Carbonization Reactions in Novolac Resins, Hexamethylenetetramine, and Furfuryl Alcohol Mixtures

合集下载

翟中和第四版细胞生物学名词解释之欧阳理创编

翟中和第四版细胞生物学名词解释之欧阳理创编
核被膜
nuclear envelope
真核细胞内细胞质与细胞核之间由双层膜构成,分别称外核膜与内核膜。双层核膜上镶嵌有核孔复合体,能选择性地运输核内外物质。
核基质
nuclear matrix
细胞核内抗抽提的不溶性纤维网状结构。
核孔复合体
nuclear pore complex,NPC
镶嵌在内外核膜上的篮状复合体结构,主要由胞质环、核质环、核篮等结构域组成,是物质进出细胞核的通道。
胞外基质
extracellular matrix
分布于细胞外空间、由细胞分泌的蛋白质和多糖所构成的网络结构,如胶原和蛋白聚糖等,在决定细胞形状和活性的过程中起着一种整合作用。
胞质动力蛋白
cytoplasmic dynein
由多条肽链组成的巨型马达蛋白,利用ATP水解释放的能量将膜泡或膜性细胞器等沿微管朝负极转运。
负染色
negative staining
用重金属盐对电镜样品进行染色的技术,使得重金属盐沉积在样品周围,而样品不被染色,从而衬托出样品的精细结构。
钙泵
calcium pump,Ca2+-ATPase
在肌细胞的肌质网膜上含量丰富的跨膜转运蛋白,属于P型泵,利用ATP水解释放的能量将Ca2+从细胞质基质泵到肌质网内。
胞内体
endosome
动物细胞内由膜包围的细胞器,其作用是转运由胞吞作用新摄取的物质到溶酶体被降解。胞内体被认为是胞吞物质的主要分选站。
胞吐作用
exocytosis
携带有内容物的膜泡与质膜融合,将内容物释放到胞外的过程。
胞吞作用
endocytosis
通过质膜内陷形成膜泡,将细胞外或细胞质膜表面的物质包裹到膜泡内并转运到细胞内(胞饮和吞噬作用)。

羧乙基锗倍半氧化物对大鼠肺缺血再灌注损伤的保护作用

羧乙基锗倍半氧化物对大鼠肺缺血再灌注损伤的保护作用

羧乙基锗倍半氧化物对大鼠肺缺血再灌注损伤的保护作用何奇;王洋;王善政【期刊名称】《山东医药》【年(卷),期】2002(042)002【摘要】采用Wistar大鼠原位肺缺血再灌注损伤模型,测定再灌注后左肺动脉压、左肺湿干比质量值,肺组织中丙二醛(MDA)含量,超氧化物歧化酶(SOD)及ATPase活性.发现预防性静脉注射羧乙基锗倍半氧化物CGS(50mg/kg)后,与对照组和假手术组相比较,可显著降低再灌注肺组织中MDA、左肺动脉压及肺湿干质量比值(F=6.37,q=8.98,P<0.01;F=3.85,q=4.21,P<0.05;F=4.06,q=5.38,P<0.001);明显提高肺组织中SOD及ATPase活性(F=6.37,q=10.21,P<0.001;F=6.37,q=8.64,P<0.05).认为CGS对大鼠实验性肺缺血再灌注损伤具有保护作用.【总页数】2页(P10-11)【作者】何奇;王洋;王善政【作者单位】山东大学齐鲁医院,山东济南,250012;山东大学齐鲁医院,山东济南,250012;山东大学齐鲁医院,山东济南,250012【正文语种】中文【中图分类】R739【相关文献】1.羧乙基锗倍半氧化物在黄曲霉毒素B1致大鼠肝癌过程中的抗氧化作用研究 [J], 侯华新;黎丹戎;涂文升;陈艳华;黎远冬2.羧乙基锗倍半氧化物对大鼠脑缺血再灌注损伤的保护作用 [J], 吴基良;李立中3.羧乙基锗倍半氧化物对大鼠离体颈上神经节烟碱传递的影响* [J], 莫宁;王鲁;侯华新4.羧乙基锗倍半氧化物对大鼠心肌缺血再灌注损伤的保护作用 [J], 但汉雄;吴基良;李立中;胡宗礼;明章银;刘忠民;何丽娅5.羧乙基锗倍半氧化物(Ge-132)在大鼠乙醇中毒过程中的抗氧化作用 [J], 周颖;石同幸;聂木海;诸茂盛;麦惠霞因版权原因,仅展示原文概要,查看原文内容请购买。

萘作为碳源共代谢降解氯仿的菌种、使用及实验验证方法[发明专利]

萘作为碳源共代谢降解氯仿的菌种、使用及实验验证方法[发明专利]

专利名称:萘作为碳源共代谢降解氯仿的菌种、使用及实验验证方法
专利类型:发明专利
发明人:杨琦,杨智临,李亚龙,王诗宗,王文静
申请号:CN201610921136.5
申请日:20161021
公开号:CN106399188A
公开日:
20170215
专利内容由知识产权出版社提供
摘要:本发明公开了一种萘作为碳源共代谢降解氯仿的菌种,菌种的名称为:香坊肠杆菌,编号为:MF‑Ⅰ;已保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.12367。

本发明同时公开了一种萘作为碳源共代谢降解氯仿的菌种的使用方法,本发明还同时公开了一种萘作为碳源共代谢降解氯仿的菌种的实验验证方法,所述菌种在好氧条件下以萘作为碳源,通过共代谢降解氯仿;对于同时受萘及氯仿污染的水体,能够有效地降解萘和氯仿,以达到修复受萘及氯仿污染水体的目的。

申请人:中国地质大学(北京)
地址:100083 北京市海淀区学院路29号
国籍:CN
代理机构:北京中誉威圣知识产权代理有限公司
代理人:蒋常雪
更多信息请下载全文后查看。

使用不同的碳源原位反应合成Al_2O_3-SiC纳米结构

使用不同的碳源原位反应合成Al_2O_3-SiC纳米结构
21 年 l 00 第3卷 第5 5 O月 期
耐 火 与石 灰
・ 9・ 3
使 用不 同的碳源原位反应 合成 A 2 一 i l SC纳米 结构 03
摘 要 :用 3 不同的碳源 ( 种 活性 炭 、石 墨和炭黑 )与硅 胶和硝酸 铝混合 以研究 A ,S I 一i 0 C纳米 结构 的形成 。
式 中 :D为 晶体 尺 寸 ;入为 射线 的波 长 ( u c射 C Kt
约 2 。通 过粉 末 混 合方 法 制 备 A: ,SC纳米 合 倍 I 一i O
成物 时 经常会 遇 到 结块 的 问题 。SC颗粒 尺 寸 和结 i 块状 态对 A SC纳 米合 成 物 机 械性 能 的 主要 影 1 一i 0
质 相 中颗 粒 的 长 大 。可 以 通 过许 多 途 径 如碳 热 还
莫来 石分 解 根据 立 方 碳化 硅 ( 1 ) (0 ) 和 0 11 、 20 峰 【 一 氧 化 铝 ( 1 ) ( 0 ) 以及 莫 来 石 ( l ) (2 ) 0 2 、 14 峰 1 O 、 1o 、 ( 1 ) 的 强 度 来 确 定 。 合 成 粉 末 的 形 态 用 S M 2o 峰 E
( l )衍 射 峰 和 ~ 化 铝 (0 ) 峰 对 应 的半 峰 11 氧 14 全 宽 。平 均 尺 寸 为 1 1 的碳 化 硅 粉 末 用 于 测 量 0m x 仪 器 峰 增 宽 。加 热 试 样 的 SC和 氧 化 铝 的 形 成 及 i
粒 边 界 的 移 动造 成 了 障碍 并 有 效 制 约 了 氧 化 铝基
和 T M 观察 。 E
原 、化 学 气 相 沉 积 、研 磨 碾 压 、 自蔓延 高 温 合成
工 艺 、溶 胶凝 胶 法 和水 溶 胶 制 备 法 得 到 纳米 尺 寸 的颗 粒 。 由硅 和 碳 源 反 应 生 成 的 SC 的形 态 和结 i

何林 兰州化物所 二氧化碳还原

何林 兰州化物所 二氧化碳还原

何林兰州化物所二氧化碳还原《何林与兰州化物所:探索二氧化碳还原的前沿科研》导语何林,作为一位著名的化学家,他在二氧化碳还原领域的研究成果备受关注。

而兰州化物所,则是中国科学院下属的一所研究机构,也是何林教授长期从事科研工作的地方。

二氧化碳还原作为一项具有前瞻性的科研课题,正成为科学界研究的热点之一。

本文将从何林教授与兰州化物所的角度,深入探讨二氧化碳还原的相关内容,旨在帮助读者更全面地了解这一前沿科研领域。

一、何林教授的研究成果与贡献何林教授作为化学领域的知名专家,其在二氧化碳还原方面的研究成果引人瞩目。

他曾多次发表关于二氧化碳还原的学术论文,探讨了催化剂设计、反应机理等诸多关键问题,为该领域的研究和发展作出了重要贡献。

在卓越的科研成就之外,何林教授还积极推动科研成果的转化应用,努力将其研究成果转化为实际应用,以解决现实生活中的能源与环境问题。

在二氧化碳还原领域,何林教授始终秉承着“求是创新”的科研精神,不断探索技术与理论创新,为实现二氧化碳资源化利用提供了新的思路与方法。

他的研究团队也一直在兰州化物所这个科研平台上持续发力,取得了一系列引人注目的研究成果。

兰州化物所以其独特的研究条件和优势,为何林教授的科研工作提供了有力的支撑。

二、兰州化物所在二氧化碳还原领域的科研实力兰州化学物理研究所,简称兰州化物所,是中国科学院下属的一所重点研究机构。

作为一所以化学物理学科为主要特色的研究所,兰州化物所一直致力于从事前沿交叉学科的科学研究,为国家的科技创新和经济社会发展作出了重要的贡献。

在二氧化碳还原领域,兰州化物所的科研团队以其扎实的研究实力和丰富的科研经验,已经成为该领域的领军者之一。

兰州化物所的科研团队在二氧化碳还原催化剂的设计与合成、反应机理的探究、新型能源材料的开发等方面,取得了一系列令人瞩目的研究成果。

他们不断推动二氧化碳还原研究的深入,为解决全球能源与环境问题作出了积极的努力。

作为何林教授长期从事科研工作的地方,兰州化物所也为其提供了一个优秀的科研团队和良好的研究环境,使其能够更好地开展自己的研究工作。

碳偶联催化剂问鼎诺贝尔奖

碳偶联催化剂问鼎诺贝尔奖

碳偶联催化剂问鼎诺贝尔奖
刘芳
【期刊名称】《中国环境科学》
【年(卷),期】2011(31)5
【摘要】今年获得诺贝尔化学奖的3位化学家是Ei-ichi Negishi,Akira Suzuki和Richard Heck,他们发现了用来捆绑不同分子中碳原子的结催化剂.这种分子裁减能力催生了先进技术的整个行业,使得合成任何物质包括抗癌药物、农药杀虫剂以及先进的电子显示器和电脑芯片成为可能.
【总页数】1页(P767-767)
【关键词】催化剂;碳原子;诺贝尔奖;偶联;诺贝尔化学奖;Suzuki;电子显示器;农药杀虫剂
【作者】刘芳
【作者单位】
【正文语种】中文
【中图分类】O643.36
【相关文献】
1.脱卤偶联反应钯碳催化剂应用探析 [J], 陈荣顺
2.行为经济理论的再次问鼎——Richard Thaler获得2017年经济学诺贝尔奖述评[J], 颜建晔;张超;王宁
3.介孔碳负载钯催化剂的制备及其对Sonogashira偶联反应的催化性能研究 [J],
邱会华;
4.介孔碳负载钯催化剂的制备及其对 Sonogashira 偶联反应的催化性能研究磁[J], 邱会华
5.多孔碳球封装纳米碳化钼催化剂无溶剂催化苄胺偶联反应 [J], 李月;姜宇晨;蒋平平;杜盛郁;姜就胜;冷炎
因版权原因,仅展示原文概要,查看原文内容请购买。

分子氧在金属配合物担载磷铝分子筛修饰玻碳电极上的电催化还原反应

分子氧在金属配合物担载磷铝分子筛修饰玻碳电极上的电催化还原反应

第21卷第1期化学研究中国科技核心期刊2010年1月CH EM ICA L R ESEA RCH hx y j@分子氧在金属配合物担载磷铝分子筛修饰玻碳电极上的电催化还原反应张蓉1,2,唐丽华1,范彬彬2,马静红2,李瑞丰1,2*(1.太原理工大学化学化工学院,山西太原030024; 2.太原理工大学煤科学与技术教育部重点实验室,山西太原030024)摘要:采用循环伏安法研究了负载金属配合物M nSA L EN(SAL EN=N,N-双水杨醛缩乙二胺)的磷铝分子筛A PO-5复合催化剂修饰玻碳电极在水溶液中对分子氧的还原反应的电催化行为.结果表明,氧气的还原峰电位随扫描速率的增大负移,E p~ln v呈线性关系;其还原峰电流随扫描速率的增大而增强,i p~v1/2呈直线关系.这说明分子氧在修饰电极P S/M nSAL EN/A PO-5/GCE上的还原是扩散控制的.根据E p~ln v和i p~v1/2的线性关系计算出中性电解质溶液中分子氧在此修饰电极上的还原反应的电子转移数n接近4.即氧气在此修饰电极上被还原为水.关键词:分子氧;金属配合物;磷铝分子筛;修饰玻碳电极;电催化还原中图分类号:O646文献标识码:A文章编号:1008-1011(2010)01-0071-05Elec trocatalytic Reduc tion of Dioxygen at G lassy C ar bon ElectrodeModifie d with P-Al Molecular Sieve Loaded w ith Metal C om ple xZH ANG Ro ng1,2,TANG L-i hua1,FAN Bin-bin2,M A Jing-hong2,LI Ru-i feng1,2*(1.College of Chemistry and Chemical Eng ine ering,Taiyuan University of Technolog y,Taiyuan030024,S hanxi,China;2.K e y L aboratory of M inistry of Education of Coal Science and Technology,Taiyuan U niv ersity of Technology,Taiyuan030024,S hanxi,China)Abstract:T he electro catalytic reduction of diox ygen at glassy carbon electrode m odified w ithmetallic complex,M nSALEN-loaded(SALEN refer s to disalicylidene ethy lenediamine)P-A lmo lecular sieve,APO-5,w as studied by cyclic v oltam metry in aqueous solutions.It w as foundthat the mo dified electr ode ex hibited a high electro catay tic activity and stability for ox yg en re-duction.The peak potentials of diox ygen reduction shifted negatively and peak curr ent in-creased w ith increasing scanning r ate.M oreover,the plots of E p~ln v and i p~v1/2show ed line-ar correlatio n,sugg esting that the reduction o f diox yg en at the modified electro de w as con-tr olled by diffusio n.Besides,based on the slope of the straight line of i p~v1/2,the electronnumbers transferred in the r eductio n process of ox ygen at the modified electrode w ere calculat-ed to be about4.T his implies that o xy gen w as finally reduced to H2O at the modified elec-tr ode.Keywords:diox yg en;metal co mplex;P-Al molecular sieve;modified glassy carbo n electrode;electrocatalytic reduction磷铝分子筛是由AlO4四面体与PO4四面体交替组成的、具有微孔结构的分子筛,其电中性的骨架使之不具有离子交换性,表面酸性也很弱.将过渡金属杂原子引入磷铝分子筛骨架中,能增强分子筛表面的酸性,提高分子筛的催化性能,得到兼具孔道择形性和催化活性的微孔材料[1].金属掺杂的磷铝分子筛M eA-收稿日期:2009-09-25.基金项目:国家自然科学基金(50472083,20443004)资助项目.作者简介:张蓉(1965-),女,副教授,博士生.研究方向为电催化.*通讯联系人.72化学研究2010年PO-5由于具有良好的水热稳定性和较大的孔口直径,作为非均相催化剂在烃类物质选择性氧化中已有较多研究[2-4].金属掺杂磷铝分子筛M eAPO-5之所以能催化氧化烃类物质(氧气作氧化剂)是基于分子筛骨架中可变价态的金属离子的氧化还原行为[2].也就是说,M eAPO-5的催化活性与其骨架中的金属离子的不同价态之间的电子转移反应的可逆性和电位有内在的联系.另一方面,如果这些氧化还原催化剂又能与氧结合从而活化氧,那么这样的催化剂将更加有利于氧气对烃类物质的氧化.毫无疑问,过渡金属配合物易与分子氧结合,降低其离解能,活化分子氧已经是不争的事实[5],尤其是金属SALEN(SALEN:N,N-双水杨醛缩乙二胺)配合物是一类很好的分子氧携带体,而且,金属SALEN配合物的可变价态的电子转移反应的可逆性也很好,有利于催化氧化还原反应.基于以上考虑,我们将M nAPO-5与SALEN希夫碱反应制备了一种负载锰SALEN配合物(M nSALEN)的磷铝分子筛复合催化剂(用MnSALEN/APO-5表示),由此复合催化剂又制备了MnSALEN/APO-5的修饰电极,用循环伏安法从电化学的角度对分子氧的还原反应进行了探究.1实验部分1.1仪器与试剂CH I600B型电化学工作站(上海辰华公司),采用单池三电极体系;Jasco V-550型紫外漫反射仪和FT-IR4800(岛津)红外光谱仪.聚苯乙烯(简称PS,分子量(M w)为30000)购自A lfa Aesar公司,高纯石墨(纯度>99.99%,天津光复精细化工研究所),其他试剂均为分析纯,所用水溶液均用二次水配置.1.2实验过程1.2.1M nSALEN/A PO-5复合材料的制备及表征MnAPO-5分子筛的合成参考文献[2]的方法进行.M nSALEN/APO-5分子筛复合材料的制备参考文献[6]的方法进行,即:将2g M nAPO-5与0.41g的SALEN配体充分研磨混合均匀,然后再置于经N2置换有聚四氟乙烯垫的自生压力釜中,于140e下配合24h,所得样品经丙酮充分抽提至抽提液无色为止,干燥后得到固载MnSALEN的APO-5复合材料.对所制备的M nSA LEN/A PO-5进行了紫外漫反射(UV-Vis DRS)和傅立叶变换红外(FT IR,KBr压片)光谱的表征.IR(R/cm-1):3450(N-H),1400,1460, 1544(C=N);DRS/K:500nm附近(d-d),360nm(P-P),说明M nSA LEN配合物被成功负载于磷铝分子筛上.1.2.2电极修饰工作电极的基底为玻碳(GC)电极(直径5=3m m),使用前分别用0.3和0.05L m的Al2O3与水的糊状物抛光打磨,然后依次用丙酮、无水乙醇、1B1硝酸水溶液,二次水超声清洗,最后用二次水淋洗,放置在空气中自然干燥待用.先配制适当浓度的聚苯乙烯的四氢呋喃溶液(PS/TH F)待用.取30m g M nSALEN/APO-5分子筛与30mg高纯石墨混合放入小试管中,然后加1m L四氢呋喃并在超声波浴中使其充分分散,得到短时间内均匀分散的悬浮液.用微量取样器快速量取4L L此悬浮液并转移到预先洗净的玻碳电极表面上,室温下自然干燥1h.待溶剂完全挥发后,取10L L的PS/TH F溶液滴在上述电极涂层的表面,室温下干燥过夜,待溶剂挥发且涂层与玻碳电极表面紧密结合,形成由M nSALEN/APO-5+graghite+PS复合材料修饰的玻碳电极,记作:PS/M nSALEN/APO-5/GCE,以此为工作电极进行电化学研究.此外,裸玻碳电极(BareGCE)作为对比实验时的工作电极.1.2.3电化学测量以铂片为对电极,饱和甘汞电极(SCE)为参比电极,PS/M nSALEN/APO-5/GCE和BareGCE为工作电极.循环伏安测量的电位范围是-1.2~0.8V.支持电解质为pH值分别为4.00(0.05mol/L的邻苯二甲酸氢钾溶液),6.86(0.025mo l/L的混合磷酸盐Ñ溶液),7.40(0.025mo l/L的混合磷酸盐Ò溶液),8.00 (0.2mo l/L的氢氧化钠-硼酸溶液),10.00(0.2m ol/L氢氧化钠-氨基乙酸溶液)的缓冲溶液,实验前向电解液中通入15min高纯氮气,以除去溶液中的O2,然后进行修饰电极的电化学实验;通入O2使溶液中的氧达到饱和(以100mL/min的速度通气,大约需15m in即可达到饱和),然后进行修饰电极对氧的催化还原实验.实验温度为24?1e.第1期张蓉等:分子氧在金属配合物担载磷铝分子筛修饰玻碳电极上的电催化还原反应73 2 结果与讨论2.1 MnSALEN/APO -5修饰玻碳电极的电化学性质图1A 是修饰电极PS/M nSALEN/APO -5/GC(实线,扫描速率从20~100m V/s)和裸电极Bar eGC (虚线,扫描速率为50mV/s)在pH =6.86缓冲溶液中氮气饱和下的循环伏安曲线.从图1A 看出,裸电极在此条件下没有任何氧化还原峰,而修饰电极PS/M nSALEN/APO -5/GC 在相同条件下却出现了两对氧化还原峰,即峰Ñ,Ñc 和峰Ò,Òc .其式量电位(E 0c =1/2(E pc +E pa ))分别为0.53V 和-0.08V.其中峰Ò,Òc 的还原峰(Ò)和氧化峰(Òc )的峰电位不随扫描速率的增大而变化,氧化峰电流与还原峰电流之比接近1,由于峰电位差大于60mV,所以这对峰对应的氧化还原反应是准可逆的.由于在制备锰磷铝分子筛时所用原料是二价的锰盐,经高温焙烧后二价锰离子可以部分转化为三价[2],当SALEN 配体与锰磷铝分子筛发生配位反应之后,磷铝分子筛中的二价和三价锰离子就形成相应的SALEN 配合物.参照文献[7]的实验结果可知,出现在-0.08V(峰Ò,Òc )的这对峰对应于配位后的锰M nSALEN(Ó/Ò)氧化还原反应.图1B 是修饰电极PS/MnSALEN/APO -5/GC 在氮气饱和的pH 值为6.86缓冲溶液中、扫描速率在20~100mV/s 内峰Ò,Òc 的峰电流随扫描速率的变化关系.由图1B 看出,氧化峰电流与还原峰电流均与扫描速率v 呈较好的线性关系,说明在此修饰电极上,MnSALEN 可以通过电极表面直接发生电化学反应,而且由i p ~v 的线性关系表明此氧化还原反应是受表面控制的过程.同时也表明修饰层与玻碳电极表面结合得很紧密,电活性物质MnSA LEN 在玻碳电极表面可直接发生电化学反应.峰Ñ,Ñc 可能与磷铝分子筛中锰离子的扭曲的四面体配位结构有关[2].(a)20;(b)40;(c)60;(d)80;(e)100and (f)50m V #s -1图1 (A)修饰电极P S/M nSAL EN /A PO -5/GC(a~e)和裸电极BareGC (f)在pH =6.86缓冲溶液中氮气饱和下的循环伏安曲线;(B)氧化还原峰Ò和Òc 的峰电流随扫描速率的变化关系F ig.1 (A )CV s of the PS/M nSA L EN/A PO -5/GCE w it h differ ent scan rates (20~100m Vs -1)in pH = 6.86buffer solut ion,(B)plots o f i p ~v图2 O 2在PS/M nSA L EN /A PO -5/G CE 电极上还原峰电位、峰电流随pH 值的变化关系F ig.2 Plots of peak po tentials (u )and peak curr ents (t )v s pH of O 2reduct ion at the PS/M nSA L EN /A PO -5/G CE2.2 PS/M nSALEN/APO -5/GCE 修饰电极对氧气还原反应的催化作用图2给出在各种pH 值不同的电解液中,氧气在PS/M n -SALEN/APO -5/GCE 修饰电极上的还原峰电位和峰电流随pH的变化关系.从图2看出,在pH 值为8.00的电解液中,虽然氧还原反应的峰电流最高,但其还原峰电位却较低(即负值较大);在pH = 4.0和10.0的电解液中,氧气还原的峰电流和峰电位都很低,显然在这两种电解质溶液中均不利于氧气的催化还原反应.而当pH 为6.86和7.40的缓冲溶液作支持电解质时,O 2在此修饰电极上的还原峰电位和峰电流同时处在较高水平,说明分子氧在中性电解质中的还原反应相对于在酸性或碱性电解液中较容易进行而且反应速度较快.所以,本文主要选用了pH 为6.8674 化 学 研 究2010年和7.40的两种缓冲溶液做支持电解质进一步研究PS/M nSALEN/APO -5/GCE 修饰电极对氧气还原反应的电催化作用.氧气在修饰电极PS/M nSALEN/APO -5/GCE 上、在pH 分别为6.86和7.40缓冲电解质溶液中的电化学还原反应的实验结果见图3.图3曲线Ab 和Bb 是PS/M nSALEN/APO -5/GCE 修饰电极在饱和了氧的电解质溶液中的循环伏安图,扫描速率均为50mV s -1.与图1A 的峰Ò和Òc 相比较,还原电流显著增大,还原峰出现在-0.49V 处,而相应的氧化峰完全消失,这是电催化反应的典型特征,表明修饰电极PS/MnSALEN/APO -5/GCE 对溶液中氧的还原具有催化作用;图3曲线Aa 和Ba 是氧气在裸电极bare GCE 上电化学还原反应的循环伏安曲线.与图3Aa 相比,在修饰电极PS/MnSALEN/APO -5/GCE 上氧的还原峰电位比在裸电极有明显的正移,其中在pH 为6.86和7.40的电解液中分别正移了285mV 和165mV,也就是说,在此修饰电极上氧气还原的过电位分别降低了285和165mV.而相应的还原峰电流分别增大了1.4和1.3倍.由此可见,氧气在PS/M nSA LEN/A PO -5/GCE 修饰电极上的还原比在裸电极上变得容易且反应速率加快了.换句话说,此修饰电极激活了分子氧,对氧的还原反应起到了电催化作用.此外,氧气在PS/M nSALEN/APO -5/GCE 修饰电极上还原峰电位没有出现在图1的峰Ò处,说明M nSALEN 与O 2的结合比较稳定,但并没有影响催化氧的还原反应[8].扫描速率为50mV/s图3 修饰电极P S/M nSAL EN /A PO -5/GCE(b)和裸电极Bar eG CE(a)在O 2饱和的缓冲溶液中的循环伏安图Fig.3 CV s o f the PS/M nSA L EN /AP O -5/G CE(b)and Bar eGCE(a)in O 2-saturared buffer so lutio n图4是O 2在修饰电极PS/MnSALEN/APO -5/GCE 上pH 为6.86和7.40的电解液中不同扫描速率下的循环伏安图.从图4看出,这些CV 曲线只有还原峰没有相应的氧化峰,而且还原峰电位随扫描速率的增大逐渐负移,峰电流随扫描速率增大而增强.这就说明氧气在修饰电极上的电催化还原是一个不可逆过程.此外,从图5看出,氧气的还原峰电流与扫描速率的平方根呈一直线关系.又从图6得知,氧气的电催化还原峰电位与扫描速率的对数(ln v )同样呈一线性关系.说明氧气在修饰电极上的电催化还原反应是氧气的扩散速率控制的.对于扩散控制的不可逆过程的循环伏安方法的理论[9]有:i p =0.4958nFA c 0A n a F RT 1/2v 1/2D 1/20(1)E P =RT 2A n a Fln v +A (2) 将A =0.0707cm 2,c O 2=1.25m mol #L -1,D O 20=2.1@10-5cm 2#s -1[10]代入,得到在pH = 6.86条件下,A n A =0.22,n =4.14;在pH =7.40条件下,A n A =0.21,n =3.76.相近的A n A 值说明在两种电解液中氧气的还原机理相同;而且氧气在此修饰电极上的还原反应转移的电子数在两种电解液中均接近4,表明M n -SALEN 催化氧还原反应是个四电子转移过程,即从分子氧到水的还原过程.也就是说,分子氧在修饰电极第1期张蓉等:分子氧在金属配合物担载磷铝分子筛修饰玻碳电极上的电催化还原反应75 上被电催化还原为水.图4 修饰电极PS/M nSA L EN/A PO -5/GCE 在O 2饱和下的缓冲溶液中不同扫描速率的循环伏安图Fig.4 CVs o f PS/M nSA L EN /AP O -5/G CE in pH=6.86and 7.40buffer solut ionsO 2-saturated at scan r ates o f 20~100mV #s -1图5 氧气在修饰电极上的还原峰电流随扫描速率的平方根(v 1/2)的变化关系F ig.5 plots o f peak cur rents of O 2reductio n at the PS/M nSA L EN/A PO -5/GCE vs v 1/2图6 氧气在修饰电极上的还原电位随扫描速率对数(ln v )的变化关系Fig.6 Plots of peak po tent ials of O 2r educt ion atthe P S/M nSAL EN /A PO -5/GCE vs ln v 3 结论修饰电极PS/M nSALEN/APO -5/GCE 上配合物M nSALEN 的存在活化了分子氧,对氧的还原反应起了电催化的作用,同时氧气被还原生成了水.说明修饰电极上催化氧还原的活性物质是磷铝分子筛上负载的MnSALEN.这个结果为烃类物质选择氧化多相催化剂的设计和燃料电池的阴极材料的选择提供了有价值的参考.参考文献:[1]韶晖,韩哲,张利雄,等.双模板剂气相转移法合成杂原子磷铝分子筛[J].石油化工,2007,36(12):1205-1209.[2]张瑞珍,董梅,秦张峰,等.CoA PO -5和M nA PO -5分子筛的合成、表征及在环己烷选择氧化反应中的应用[J].燃料化学学报,2007,35(1):98-103.[3]孔黎明,杨森林,刘晓勤.FeA PO -5分子筛的合成及其催化氧化水溶液中苯酚的性能[J].化工学报,2008,59(12):348-353.[4]Zhou L P,Xu J,H ong M ,et al .Synthesis o f F eCo M nAP O -5molecular sieve and cat aly tic act ivit y in cyclo hex ane o xida -tio n by o xy gen [J].Catal L ett ,2005,99(3-4):231-234.[5]H err on N.A co ba lt ox y gen ca rrier in zeolite.A molecular "ship in a bot tle".[J].I nor g Chem,1986,25(26):4714-4717.(下转第79页)第1期郑志侠等:基于环糊精手性选择剂的几种手性药物对映体的毛细管电泳拆分79明显降低,其中乙腈的影响较大.以甲醇或乙腈为有机改性剂会降低CD的手性拆分能力,这是因为相对疏水的甲醇或乙腈有机溶剂添加到缓冲液中后会占据环糊精的部分憎水空腔[6],减少了药物对映体和空腔的亲合力,因而削弱了CD和样品结合的能力,使CD对药物对映体的识别能力降低.3结论环糊精类手性选择剂的类型与被分析物质分子的结构决定了二者相互作用的类型和强度,如果对映体分子的大小和憎水性与环糊精腔体相匹配,且和腔体周围基团发生三点作用,形成具有不同稳定常数的包合络合物,就可实现对映体分离.本实验中手性选择剂A-CD对各药品无手性识别作用,B-CD可以拆分扑尔敏和异丙嗪对映体,二氧异丙嗪在10mmo l/L C-CD条件下可实现完全分离.添加有机改性剂甲醇或乙腈后,各对映体的分离度均未得到改善,其变化与包合物的平衡改变程度有关.参考文献:[1]李方,张莉萍,靳慧,等.以B-环糊精及其衍生物为手性选择剂毛细管电泳拆分几种药物的旋光对映体[J].分析化学,1997,25(6):644-647.[2]刘玲,严子军,李湘.高效毛细管电泳法手性分离伪麻黄碱[J].理化检验(化学分册),2007,43(7):525-527.[3]M ikuÍP,KubaÓÀk,V al Íko v I,et al.Analysis of enantio mers in bio log ical matr ices by charg ed cyclo dex trin-mediatedcapillary zo ne elect rophor esis in co lumn-coupling arr ang ement wit h capillar y iso tacho pho resis[J].T alanta,2006,70:840 -846.[4]谢天尧,唐亚军,阮小林,等.手性药物异丙嗪对映体的毛细管电泳-方波安培法检测[J].分析化学,2004,32(10):1317-1320.[5]徐佳.环糊精-毛细管区带电泳法分离手性药物对映体[J].国外医学:药学分册,1996,23(5):275-279[6]Wa rd T J,N ichols M,Sturdivant L,et al.U se of or ganic mo dif iers to enhance chiral select ivity in capillary electro phor esis[J].A mino A cids,1995,8(4):337-344.(上接第75页)[6]范彬彬,宋明纲,晋春,等.金属配合物磷铝分子筛复合材料的制备.中国专利,CN1308077C[P].2007.[7]Ga illon L,Sajot N,Bedioui F,et al.Electro chemistr y of zeolite-encapsulated complex es[J].J Electr oanal Chem,1993,345(1-2):157-167.[8]郑东红,陆天虹,张存中,等.维生素B12修饰电极及其催化氧还原性质的研究[J].物理化学学报,1997,13(9):797-801.[9]Gr eef R,Peat R,P eter L M,et al.柳厚田,徐品弟译.电化学中的仪器方法[M].上海:复旦大学出版社,1992:186-191.[10]K umar S A,Chen S M.Elect rocatalytic r eduction of o xy gen and hydro gen per ox ide at po ly(p-aminobenzene sulfonicacid)-modified g lassy car bo n electr odes[J].J M ol Catal A:Chem,2007,278(1-2):244-250.。

白藜芦醇对冻融后小鼠成熟卵母细胞氧化应激水平和线粒体功能的影响

白藜芦醇对冻融后小鼠成熟卵母细胞氧化应激水平和线粒体功能的影响

白藜芦醇对冻融后小鼠成熟卵母细胞氧化应激水平和线粒体功能的影响目的探讨白藜芦醇(Res)对冻融后小鼠成熟卵母细胞活性氧(ROS)水平和线粒体功能的影响。

方法根据是否在冷冻复苏培养液中添加Res,将解冻后存活的卵母细胞分为两组:Res组和对照组。

二氯荧光素二乙酸(DCFH-DA)检测ROS水平,JC-1荧光染色检测线粒体膜电位(ΔΨm)。

结果卵母细胞玻璃化冷冻解冻的存活率为89.0%(267/300),其中125、142枚分别进行ROS和ΔΨm检测。

Res组的ROS水平(0.64±0.17)较对照组(1.00±0.26)明显降低(P 140 mV时,JC-1聚集形成聚合物,产生红色荧光。

因此,通过红绿荧光强度的相对比值便可准确地判断卵母细胞ΔΨm,其比值越高,表明卵母细胞ΔΨm越高,即线粒体的功能越活跃。

检测时,将200×的JC-1浓储存液用超纯水及缓冲液稀释成1×的染色工作液,并配成微滴置于37℃培养箱预热。

随后,将要检测的卵母细胞置于微滴中,37℃、5% CO2培养箱中孵育20 min。

使用4℃预冷的缓冲液洗涤3~5次后,立即用激光共聚焦显微镜观察保存,并用Image J软件进行定量分析。

1.6 统计学方法采用SPSS 13.0统计软件对数据进行分析和处理,计量资料以均数±标准差(x±s)表示,采用两独立样本t检验,以P < 0.05为差异有统计学意义。

2 结果2.1 玻璃化解冻复苏存活率共冷冻解冻300枚成熟的MⅡ卵母细胞,其中有267枚存活,总的存活率为89.0%,形态正常且存活卵母细胞被分配到对照组和Res组中,进行线粒体膜电位和ROS水平的检测。

2.2 对照组和Res组ROS荧光图像及其相对荧光强度比较共纳入125枚存活的MⅡ卵母细胞,对照组和Res组分别为63枚和62枚。

从图1可以看出,对照组的绿色荧光相对较强,而Res组的荧光强度较对照组明显减弱;Res组和对照组的相对荧光强度分别为0.64±0.17和1.00±0.26,差异有高度统计学意义(P=0.000),说明在复苏培养中添加Res能显著降低冻融卵母细胞的ROS水平。

一种编码叶绿体碳酸酐酶基因在构建耐高浓度CO且快速生长的工业工

一种编码叶绿体碳酸酐酶基因在构建耐高浓度CO且快速生长的工业工

专利名称:一种编码叶绿体碳酸酐酶基因在构建耐高浓度CO 且快速生长的工业工程微藻中的应用
专利类型:发明专利
发明人:魏力,王勤涛,辛一,徐健
申请号:CN201610052610.5
申请日:20160126
公开号:CN106995817A
公开日:
20170801
专利内容由知识产权出版社提供
摘要:本发明属于微生物基因工程技术领域,具体涉及公开一种编码叶绿体碳酸酐酶基因在构建耐高浓度CO且快速生长的工业工程微藻中的应用。

具体编码叶绿体碳酸酐酶基因在构建耐高浓度CO 且快速生长的工业工程微藻中的应用。

本发明所公开的方法为工业微藻固定工业CO废气奠定了基础及可行性方法。

申请人:中国科学院青岛生物能源与过程研究所
地址:山东省青岛市崂山区松岭路189号
国籍:CN
代理机构:沈阳科苑专利商标代理有限公司
更多信息请下载全文后查看。

气相中烯丙基负离子与N 2O反应机理

气相中烯丙基负离子与N 2O反应机理

气相中烯丙基负离子与N 2O 的反应机理刘乐燕耿志远*赵存元王永成李朝晖(西北师范大学化学化工学院,甘肃省高分子材料重点实验室,兰州730070)摘要:采用二阶微扰理论的MP2/6⁃31G(d,p )方法对气相中烯丙基负离子与N 2O 的反应机理进行了理论计算研究,并在相同基组下进一步用CCSD(T)方法进行了单点能的校正.计算结果表明,该反应存在三条反应通道,产物分别为cis ⁃CH 2CHCNN -+H 2O,trans ⁃CH 2CHCNN -+H 2O 和CH 2CCH -+N 2+H 2O,其中生成cis ⁃CH 2CHCNN -和trans ⁃CH 2CHCNN -的两条通道为相互竞争的主反应通道,计算结果与实验相吻合.同时利用传统的过渡态理论,计算了各反应通道在298K 时,速控步骤的反应速率常数k (T ).关键词:烯丙基负离子;反应机理;二阶微扰理论(MP2);过渡态理论中图分类号:O641Gas 鄄phase Reaction Mechanism of Allyl Anion with N 2OLIU Le ⁃YanGENG Zhi ⁃Yuan *ZHAO Cun ⁃Yuan WANG Yong ⁃Cheng LI Zhao ⁃Hui(Key Laboratory of Polymer Materials of Gansu Province,College of Chemistry and Chemical Engineering,Northwest Normal University,Lanzhou 730070,P.R.China )Abstracts:The gas ⁃phase reaction mechanism of allyl anion with N 2O was investigated at the MP2/6⁃31G(d,p )level of the MP2theory.The single ⁃point energies have also been refined at the CCSD (T)/6⁃31G (d,p )level to get more accurate energies using the MP2/6⁃31G(d,p )optimized geometries.The computational results indicated that the reaction involved three reaction pathways to produce cis ⁃vinyl ⁃diazomethyl anion,trans ⁃vinyl ⁃diazomethyl anion,and allenyl anion.The major competition channels of the reaction which produced cis ⁃vinyl ⁃diazomethyl anion,and trans ⁃vinyl ⁃diazomethyl anion all involved two steps of α⁃H migration.Furthermore,all these rate ⁃determing steps are the second α⁃H migration and the barriers are 89.79and 97.93kJ ·mol -1,respectively.Distinctly,allenyl anion was formed through one α⁃H and one β⁃H migration and its rate ⁃determing step was the rotation of the N 10—O 11and N 9—C 3bonds around N —N bond.The rate coefficients of the rate ⁃determining step of all the reaction channels have also been calculated using statistic thermodynamics and conventional transition state theory at 298K.Key Words:Allyl anion;Reaction mechanism;Second ⁃order Moller ⁃Plesset perturbation theory (MP2);Transition state theoryN 2O 作为主要的痕量温室气体之一,对全球增温有重要影响,而且它可以扩散到平流层与臭氧反应,破坏臭氧层,再加上它的降解速率缓慢,更增加了它对臭氧层的破坏力[1-4].由于N 2O 的活性不高,与大气中已知的绝大多数气体难以发生反应[5],使N 2O 的处理变得非常困难.1977年,Depuy 等人[5]发现,在气相负离子化学反应中,CS 2、CO 2和N 2O 等中性分子可以与碳负离子反应.其中,N 2O 以其作用方式和产物的多样化而引起了研究者的浓厚兴趣[5-9].一般来说,与N 2O 反应,伯碳负离子主要生成重氮负离子;仲碳负离子则主要发生脱水和脱氮的反应,叔碳负离子则产生加和物,氧转移和裂解产物.然而实验发现[10],N 2O 与伯碳负离子也可以发生脱水和脱氮的反应.实验表明,烯丙基负离子与N 2O 反应,可生成丙二烯负离子和乙烯基重氮甲基负离子,其中乙烯基重氮甲基负离Received:July 17,2006;Revised:September 29,2006.*Corresponding author.Email:zhiyuangeng@;Tel:+86931⁃7970198.甘肃省自然科学基金(329051⁃A25⁃021)资助项目鬁Editorial office of Acta Physico ⁃Chimica Sinica物理化学学报(Wuli Huaxue Xuebao )February Acta Phys.鄄Chim.Sin .,2007,23(2):217-222[Article]217Acta Phys.鄄Chim.Sin.,2007Vol.23子为主要产物,丙二烯负离子约占15%.在随后的论文中,Depuy 曾多次引用该反应说明气相负离子反应的特点[6,11-14].然而迄今为止,对该反应的理论研究仍未见报道,为此本文采用MP2/6⁃31G(d,p )和CCSD(T)/6⁃31G(d,p )计算方法从理论上对标题反应的微观机理进行了详细的计算研究,以便更深入地了解气相负离子反应的本质和规律以及N 2O 在大气化学中的化学特性.1计算方法采用二阶微扰理论MP2方法在6⁃31G(d,p )水平上,对标题反应势能面上的各构型进行了全参数优化,通过频率分析证实了反应物、产物和中间体为局部极小,各过渡态均有唯一虚频,并通过内禀反应坐标(IRC)计算,进一步确认了各过渡态的真实性.为获得更精确的相对能量值,在MP2优化的几何构型基础上进一步采用CCSD(T)/6⁃31G(d,p )进行单点能计算.全部计算工作采用Gaussian 03程序[15]完成.根据统计热力学方法和传统的过渡态理论[16-19],计算了298K 、101.325kPa 的标准状况下,各反应通道速控步骤的反应速率常数k (T ),即k (T )=k B T /h ·exp(Δ≠r S 0m /R -Δ≠r H 0m /RT ),其中,k B 为玻尔兹曼常数,T 为热力学温度,h 和R分别为普朗克常数和摩尔气体常数,Δ≠r S 0m 和Δ≠r H 0m分别为反应体系的标准摩尔活化熵和活化焓.2结果与讨论图1和图2列出了MP2/6⁃31G **水平下,标题图1MP2/6⁃31G(d,p )下优化的反应过程中各稳定点的几何构型Fig.1Optimized geometries of stationary states in CH 2CHCH -2+N 2O reaction at MP2/6⁃31G(d,p )levelbond lengths in nm and bond angles indegree218No.2刘乐燕等:气相中烯丙基负离子与N 2O 的反应机理反应路径上涉及到的反应物、产物、中间体(IM)和过渡态(TS)的几何构型参数.表1列出了该反应势能面上各驻点的能量,其中,E R1为MP2水平下以反应物(总能量见表注)为能量零点,得到的各驻点的相对能量;E R2为CCSD(T)下的相对能量.由表1可以看出,两者的变化趋势基本一致.各反应通道的势能面图见图3.本文对构型的讨论采用MP2/6⁃31G **水平下优化的构型参数,对能量的讨论则引用CCSD (T)校正后的能量.图4为通道1、3中,IM4和IM9的协同过程中各相应键长随反应坐标变化曲线,图5为各反应通道速控步骤过渡态的IRC 曲线图.2.1初始反应中间体IM1和IM2的形成由图3可知,当负离子CH 2CHCH -2与中性分子N 2O 相互靠近时,因分子间静电力作用,首先形成一能量比反应物低31.24kJ ·mol -1的离子偶极复合物(ion ⁃dipole complex)IM1(见图1).IM1中,相互作用的两分子间成垂直状,N 10到两个端基碳(C 3与C 1)的距离均为0.3107nm,几何构型基本未发生变化.随后,N 2O 的端基N 9由C 1C 2C 3平面的上方进攻端基C 3,经一强放热过程(137.05kJ ·mol -1)生成富能中间体IM2.该过程位垒为42.53kJ ·mol -1(与IM1相比).IM2中,C 3、N 9间已完全成键,键长为0.1460nm,N 9—N 10和N 10—O 11键分别比IM1中拉长了0.0160nm 和0.0089nm ;相反,CH 2CHCH 2基团中C 1—C 2键则缩短了0.0054nm.这是由于N 9—C 3键的形成,破坏了原来C 1C 2C 3和N 9N 10O 11间的共轭大π键,导致C 3的杂化由原来的sp 2转变为sp 3,N 9和N 10则由sp 杂化变为sp 2杂化,使得IM1到IM2的键角也相应发生变化:∠N 9N 10O 11由IM1中的177.2°减小为114.6°,∠C 1C 2C 3也相应由132.5°变为125.9°.NPA(naturalpopulation analysis)分析发现,该过程中,C 1、C 2、C 3、N 9、N 10和O 11的电荷分别由IM1中的-0.837、-0.198、-0.837、-0.121、0.549和-0.428e 变为IM2中的-0.513、-0.142、-0.269、-0.535、0.179和-0.681e .说明C 3—N 9键的形成,使CH 2CHCH 2基团上的负电荷向N 2O 基团转移,有效地降低了烯丙基基团上的电荷密度,从而使体系的能量降低.因反应在封闭体系中进行,当负离子与中性分子相互碰撞反应时,其平动能几乎全部转化为分子内部的振动能.因此IM2中储存的大量能量,使分子的基态振动能级升高,对IM2产生较大的活化作用,从而促使反应进行到底.如图3所示,从IM2开始,反应可分3条通道进行,下面将分别予以讨论.2.2通道1该通道由三步组成,第一步,IM2通过C 1H 2C 2H 基团绕C 2—C 3键旋转异构化为顺式异构体IM3;第二步,发生α⁃H 迁移反应,生成中间体IM4;第三步,消除H 2O,生成H 2O ⁃离子复合物IM5;最后由IM5图2MP2/6⁃31G(d,p )下优化的反应过程中各过渡态的几何构型Fig.2Optimized geometries of transition states in CH 2CHCH -2+N 2O reaction at MP2/6⁃31G(d,p )levelbond lengths in nm and bond angles indegree219Acta Phys.鄄Chim.Sin.,2007Vol.23解离生成产物(无势垒过程).其中,第三步为速控步骤(IRC 曲线参见图5(a)),整个通道放热115.6kJ ·mol -1.该过程中各驻点的几何构型参数如图1、2所示.对应的过渡态为TS2、TS3和TS4(虚频率分别为158.7i 、1020.0i 和335.0i cm -1),位垒分别为14.17、78.51和89.79kJ ·mol -1.IRC 计算表明,各过渡态均连接其对应的两个局部极小.该通道具有以下三个特点.(1)α⁃H 迁移后,体系的能量升高.这是由于α⁃H 迁移后,虽然C 2—C 3间作用力加强(键长缩短约0.0079nm),但N —O 键却被削弱(键长增加约0.0232nm),致使IM4的能量比IM3升高约37.02kJ ·mol -1.(2)IM4到IM5的H 2O 消除过程中,首先发生N —O 键的解离,然后,游离于分子内的OH -离子对第二个α⁃H 进行抽提.NPA 分析表明,TS4中,OH 基团携带电荷为-0.898e ,其实质为分子内的酸碱反应.该过程为一协同的不同步过程,键长随IRC 的变化曲线如图4(a)所示.(3)由于H 2O 分子的消除,使剩余的原子处于同一平面内,形成共轭大П键,从而使体系更加稳定.2.3通道2如图3所示,IM2可直接经α⁃H 迁移和H 2O 消除生成最终产物trans ⁃CH 2CHCNN -(product 2).该通道中的中间体IM11、IM12和过渡态TS10、TS11与通道1的IM4、IM5及TS3、TS4互为顺反异构体,其产物也为顺反异构体,故在构型参数和相对能量上非常相近.两个过渡态TS10、TS11的虚频率分别为1093.3i 和348.0i cm -1,控速步骤为消除H 2O 的步骤(IM11寅IM12),即TS11(IRC 曲线见图5(b)).与通道1相比,通道2中对应的中间体及产物在能量上略低一些,虽然第一步α⁃H 迁移的位垒略低一些(约3kJ ·mol -1),但消除H 2O 的位垒则略高一些(约8kJ ·mol -1),因此两通道应为竞争通道.产物中,反式的能量比顺式的能量仅低2.36kJ ·mol -1.计算表1反应路径中各驻点的能量参数Table 1Energies of the various geometries for thereaction pathwaysE (reactants)(a.u.):-300.9581(MP2/6⁃31G(d,p ),with ZPE),-301.0890(CCSD(T)/6⁃31G(d,p )//MP2/6⁃31G(d,p ))Species MP2/6⁃31G(d,p )CCSD(T)/6⁃31G(d,p )//MP2/6⁃31G(d,p )ZPE (a.u.)E R1(kJ ·mol -1)E R2(kJ ·mol -1)Reactants 0.07450.000.00IM10.0771-26.52-31.24IM20.0829-105.55-168.29IM30.0830-106.86-169.87IM40.0812-75.61-132.85IM50.0811-187.72-183.79IM60.0835-129.70-194.02IM70.0813-64.06-121.30IM80.0805-76.93-78.77IM90.0771-62.22-102.66IM100.0737-251.79-276.20IM110.0812-87.95-144.14IM120.0808-191.14-185.89Product 10.0776-125.50-115.26Product 20.0770-129.44-117.62Product 30.0683-155.95-173.28TS10.077775.6111.29TS20.0826-91.37-154.12TS30.0777-54.09-91.63TS40.0773-2.36-43.06TS50.080849.36-14.97TS60.0780-46.73-87.17TS70.0775-21.27-61.96TS80.0749-37.81-64.59TS90.0760 6.56-31.77TS100.0776-56.97-93.21TS110.0772-3.68-46.21图3CCSD(T)/6⁃31G(d,p )//MP2/6⁃31G(d,p )计算的烯丙基负离子与N 2O 的反应势能面图Fig.3Schematic description of potential energy surfaces for the reaction of allyl anion andN 2O at CCSD(T)/6⁃31G(d,p )//MP2/6⁃31G(d,p )level220No.2刘乐燕等:气相中烯丙基负离子与N 2O 的反应机理表明cis ⁃CH 2CHCNN -异构化为trans ⁃CH 2CHCNN -只需跨越17.86kJ ·mol -1的位垒,很容易进行.因此无论从动力学或热力学角度来看,两通道的最终产物应为同一产物,即较稳定的trans ⁃CH 2CHCNN -.2.4通道3由图3可知,从IM2到产物,该通道由六步组成,主要涉及α⁃H 的迁移、β⁃H 的抽提及H 2O 和N 2的解离等.其中包括:中间体IM6、IM7、IM8、IM9、IM10及产物product 3;过渡态TS5、TS6、TS7、TS8、TS9(虚频率分别为153.3i 、841.6i 、220.3i 、127.9i 和545.9i cm -1).其中,IM10解离为产物是一无势垒过程.IRC 计算表明,这些过渡态都能分别连接其对应的两个局部极小.此通道的速控步骤为第一步(IM2→TS5→IM6),位垒为153.32kJ ·mol -1.与通道1和通道2相比,该通道具有以下明显特点:(1)速控步骤不是β⁃H 的抽提,而是IM2经N 10—O 11和N 9—C 3键绕N —N 键的扭转,生成更稳定的中间体IM6这一过程.从结构参数上看,从IM2到TS5再到IM6,除二面角∠C 3NNO 、∠H 7C 3NN 变化较大外(分别由IM2中的178.6°和6.7°变为IM6中的1.8°和42.2°),其余几何构型参数变化不大.该步骤的IRC 曲线如图5(c)所示.MO(molecular orbital)分析表明,虽然在IM2和IM6中N 、N 、O 间都有共轭大П键存在,但在扭转过程中要破坏N 、N 间的П键作用,需要较多的能量,从而使该步骤具有较高的活化能.同时这也是三个通道中活化能最高的一个,这与实验中发现少量的丙二烯负离子的结果一致[10].(2)β⁃H 的抽提由两步组成:第一步是羟基负离子OH -的解离(IM7→TS7→IM8),位垒为59.34kJ ·mol -1;第二步才是β⁃H 的抽提(IM8→TS8→IM9),位垒仅为14.18kJ ·mol -1,是标题反应中H 的迁移或抽提过程中位垒最低的一个.(3)通道3中,β⁃H 抽提后的H 2O ⁃负离子偶极复合物IM9与前两个通道中的IM5和IM12互为异构体,但能量却比IM5和IM12分别高约81和83kJ ·mol -1.由计算结果可知,H 2O 分子对IM9起了较大的稳定作用.当H 2O 分子继续解离脱离母体时,重氮丙二烯负离子中的N 2分子也将同步解离,得到最终产物H 2O 、N 2和丙二烯负离子.解离过程中键长随IRC 的变化曲线如图4(b)所示.综上所述,通道3所涉及的步骤多,机理复杂,活化势垒高.与通道1、2相比,是一个不利的次反应通道.但是整个反应的过渡态能量都低于反应物,因此乙烯基重氮甲基负离子应为主要产物,同时也可图4通道1、3协同过程中各相应键长随反应坐标变化曲线Fig.4The variety of the corresponding bond lengths (d )along the reactioncoordinates图5MP2/6⁃31G(d,p )下各反应通道控速步骤过渡态的IRC 曲线Fig.5The IRC curves of TSs of the rate ⁃determining steps of various channels at MP2/6⁃31G(d,p )level221Acta Phys.⁃Chim.Sin.,2007Vol.23检测到少量的丙二烯负离子及N 2等产物.2.5各通道速率常数的计算过渡态理论又称绝对反应速率理论或活化络合物理论,是计算气相负离子反应速率常数最常用的方法之一.本工作采用MP2/6⁃31G(d,p )方法的计算结果和传统的过渡态理论计算了标准状况下标题反应各通道中速控步骤的速率常数和其他物理量.活化熵Δ≠r S 0m 、活化焓Δ≠r H 0m 、活化能Δ≠r E 0m 和反应速率常数k 见表2.由以上的讨论可知,各反应通道途径的速控步骤分别为,通道1:IM4→TS4→IM5;通道2:IM11→TS11→IM12;通道3:IM2→TS5→IM6.从表2可以看出,通道1、2速控步骤的活化熵均为正值,活化熵增大,说明两通道中速控步骤过渡态的混乱度都大于中间体,有利于反应的进一步进行.相反,通道3中,由于过渡态TS5比中间体IM2的结构更紧凑,其活化熵为负值.比较3条反应通道的活化能和速率常数可以发现,通道1、2的活化焓和活化能都较小,分别为75.61、73.13kJ ·mol -1和86.64、84.16kJ ·mol -1,速率常数也相对较大,分别为4.54和5.17×10-2s -1.而通道3的活化焓和活化能则明显大于通道1和通道2,从而导致其反应速率常数仅为3.28×10-15s -1,反应不易进行.由此可见,该反应具有很好的选择性.3结论采用MP2/6⁃31G(d,p )方法对气相中烯丙基负离子与N 2O 反应的微观机理进行了计算研究,并利用传统过渡态理论对各通道速控步骤的速率常数进行了计算.(1)标题反应的反应机理较为复杂,为多通道多步骤的反应体系,共存在三条可能的反应通道.反应首先通过无垒过程生成离子偶极复合物IM1,然后经一强放热过程生成富能中间体IM2,再经α⁃H 或β⁃H 迁移,得到不同的产物.其中,通道1和2为相互竞争的主反应通道,且两通道的最终产物相同,通道3为次反应通道.理论计算结果与实验一致.(2)除TS1外,标题反应势能面上各驻点的能量均低于反应物的能量,反应在常温常压下很容易进行.因此,可以根据N 2O 与碳负离子在常温常压下即可反应的特点对N 2O 气体进行相应的处理.(3)反应速率计算表明,通道3的速率常数远小于通道1、2的速率常数,反应具有很好的选择性.References1Albritton,D.L.;Aucamp,P.J.;Megie,G.Scientific assessment of ozone depletion:1998,World Meteorological Organization (WMO/UNEP),WMO Global Ozone Research and Monitoring project ⁃report,No.44.Geneva in Switzerland:World Meteoro ⁃logical Organization,19992P érez ⁃Ram íez,J.;Kapteijn,F.;Sch öffel,K.;Moulijn,J.A.Appl.Catal.B,2003,44(2):1173Groman,P.M.;Gold,A.J.;Addy,K.Chemosphere ⁃Global Change Science,2000,2(3-4):2914Hui,C.H.;So,M.K.;Lee,C.M.;Chan,G.Y.S.Chemosphere,2003,52:15475Bierbaum,V.M.;Depuy,C.H.;Shapiro,R.H.J.Am.Chem.Soc.,1977,99:58006Depuy,C.H.Int.J.Mass Spectrom.,2000,200:797Gronert,S.Chem.Rev.,2001,101:3298Depuy,C.H.;Kass,.Chem.,1985,50:28749Depuy,C.H.;Beierbaum,V.B.;Damrauer,R.;Soderquist,J.A.J.Am.Chem.Soc.,1985,107:338510Kass,S.R.;Filley,J.;van Doren,J.M.;Depuy,C.H.J.Am.Chem.Soc.,1986,108:284911Depuy,C.H.;van Doren,J.M.;Gronert,S.;Kass,S.R.;Motell,E.L.;Ellison,G.B.;Bierbaum,.Chem.,1989,54:184612Depuy,.Chem.,2002,67:239313King,G.K.;Maricq,M.M.;Bierbaum,V.M.;Depuy,C.H.J.Am.Chem.Soc.,1981,103:713314Depuy,C.H.;Beierbaum,V.B.Acc.Chem.Res.,1981,14:14615Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03.Pittsburgh PA:Gaussian,Inc.,200316Rooney,J.J.J.Mol.Catal.A:Chem.,1995,96:1117Yates,B.F.;Radom,L.J.Am.Chem.Soc.,1987,109:291018Glasstone,S.;Laidler,K.J.;Eyring,H.The theory of rate processes.New York and London:McGraw ⁃Hill Book Company Inc.,1941:257-27319Steinfeld,J.I.;Francisco,J.S.;Hase,W.L.Chemical kinetics anddynamics.Englewood Cliffs,NJ:Prentice Hall,1989:308-324表2MP2/6⁃31G(d,p )下各通道速控步骤的热力学和动力学性质Table 2The activation entropy,activation enthalpy,activity energy,and rate constant of various path ways of the rate ⁃determining step at MP2/6⁃31G(d,p )levelΔ≠r S 0m (J ·mol -1·K -1)Δ≠r H 0m (kJ ·mol -1)Δ≠r E 0m(kJ ·mol )k (298K)s -1Channel 121.4175.6173.13 4.54Channel 221.2186.6484.16 5.17×10-2Channel 3-5.90153.85151.373.28×10-15222。

模板捕获与归一化亚微升反应的方法和装置[发明专利]

模板捕获与归一化亚微升反应的方法和装置[发明专利]

专利名称:模板捕获与归一化亚微升反应的方法和装置专利类型:发明专利
发明人:A·哈德,S·乔瓦诺维克
申请号:CN00812870.7
申请日:20000802
公开号:CN1373813A
公开日:
20021009
专利内容由知识产权出版社提供
摘要:提供了使用核酸准备纳规模反应的方法。

核酸被可饱和而可逆地捕获在反应室、通常为毛细管的内部表面上。

除去过量核酸,在毛细管内直接进行反应。

或者,将可饱和结合的核酸洗脱,分配计量的核酸,用于随后在独立的反应室内的反应。

还提供了用于进行本发明方法的装置和设计用来有利地利用该方法进行高通量核酸测序反应的系统。

申请人:分子动力学公司
地址:美国加利福尼亚
国籍:US
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:郭建新
更多信息请下载全文后查看。

二氧化碳还原转化

二氧化碳还原转化
References
(1) Hua, K.; Liu, X. F.; Wei, B. Y.; Zhang, S.; Wang, H.; Sun Y. H. Acta
Phys. -Chim. Sin. 2021, 37 (5), 2009098. [华凯敏, 刘晓放, 魏百银,
张书南, 王慧, 孙予罕. 物理化学学报, 2021, 37 (5), 2009098.] doi: 10.3866/PKU.WHXB202009098 (2) Zhang, X. H.; Cao, Y. W.; Chen, Q. Y.; Shen, C. R.; He, L. Acta Phys. -Chim. Sin. 2021, 37 (5), 2007052. [张雪华, 曹彦伟, 陈琼遥, 沈超仁, 何林. 物理化学学报, 2021, 37 (5), 2007052.] doi: 10.3866/PKU.WHXB202007052 (3) Wang, H.; Wu, Y. Y.; Zhao, Y. F.; Liu, Z. M. Acta Phys. -Chim. Sin. 2021, 37 (5), 2010022. [王欢, 吴云雁, 赵燕飞, 刘志敏. 物理化学 学报, 2021, 37 (5), 2010022.] doi: 10.3866/PKU.WHXB202010022 (4) Wang, Y. Q.; Zhong, Z. X.; Liu, T. K.; Liu, G. L.; Hong, X. L. Acta Phys. -Chim. Sin. 2021, 37 (5), 2007089. [王艳秋, 钟子欣, 刘唐康, 刘国亮, 洪昕林. 物理化学学报, 2021, 37 (5), 2007089.] doi: 10.3866/PKU.WHXB202007089 (5) Li, C. M.; Chen, K.; Wang, X. Y.; Xue, N.; Yang, H. Q. Acta Phys. -Chim. Sin. 2021, 37 (5), 2009101. [李聪明, 陈阔, 王晓月, 薛楠, 杨恒权. 物理化学学报, 2021, 37 (5), 2090101.] doi: 10.3866/PKU.WHXB202009101 (6) Yuan, Q.; Yang, H.; Xie, M.; Cheng, T. Acta Phys. -Chim. Sin. 2021, 37 (5), 2010040. [苑琦, 杨昊, 谢淼, 程涛. 物理化学学报, 2021, 37 (5), 2010040.] doi: 10.3866/PKU.WHXB202010040 (7) Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Ma, X. B.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37 (5), 2006034. [孟怡辰, 况思宇, 刘 海, 范群, 马新宾, 张生. 物理化学学报, 2021, 37 (5), 2006034.] doi: 10.3866/PKU.WHXB202006034 (8) Gao, D. F.; Wei, P. F.; Li, H. F.; Lin, L.; Wang, G. X.; Bao, X. H. Acta Phys. -Chim. Sin. 2021, 37 (5), 2009021. [高敦峰, 魏鹏飞, 李 合肥, 林龙, 汪国雄, 包信和. 物理化学学报, 2021, 37 (5), 2009021.] doi: 10.3866/PKU.WHXB202009021 (9) Chu, S. L.; Li, X.; Robertson, A. W.; Sun, Z. Y. Acta Phys. -Chim. Sin. 2021, 37 (5), 2009023. [楚森林, 李欣, Robertson, A. W., 孙振宇. 物理 化学学报, 2021, 37 (5), 2009023.] doi: 10.3866/PKU.WHXB202009023 (10) Qin, Z. Z.; Wu, J.; Li, B.; Su, T. M.; Ji, H. B. Acta Phys. -Chim. Sin. 2021, 37 (5), 2005027. [秦祖赠, 吴靖, 李斌, 苏通明, 纪红兵. 物理化学学 报, 2021, 37 (5), 2005027.] doi: 10.3866/PKU.WHXB202005027 (11) Zhang, J. H.; Zhong, D. C.; Lu, T. B. Acta Phys. -Chim. Sin. 2021, 37 (5), 2008068. [张继宏, 钟地长, 鲁统部. 物理化学学报, 2021, 37 (5), 2008068.] doi: 10.3866/PKU.WHXB202008068 (12) Wu, J.; Liu, J.; Xia, W.; Ren, Y. Y.; Wang, F. Acta Phys. -Chim. Sin. 2021, 37 (5), 2008043. [吴进, 刘京, 夏雾, 任颖异, 王锋. 物理化学 学报, 2021, 37 (5), 2008043.] doi: 10.3866/PKU.WHXB202008043 (13) Cui, X. J.; Shi, F. Acta Phys. -Chim. Sin. 2021, 37 (5), 2006080. [崔新江, 石峰. 物理化学学报, 2021, 37 (5), 2006080.] doi: 10.3866/PKU.WHXB202006080 (14) Dautzenberg, F. M.; Lu, Y.; Xu, B. Acta Phys. -Chim. Sin. 2021, 37 (5), 2008066. [Dautzenberg, F. M., 路勇, 徐彬. 物理化学学报, 2021, 37 (5), 2008066.] doi: 10.3866/PKU.WHXB202008066

碳气凝胶活化对于电极嵌锂性能的影响(英文)

碳气凝胶活化对于电极嵌锂性能的影响(英文)

络状骨架 . 该材料在首 次和 第 5 0次恒流充放 电( 5 0 mA・ g ) 循环 的嵌锂容量分别 为3 8 7 0 和3 5 2 mA h ・ g 一 , 对应
的可 逆 容 量 分 别 为 6 5 8 和3 3 3 mA h ・ g ~ . 表 明 了 CO 活化对于改善碳气凝胶 嵌锂性能的可行性, 且 对 于 其 它 多
( S h a n g h a i Ke y L a b o r a t o r y o f S p e c i a l A r t i i f c i a l Mi c r o s t r u c t u r e Ma t e r i a l s a n d T e c h n o l o g y , I n s t i t u t e o fP h y s i c a l S c i e n c e a n d
孔 电极材料的制备及特性优化提供 了一种途径.
关键词 : 碳气凝胶: 溶胶- 凝胶: 气体活化: 无定型碳: 锂离子 电池
中 图分 类 号 : 06 4 6 ; 06 4 8
Ef fe c t of Car b on Aer o ge l Ac t i v a t i on on El e c t r od e L i t hi u m
E n g i n e e r i n g , T o n g j i U n i v e r s i t y , S h a n g h a i 2 0 0 0 9 2 , P R . C h i n a )
Ab s t r c t : Ca r b o n a e r o g e l s h a v e r e c e i v e d mu c h r e c e n t a t t e n t i o n a s h i g h . c ap a c i t y i n s e r t i on a n o d e s f or

211171497_生物质基炭材料孔径调控及电化学性能研究进展

211171497_生物质基炭材料孔径调控及电化学性能研究进展

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 4 期生物质基炭材料孔径调控及电化学性能研究进展刘静1,林琳1,张健2,赵峰1(1 北华大学吉林省木质材料科学与工程重点实验室,吉林 吉林 132013;2 北华大学理学院,吉林 吉林 132013)摘要:生物质基炭材料具有来源广泛、表面官能团丰富和微观结构多样的优点,但具有孔径分布不合理的问题,从而限制了其在电化学储能领域的应用。

本文简述了微孔、介孔和大孔结构对电化学性能的影响机制,详细阐述了孔径调控方法:微孔为碱活化法、发泡活化法、CO 2/蒸汽活化法和冷冻处理法,介孔为酸活化法、模板法、熔融盐炭化法、催化活化法和纤维素酶解法,大孔为SiO 2-胶体模板法和软模板法。

并将以上调控方法的影响因素和优缺点进行了分析,总结了各种方法在电极材料中的应用效果。

分析表明,发泡活化法对微孔调控高效且环保,酸活化法和熔融盐炭化法对介孔率提高显著。

此外,本文将调控方法按照生物质材料来源(组分)的不同进行了分类,得出碱活化法和自模板法适用于动物基炭材料微孔和介孔调控,而纤维素酶解法为植物基炭材料的介孔调控提供了绿色环保的新思路。

最后,本文就生物质基炭材料孔径调控和绿色制备在电化学储能领域的应用提出了建议。

关键词:生物质;热解;电化学;电极材料;孔结构中图分类号:TQ127.11;TM912 文献标志码:A 文章编号:1000-6613(2023)04-1907-10Research progress in pore size regulation and electrochemicalperformance of biomass-based carbon materialsLIU Jing 1,LIN Lin 1,ZHANG Jian 2,ZHAO Feng 1(1 Key Laboratory of Wooden Materials Science and Engineering, Beihua University, Jilin 132013, Jilin, China;2College of Science, Beihua University, Jilin 132013, Jilin, China )Abstract: Biomass-based carbon materials have the advantages of wide source, abundant surface functional groups and diverse microstructures. However, it has the problem of unreasonable pore size distribution, limiting their applications in electrochemical energy storage. In this paper, the influence mechanism of microporous, mesoporous and macroporous structures on electrochemical performance was briefly described, and the pore size regulation methods were elaborated including alkali activation method, foaming activation method, CO 2/steam activation method and freezing treatment method for microporous, acid activation method, template method, molten salt carbonization method, catalytic activation method and cellulase hydrolysis method for mesoporous, and SiO 2-colloidal template method and soft template method for macroporous. Moreover, the influence factors, advantages and disadvantages of the above regulation methods were analyzed, and the application effects of various methods in electrode materials were summarized. The analysis showed that the foaming activation method was efficient and综述与专论DOI :10.16085/j.issn.1000-6613.2022-1056收稿日期:2022-06-06;修改稿日期:2022-07-18。

超临界二氧化碳萃取技术提取胡椒风味成分的研究

超临界二氧化碳萃取技术提取胡椒风味成分的研究

超临界二氧化碳萃取技术提取胡椒风味成分的研究
张国宏;刘丽新
【期刊名称】《食品科学》
【年(卷),期】1997(018)011
【摘要】本文研究了利用超临界二氧化碳提取黑胡椒风味成分的工艺条件,结果表明,在该条件下利用二氧化碳作为萃取溶剂所得的胡椒风味成分提取物其提取率及品质均优于传统的提取方法。

【总页数】5页(P21-25)
【作者】张国宏;刘丽新
【作者单位】北京市食品研究所;北京市食品研究所
【正文语种】中文
【中图分类】TQ028.32
【相关文献】
1.黑胡椒风味成分的研究 [J], 李祖光;高云芳;刘文涵
2.均匀设计方法在胡椒风味成分提取工艺上的应用 [J], 张国宏;沈锋
3.海南地区白胡椒粉风味成分的研究 [J], 初众;刘红;欧仕益;谷风林;谭乐和;宗迎
4.有关超临界二氧化碳萃取技术在天然产物提取中的具体应用研究 [J], 邹书慧;曹晓锋
5.脱水青胡椒粉风味成分的研究 [J], 刘红;欧仕益;王庆煌;谭乐和;宗迎;朱红英
因版权原因,仅展示原文概要,查看原文内容请购买。

气相色谱法分析乙醇羰化的液相产物

气相色谱法分析乙醇羰化的液相产物

气相色谱法分析乙醇羰化的液相产物
刘美光;冉隆林
【期刊名称】《天然气化学》
【年(卷),期】1991(002)002
【总页数】4页(P37-40)
【作者】刘美光;冉隆林
【作者单位】不详;不详
【正文语种】中文
【中图分类】O623.411
【相关文献】
1.苯酚液相氧化羰化反应产物的GC-MS分析 [J], 范国枝;李志强;黄娇;李涛;李光兴
2.气相色谱法测定乙醇羰化液中丙酸的研究 [J], 廖列文;崔英德;尹国强;易国斌
3.气相色谱法测定低碳混合醇液相产物 [J], 徐晓峰
4.乙醇催化羰化合成产物的气相色谱分析 [J], 郭友嘉;任清
5.毛细管气相色谱法分析顺酐液相催化加氢反应产物 [J], 秦晓琴;石永英;赵永祥因版权原因,仅展示原文概要,查看原文内容请购买。

纳米催化二氧化碳制甲醇英文

纳米催化二氧化碳制甲醇英文

纳米催化二氧化碳制甲醇英文Nanocatalysis for the Production of Methanol from Carbon Dioxide.Carbon dioxide (CO2) is a significant greenhouse gas that contributes to global warming. However, converting it into useful chemicals such as methanol offers a sustainable and environmentally friendly approach to mitigate its adverse effects. Nanocatalysis, a field that utilizes nanoscale materials to catalyze chemical reactions, has emerged as a promising technology for this purpose.Nanocatalysis Principles and Applications.Nanocatalysis leverages the unique properties of nanomaterials, including their large surface area and high reactivity, to enhance catalytic activity. These nanomaterials, often in the form of nanoparticles or nanostructures, can significantly improve the rate and selectivity of chemical reactions. In the context of CO2conversion, nanocatalysts can lower the activation energy required for the reaction, making it more energetically favorable.CO2 to Methanol Conversion.The conversion of CO2 into methanol involves a multi-step process known as the methanol synthesis. Typically, this process requires high temperatures and pressures, as well as a suitable catalyst. Nanocatalysts cansignificantly reduce these requirements, making the process more energy-efficient and cost-effective.The most common nanocatalysts used for CO2 hydrogenation to methanol are based on copper. Copper nanoparticles, due to their high activity and selectivity, are particularly effective in promoting this reaction. Other metals, such as palladium and platinum, have also been explored for this purpose.Nanocatalyst Design and Optimization.The design and optimization of nanocatalysts for CO2 conversion are crucial for achieving high catalytic performance. Factors such as particle size, shape, and composition can significantly influence the catalytic activity. For instance, smaller nanoparticles typically exhibit higher catalytic activity due to their increased surface area. Similarly, the choice of support material can also affect the stability and activity of the nanocatalyst.Challenges and Future Prospects.While nanocatalysis offers significant potential for CO2 conversion, several challenges need to be addressed. One of the main challenges is the scalability of nanocatalysts for industrial applications. Current methods for synthesizing nanomaterials are often not suitable for large-scale production. Additionally, the stability of nanocatalysts under reaction conditions is also a concern, as they can often deactivate or agglomerate over time.Future research efforts should focus on developing more stable and scalable nanocatalysts for CO2 conversion.Innovations in nanomaterials synthesis and characterization techniques can help address these challenges. Furthermore, integrating nanocatalysts with other renewable energy sources, such as solar or wind power, can further enhance the sustainability of the process.In conclusion, nanocatalysis holds promise for the efficient conversion of CO2 into methanol. By leveraging the unique properties of nanomaterials, we can develop more effective and sustainable catalysts for this important reaction. Future research in this area could lead to significant advancements in green chemistry and help mitigate the impact of climate change.。

反相微乳液法制备LaMnAl11O19-α甲烷燃烧催化剂

反相微乳液法制备LaMnAl11O19-α甲烷燃烧催化剂

反相微乳液法制备LaMnAl11O19-α甲烷燃烧催化剂徐金光;田志坚;索掌怀;徐秀峰;曲秀华;徐云鹏;徐竹生;林励吾【期刊名称】《催化学报》【年(卷),期】2005(026)008【摘要】在反相微乳液中以碳酸铵共沉淀法制备了LaMnAl11O19-α甲烷燃烧催化剂,比较了反相微乳液法与普通碳酸铵共沉淀法对催化剂相结构、比表面积、孔结构及其催化甲烷燃烧性能的影响.结果表明,反相微乳液法制备的催化剂前驱体平均粒径为2.3 nm,而普通碳酸铵共沉淀法得到的催化剂前驱体平均粒径为30.1 nm.在乙醇超临界干燥阶段,反相微乳液法制备的催化剂前驱体较容易发生铝羟基分子间脱水,形成较为丰富的孔,保持了各组分分布的均匀性,从而促进了六铝酸盐的形成,所得样品具有较大的比表面积和较高的催化甲烷燃烧的活性.【总页数】4页(P665-668)【作者】徐金光;田志坚;索掌怀;徐秀峰;曲秀华;徐云鹏;徐竹生;林励吾【作者单位】烟台大学化学生物理工学院应用催化研究所,山东,烟台,264005;中国科学院大连化学物理研究所,辽宁,大连,116023;烟台大学化学生物理工学院应用催化研究所,山东,烟台,264005;烟台大学化学生物理工学院应用催化研究所,山东,烟台,264005;烟台大学化学生物理工学院应用催化研究所,山东,烟台,264005;中国科学院大连化学物理研究所,辽宁,大连,116023;中国科学院大连化学物理研究所,辽宁,大连,116023;中国科学院大连化学物理研究所,辽宁,大连,116023【正文语种】中文【中图分类】O643【相关文献】1.反相微乳液法制备铈锰取代六铝酸盐甲烷燃烧催化剂 [J], 宋永吉;朱安民;任晓光2.反相微乳法制备二甲醚燃烧催化剂LaMAl11O19-δ的研究 [J], 余倩;张绮旎;戈早川;王苑娜;黄应敏;马泽贤;李永峰;余林3.反相微乳法制备纳米高温燃烧催化剂的研究现状 [J], 黄应敏;余倩;余林;成青华;孙明;戴振生;赵珺4.用反相微乳法制备二甲苯燃烧催化剂CuMnOx [J], 李正林;薛屏5.新型反相微乳液制备纳米结构甲烷催化燃烧催化剂La0.95Ba0.05MnAl11O19-α的研究 [J], 徐金光;腾飞;田志坚;曲秀华;张培青;徐云鹏;熊国兴;林励吾因版权原因,仅展示原文概要,查看原文内容请购买。

构建氧空位调控的钼酸钴纳米片用于高效催化析氧反应

构建氧空位调控的钼酸钴纳米片用于高效催化析氧反应

构建氧空位调控的钼酸钴纳米片用于高效催化析氧反应蒋婷婷;谢伟伟;耿仕鹏;李如春;宋树芹;王毅【期刊名称】《催化学报(英文)》【年(卷),期】2022(43)9【摘要】析氧反应(OER)是金属-空气电池、电解水等绿色可再生能源转换与储存系统的核心反应,其复杂的4电子-质子耦合反应导致其动力学过程缓慢从而使得系统过电位较高,目前主要依赖于RuO_(2)或IrO_(2)贵金属催化剂提升其反应速率,但贵金属高成本和低稳定性严重限制其大规模应用.因此,开发高活性、高稳定性的廉价非贵金属催化剂具有重要的实际意义,已成为现阶段的研究热点.钼酸钴(CoMoO_(4))作为典型的ABO_(4)型催化材料,不仅价格低廉、储量丰富,而且其双金属特性可构筑有效的活性位点提升OER反应动力学.前期研究发现,通过阴离子掺杂、氧空位工程、电子结构调控、表面修饰等策略可增强ABO_(4)型催化剂的OER催化活性.特别是氧空位工程可调节过渡金属氧化物的电子结构,提高其导电性能,增加催化位点活性,从而提高过渡金属氧化物的催化性能.本文在石墨毡(GF)上原位生长CoMoO_(4)纳米片,并提出一种简单的H_(2)/Ar还原策略精确调控CoMoO_(4)的氧化状态,制备一系列不同氧空位含量的CoMoO_(4)电催化剂(CoMoO_(4)-O_(v)-n@GF),并采用X射线光电子能谱(XPS)、电子自旋共振(EPR)、电化学测试等表征手段及密度泛函理论计算(DFT)研究了氧空位含量对CoMoO_(4)电催化OER性能的影响.扫描电镜结果表明,花瓣状CoMoO_(4)纳米薄片整齐地生长在GF上,经还原热处理后纳米薄片结构未被破坏.透射电镜结果表明,经还原后CoMoO_(4)出现了大量缺陷,且显示出多晶的特性.XPS及EPR测试结果表明,通过改变热处理时间(0.5‒3 h)可以实现氧空位含量的精准调控,热处理时间越长,CoMoO_(4)氧空位含量越多.电化学测试结果表明,氧空位含量对CoMoO_(4)电催化OER性能起到了重要的调节作用,其中具有最优氧空位含量的CoMoO_(4)-O_(v)-2@GF表现出最佳的OER活性,在10 mA cm^(‒2)下的过电位仅为296 mV,Tafel斜率为62.4 mV dec−1,其性能接近贵金属催化剂RuO_(2)@GF.DFT理论计算结果表明,加入氧空位可以将CoMoO_(4)的能隙从1.98 eV缩小至1.14 eV,从而提升CoMoO_(4)纳米片的电子传导性能;同时氧空位的增加进一步降低了OER决速步的反应中间体的自由能,这也加速了OER动力学过程.实验及理论计算结果都表明构建氧空位可以有效地调节CoMoO_(4)纳米片的催化性能.综上,本工作不仅开发了一种高效的氧空位构筑方法,而且深入研究了氧空位对双金属氧化物电催化OER的影响,对通过构筑氧空位提升OER电催化剂活性相关工作有借鉴意义.【总页数】9页(P2434-2442)【作者】蒋婷婷;谢伟伟;耿仕鹏;李如春;宋树芹;王毅【作者单位】中山大学化学工程与技术学院;中山大学材料科学与工程学院【正文语种】中文【中图分类】O64【相关文献】1.铁诱导生长在碳布上三维纳米多孔铁钴羟基氧化物作为高效电催化析氧反应电极2.混合相钼酸钴纳米片电催化剂用于高效析氧反应3.紫外激光调控CoFe2O4表面氧空位以增强析氧反应催化活性(英文)4.调控氧空位实现高比表面积Co3O4纳米片上的产氧反应(英文)5.多壳层中空镍钴双金属磷化物纳米球用于高效电催化析氧因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Carbonization Reactions in Novolac Resins, Hexamethylenetetramine,and Furfuryl Alcohol MixturesXiaoqing Zhang†and David H.Solomon*Polymer Science Group,Department of Chemical Engineering,The University of Melbourne,Parkville,Victoria3052,AustraliaReceived August31,1998.Revised Manuscript Received November19,1998The carbonization process of novolac resins cured by hexamethylenetetramine(HMTA) in the presence of furfuryl alcohol(FA)was studied by a high-resolution solid-state NMR technique.Most reactions occur below600°C,and aliphatic species disappear above800°C.Nitrogen(2-3%)is present in the carbon materials obtained.The process can be influenced by the starting novolac structures,ca.the ratio of ortho/para reactive sites,and the FA content in the systems.When a novolac resin contains a high ratio of para-reactive sites,the carbonization reaction occurs at relatively lower temperatures,and the rate is relatively fast.High FA content slows down the carbonization process,and reactions occur at relatively high temperatures.Starting novolac structures and FA content in the systems also vary the nitrogen structures during the process and the structure distribution in the carbon materials at800°C.IntroductionPhenol-formaldehyde and furfuryl alcohol(FA)resins have been used commercially as starting materials to produce glassy carbons with high carbon yields.The carbonization reactions of phenolic and FA resins and the properties of the carbon materials derived from the resins have been investigated a great deal for several decades.1-14The resins have also been applied as binding materials in carbon composites,15,16reduction composites,and refractories in the aluminum and steel industries.The combination of the two resins in car-bonization could provide improved mechanical and processing properties,especially when the resins are used as binding materials in which FA also acts as a solvent for the novolac resins.The understanding of the relationship between the structures of the starting polymer resins,the carbonization chemistry,and the properties of the carbon materials obtained after py-rolysis is fundamental to the application and modifica-tion of the carbon materials.However,few studies have addressed the chemical processes that occur when a mixture of phenolic and furfuryl alcohol resins is cured,17with for example hexamethylenetetramine (HMTA);there are no reports on the carbonization of the phenolic/furfuryl alcohol systems.Recently we reported on the chemistry of reacting novolac/FA resins with HMTA.18A highly cross-linked homogeneous network that incorporates both novolac and furan entities is formed after curing the mixture to205°C.Minor amounts of nitrogen-containing struc-tures are generated in the process.The pyrolysis of novolac and FA resins proceed by different reaction pathways;therefore,it was of interest to study the carbonization process of the homogeneous mixture of novolac/FA resins.The chemical structure,especially the nitrogen structure in the carbon products obtained, is another interesting issue to be examined.This article reports our study on the carbonization reactions of HMTA-cured novolac/FA resins.High-resolution,solid-state NMR techniques were used to follow the changes of chemical structure during the pyrolysis up to800°C.Experimental SectionSamples.Two different novolac resins in two novolac/ HMTA/FA formulations were used to examine the effect of the structures of starting materials on the carbonization process†Present address:CSIRO Manufacturing Science and Technology, Private Bag33,Clayton South MDC,VIC3169,Australia.*To whom correspondence should be addressed.(1)Winkler,E.L.;Parker,J.A.J.Macromol.Sci.Rev.Macromol. Chem.1971,C5,245.(2)Rand,B.;McEnaney,B.Ceram.Trans.1985,84,157.(3)Yamashita,Y.;Ouchi,K.Carbon1979,17,365.(4)Yamashita,Y.;Ouchi,K.Carbon1981,19,89.(5)Riesz,C.H.;Susman,S.Proceedings of the Fourth Conference on Carbon,Pergamon:New York,1960;p609.(6)Fitzer,E.;Schafer,W.Carbon1970,8,353.(7)Eckert,H.;Levendis,Y.A.;Flagan,R.C.J.Phys.Chem.1988, 92,5011.(8)Glowinkowski,S.;Pajak,Z.Carbon1982,20,13.(9)Fyfe,C.A.;Makinnon,M.S.;Rudin,A.;Tchir,W.J.Macro-molecules1983,16,1216.(10)Amram,B.;Leval,F.J.Appl.Polym.Sci.1989,37,1.(11)Sonobe,N.;Kyotani,T.;Tomita,A.Carbon,1990,28,483.(12)Shindo,A.;Izumino,K.Carbon1994,32,1233.(13)Gupta,A.;Harrison,I.R.Carbon1994,32,953.(14)Wang,Z.;Lu,Z.;Huang,X.;Xue,R.;Chen,L.Carbon1998, 36,51.(15)Wewerka,E.M.;Walters,K.L.;Moore,R.H.Carbon1969,7,129.(16)Manocha,L.M.Carbon1994,32,213.(17)Brown,L.H.U.S.Patent2,965,601,1960.(18)Zhang,X.;Solomon,D.H.Chem.Mater.,1998,10,1833.384Chem.Mater.1999,11,384-39110.1021/cm980605i CCC:$18.00©1999American Chemical SocietyPublished on Web01/23/1999and chemical structures of the derived carbons.Novolac-1(N1)was a high-ortho -linked resin (N1)and novolac-2(N2)was a conventional resin.The number-averaged chain length of both resins was about 8phenols linked with methylenes as determined by their solution 1H NMR spectra.The ratio of ortho-ortho ,ortho-para ,and para-para methylenes in the two resins was 48:49:3(N1)and 25:53:22(N2)as detected by their solution 13C NMR spectra;thus,the ratios of ortho -and para -unsubstituted phenolic positions (reactive sites)of the two resins were calculated as 58:42(N1)and 88:12(N2).To enhance the structures derived from HMTA in carbon materials,99%13C-and 15N-enriched HMTA was synthesized with use of 99%13C-enriched formaldehyde and 99%15N-enriched ammonia.FA was obtained from Hopkin &Williams Ltd.and was distilled before use.The preparation and curing of novolac/HMTA/FA )40/8/52and 31/4.3/64.7resins has been described.18After curing to 205°C/4h by a 35-h cycle,about 1g of each cured resin (block)was baked in a Tetlow furnace at a rate of 50°C/h in an argon atmosphere to 300,400,500,600,and 800°C,respectively.After pyrolysis,the samples were ground into fine powders for analysis.Two N/HMTA/FA ratios of 40/8/52and 31/4.3/64.7were used,and the samples are referred to as N1-40,N2-40,N1-31,and N2-31,respectively,in the text.NMR Experiments.High-resolution solid-state NMR ex-periments were carried out using a Varian Unity Inova-300spectrometer at resonance frequencies of 75MHz for carbon-13and 30MHz for nitrogen-15under conditions of cross-polarization (CP),magic angle sample spinning (MAS),and high-power dipolar decoupling (DD).The 90°pulse width was of 3.7µs,whereas the rate of MAS was approximately 10kHz,so no spinning sideband appeared in a range of 0-200ppm for 13C spectra.No spinning sideband was observed for 15N spectra when using a 10-kHz MAS spinning rate.The chemical shift of 13C spectra was determined by taking the carbonyl carbon of solid glycine (176.03ppm)as an external reference standard.For 15N spectra,the 15N resonance of 99%enriched HMTA (44ppm)was taken as an external reference.18,20The quantitative observation of structures in the resins during carbonization processes requires a single pulse se-quence with a very long relaxation delay (usually 5times of 13C or 15N T 1).The T 1of carbon materials can be extremely long,which makes it extremely difficult to conduct such measurements.In this article,a qualitative comparison among CP/MAS spectra of a resonance of similar systems after baking to the same temperatures has been made assuming a similar cross-polarization capability of the resonance.Results and DiscussionThe weight loss data of the novolac/HMTA/FA resins after curing and pyrolysis are shown in Figure 1.Resins using N1and N2behaved similarly with respect to weight loss on baking,and the difference between the(19)Zhang,X.;Solomon,D.H.Polymer 1998,39,405.Figure 1.Weight loss of N1-40,-31and N2-40,-31after pyrolysis to 800°C.Figure 2.The C/H atomic ratios of N1-40,-31and N2-40,-31after pyrolysis to 800°C.Figure 3.The nitrogen retention of N1-40,-31and N2-40,-31after pyrolysis to 800°C.Table 1.The C/H/N/O Weight Ratio of the Resins afterPyrolysis to 800°CsamplesC/H/N/O N1/HMTA/FA )40/8/5290.8/1.0/2.9/5.3N2/HMTA/FA )40/8/5290.2/0.9/2.6/6.3N1/HMTA/FA )31/4.3/64.792.2/0.9/1.8/5.1N2/HMTA/FA )31/4.3/64.791.5/1.1/1.8/5.6Carbonization of Novolac/HMTA/FA Resins Chem.Mater.,Vol.11,No.2,1999385two formulations (40/8/52and 31/4.3/64.7)seems to be mainy caused by the weight loss after curing to 205°C.The novolac/furan ring ratios of the 40/8/52and 31/4.3/64.7systems after curing to 205°C were estimated to be 54/46and 47/53according to their weight loss and elemental analysis.In the baking process,significant weight loss occurred from 300to 600°C,and the carbon yield of the resins after baking up to 800°C was about 48%and 42%for 40/8/52and 31/4.3/64.7systems,respectively.The difference between N1and N2systems was 2-3%.The C/H atomic ratio is an important parameter in characterizing the carbonization process (aromaticity of carbons)for polymer resins.For novolac/HMTA/FA systems,as shown in Figure 2,a rapid increase of the C/H atomic ratio occurred above 400°C,especially above 600°C.The error bar of the C/H atomic ratio in carbons containing very low hydrogens after baking to 800°C increased,and thus,the C/H ratios of these carbons appeared as a random order.X-ray diffraction results showed a broad peak for all these four samples after baking to 800°C,indicating amorphous carbons were obtained.The carbon,hydrogen,and nitrogen contents of the carbons are listed in Table 1,together with the oxygen content calculated by difference.Note that about 2-3%of nitrogen also remained in the baked resins up to 800°C,and these nitrogen species derived from HMTA that acted as a cross-linker in the systems.The nitrogen content of these systems was examined during the pyrolysis process as shown in Figure 3.A quick loss of nitrogen occurred above 500-600°C for most samples,except N1-40,which experienced a relatively quick decay across the whole temperature range.In all cases,the nitrogen retention values in N1systems were lower than those in N2systems below 500°C.This result is related to the stability of nitrogen-containingstructuresFigure 4.13C CP/MAS NMR spectra of N1-40(left)and N2-40(right)after pyrolysis.Unlabeled HMTA was used in the resins.386Chem.Mater.,Vol.11,No.2,1999Zhang and Solomonformed during the curing process (below 205°C),18-24the major ones being amides/imides,imines,nitriles,and amines.The structures linked at ortho -phenolic positions are more stable than those linked at para -positions,and therefore,N2contains more stable ni-trogen structures.The stability of ortho -linked nitrogen-containing structures was also evident in the initial pyrolysis stage and resulted in a slow decrease of the nitrogen content for N2systems.High-resolution solid-state NMR is a powerful tech-nique to study the structure change in the resins during the pyrolysis.13C CP/MAS spectra (contact time,2ms)for N1-40and N2-40systems using unlabeled HMTA after baking to various temperatures are shown in Figure 4.After heating the resins to 300°C,the resonances at 30-40ppm are due to various methylene linkages between phenol rings and furan rings in conjunction with those between phenol or furan rings.The peak at 152ppm is due to the OH-substituted carbons of phenols and the 2-and 5-carbons of furan rings,whereas the strong resonance at 128ppm is assigned to aromatic carbons.The 3,4-carbons of furan rings appear at 108ppm.Some minor resonances were also observed in the range of 60-85ppm because of the(20)Zhang,X.;Looney,M.G.;Solomon,D.H.;Whittaker,A.K.Polymer 1997,38,5835.(21)Zhang,X.;Solomon,D.H.J.Polym.Sci.Polym.Phys.1997,35,2233.(22)Zhang,X.;Potter,A.C.;Solomon,D.H.Polymer 1998,39,399.(23)Zhang,X.;Potter,A.C.;Solomon,D.H.Polymer 1998,39,1957.(24)Zhang,X.;Potter,A.C.;Solomon,D.H.Polymer 1998,39,1967.Figure 5.13C CP/MAS NMR spectra of N1-40after beled HMTA was used in the resins.Left spectra were observed with a contact time of 2ms,and right spectra with a contact time of 20µs.Carbonization of Novolac/HMTA/FA Resins Chem.Mater.,Vol.11,No.2,1999387formation of a series of ether structures.As the tem-perature increased,the relative intensity of aliphatic carbons and oxygen-substituted resonances at152ppm decreased,whereas the peak at128ppm increased and generally shifted to122ppm above500°C.The intensity of the peak at108ppm also decreased with increased temperature and disappeared above600°C.At500°C, the aliphatic carbons observed are mainly methyl groups at15-20ppm and methylenes,methines,or even quaternary carbons at28-36ppm.At600°C,the peak at33ppm still appeared,but only a broad peak at120ppm was obtained after baking to800°C for both resins,indicating the formation of large carbon sheets. No significant difference between N1-40and N2-40 was noticed where unlabeled HMTA was used(Figure 4).To enhance the structures derived from HMTA in carbon materials,HMTA enriched with both13C and15N was used,and the13C CP/MAS spectra of N1-40are shown in Figure5.By use of a long contact time such as2ms,all13C resonances can be observed because the magnetization of non-hydrogen-bonded carbons can be polarized by other hydrogen atoms in the system via effective spin diffusion in rigid systems.This cannot occur when a very short contact time,ca.20µs,is used; thus,only directly hydrogen-bonded resonances(except mobile CH3groups)can be detected.Note that the resonances at10-50ppm observed at300°C were strongly enhanced when using labeled HMTA,compared with those in Figure4,indicating some of these meth-ylene linkages and methyl groups were derived from HMTA.The shoulder at41ppm is attributed to the para-para methylene linkages between phenol rings, because the N1resin contains42%of para-reactive sites that are more reactive to form stable methylene link-ages.Most of these resonances can also be observed in spectra using20µs contact time,except those mobile pared with the spectra using unlabeled HMTA,a strongly enhanced peak at103ppm also was detected,and this peak could also be seen in spectra using a contact time of20µs.This suggests the peak due to a CH d CH species possibly formed when furan rings were broken during the pyrolysis.12The result also provided evidence that the methylene linkages derived from HMTA could be involved in the reaction,becausethe resonance was enhanced using labeled HMTA.The CH d CH structure could be formed by losing water molecules(oxygen from furan rings and hydrogen from methylenes)after fission of furan rings.Its intensity decreased with increased temperature and disappeared above500°C.The ether structures at60-85ppm(at 300°C,Figure4)are barely visible in Figure5,indicat-ing those ether methylenes were derived from FA,and HMTA did not contribute to these structures.The methyl group intensity(15-20ppm)increased with increasing temperature and became rigid as the signal also appeared in spectra with the short contact time. Their intensity decreased more rapidly than other aliphatic resonances above500°C.After baking to600°C,the peak at33ppm was observed(aliphatic species) when either2ms or20µs contact time was used, indicating that hydrogen-bonded aliphatic carbons(CH2 and/or CH)still remained.At120ppm,only a broad peak was observed after baking to800°C no matter whether labeled or unlabeled HMTA was used(Figures 4and5),indicating aliphatic resonances were too minor to be observed.The variation of nitrogen structures in the resins during pyrolysis can be studied by the15N high-resolution solid-state spectrum that gives a wide chemi-cal shift range indicative of nitrogen structures.2515N CP/MAS spectra of N1-40(Figure6)indicate that the major nitrogen structure of the resin after heating to 300°C included imides(150ppm)and amides(120 ppm).Small amounts of nitriles(250ppm)and imines (280-320ppm)were also present.18,19-22,25Increased temperature caused the loss of nitrogen(Figure3),and the chemical structures were also changed.The imides/ amides peak became broader and the relative intensity of imines at280ppm increased after heating to400°C. Some oxidized species were also formed around450ppm(25)Levy,G. C.;Lichter,R.L.Nitrogen-15Nuclear Magnetic Resonance Spectroscopy;John Wiley&Sons:New York,1979. Figure6.15N CP/MAS NMR spectra of N1-40using labeled HMTA after pyrolysis up to800°C.The contact time was2 ms.388Chem.Mater.,Vol.11,No.2,1999Zhang and Solomonand disappeared after baking to 500°C.Other oxidized species (at 500ppm)were also formed when the resin was baked above 600°C.Because the pyrolysis was conducted under an argon atmosphere,the oxygen for oxidation could only come from the decomposition of the resin.The minor peaks at 30-60ppm are caused by amine species formed by decomposition of the nitrogen-containing linkages in the network during the pyrolysis.After baking to 800°C,three broad peaks were detected at 80,250,and 450ppm because of residual amides,nitriles,quinoline/acridine structures,and -NO 2spe-cies.18,20,21,25The nitrogen content in the resin was 2.9%at 800°C.13C and 15N CP/MAS spectra of N1-31resin (using labeled HMTA and 2-ms contact time)after baking to various temperatures are shown in Figure 7.The reaction process was similar to that for N1-40,but the reactivity difference was apparent.At 300-400°C heating range,N1-31experienced a relatively slow carbonization process compared with N1-40;the reso-nances at 102,35,and 15ppm showed relatively strong intensities at 400°C compared with N1-40.Taking into account that 4.3%labeled HMTA was used in N1-31whereas 8%labeled HMTA was present initially in N1-40,the difference between N1-31and N1-40was quite remarkable.At the same time,the relative intensity of methyl groups also increased,and then decreased slowly with increase of temperature.At 600°C,methyl reso-nances at 15ppm can still be noticed in N1-31,but they have disappeared in N1-40.A broad peak at 33ppm can also be observed even after baking the resin to 800°C.Most of nitrogen structures in N1-31were similar to those in N1-40;however,no oxidized species were detected at 400and 800°C for N1-31.Note that the rate of nitrogen loss of N1-40was also faster than N1-31,as shown in Figure 3.The nitrogen content in theN1-31Figure 7.13C (left)and 15N (right)CP/MAS spectra (contact time,2ms)of N1-31after pyrolysis up to 800°C.Carbonization of Novolac/HMTA/FA Resins Chem.Mater.,Vol.11,No.2,1999389after baking to 800°C was 1.8%.The result indicates that FA caused the carbonization process to occur slowly,and the reaction occurred at relatively higher ually the break and disappearance of furan rings during pyrolysis occurred at 300-500°C at which benzene rings were produced simultaneously.6,12Thus,N1-31,which contains more FA,requires a longer time and higher temperatures to convert the large number of furan rings,relative to N1-40,to benzene rings.Therefore,the high FA content delays the car-bonization process of novolac/FA resins.The 13C and 15N CP/MAS spectra of N2-40and N2-31are shown in Figures 8and 9.Their reaction courses were similar to N1-40and N1-31.N2-40also carbonized more quickly than N2-31systems in the 300-400°C range.The intensities at 103and 35ppm of N2-31at 400°C were higher than those in N2-40(taking aro-matic peak at 122-128ppm as initial reference),and the methyl intensity also increased and then decreased slowly in N2-31.The aliphatic resonances at 35ppm also decreased more slowly in N2-31,because the peak could be noticed even at 800°C in N2-31,but not in N2-40.The nitrogen structure distribution in N2-40is also different from that in N2-31.N2-40contained more imides/amides and oxidized species,but N2-31pre-sented more nitriles and quinoline/acridine structures in the resin after baking to high temperatures.N1-40was more reactive than N2-40in carbonization process in the 300-400°C range;at 400°C,N1-40displayed relatively low intensities at 103ppm and 10-50ppm (aliphatic carbons)compared with N2-40.As reported previously,para -reactive sites in novolac reins are more reactive in the initial formation of curing intermediates and then converting to methylene link-ages between phenol rings.N1contains a higher ratio of para -reactive sites than N2,and their reactivity also appeared in the initial stage of pyrolysis process.An increase of FA content significantly delayed the carbon-ization process in the low-temperature range.This contrasts with the FA effect on curing of novolac/HMTA systems in which FA acted as a good solvent for the initial reactions and let the curing start atrelativelyFigure 8.13C CP/MAS spectra (contact time,2ms)of N2-40(left)and N2-31(right)after pyrolysis up to 800°beled HMTAwas used.390Chem.Mater.,Vol.11,No.2,1999Zhang and Solomonlow temperatures.18However,the two resins in N1-31to N2-31did not show significantly different reactivity in the carbonization process,possibly because the effect of the FA content was dominant and caused a lower reactivity in these systems;the effect of novolac struc-ture became less important.However,we did observe the effect of novolac structure on the distribution of nitrogen structures in the baked resins (compare Figure 7with Figure 9).The carbons obtained from the resins still showed a different distribution of nitrogen-contain-ing structures.Currently,an investigation of novolac,resole,FA resins,in conjunction with novolac/HMTA and novolac/HMTA/FA systems is being conducted by our group.The carbonization processes of these resins are being compared,and the relationship between the starting materials and their carbon structures/proper-ties after pyrolysis is being examined.ConclusionCarbonization reactions of novolac/HMTA/FA resins mainly occur at a temperature range of 300-600°C,and aliphatic species disappear above 800°C.Nitrogen (2-3%)still remains in the carbon materials obtained after baking to 800°C.The pyrolysis process can beinfluenced by the chemical structure of the starting novolac resins (ca.the ratio of ortho/para reactive sites)and the FA content in the mixed systems.Where a novolac resin contains a high ratio of para -unsubstituted phenolic positions as reactive sites,the system under-goes a relatively fast reaction and the carbonization occurs at relatively lower temperatures,because the para sites are more reactive in both the curing and initial pyrolysis processes.A high FA content slows down the carbonization process,causing the intensities of aliphatic carbons to decrease more slowly and reac-tions occur at relatively high temperatures.Original novolac structures and FA content in the systems also vary the nitrogen structures during the carbonization process and the structure distribution in the carbon materials obtained at 800°C.Acknowledgment.This work was supported by the Australian Industry Research and Development Board (Grant no.15068),the Australian Research Council,and Comalco Aluminum Ltd.We thank M.J.Caulfield for preparing the 13C-and 15N-enriched HMTA.CM980605IFigure 9.15N CP/MAS NMR spectra of N2-40(left)and N2-31(right)using labeled HMTA after pyrolysis up to 800°C.Carbonization of Novolac/HMTA/FA Resins Chem.Mater.,Vol.11,No.2,1999391。

相关文档
最新文档