成型工艺在树脂基复合材料的发展
树脂基复合材料
树脂基复合材料随着科学技术的不断发展,材料科学领域也在不断取得突破性进展。
树脂基复合材料作为一种重要的功能材料,在航空航天、汽车制造、建筑等领域得到了广泛的应用。
它具有重量轻、强度高、耐腐蚀、设计自由度大等优点,因此备受青睐。
本文将就树脂基复合材料的概念、分类、制备方法、性能及应用进行介绍。
一、概念。
树脂基复合材料是由树脂作为基体,再加入填料、增强材料等组成的一种复合材料。
树脂通常选择环氧树脂、酚醛树脂、不饱和聚酯树脂等,而填料和增强材料则有玻璃纤维、碳纤维、芳纶纤维等。
树脂基复合材料具有优异的力学性能和耐腐蚀性能,广泛应用于航空航天、汽车制造、建筑等领域。
二、分类。
树脂基复合材料可以根据树脂的种类、增强材料的种类、制备工艺等进行分类。
按照树脂的种类,可以分为环氧树脂基复合材料、酚醛树脂基复合材料、不饱和聚酯树脂基复合材料等。
按照增强材料的种类,可以分为玻璃纤维增强树脂基复合材料、碳纤维增强树脂基复合材料、芳纶纤维增强树脂基复合材料等。
根据制备工艺的不同,可以分为手工层叠法、预浸法、注射成型法等。
三、制备方法。
树脂基复合材料的制备方法多种多样,常见的包括手工层叠法、预浸法、注射成型法等。
手工层叠法是最早的制备方法,其工艺简单,成本低,但生产效率低,质量不稳定。
预浸法是将增强材料浸泡在树脂中,然后烘干成型,工艺复杂,但成型速度快,质量稳定。
注射成型法是将树脂和增强材料混合后通过模具注射成型,工艺复杂,但成型速度快,适用于大批量生产。
四、性能。
树脂基复合材料具有优异的力学性能和耐腐蚀性能。
其强度和刚度远高于金属材料,比重却只有金属的三分之一至四分之一。
同时,树脂基复合材料具有优异的耐腐蚀性能,不易受到化学物质的侵蚀。
此外,树脂基复合材料还具有设计自由度大、成型工艺灵活等优点。
五、应用。
树脂基复合材料在航空航天、汽车制造、建筑等领域得到了广泛的应用。
在航空航天领域,树脂基复合材料被用于制造飞机机身、飞机翼、航天器外壳等部件,以减轻重量、提高飞行性能。
环氧树脂碳纤维复合材料的成型工艺与应用
碳纤维缠绕复合材料成型工艺
碳纤维缠绕复合材料的制备过程主要包括纤维铺放、树脂浸润和热处理等环 节。下面分别介绍这些步骤及其对材料性能的影响。
1、纤维铺放:此步骤是碳纤维缠绕复合材料制备的关键环节之一。纤维的 排列方向、密度和厚度等因素都会影响最终产品的性能。铺放过程中需采用专门 的设备和工艺,确保纤维分布的准确性和稳定性。
引言:碳纤维增强环氧树脂复合材料是一种具有优异性能的材料,因其具有 高强度、高韧性、耐腐蚀、轻质等优点而被广泛应用于航空、航天、汽车、体育 器材等领域。随着科技的发展,对于这种复合材料的研究和应用也越来越广泛。 液体成型是一种常见的复合材料制造工艺,具有成本低、效率高等优点,因此, 研究碳纤维增强环氧树脂复合材料的液体成型工艺及其性能具有重要意义。
在航天领域,碳纤维树脂基复合材料被广泛应用于火箭箭体、卫星平台等关 键部位。其轻质、高强度、耐腐蚀等优点使得它在航天领域具有广泛的应用前景。
在汽车领域,碳纤维树脂基复合材料被广泛应用于汽车车身、底盘等部位。 其高强度、耐腐蚀和轻质等优点可以提高汽车的性能和舒适性,同时也可以提高 汽车的安全性。
四、结论
环氧树脂碳纤维复合材料的成型工艺主要包括以下步骤: 1、纤维浸润:将碳纤维或其它纤维浸入环氧树脂中,使其充分浸润。
2、固化:在一定的温度和压力下,环氧树脂发生固化反应,形成固态复合 材料。
3、后处理:对固化后的复合材料进行切割、打磨、钻孔等后处理,以满足 不同应用场景的需求。
3、后处理:对固化后的复合材 料进行切割、打磨、钻孔等后处 理
三、碳纤维树脂基复合材料的应 用研究进展
碳纤维树脂基复合材料在航空、航天、汽车等领域得到了广泛应用。近年来, 随着技术的不断发展,其在这些领域的应用研究也取得了显著的进展。
环氧树脂基复合材料
环氧树脂基复合材料环氧树脂基复合材料是一种由环氧树脂作为基体,通过填充材料和增强材料的复合而成的材料。
环氧树脂基复合材料具有优异的性能,被广泛应用于航空航天、汽车、建筑、电子、军工等领域。
本文将介绍环氧树脂基复合材料的特点、制备工艺和应用领域。
首先,环氧树脂基复合材料具有优异的力学性能和耐腐蚀性能。
由于环氧树脂本身具有较高的强度和硬度,加入填充材料和增强材料后,复合材料的力学性能得到进一步提升。
同时,环氧树脂基复合材料具有优良的耐腐蚀性能,能够在恶劣环境下长期稳定使用。
其次,环氧树脂基复合材料的制备工艺多样,适应性强。
制备环氧树脂基复合材料的工艺包括预浸料成型、热固成型、注塑成型等多种方法,可以根据不同的需求选择合适的工艺。
同时,环氧树脂基复合材料的成型方式灵活多样,可以制备成板材、型材、管材等各种形状,满足不同领域的需求。
环氧树脂基复合材料在航空航天、汽车、建筑、电子、军工等领域有着广泛的应用。
在航空航天领域,环氧树脂基复合材料被用于制造飞机结构件、航天器外壳等部件,具有重量轻、强度高的优势。
在汽车领域,环氧树脂基复合材料被用于制造车身结构、发动机零部件等,能够减轻车辆重量,提高燃油经济性。
在建筑领域,环氧树脂基复合材料被用于制造装饰板材、管道等,具有防腐蚀、耐磨损的特点。
在电子领域,环氧树脂基复合材料被用于制造电路板、封装材料等,具有优异的绝缘性能。
在军工领域,环氧树脂基复合材料被用于制造军用装备、防护材料等,具有轻质高强的特点。
总的来说,环氧树脂基复合材料具有优异的性能和广泛的应用前景,是一种具有发展潜力的新型材料。
随着科技的不断进步和应用领域的不断拓展,相信环氧树脂基复合材料将会在更多领域得到应用,并取得更大的发展。
树脂基复合材料的应用
树脂基复合材料的应用一、引言随着科技的不断进步,树脂基复合材料已经成为了现代工业制造中不可或缺的材料之一。
树脂基复合材料具有轻质、高强度、耐腐蚀等优点,被广泛应用于航空航天、汽车制造、建筑等领域。
二、树脂基复合材料的定义和分类1. 定义树脂基复合材料是由树脂作为基体,加入适量的增强剂和填充剂,经过混合、成型和固化等工艺制成的一种新型材料。
2. 分类(1)按照增强剂分类:碳纤维复合材料、玻璃纤维复合材料、芳纶纤维复合材料等。
(2)按照树脂种类分类:环氧树脂复合材料、聚酰亚胺复合材料、酚醛树脂复合材料等。
(3)按照成型方法分类:注塑成型复合材料、压缩成型复合材料等。
三、树脂基复合材料的特点1. 轻质树脂基复合材料的密度约为金属材料的1/4,因此具有轻质的特点。
2. 高强度增强剂的加入使得树脂基复合材料具有很高的强度和刚度。
3. 耐腐蚀树脂基复合材料具有良好的耐腐蚀性能,可以应用于恶劣环境下。
4. 成型性好树脂基复合材料可以通过注塑、压缩成型等多种成型方法制造出各种形状的产品。
四、树脂基复合材料在航空航天领域中的应用1. 飞机结构件树脂基复合材料具有轻质、高强度等优点,在飞机结构件中得到了广泛应用。
例如:机翼、尾翼、垂直尾翼等。
2. 航天器部件在航天器部件中,树脂基复合材料可以用于制造推进器罩、导航罩等部件。
由于其轻质高强的特点,可以减少发射时所需的推力。
3. 卫星结构件卫星结构件需要具有轻质、高强、耐腐蚀等特点,树脂基复合材料正是满足这些要求的理想材料。
五、树脂基复合材料在汽车制造领域中的应用1. 车身结构件树脂基复合材料可以用于制造车身结构件,例如:车门、引擎盖等。
由于其轻质高强的特点,可以减少汽车的重量,提高燃油效率。
2. 内饰部件树脂基复合材料还可以用于汽车内饰部件的制造,例如:仪表盘、门板等。
由于其成型性好的特点,可以制造出各种形状的内饰部件。
六、树脂基复合材料在建筑领域中的应用1. 建筑外墙板树脂基复合材料可以用于制造建筑外墙板,由于其耐候性好、防水性能强等特点,被广泛应用于建筑装饰。
树脂基复合材料成型工艺的发展
树脂基复合材料成型工艺的发展树脂基复合材料是一种由树脂基体和增强材料组成的高性能材料。
它具有轻质、高强度、耐腐蚀、耐磨损等优点,被广泛应用于航空、航天、汽车、建筑等领域。
而树脂基复合材料的成型工艺则是影响其性能和质量的关键因素之一。
随着科技的不断进步和工艺的不断创新,树脂基复合材料的成型工艺也在不断发展。
下面将从几个方面介绍树脂基复合材料成型工艺的发展。
一、手工层叠法手工层叠法是最早的树脂基复合材料成型工艺之一。
它的原理是将预先切好的增强材料层叠在一起,再用树脂浸润,最后压缩成型。
虽然这种工艺简单易行,但由于操作工艺的不稳定性,导致成品质量不稳定,且生产效率低下。
二、手工涂覆法手工涂覆法是将树脂涂覆在增强材料上,再将其压缩成型。
这种工艺虽然比手工层叠法效率高,但由于树脂涂布不均匀,导致成品质量不稳定。
三、自动化层叠法自动化层叠法是将预先切好的增强材料通过机器自动层叠,再用树脂浸润,最后压缩成型。
这种工艺具有生产效率高、成品质量稳定等优点,但由于机器设备的成本较高,导致生产成本较高。
四、自动化涂覆法自动化涂覆法是将树脂通过机器自动涂覆在增强材料上,再将其压缩成型。
这种工艺具有生产效率高、成品质量稳定等优点,但由于机器设备的成本较高,导致生产成本较高。
五、注塑成型法注塑成型法是将树脂和增强材料混合后,通过注塑机器将其注入模具中,最后压缩成型。
这种工艺具有生产效率高、成品质量稳定等优点,但由于模具成本较高,导致生产成本较高。
综上所述,树脂基复合材料成型工艺的发展经历了从手工到自动化的演变过程。
随着科技的不断进步和工艺的不断创新,树脂基复合材料的成型工艺将会更加智能化、高效化和环保化。
树脂基复合材料研究进展
先进树脂基复合材料研究进展摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。
关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITESABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology.Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。
目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。
树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。
用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。
浅谈树脂基复合材料的成型工艺
浅谈树脂基复合材料的成型工艺摘要:树脂基复合材料作为新型复合材料得到了广泛的应用,在许多行业都发挥了重要的作用。
树脂基复合材料的成型工艺日趋完善,各种新的成型方法不断出现,为树脂基复合材料的发展起到了积极的推动作用。
本文对树脂基复合材料的成型工艺做了简单介绍,分别探讨了几种成型工艺,并分析了聚氨酯树脂基成型工艺的影响因素,以供大家参考。
材料是社会发展人类进步的物质基础,材料的革新将会推动产业进步,从而带动人类生活不断提高。
由于具有比强度、耐疲劳、各向异性和可设计性等诸多优点,树脂基复合材料已经被广泛应用与多个行业,并成为衡量某些行业发展水平的指标之一。
1 树脂基复合材料成型工艺简要分析树脂基复合材料成型工艺就是将增强材料在预定的方向上进行均与铺设,使其能够符合制品的表面质量、外部形状以及尺寸。
同时还应尽量降低孔隙率,将制品中的气体彻底排净,确保制品性能不会受到较大影响。
与此同时,在进行相关操作时,还应选择与制品生产相符合的制造工艺和生产设备,降低单件生产制品的生产成本,提高相关人员的操作便捷性以及身体健康。
总的来说,树脂基复合材料的成型工艺可以分为三个阶段,第一个阶段就是原材料准备阶段,包括了树脂基材料、增强材料和成型模具;第二个阶段是准备阶段,包括了胶液配制、增强材料处理和模具准备;第三个阶段是成型工序阶段,包括了成型作业、固话和脱模三个步骤。
2 几种树脂基复合材料成型工艺分析2.1 拉挤成型工艺分析复合材料拉挤成型工艺的研究开始于上世纪五十年代,到了六十年代中期,在实际生产中逐渐运用了拉挤成型工艺。
经过将近十年的发展,拉挤技术又取得了重大研究进展,树脂胶液连续纤维束在湿润化状态下,通过牵引结构拉力,在成型模中成型,最后在固化设备中进行固化,常用的固化设备有固化模和固化炉。
拉挤成型工艺的制品质量十分稳定,制造成本也很低;生产效率也很高能够进行批量化的生产。
2.2 模压成型工艺分析模压成型工艺是一种较为老旧的工艺,但是又充满不断创新的可能,具有良好的未来发展潜力。
碳纤维增强树脂基复合材料
碳纤维增强树脂基复合材料碳纤维增强树脂基复合材料是一种具有高强度、高模量、耐腐蚀性和轻质化等优良性能的新型材料,广泛应用于航空航天、汽车、船舶、体育器材等领域。
本文将对碳纤维增强树脂基复合材料的制备工艺、性能特点及应用前景进行介绍。
首先,碳纤维增强树脂基复合材料的制备工艺包括原材料选取、预处理、成型、固化等多个环节。
在原材料选取方面,需要选择优质的碳纤维和树脂,并对其进行表面处理以提高其界面粘合性。
在成型过程中,可以采用手工层叠、自动纺织、注塑成型等方法,根据不同的产品要求进行选择。
固化工艺则是利用热固化或者光固化技术,使得树脂基复合材料达到预期的性能指标。
其次,碳纤维增强树脂基复合材料具有优异的性能特点。
首先是高强度和高模量,碳纤维本身具有很高的强度和模量,与树脂复合后可以进一步提高材料的整体性能。
其次是耐腐蚀性,碳纤维不易受到化学腐蚀,使得复合材料在恶劣环境下依然能够保持稳定的性能。
此外,碳纤维增强树脂基复合材料还具有轻质化的特点,可以大幅减轻产品重量,提高使用效率。
最后,碳纤维增强树脂基复合材料在航空航天、汽车、船舶、体育器材等领域有着广阔的应用前景。
在航空航天领域,碳纤维增强树脂基复合材料可以用于制造飞机机身、发动机零部件等,以提高飞行器的整体性能。
在汽车领域,该材料可以用于制造车身结构、悬挂系统等,以提高汽车的安全性和燃油经济性。
在船舶领域,碳纤维增强树脂基复合材料可以用于制造船体、桅杆等,以提高船舶的耐久性和航行性能。
在体育器材领域,该材料可以用于制造高性能的运动器材,如高尔夫球杆、网球拍等,以提高运动员的比赛水平。
综上所述,碳纤维增强树脂基复合材料具有广泛的应用前景,制备工艺成熟,性能优异,是一种具有发展潜力的新型材料。
随着技术的不断进步和应用领域的不断拓展,相信碳纤维增强树脂基复合材料将会在更多领域展现出其独特的优势和价值。
酚醛树脂及复合材料成型工艺的研究进展
酚醛树脂及复合材料成型工艺的研究进展酚醛树脂(Phenolic resin)是一种广泛应用于复合材料制造的热固性树脂。
它具有优异的耐热性、耐化学腐蚀性和机械性能,因此在航空航天、汽车、电子等工业领域得到了广泛的应用。
酚醛树脂及其复合材料的成型工艺经过多年的研究和发展,取得了重要的进展。
首先,酚醛树脂的成型工艺主要包括压模成型、注塑成型和复合材料预浸料成型。
压模成型是将树脂和填料混合均匀后,放入预热的金属模具中,在高温高压下固化成型。
注塑成型是将树脂熔融后注入金属模具中,经冷却固化后取出成型。
复合材料预浸料成型是将纤维材料与树脂预浸料进行层状叠加后,经过层压成型和热固化得到复合材料。
在酚醛树脂的成型过程中,研究人员主要关注以下几个方面的问题。
首先是树脂的改性,通过添加改性剂和填料,可以改善树脂的热稳定性、流动性和机械性能。
例如,添加玻璃纤维、石墨等填料,可以提高复合材料的强度和刚度。
其次是成型工艺的优化,包括固化温度和时间的控制、模具设计的改进等。
对于注塑成型,还需要考虑注射压力、注射速度等参数的选择。
此外,还需要考虑树脂和纤维之间的界面相容性,以提高复合材料的耐热性和耐化学腐蚀性。
近年来,研究人员也在探索新的成型工艺,以满足不同领域对复合材料的需求。
例如,采用3D打印技术可以实现复材的快速成型。
研究人员使用可溶性支撑材料和酚醛树脂预浸料,在3D打印过程中逐层叠加,然后通过加热处理和去除支撑材料来获得最终的复合材料。
此外,还有研究人员致力于提高成型工艺的自动化程度和生产效率。
他们使用模具自动化系统、机器人和传感器等设备,实现树脂混合、注塑和固化等过程的自动化控制。
这不仅可以提高产品的质量和一致性,还可以降低生产成本。
总的来说,酚醛树脂及复合材料成型工艺的研究进展丰富多样,不断推动着该材料在各个领域的应用。
随着科技的不断进步和工艺的不断创新,相信酚醛树脂及其复合材料在未来会有更广阔的发展空间。
树脂基复合材料的5种成型工艺流程
树脂基复合材料的5种成型工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、手工层叠成型工艺。
手工层叠成型是树脂基复合材料最基础的一种成型工艺。
树脂基复合材料的工艺特点
树脂基复合材料的工艺特点树脂基复合材料的成型工艺灵活,其结构和性能具有很强的可设计性。
树脂基复合材料可用模具一次成型法来制造各种构件,从而减少了零部件的数量及接头等紧固件,并可节省原材料和工时;更为突出的是树脂基复合材料可以通过纤维种类和不同排布的设计,把潜在的性能集中到必要的方向上,使增强材料更为有效地发挥作用。
通过调节复合材料各组分的成分、结构及排列方式,既可使构件在不同方向承受不同的作用力,还可以制成兼有刚性、韧性和塑性等矛盾性能的树脂基复合材料和多功能制品,这些是传统材料所不具备的优点。
树脂基复合材料在工艺方面也存在缺点,比如,相对而言,大部分树脂基复合材料制造工序较多,生产能力较低,有些工艺(如制造大中型制品的手糊工艺和喷射工艺)还存在劳动强度大、产品性能不稳定等缺点。
树脂基复合材料的工艺直接关系到材料的质量,是复合效应、"复合思想"能否体现出来的关键。
原材料质量的控制、增强物质的表面处理和铺设的均匀性、成型的温度和压力、后处理及模具设计的合理性都影响最终产品的性能。
在成型过程中,存在着一系列物理、化学和力学的问题,需要综合考虑。
固化时在基体内部和界面上都可能产生空隙、裂纹、缺胶区和富胶区;热应力可使基体产生或多或少的微裂纹,在许多工艺环节中也都可造成纤维和纤维束的弯曲、扭曲和折断;有些体系若工艺条件选择不当可使基体与增强材料之间发生不良的化学反应;在固化后的加工过程中,还可进一步引起新的纤维断裂、界面脱粘和基体开裂等损伤。
如何防止和减少缺陷和损伤,保证纤维、基体和界面发挥正常的功能是一个非常重要的问题。
树脂基复合材料的成型有许多不同工艺方法,连续纤维增强树脂基复合材料的材料成型一般与制品的成型同时完成,再辅以少量的切削加工和连接即成成品;随机分布短纤维和颗粒增强塑料可先制成各种形式的预混料,然后进行挤压、模塑成型。
树脂基复合材料成型工艺介绍
树脂基复合材料成型工艺介绍树脂基复合材料成型工艺介绍(1):模压成型工艺模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。
它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。
模压成型工艺的主要优点:①生产效率高,便于实现专业化和自动化生产;②产品尺寸精度高,重复性好;③表面光洁,无需二次修饰;④能一次成型结构复杂的制品;⑤因为批量生产,价格相对低廉。
模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。
随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。
模压成型工艺按增强材料物态和模压料品种可分为如下几种:①纤维料模压法是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。
该方法简便易行,用途广泛。
根据具体操作上的不同,有预混料模压和预浸料模压法。
②碎布料模压法将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。
③织物模压法将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。
④层压模压法将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。
⑤缠绕模压法将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。
⑥片状塑料(SMC)模压法将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。
⑦预成型坯料模压法先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。
树脂基复合材料模压成型的工艺流程是什么
树脂基复合材料模压成型的工艺流程是什么树脂基复合材料是一种常用于制备轻质、高强度产品的材料,广泛应用于航空航天、汽车、船舶等领域。
模压成型是树脂基复合材料制备过程中常用的一种工艺方法,通过模具将预先混合好的树脂基材料和增强材料进行加热、加压,使其在模具中固化成型。
以下是树脂基复合材料模压成型的工艺流程。
原料准备与预处理在开始模压成型工艺之前,首先需要准备树脂基材料和增强材料。
树脂基材料通常是热固性树脂,如环氧树脂、酚醛树脂等,而增强材料可以选择玻璃纤维、碳纤维等。
原料需要按照一定的配比进行混合,并根据具体要求进行表面处理,如去除氧化物、提高增强材料的粘附性等。
模具准备选择合适的模具是模压成型的关键。
模具的设计应考虑产品的形状、尺寸等因素,同时也要考虑材料的流动性、热传导等特性。
在模具表面可以添加一层防粘涂层,以便于模具脱模。
模压工艺1.预热模具:在开始模压之前,需要对模具进行预热,以确保树脂基材料在进入模具时能够快速固化。
2.充模:将预先混合好的树脂基材料和增强材料装入模具中,并确保充填均匀。
3.封模:将模具关闭,形成封闭的空间。
4.加热压实:通过加热和加压的方式促使树脂基材料固化,通常在一定的温度和压力条件下进行。
5.冷却固化:待树脂基材料充分固化后,停止加热,让产品在模具中自然冷却。
6.脱模:打开模具,取出固化成型的树脂基复合材料制品。
后处理模压成型后的产品可能需要进行修整、打磨等后处理工序,以保证产品表面光滑、尺寸精确。
同时还要进行质量检验,确保产品符合设计要求。
综上所述,树脂基复合材料模压成型是一项较为复杂的工艺过程,需要严格控制各个环节的参数,以确保最终产品的质量和性能。
在实际生产过程中,操作人员需要具备丰富的经验和技能,才能顺利完成模压成型工艺,并生产出优质的树脂基复合材料制品。
浅析树脂基复合材料成型工艺
浅析树脂基复合材料成型工艺摘要:随着社会经济的发展,在工业领域中,复合材料也得到了广泛应用,无论是国家的科研技术,还是经济实力,都是衡量国家发展的标志。
先进复合材料不仅强度高,而且耐热性能和抗疲劳性能优良,在航空航天、交通运输、机械化工等领域得到广泛应用。
树脂基复合材料即以有机聚合物为基体的纤维增强材料,其纤维增强体通常选择玻璃纤维、碳纤维、玄武岩纤维等,现阶段在航空、汽车、海洋工业中得到较广泛的应用。
关键词:树脂基;复合材料;成型工艺复合材料是由有机高分子、无机非金属材料或金属等几类不同材料通过复合工艺组合而成的新型材料,至少包括两种以上的独立化学相,按性能要求人为设计和制造,它既能保留原组分材料的主要特色,又通过复合效应获得各单一组元所没有的综合优良性能,可以通过材料设计使各组分的性能相互补充,并彼此关联,从而获得新的优越性能,与一般材料的简单混合有本质区别。
按基体的性质,复合材料分为金属基复合材料、树脂基复合材料和陶瓷基复合材料。
因此复合材料在航天航空、交通运输和运动器材等多个领域广泛应用,复合材料制品种类繁多,复合材料工业得到迅速发镇,成型工艺和方法也不断完善。
一、复合材料树脂基现状树脂基纤维增强复合材料是根据树脂基化学特性,添加玻璃纤维、碳纤维等纤维增强相,经过一系列加工成形的一种现代工程材料,可分为热固性树脂基复合材料与热塑性树脂基复合材料。
复合材料阀门具有耐疲劳、成型密实、尺寸可控等优异的性能,可满足现代工业对阀门的各种要求,因此广泛应用于化工、航空、军工等行业。
热固性树脂基复合材料与热塑性树脂基复合材料相比,具有制品尺寸精准、强度高、机械性能强、工艺简单等优点,同时,热固性树脂基复合材料的材料成本更低。
热固性复合材料树脂基通常采用环氧、酚醛、不饱和聚酯等树脂。
1、不饱和聚酯树脂。
不饱和聚酯树脂 UPR通常由饱和二元酸与不饱多元醇,或不饱和二元酸与多元醇缩聚而成的具有酯键和不饱和双键的高分子聚合物。
酚醛树脂及复合材料成型工艺的研究进展
酚醛树脂是最早工业化的合成树脂,已经有100年的历史。
由于它原料易得,合成方便以及树脂固化后性能能满足很多使用要求,因此在模塑料、绝缘材料、涂料、木材粘接等方面得到广泛应用。
近年来,随着人们对安全等要求的提高,具有阻燃、低烟、低毒等特性的酚醛树脂重新引起人们重视,尤其在飞机场、火车站、学校、医院等公共建筑设施及飞机的内部装饰材料等方面的应用越来越多[1]。
与不饱和聚酯树脂相比,酚醛树脂的反应活性低,固化反应放出缩合水,使得固化必须在高温高压条件下进行,长期以来一般只能先浸渍增强材料制作预浸料(布),然后用于模压工艺或缠绕工艺,严重限制了其在复合材料领域的应用。
为了克服酚醛树脂固有的缺陷,进一步提高酚醛树脂的性能,满足高新技术发展的需要,人们对酚醛树脂进行了大量的研究,改进酚醛树腊的韧性、提高力学性能和耐热性能、改善工艺性能成为研究的重点。
近年来国内相继开发出一系列新型酚醛树脂,如硼改性酚醛树脂、烯炔基改性酚醛树脂、氰酸酯化酚醛树脂和开环聚合型酚醛树脂等。
可以用于smc/bmc、rtm、拉挤、喷射、手糊等复合材料成型工艺。
本文结合作者的研究工作,介绍了酚醛树脂的改性研究进展及rtm、拉挤等酚醛复合材料成型工艺的研究应用情况。
1酚醛树脂的改性研究1.1聚乙烯醇缩醛改性酚醛树脂工业上应用得最多的是用聚乙烯醇缩醛改性酚醛树脂,它可提高树脂对玻璃纤维的粘结力,改善酚醛树脂的脆性,增加复合材料的力学强度,降低固化速率从而有利于降低成型压力。
用作改性的酚醛树脂通常是用氨水或氧化镁作催化剂合成的苯酚甲醛树脂。
用作改性的聚乙烯醇缩醛一般为缩丁醛和缩甲乙醛。
使用时一般将其溶于酒精,作为树脂的溶剂。
利用缩醛和酚醛羟甲基反应合成的树脂是1种优良的特种油墨载体树脂。
1.2聚酰胺改性酚醛树脂经聚酰胺改性的酚醛树脂提高了酚醛树脂的冲击韧性和粘结性。
用作改性的聚酰胺是一类羟甲基化聚酰胺,利用羟甲基或活泼氢在合成树脂过程中或在树脂固化过程中发生反应形成化学键而达到改性的目的。
树脂复合材料的生产工艺
树脂复合材料的生产工艺
树脂复合材料的生产工艺包括以下几个主要步骤:
1. 材料准备:包括树脂基体、增强材料和填充剂等的准备工作。
树脂基体可以选择热固性树脂(如环氧树脂、聚酯树脂等)或热塑性树脂(如聚丙烯、尼龙等),增强材料可以是玻璃纤维、碳纤维、芳纶纤维等,填充剂可以是硅酸盐、碳酸钙等。
2. 制备增强材料:将增强材料根据设计要求进行切割、针织、编织等处理,得到所需形状和尺寸的增强材料。
3. 预处理增强材料:一般通过浸渍、涂布等方式将树脂基体浸渍到增强材料中,使其充分渗透,并去除气泡和水分。
4. 成型:根据产品要求和制造方法的不同,采用压塑、挤出、注塑、层叠等技术进行成型。
其中的成型工艺可以分为手工成型和自动化成型两种。
5. 固化:对于热固性树脂基体,需要进行固化工艺,即通过热压、自然固化、紫外光固化等方式使树脂基体达到硬化或交联的状态。
而热塑性树脂基体则不需要固化工艺。
6. 后处理:包括修剪、修磨、打磨、清洗等工序,使最终产品达到设计要求的
外观和尺寸精度。
以上是树脂复合材料的一般生产工艺,具体工艺会根据产品类型、要求和生产线设备的不同而有所差异。
树脂基复合材料FDM_3D_打印技术发展现状研究*
科技与创新┃Science and Technology&Innovation2023年第14期文章编号:2095-6835(2023)14-0036-03树脂基复合材料FDM3D打印技术发展现状研究*梅彭,郭纯(安徽科技学院机械工程学院,安徽滁州233100)摘要:树脂复合材料以其轻巧、性能优越等特点,在现实中的各大领域得到了广泛的应用。
通过对树脂基复合材料制造历史的回看和解析发现,传统的制造工艺存在许多缺点,例如制造工序复杂、制造成果时间长,甚至工作环境复杂。
这些原因导致树脂基复合材料的发展受到限制。
而3D是一种先进的成形工艺,可以将复杂的零件结构通过3D打印机快速制造,为大量制造性能高、质量轻的复合材料提供了可能。
阐述了树脂基复合材料三维打印的研究进展,分别从打印原理、打印技术与工艺和打印成果性能评价方面对树脂基复合材料的熔融沉积集成制造工艺进行了综合介绍。
关键词:树脂基复合材料;3D打印;纤维增强;熔融沉积中图分类号:TG147文献标志码:A DOI:10.15913/ki.kjycx.2023.14.010由于当代制造业的发展,人们日益增长的需求与当前技术所支持的一些制造业发生冲突,制造速度和制造质量成为人们所关心的问题,而伴随其出现的便是3D打印技术这一新兴产业。
作为打印原料,树脂基复合材料成为了最佳选择,其轻量与强度都是其他材料不能比拟的。
选择其中最为突出的FDM打印技术,简述了当代树脂基复合材料的FDM3D打印现状。
1树脂基复合材料的分类1.1碳纤维增强树脂基复合材料碳纤维增强树脂基复合材料物理性能卓越。
在同样的体积下,碳纤维增强树脂基复合材料对比常用金属材料,其比强度高、比刚度高;在性能和轻量化选择上都是最优解,其拉伸强度和拉伸模量约是铝的数倍;自我稳定性高,几乎不会出现大面积形变;对振动和噪声抑制明显;具备优秀的导电性,能有效屏蔽电磁;热膨胀系数可以被忽视,同时会让组件间的摩擦产生的消耗大幅降低,对于一般组件具有很好的性能提升作用。
(整理)热塑性树脂基复合材料拉挤成型研究及应用进展
热塑性树脂基复合材料拉挤成型研究及应用进展自上世纪8 0 年代中期始,人们对采用拉挤工艺制造连续纤维增强热塑性塑料复合材料(FRTP)产生了极大兴趣。
这是因为采用热塑性复合材料可避免热固性复合材料固有的环境友好性差、加工周期长和难以回收等不足,并且可具有更好的综合性能,如:较强的柔韧性和抗冲击性能、良好的抗破坏能力、损伤容限高、可补塑、可焊接、生物相容性好、可回收、成型时无需固化反应、成型速度快及可以重复利用等特点[1]。
尽管热塑性塑料拉挤成型具有上述优点,但迄今仍未获得普遍的商业应用。
原因在于这种工艺受到以下缺点的制约:如熔体黏度高、成型温度高、基体在室温下呈固态,需要精确控制冷却和熔体冷却时收缩率大,产品质量波动大等。
为了使热塑性材料的拉挤成型应用获得更广泛的应用,重要的任务是开发最合适的加工工艺、降低成本和提高质量。
由于拉挤工艺本身是一种能够经济的连续生产复合材料的典型制造工艺,并且可以实现自动化连续生产及制品的用途广泛,所以该工艺在工业发达国家已受到普遍重视,发展速度很快。
如美国专利(专利号:US5091036)以及Dr.Scott Taylor 对热塑性复合材料的研究成果的发表[ 2 ] ,给热塑性复合材料拉挤成型的工业应用带来突破性的推进。
概括而言,从热固性基体拉挤成型转变到热塑性基体拉挤成型所遇到的关键问题主要包括:基体在室温下呈固态、在熔融温度下流动性差(黏度高)和熔体冷却时收缩率大等特点,目前,实施热塑性树脂基复合材料的拉挤成型典型研究成果及其进展可概括如下。
1 生产工艺方面由于热塑性树脂融体的黏度大,浸渍困难,因而改进研究工作的关键点集中在浸渍技术方面,而不同拉挤工艺的根本区别也就在浸渍方法和浸渍工艺的差异上。
通常,根据浸渍技术可把热塑性复合材料拉挤工艺分为非反应型拉挤工艺和反应拉挤工艺两大类。
从目前应用情况来看,非反应型工艺占主体,应用较为广泛,相对来讲也比较成熟[ 3 ] 。
树脂基复合材料成型工艺的发展
树脂基复合材料成型工艺的发展何亚飞;矫维成;杨帆;刘文博;2王荣国【摘要】With the rapid development of composites industry, the traditional composites forming processes have been improved, and the new forming processes are spring up. This paper reviews the development of some advanced polymer composites forming processes, such as contact low pressure forming process, pultrusion forming process, molding forming process, filament winding forming process, windrowing forming process, and RTM forming process, analyzes the key tech- nology of the development, studies the evolution of advanced forming process, and discusses the development direction of polymer composites forming process in the future.%随着复合材料工业的迅速发展,传统的复合材料成型工艺日臻完善,新的成型方法不断涌现。
本文通过梳理接触低压成型工艺、拉挤成型工艺、模压成型工艺、缠绕成型工艺、铺放成型工艺、RTM成型工艺这几种先进树脂基复合材料成型工艺的发展历程,分析发展过程中的关键技术,来研究先进复合材料成型工艺的演变,从而探讨未来树脂基复合材料成型工艺的发展方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成型工艺在树脂基复合材料的发展
作者:钱芳
来源:《科技与创新》2017年第07期
摘要:随着社会经济的快速发展,科学技术、人才素质都在一定程度上获得提升,从而使材料工艺越来越完善。
对树脂基复合材料中的成型工艺的有效应用进行了研究和分析。
关键词:成型工艺;树脂基复合材料;智能化;耐热性能
中图分类号:TB332 文献标识码:A DOI:10.15913/ki.kjycx.2017.07.049
随着社会经济的发展,在工业领域中,复合材料也得到了广泛应用,无论是国家的科研技术,还是经济实力,都是衡量国家发展的标志。
由于先进的复合材料具有非常优良的抗疲劳及耐热性能,同时,强度也非常高,已经广泛地应用于我国的交通运输、航空事业以及机械化工业等各大领域。
1 树脂基复合材料的成型工艺
成型工艺的系统相对比较复杂,对于制品的尺寸、形状的要求必须要满足。
为了使制品的空隙率降低,材料综合性能必须要得到有效保证。
对于操作人员而言,人为因素造成的影响必须降至最小,从而提高材料的综合效益。
几十年来,树脂基复合材料在不断发展,特别是成型的工艺,取得很大的进步,品种也增加了很多。
1.1 接触低压成型
接触低压成型的工艺流程比较简单,将树脂和玻璃纤维的织物利用手工的作业方式中,比如平铺在模具上,黏结在一起后固定成型,可以将补强的材料在不同的部位添加,从而使产品复杂外形设计的需要得到满足。
但这种工艺效率比较低,且工艺过程所用的时间也比较长,对于批量生产不太适合。
该工艺加工时的粉尘比较大,对人的身体健康影响比较大,这些都需要完善和改进。
对低压接触时,应先设计材料在阳模、阴腊及模上的形状,在常温下进行固化或加热脱模后,再进行辅助加工,从而获得制品。
接触低压成型虽然投资比较少、工艺设备比较简单,但生产效率比较低、劳动强度比较大,因此,应该改进工艺。
从当前的情况看,玻璃纤维复合材料的连续生产和高产量的生产线已经基本形成,使工艺的高效化、自动化以及专业化水平提高,这对发展复合材料有较大的意义。
1.2 拉挤成型
拉挤成型就是在牵引结构的拉力下,使已经浸润的纤维束模成型,在成型的模中固化,实现连续生产,从而形成复合型材。
成型过程中需要外牵引的拉拨、成型的模挤压,整个生产过
程必须连续进行。
该工艺的产品质量比较稳定,工艺的控制比较方便,生产效率比较高,且成本较低,制品弯曲和拉伸的强度都较高,且其产量和技术都得到了进一步发展和提高。
1.3 模压成型
模压成型就是在金属对模内加入浸料,然后加热加压,固化成型,其生产效率比效高、成本比较低、产品的精度非常高,能将结构制品一次成型,广泛应用于航空和汽车等相关领域。
1.4 缠绕成型
缠绕成型就是按照一定的规律,把连续的纤维缠绕到芯模上,通过脱模和固体而形成产品,产品的强度比较高、可靠性比较高、生产效率比效高,具有明显的技术经济效益,成本较低,广泛应用于航空和汽车等相关领域,同时,也正向着集成化和自动化的方向发展。
1.5 铺放成型
铺放成型具有自动窄带的铺放和自动铺丝束技术,加工制造的全自动化已经有效实现,并广泛应用于特殊结构的构件和航空事业。
科学技术在不断发展,铺放成型技术也在不断进步,已经发展为全数字系统,自动铺放的新技术也在各领域得到了广泛应用,自动铺丝技术也广泛应用于商用的飞机和战斗机等各方面,从而使航空制造技术变革得以推进。
2 树脂基复合材料成型工艺的发展
随着科学技术的发展,材料优化也在不断深入,增大了技术的攻关力度。
同时,也优化了复合材料的工艺参数,提高了复合材料成型工艺生产设备的自动化和智能化程度。
2.1 先进原材料
主要应用的先进原材料有芳纶纤维、碳纤维、氧化铝纤维,还有比较新、高性能的金属、树脂以及陶瓷基体等相关原材料。
这些原材料具有耐高性、韧性好的特点,对于产品的综合性能和质量的提升都非常有利。
2.2 预浸料制备
预浸料属于半成品,对其进行工艺改造以后,能应用于很多的新技术中,对于复合材料的工艺发展具有很大的推动作用。
主要有纤维混合法、熔融浸渍、粉末混合工艺等。
预料制备已经趋于自动化和机械化,将预浸料标准进行编制,对于预浸料的工艺进步及革新都具有很大的促进作用。
2.3 固化过程优化
开发及应用过程中的控制技术、计算机技术、人工智能技术、介电和超声技术的有效支持,使温度和固化压力的连续监测得以实现,对固化厚度和气孔率进行调整,可提高产品质量的推动力。
2.4 模具发展
模具的结构形式样式非常多,导致复合材料的构件制造多样化得到了有效发展。
从当前的情况看,复合材料取得的进步较大,产品膨胀与模具系数趋于一致,结构自重不断减轻,材料的卸载越来越方便。
这对构件尺寸、厚度的控制比较有利,从而产品的质量得以保证。
3 结束语
综上所述,随着科学技术的发展,成型工艺也在不断创新发展,实现了复合材料的规模化和智能化,这具有至关重要的现实意义。
参考文献
[1]景婷婷.典型先进树脂基复合材料成型工艺的发展综述[J].现代工业经济和信息化,2016(20).
[2]樊虎.树脂基复合材料链盒RTM成型工艺研究[D].太原:中北大学,2016.
[3]乔明.热固型树脂基纤维缠绕复合材料原位成型工艺仿真研究[D].哈尔滨:哈尔滨理工大学,2016.
[4]万爽.T800级碳纤维增强树脂基复合材料设计、分析及成型工艺方案研究[D].哈尔滨:哈尔滨工业大学,2014.
〔编辑:张思楠〕
文章编号:2095-6835(2017)07-0050-02。