9小题,17,18,19每小题6分,20,21每小题8分,22,23每小题9分,24,25每小题10分,共72分)【17题答案】数轴见解析,()()()2.520123-->>>+->--->-【18题答案】(1)5(2)7【19题答案】0或6【20题答案】251a -,4【21题答案】(1)5101xy y +-(2)2x =-【22题答案】(1)0,1-(2)<,>,<(3)b c a c a b+--=--【23题答案】(1)10月4日的游客人数为2.8万人(2)七天内游客人数最多的是10月3日;游客人数为3.2万人(3)该景区计算“十一”期间所有游园人员在此风景区的总消费是918万元【24题答案】(1)①③(2)12-(3)20222023【25题答案】(1)1-;1;5(2)2;4;6(3)BC AB -的值不随着时间t 的变化而改变,BC AB -为定值2。

北京四中初一下期中考试数学试卷及答案

北京四中初一下期中考试数学试卷及答案

54D3E21C B A数 学 试 卷(考试时间100分钟,试卷满分120分)班级 学号_________ 姓名 分数__________ 一.选择题:(每题3分,共30分) 1.2的平方根是( ) A .4BC.D.2.以下列各组线段为边,能组成三角形的是( )A .1cm , 2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD . 2cm , 3cm ,6cm3.平面直角坐标系中, 点(1,-2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.若23132a b a b +->+,则a b ,的大小关系为 ( ) A .a b < B .a b > C .a b = D .不能确定 5.如图,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是( ) A .α的余角只有∠BB .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补6.如图,直线AB 与直线CD 相交于点O ,E 是∠已知OE ⊥AB ,︒=∠45BOD ,则COE ∠的度数是( ) A 、︒125 B 、︒135 C 、︒145 D 、︒1557.如图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .A.1B.2C.3D.48.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是( )A .362100x y x y +=⎧⎨+=⎩B .3642100x y x y +=⎧⎨+=⎩C .3624100x y x y +=⎧⎨+=⎩D .3622100x y x y +=⎧⎨+=⎩9.下列四个命题,真命题的个数为( )(1) 坐标平面内的点与有序实数对一一对应,第5题 B第7题(2) 若a >0,b 不大于0,则P (-a ,b)在第三象限内 (3) 在x 轴上的点,其纵坐标都为0(4)当m≠0时,点P (m 2,-m )在第四象限内 A. 1 B. 2 C .3 D. 410. 如果不等式组 ⎩⎪⎨⎪⎧1<x ≤2x >-m 有解,那么m 的取值范围是( )A .m >1B .m ≤2C .1<m ≤2D .m >-2二.填空题(每空2分,共28分)11.如图,直线a b ,被直线c 所截,若a b ∥,160∠=°,则2∠= °. 12.比较大小:.13. 等腰三角形一边等于4,另一边等于2,则周长是 . 14. 关于x 的不等式23x a -≤-的解集如图所示, 则a 的值是 .15.在长为a m ,宽为b m 的一块草坪上修了一条1m宽的笔直小路,则余下草坪的面积可表示为 m 2;现为了增加美感,把这条小路改为宽恒为1m 的弯曲小路(如图),则此时余下草坪的面积为m 2.16. 如果点)2,(x x 到x 轴的距离为4,则这点的坐标是 .17. 已知a 是10的整数部分,b 是它的小数部分,则23)3b ()a (++-= . 18.已知点M (3a -8, a -1).(1) 若点M 在第二、四象限角平分线上, 则点M 的坐标为 ______________; (2) 若点M 在第二象限, 并且a 为整数, 则点M 的坐标为 _________________; (3) 若N 点坐标为 (3, -6), 并且直线MN ∥x 轴, 则点M 的坐标为 ___________ .19.如图,已知,AB //CD ,B 是AOC ∠的角平分线OE 的反向延长线与直线AB 的交点,若75,A C ︒∠+∠=7.5,ABE ︒∠= 则C ∠= °.20.如图,在平面直角坐标系中,有若干个横坐标和纵坐标都是整数的点,其顺序排列规律如下:(1,0),(2,0),(2,1),ab第14题第19题(3,2),(3,1),(3,0),…,根据这个规律探究可得,第100个点的坐标为__________;第2013个点的坐标为__________. 三、解答题(共10题,共计42分)21. (4分)计算 ()23722764---+22.(3分)求不等式的非正整数....解:372211+-≥++x x23.(4分)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x x x --⎧⎪⎨--<⎪⎩≤,① ②24.(4分)完成下面的证明:已知,如图, AB ∥CD ∥GH ,EG 平分∠BEF ,A E B1FG 平分∠EFD ,求证:∠EGF=90° 证明:∵HG ∥AB ,HG ∥CD (已知) ; ∴∠1=∠3∴∠2=∠4( ). ∵AB ∥CD(已知);∴∠BEF+___________=180°( ). 又∵EG 平分∠BEF , FG 平分∠EFD(已知) ∴∠1=21∠_____________ ∠2=21∠_____________( ). ∴∠1+∠2=21(___________+______________). ∴∠1+∠2=90°; ∴∠3+∠4=90°,即∠EGF=90°.25.(3分)已知实数x 、y220x y -+=,求y x 58+的平方根.26.(4分) 已知: 如图, ∠C = ∠1, ∠2和∠D 互余, BE ⊥FD 于G .求证: CD AB //.27.(4分)已知在平面直角坐标系中,△ABC 的三个顶点坐标分别为:A (1,4),B (1,1),C (3,2).AF BCE DG21(1)将△ABC先向左平移3个单位长度,再向下平移4个单位长度得到△A1B1C1,请写出A1,B1,C1三个点的坐标,并在图上画出△A1B1C1;(2)求△A1B1C1的面积.28.(5分)如图,在△ABC中,∠B=∠C,∠BAD=40°,且∠ADE=∠AED,求∠CDE的度数.,两29.(5分)某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B 种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元. (1)求a b ,的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.30.(6分)对于长方形OABC ,OC AB //, BC AO //, O 为平面直角坐标系的原点,OA =5,OC =3,点B 在第三象限. (1)求点B 的坐标;(2)如图1,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1:4两部分,求点P 的坐标;(3)如图2,M为x轴负半轴上一点,且∠CBM=∠CMB,N是x轴正半轴上一动点,∠MCN的平分线CD交BM的延长线于点D,在点N运动的过程中,DCNM∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.附加题(共20分,第1、2题各5分,第3题4分、第4题6分)1.已知n、k均为正整数,且满足815<nn+k<713,则n的最小值为_________.图1 图22. 如图,平面直角坐标系内,AC BC =,M 为AC 上一点,BM 平分ABC ∆的周长,若6AB =,3.6BMC S ∆=,则点A 的坐标为 .3. 如图,直线a ∥b ,︒∠∠∠∠>3-2=2-1=d 0.其中390︒∠<,1=50︒∠.求4∠ 度数最大可能的整数值.4. 如图,A 和B 两个小机器人,自甲处同时出发相背而行,绕直径为整数米的圆周上运动,15分钟内相遇7次,如果A 的速度每分钟增加6米,则A 和B 在15分钟内相遇9次,问圆周直径至多是多少米?至少是多少米?(取314.π=)数学试卷答案一. 选择题(每小题3分,共30分)b二.填空题(每空2分,共28分) 11.60 12.>13.10 14.1 15.a(b-1) a(b-1)16. (2,4) 或(-2,-4) 17.-1718.(1) )45,45(- (2) (-2,1) (3) (-23,-6) 19.4020. (14,8) (63,3)三.解答题(共42分)21. (4分) ()23722764---+|7|238---= 21-= 22.(3分))7(212)1(36+-≥++x x14212336--≥++x x 115-≥x511-≥x 非正整数解 -2,-1,023. (4分) 解: 由 得,2-≥x ,由 得, 21-<x 不等式组的解集为 212--<≤x 24. (4分) 两直线平行,内错角相等∠EFD 两直线平行,同旁内角互补 ∠BEF∠EFD 角平分线的定义 ∠BEF ∠EFD-2-225. (3分) 解:由题意得,⎩⎨⎧=+-=--0220132y x y x ,解得 ⎩⎨⎧==58y x1658=+y x 所以 y x 58+ 的平方根为 4±. 26. (4分) 证明:G FD BE 于点⊥90=∠∴BGE 901=∠+∠∴D 又互余和D ∠∠221∠=∠∴ (同角的余角相等) 又1∠=∠C 2∠=∠∴CCD AB //∴ (内错角相等,两直线平行) 27. (4分) (1) )0,2(1-A )3,2(1--B )2,0(1-C(2) 328. (5分)20=∠CDE 29.(5分) 解:(1)由题意得,⎩⎨⎧-==-6322b a b a ,解得 ⎩⎨⎧==1012b a .(2)设买x 台A 型,则买 (10-x)台B 型,有 105)10(1012≤-+x x 解得 25≤x 答:可买10台B 型;或 1台A 型,9台B 型;或2台A 型,8台B 型. (3) 设买x 台A 型,则由题意可得2040)10(200240≥-+x x 解得 1≥x当x=1时,花费 102910112=⨯+⨯ (万元) 当x=2时,花费 104810212=⨯+⨯ (万元) 答:买1台A 型,9台B 型设备时最省钱. 30.(6分) (1) (-5,-3)(2) 当点P 在x 轴上时,设P(x,0),则有x<0且3|5|21353|5|214⋅+⋅-⨯=⋅+⋅⨯x x 解得 3-=x)0,3(-∴P当点P 在y 轴上时,设P(0,y),则有y<0且5|3|21355|3|214⋅+⋅-⨯=⋅+⋅⨯y y 解得 59-=y )59,0(-∴P ∴P(-3,0)或)59,0(-P (3) 不变. 设x CMB CBM =∠=∠,y DCN MCD =∠=∠,则y x CNM y x D 22,-=∠-=∠21=∠∠∴CNM D 附加题(共20分)1.(5分)152.(5分) (0,2.4)3.(4分) 解:∵∠4-∠3=∠3-∠2,∴∠4=2∠3-∠2,又∵∠3-∠2=∠2-∠1,∠1=50°,∴2∠2=∠3+50°,∴2∠4=4∠3-2∠2=4∠3-∠3-50°=3∠3-50°,4. (6分)解:设圆的直径为d ,A 和B 的速度和是每分钟v 米,则d v d ππ8157<≤ ①d v d ππ10)6(159<+≤ ②②-① 得d d ππ3615<⨯<ππ9030<<d 28.6624d 9.55414<<29d 9<< 答:圆周直径至多是28米,至少是10米.87D Dvππ>=≥① 如果A 的速度每分钟增加6米,A 加速后的两个机器人的速度和是每分钟v+6米,则A 和B 在15分钟内相遇9次,用数学语言可以描述为1515(6)109v D D ππ+>=≥②。

2023-2024学年全国初一下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初一下数学人教版期中考试试卷(含答案解析)

20232024学年全国初一下数学人教版期中考试试卷(含答案解析)一、选择题(每题1分,共5分)1. 下列选项中,不是同类二次根式的是()A. √2 和√3B. √18 和√24C. √a^2 和√b^2D. √(a+b) 和√(ab)2. 已知一组数据的方差是9,那么这组数据每个数据都加5后,方差是()A. 9B. 14C. 18D. 9的平方3. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x4. 在直角坐标系中,点P(2, 3)关于原点对称的点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)5. 下列各数中,是无理数的是()A. √9B. √16C. √2D. √1二、判断题(每题1分,共5分)6. 两个无理数相加一定是无理数。

()7. 任何两个实数都可以比较大小。

()8. 两个负数相乘一定得正数。

()9. 平行线的性质是同位角相等。

()10. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)11. 若a=3,则|a|的值是______。

12. 一次函数y=kx+b的图象与y轴的交点为(0,5),则b的值是______。

13. 已知一组数据2,3,5,7,x,这组数据的平均数是4,则x 的值是______。

14. 两个平行线的距离是指它们的______。

15. 若a≠b,则代数式(ab)^2的值是______。

四、简答题(每题2分,共10分)16. 简述平行线的性质。

17. 什么是二次根式?举例说明。

18. 简述方差的意义。

19. 请写出两个正比例函数的例子。

20. 如何判断一个数是有理数还是无理数?五、应用题(每题2分,共10分)21. 某商店将一件商品提价20%后,又降价20%,问现在的价格是原价的多少?22. 甲、乙两辆汽车同时从A地出发,甲车以60km/h的速度向北行驶,乙车以80km/h的速度向东行驶,2小时后,两车相距多少千米?23. 一个正方形的边长是a,它的面积是多少?24. 一辆汽车行驶了100千米,速度提高了20%,问原速度是多少?25. 小明从家到学校用了30分钟,如果他的速度提高20%,需要多少时间?六、分析题(每题5分,共10分)26. 已知一组数据1,2,3,4,5,x的平均数是3,求x的值,并说明理由。

宁夏银川市第十五中学2021-2022学年七年级下学期期中考试数学试卷(含详解)

宁夏银川市第十五中学2021-2022学年七年级下学期期中考试数学试卷(含详解)

宁夏银川市第十五中学2021-2022学年七年级下学期期中考试数学试卷一、选择题(每小题3分,共24分)1.(3分)下列运算正确的是( )A.x3+2x3=3x6B.(x3)3=x6C.x3•x3=x9D.x3÷x=x22.(3分)某校组织学生参观绿博园时,了解到某种花的花粉颗粒的直径大约为0.0000065米.将0.0000065用科学记数法表示应为( )A.6.5×10﹣2B.6.5×10﹣6C.6.5×10﹣5D.0.65×10﹣63.(3分)如图,下列条件中不能判定AB∥CD的是( )A.∠3=∠4B.∠1=∠5C.∠4+∠5=180°D.∠3+∠5=180°4.(3分)如图,在Rt△ABC中,∠C=90°.D为边CA延长线上一点,DE∥AB,∠ADE=42°,则∠B的大小为( )A.42°B.45°C.48°D.58°5.(3分)如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab6.(3分)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为( )A.a=5,b=6B.a=1,b=﹣6C.a=1,b=6D.a=5,b=﹣67.(3分)将一个直角三角板与一张两边平行的纸条按如图所示位置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是( )A.4个B.3个C.2个D.1个8.(3分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP 的面积S随着时间t变化的函数图象大致是( )A.B.C.D.二、填空题(每题3分,共24分)9.(3分)计算:(2x+3y)(2x﹣3y)= .10.(3分)计算:(﹣2a2b3)3= .11.(3分)如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=48°,则∠AOD为 .12.(3分)若长方形的面积是4a2+8ab+2a,它的一边长为2a,则它的另一边长为 .13.(3分)已知△ABC中,∠A:∠B:∠C=1:3:5,则△ABC是 三角形.14.(3分)已知一个等腰三角形的两边分别为5和10,则它的周长为 .15.(3分)在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体的重量x的一组对应值:在弹簧允许范围内,写出弹簧长ycm与所挂重物xkg的关系式 .所挂物重量x(kg)012345弹簧长度y(cm)20222426283016.(3分)若4x2+kx+9是完全平方式,则k= .三、解答题(共72分)17.(16分)计算题(1)(3x2+y﹣y2);(2)﹣22﹣(﹣)﹣2+(π﹣199)0;(3)992﹣1(运用乘法公式计算);(4)(x+y+3)(x+y﹣3).18.(6分)先化简,再求值:(x﹣2y)2﹣(x+4y)(y﹣x),其中x=﹣2,y=3.19.(6分)作图题如图,△ABC中,点D是BC延长线上一点.(1)在△ABC中画出BC边上的高AF;(2)尺规作图:以点C为顶点,以CD为一边作∠ECD=∠ABC(保留痕迹,不写作法).20.(6分)如图,已知:∠1=∠2,∠D=60°,求∠B的度数.21.(6分)一个角的补角比它的余角的3倍少20°,求这个角的度数.22.(6分)如图,已知CD⊥AB,EF⊥AB,垂足分别为D,F,∠B+∠BDG=180°,试说明∠BEF=∠CDG,将下面的解答过程补充完整,并填空.证明:∵CD⊥AB,EF⊥AB(已知),∴∠BFE=∠BDC=90°(垂直定义).∴ ∥ (同位角相等,两直线平行),∴∠BEF=∠BCD( ).又∵∠B+∠BDG=180°(已知),∴BC∥DG( ),∴ = (两直线平行,内错角相等),∴∠CDG=∠BEF(等量代换).23.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时间,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)图中自变量是 ,因变量是 ;(2)小明家到学校的路程是 米.(3)小明在书店停留了 分钟.(4)本次上学途中,小明一共行驶了 米,一共用了 分钟.(5)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?24.(8分)如图,在△ABC中,AE是△ABC的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时,若AE=6,CD=5,求△ABC的面积.(2)当AD为△ABC的角平分线时,若∠B=35°,∠C=75°,求∠DAE的度数.25.(10分)通常,用两种不同的方法计算同一个图形的面积可以得到一个恒等式图将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请观察图形,解答下列问题:(1)根据图中条件,用两种方法表示该图形的总面积,可得如下公式: = ;(2)如果图中的a、b(a>b>0)满足a2+b2=57,ab=12,求a+b的值;(3)已知(5﹣x)2+(x+3)2=60,求(5﹣x)(x+3).参考答案一、选择题(每小题3分,共24分)1.(3分)下列运算正确的是( )A.x3+2x3=3x6B.(x3)3=x6C.x3•x3=x9D.x3÷x=x2【解答】解:A、x3+2x3=3x3,故A不符合题意;B、(x3)3=x9,故B不符合题意;C、x3•x3=x6,故C不符合题意;D、x3÷x=x2,故D符合题意;故选:D.2.(3分)某校组织学生参观绿博园时,了解到某种花的花粉颗粒的直径大约为0.0000065米.将0.0000065用科学记数法表示应为( )A.6.5×10﹣2B.6.5×10﹣6C.6.5×10﹣5D.0.65×10﹣6【解答】解:0.0000065=6.5×10﹣6,故选:B.3.(3分)如图,下列条件中不能判定AB∥CD的是( )A.∠3=∠4B.∠1=∠5C.∠4+∠5=180°D.∠3+∠5=180°【解答】解:A、∵∠3=∠4,∴AB∥CD,故本选项能判定AB∥CD;B、∵∠1=∠5,∴AB∥CD,故本选项能判定AB∥CD;C、根据∠4+∠5=180°不能推出AB∥CD,故本选项不能判定AB∥CD;D、∵∠3+∠5=180°,∴AB∥CD,故本选项能判定AB∥CD;故选:C.4.(3分)如图,在Rt△ABC中,∠C=90°.D为边CA延长线上一点,DE∥AB,∠ADE=42°,则∠B的大小为( )A.42°B.45°C.48°D.58°【解答】解:∵DE∥AB,∠ADE=42°,∴∠CAB=∠ADE=42°,∵在Rt△ABC中,∠C=90°,∴∠B=90°﹣∠CAB=90°﹣42°=48°.故选:C.5.(3分)如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【解答】解:图1的阴影部分面积=大正方形的面积﹣小正方形的面积,即a2﹣b2,图2的阴影部分的长为(a+b),宽为(a﹣b),所以面积为(a+b)(a﹣b),根据面积相等得:a2﹣b2=(a+b)(a﹣b).故选:A.6.(3分)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为( )A.a=5,b=6B.a=1,b=﹣6C.a=1,b=6D.a=5,b=﹣6【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.7.(3分)将一个直角三角板与一张两边平行的纸条按如图所示位置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是( )A.4个B.3个C.2个D.1个【解答】解:∵纸条的两边平行,∴∠1=∠2(两直线平行,同位角相等),∠3=∠4(两直线平行,内错角相等)∠4+∠5=180°(两直线平行,同旁内角互补),故(1),(2),(4)正确;由题意得:∠2+∠4=180°﹣90°=90°,故(3)正确.∴其中正确的个数是:4个.故选:A.8.(3分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP 的面积S随着时间t变化的函数图象大致是( )A .B .C .D .【解答】解:由点P 的运动可知,当点P 在GF 、ED 边上时△ABP 的面积不变,则对应图象为平行于t 轴的线段,则B 、C 错误.点P 在AD 、EF 、GB 上运动时,△ABP 的面积分别处于增、减变化过程.故D 排除故选:A .二、填空题(每题3分,共24分)9.(3分)计算:(2x +3y )(2x ﹣3y )= 4x 2﹣9y 2 .【解答】解:(2x +3y )(2x ﹣3y )=4x 2﹣9y 2.故应填4x 2﹣9y 2.10.(3分)计算:(﹣2a 2b 3)3= ﹣8a 6b 9 .【解答】解:(﹣2a 2b 3)3=(﹣2)3(a 2)3(b 3)3=﹣8a 6b 9.故答案为:﹣8a 6b 9.11.(3分)如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,且∠COE =48°,则∠AOD 为 138° .【解答】解:∵OE⊥AB,∴∠BOE=90°,∵∠COE=48°,∴∠COB=90°+48°=138°,∴∠AOD=138°,故答案为:138°.12.(3分)若长方形的面积是4a2+8ab+2a,它的一边长为2a,则它的另一边长为 2a+4b+1 .【解答】解:∵长方形的面积是4a2+8ab+2a,它的一边长为2a,∴它的另一边长为:(4a2+8ab+2a)÷2a=2a+4b+1.故答案为:2a+4b+1.13.(3分)已知△ABC中,∠A:∠B:∠C=1:3:5,则△ABC是 钝角 三角形.【解答】解:设∠A=x,∠B=3x,∠C=5x,∵∠A+∠B+∠C=180°,∴x+3x+5x=180°,解得:x=20°,∴∠A=20°,∠B=60°,∠C=100°,∴△ABC是钝角三角形.故答案为:钝角14.(3分)已知一个等腰三角形的两边分别为5和10,则它的周长为 25 .【解答】解:①若5是底边长,10是腰长,则5,10,10能组成三角形,则它的周长是:5+10+10=25;②若10是底边长,5是腰长,∵5+5=10,∴5,5,10不能组成三角形,舍去;∴它的周长是25.故答案为:25.15.(3分)在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体的重量x的一组对应值:在弹簧允许范围内,写出弹簧长ycm与所挂重物xkg的关系式 y =2x+20 .所挂物重量x(kg)012345弹簧长度y(cm)202224262830【解答】解:根据表格可知,所挂重物每增加1kg,弹簧长度增加2cm,则y=2x+20.故答案为:y=2x+20.16.(3分)若4x2+kx+9是完全平方式,则k= ±12 .【解答】解:∵4x2+kx+9是完全平方式,∴k=±12,解得:k=±12.故答案为:±12三、解答题(共72分)17.(16分)计算题(1)(3x2+y﹣y2);(2)﹣22﹣(﹣)﹣2+(π﹣199)0;(3)992﹣1(运用乘法公式计算);(4)(x+y+3)(x+y﹣3).【解答】解:(1)原式=x2y2(3x2+y﹣y2)=x4y2+x2y3﹣x2y4.(2)原式=﹣4﹣(﹣3)2+1=﹣4﹣9+1=﹣12.(3)原式=(100﹣1)2﹣1=1002﹣2×100+1﹣1=10000﹣200=9800.(4)原式=[(x+y)+3][(x+y)﹣3]=(x+y)2﹣32=x2+2xy+y2﹣9.18.(6分)先化简,再求值:(x﹣2y)2﹣(x+4y)(y﹣x),其中x=﹣2,y=3.【解答】解:(x﹣2y)2﹣(x+4y)(y﹣x)=x2﹣4xy+4y2﹣xy+x2﹣4y2+4xy=2x2﹣xy,当x=﹣2,y=3时,原式=2×(﹣2)2﹣(﹣2)×3=2×4+6=8+6=14.19.(6分)作图题如图,△ABC中,点D是BC延长线上一点.(1)在△ABC中画出BC边上的高AF;(2)尺规作图:以点C为顶点,以CD为一边作∠ECD=∠ABC(保留痕迹,不写作法).【解答】解:(1)如图,线段AF即为所求;(2)如图,∠ECD即为所求.20.(6分)如图,已知:∠1=∠2,∠D=60°,求∠B的度数.【解答】解:∵∠2=∠GHD,∠1=∠2,∴∠1=∠GHD,∴AB∥CD,∴∠B+∠D=180°,∵∠D=60°,∴∠B=120°.21.(6分)一个角的补角比它的余角的3倍少20°,求这个角的度数.【解答】解:设这个角为x度.则180﹣x=3(90﹣x)﹣20,解得:x=35.答:这个角的度数是35°.22.(6分)如图,已知CD⊥AB,EF⊥AB,垂足分别为D,F,∠B+∠BDG=180°,试说明∠BEF=∠CDG,将下面的解答过程补充完整,并填空.证明:∵CD⊥AB,EF⊥AB(已知),∴∠BFE=∠BDC=90°(垂直定义).∴ EF ∥ CD (同位角相等,两直线平行),∴∠BEF=∠BCD( 两直线平行,同位角相等 ).又∵∠B+∠BDG=180°(已知),∴BC∥DG( 同旁内角互补,两直线平行 ),∴ ∠CDG = ∠BCD (两直线平行,内错角相等),∴∠CDG=∠BEF(等量代换).【解答】证明:∵CD⊥AB,EF⊥AB(已知),∴∠BFE=∠BDC=90°(垂直定义),∴EF∥CD(同位角相等,两直线平行),∴∠BEF=∠BCD(两直线平行,同位角相等),又∵∠B+∠BDG=180°(已知),∴BC∥DG(同旁内角互补,两直线平行),∴∠CDG=∠BCD(两直线平行,内错角相等),∴∠CDG=∠BEF(等量代换).故答案为:EF;CD;两直线平行,同位角相等;同旁内角互补,两直线平行;∠CDG;∠BCD.23.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时间,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)图中自变量是 时间 ,因变量是 距离 ;(2)小明家到学校的路程是 1500 米.(3)小明在书店停留了 4 分钟.(4)本次上学途中,小明一共行驶了 2700 米,一共用了 14 分钟.(5)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?【解答】解:(1)根据图象,纵坐标为离家的距离,横坐标为离家的时间,故图中自变量是离家的时间,因变量是离家的距离;故答案为时间,距离;(2)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的距离是1500米.故答案为1500;(3)由图象可知:小明在书店停留了12﹣8=4分钟,故答案为4.(4)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.故答案为2700,14;(5)由图象可知:0~6分钟时,平均速度==200米/分,6~8分钟时,平均速度==300米/分,12~14分钟时,平均速度==450米/分,所以,12~14分钟时速度最快,不在安全限度内,“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.24.(8分)如图,在△ABC中,AE是△ABC的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时,若AE=6,CD=5,求△ABC的面积.(2)当AD为△ABC的角平分线时,若∠B=35°,∠C=75°,求∠DAE的度数.【解答】解:(1)∵AD为边BC上的中线,∴BC=2CD=10,∴S△ABC=×AE×BC=×6×10=30;(2)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣∠B﹣∠C=70°,∵AD为△ABC的角平分线,∴∠BAD=∠CAD=∠BAC=35°,∵AE是△ABC的高,∴AE⊥BC,∴∠AEC=90°,∴∠CAE=90°﹣∠C=15°,∴∠DAE=∠CAD﹣∠CAE=35°﹣15°=20°.25.(10分)通常,用两种不同的方法计算同一个图形的面积可以得到一个恒等式图将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请观察图形,解答下列问题:(1)根据图中条件,用两种方法表示该图形的总面积,可得如下公式: (a+b)2 = a2+2ab+b2 ;(2)如果图中的a、b(a>b>0)满足a2+b2=57,ab=12,求a+b的值;(3)已知(5﹣x)2+(x+3)2=60,求(5﹣x)(x+3).【解答】解:(1)该图形总面积整体计算可得(a+b)2,部分求和可得a2+2ab+b2;(2)由(1)题结果可得(a+b)2=a2+2ab+b2,∴当a2+b2=57,ab=12时,(a+b)2=57+2×12=81,∴a+b==9.(3)∵5﹣x=a,x+3=b,∴a+b=(9﹣x)+(x﹣4)=8,则(5﹣x)2+(x+3)2=a2+b2,∵(a+b)2=a2+b2+2ab,a+b=8,a2+b2=60,∴64=60+2ab,∴ab=2,∴(5﹣x)(x+3)=2.。

厦门一中数学七年级期中下试卷

厦门一中数学七年级期中下试卷

------精品文档!值得拥有!------2005~2006学年度初一(下)期中考试数 学 试 卷(满分:A 卷100分,B 卷20分;考试时间90分钟)注意:本试卷之一为A 卷填空题、选择题。

试卷之二为A 卷填空题、选择题的答题表、A 卷的解答题和B 卷。

考生必须把试卷之一试题的答案填在试卷之二相应的答题位置上,.................答在试卷之一上视为无效...........。

试卷之一A 卷(总分100分)一 耐心填一填,你一定很棒!(每小题 3分,共30分)(答案须填至试卷之二) 1.方程012=-x 的解是=x ⑴ . 2.写出解为2的一个一元一次方程是 ⑵ .3.若代数式32+x 与23+x 是互为相反数,则=x ⑶ .4.“x 2与1的和是负数”用不等式表示为: ⑷ .5. 写出二元一次方程2x +y = 5的一个正整数解是 ⑸ .6.下列不等式的变形中⑴由b a <,得bc ac <;⑵由y x >,且0≠m ,得my m x -<-; ⑶由y x >,得22yz xz >;⑷由22yz xz >,得y x >;错误..的是 ⑹ (填序号). 7.不等式组8732<-≤x 的整数解是 ⑺ . 8.若()0522=-++-y x x ,则xy = ⑻ .9.甲同学单独打扫完教室需要24min ,乙同学单独打扫完教室需要16min ,那么两人合作打扫完教室需要 ⑼ min .10. 小明在拼图时发现8个一样大小的长方形如右图那样,恰好可以拼成一个大长方形,尺寸如图(单位:厘米)。

求小长方形的长与宽。

设小长方形的长为x cm ,宽为y cm ,根据题意得方程组 ⑽ (不解方程组).班级 学号 姓名 考号————⊙——密——⊙——封——⊙——装——⊙——订——⊙——线———⊙—————11.括号(-4,-3,4)里的数是方程12)1(=-yy y(y-1)=12的解的数是(⑾).(A).-4(B).-3(C).4(D).-3,412.对于方程52-=-yx中,用含x的代数式表示y,应是(⑿).(A) 102-=yx(B)5221-=yx(C) 52+=xy(D) 52-=xy.13.下列方程的变形中,正确的是(⒀)(A)由05=y,得5=y(B)由32=-x,得32-=x(C)由45-=x,得54-=x(D)由4554=x,得1=x14.已知⎩⎨⎧==12yx是方程组⎩⎨⎧=+=-513byxyax的解,那么a、b的值是(⒁)。

山东省威海市文登区第二中学(五四制)2024-2025学年八年级上学期期中考试数学试题

山东省威海市文登区第二中学(五四制)2024-2025学年八年级上学期期中考试数学试题

山东省威海市文登区第二中学(五四制)2024-2025学年八年级上学期期中考试数学试题一、单选题1.下列变形是分解因式的是()A .22632x y xy xy =B .22244(2)a ab b a b -+=-C .2(2)(1)32x x x x ++=++D .296(3)(3)6x x x x x--=+--2.下列变形正确的是()A .b bm a am=B .x x y y -=--C .bx ax ba=D .2211x x x x x +=-+3.下列多项式能用公式法进行因式分解的是()①22x y --;②()229x y --;③222m mn n +-;④2114x x -+;⑤222x xy y -+-.A .②④⑤B .②④C .①④⑤D .③④⑤4.对于任意整数n ,()2231n +-都()A .能被2整除,不能被4整除B .能被4整除,不能被8整除C .能被8整除D .能被5整除5.下列四种说法正确的是()A .分式的分子、分母都乘以(或除以)2a +,分式的值不变;B .数据11x +,21x +,31x +,41x +,51x +平均数是3,方差是1,则另一组数据132x -,232x -,332x -,432x -,532x -的平均数是7,标准差3;C .方程11111x x x ++=-++的解是1x =-;D .21xx +的最小值为零.6.已知方程:①25x=;②52x =;③23y x =;④1152x x +=+;⑤21y y +=;⑥13(2)7x x +-=-,分式方程的个数是()A .①②③④⑤B .②③④C .②④⑤D .②④7.已知a ,b ,c 分别是△ABC 的三边长,若222224a ab b c ++=+,4a b c +-=,则△ABC 的周长是()A .3B .6C .8D .128.为建设“书香校园”,某班开展了捐书活动,学生捐书情况统计如下表:捐书数量(本12345人数(人)x15x-1663对于不同的x ,下列关于捐书数量的统计量中不会发生改变的是()A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差9.甲乙两人同时从A 地出发到B 地,如果甲的速度v 保持不变,而乙先用0.5v 的速度到达中点,再以2v 的速度到达B 地,则下列结论正确的是()A .甲乙同时到达B 地B .甲先到达B 地C .乙先到达B 地D .谁先到达B 地与AB 的距离有关10.如图,标号为①,②,③,④的长方形不重叠地围成长方形PQMN ,已知①和②能够重合,③和④能够重合,且这四个长方形的面积相等.若4AE DE =,则PQMN ABCDS S 长方形长方形的值为()A .35B .925C .34D .916二、填空题11.已知()22116x m x --+通过变形可以可成()2x n +的形式,则m =.12.一组数据2,3,5,6,a 的众数与中位数相等,则a =.13.已知121b a -=,则234436a ab bab a b+--+值为.14.若实数x 满足2210x x --=,则322742024x x x --+的值为.15.若关于x 的分式方程2222x mm x x+=--有增根,则m 的值为.16.已知一组数据1n -,2,3,4,5的方差和另一组数据99,100,101,98,102的方差相等,则n 的最大值与最小值的平均数是.三、解答题17.因式分解:(1)432235x x x --(2)()()222224x x x ++-18.计算(1)23323253322c a c ab b a ⎛⎫⎛⎫-÷⋅- ⎪ ⎪⎝⎭⎝⎭;(2)24512111a a a a a a -⎛⎫⎛⎫+-÷- ⎪ ⎪---⎝⎭⎝⎭.19.解方程(1)2134412142x x x x +=--+-;(2)21212339x x x -=+--.20.关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32123y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是多少?21.在国庆节到来之际,某中学组织初一、初二两个年级的学生进行国学知识竞赛,并从中各随机抽取10名学生的竞赛成绩(满分50分)进行整理、分析(得分用x 表示,共分为四组,A :035x ≤<,B :3540x ≤<,C :4045x ≤<,D :4550x ≤≤),下面给出部分信息:初一10名学生的成绩:32,36,36,39,40,46,46,46,49,50初二10名学生在C 组中的成绩:40,43,44年级平均数中位数众数初一4243c 初二42b47两个年级抽取的学生的竞赛成绩统计表根据以上信息,回答以下问题:(1)a =,b =,c =;(2)根据以上数据分析,你认为该校初一和初二两个年级中哪个年级的国学知识竞赛成绩较好?请说明理由;(3)已知初一年级共有800名学生,初二年级共有850名学生.如果我们认为国学知识竞赛成绩在40分及以上的学生成绩优秀,则请估计初一,初二两个年级的学生成绩优秀的共有多少人?22.某工厂需要在规定时间内生产1400个某种零件,该工厂按一定速度加工5天后,发现按此速度加工下去会延期10天完工,于是又抽调了一批工人投入这种零件的生产,使工作效率提高了50%,结果如期完成加工任务.(1)求该工厂前5天每天生产多少个这种零件;(2)求规定时间是多少天.23.观察下列各式的变化规律,然后解答下列问题:111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,……(1)猜想()11n n -(1n >的正整数)=;(2)计算:()()()()()1111...202311220222023x x x x x x x ++++++++++;(3)若310ab b -+-=,求()()()()()()()()11111...2244666464ab a b a b a b a b +++++++++++++的值.24.新定义:如果两个实数,a b 使得关于x 的分式方程1a b x+=的解是1x a b=+成立,那么我们就把实数,a b 组成的数对[],a b 称为关于x 的分式方程1ab x+=的一个“关联数对”.例如:2a =,5b =-使得关于x 的分式方程215x+=-的解是112(5)3x ==-+-成立,所以数对[]2,5-就是关于x 的分式方程1a b x+=的一个“关联数对”.(1)判断下列数对是否为关于x 的分式方程1a b x+=的“关联数对”,若是,请在括号内打“√”.若不是,打“⨯”.①[]1,1();②[]3,5-().(2)若数对5,3n n ⎡⎤--⎢⎥⎣⎦是关于x 的分式方程1ab x +=的“关联数对”,求n 的值.(3)若数对[],m k k -()1,0,1m m k ≠-≠≠且是关于x 的分式方程1a b x+=的“关联数对”,且关于x 的方程211mkx m x m --+=+有整数解,求整数m 的值.。

2022-2023学年度第二学期初一年级期中考试 (数学)(含答案)082340

2022-2023学年度第二学期初一年级期中考试 (数学)(含答案)082340

2022-2023学年度第二学期初一年级期中考试 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A. B. C. D.2. 如图,下列各点在阴影区域内的是( )A.B.C.D.3. ,,,,,中,无理数的个数是( )A.个B.个C.个D.个4. 在一次数学活动课上,老师让同学们借助一副三角板画平行线,.下面是小曼同学的作法,老师说:“小曼的作法正确”,请回答:小曼的作图依据是( )(3,2)(−3,2)(3,−2)(−3,−2)π227−3–√343−−−√3 3.14160.3˙1234AB CDA.内错角相等,两直线平行B.两直线平行,内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.同位角相等,两直线平行5. 下列命题:①圆的切线垂直于经过切点的半径;②掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是;③相等的圆心角所对的弧相等;④某种彩票的中奖率为,佳佳买张彩票一定能中奖.其中,正确的命题是( )A.①②B.①②③C.①②④D.①②③④6. 在平面直角坐标系中,对于点,我们把点叫做点的友好点.已知点的友好点为,点的友好点为,点的友好点为…,这样依次得到点,,,…,,若点的坐标为,则点的坐标为( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7. 比较大小:________(填“”,“”或“”).8. 已知是一个正整数,是整数,则的最小值为________.9. 如图,,与,分别交于点,,为的平分线.若,,那么的值是________.10. 如图,若菱形的顶点,的坐标分别为,点在轴上,则点的坐标是________.0.511010xOy P(x,y)P'(1−y,x−1)P A 1A 2A 2A 3A 3A 4A 1A 2A 3A n A 1(2,1)A 2019(2,1)(0,1)(0,−1)(2,−1)10−−√3><=n 135n−−−−√n AC//BD AB AC BD A B BC ∠ABD ∠1=(x+15)∘∠2=(2x+70)∘x ABCD A B (3,0),(−2,0)D y C11. 如图,,, ,则________度.12. 将含有角的三角板的直角顶点放置于互相平行的两条直线中的一条上(如图),如果 ,那么_______.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13. 计算:.14. 如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.请在下列括号中填上理由:证明;因为(已知),所以(________).又因为 (已知),所以,即,所以________(同位角相等,两直线平行),所以(________).15. 如图,在中, ,,点从点出发沿方向以秒的速度向点匀速运动,同时点从点出发沿方向以秒的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点,运动的时间是秒.过点作于点,连接,.用含的代数式式表示________,________.AB//CD ∠BAP =120∘∠APC =40∘∠PCD =30∘∠1=40∘∠2=∘+×−|−1|(−3)28–√3–√6–√AB CD MN PM AB//CD MN AB CD E F Q PM ∠AEP =∠CFQ ∠EPQ +∠FQP =180∘AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ ∠EPQ +∠FQP =180∘Rt △ABC ∠B =90∘,AC =20cm ∠A =60∘D C CA 2cm/A E A AB 1cm/B D E t (0<t ≤10)D DF ⊥BC F DE EF (1)t AD =DF =四边形能够成为菱形吗?如果能,请求出相应的值;如果不能,请说明理由;当为何值时,的面积为,请说明理由;当为何值时,为直角三角形.(请直接写出值)16. 小明和爸爸、妈妈到汉字公园游玩,回到家后,他利用平面直角坐标系画出了公园景区地图,如图所示.可是他忘记了在图中标出原点,轴及轴.只知道长廊的坐标为和农家乐的坐标为,请你帮他画出平面直角坐标系,并写出其他各点的坐标. 17. 已知点是直线上一点,,为从点引出的两条射线,,.如图,求的度数;如图,在的内部作,请直接写出与之间的数量关系________;在的条件下,若为的角平分线,试说明.18. 如图,已知,.求证:.19. 如图,已知点在 的边上.利用三角板根据要求画图:①过点作线段,垂足为点;②过点作直线,垂足为点,交于点;结合所画图形,写出与相等的所有角.20. 通过《实数》一章的学习,我们知道是一个无限不循环小数,因此的小数部分我们不可能全部写出来.聪明的小丽认为的整数部分为,所以减去其整数部分,差就是的小数部分,所以用来表示的小数部分.根据小丽的方法请完成下列问题:的整数部分为________,小数部分为________ ;AEFD t (2)t △DEF c 93–√2m 2(3)t △DEF t x y E (4,−3)B (−5,3)O AB OC OD O ∠BOD =30∘∠COD =∠AOC 87(1)1∠AOC (2)2∠AOD ∠MON =90∘∠AON ∠COM (3)(2)OM ∠BOC ∠AON =∠CON DE//AF ∠CDA =∠DAB ∠1=∠2P ∠AOB OA (1)P PC ⊥OB C P MN ⊥OA P OB D (2)∠CPO 2–√2–√2–√12–√2–√−12–√2–√(1)33−−√−−√8−–√已知的整数部分, 的整数部分为,求的立方根.21. 在平面直角坐标系中,已知点.当点在轴的左侧时,求的取值范围;若点到两坐标轴的距离相等,求点的坐标.22.如图,直线,点是,之间(不在直线,上)的一个动点.若与都是锐角,如图甲,写出与,之间的数量关系并说明原因;若把一块三角尺(,)按如图乙方式放置,点,,是三角尺的边与平行线的交点,若,求的度数;将图乙中的三角尺进行适当转动,如图丙,直角顶点始终在两条平行线之间,点在线段上,连接,且有,求与之间的数量关系.23. 如图,在直角坐标系中,已知,,将线段平移至,点在轴正半轴上(不与点重合),连接,,,.写出点的坐标;当的面积是的面积的倍时,求点的坐标;设,,,判断,,之间的数量关系,并说明理由.(2)10−−√a 8−5–√b a +b Q(4−2n,n−1)(1)Q y n (2)Q Q PQ//MN C PQ MN PQ MN (1)∠1∠2∠C ∠1∠2(2)∠A =30∘∠C =90∘D E F ∠AEN =∠A ∠BDF (3)C G CD EG ∠CEG =∠CEM ∠GEN ∠BDF xOy A(6,0)B(8,6)OA CB D x A OC AB CD BD (1)C (2)△ODC △ABD 3D (3)∠OCD =α∠DBA =β∠BDC =θαβθ参考答案与试题解析2022-2023学年度第二学期初一年级期中考试 (数学)试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】D【考点】生活中的平移现象【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是.【解答】解:图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.观察图形可知图案通过平移后可以得到.故选.2.【答案】A【考点】点的坐标【解析】先判断出阴影区域在第一象限,且长宽为的矩形,进而判断在阴影区域内的点.【解答】解:观察图形可知:阴影区域在第一象限,是长宽为的正方形,、在第一象限,且,,所以点在阴影区域内,故正确;、在第二象限,故错误;、在第四象限,故错误;、在第三象限,故错误.故选.3.【答案】B【考点】无理数的判定【解析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:,等;开方开不尽的数;以及…,等有这样规律的数.由此即可判定选择项.D D D 44A (3,2)3<42<4(3,2)B (−3,2)C (3,−2)D (−3,−2)A π2π0.1010010001【解答】解:在,,,,,中,无理数是:,共个.故选.4.【答案】A【考点】平行线的判定【解析】本题考查了作图-复杂作图和平行线的判定方法.【解答】解:,(内错角相等,两直线平行),故选.5.【答案】A【考点】命题与定理真命题,假命题【解析】根据切线的性质对①进行判断;根据概率公式对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据概率的意义对④进行判断.【解答】解:圆的切线垂直于经过切点的半径,所以①正确;掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是,所以②正确;在同圆或等圆中,相等的圆心角所对的弧相等,所以③错误;某种彩票的中奖率为,佳佳买张彩票不一定能中奖,所以④错误.故选.6.【答案】C【考点】规律型:点的坐标【解析】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每个点为一个循环组依次循环是解题的关键,也是π227−3–√343−−−√3 3.14160.3˙π−3–√2B ∵∠ABC =∠DCB =90°∴AB ∥CD A 0.511010A 4本题的难点.【解答】解:观察发现:,,,,,依次类推,每个点为一个循环组依次循环,余,点的坐标与的坐标相同,为.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】【考点】实数大小比较算术平方根【解析】根据,再比较即可.【解答】解:∵,∴,故答案为:.8.【答案】【考点】实数的运算【解析】【解答】解:∵,∴的最小值是.故答案为:.9.【答案】【考点】平行线的性质角的计算【解析】(2,1)A 1(0,1)A 2(0,−1)A 3(2,−1)A 4(2,1)A 5(0,1)A 6…∴5∵2019÷4=5043∴A 2019A 3(0,−1)C >3=9–√32=9<10>310−−√>15135=×3×5=×153232n 151520由平行线的性质可得,再由角平分线的定义得出,得出方程即可解答.【解答】解:,∴,∵平分,∴,∵,,∴,.故答案为:.10.【答案】【考点】坐标与图形性质【解析】【解答】解:∵菱形的顶点,的坐标分别为,,点在轴上,∴,∴,∴由勾股定理知:,∴点的坐标是:,故答案为.11.【答案】【考点】平行线的性质【解析】过点作,由平行线的性质结合的度数可求解的度数,根据可得,即可求解的度数.【解答】解:如图,过点作,∴.∵,∴.∵,∠2+∠ABD =180∘∠ABD =2∠1∵AC//BD ∠2+∠ABD =180∘BC ∠ABD ∠ABD =2∠1∠1=(x+15)∘∠2=(2x+70)∘2+=(x+15)∘(2x+70)∘180∘∴x =2020(−5,4)ABCD A B (3,0)(−2,0)D y AB =5AD =5OD ===4A −O D 2A 2−−−−−−−−−−√−5232−−−−−−√C (−5,4)(−5,4)160P PE//AB ∠APC ∠CPE CD//AB CD//PE ∠C P PE//AB ∠A+∠APE =180∘∠A =120∘∠APE =−=180∘120∘60∘∠APC =40∘∴.∵,∴ ,∴,∴.故答案为:.12.【答案】【考点】平行线的判定与性质【解析】作出辅助线,利用平行线的性质即可得出答案.【解答】解:过点作,如图,∵, ,∴,∴,,∵,∴.故答案为:.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13.【答案】解:原式 .【考点】实数的运算【解析】【解答】解:原式 . 14.【答案】两直线平行,同位角相等,,两直线平行,同旁内角互补∠CPE =∠APE−∠APC =−=60∘40∘20∘AB//CD CD//PE ∠C +∠CPE =180∘∠C =−=180∘20∘160∘16020E EF//AB EF//AB AB//CD EF//AB//CD ∠1=∠GEF =40∘∠2=∠HEF ∠GEF +∠HEF =60∘∠2=−=60∘40∘20∘20=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√EP//FQ【考点】平行线的判定与性质【解析】根据平行线的判定与性质证明即可.【解答】证明:因为(已知),所以(两直线平行,同位角相等).又因为 (已知),所以,即,所以(同位角相等,两直线平行),所以(两直线平行,同旁内角互补).故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补.15.【答案】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.【考点】AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ EP//FQ ∠EPQ +∠FQP =180∘EP//FQ (1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8一元二次方程的应用——其他问题动点问题动点问题的解决方法三角形的面积平行四边形的判定平行四边形的性质勾股定理含30度角的直角三角形【解析】此题暂无解析【解答】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.16.【答案】(1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.【考点】位置的确定【解析】此题暂无解析【解答】解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.17.【答案】解:由题意可知:,,,∵,,∴,∴.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.【考点】角的计算角平分线的定义【解析】D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)(1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘∠AON +=∠COM20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON AOC +∠AOC8(1)由题意可知:=,即∴=,即可求解;(2)由图可见:=;(3)是的角平分线,可以求出==,而==,∴=.【解答】解:由题意可知:,,,∵,,∴,∴.解:由题知,,,所以,即.故答案为:.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.18.【答案】证明:∵,∴.∵,∴,∴.【考点】平行线的性质【解析】此题暂无解析【解答】证明:∵,∴.∵,∴,∴.19.【答案】解:如图所示:直线,点,即为所求;∠AOD ∠AOC +∠COD ∠AOC +∠AOC 87150∘∠AON +20∘∠COM OM ∠BOC ∠CON ∠MON −∠COM 35∘∠AON ∠AOC −∠CON 35∘∠AON ∠CON (1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘(2)∠AOM =∠AOC +∠COM =∠AOC +70∘∠AOM =∠AON +∠MON =∠AON +90∘∠AOC +=∠AON +70∘90∘∠AON +=∠COM 20∘∠AON +=∠COM 20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2(1)MN C D∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.【考点】作图—复杂作图垂线余角和补角【解析】此题暂无解析【解答】解:如图所示:直线,点,即为所求;∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.20.【答案】,∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.【考点】估算无理数的大小立方根的应用(2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM (1)MN C D (2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM 5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3【解析】此题暂无解析【解答】解:∵,∴,即的整数部分为,小数部分为.故答案为:; .∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.21.【答案】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.【考点】点的坐标【解析】无无【解答】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.22.【答案】解:.理由如下:如图,过作,∵,(1)25<33<365<<633−−√33−−√5−533−−√5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)∠C =∠1+∠2C CD//PQ PQ//MN∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.【考点】平行线的判定与性质平行线的性质角的计算【解析】无无无【解答】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.23.【答案】解:如图,PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.【考点】几何变换综合题坐标与图形性质【解析】(1)由点的坐标的特点,确定出,,得出;(2)分点在线段和在延长线两种情况进行计算;(3)分点在线段上时,和在延长线两种情况进行计算;【解答】解:如图,A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD =3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD ×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBAα+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBAα−β=θα+β=θα−β=θFC =2OF =6C(2,6)D OA OA D OA α+β=θOA α−β=θ(1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD=3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBA α+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBA α−β=θα+β=θα−β=θ。

山东省青岛第五十九中学2024-2025学年九年级上学期期中考试数学试卷(无答案)

山东省青岛第五十九中学2024-2025学年九年级上学期期中考试数学试卷(无答案)

2024-2025学年度第一学期期中阶段性质量检测九年级数学试题(考试时间:120分钟:满分:120分)温馨提示:1.答卷前,考生务必将自已的姓名、准考证号等信息填写在答题卡和答题纸上。

2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

或写在答题纸上.如需改动,用橡皮擦干净后,再选涂其他标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题纸上.写在本试卷上无效。

第I卷(共54分)一、选择题(每小题3分,每题只有一个正确选项,共30分)1.下列方程中是一元二次方程的是()A.B.C.D.2.下列各组中的四条线段(单位:)成比例的是()A.3,6,5,4 B.3,4,6,9 C.1,5,2,3 D.2,4,5,103.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.B.C.D.4.下列说法正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.一组邻边相等的平行四边形是矩形C.菱形有四条对称轴D.对角线相等且互相垂直平分的四边形是正方形5.为执行“均衡教育”政策,某区2022年投入教育经费2500万元,预计到2024年底三年累计投入1.2亿元.若投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.B.C.D.6.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中相似的是()A.B.C.D.7.如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作,点F,G为垂足,若,则FG的长为()22(1)3(1)x x+=+2340ax x++=21440x x+-=2(2)5x x x+=-cm1413123422500(1) 1.2x+=225002500(1)2500(1)12000x x++++=22500(1)12000x+=25002500(1)2500(12)12000x x++++=ABC△EF BD EG AC⊥⊥,1024AC BD==,A .5B .6.5C .10D .128.如图,张老汉想用长为75米的棚栏,再借助房屋的外墙(外墙足够长)围成一个面积为720平方米的矩形羊圈ABCD ,并在边CD 上留一个5米宽的门(门用其他材料),设AB 的长为x 米,则下面所列方程正确的是( )A .B .C .D .9.如图所示,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且,AE ,BF 相交于点O ,下列结论①;②;③;④中,错误的有( )A .1个B .2个C .3个D .4个10.如图,在正方形ABCD 中有一个小正方形EFGH ,其中点E ,F 分别在边AB ,BC 上,点G 在线段DF 上.若正方形ABCD 的面积为16,,则正方形EFGH 的面积为( )A.B .C .5D .25二、填空题(每小题3分,每题只有一个正确选项,共24分)11.一元二次方程的二次项系数是________,一次项系数是________,常数项是________.12.在一个不透明的口袋中,装有若干个红球和8个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.4,则估计盒子中大约(75)720x x -=(802)720x x -=(752)720x x -=(80)720x x -=CE DF =AE BF =AE BF ⊥AO OE =AOB DEOF S S =△四边形1BE =52543(2)5x x -=有红球________个.13.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若,则四边形ABOM 的周长为________.14.一个主持人站在舞台的黄金分割点处最自然得体,如果舞台AB 长为20米,一个主持人现在站在A 处,则他应至少再走________米才最理想.15.某学习小组同学在元旦互相赠贺年卡一张,全组共赠贺年卡90张,设这个小组共有同学x 个,根据题中的条件,列出关于x 的方程为:________________.16.小亮希望测量出电线杆AB 的高度,他在电线杆旁的点D 处立一标杆,标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一直线上),量得米.则电线杆AB 的高为________米.17.如图,矩形ABCD 中,,F 为对角线AC 的中点,交BC 于E .则线段EF 的长为________________.18.如图,在平面直角坐标系中,点的坐标为,以为直角边作,并使,再以为直角边作,并使,再以为直角边作,并使…按此规律进行下去,则点的坐标为________.第II 卷(共6分)19.(本小题满分4分)513AB AC ==,215DB ED CD ==,.48AB BC ==,EF AC ⊥1A (1,0)1OA 12Rt OA A △1260A OA ∠=︒2OA 23Rt OA A △2360A OA ∠=︒3OA 34Rt OA A △3460A OA ∠=︒2024A用圆规、直尺作图,不写作法,但要保留作图痕迹,如图,是一块三角形余料,工人师傅要把它加工成一个菱形零件,使点A 为菱形的一个顶点,一组邻边分别在BA 、AC 上,另一个顶点在BC 上,试协助工人师傅用尺规画出这个菱形.结论:20.(本小题满分12分,每小题3分)解方程(1)(公式法)(2)(配方法)(3)(4)21.(本小题满分6分)随着《黑神话:悟空》这款融合了中国传统文化精髓与现代游戏技术的力作横空出世,不仅激发了玩家对神话故事的无限遐想,更意外地点燃了公众对山西这片古老士地的热情.游戏中精心选取的27处山西实景,如同一幅幅生动的历史画卷,引领我们穿越时空,感受五千年文明的深厚底蕴.某旅游公司推出“跟着悟空游山西”二日游路线.小明家、小米家利用双休日出去旅游.每次出游只能选一条路线.“跟着悟空游山西”二日游推荐路线A 、临汾线:小西天、广胜寺、铁佛寺B 、长治线:观音堂、紫庆寺C 、朔州线:尝福寺、应县木塔D 、晋中线:平遥镇国寺、平遥双林寺(1)小米家这周想选A 路线,小明家选不到A 路线的概率是多少?(2)如果小明家相约小米家一起出去旅游,两个家庭都从上面四条路线中选一条路线去游玩,请用树状图或列表的方法求出两家选取同一条路线的概率.22.(本小题满分6分)已知关于x 的一元二次方程有两个实数根.(1)求k 的取值范围:(2)若,求k 的值.23.(本小题满分8分)已知:如图,的对角线AC ,BD 交于点O ,分别过点A ,B 作连接CE 交BD 于点F .ABC △21683x x +=22450x x --=223(1)1x x -=-2750x -=24280x x k --+=12,x x 22121124x x x x +=-ABCD Y AE BD BE AC ∥,∥(1)求证:;(2)当满足什么条件时,四边形OAEB 为菱形?请说明理由.24.(本小题满分8分)2023年亚运会在杭州顺利举行,亚运会吉祥物“江南忆”公仔爆红.据统计“江南忆”公仔在某电商平台8月份的销售量是5万件,10月份的销售量是7.2万件.(1)若该平台8月份到10月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某一间店铺“江南忆”公仔的进价为每件40元,若售价为每件80元,每天能销售20件,售价每降价2元,每天可多售出8件,为了推广宣传,商家决定降价促销,同时尽量减少库存,若使销售该公仔每天获利1400元,则每件售价应降低多少元?25.(本小题满分10分)(1)【问题呈现】如图1,和都是等边三角形,连接BD ,CE .请直接写出BD 和CE 的数量关系.(2)【类比探究】如图2,和都是等腰直角三角形,.连接BD ,CE .请直接写出的值.(3)【拓展提升】如图3,和都是直角三角形,,且,连接BD ,CE .图1图2 图3①求的值;②延长CE 交BD 于点F ,交AB 于点G .若,求B P 的长.26.(本小题满分12分)已知:如图,在中,.点P 从点B 出发,沿BC 向点C 匀速运动,速度为;过点P 作,交AC 于点D .同时,点Q 从点A 出发,沿AB 向点B 匀速运动,BEF OCF ≌△△ABC ∠ABC △ADE △ABC △ADE △90ABC ADE ∠=∠=︒BD CEABC △ADE △90ABC ADB ∠=∠=︒34AB AD BC DE ==BD CE1,64BG AB CG ==Rt ABC △903cm 4cm C AC BC ∠=︒==,,1cm/s PD AB ∥速度为;当一个点停止运动时,另一个点也停止运动,连接PQ .设运动时间为t (s )(),解答下列问题:(1)当t 为何值时,四边形ADPQ 为平行四边形?(2)当t 为何值时,;(3)在运动过程中,是否存在某一时刻t ,使?若不存在,请说明理由,若存在,求出t 的值;(4)当t 为何值时,为等腰三角形?请直接写出答案.2cm/s 025t <<.PQ PD ⊥:1:10PQB ABC S S =△△PBQ △。

初一(上)期中考试数学试卷(一)(含答案)

初一(上)期中考试数学试卷(一)(含答案)

初一(上)期中考试数学试卷(一)一、选择题:(每题2分,共24分)1.在方程2x-y=5,x+y 2=3,5x=3y ,7(x-y)=-4(x-y)+10x-1, x+61y=7中,二元一次方程的个数是( )(A)2 (B)3 (C)4 (D)52.三元一次方程组⎪⎩⎪⎨⎧=++=++=++41952731d c b d c b d c b 的解是( )(A)⎪⎪⎩⎪⎪⎨⎧===65061d c b (B)⎪⎪⎩⎪⎪⎨⎧==-=65061d c b (C)⎪⎪⎩⎪⎪⎨⎧===61065d c b (D)⎪⎪⎩⎪⎪⎨⎧-===6165d c b 3.方程组⎩⎨⎧=+=2m y x , m y -x 的解是⎩⎨⎧==1,y3,x则m 的值是( )(A)m=2 (B)m=±2 (C)m=1 (D)m=±14.二元一次方程2x+3y=15的正整数解的个数是( )(A)1 (B)2 (C)3 (D)45.不等式-5x<15的解是( ).(A)x<-3; (B) x>-3 ; (C) x>0; (D) x<3.6.当x 取不大于37的值时,3x-7的值( )(A)大于0 (B)不大于0 (C)小于0 (D)不小于07.由x<y 得到ax ≥ay 的条件是 ( )(A)a>0; (B) a<0; (C) a ≥0 ; (D) a ≤0 .8.下列各式中一定成立的是( )(A) 3-a>2-a; (B)a>-a; (C) a>a 1; (D) 4a<5a.9.图中线段AC 的反向延长线是 ( )(A)射线CD (B)射线CB (C)射线AB (D)射线CD10.经过A ,B ,C 三点的直线的条数是 ( )(A)三条 (B)一条 (C)三条或一条 (D)以上说法均不对11.经过A 、B 、C 三点中的任意两点可画直线的条数是 ( )(A)一定能画三条 (B)只能画一条(C)可能画三条也可能画一条 (D)以上说法都不对.12.如图,AOB 是直线,OD 平分∠BOC,OE 平分∠AOC,则下列说法中错误的是 ( )(A)∠DOE 为直角;(B) ∠DOC 和∠AOE 互余(C) ∠AOE 和∠BOC 互补;(D) ∠AOD 和∠DOC 互补二、填空题:(每空2分,共26分)13.若⎪⎩⎪⎨⎧-==231y x 是方程2ax-3y=1的一个解,则a-2.5=________.14.已知⎩⎨⎧-==3,2y x 是方程组⎩⎨⎧=+=+1,5y nxmy x 的解,则m=________,n=_______。

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。

一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。

七年级下册期中考试数学试卷及答案

七年级下册期中考试数学试卷及答案

第二学期期中考试 初一年级数学试卷一、 选择题(每小题2分,共30分) 1、计算327的结果是( )A. 33±B. 33C. ±3D. 32、如图,四个图形中的∠1和∠2,不是同位角的是( )A. B. C. D.3、在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4、在下面各数中无理数的个数有( ) ﹣3.14,722,0.1010010001……,+1.99,3π-。

A. 1个 B. 2个 C. 3个 D. 4个5、如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A 等于( ) A. 35° B. 40° C. 45° D. 50°6、下列说法正确的是( )A. ﹣5是25的平方根B. 25的平方根是﹣5C. ﹣5是 (﹣5)2的算术平方根D. ±5是(﹣5)2的算术平方根7、若方程组⎩⎨⎧=-+=+6)1(1434y k kx y x 的解中x 与y 的值相等,则k 为( )A. 4B. 3C. 2D. 18、线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点D (1,2)的对应点B 的坐标为( )A. (2,9)B. (5,3)C. (﹣4,﹣1)D. (﹣9,﹣4) 9、在实数范围内,下列判断正确的是( ) A. 若n m = ,则m =nB. 若22b a >,则a >bC. 若22)(b a =,则a =bD. 若33b a =,则a =b10、 在平面直角坐标系中,若A 点坐标为(﹣3,3),B 点坐标为(2,0),则△ABO 的面积为( )A. 15B. 7.5C. 6D. 3 11、 如图所示,下列条件中,不能..判断l 1∥l 2的是( ) A. ∠1=∠3 B. ∠2=∠3 C. ∠4=∠5 D. ∠2+∠4=180°12、 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④同一平面内,垂直于同一条直线的两条直线互相平行。

陕西省西安未央区经开第一学校2023-2024学年七年级下学期期中数学试题(含解析)

陕西省西安未央区经开第一学校2023-2024学年七年级下学期期中数学试题(含解析)

2023-2024学年度第二学期期中质量检测七年级数学试卷(考试时间:100分钟 分值:120分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列计算中,正确的是( )A .326a a a ⋅=B .22122a a -=C .633422a a a ÷=D .224a a a +=2.下列不能用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y -+-C .()()x y x y -+--D .()()x y x y -++3.俗话说:“水滴石穿”,水滴不断地落在一块石头的同一个位置,经过几年后,石头上形成了一个深度为0.0039的小洞,数据0.0039用科学记数法表示为( )A .33.910-⨯B .33910-⨯C .20.3910-⨯D .23910-⨯4.如图,直线a ∥b ,直角三角板ABC 的直角顶点C 在直线b 上,若∠1=55°,则∠2=( )A .55°B .45°C .35°D .25°5.如图在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是( )A .a 2﹣2ab +b 2=(a ﹣b )2B .a 2﹣ab =a (a ﹣b )C .a 2﹣b 2=(a ﹣b )2D .a 2﹣b 2=(a +b )(a ﹣b )6.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为( ).A .32y x =B .23y x =C .12y x =D .18=y x7.车库的电动门栏杆如图所示,BA 垂直于地面AE 于A ,CD 平行于地面AE ,则∠ABC +∠BCD 的大小是( )A .150︒B .180︒C .270︒D .360︒8.小明一家自驾车到离家500km 的某景点旅游,出发前将油箱加满油.下表记录了行驶路程()km x 与油箱余油量()L y 之间的部分数据:行驶路程()km x 050100150200…油箱余油量()L y 4541373329…下列说法不正确的是( )A .该车的油箱容量为45LB .该车每行驶100km 耗油8LC .油箱余油量()L y 与行驶路程()km x 之间的关系式为458y x=-D .当小明一家到达景点时,油箱中剩余5L 油9.(x -m )2=x 2+nx +36,则n 的值为( )A .12B .-12C .-6D .±1210.如图,两个正方形的边长分别为a ,b ,且满足10a b +=,12ab =,图中阴影部分的面积为( )A .100B .32C .144D .36二、填空题(共6小题,每小题3分,计18分)11.比较大小:334 443.12.如图,直线AB 与直线EF 相交于点O ,CD AB OG ⊥,平分EOB ∠,若60AOF ∠=︒,则DOG ∠的度数为 .13.在三角形ABC 中,90BAC ∠=︒,AD BC ⊥垂足为D ,则有=B CAD ∠∠,其理由是 .14.若()()23x m x x n +-+的展开式中不含x 项、2x 项(,m n 为常数),则m n ⋅= .15.一个角的补角比它的余角的3倍少20︒,这个角的度数是 度.16.南宋数学家杨辉在其著作《详解九章算法》中揭示了()n a b +(n 为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”.当代数式43242644816a a a a +⨯+⨯+⨯+的值为1时,则a 的值为 .三、解答题(共8小题,计72分)17.计算下列各题:(1)20211( 2.74)()3π--+-+;(2)23332(3)(4)a a a a --⋅+;(3)2(5)(2)(3)x x x ----;(4)()()a b c a b c +-++.18.利用整式乘法公式计算(1)3994011⨯+(2)210319.如图,已知三角形ABC ,点P 是AB 边上一点,利用尺规在AC 上求作一点Q ,使PQ BC ∥(不写作法,保留作图痕迹).20.先化简,再求值:()()()()222222x y x y x y y y ⎡⎤---+-÷-⎣⎦;其中2x =-,1y =.21.如图,若AB DE ∥,180A D ∠+∠=︒,求证:AC DF ∥.(请补全下面的解答过程,括号内填写依据)证明:∵AB DE ∥,A ∴∠= ① ( ② )180A D ∠+∠=︒ ( ③ )D ∴∠+ ④ 180=︒( ⑤ )AC DF ∴∥( ⑥ )22.动点H 以每秒1cm 的速度沿图1中的长方形ABCD 按从A B C D ---的路径匀速运动,相应的三角形HAD 的面积()2cm S 与时间()s t 的关系图象如图2,已知4cm AD =,设点H 的运动时间为t 秒.(1)AB =______,=a ______,b =______;(2)当三角形HAD 的面积为28cm 时,求点H 的运动时间t 的值.23.“数形结合”是一种非常重要的研究数学问题的思想方法.结合图形我们可以通过两种不同的方法计算面积,从而可以得到一个数学等式.(1)如图1,用两种不同的方法计算阴影部分的面积,可以得到的数学等式是______.(2)我们可以利用(1)中的关系进行求值,则3a b +=-.则227a b +=,ab =______;(3)小玲想利用图2中x 张A 纸片,y 张B 纸片,z 张C 纸片拼出一个面积为()()3a b a b ++的大长方形,则x y z ++=______;(4)如图3,已知正方形ABCD 的边长为x ,,E F 分别是AD DC 、上的点,且1AE =,3CF =,长方形EMFD 的面积是24,分别以MF DF 、为边作正方形,求阴影部分的面积.24.如图,已知AB CD ∥,E F 、分别在AB CD 、上,点P 在AB CD 、之间,连接PE PF 、.(1)如图1,若50AEP ∠=︒,20CFP ∠=︒,则EPF ∠=______;(2)如图2,点G 是AB CD 、之间另外一点,40BEG ∠=︒且EP 平分BEG ∠,FP 平分DFG ∠:①若GE GF ⊥,求P ∠的度数;②如图3,在CD 的下方有一点,Q EG 平分BEQ ∠,FD 平分GFQ ∠,求2Q P ∠+∠的度数.参考答案与解析1.C【分析】本题考查了同底数幂的乘法,负整数指数幂,单项式除以单项式,合并同类项.根据同底数幂的乘法,负整数指数幂,单项式除以单项式,合并同类项法则分别计算判断即可.【详解】解:A 、3256a a a a ⋅=≠,故此选项不符合题意;B 、2222122a a a-=≠,故此选项不符合题意;C 、633422a a a ÷=,故此选项符合题意;D 、22242a a a a +=≠,故此选项不符合题意;故选:C .2.B【分析】本题考查平方差公式:()()22a b a b a b +-=-,解题的关键是掌握平方差公式的结构特征:左边是两个二项式相乘,且两个二项式中有一项相同,另一项互为相反数;右边是两项的平方差(相同项的平方减去相反项的平方);公式中的a 和b 可以是单项式,也可以是多项式.据此依次对各选项逐一分析即可作出判断.【详解】解:A .()()22x y x y x y +-=-,能用平方差公式计算,故此选项不符合题意;B .()()()()222x y x y x y x y x xy y -+-=---=-+-,不能用平方差公式计算,故此选项符合题意;C .()()()2222x y x y x y x y -+--=--=-,能用平方差公式计算,故此选项不符合题意;D .()()()()22x y x y y x x y y x -++=-+=-,能用平方差公式计算,故此选项不符合题意.故选:B .3.A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:30.0039 3.910-=⨯,故选:A .【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C【分析】先由平行线的性质求出∠3,再由直角和角的和差关系求出∠2.【详解】解:∵a ∥b ,∴∠1=∠3.∵∠1=55°,∴∠3=55°.∵∠2+∠3=∠ACB =90°,∴∠2=90°-∠3=35°.故选:C .【点睛】本题主要考查了平行线的性质,掌握“两直线平行,同位角相等”是解决本题的关键.5.D【分析】这个图形变换可以用来证明平方差公式:已知在左图中,大正方形减小正方形剩下的部分面积为a 2﹣b 2;因为拼成的长方形的长为(a +b ),宽为(a ﹣b ),根据“长方形的面积=长×宽”代入为:(a +b )×(a ﹣b ),因为面积相等,进而得出结论.【详解】解:由图可知,大正方形减小正方形剩下的部分面积为:a 2﹣b 2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.【点睛】此题主要考查了平方差公式的几何背景,解题的关键是求出第一个图的阴影部分面积,进而根据长方形的面积计算公式求出拼成的长方形的面积,根据面积不变得出结论.6.A【分析】首先求出每支平均售价,即可得出y与x之间的关系.【详解】∵每盒圆珠笔有12支,售价18元,∴每只平均售价为:1812=1.5(元),∴y与x之间的关系是:32y x ,故选:A.【点睛】此题主要考查了列函数关系式,求出圆珠笔的平均售价是解题关键.7.C【分析】过B作BF∥AE,则CD∥BF∥AE.根据平行线的性质即可求解.【详解】解:过B作BF∥AE,则CD∥BF∥AE.∴∠BCD+∠1=180°;又∵AB⊥AE,∴AB⊥BF.∴∠ABF=90°.∴∠ABC+∠BCD=90°+180°=270°故选C.【点睛】本题主要考查了平行线的性质,两直线平行,同旁内角互补.正确作出辅助线是解题的关键.8.C【分析】根据表格中信息逐一判断即可.【详解】解:A、由表格知:行驶路程为0km时,油箱余油量为45L,故A正确,不符合题意;B 、0——100km 时,耗油量为45378L -= ;100——200km 时,耗油量为37298L -= ;故B 正确,不符合题意;C 、有表格知:该车每行驶50km 耗油4L ,则∴44550y x =-,故C 错误,符合题意;D 、当500x = 时,44454550055050y x L =-=-⨯=,故D 正确,不符合题意,故选:C .【点睛】本题主要考查了函数的表示方法,明确题意,弄懂表格中的信息是解题的关键.9.D【详解】222()2x m x mx m -=-+ , (x -m )2=x 2+nx +36,222236x mx m x nx ∴-+=++,2236,m n m -=⎧∴⎨=⎩解得:121266,1212.m m n n ==-⎧⎧⎨⎨=-=⎩⎩ 故选D.10.B【分析】用含有a 、b 的代数式表示阴影部分的面积,再根据完全平方公式进行代数式的变形,进而求出答案.【详解】解:∵两个正方形的边长分别为a ,b ,∴()2221122S a b a a b b =+--+⋅阴影2222111222a b a ab b =+---22111222a ab b =-+()2212a ab b =-+()221232a ab b ab =++-()2132a b ab ⎡⎤=+-⎣⎦,∵10a b +=,12ab =,∴原式()2110312322=⨯-⨯=.故选:B .【点睛】本题考查完全平方公式的应用,求代数式的值.正确的表示阴影部分的面积和适当的变形,是得到正确答案的关键.11.<##小于【分析】本题主要考查了幂的乘方的逆运算,根据幂的乘方的逆运算法则得到()11333114464==,()11444113381==,据此可得答案.【详解】解;()11333114464==,()11444113381==,∵11116481<,∴334443<,故答案为:<.12.120°##120度【分析】首先垂直的定义可得90BOD ∠=︒,根据对顶角相等可得60BOE AOF ∠=∠=︒, 再根据角平分线的定义以及角的和差关系算出DOG ∠的度数.【详解】∵CD AB ⊥,∴∠90BOD =︒,∵60AOF ∠=︒,∴60BOE AOF ∠=∠=︒,∵OG 平分BOE ∠,1302BOG BOE ∴∠=∠=︒,∴3090120DOG BOG BOD ∠=∠+∠=︒+︒=︒ ,故答案为:120︒.【点睛】此题主要考查了角平分线的定义,垂线和对顶角,关键是掌握对顶角相等,垂直定义,角平分线的性质.13.同角的余角相等【分析】此题考查了直角三角形的性质.根据直角三角形的性质得出90B C ∠+∠=︒,90C CAD ∠+∠=︒,再根据同角的余角相等求解即可.【详解】解:90BAC ∠=︒ ,90B C ∴∠+∠=︒,AD BC ⊥ ,90C CAD ∴∠+∠=︒,B CAD ∴∠=∠(同角的余角相等),故答案为:同角的余角相等.14.27【分析】利用多项式乘多项式的法则对式子进行运算,再结合条件进行求解即可.【详解】解:()()23x m x x n +-+32233x x nx mx mx mn=-++-+()()3233x m x n m x mn=+-++-+∵展开式中不含x 项,2x 项,∴30n m -=,30m -+=,解得:3m =,9n =,∴3927m n ⋅=⨯=.故答案为:27.【点睛】本题主要考查多项式乘多项式,解答的关键是对相应的运算法则的掌握.15.35【分析】设这个角为x 度.根据一个角的补角比它的余角的3倍少20°,构建方程即可解决问题.【详解】解:设这个角为x 度.则180°-x=3(90°-x )-20°,解得:x=35°.答:这个角的度数是35°.故答案为:35.【点睛】本题考查余角、补角的定义,一元一次方程等知识,解题的关键是学会用方程分思想思考问题,属于中考常考题型.16.1-或3-【分析】本题考查了多项式乘法中的规律问题.当2b =时,4432(2)426448161a a a a a +=+⨯+⨯+⨯+=,再计算求值即可.【详解】解:根据有关规律,可得,4322344()464a b a a b a b ab b +=++++,当2b =时,++++432234a 4ab 6a b 4ab b 43242644816a a a a =+⨯+⨯+⨯+4(2)a =+,43242644816a a a a +⨯+⨯+⨯+ 的值为1,4(2)1a ∴+=,即21a +=±,1a ∴=-或3-.故答案为:1-或3-.17.(1)9(2)6411a a --(3)519x -+(4)2222a b ab c ++-【分析】(1)根据乘方运算法则、零指数幂运算法则以及负整数指数幂运算法则求解,再相加减即可;(2)根据积的乘方法则、同底数幂乘法法则进行运算,再合并同类项即可;(3)根据完全平方公式以及多项式乘以多项式法则求解,再合并同类项即可;(4)根据平方差公式和完全平方公式求解即可.【详解】(1)解:原式1199=-++=;(2)解:原式64664271611a a a a a =--+=--;(3)解:原式22221025(56)102556519x x x x x x x x x =-+--+==-+-+-=-+;(4)解:原式22222()2a b c a b ab c =+-=++-.【点睛】本题主要考查了实数运算和整式运算,熟练掌握相关运算法则是解题关键.18.(1)160000(2)10609【分析】本题考查了平方差公式,完全平方公式.(1)利用平方差公式进行计算,即可解答;(2)利用完全平方公式进行计算,即可解答.【详解】(1)解:3994011⨯+(4001)(4001)1=-⨯++240011=-+160000=;(2)解:21032(1003)+=10000210039=+⨯⨯+10609=.19.见解析【分析】本题考查了尺规作图能力—过直线外一点作已知直线的平行线.过点P 作APQ B ∠=∠,与AC 交于点Q ,即可.【详解】解:如图,点Q 即为所求..20.522x y -,7-【分析】本题考查了整式的化简求值.先根据完全平方公式,多项式乘多项式法则进行计算,再合并同类项,算除法,最后代入求出答案即可.【详解】解:()()()()222222x y x y x y y y ⎡⎤---+-÷-⎣⎦()()22222442222x xy y x xy xy y y y =-+--++-÷-()()2542xy y y =-+÷-522x y =-,当2x =-,1y =时,原式5(2)212=⨯--⨯52=--7=-.21.DPC ∠;两直线平行,同位角相等;已知;DPC ∠;等量代换;同旁内角互补,两直线平行【分析】此题考查了平行线的判定与性质.根据平行线的判定与性质求解即可.【详解】证明:∵AB DE ∥,A DPC ∴∠=∠(两直线平行,同位角相等),180A D ∠+∠=︒ (已知),180D DPC ∴∠+∠=︒(等量代换),∴AC DF ∥(同旁内角互补,两直线平行),故答案为:DPC ∠;两直线平行,同位角相等;已知;DPC ∠;等量代换;同旁内角互补,两直线平行.22.(1)5cm ,14,10(2)点H 的运动时间为4s 或10s .【分析】本题考查了动点问题的函数图象,能结合图象得到有用条件,利用动点的运动求出相关线段是本题的解题关键.(1)根据图2函数分别分析出当点H 运动到点B 、C 、D 处的路程,求出AB ,再求出当点H 在BC 上时的面积即可;(2)当三角形HAD 的面积为28cm 时,点H 在AB 或CD 上,分别计算求出高,再依题意求出路程即可.【详解】(1)解:由图2得,当05t <≤时,S 随t 的增大而增大,∴当点H 运动到点B 时,5s =t ,5cm AB ∴=,当59<≤t 时,S 的值不变,∴当点H 运动到点C 时,9t s =,此时三角形HAD 的面积为长方形面积的一半,2110cm 2S AD AB ∴=⋅=,即10b =,当点H 运动到点D 处时,0S =,9514cm a ∴=+=,故答案为:5cm ,14,10;(2)解:当点H 在AB 上时,三角形HAD 的面积12AD AH =⋅,当28cm S =时,182AD AH ⋅=,4cm AH ∴=,4t s ∴=,当点H 在CD 上时,三角形HAD 的面积12AD DH =⋅,当28cm S =时,182AD DH ⋅=,4cm DH ∴=,1cm CH =,()10cm AB BC CH ++=10s t ∴=,综上,点H 的运动时间为4s 或10s .23.(1)()2222a b a b ab+=+-(2)1(3)8(4)阴影部分的面积为20.【分析】(1)方法一是直接将两个正方形的面积相加,方法二是用大的正方形面积减去两个长方形的面积,即可得到等式;(2)根据(1)中得到的关系式直接代入即可得到结果;(3)根据得到的大长方形的面积展开,可以得到一个关系式,由关系式中可知道用的纸张分别是多少,计算其和即可;(4)先根据阴影部分构造出来等式,然后根据两次完全平方公式得到结果.【详解】(1)解:方法一:阴影部分是两个正方形的面积和,即22a b +;方法二:阴影部分也可以看作边长为()a b +的面积减去两个长为a ,宽为b 的长方形面积,即()22a b ab +-,两种方法可得出:()2222a b a b ab +=+-;故答案为:()2222a b a b ab +=+-;(2)解:由(1)可得()2222a b a b ab +=+-,∵3a b +=-,227a b +=,∴()2732ab =--,∴1ab =;故答案为:1;(3)解:()()222233334a b a b a ab ab b a ab b ++=+++=++,A 纸片的面积为2a ,B 纸片面积为2b ,C 纸片面积为ab ,根据2234a ab b ++可知要拼出一个面积为()()3a b a b ++的大长方形,需要3张A 纸片,1张B 纸片,4张C 纸片,则3148x y z ++=++=;故答案为:8;(4)解:由图知1ED x =-,3DF x =-,∴()()2213S x x =---阴影,∵长方形EMFD 的面积是24,∴()()1324x x --=,设1x a -=,3x b -=,则2a b -=,24ab =,由()()224a b a b ab +=-+,得()222424100a b +=+⨯=,∴10a b +=,∴()()2210220a b a b a b -=+-=⨯=,即()()221320x x ---=,∴阴影部分的面积为20.【点睛】本题考查了完全平方公式在几何图形中的应用、多项式乘多项式、完全平方公式的变形适用,熟练掌握完全平方公式是解题的关键.24.(1)70︒(2)①45︒;②120︒【分析】本题考查了平行线的性质与判定,角平分线的定义,掌握平行线的性质与判定是解题的关键.(1)作PM AB ∥,根据平行线的性质与判定,以及角平分线的定义,即可求解;(2)①作GN AB ∥,PM AB ∥,根据平行线的性质与判定,以及角平分线的定义,可得()1122EPE BEG GFD EGF ∠=∠+∠=∠,根据垂直的定义可得90EGF ∠=︒,进而即可求解;②过点Q 作QK CD ∥,设GFD QFD αÐ=Ð=,根据平行线的性质以及角平分线的定义,可得80FQE αÐ=°-,由(1)可知,240G P BEG GFD α∠=∠=∠+∠=︒+,即可求解.【详解】(1)解:作PM AB ∥,∵AB CD ∥,∴AB CD PM ∥∥,∴AEP EPM CFP FPM ∠=∠∠=∠,,∵50AEP ∠=︒,20CFP ∠=︒,∴502070EPF EPM FPM ∠=∠+∠=︒+︒=︒,故答案为:70︒;(2)解:①如图,分别过点G ,P 作GN AB ∥,PM AB ∥,∵AB CD ∥,∴AB CD GN PM ∥∥∥,∴BEG EGN BEP EPM ∠=∠∠=∠,,NGF GFD MPF PFD ∠=∠∠=∠,,EGF EGN NGF BEG GFD ∠=∠+∠=∠+∠,EPF EPM MPF BEP PFD ∠=∠+∠=∠+∠,∵EG FG ⊥,∴90EGF ∠=︒,∵EP 平分BEG ∠,FP 平分DFG ∠,∴1122BEP BEG PFD DFG ∠=∠∠=∠,,∴()114522EPE BEG GFD EGF ∠=∠+∠=∠=︒;②如图,分别过点G ,P 作GN AB ∥,PM AB ∥,过点Q 作QK CD ∥,∵AB CD ∥,∴AB CD GN PM ∥∥∥,∴,BEG EGN BEP EPM ∠=∠∠=∠,,NGF GFD MPF PFD ∠=∠∠=∠,∴EGF EGN NGF BEG GFD ∠=∠+∠=∠+∠,EPF EPM MPF BEP PFD ∠=∠+∠=∠+∠,∵EP 平分BEG ∠,FP 平分DFG ∠,∴1122BEP BEG PFD DFG ∠=∠∠=∠,,∴()1122EPF BEG GFD EGF ∠=∠+∠=∠,∵40BEG ∠=︒,EG 平分BEQ ∠,FD 平分GFQ ∠,∴40,GEQ BEG GFD QFD ∠=∠=︒∠=∠,设GFD QFD αÐ=Ð=,∵,QK CD AB CD ∥∥,∴QK AB ∥,∴280EQK BEQ BEG ∠=∠=∠=︒,FQK QFD Ð=Ð,设FQK QFD αÐ=Ð=,∴80FQE αÐ=°-,∵12EPF EGF ∠=∠,∴240EGF EPF BEG GFD α∠=∠=∠+∠=︒+,∴28040120FQE P αα∠+∠=︒-+︒+=︒.。

初一数学第二学期期中考试试卷(含答案)

初一数学第二学期期中考试试卷(含答案)

初一数学第二学期期中考试试卷(含答案)试卷满分:120分考试时间:100分钟一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,由AB CD ∥,能得到12∠=∠的是( )2.下列各网格中的图形是用其图形中的一部分平移得到的是-------------( )A B C D 3.下列计算正确的是( )A .a 2+a 3=a 5B .a·a 2=a 2C .(ab)3=ab 3D .(-a 2)2=a 44.如图,已知△ABC 中,∠A =40°,剪去∠A 后成四边形,则∠1+∠2的和的度数为( )A .220°B .210°C .140°D .120°第4题图 5.如图,BE 、CF 都是△ABC 的角平分线,且∠BDC=1100,则∠A 的度数为( )A .50B .40C .70D .3506. 如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中BC 边上的高是( )A. CF ;B.BE ;C.AD ;D.CD ; 7.如果,,那么三数的大小为( ) A. B. C. D. 8.若(x+5)(2x-n)=2x 2+mx-15,则( )A .m=-7,n=3B .m=7,n=-3C .m=-7,n=-3D .m=7,n=3(),990-=a ()11.0--=b 235-⎪⎭⎫ ⎝⎛-=c c b a >>b a c >>b c a >>a b c >>A CB D1 2 A CB D1 2 A .B .12 ACDC . B C AD .12 F E D CB A 第5题图 AB C D E F第6题图9. 如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形 内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分 别为5、6、7,四边形DHOG 面积为( )A . 5B .6C .8D .9 10.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729, 37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( ) A .0 B .1 C .3 D .7二、填空题(本大题共8小题,每空3分,共30分)11.一种细菌的半径是0.00000038厘米,用科学计数法表示为___ 厘米.12.若 ,3,6==n m a a =-n m a 2________ .若3=n x ,则=⋅n n x x )21()2(_______. 13. 二次三项式9)1(2++-x k x 是一个完全平方式,则k 的值是_________.14.一个多边形的每一个外角都是30°,则这个多边形是__ 边形,它的内角和是____°. 15.三角形两边长分别为2和8,若该三角形第三边长为奇数,则该三角形的第三边为________.16. 如图,直线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图,画PC ∥a ,量出直线b 与PC 的夹角度数,即直线a ,b 所成角的度数,请写出这种做法的理由______________________.17.设m2+m −1=0,则m 3+2m 2+2014=________.18.如图a 是长方形纸带,∠DEF=22°,将纸带沿EF 折叠成图b,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是________°.三、解答题(本大题共60分.解答时应写出文字说明、证明过程或演算步骤).19.计算(每小题4分,共12分) (1)()()1331721-⎪⎭⎫ ⎝⎛--+-+-π(2)234232)3()2(x x x x --⋅+-(3) −x (2x +1)−(2x +3)(1−x ) (4)(x+1)2﹣(x+2)(x-2)20. (本题5分)先化简,再求值:2(32)(32)5(1)(1)x x x x x +--+--, 其中220120x x --=AEBCG D H F O 题9图a bD BAC P(图2)第16题第18题图A DC BE F C BG 图a图c21.(本题10分)如下图,在每个小正方形边长为1的方格纸中, △ABC 的顶点都在方格纸格点上.(1)将△ABC 经过平移后得到△A′B′C′,图中标出了点B的对应点B',补全△A′B′C′;(2)若连接AA ',BB ',则这两条线段之间的关系是; (3)画出AC 边上的高线BD ;(4)画出△ABC 中AC 边上的中线BE ;(5)△BCE的面积为 .22.(本题5分)如图,AD ∥BE ,AE 平分∠BAD ,CD 与AE 相交于F ,∠CFE=∠E .求证:AB ∥CD .23.(本题6分)如图,DE ⊥AB ,EF ∥AC ,∠A=32°,①求∠DEF 的度数.②若∠F 比∠ACF大60°,求∠B 的度数..B′G FED CBA...11618141219×23...13×2323S 4=S 3×13S 3=S 2×13S 2=S 1×13S 1=13...24.(本题6分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B =90°,∠A=30°;图②中,∠D = 90°,∠F =45°.图③是该同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在△DEF 沿AC 方向移动的过程中,该同学发现:F 、C 两点间的距离______________;连接FC ,∠FCE 的度数_______________.(填“不变”、“逐渐变大”或“逐渐变小”)(2)△DEF 在移动的过程中,∠FCE 与∠CFE 度数之和是否为定值,请加以说明; (3)能否将△DEF 移动至某位置,使F 、C 的连线与AB 平行?请求出∠CFE 的度数.25.(本题6分)利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.你能利用数形结合的思想解决下列问题吗? (1)如图①,边长为1的正方形,依次取正方形面积的21、41、81、…、n 21,根据图示我们可以知道:21+41+81+161+…+n21=__________.(用含有n 的式子表示)(2)如图②,边长为1的正方形,依次取剩余部分的32,根据图示: 计算:+++2729232…+n 32=__________.(用含有n 的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:++++8182749231…+n n 321-=__________.(用含有n 的式子表示)图①图②图③26.(本题10分)如图,已知点A、B分别在∠MON的边ON、OM上(不与点O重合),AD平分∠BAN,BC平分∠ABM,直线AD,BC相交于点C.(1)如图1,若∠MON = 90°,试猜想∠ACB=________°;(2)如图2,在(1)的基础上,若∠MON每秒钟变小10°,经过了t秒(0 <t < 9),①试用含t的代数式表示∠ACB的度数;②并求出当t取何值时,∠MON与∠ACB的度数相等;(3)如图3,在(2)的条件下,若BC平分∠ABO,其它条件不改变,请直接写出∠BCD 与∠MON的关系.参考答案1. B2. C3. D4. A5. B6. C7. C8. D9. B 10. C 11. 3.8×107- 12.329 13. 5, -7 14. 十二 1800 15. 7, 9 16. 两直线平行,同位角相等 17. 2015 18. 114° 19. (1) -9 ( 2) -16x 6 (3) -3 (4) 2x+520. 化简结果是 3x 2-3x-5 (3分) 求值结果是 6031 (2分) 21. (每小题2分)(1)略 (2)平行且相等 (3)略 (4)略 (5)4 22.23. (每小题3分)① 122° ② 28° 24. (每小题2分)(1)逐渐变小,逐渐变大(2)和为定值,是45° (3)15°25.(每小题2分)(1)n 211- (2)n 311- (3)n n 321-26.(1)∠ACB = 45° .…. ….….2分 (2)∠ACB =(45+5t )°.…..…..5分 由 90-10t = 45 + 5t , 得t =3. .…..8分∴ 当t = 3时,∠MON 与∠ACB 的度数相等;(没写答不扣分)…. …. …..8分 (3)∠BCD = 21∠MON . …. …. …. …. …. …. …. ….…. ….. …. ….. …. …..10分。

山东省下学期初中七年级期中考试数学试卷(含答案解析)

山东省下学期初中七年级期中考试数学试卷(含答案解析)

山东省下学期初中七年级期中考试数学试卷(五四制)时间:120分钟 满分:120分一、选择题(本大题共12小题,每小题3分,共36分。

下列各题所给出的四个答案中,只有一个是正确的,请把正确答案的字母填入表格中) 1、下列四个命题中,真命题是( )A 、“任意四边形内角和为360°”是不可能事件B 、“威海市明天会下雨”是必然事件C 、“预计本题的正确率是95%”表示100位考生中一定有95人做对D 、抛掷一枚质地均匀的硬币,正面朝上的概率是2、在方程①13=+xy x ②x y 3= ③31=+y x ④ 614=+y x ⑤222=+y x ⑥z z y 38=-+中, 二元一次方程有( ) A. 1个 B. 2个 C. 3个 D. 4个3.如图,已知AB∥CD,∠EBA=45°,∠E+∠D 的度数为( )A 、30°B 、60°C 、90°D 、45°4、如图,下列不能判定AB ∥CD 的条件是( ) A.︒=∠+∠180BCD B B.21∠=∠ C.43∠=∠ D.5∠=∠B5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A.201B. 10019C.51D.以上都不对6、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是( ). A 、对顶角 B 、相等但不是对顶角 C 、邻补角 D 、互补但不是邻补角7、已知方程组2024x y x ky -=⎧⎨+=⎩有正整数解,则K 的取值范围是()A 、K>4B 、K ≥4C 、K >-4D 、K ≥-48、两条直线被第三条直线所截,那么同旁内角之间的大小关系是( ) A 、相等 B 、互补 C 、不相等 D 、无法确定 9、已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.4 10、如图所示,∠A,∠1,∠2的大小关系是( )A 、∠A>∠1>∠2B 、∠2>∠1>∠AC 、∠A>∠2>∠1D 、∠2>∠A>∠111、已知()052632=--+++y x y x ,则( )xy= A.12 B.13- C.13 D.13- 12、如图是甲、乙两名选手在一次自行车越野赛中,路程y (千米)随时间x (分)变化的图象(全程),根据图象所提供的信息解答下列问题中正确的个数( )。

福建省泉州市鲤城区福建省泉州第五中学2023-2024学年七年级下学期期中数学试题(解析版)

福建省泉州市鲤城区福建省泉州第五中学2023-2024学年七年级下学期期中数学试题(解析版)

泉州五中2023−2024学年下学期初一年期中考试数学试卷(满分:150分;考试时间:120分钟)一、选择题(每小题4分,共40分).在答题卡上相应题目的答题区域内作答.1. 下列各方程中,是二元一次方程的是( )A.=y +5x B. 3x +1=2xy C. x =y 2+1 D. x +y =1【答案】D【解析】【分析】根据二元一次方程的定义逐一排除即可.【详解】解:A 、=y +5x 不是二元一次方程,因为不是整式方程;B 、3x +1=2xy 不是二元一次方程,因为未知数的最高项的次数为2;C 、x =y 2+1不是二元一次方程,因为未知数的最高项的次数为2;D 、x +y =1是二元一次方程.故选:D .【点睛】此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.2. 不等式的解集在数轴上表示正确的是( ).A.B. C.D.【答案】D【解析】【分析】本题考查的是利用数轴表示不等式的解集,掌握大于折线向右是解本题的关键.由包含分界点用实心点,大于折线向右,从而可得答案.【详解】解:∵,∴1处是实心点,且折线向右.故选:D .23x y -1523x y-151x ≥1x ≥3. 下面4个汉字中,可以看作是轴对称图形的是( )A.B. C. D.【答案】A【解析】【分析】利用轴对称图形的定义进行解答即可.【详解】解:A 、是轴对称图形,故此选项符合题意;B 、不是轴对称图形,故此选项不合题意;C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意;故选A .【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4. 已知,下列不等式成立的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵,∴,故不符合题意;B . ∵,∴,∴,故符合题意;C .∵,∴,故不符合题意;D . ∵,∴,故不符合题意.故选:B.a b >a b->-22a b -<-22a b <0a b -<a b >a b -<-a b >a b -<-22a b -<-a b >22a b >a b >0a b ->5. 现有两根长度为3和4(单位:cm )的小木棒,下列长度的小木棒不能与它们搭成三角形的是( )A. 4B. 5C. 6D. 7【答案】D【解析】【分析】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.设第三根木棒的长为,再根据三角形的三边关系得出l 取值范围即可.【详解】解:设第三根木棒的长为,则,即.观察选项,只有选项D 符合题意.故选:D .6. 某人用同种正多边形瓷砖铺设无缝地板,他购瓷砖形状可能是( )A. 正五边形B. 正六边形C. 正七边形D. 正九边形【答案】B【解析】【分析】本题主要考查了平面镶嵌,判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成,则说明能够进行平面镶嵌;反之则不能,据此逐一判断即可.【详解】解:A 、正五边形的一个内角度数为,不能整除,不能进行平面镶嵌,不符合题意;B 、正六边形的一个内角度数为,能整除,能进行平面镶嵌,符合题意;C 、正七边形的一个内角度数为,不能整除,不能进行平面镶嵌,不符合题意;D 、正九边形的一个内角度数为,不能整除,不能进行平面镶嵌,不符合题意;故选B.7. 图中表示被撕掉一块的正边形纸片,若,则的值是( )cm l cm l 4343l -<<+17l <<()180521085︒⨯-=︒360︒()180621206︒⨯-=︒360︒()1807290077︒⨯-⎛⎫=︒ ⎪⎝⎭360︒()180921409︒⨯-=︒360︒n a b ⊥nA. B. C. D. 【答案】C【解析】【分析】本题考查了垂直的定义,正边形的外角和为,根据垂直的定义可知,再根据直角三角形的性质及正边形的外角和为即可解答.【详解】解:如图,延长,交于点,∵,∴,∴正多边形的一个外角为∴,故选:C .8. 《九章算术》中记载这样一个问题:“以绳测井,若将绳三折测之,绳多四尺,绳多一尺.问绳长、井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份;如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?下列解题方案:①设井深为x 尺,列方程为;②设绳长为y尺;③设绳长、井深分别为a 尺,b 尺,其中正确的是( )A ① B. ①② C. ②③ D. ①②③【答案】C.57810n 360︒90ACB ∠=︒n 360︒a b C a b ⊥90ACB ∠=︒180180904522ACB BAC ABC ︒-∠︒-︒∠=∠===︒360845n ︒==︒3441x x +=+4134y y -=-()()3441a b a b ⎧=+⎪⎨=+⎪⎩【解析】【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找到等量关系,列出相应的方程组.用代数式表示绳长或井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】解:①设井深尺,两次测量绳长不变,可列方程.②设绳长为尺,两次测量井深不变,可列方程;③设绳长、井深分别为尺,尺,列方程组为,其中正确的是②③,故选:C .9. 如图所示把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是 ( )A. 正三角形B. 正方形C. 正五边形D. 正六边形【答案】A 【解析】【详解】试题分析:对于此类问题,只要亲自动手操作,答案就会很直观地呈现.试题解析:由第二个图形可知:∠AOB 被平分成了三个角,每个角60°,故选A .考点:剪纸问题.10. 有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数,只显示不运算,接着再输入整数,后则显示的结果,比如依次输入1,2,则输出结果是;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.①依次输入1,2,3,4,则最后输出的结果是1;②若将2,3,6这3个整数任意的一个一个输入,全部输入完毕后显示的结果的最大值是4;为x 3(4)4(1)x x +=+y 4134y x -=-a b 3(4)4(1)a b a b =+⎧⎨=+⎩1x 2x 12x x -121-=③若随意地一个一个地输入三个互不相等的正整数,2,,全部输入完毕后显示的最后结果为,若的最大值为2021,那么的最小值为2019.以上说法正确的个数有( )个.A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查了整数的奇偶性问题以及有绝对值的函数最值问题,解题的关键是读懂题意.①根据题意每次输入都是与前一次运算结果求差后取绝对值,将已知数据输入求出即可;②根据运算规则可知最大值是5;③根据题意可得出只有3个数字,当最后输入最大值时结果得到的值最大,当首先将最大值输入则结果是最小值,进而分析得出即可.【详解】解:根据题意可得出:,,,故①不符合题意;②对于2,3,6,按如下次序输入:2,3,6,可得,按如下次序输入:2,6,3,可得,按如下次序输入:3,2,6,可得,按如下次序输入:3,6,2,可得,按如下次序输入:6,2,3,可得,按如下次序输入:6,3,2,可得,全部输入完毕后显示的结果的最大值是5,故②不符合题意;③对于随意地一个一个地输入三个互不相等的正整数,2,,全部输入完毕后显示的最后结果为,若的最大值为2021,由②得当最后输入最大值时结果得到的值最大,当首先将最大值输入则结果是最小值;∴设为较大的数字,当时,,a b k k k 1211-=-=1322-=-=2422-=-=2365--=2631--=3265--=3621--=6231--=6321--=a b k k b 1a =1212021b b --=-=解得:,故此时输入后得到的最小数为:,故③符合题意;故选:B .二、填空题(每小题4分,共24分).在答题卡上相应题目的答题区域内作答.11. “x 与6和小于17”用不等式表示为______.【答案】##【解析】【分析】本题考查列不等式,正确得翻译句子,列出不等式即可.【详解】解:由题意,可列不等式为;故答案为:.12. 如图,是的一条中线,若的面积是.则的面积为______.【答案】【解析】【分析】本题考查的是三角形的中线的性质,利用三角形的中线等分三角形的面积即可得到答案.【详解】解:∵是的一条中线,的面积是.∴,故答案为:13. 如图,是正六边形的一条对角线,则的度数______.【答案】##90度的2022b =2022212019--=617x +<617x +<617x +<617x +<AD ABC ABC 210cm ABD △2cm 5AD ABC ABC 210cm ()215cm 2ABD ABC S S == 5AC ABCDEF FAC ∠90︒【解析】【分析】本题考查了,多边形内角和公式,等边对等角,三角形内角和定理,解题的关键是:熟练掌握相关公式定理.根据正多边形内角和公式,求出,的度数,结合等边对等角,三角形内角和定理,即可求解.【详解】解:∵正六边形,∴,,∴,∴,∴,故答案为:.14. 已知三元一次方程组,则______.【答案】####19.5【解析】【分析】此题考查了解三元一次方程组,本题的技巧为将三个方程相加.方程组中三个方程左右两边相加,变形即可得到的值.【详解】解:,①+②+③,得,∴,故答案为.15. 若关于的不等式组的解集为,且关于的方程有非负整数解,则满足条件的所有整数的和为__.ABC ∠FAB ∠ABCDEF ()621801206ABC FAB -⨯︒∠=∠==︒BA BC =ACB BAC ∠=∠1801801203022ABC ACB ︒-∠︒-︒===︒∠1203090FAC ∠=︒-︒=︒90︒3045x y x z y z +=⎧⎪+=⎨⎪+=⎩x y z ++=3921192x y z ++3045x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③22239x y z ++=392x y z ++=392x 11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩x a ≤y 27y a =+a【答案】【解析】【分析】此题考查了解一元一次不等式,一元一次方程的解,一元一次不等式的整数解,关键是能准确求解,并根据题意确定字母参数的取值.先解该不等式组并求得符合题意的的取值范围,再解关于的方程并求得符合题意的的取值范围,然后确定的所有取值,最后计算出此题结果.【详解】解:,解不等式①得,解不等式②得,由题意得,解方程得,,关于的方程有非负整数解,且为奇数,解得,,的取值范围为:,为奇数,整数的取值为,,,,1,3,符合条件的所有整数的和为:.故答案为:.16. 如图,,点M 、N 分别在射线、上,,的面积为12,P 是直线上的动点,点P 关于对称的点为,点P 关于对称的点为,当点P 在直线上运动时,的面积最小值为______.12-a y 27y a =+a a ()1142423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩①②x a ≤5x <5a <27y a =+72a y +=y 27y a =+∴702a +≥a 7a ≥-a ∴75a -≤<a ∴a 7-5-3-1-∴a 75311312----++=-12-45AOB ∠=︒OA OB 8MN =OMN MN OA 1P OB 2P NM 12OPP【答案】【解析】【分析】连接,过点作交的延长线于,先利用三角形的面积公式求出,再根据轴对称的性质可得,,,从而可得,然后利用三角形的面积公式可得的面积为,可得当点与点重合时,取得最小值,的面积最小,由此即可得.【详解】解:如图,连接,过点作交的延长线于,,且,,点关于对称的点为,点关于对称的点为,,,,,,92OP O O H M N ⊥NM H OH 1AO P AO P ∠=∠2B O P B O P ∠=∠12OP OP OP ==1290POP ∠=︒12OPP 212OP P H OP 12OPP OP O O H M N ⊥NM H 1122OMN S MN OH =⋅= 8MN =3OH ∴= P OA 1P P OB 2P 1AOP AOP ∴∠=∠2B O P B O P ∠=∠12OP OP OP ==45AOB ∠=︒ 122()290POP AOP BOP AOB ∴∠=∠+∠=∠=︒的面积为,由垂线段最短可知,当点与点重合时,取得最小值,最小值,的面积的最小值为,故答案为:.【点睛】本题考查了轴对称、垂线段最短等知识点,掌握轴对称的性质是关键.三、解答题(共86分).在答题卡上相应题目的答题区域内作答.17. 解方程组:.【答案】.【解析】【分析】此题考查了解二元一次方程组.方程组利用加减消元法求出解即可.【详解】解:,得,解得,将代入②得,解得,∴方程组的解为.18. 解不等式组,并在数轴上表示其解集且写出它的所有的非正整数解.【答案】画图见解析,,所有的非正整数解为:,,.【解析】【分析】本题考查的是在数轴上表示不等式的解集,一元一次不等式组的解法,不等式组的整数解的含义,掌握解法步骤是解本题的关键;先分别解不等式组中的两个不等式,再在数轴上表示两个不等式的解集,利用数轴确定不等式组的解集,再确定非正整数解即可.为∴12OPP 2121122OP OP OP ⋅=P H OP 3OH =∴12OPP 219322⨯=923210521x y x y +=⎧⎨-=⎩41x y =⎧⎨=-⎩3210521x y x y +=⎧⎨-=⎩①②2+⨯①②1352x =4x =4x =2021y -=1y =-41x y =⎧⎨=-⎩()23952214x x x x ⎧-+>⎪⎨+>-⎪⎩①②32x -<<2-1-0【详解】解:由①得:,解得:,由②得:,解得:,在数轴上表示不等式的解集如下:∴不等式组的解集为:,∴所有的非正整数解为:,,.19. 已知一个多边形的边数为,若这个多边形的每个内角都比与它相邻的外角的4倍多,求这个多边形对角线的总条数.【答案】【解析】【分析】本题考查了求多边形内角和与外角和的综合,求多边形对角线的总条数,掌握多边形对角线的总条数计算公式是解题的关键.根据题意,求出每个外角的度数,再用外角和除以外角的度数得到边数,代入多边形对角线的总条数计算公式求解即可;【详解】解:设这个多边形的每个外角为,则每个内角为,依题意得,,解得,∴,∴这个多边形对角线的总条数,答:这个多边形对角线的总条数为.20. 中,,,是高,是三角形的角平分线.求的度数.()23952214x x x x ⎧-+>⎪⎨+>-⎪⎩①②23x x ->-3x >-5284x x +>-2x <32x -<<2-1-0n 30︒54360︒()32n n -x ︒()430x +︒430180x x ++=30x =3603012n =︒÷︒=()12312542-⨯==54ABC 26B ∠=︒74C ∠=︒AD AE DAE ∠【答案】【解析】【分析】本题考查了三角形的内角和定理,三角形平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.根据三角形内角和定理求出,再根据角平分线的定义求出,根据直角三角形两锐角互余求出,然后求解即可.【详解】解:∵,,,是的角平分线,,是的高,,,,.21. 已知关于x ,y 的二元一次方程组与方程组有相同的解.(1)求这两个方程组的相同解;(2)求的值.【答案】(1) (2)1【解析】【详解】(1)由题意,得①+②,得5x =10,解得x =2.把x =2代入①,得4+5y =-26,解得y =-6.24︒BAC ∠BAE ∠BAD ∠26B ∠=︒74C ∠=︒180180267480BAC B C \Ð=°-Ð-Ð=°-°-°=°AE ABC 1402BAE BAC ∴∠=∠=︒AD ABC 90BDA ∴∠=︒90BAD B ∴∠+∠=︒90902664BAD B ∴∠=︒-∠=︒-︒=︒644024EAD BAD BAE \Ð=Ð-Ð=°-°=°35368x y bx ay -=⎧⎨+=-⎩25264x y ax by +=-⎧⎨-=-⎩()20242a b +26x y =⎧⎨=-⎩2526,3536,x y x y +=-⎧⎨-=⎩①②∴这两个方程组的相同解为(2)把代入得解此方程组,得a =1,b =-1,∴(2a +b )2024=(2-1)2024=1.22. 我市某校为了落实“阳光体育活动”,在八年级开展了篮球赛.比赛规则是:八年级10个班级每个班级派出一支队伍参赛,赛制采用的是单循环积分赛(每个班级都与其他9个班级进行一场比赛),胜一场记2分,负一场记1分,然后按照积分高低进行排名.赛程过半,小明所在的班级已经进行了5场比赛,积9分.(1)求小明所在班级胜、负的场次各是多少;(2)根据分析,总积分超过15分才能确保进入前两名,小明的班级若想进入前两名在剩下的比赛中至少还要取得几场胜利?【答案】(1)小明所在的班级胜4场,负1场(2)小明的班级若想进入前两名在剩下的比赛中至少还要取得3场胜利【解析】【分析】本题考查了二元一次方程组,一元一次不等式的应用,解题的关键是找准等量关系,正确列出二元一次方程组.(1)设小明所在班级胜了场,负了场,根据小明所在的班级已经进行了5场比赛,积9分,即可得出关于,的二元一次方程组,解之即可得出结论;(2)设小明的班级在剩下的比赛中还要胜场,根据总积分超过15分才能确保进入前两名,即可得出关于的一元一次不等式,解之取其中的最小整数值即可得出结论.【小问1详解】解:设小明所在的班级胜场,负场,依题意得解得,答:小明所在的班级胜4场,负1场.【小问2详解】设小明的班级在剩下的比赛中还要胜场,依题意得解得,2,6.x y =⎧⎨=-⎩2,6x y =⎧⎨=-⎩4,8,ax by bx ay -=-⎧⎨+=-⎩264,268.a b b a +=-⎧⎨-=-⎩x y x y m m x y 529x y x y +=⎧⎨+=⎩41x y =⎧⎨=⎩m 295915m m +--+>>2m为正整数,答:小明的班级若想进入前两名在剩下的比赛中至少还要取得3场胜利.23. 数学小组的同学发现,折纸中蕴含着许多数学问题.现有一张三角形纸片,点,分别是边,上的点,若沿直线折叠,点的对应点为点,且点在直线的右侧.(1)若如图1所示,点恰好在边上,则与的数量关系是______.(2)记,,且,的度数均不为0,试通过折痕的变化,探索,和之间的数量关系.【答案】(1)(2)【解析】【分析】本题主要考查了三角形内角和定理,折叠的性质,三角形外角的性质等等:(1)由折叠的性质可得,则,再由三角形外角的性质可得;(2)先由三角形内角和定理得到,由折叠的性质可得,,由平角的定义可得,结合:,进而得到.【小问1详解】解:由折叠的性质可得,∵,∴,即,故答案为:;【小问2详解】由折叠的性质可得,,∵,∴,∵,m 3m ∴≥ABC M N AC BC MN ABC C D D AB D BC 1∠ACB ∠1AMD ∠=∠2BND ∠=∠1∠2∠MN 1∠2∠ACB ∠12ACB =∠∠122ACB∠+∠=∠CM DM =∠=∠C CDM 12ACB =∠∠140CMN CNM +=︒∠∠DMN CMN DNM CNM ==∠∠,∠∠D ACB ∠=∠2212360CMN CNM ∠+∠+∠+∠=︒222360ACB CMN CNM ∠+∠+∠=︒122ACB ∠+∠=∠∠=∠C CDM 1C CDM =+∠∠∠12C ∠=∠12ACB =∠∠12ACB =∠∠DMN CMN DNM CNM ==∠∠,∠∠D ACB ∠=∠11802180DMN CMN DNM CNM ++=︒++=︒∠∠∠,∠∠∠2212360CMN CNM ∠+∠+∠+∠=︒360D DMN DNM CMN CNM C ∠+∠+∠+∠+∠+∠=︒∴∴;24. 某学校实践课准备用图甲所示的A 型正方形板材和B 型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若学校现有库存A 型板材55张,B 型板材120张,用这批板材制作两种类型的箱子,恰好将库存板材用完时,能制作出竖式和横式的箱子各多少只?(2)现有A 型板材162张,B 型板材340张,若要做这两种箱子共100个,请问有哪几种生产方案?(3)若学校新购得张规格为的C 型正方形板材,将其中一张板材切割成了3张A 型板材和2张B 型板材,将其余的全部切割成A 型或B 型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求竖式箱子制作20只,且材料恰好用完,求的最小值?【答案】(1)制作出竖式和横式的箱子各15只和20只;(2)①做竖式纸箱38个,则横式纸箱62个,②做竖式纸箱39个,则横式纸箱61个,③做竖式纸箱40个,则横式纸箱60个.(3)n 的最小值是35.【解析】【分析】本题考查的是二元一次方程组的应用,二元一次不等式组的应用,二元一次方程的正整数解问题,确定相等关系是解本题的关键;(1)设竖式做个,横式做个,根据现有库存A 型板材55张,B 型板材120张,用这批板材制作两种类型的箱子,恰好将库存板材用完,再建立方程组求解即可;(2)设做竖式纸箱个,则横式纸箱个,利用有A 型板材162张,B 型板材340张,做这两种箱子共100个,建立不等式组求解即可;(3)设C 型板有x 张全部切成A 板,则有张全部切成B 板,再利用剩余的A 板与B 板之比为建立二元一次方程,再利用方程的正整数求解即可.【小问1详解】解:由题意可得:竖式纸盒做1个需要1张A ,4张B ,横式纸盒做1个需要2张A ,3张B,设竖式做222360ACB CMN CNM ∠+∠+∠=︒122ACB ∠+∠=∠n 33m ⨯n x y m ()100m -()1n x --2:3x个,横式做个,则,解得,答:制作出竖式和横式的箱子各15只和20只;【小问2详解】设做竖式纸箱个,则横式纸箱个,则,解得:,∵为整数,∴或或,∴一共有三种方案:①做竖式纸箱38个,则横式纸箱62个,②做竖式纸箱39个,则横式纸箱61个,③做竖式纸箱40个,则横式纸箱60个.【小问3详解】∵竖式箱子制作20只用掉20张A 板,80张B 板,设C 型板有x 张全部切成A 板,则有张全部切成B 板,且一张的C 型板可以切成张A 型板或3张B 型板,∴板有张,板有张,竖式箱子制作20只后剩余板张,剩余板张,根据题意,得,整理,得,∵,∴,∵,都为正整数,y 25543120x y x y +=⎧⎨+=⎩1520x y =⎧⎨=⎩m ()100m -()()210016243100340m m m m ⎧+-≤⎪⎨+-≤⎪⎩3840m ≤≤m 38m =3940()1n x --33m ⨯339⨯=A ()93x +B ()312n x ⎡⎤--+⎣⎦A ()9320x +-B ()31280n x ⎡⎤--+-⎣⎦()()9320:312802:3x n x ⎡⎤+---+-=⎣⎦33111331185185662x x x n x x +++==++=++9200x -≥209x ≥x n∴的最小值为,则的最小值为;∴n 的最小值是35.25. 引入概念1:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.引入概念2:从不等边三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形.若分成的两个小三角形中一个是满足有两个角相等的三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(1)如图1,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,请写出图中两对“等角三角形”.① ;② .(2)如图2,在△ABC 中,CD 为角平分线,∠A=40°,∠B=60°.请你说明CD 是△ABC 的等角分割线.(3)在△ABC 中,若∠A=40°,CD 为△ABC 的等角分割线,请你直接写出所有可能的∠B 度数.【答案】(1)与;与(2)理由见解析 (3)60°;30°;;【解析】【分析】(1)由题意知,,可说明与是“等角三角形”,根据,可说明与是“等角三角形”,进而可得答案;(2)根据三角形内角和定理计算,由角平分线的定义可知,,可说明是有两个角相等的三角形,由,,,可说明与原来三角形是“等角三角形”,进而结论得证;(3)由题意可知,分4种情况求解:①当是有两个角相等的三角形,且时,x 3n 311853352++⨯+=ACD CBD △ACD ABC 1403︒1003︒90ADC CDB ACB ∠=∠=∠=︒CAD BCD ∠=∠ACD CBD ∠=∠ACD CBD △CAD BAC ∠=∠ACD ABC 18080ACB A B ∠=︒-∠-∠=︒1402ACD BCD ACB ∠=∠=∠=°ACD A ∠=∠ACD 280CDB A ACB ∠=∠=︒=∠A BCD ∠=∠B B ∠=∠CBD △ABC ACD 40A ACD ∠=∠=︒如图1,由(2)可知,;②当是有两个角相等的三角形,且时, 如图2,由题意知,则,,进而可知的值;③当是有两个角相等的三角形,且时,与是“等角三角形”,如图3,,,根据求出的值即可;④当是有两个角相等的三角形,且时,与是“等角三角形”如图4,则,,根据求出的值即可.【小问1详解】解:∵,∴∵∴同理∴与是“等角三角形”∵∴与是“等角三角形”故答案为:与;与.【小问2详解】解:∵,∴∵CD 为角平分线∴∵∴是有两个角相等三角形∵,,∴与原来三角形是“等角三角形”∴CD 是△ABC 的等角分割线.【小问3详解】的=60B ∠︒ACD 18040702ADC ACD ︒-︒∠=∠==︒40BCD A ∠=∠=︒110BDC ACB ACD BCD ∠=∠=∠+∠=︒18030CBD ABC A ACB ∠=∠=︒-∠-∠=︒B ∠CBD △B BCD ∠=∠ACD ABC 2ADC B ACB ∠=∠=∠ACD B ∠=∠2180A B B ∠+∠+∠=︒B ∠CBD △BDC BCD ∠=∠ACD ABC ACD B ∠=∠BDC A ACD A B ∠=∠+∠=∠+∠2()180B A B ∠+∠+∠=︒B ∠90ACB ∠=︒CD AB⊥90ADC CDB ACB ∠=∠=∠=︒90ACD CAD ACD BCD ∠+∠=∠+∠=︒CAD BCD∠=∠ACD CBD∠=∠ACD CBD △CAD BAC∠=∠ACD ABC ACD CBD △ACD ABC 40A ∠=︒=60B ∠︒18080ACB A B ∠=︒-∠-∠=︒1402ACD BCD ACB ∠=∠=∠=°ACD A∠=∠ACD 280CDB A ACB ∠=∠=︒=∠A BCD ∠=∠B B∠=∠CBD △ABC解:①当是有两个角相等的三角形,且时,如图1,由(2)可知,,满足CD 为△ABC 的等角分割线;②当是有两个角相等的三角形,且时, 如图2,由题意知,∴,∴,∴时,满足CD 为△ABC 的等角分割线;③当是有两个角相等的三角形,且时,与是“等角三角形”,如图3,,∵ACD 40A ACD ∠=∠=︒=60B ∠︒ACD 18040702ADC ACD ︒-︒∠=∠==︒40BCD A ∠=∠=︒110BDC ACB ACD BCD ∠=∠=∠+∠=︒18030CBD ABC A ACB ∠=∠=︒-∠-∠=︒30B ∠=︒CBD △B BCD ∠=∠ACD ABC 2ADC B ACB ∠=∠=∠ACD B∠=∠2180A B B ∠+∠+∠=︒∴∴时,满足CD 为△ABC 的等角分割线;④当是有两个角相等的三角形,且时,与是“等角三角形”如图4,∴∵∴∴ 时,满足CD 为△ABC 的等角分割线;综上所述,的度数为 或或或 .【点睛】本题考查了角平分线,等边对等角,三角形内角和定理,三角形外角的性质等知识.解题的关键在于理解题意熟练掌握角度的求解.1403B ︒∠=1403B ︒∠=CBD △BDC BCD ∠=∠ACD ABC ACD B∠=∠BDC A ACD A B∠=∠+∠=∠+∠2()180B A B ∠+∠+∠=︒1003B ︒∠=1003B ︒∠=B ∠60︒30︒1403︒1003︒。

2021-2022学年下学期七年级数学期中考试试卷

2021-2022学年下学期七年级数学期中考试试卷

2021-2022学年第二学期七年级期中考试数学试卷一.选择题(共10小题,每小题4分,满分40分)1.下列实数中,无理数是()A.3.1415926 B.﹣0.202002000C.D.2.某微生物的直径为0.0000403m,数字0.0000403可以用科学记数法表示为()A.4.03×10﹣5 B.4.03×10﹣4 C.4.03×105D.4.03×1043.若6x>﹣6y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<04.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x6÷x2=x4C.x2y+xy2=x3y3D.x2•y2=(xy)45.不等式组的解集在数轴上表示为()6.某商品的标价比成本价高m%,根据市场行情,该商品需降价n%出售,为了不亏本,则m、n应满足()A.(1+m%)(1+n%)≥1 B.(1+m%)(1﹣n%)≥1C.(1﹣m%)(1+n%)≥1 D.(1﹣m%)(1﹣n%)≥17.计算(x﹣y)(﹣x﹣y)的结果是()A.﹣x2+y2B.﹣x2﹣y2C.x2﹣y2D.x2+y28.已知x的二次三项式x2+kx+9可以写成一个完全平方式,则k的值是()A.3 B.±3 C.6 D.±69.已知a=2﹣55,b=3﹣44,c=4﹣33,d=5﹣22,则这四个数从小到大排列顺序是()A.a<b<c<d B.d<a<c<b C.a<d<c<b D.b<c<a<d10.已知,则的值为()A.B.C.D.或1二.填空题(共4小题,每小题5分,满分20分)11.27的立方根是.12.若x,y为实数,且|x+2|+=0,则x﹣y=.13.若不等式(1﹣a)x>1﹣a的解集是x<1,则a的取值范围是.14.若a﹣b=3,b﹣c=2,那么a2+b2+c2﹣ab﹣ac﹣bc=.三.解答题(共9小题)15.计算:(﹣1)0+()﹣1﹣+.16.解不等式组.17.已知(a+b)2=17,(a﹣b)2=13,求:(1)a2+b2的值;(2)ab的值.18.先化简,再求值(x﹣2)2+2(x+2)(x﹣4)﹣(x﹣3)(x+3);其中x=1.19.在实数范围内定义一种新运算“⊕”其运算规则为:a⊕b=2a﹣(a+b),如1⊕5=2×1﹣(1+5)=﹣7.(1)若x⊕4=0,则x=.(2)若关于x的方程x⊕m=﹣2⊕(x+4)的解为非负数,求m的取值范围.20.分解因式(1)2a3﹣8a;(2)(x﹣y)2+4xy.21.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买A型号和B型号垃圾分拣机器人共60台,其中B型号机器人不少于A型号机器人的1.4倍.设该垃圾处理厂购买x台A型号机器人.(1)该垃圾处理厂最多购买几台A型号机器人?(2)机器人公司报价A型号机器人6万元/台,B型号机器人10万元/台,要使总费用不超过510万元,则共有几种购买方案?22.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42.因此,4、12、20这三个数都是神秘数.(1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?23.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a+b=10,ab=23,求S1+S2的值;(3)当S1+S2=29时,求出图3中阴影部分的面积S3.安庆市外国语学校2021-2022学年第二学期七年级期中考试数学试卷参考答案与试题解析一.选择题(共10小题)1.下列实数中,无理数是()A.3.1415926 B.﹣0.202002000C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.3.1415926是有限小数,属于有理数;B﹣0.202002000是有限小数,属于有理数;C.,是整数,属于有理数;D.是无理数.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.某微生物的直径为0.0000403m,数字0.0000403可以用科学记数法表示为()A.4.03×10﹣5 B.4.03×10﹣4 C.4.03×105D.4.03×104【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000403=4.03×10﹣5.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.若6x>﹣6y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<0【分析】根据不等式的性质逐个判断即可.【解答】解:∵6x>﹣6y,∴x>﹣y,∴x+y>0,故本选项符合题意;根据6x>﹣6y能推出x+y>0,不能推出x﹣y>0,故本选项不符合题意;即只有选项A符合题意;选项B、C、D都不符合题意;故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.4.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x6÷x2=x4C.x2y+xy2=x3y3D.x2•y2=(xy)4【分析】根据完全平方公式,可判断A,根据同底数幂的除法,可判断B,根据合并同类项,可判断C,根据积的乘方,可判断D.【解答】解:A、差的平方等于平方和减积的2倍,故A错误;B、同底数幂的除法,底数不变指数相减,故B正确;C、不是同底数幂的乘法,指数不能相加,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.【点评】本题考查了同底数幂的除法,同底数幂的除法,底数不变指数相减.5.不等式组的解集在数轴上表示为()【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组的解集为:x≥2.在数轴上表示为:.故选:A.【点评】本题考查的是在数轴上表示不等式组得解集,熟知“小于向左,大于向右”是解答此题的关键.6.某商品的标价比成本价高m%,根据市场行情,该商品需降价n%出售,为了不亏本,则m、n应满足()A.(1+m%)(1+n%)≥1 B.(1+m%)(1﹣n%)≥1C.(1﹣m%)(1+n%)≥1 D.(1﹣m%)(1﹣n%)≥1【分析】设进价为a元,根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【解答】解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)≥1.故选:B.【点评】此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.7.计算(x﹣y)(﹣x﹣y)的结果是()A.﹣x2+y2B.﹣x2﹣y2C.x2﹣y2D.x2+y2【分析】本题是平方差公式的应用,﹣y是相同的项,互为相反项是﹣x与x,对照平方差公式计算.【解答】解:原式=(﹣y)2﹣x2=y2﹣x2,=﹣x2+y2,故选:A.【点评】本题考查了平方差公式的应用.运用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.8.已知x的二次三项式x2+kx+9可以写成一个完全平方式,则k的值是()A.3 B.±3 C.6 D.±6【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵x的二次三项式x2+kx+9可以写成一个完全平方式,∴x2+kx+9=(x±3)2=x2±6x+9,∴k=±6.故选:D.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.已知a=2﹣55,b=3﹣44,c=4﹣33,d=5﹣22,则这四个数从小到大排列顺序是()A.a<b<c<d B.d<a<c<b C.a<d<c<b D.b<c<a<d【分析】直接利用幂的乘方运算法则以及负指数幂的性质、分数的性质统一各数指数,进而比较即可.【解答】解:∵a=2﹣55=(2﹣5)11=,b=3﹣44=(3﹣4)11=,c=4﹣33=(4﹣3)11=,d=5﹣22=(5﹣2)11=∴b<c<a<d.故选:D.【点评】此题主要考查了幂的乘方运算以及负指数幂的性质、分数的性质,正确将各数统一指数是解题关键.10.已知,则的值为()A.B.C.D.或1【分析】|x|一定是非负数,,那么一定为正数,进而先求得()2的值,最后求得其算术平方根即为所求的值.【解答】解:∵﹣|x|=1,∴x>0∴+|x|>0,∵()2=(﹣|x|)2+4=5,∴+|x|=,故选:B.【点评】综合考查了绝对值及完全平方公式的知识;得到x的取值是解决本题的突破点;求两数的和,先求得两数的和的平方是解决本题的基本思路.二.填空题(共4小题)11.27的立方根是3.【分析】根据立方根的定义,直接求解.【解答】解:∵33=27,∴27的立方根为3.故答案为:3.【点评】本题考查立方根.解题关键是熟记立方根的概念.12.若x,y为实数,且|x+2|+=0,则x﹣y=﹣3.【分析】直接利用非负数的性质得出x,y的值,进而得出答案.【解答】解:∵|x+2|+=0,∴x+2=0,y﹣1=0,解得:x=﹣2,y=1,∴x﹣y=﹣2﹣1=﹣3.故答案为:﹣3.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.若不等式(1﹣a)x>1﹣a的解集是x<1,则a的取值范围是a>1.【分析】根据不等式的基本性质确定出a的范围即可.【解答】解:∵不等式(1﹣a)x>1﹣a的解集是x<1,∴1﹣a<0,解得:a>1.故答案为:a>1.【点评】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.14.若a﹣b=3,b﹣c=2,那么a2+b2+c2﹣ab﹣ac﹣bc=19.【分析】根据已知条件求出a﹣c的值,再构造完全平方公式,整体代入即可求解.【解答】解:若a﹣b=3,b﹣c=2,则a﹣c=5.a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=(9+25+4)=×38=19.故答案为19.【点评】本题考查了因式分解的应用,解决本题的关键是构造完全平方公式,善于利用整体思想.三.解答题(共9小题)15.计算:(1)++|1﹣|﹣;(2)(﹣1)0+()﹣1﹣+.【分析】(1)依据实数运算法则进行运算即可;(2)依据实数运算法则进行运算即可.【解答】解:(1)原式=7+(﹣3)+﹣1﹣=7﹣3﹣1+﹣=3.(2)原式=1+﹣+4=1+﹣2+4=1+3﹣2+4=6.【点评】本题主要考查了实数的运算,零指数幂,负整数指数幂,绝对值、算术平方根、立方根等知识点,熟练运用实数的运算法则是解题的关键.16.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【解答】解:解不等式3x﹣2<x+1,得:x<,解不等式x+5>4x+1,得:x<,∴不等式组的解集为x<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.已知(a+b)2=17,(a﹣b)2=13,求:(1)a2+b2的值;(2)ab的值.【分析】已知两等式利用完全平方公式展开,相加求出a2+b2的值;相减求出ab的值.【解答】解:(1)∵(a+b)2=a2+2ab+b2=17①,(a﹣b)2=a2﹣2ab+b2=13②,∴①+②得:2(a2+b2)=30,即a2+b2=15;(2)①﹣②得:4ab=4,即ab=1.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.18.先化简,再求值(x﹣2)2+2(x+2)(x﹣4)﹣(x﹣3)(x+3);其中x=1.【分析】先算乘法,再合并同类项,最后代入求出即可【解答】解:原式=x2﹣4x+4+2(x2﹣2x﹣8)﹣(x2﹣9)=x2﹣4x+4+2x2﹣4x﹣16﹣x2+9=2x2﹣8x﹣3,当x=1时,原式=2﹣8﹣3=﹣9.【点评】本题考查了整数的混合运算和求值,能正确运用整式运算法则进行化简是解此题的关键.19.在实数范围内定义一种新运算“⊕”其运算规则为:a⊕b=2a﹣(a+b),如1⊕5=2×1﹣(1+5)=﹣7.(1)若x⊕4=0,则x=12.(2)若关于x的方程x⊕m=﹣2⊕(x+4)的解为非负数,求m的取值范围.【分析】(1)根据所给的运算列出关于x的方程,解方程即可.(2)根据所给的运算列出关于x的一元一次方程,解方程后得到关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵a⊕b=2a﹣(a+b),∴x⊕4=2x﹣(x+4)=x﹣6,∵x⊕4=0,∴x﹣6=0,解得x=12,故答案为:12;(2)∵a⊕b=2a﹣(a+b),∴x⊕m=2x﹣(x+m)=x﹣m,﹣2⊕(x+4)=2×(﹣2)﹣(﹣2+x+4)=﹣4+3﹣x﹣6=﹣x﹣7,∴x﹣m=﹣x﹣7,解得x=m﹣,∵关于x的方程(x⊕m)=[﹣2⊕(x+4)]的解为非负数,∴m﹣≥0,∴m≥,∴m的取值范围为m≥.【点评】本题考查的是解一元一次方程,解一元一次不等式,根据所给的新运算列出关于x的一元一次方程是解答此题的关键.20.分解因式(1)2a3﹣8a;(2)(x﹣y)2+4xy.【分析】(1)先提公因式,再利用平方差公式进行因式分解;(2)先根据乘法公式展开,再利用完全平方公式进行因式分解.【解答】解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2);(2)原式=x2﹣2xy+y2+4xy=x2+2xy+y2=(x+y)2.【点评】本题考查提公因式法、公式法因式分解,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.21.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买A型号和B型号垃圾分拣机器人共60台,其中B型号机器人不少于A型号机器人的1.4倍.设该垃圾处理厂购买x台A型号机器人.(1)该垃圾处理厂最多购买几台A型号机器人?(2)机器人公司报价A型号机器人6万元/台,B型号机器人10万元/台,要使总费用不超过510万元,则共有几种购买方案?【分析】(1)设该垃圾处理厂购买x台A型号机器人,则购买(60﹣x)台B型号机器人,根据购进B 型号机器人的数量不少于A型号机器人的1.4倍,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据总价=单价×数量,结合总价不超过510万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合x为整数且x≤25,即可得出各购买方案.【解答】解:(1)设该垃圾处理厂购买x台A型号机器人,则购买(60﹣x)台B型号机器人,依题意得:60﹣x≥1.4x,解得:x≤25.答:该垃圾处理厂最多购买25台A型号机器人.(2)依题意得:6x+10(60﹣x)≤510,解得:x≥.又∵x为整数,且x≤25,∴x可以取23,24,25,∴共有3种购买方案,方案1:购买23台A型号机器人,37台B型号机器人;方案2:购买24台A型号机器人,36台B型号机器人;方案3:购买25台A型号机器人,35台B型号机器人.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.22.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42.因此,4、12、20这三个数都是神秘数.(1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【分析】(1)根据“神秘数”的定义,只需看能否把28和2012这两个数写成两个连续偶数的平方差即可判断;(2)运用平方差公式进行计算,进而判断即可;(3)运用平方差公式进行计算,进而判断即可.【解答】解:(1)28是“神秘数”;2016不是“神秘数”,理由如下:∵28=82﹣62,2016不能表示为两个连续偶数的平方差,∴28是“神秘数”;2016不是“神秘数”;(2)“神秘数”是4的倍数.理由如下:(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=2(4k+2)=4(2k+1),∴“神秘数”是4的倍数;(3)设两个连续的奇数为:2k+1,2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是神秘数.【点评】此题主要考查了平方差公式的应用,此题是一道新定义题目,熟练记忆平方差公式是解题关键.23.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a+b=10,ab=23,求S1+S2的值;(3)当S1+S2=29时,求出图3中阴影部分的面积S3.【分析】(1)根据正方形的面积之间的关系,即可用含a、b的代数式分别表示S1、S2;(2)根据S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,将a+b=10,ab=23代入进行计算即可;(3)根据S3=(a2+b2﹣ab),S1+S2=a2+b2﹣ab=29,即可得到阴影部分的面积S3.【解答】解:(1)由图可得,S1=a2﹣b2,S2=2b2﹣ab;(2)S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=23,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×23=31;(3)由图可得,S3=a2+b2﹣b(a+b)﹣a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=29,∴S3=×29=.【点评】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)

北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)

仁和中学2023-2024学年度第二学期期中考试初一年级数学试卷一、选择题(每题2分,共20分)1. 不等式的解集在数轴上表示正确的是( )A. B.C.D.【答案】D【解析】【分析】本题主要考查了一元一次不等式的求解,在数轴上表示不等式解集;解不等式,即可得出合适的选项.【详解】解:解不等式,可得,故不等式解集在数轴上表示为:故选:D .2. 下列命题中,假命题是( )A. 同角的补角相等B. 同一平面内,过一点有且只有一条直线与已知直线垂直C. 如果,,那么D. 两条直线被第三条直线所截,同旁内角互补【答案】D【解析】【分析】利用同角的补角的性质、垂直的定义、平行线的性质等知识分别判断后即可.【详解】解:A 、同角的补角相等,是真命题,故本选项不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故本选项不符合题意;C 、如果,,那么,是真命题,故本选项不符合题意;D、两条平行直线被第三条直线所截,同旁内角互补,故原命题是假命题,故本选项符合题意;的10x +<10x +<10x +<1x <-10x +<a b =b c =a c=a b =b c =a c =【点睛】考查了命题与定理的知识,解题的关键是了解同角的补角的性质、垂直的定义、平行线的性质等知识,难度不大.3. 下列各组数值中,哪个是方程的解( )A. B. C. D. 【答案】B【解析】【分析】将四个选项分别代入原方程,能使方程左右两边相等的未知数的值是方程的解.【详解】解:将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项符合题意;将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项不符合题意.故选:.【点睛】本题主要考查了二元一次方程的解.正确利用二元一次方程的解的意义是解题的关键.4. 如图,,射线在内部,下列说法一定成立的是( )A. 和互余B. 和互补C. 和互为对顶角D. 和相等21x y +=21x y =⎧⎨=⎩13x y =-⎧⎨=⎩13x y =⎧⎨=-⎩22x y =⎧⎨=-⎩ 21x y =⎧⎨=⎩5=≠A ∴ 13x y =-⎧⎨=⎩1==B ∴13x y =⎧⎨=-⎩1=-≠C ∴ 22x y =⎧⎨=-⎩2=≠D ∴B AO OB ⊥OC AOB ∠1∠2∠1∠2∠1∠2∠1∠2∠【解析】【分析】本题考查了角的互余概念、对顶角的定义,准确理解角的互余概念,对顶角的定义是解题的关键.【详解】解:∵,∴,又∵射线在内部,∴,∴和互余,故选A5. 如图,下列条件中,能判断的是( )A. B. C. D. 【答案】A【解析】【分析】由平行线的判定方法,即可判断.【详解】解:A.,由内错角相等,两直线平行,能判断,故A 符合题意;B.不是被截成的内错角,不能判断,故B 不符合题意;C. 不是被截成的内错角,不能判断,故C 不符合题意;D.不是被截成的同旁内角,不能判断,故D 不符合题意;故选:A .【点睛】本题考查平行线的判定,熟练掌握:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行,是解题的关键.6. 如图,由可以得到的结论是( )AO OB ⊥90AOB ∠=︒OC AOB ∠1290∠∠+=︒1∠2∠AB CD 12∠=∠13∠=∠14∠=∠13180∠+∠=︒12∠=∠AB CD 13∠∠、AB CD 、()AD BC AB CD 14∠∠、AB CD 、()AD BC AB CD 13∠∠、AB CD 、()AD BC AB CD AB CD ∥A. B. C. D. 【答案】B【解析】【分析】由平行线的性质,角平分线的定义逐项判断可求解【详解】解:A .当平分时,,故此选项不符合题意;B .当时,,故此选项符合题意;C .当时,,故此选项不符合题意;D .当平分时,,故此选项不符合题意.故选:B .【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.掌握平行线的性质是解题的关键.也考查了角平分线的定义.7. 将一个长方形的长减少,宽变成现在的2倍,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据长方形的长减少宽变成现在的2倍,列出方程即可.【详解】解:设这个长方形的长为,宽为,根据题意得:,故C 正确.故选:C .【点睛】本题主要考查了列二元一次方程,解题的关键是找出题目中的等量关系.8. 实数,对应的位置如图所示,下列式子正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据数轴得出a 和b 的范围,进而得出,,根据有理数运算法则逐一判断即可.【详解】解:由数轴可得:,,∴,,12∠=∠14∠=∠23∠∠=34∠∠=AC BAD ∠12∠=∠AB CD ∥14∠=∠AD BC ∥23∠∠=AC BCD ∠34∠∠=5cm cm x cm y 52x y+=52x y +=+52x y -=52x y -=+5cm=cm x cm y 52x y -=a b 22a b <22a b -<-50a +<44a b +<+a b <a b >54a -<<-3<<4b a b <a b >∴,,,,故A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查了利用数轴判断式子的正负,有理数运算和符号之间的关系,乘、除法注意:同号得正,异号得负.9. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由图可得,小丽的重量为50千克,且进入电梯后,警示音没有响起,小欧的重量分别为70千克.且进入电梯后,警示音响起,分别列出不等式即可求解.【详解】由题意可知:当电梯乘载的重量超过400千克时警示音响起,小丽进入电梯前,电梯内已乘载的重量为x 千克,由图可知:小丽的重量为50千克,且进入电梯后,警示音没有响起,所以此时电梯乘载的重量,解得因为小欧的重量为70千克.且进入电梯后,警示音响起,所以此时电梯乘载的重量,解得因此的取值范围是故选:A【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是根据题意找到不等关系.22a b >22a b ->-50a +>44a b +<+x x 280350x <≤280400x <≤330350x <≤330400x <≤50400x +≤350x ≤5070400x ++>280x >x 280350x <≤10. 已知关于的不等式组有以下说法:①当时,则不等式组的解集是;②若不等式组的解集是,则;③若不等式组无解,则;④若不等式组的整数解只有,0,1,2,则.其中正确的说法有( )A. ①③B. ②④C. ①②③D. ①②③④【答案】C【解析】【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:关于的不等式组,①当时,则不等式组的解集是,故本小题正确,符合题意;②若不等式组的解集是,则,故本小题正确,符合题意;③若不等式组无解,则,故本小题正确,符合题意;④若不等式组的整数解只有,0,1,2,则,故本小题错误,不符合题意;故选:C .【点睛】本题考查的是由不等式组的解集情况求参数,熟知解一元一次不等式组的基本步骤是解题的关键.二、填空题(每题2分,共20分)11. 用不等式表示“的3倍与7的差小于11”为______.【答案】【解析】【分析】首先表示“的3倍”为,再表示“与7的差”为,最后再表示“小于11”为.【详解】解:∵“的3倍”为,再表示“与7的差”为,∴用不等式表示“的3倍与7的差小于11”为:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”、“至少”、“最多”等等,正确选择不等号.x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-2m =x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-23m <≤m 3711m -<m 3m 37m -3711m -<m 3m 37m -m 3711m -<3711m -<12. 已知方程的三个解为方程的三个解为则方程组的解为______.【答案】【解析】【分析】根据方程组解的定义,能够同时满足方程组中的两个方程的解是方程组的解观察得出两个方程的解中相同的解为方程组的解.【详解】解:根据方程组的解的定义,能够同时满足方程组中的两个方程的解是方程组的解,可知是这两个方程中所有的解中能同时满足两个方程的解,∴方程组的解为,故答案为:.【点睛】此题主要是考查了方程组的解的定义,能够熟练掌握同时满足方程组中的两个方程的解是方程组的解是解答此题的关键.13. 如图,利用工具测量角,则的大小为______.【答案】##30度【解析】【分析】根据对顶角的性质解答即可.【详解】解:量角器测量的度数为,根据对顶角相等的性质,可得,故答案为:.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.的24x y -+=1,2;x y =-⎧⎨=⎩0,4;x y =⎧⎨=⎩1,6,x y =⎧⎨=⎩1x y +=2,3;x y =-⎧⎨=⎩1,2;x y =-⎧⎨=⎩0,1.x y =⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩1∠30︒30︒130∠=︒30︒14. 如图,将含有的直角三角板的两个顶点分别放在直尺的一组对边上,如果,那么______°.【答案】40【解析】【分析】首先根据题意求出,然后根据平行线的性质求解即可.【详解】解:如图,∵∴ ∵∴.故答案为:40.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15. 下列命题中,①对顶角相等;②内错角相等;③平行于同一条直线的两条直线平行;④若,则.是真命题的是______.【答案】①③【解析】【分析】根据对顶角的性质判断①;根据平行线的性质判断②;根据平行公理的推论判断③;根据平方根定义判断④.【详解】解:①对顶角相等,是真命题;②内错角不一定相等,是假命题;③平行于同一条直线的两条直线互相平行,是真命题;60︒120∠=︒2∠=140EBC ABC ∠=∠-∠=︒120∠=︒140EBC ABC ∠=∠-∠=︒EB CD∥240EBC ∠=∠=︒22a b >a b >④若,则a 不一定大于b ,是假命题;故答案为:①③.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16. 如果关于的不等式的解集为,则的值是___________.【答案】1【解析】【分析】解不等式得,结合关于的不等式的解集为,得出,解之可得答案.详解】解:∵,∴,则, ∵关于的不等式的解集为,∴, 解得,故答案为:1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17. 在一本书上写着方程组的解是,其中的值被墨渍盖住了,但我们可解得的值为___________.【答案】【解析】【分析】根据,代入中,解得;把,代入中,即可求出的值.【22a b >x 3223x a a +≤-1x ≤-a 253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-3223x a a +≤-325x a ≤-253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-1a =43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩y p 321x =3x y +=2y =1x =2y =4x py +=p【详解】解:∵方程组的解是,∴代入中,解得,把,代入,得解得.故答案为:.【点睛】本题考查二元一次方程组的知识,解题的关键是代入中,求出.18. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 是135°,则第二次的拐角∠B 是________, 根据是________________.【答案】①. 135° ②. 两直线平行,内错角相等【解析】【分析】由两次转弯后,和原来的方向相同可知拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:如图:∵两次转弯后,和原来的方向相同,∴AC∥BD,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为135°;两直线平行,内错角相等.【点睛】本题考查了平行线性质的应用,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.19. 如图,四边形纸片,.折叠纸片,使点D 落在上的点处,点C 落在点处,折痕为.若,则______.43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩1x =3x y +=2y =1x =2y =4x py +=124p +=32p =321x =3x y +=2y =ABCD AD BC ∥ABCD AB 1D 1C EF 102EFC ∠=︒1AED ∠=︒【答案】24【解析】【分析】根据平行线的性质可得,再根据折叠的性质可得,然后利用平角的定义求解即可.【详解】∵,∴,∵,∴,∵折叠纸片,使点D 落在上的点处,∴,∴,故答案为:24.【点睛】本题考查了折叠的性质,平行线的性质,平角的定义等知识点,熟练掌握其性质是解决此题的关键.20. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;180EFC DEF ∠+∠=︒178DEF D EF ∠=∠=︒AD BC ∥180EFC DEF ∠+∠=︒102EFC ∠=︒18010278DEF ∠=︒-︒=︒ABCD AB 1D 178DEF D EF ∠=∠=︒1180787824AED ∠=︒-︒-︒=︒(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】①. 160②. 180【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y=8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(共60分,第21-24题,每题3分,第25题5分,第26-27题,每题4分,第28题6分,第29-31题,每题5分,第32-33题7分)21. 解方程组【答案】【解析】【分析】利用加减消元法求解可得;【详解】解:,得∴把代入①,得∴所以,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解决本题的关键是要掌握消元的方法,即代入消元法与加减消元法.22. 解方程组:【答案】【解析】【分析】方程组整理后,方程组利用加减消元法求解即可.【详解】整理得,得,解得,将代入①得:342,328.x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩342,328.x y x y +=⎧⎨-=⎩①②-①②66y =-1y =-1y =-()3412x +⨯-=2x =2,1.x y =⎧⎨=-⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩12x y =⎧⎨=⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩24321x y x y +=⎧⎨-=-⎩①②2⨯+①②77x =1x =1x =214y ⨯+=∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.23. 解不等式,并把解集在数轴上表示出来.【答案】,图见解析【解析】【分析】先去括号,再移项、合并同类项、最后系数化为1即可,再在数轴上把解集表示出来.【详解】解:去括号得,,去括号得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,是基础知识要熟练掌握.24. 解不式组:并求出它的整数解.【答案】,整数解为3或4【解析】【分析】本题考查了解一元一次不等式组,不等式组的整数解.熟练掌握解一元一次不等式组,不等式组的整数解是解题的关键.先分别求出两个不等式的解集,进而可得不等式组的解集,最后求整数解即可.【详解】解:,,,12x y =⎧⎨=⎩()3157x x +-≤2x ≥-3357x x +-≤3573x x -≤-24x -≤2x ≥-()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩24x <≤()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩()224x x -->224x x -+>,,,,解得,,∴不等式组的解集为,整数解为3或4.25. 完成下列计算,并在括号内填写推理依据.如图,,直线分别交、于点E 和点F ,过点E 作交直线于点G .若,计算的度数.解:∵,∴ ( ).∵,∴ ().∴ .【答案】;两直线平行,内错角相等;垂直定义;;;【解析】【分析】由平行线的性质得,由垂直的定义得,进而可求的度数.【详解】解:∵,∴(两直线平行,内错角相等).∵,∴(垂直定义).∴.1213x x +≥-()1231x x +≥-1233x x +≥-4x -≥-4x ≤24x <≤AB CD MN AB CD EG MN ⊥CD 60EGF ∠=︒MEB ∠AB CD 60EGF ︒=∠=EG MN ⊥90MEG ∠=︒MEB ∠=-906030=︒-︒=︒BEG ∠MEG ∠BEG ∠60BEG EGF ︒∠=∠=90MEG ∠=︒MEB ∠AB CD 60BEG EGF ︒∠=∠=EG MN ⊥90MEG ∠=︒906030MEB MEG BEG ︒︒︒∠=∠-∠=-=故答案为:;两直线平行,内错角相等;垂直定义;;.【点睛】本题考查了平行线的性质,垂直的定义,数形结合是解答本题的关键.26. 如图,在三角形中,平分,求的度数.【答案】【解析】【分析】根据平行线的性质可得,根据角平分线的性质可得,则,最后根据三角形的一个外角定于与它不相邻两个内角之和,即可解答.【详解】解:∵,∴,∵平分,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的外角定理,解题的关键是掌握两直线平行,内错角相等;三角形的一个外角定于与它不相邻两个内角之和.27. 如图,点B 、C 在线段异侧,E 、F 分别是线段、上的点,和分别交于点G 和点H .已知,,.求证:.BEG ∠MEG ∠BEG ∠ABC CD ,,80ACB DE BC AED ∠∠=︒∥EDC ∠40︒BCD EDC ∠=∠ECD BCD ∠=∠ECD EDC ∠=∠DE BC ∥BCD EDC ∠=∠CD ACB ∠ECD BCD ∠=∠ECD EDC ∠=∠80AED ∠=︒180402EDC ∠=⨯︒=︒AD AB CD EC BF AD AEG AGE ∠=∠DGC C ∠=∠180BEC BFD ∠+∠=︒EC BF ∥【答案】见解析【解析】【分析】先证明出,从而得到,得到,再根据条件,得出,再根据平行线的判定求解即可.【详解】证明:证明:∵,,又∵∴,∴∴∵∴∴.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.28. 围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.【答案】(1)A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)A 种材质的围棋最多能采购10套;(3)商店销售完这30套围棋能实现利润为1300元的目标;理由见解析.【解析】AEG C ∠=∠AB CD ∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD ∠=∠AEG AGE ∠=∠DGC C ∠=∠DGC AGE∠=∠AEG C ∠=∠AB CD∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD∠=∠EC BF ∥【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据表格中的销量和收入列方程组求解即可;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,根据“用不多于5400元的金额再采购A 、B 两种材质的围棋共30套”列不等式求解即可;(3)设销售利润为w ,根据题意列出一次函数解析式,然后利用一次函数的性质求解.【小问1详解】解:设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:,答:A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;【小问2详解】解:设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,答:A 种材质的围棋最多能采购10套;【小问3详解】解:商店销售完这30套围棋能实现利润为1300元的目标;理由:设销售利润为w ,由题意得:,∵,∴w 随a 的增大而增大,∵a 的最大值为10,∴当时,w 取最大值1300,即商店销售完这30套围棋能实现利润为1300元的目标.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组、不等式以及一次函数解析()30a -3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤()()()25020021017030101200w a a a =-+--=+100>10a =式.29. 已知:如图,点D 在线段上,过点D 作交线段于点E ,连接,过点D 作于点F ,过点F 作交线段于点G .(1)依题意补全图形;(2)用等式表示与的数量关系,并证明.【答案】(1)见解析;(2),证明见解析.【解析】【分析】(1)根据题意画出图形即可;(2)根据平行线的性质得出,,等量代换得出,根据,可知,进而可得出结论.【小问1详解】解:图形如下:【小问2详解】解:,证明:∵,∴,∵,∴,∴,∵,∴,∴,AB DE BC ∥AC CD DF BC ⊥FG CD ∥AB CDE ∠DFG ∠90CDE DFG ∠+∠=︒12∠=∠23∠∠=13∠=∠DF BC ⊥3490∠+∠=°90CDE DFG ∠+∠=︒DE BC ∥12∠=∠CD FG ∥23∠∠=13∠=∠DF BC ⊥3490∠+∠=°1490∠+∠=︒即.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.30. 解答题:解方程组时,由于,的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,不仅计算量大,而且易出现运算错误,而采用下面的解法则比较简单:①②得,所以③,③①得,解得,从而,所以原方程组的解是.请你运用上述方法解方程组:.【答案】【解析】【分析】仿照例子,利用加减消元法可解方程组求解.【详解】解:,得:,∴③,③①得:,解得:,将代入③得:,∴原方程组的解为.90CDE DFG ∠+∠=︒323538303336x y x y +=⎧⎨+=⎩①②x y -222x y +=1x y +=35⨯-33x =-=1x -2y =12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩①②-②①333x y +=1x y +=2018⨯-22x =-=1x -=1x -2y =12x y =-⎧⎨=⎩【点睛】本题主要考查二元一次方程组解法,解二元一次方程组由代入消元法和加减消元法.31. 先阅读绝对值不等式和的解法,再解答问题:①因为,从数轴上(如图1)可以看出只有大于而小于6的数的绝对值小于6,所以的解集为.②因为,从数轴上(如图2)可以看出只有小于的数和大于6的数的绝对值大于6,所以的解集为或.(1)的解集为_________,的解集为_________;(2)已知关于x ,y 的二元一次方程组的解满足,其中m 是负整数,求m 的值.【答案】(1),或(2)【解析】【分析】本题考查了绝对值的意义,不等式组的解集,加减消元法解二元一次方程组等知识.理解题意是解题的关键.(1)根据题意求解集即可;(2)加减消元法解二元一次方程组得,由题意知,,即,,可求,然后作答即可.【小问1详解】解:由题意知,的解集为,的解集为或;故答案为:,或;【小问2详解】解:,的||6x <||6x >||6x <6-||6x <66x -<<||6x >6-||6x >6x <-6x >||2x <||5x >254482x y m x y m -=+⎧⎨+=-+⎩||3x y +≤22x -<<5x <-5x >1-42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩472333m m +-≤23m -≤323m -≤-≤15m -≤≤||2x <22x -<<||5x >5x <-5x >22x -<<5x <-5x >254482x y m x y m -=+⎧⎨+=-+⎩①②得,,解得,,将代入①得,,解得,,∴,∵,∴,即,∴,解得,,∵m 是负整数,∴m 的值为.32. 已知:如图,直线,点A 、B 在直线a 上(点A 在点B 左侧),点C 、D 在直线b 上(点C 在点D 左侧),和相交于点E .(1)求证:;(2)分别作和的角平分线相交于点F .① 结合题意,补全图形;② 用等式表示和的数量关系,并证明.【答案】(1)见解析(2)①见解析;②;见解析【解析】【分析】(1) 过点E 作,证明 ,,可得,从而可得答案;2⨯-②①921y m =-73y m =-73y m =-72543x m m ⎛⎫--=+ ⎪⎝⎭423x m =+42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩||3x y +≤472333m m +-≤23m -≤323m -≤-≤15m -≤≤1-a b ∥AD BC BED BAD BCD ∠=∠+∠BAD ∠BCD ∠AFC ∠BED ∠12AFC BED ∠=∠EM AB ∥BAD AEM ∠=∠BCD MEC ∠=∠AEC BAD BCD ∠=∠+∠(2)①根据题意补全图形即可;②过点F 作,可得 ,证明,可得,结合、分别平分和,可得,结合,从而可得答案.【小问1详解】过点E 作,∴ ,∵,∴,∴,∵,∴,∵,∴.【小问2详解】①补全图形如图所示:②;证明:过点F 作,∴∵,∴,FN AB ∥AFN BAF ∠=∠NFC FCD ∠=∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠EM AB ∥BAD AEM ∠=∠AB CD ∥EM CD ∥BCD MEC ∠=∠AEC AEM MEC ∠=∠+∠AEC BAD BCD ∠=∠+∠AEC BED ∠=∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠FN AB ∥AFN BAF ∠=∠AB CD ∥FN CD ∥∴,∵,∴,∵、分别平分和,∴,∵,∴.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,熟练的利用平行线的性质进行证明是解本题的关键.33. 给出如下定义:如果一个未知数的值使得方程和不等式(组)同时成立,那么这个未知数的值称为该方程与不等式(组)的“关联解”.例如:已知方程和不等式,对于未知数,当时,使得,同时成立,则称是方程与不等式 的“关联解”.(1)判断是否是方程与不等式的“关联解”_____(填是或否);判断是方程与不等式(组)①,②,③中_______的“关联解”;(只填序号)(2)如果是关于的方程与关于的不等式组的“关联解”,那么____,的取值范围是_______;(3)如果是关于方程与关于的不等式组的“关联解”,求的取值范围.【答案】(1)否;①;(2);;(3).【解析】的NFC FCD ∠=∠AFC AFN NFC ∠=∠+∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠321x -=40x +>x 1x =3121⨯-=41450x +=+=>1x =321x -=40x +>3x =260x -=()234x +<=1x -231x +=1322x -<132x ->2050x x ->⎧⎨-<⎩2x =x 20x a -=x ()11212x x a b +⎧>-⎪⎨⎪+-≤⎩=a b x m =x 24x n -=x 121n m x m n x ⎧-+>-⎪⎨⎪-->-⎩m 4a =3b ≥-36m <<【分析】(1)根据“关联解”的定义求解即可;(2)根据“关联解”的定义,将代入方程即可求出,再解不等式得:,即可得出答案;(3)根据“关联解”的定义得出不等式组,求解即可【小问1详解】解:当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,成立,则是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式组 的“关联解”;故答案为:否;①;【小问2详解】解:根据题意可得:,解得:,不等式组解不等式得:,即,解得:;故答案为:;;【小问3详解】2x =4a =②8122b +-≥4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩3x =2360⨯-=()2334+<3x =260x -=()234x +<=1x -()2131⨯-+=13122--<=1x -231x +=1322x -<=1x -()2131⨯-+=1132-->=1x -231x +=132x ->=1x -()2131⨯-+=120150-->⎧⎨--<⎩=1x -231x +=2050x x ->⎧⎨-<⎩220a ⨯-=4a =()11212x x a b +⎧>-⎪⎨⎪+-≤⎩①②②212b a x +-≤8122b +-≥3b ≥-4a =3b ≥-解:根据题意可得:,∴,不等式组为,化简得:,解不等式组得:.【点睛】本题考查解一元一次不等式组,方程的解,正确理解新定义是解题的关键.24m n -=42-=m n 4122412m m m m m m -⎧-+>-⎪⎪⎨-⎪-->-⎪⎩4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩36m <<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年初一下学期期中考试数学试卷(一)
一、 填空题(每题3分,共30分)
1、平行线的性质: ①______________________②________________________
③____________________
2、平移不改变图形的________、__________
3、三角形的内角和是_______,外角和是______,n 边形的内角和是____________
4、计算:(1)a 11 ×a =_____;(2)(a 3)2 ÷(a 2)3
= _____ , (3)5y ·(-2xy )=__________
5、某县农业局为了调查本县水产养殖户的年收入情况,收集了该县一个乡镇的10家养殖户的年收入数据,在这个调查中,总体是__________________;样本是_______________;
个体是____________________.
6、一组数据分成7组,其中第1、2、3组的频率之和为0.25,第5、6、7组的频率之和为0.35,则第四组的频率是_________
7、计算:47×53=______;2012-1992=________;1972=__________
8、若49x 2 +mxy +81y 2是一个完全平方式,则m =__________
9、一个多边形的的每一个外角都是30度,则这个多边形的内角和是___________
10、(x n -4)(________)=x 2n -16
二、 选择题(每题2分,共10分)
1、下列考察适合用抽样调查,而不适合普查的是( )
A.考察截至2006年底中国的总人口
B.了解全校学生100米短跑成绩
C.考察一个班同学的体重
D.了解一批种子的成活率
2、计算(2x+1)(-2x+1)的结果是( )
A 4x 2-1
B 1-4x 2
C 1+ 4x 2
D -4x 2-1 3、有下列各式:(1)()523x
x x =⋅ (2)326x x x =÷ (3)()862x x = (4)()33393y x xy =其中正确的有( )
A 0个
B 1个
C 2个
D 3个
4、(n+1)边形的内角和比n 边形的内角和大( )
A 180°
B 360°
C n ·180°
D n ·360°
5、一个三角形的两边长为3cm 和8cm ,另一边长为奇数,这个三角形的周长为( )
A 19cm
B 18cm
C 20cm
D 18cm 或20cm 三、
计算题(每题5分,共25分) 1、
23)()()(a a a -⋅-⋅- 2、
(-4)2006×(0.25)2005 ×(-1)2007
3、-3m (2m +n -1)
4、 (3x -2)(x +4)
5、(x +y -2)(x +y +2)
四、 化简求值(5分)
(5a -b )2-9a (a -b ),其中a =21
,b =4
五、 因式分解(每题5分,共10分)
1、 2a 2b -4ab 2+2ab
2、 a 3-16a
六、 作图(5分)
根据上面的数据制作适当的统计图,表示用各种方式起床的学生数占400人的百分比。

七、解答题(第一题7分,第二题8分)
如图,在四边形ABCD 中,∠B =∠D =900,E 是BC 上一点,且∠AEC =∠BAD ,试说明AE ∥DC
2、试用所学知识说明无论a 取任何数值,
代数式3(a +2)(a -2)+3(a +2)2-6a (a +2)的值永远为零
C
E D B A。

相关文档
最新文档