冷冻水流量计算

合集下载

蒙皮拉带机制冷设计

蒙皮拉带机制冷设计

设计部分一、设计计算及说明1、由于在给定数据中,已知蒙皮拉伸机的功率为800Kw/h,所以我们就取它作为选型依据,即将800Kw作为用户所要求的制冷量值。

在选取换热方式时我们采用的是间接冷却方式,所以好要加上10%的冷损失附加系数,这样算得总制冷量Q为:Q=q×1.1=1.1q其中q代表了用户所要求的制冷量。

代入数值后得:Q=800K w×1.1=880K w2、冷冻水流量计算查资料的制冷系统中冷冻水流量计算公式为:M=Q/[c×(t2-t1)]其中M代表冷冻水质量流量(Kg/h)Q表示制冷量(Kw)c表示冷冻水比热容(KJ/(K g×C))t2表示蒸发器进口温度,t1表示蒸发器出口温度。

由于制冷剂用的是淡水,所以取c=4.186 KJ/(K g×C),在制冷机组参数手册上查的t2=12,t1=7。

代入以上各数据得:M=Q/[c×(t2-t1)] =880/(4.186×5)=42.045Kg/h≈42.045m3/h 另外在已知材料中我们还得到了蒙拉机的冷冻水流量为23m3/h,所以综合这两个流量值,取其平均值,最后得冷冻水流量值为:M=(42.045+23)/2=32.52m3/h3、冷却水流量计算计算公式同上。

既:M=Q/[c×(t2-t1)]其中M表示冷却水流量值,Q表示制冷量,c为冷却水比热容。

t2表示冷凝器进口温度,t1表示冷凝器出口温度。

其中为Q=880 Kw,c=4.186 KJ/(K g×C),t2=35,t1=30。

将以上数据代入公式后得:M=Q/[c×(t2-t1)] =880/(4.186×5)=42.045Kg/h≈42.045m3/h二、制冷系统选型与设计根据制冷量Q,我们选择型号为RO-880WD的制冷机组一台。

该机组配备有电子显示屏。

具体参数如下:型号:RO-880WD,制冷量:880Kw输入功率:189.6 Kw,制冷剂:R22压缩机为半封闭式螺杆机,充注量72×2Kg蒸发器水阻力:50Kpa,进、出口管径:DN150冷凝器水阻力:42Kpa,进、出口管径:DN2001、冷冻水泵选型已知冷冻水流量计算得M=32.52m3/h,且蒙拉机水压值为0.35Mpa,另外由于液体在流动过程中会有扬程阻力、局部阻力以及设备阻力,所以应在蒙拉机固有水压值基础上附加5m水压值,即0.05 Mpa的水压值,所以扬程依45m水柱值选型计算。

冷冻水流量计算

冷冻水流量计算

标准冷冻水流量=制冷量(KW)*5(度温差)冷却水流量=(制冷量+机组输入功率)(KW)*5(度温差)水流量计算1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)= [Q(kW)/(~5)℃]X~2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

如果考虑了同时使用率,建议用如下公式进行计算。

公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)= Q(kW)/(~5)℃3、冷却水补水量一般1为冷却水循环水量的1~%.1 水侧变流量对冷水机组性能的影响在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。

认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。

随着控制技术的发展,冷水机组的控制系统越来越先进。

目前,不同类型的冷水机组均能实现冷量的自动调节。

冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。

事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。

当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。

衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。

由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。

(完整版)冷水机选型计算

(完整版)冷水机选型计算

冷水机制冷量计算方式及冷水机选型计算汇总冷水机制冷量计算方式及冷水机选型计算汇总(一)如何选用最适合自己的工业冷水机和小型冷水机呢,其实很简单有一个选型公式:制冷量=冷冻水流量*4.187*温差*系数1、冷冻水流量指机器的工作时所需冷水流量,单位需换算为升/秒;2、温差指机器进出水之间的温差;3、4.187为定量(水的比热容);4、选择风冷式冷水机时需乘系数1.3,选择水冷式冷水机则乘系数1.1。

5、根据计算的制冷量选择相应的机器型号。

一般习惯对冷水机要配多大的习惯用P来计算,但最主要的是知道额定制冷量,一般风冷的9.07KW的样子的话选择用3P的机器.依此类推。

所以工业冷水机的选用最重要的是求出额定制冷量(二)冷水机制冷量的计算方式冷水机制冷量的计算方式,冷水机制冷原理,20kw就可以勒计算方式:1:体积(升)×升温度数÷升温时候(分)×60÷0.86(系数)=(w)2:体积(吨或立方米)×升温度数÷升温时候(时)÷0.86(系数)=(kw)你的数据带冷水机制冷量的计算方式,冷水机制冷原理出来就可以勒4小时10000l×(15-7)÷4h÷0.86=23255w=23.255kw5小时10吨×(15-7)÷5h÷0.86=18.604kw(三)冷水机选型方法(三)能量守恒法Q=W入-W出Q:热负荷(KW) W入:输入功率(KW)例:8KW W出:输出功率(KW)例:3KW 例: Q=W入-W出=8-3=5(kw)(二)时间温升法Q= Cp.r.V.△T/HQ:热负荷(KW)Cp:定压比热(KJ/kg.℃)……4.1868 KJ/kg.℃r:比重量(Kg/m3)……1000 Kg/m3 V:总水量(m3) 例:0.5 m3△T:水温差(℃)……△T=T2-T1 例:=5℃H:时间(h) 例:1h例: Q= Cp.r.V.△T/H=4.1868*1000*0.5*5/3600=2.908(kw)(一)温差流量法Q=Cp.r.Vs.△TQ:热负荷(KW)Cp:定压比热(KJ/kg.℃)……4.1868 KJ/kg.℃r:比重量(Kg/m3)……1000 Kg/m3 Vs:水流量(m3/h) 例:1.5 m3/h△T:水温差(℃)……△T=T2(出入温度)-T1(进水温度) 例:=10℃例:Q=Cp.r.Vs.△T=4.1868*1000*1.5*10/3600=17.445(kw)(四)橡塑常用法:Q=W*C*△T*SQ=为所需冻水能量kcal/hW=塑料原料重量KG/H 例:W=31.3KG/HC=塑料原料比热kcal/KG℃ 例:聚乙烯PE C=0.55 kcal/KG℃△T=为熔塑温度与制品胶模时的温度差℃一般为(200℃)S=为安全系数(取1.35-2.0)一般取2.0例: Q=W*C*△T*S=31.3*0.55*200*2.0=6886(kcal/h)例: Q=W*C*△T*S=31.3*0.55*200*2.0=6886(kcal/h)Kcal/h是功率单位,1cal=4.178J 1J/s=1W单位时间内锅炉所消耗的燃料量称为燃料消耗量。

冷却水冷冻水计算方法及设计

冷却水冷冻水计算方法及设计

某建筑建筑面积为4000m,选用冷水机组一台,制冷量为455KW.冷凝器侧水阻力为4.9×104Pa,进、出冷凝器的水温分别为32℃和37℃,水处理器的阻力为2.0×104Pa,冷却水管总长48m,冷却塔盛水池到喷嘴的高差为2.5m,确定各管段的管径和水泵的选择参数.冷却水循环管路,由于管径没有沿程变化,认为是一个计算管段,则计算管段的冷却水流量为q=Q/(c*(t2-t1))=1.3*455/(4.1868*1000*(37-32))=28.25Kg/s=102.3m3/h1.3是安全系数根据冷却水流量102.3m3/h,查表[流量与管径关系]可以按水流速推荐值或根据流量来选择管径(其实是同样的数据:不过是把推荐流速算成流量而已),选用管道公称直径DN150mm(开式系统),管道水流速为v=q/(π(d/2)*(d/2))=102.3/3600/(3.14*(0.15/2)*(0.15/2))=1.61m/s查表[冷却水]可得到管道比摩阻为187Pa/m左右则沿程阻力损失为:187*48=9×103Pa弯头、止回阀、闸阀等管件等的局部阻力系数总和为12.46则总局部阻力为:12.46*(ρv2/2)=12.46*(994.1*1.612/2)=1.61*104Pa设备总阻力损失包括冷凝器阻力损失和水处理器阻力损失,为P=4.9*104+2.0*104=6.9*104Pa(题目中有数据)冷却塔喷雾所需压力△p0=4.9×104Pa(可参考样本)冷却水提升高度为2.5m,所需的提升压力为△ph=2.5m×9807N/m3=2.45×104Pa故冷却水泵的扬程为P=16.76×104Pa=17.1m水柱选用水泵,流量和扬程皆考虑10%的余量;则选用水泵的参数为流量1.1×102.3m3/h=112.5m3/h,扬程1.1×17.1m=18.81mH2O.。

冷冻水流量计算

冷冻水流量计算

冷冻水流量计算 Prepared on 22 November 2020标准冷冻水流量=制冷量(KW)*5(度温差)冷却水流量=(制冷量+机组输入功率)(KW)*5(度温差)水流量计算1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)= [Q(kW)/(~5)℃]X~2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

如果考虑了同时使用率,建议用如下公式进行计算。

公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)= Q(kW)/(~5)℃3、冷却水补水量一般1为冷却水循环水量的1~%.1 水侧变流量对冷水机组性能的影响在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。

认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。

随着控制技术的发展,冷水机组的控制系统越来越先进。

目前,不同类型的冷水机组均能实现冷量的自动调节。

冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。

事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。

当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。

衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。

由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。

冷却水冷冻水计算方法及设计

冷却水冷冻水计算方法及设计

某建筑建筑面积为4000m,选用冷水机组一台,制冷量为455KW.冷凝器侧水阻力为4.9×104Pa,进、出冷凝器的水温分别为32℃和37℃,水处理器的阻力为2.0×104Pa,冷却水管总长48m,冷却塔盛水池到喷嘴的高差为2.5m,确定各管段的管径和水泵的选择参数.冷却水循环管路,由于管径没有沿程变化,认为是一个计算管段,则计算管段的冷却水流量为q=Q/(c*(t2-t1))=1.3*455/(4.1868*1000*(37-32))=28.25Kg/s=102.3m3/h1.3是安全系数根据冷却水流量102.3m3/h,查表[流量与管径关系]可以按水流速推荐值或根据流量来选择管径公称直径DN150mm(开式系统),管道水流速为v=q/(π(d/2)*(d/2))=102.3/3600/(3.14*(0.15/2)*(0.15/2))=1.61m/s查表[冷却水]可得到管道比摩阻为187Pa/m左右则沿程阻力损失为:187*48=9×103Pa弯头、止回阀、闸阀等管件等的局部阻力系数总和为12.46则总局部阻力为:12.46*(ρv2/2)=12.46*(994.1*1.612/2)=1.61*104Pa设备总阻力损失包括冷凝器阻力损失和水处理器阻力损失,为P=4.9*104+2.0*104=6.9*104Pa(题目中有数据)冷却塔喷雾所需压力△p0=4.9×104Pa(可参考样本)冷却水提升高度为2.5m,所需的提升压力为△ph=2.5m×9807N/m3=2.45×104Pa故冷却水泵的扬程为P=16.76×104Pa=17.1m水柱选用水泵,流量和扬程皆考虑10%的余量;则选用水泵的参数为流量1.1×102.3m3/h=112.5m3/h,扬程1.1×17.1m=18.81mH2O.或根据流量来选择管径(其实是同样的数据:不过是把推荐流速算成流量而已),选用管道。

空调冷冻水泵选型计算

空调冷冻水泵选型计算

空调冷冻水泵选型计算一、引言空调系统中的冷冻水泵是一个重要的设备,它的选型直接影响到系统的性能和能耗。

本文将以空调冷冻水泵选型计算为基础,分别从冷负荷计算、水泵流量计算和水泵扬程计算三个方面详细阐述空调冷冻水泵的选型计算方法。

二、冷负荷计算冷负荷是指空调系统中冷冻水所需要吸收的热量,是选型计算的基础。

通常,冷负荷可以通过以下公式计算得出:Q=m×c×Δt其中,Q为冷负荷(单位为kW),m为冷水流量(单位为kg/s),c为冷却水的比热容(单位为kJ/kg·℃),Δt为冷却水进出口水温差(单位为℃)。

冷负荷计算的方法有多种,可以根据具体的使用情况选择不同的计算方法,如通过室内热负荷计算、机房负荷计算等。

通过冷负荷计算,可以确定冷水流量m,并作为后续水泵流量计算的依据。

三、水泵流量计算水泵流量计算是选型计算的关键环节。

在确定冷水流量后,需要根据具体的工况条件,计算出水泵的流量要求。

水泵流量的计算通常可以通过下述的公式得出:Q=q×3600其中,Q为水泵流量(单位为m³/h),q为冷水流量(单位为m³/s)。

此外,还需要考虑到系统的供冷系统压差,以确定水泵的额定设计流量。

四、水泵扬程计算水泵扬程计算是选型计算中的另一个重要环节。

根据系统所处的位置和具体的设计要求,可以计算出水泵的扬程。

水泵扬程通常可以通过以下的公式得出:H=ΔP/ρ×g其中,H为水泵扬程(单位为m),ΔP为系统的压差(单位为Pa),ρ为水的密度(单位为kg/m³),g为重力加速度(约9.8m/s²)。

通过计算确定水泵的扬程,可以根据具体的需求和条件选购合适的水泵。

五、选型计算实例以下是一个选型计算的实例,以帮助读者更好地理解和应用上述的选型计算方法。

假设一些空调系统的冷负荷为1000kW,冷水流量为5m³/s,冷水进出口温差为10℃。

根据以上的计算方法,可以得到以下结果:1.冷负荷计算Q=1000kW2.水泵流量计算Q=5m³/sQ=q×36005=q×36003.水泵扬程计算假设系统的压差为1000Pa,水的密度为1000kg/m³。

冷冻水管径与冷量计算公式

冷冻水管径与冷量计算公式

冷冻水管径与冷量计算公式在理解冷冻水管径与冷量计算公式之前,我们需要先了解一些相关的基本概念。

冷冻水管径是指冷冻系统中用于输送冷媒的管道的内径尺寸。

而冷量则是指冷冻系统所能提供的制冷效果,通常以单位时间内的能量转移量来衡量。

1.制冷负荷:制冷负荷是指冷冻系统需要处理的热量。

它可以分为传导负荷、传热负荷和内部负荷等几个方面。

冷冻系统的总制冷负荷需要根据实际需求进行计算。

2.冷冻水流量:冷冻水流量是指冷冻系统中冷媒在单位时间内通过管道的体积流量。

冷冻水流量的计算需要考虑到制冷负荷、冷却水温度差和传热能力等因素。

3.冷度差:冷度差是指冷却水的进出口温度之差。

它是冷冻系统中的一个重要参数,对冷量的大小有直接影响。

基于以上的因素,我们可以得到如下的冷冻水管径与冷量计算公式:1.冷冻水管径计算公式:d=(4*Q)/(π*V)其中,d为水管的内径,Q为冷冻水流量,V为冷冻水在管道中的流速。

2.冷量计算公式:冷量的计算可以根据传导负荷、传热负荷和内部负荷等因素进行综合计算。

其中一个常用的公式为:Q=m*c*ΔT其中,Q为冷量,m为水流量,c为冷却水的比热容,ΔT为冷却水的进出口温度差。

需要注意的是,冷冻水管径与冷量的计算涉及到多种因素,并且不同的冷冻系统可能有不同的计算方法和参数。

所以在实际应用中,我们要根据具体的条件和要求进行计算,并结合实际经验和技术指标进行合理的选择。

此外,还应该考虑到冷冻水管径与冷量计算的安全、经济等方面的问题。

例如,水管径过大会造成资源浪费,而过小则可能会影响系统的工作效率;冷量计算准确可靠则可以保证系统的正常运行,同时还需要考虑到系统的可扩展性和维护成本等方面的问题。

在实际应用中,还有一些其他因素也需要考虑到,例如冷冻水的温度、压力、管道材质等,这些因素也会对冷冻水管径和冷量的计算结果产生一定的影响。

所以在实际应用中,我们还需要综合考虑多重因素,进行合理、科学的冷冻水管径和冷量的计算。

关于罐子夹套换热 冷冻水消耗量的计算

关于罐子夹套换热 冷冻水消耗量的计算

关于罐子夹套换热冷冻水消耗量的计算文章标题:深度探讨罐子夹套换热冷冻水消耗量的计算方法在工业生产中,罐子夹套换热技术是一种常见的换热方式,通过罐子夹套与罐体之间的热交换,实现在生产过程中对液体的加热或冷却。

而在这个过程中,冷冻水的消耗量是一个重要的计算参数。

本文将深度探讨罐子夹套换热冷冻水消耗量的计算方法,以帮助读者更好地理解这一复杂的过程。

1. 罐子夹套换热技术简介罐子夹套换热技术是利用罐体内部夹套中的传热介质,通过外部的加热或冷却设备,对罐内液体进行加热或冷却的换热方式。

这种技术可以保持液体温度的均匀性,提高生产效率,同时也广泛应用于食品加工、化工生产等领域。

2. 冷冻水消耗量的计算方法在进行罐子夹套换热过程中,冷冻水的消耗量是一个需要精确计算的重要参数。

一般来说,冷冻水的消耗量与罐体的材质、夹套的结构、加热或冷却的温度差等因素都有密切关系。

计算冷冻水消耗量的方法可以通过以下步骤进行:步骤一:确定换热面积首先需要根据罐子夹套的尺寸、结构等参数,计算出换热面积。

换热面积的大小直接影响到冷冻水的消耗量,因此需要进行精确的测量和计算。

步骤二:计算传热系数传热系数是换热过程中的一个重要参数,它反映了热量在传递过程中的效率。

根据夹套材质、工作条件等因素,可以通过经验公式或实验测定的方法来计算传热系数。

步骤三:确定温度差在实际生产中,加热或冷却过程中液体的温度差是一个关键的参数。

根据工艺要求和设备性能,确定好温度差的范围,以便进行后续的计算。

步骤四:计算冷冻水的流量根据换热面积、传热系数和温度差等参数,可以利用传热方程来计算冷冻水的流量。

通过这一步骤,可以得到冷冻水的消耗量,从而为生产过程提供参考依据。

3. 个人观点和理解在实际生产中,罐子夹套换热冷冻水消耗量的计算需要考虑诸多因素,需要结合实际工艺参数和设备性能进行精确计算。

科学合理的计算方法可以帮助企业降低生产成本,提高生产效率,实现经济效益和环保效益的双赢。

空调水系统水泵选择的步骤

空调水系统水泵选择的步骤

空调水系统水泵选择的步骤第一步:水泵流量的确定1.冷却水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)= Q(kW)/(4.5~5)℃x1.163X(1.15~1.2)2.冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

如果考虑了同时使用率,建议用如下公式进行计算。

公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)= Q(kW)/(4.5~5)℃x1.163第二步:水系统水管管径的计算在空调系统中所有水管管径一般按照下述公式进行计算:D(m)=√L(m3/h) /0.785x3600xV(m/s)公式中:L----所求管段的水流量(第一步已计算出)V----所求管段允许的水流速流速的确定:一般,当管径在DN100到DN250之间时,流速推荐值为1.5m/s 左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。

进行计算是应该注意管径和推荐流速的对应。

目前管径的尺寸规格有: DN15、DN20、DN25、DN32、DN40、DN50、DN65、DN80、DN100、DN125、DN150、DN200、DN250、DN300、DN350、DN400、DN450、DN500、DN600注意:一般,选择水泵时,水泵的进出口管径应比水泵所在管段的管径小一个型号。

例如:水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。

第三步:水泵扬程的确定以水冷螺杆机组为例:冷冻水泵扬程的组成1.制冷机组蒸发器水阻力:一般为5~7mH2O;(具体值可参看产品样本)2.末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力:一般为5~7mH2O;(据体值可参看产品样本)3.回水过滤器阻力,一般为3~5mH2O;4.分水器、集水器水阻力:一般一个为3mH2O;5.制冷系统水管路沿程阻力和局部阻力损失:一般为7~10mH2O;综上所述,冷冻水泵扬程为26~35mH2O,一般为32~36mH2O。

中央空调水流量简易计算方法

中央空调水流量简易计算方法

中央空调水流量简易计算方法Revised by Chen Zhen in 2021中央空调水流量简易计算方法冷冻水泵的选择通常选用每秒转速在30~150转的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台工作时取1.1,两台并联工作时取1.2)。

水泵的扬程应为它承担的供回水管网最不利环路的总水压降的1.1~1.2倍。

最不利环路的总水压降,包括冷水机组蒸发器的水压降Δp1、该环路中并联的各台空调末端装置的水压损失最大一台的水压降Δp2、该环路中各种管件的水压降与沿程压降之和。

冷水机组蒸发器和空调末端装置的水压降,可根据设计工况从产品样本中查知;环路管件的局部损失及环路的沿程损失应经水力计算求出,在估算时,可大致取每100m管长的沿程损失为5mH2O。

这样,若最不利环路的总长(即供、回水管管长之和)为L,则冷水泵扬程H(mH2O)可按下式估算。

Hmax=Δp1+Δp2+0.05L(1+K)式中K为最不利环路中局部阻力当量长度总和与直管总长的比值。

当最不利环路较长时K取0.2~0.3;最不利环路较短时K取0.4~0.6。

冷却水泵的选择1)冷却水泵的流量应为冷水机组冷却水量的1.1倍。

2)水泵的扬程就为冷水机组冷凝器水压降Δp1、冷却塔开式段高度Z、管路沿程损失及管件局部损失四项之和的1.1~1.2倍。

Δp1和Z可从有关产品样本中查得;沿程损失和局部损失应从水力计算求出,作估算时,管路中管件局部损失可取5mH2O,沿程损失可取每100m管长约5mH2O。

若冷却水系统来回管长为L,则冷却水泵所需扬程的估算值H(mH2O)约为H=Δp1+Z+5+0.05L3)依据冷却水泵的流量和扬程,参考有关水泵性能参数选用冷却水泵。

水流量计算1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)=[Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2)2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

麦克维尔离心冷水机组 制冷剂用量计算

麦克维尔离心冷水机组 制冷剂用量计算

麦克维尔离心冷水机组制冷剂用量计算工业冷水机组选型主要的一条就是制冷量的计算,须确保有足够的冷却能力才能将应用设备的温度控制在所需的范围,但冷水机组并非越大越好,过大的制冷量会造成机组投资大、能耗高等问题。

科学合理地计算制冷量以及安全系数才是我们所追求的目标。

我们在计算工业冷水机组制冷量时,下面这个公式是一定会用到的:
制冷量等于冷冻水流量乘4.187乘温差乘系数。

说明:
1.冷冻水流量指机器的工作时所需冷水流量。

2.温差指机器进出水之间的温差。

3.水的比热容为定量等于
4.187。

4.选择风冷式冷水机时需乘系数1.3,选择水冷式工业冷水机。

5.小型的工业冷水机组都习惯用P(HP,压缩机匹数)来计算,比如制冷量需求在9KW的应用,选择3HP的水冷式工业冷水机组差不多就可以满足要求了。

工业冷水机组选型主要的就是要计算出制冷量需求,掌握了制冷量计算公式,再参照说明中的几点注释,基本就能解决应该如何选配合适的工业冷水机组了。

空调系统水泵的选型

空调系统水泵的选型

空调系统水泵的选型
本文介绍了空调系统中水泵的选型步骤,包括确定水泵流量、计算水系统水管管径和确定水泵扬程等内容。

第一步是确定水泵流量。

对于冷却水流量,可以按照产品样本提供的数值选取,或者使用公式L(m3/h)= Q(kW)/
(4.5~5)℃x1.163X(1.15~1.2)进行计算。

对于冷冻水流量,在没有考虑同时使用率的情况下选定的机组,可以根据产品样本提供的数值选用或者使用公式L(m3/h)= Q(kW)/
(4.5~5)℃x1.163进行计算。

如果考虑了同时使用率,建议使用公式L(m3/h)= Q(kW)/(4.5~5)℃x1.163进行计算。

第二步是计算水系统水管管径。

所有水管管径一般按照公式D(m)=√L(m3/h)/0.785x3600xV(m/s)进行计算。

其中,L是所求管段的水流量,V是所求管段允许的水流速。

流速的推荐值一般在管径在DN100到DN250之间时为1.5m/s左右,管径小于DN100时推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。

管径的尺寸规格有很多种,选择水泵时进出口管径应比水泵所在管段的管径小一个型号。

第三步是确定水泵扬程。

以水冷螺杆机组为例,冷冻水泵扬程的组成包括制冷机组蒸发器水阻力、末端设备表冷器或蒸发器水阻力、回水过滤器阻力、分水器、集水器水阻力以及制冷系统水管路沿程阻力和局部阻力损失。

综上所述,冷冻水泵扬程一般为26~35mH2O,冷却水泵扬程的组成包括制冷机组冷凝器水阻力,一般为5~7mH2O。

要注意的是,扬程的计算要根据制冷系统的具体情况而定,不可照搬经验值。

冷冻水流量计算

冷冻水流量计算

标准冷冻水流量=制冷量(KW)*0.86/5(度温差)冷却水流量=(制冷量+机组输入功率)(KW)*0.86/5(度温差)水流量计算1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)= [Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2)2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

如果考虑了同时使用率,建议用如下公式进行计算。

公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)= Q(kW)/(4.5~5)℃x1.1633、冷却水补水量一般1为冷却水循环水量的1~1.6%.1 水侧变流量对冷水机组性能的影响在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。

认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。

随着控制技术的发展,冷水机组的控制系统越来越先进。

目前,不同类型的冷水机组均能实现冷量的自动调节。

冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。

事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。

当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。

衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。

冷冻水流量计算

冷冻水流量计算

冷冻水流量计算 Document number:PBGCG-0857-BTDO-0089-PTT1998标准冷冻水流量=制冷量(KW)*5(度温差)冷却水流量=(制冷量+机组输入功率)(KW)*5(度温差)水流量计算1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)= [Q(kW)/(~5)℃]X~2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

如果考虑了同时使用率,建议用如下公式进行计算。

公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)= Q(kW)/(~5)℃3、冷却水补水量一般1为冷却水循环水量的1~%.1 水侧变流量对冷水机组性能的影响在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。

认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。

随着控制技术的发展,冷水机组的控制系统越来越先进。

目前,不同类型的冷水机组均能实现冷量的自动调节。

冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。

事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。

当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。

衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。

冷冻水流量计算

冷冻水流量计算

标准冷冻水流量=制冷量(KW)*0.86/5(度温差)冷却水流量=(制冷量+机组输入功率)(KW)*0.86/5(度温差)水流量计算1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量L(m3/h)=[Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2)2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

如果考虑了同时使用率,建议用如下公式进行计算。

公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)=Q(kW)/(4.5~5)℃x1.1633、冷却水补水量一般1为冷却水循环水量的1~1.6%.1水侧变流量对冷水机组性能的影响在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。

认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。

随着控制技术的发展,冷水机组的控制系统越来越先进。

目前,不同类型的冷水机组均能实现冷量的自动调节。

冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。

事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。

当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。

衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。

由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准冷冻水流量=制冷量(KW)*0.86/5(度温差)
冷却水流量=(制冷量+机组输入功率)(KW)*0.86/5(度温差)
水流量计算
1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量
L(m3/h)= [Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2)
2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。

如果考虑了同时使用率,建议用如下公式进行计算。

公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)= Q(kW)/(4.5~5)℃x1.163
3、冷却水补水量一般1为冷却水循环水量的1~1.6%.
1 水侧变流量对冷水机组性能的影响
在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。

认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。

随着控制技术的发展,冷水机组的控制系统越来越先进。

目前,不同类型的冷水机组均能实现冷量的自动调节。

冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。

事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50%~100%以内变化。

当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。

衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组COP值下降而损失的能耗,再考虑变流量运行的负荷时间频度。

由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。

冷水机组蒸发器变流量对其制冷性能的影响程度与压缩机类型和制冷剂变流量的方式有关。

文献3从热力学角度对此进行了分析,认为即使冷冻水流量减至60%,冷水机组的COP的下降幅度也不超过10%。

冷却水进出口温差变大时,虽然可以减小冷却水泵的运行费用,然而,为了保证冷凝器内的热交换,冷凝温度必然要高于冷却水的出口温度,并且冷凝温度与冷却水出口温度也要求有一低限。

所以,要想加大冷却水的进出口温差,就必须提高冷却水出口温度(通常冷却水进口温度基本上是定值),这又将引起冷凝温度的增加,降低了冷水机组的COP值。

与蒸发器变流量相比,冷凝器变流量运行对冷凝温度的影响较大,故导致冷水机组COP的变化较大,在给冷却水泵安装变频器时,应详细分析冷却水变流量对冷水机组性能的影响,确定方案的可行性。

2 一次泵变流量系统节能模拟分析
现将在部分负荷情况下变流量与定流量两种情形的系统(冷水机组和水泵)能耗进行比较,设定流量
情形冷水机组和水泵的输入功率分别为和,变流量情形为和,对于冷水机组和水泵组成的系统而言,水泵变流量的节能率为
(1)
变流量与定流量两种情形下的制冷量应相等(),因此,两种情形下冷水机组的输入功率与能效比(EER)的关系为
(2)
因此,节能率为
(3)
在部分负荷情况下,由于环境温度和工况的改变,冷水机组的输入功率与名义工况下的输入功率
相差较大,且关系较为复杂;而EER虽有改变,但变化幅度较小,一般不超过15%[4]。

设EER随部分负荷率η(=Q/Q0)的变化为线性变化
(4)
这里EER0为名义工况下的能效比,待定系数与部分负荷率和机型有关,如不考虑部分负荷情况下能效比的变化,则取。

据能效比的定义,有
,(5)
由(4)、(5)式,可将部分负荷情况下冷水机组的输入功率用名义工况下的输入功率和部分负荷率η来表示:
(6)
将(6)式代入(3)式,得
(7)
对于闭式系统,水泵的等效率曲线与管路特性曲线重合,在一定的调速范围内,符合相似定律,
(8)
式中和分别为定流量和变流量情形下的水流量。

在名义工况下,有(9)
式中为名义工况下的温差,若采用等温差控制,则有
(10)
因此,(11)
将(8)、(11)式代入(7)式,得
(12)
上式中最后一项是由于考虑了变流量运行对于冷水机组性能的影响而带来的。

变流量情形下,冷水机组的能效比将比定流量情形下的能效比略有下降,目前这方面实验数据较少。

为便于从理论上分析一次泵
变流量情形下的节能与流量变化的关系,本文分别模拟以下两种情况:流量变为额定流量的60%时,冷水机组的EER变为定流量时EER的5%和10%,且EER与相对流量呈线性关系。

这里为方便起见,不妨称之为“5%影响曲线”和“10%影响曲线”,见图1。

对于“5%影响曲线”和“10%影响曲线”,分别有
(13)
(14)
为便于分析一次泵变流量情形下的节能与部分负荷率η和水泵相对主机的功耗的关系,这里,假设[4]
(15)
图2 “5%影响曲线”下的节能率图3 “5%影响曲线”下的节能率
(相对功率为15%)(相对功率为25%)
图4 “10%影响曲线”下的节能率图5 “10%影响曲线”下的节能率
(相对功率为15%)(相对功率为25%)
图2和图3分别给出了水泵相对主机的电功率为15%和25%情况下,“5%影响曲线”下的节能率与部分负荷率(流量变化)的关系;图4和图5则分别给出了对应于“10%影响曲线”下的节能率。

从图中可以看出变流量对于冷水机组制冷性能的负面影响可能在相当程度上抵消水泵的调速节能,特别是当水泵相对主机的电功率比较小时。

当水泵相对主机的电功率小于15%时,不考虑对主机影响的节能率计算(三次方定律)较考虑“5%影响曲线”时要高估50%以上,较考虑“10%影响曲线”时更要高估100%以上。

即使对于水泵相对主机的电功率较大的情形,也应该正确评估变流量对主机制冷性能的影响,否则,有可能做出错误的判断。

因此,研究和掌握冷水机组变流量下的制冷性能对于一次泵变流量系统的设计是至关重要的。

相关文档
最新文档