2019年3月2019届九年级第一次模拟大联考(安徽卷)-数学(全解全析)
2019年安徽省中考数学一模试卷(含答案解析)
2019年安徽省中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A.B.C.D 四个选项,其中只有一个是正确的,请将正确答案的代号填入题后括号内1.(4分)计算2﹣1的结果是()A.B.﹣C.﹣2D.22.(4分)经过约38万公里、26天的漫长飞行,2019年1月3日10时26分,“嫦娥四号“探测器自主着陆在月球背面南极一艾特肯盆地内的冯,卡门擅击坑内,实现人类探测器的首次月背软着陆,数据38万用科学记数法可表示为()A.0.38×106B.3.8×107C.3,8×108D.3.8×1053.(4分)下列计算错误的是()A.(ab≠0 )B.ab2÷(b≠0)C.2a2b+3ab2=5a3b3D.(ab2)3=a3b64.(4分)不等式组的解集是()A.x>2B.x≥1C.1≤x<2D.x≥﹣15.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.6.(4分)如图,AB是⊙O的直径,BC是⊙O的弦,∠AOC=80°,则∠C的度数为()A.20°B.30°C.40°D.50°7.(4分)由于春季气温回暖,某服装店从3月份开始对冬装进行“折上折“(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需490元,设该店冬装原本打x折,则有()A.490(1﹣2x)=1000B.1000(1﹣x2)=490C.1000=490D.1000=4908.(4分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁11.111.110.910.9平均数(米)方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁9.(4分)二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限10.(4分)甲、乙、丙三位同学围成一圈玩循环报数游戏,规定:①甲、乙、丙首次报出的数依次1,2.3.接着甲报4.乙报5******,按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是2019时,报数结束;②若报出的数为偶数,则报该数的同学需要拍手一次,在此过程中,丙同学拍手的次数是()A.334B.335C.336D.337二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)﹣6的相反数等于.12.(5分)分解因式;ax2+ay2﹣2axy=.13.(5分)如图,在四边形ABCD中,AC=BD=8,E、F、G、H分别是边AB、BC、CD、DA的中点,则EG2+FH2的值为.14.(5分)如图,点A是x轴负半轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(0,4),设点A的坐标为A(n,0),连接OD,当OD=时,n=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|+(2cos30°﹣1)0﹣.16.(8分)《九章算术》中有这样道题,原文如下:今有共买豕,人出一百,盈一百,人出九十,适足,问人数、豕价各几何?大意为:今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适,问合伙的人数、猪价各是多少?四、(本大题共2小题,每小题8分满分16分)17.(8分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B 两点(点A在第一象限).若点A的横坐标为4.(1)求k的值.(2)根据图象,直接写出当>x时,x的取值范围,18.(8分)在由边长为1个单位长度的小正方形组成的网格中建立直角坐标系,△ABC的位置如图所示.(1)试在网格图中画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称.(2)直接写出点C1的坐标与线段OC1的长度,五、(本大题共2小题,每小题10分,满分20分)19.(10分)现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:5640 6430 6320 6798 7325 8430 8215 7453 7446 67547638 6834 7325 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95002E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=,n=.(2)补全频数分布直方图.(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.20.(10分)如图1所示的是午休时老师们所用的一种折叠椅,现将躺椅以如图2所示的方式倾斜放置,AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,BP是躺椅的伸缩支架,且30°≤BPM≤90°.(结果精确到1厘米;参考数据 1.4, 1.7, 2.2)(1)求此时点C与地面的距离.(2)在(1)的条件下,求伸缩支架BP可达到的最大值.六、(本题满分12分)21.(12分)如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=°;(2)求证:DE与⊙O相切;(3)点F在上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.七、(本题满分12分)22.(12分)某4A风景区准备开设风光游览业务,调查后发现,准备4辆风光游览车时,每辆车每天有16班;且每增加1辆风光游览车,每辆车就需减少2个班次若每辆游览车的载客人数为20人,且每班均载满游客,设游览车的辆数为x(x>0),(1)设每天运送的游客人数为w,求w关于x的函数关系式,(2)该景区应开设多少辆游览车,才能运送最多的游客?最多的人数是多少?(3)已知每辆车每个班次的成本为100元,每名游客的游览车票价为10元,另外该景区每天还需支付其他费用共3000元,若每天此项业务的收入为4200元,求x的值.八、(本题满分14分)23.(14分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别:S▱ABCD=.是线段,;S矩形AEFG(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.2019年安徽省中考数学一模试卷(解析版)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A.B.C.D四个选项,其中只有一个是正确的,请将正确答案的代号填入题后括号内1.(4分)计算2﹣1的结果是()A.B.﹣C.﹣2D.2【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得答案.【解答】解:原式=,故选:A.【点评】此题主要考查了负整数指数幂,关键是掌握计算公式.2.(4分)经过约38万公里、26天的漫长飞行,2019年1月3日10时26分,“嫦娥四号“探测器自主着陆在月球背面南极一艾特肯盆地内的冯,卡门擅击坑内,实现人类探测器的首次月背软着陆,数据38万用科学记数法可表示为()A.0.38×106B.3.8×107C.3,8×108D.3.8×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将38万用科学记数法表示为:3.8×105.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)下列计算错误的是()A.(ab≠0 )B.ab2÷(b≠0)C.2a2b+3ab2=5a3b3D.(ab2)3=a3b6【分析】根据分分式的运算法则以及整式的运算法则即可求出答案.【解答】解:(C)原式=2a2b+3ab2,故选:C.【点评】本题考查学生的运算,解题的关键是熟练运用运算法则,本题属于基础题型.4.(4分)不等式组的解集是()A.x>2B.x≥1C.1≤x<2D.x≥﹣1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,则不等式组的解集为x>2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.6.(4分)如图,AB是⊙O的直径,BC是⊙O的弦,∠AOC=80°,则∠C的度数为()A.20°B.30°C.40°D.50°【分析】根据圆周角定理直接来求∠B的度数,进而解答即可.【解答】解:∵∠AOC=80°,∴∠B=40°,∵OC=OB,∴∠C=∠B=40°,故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(4分)由于春季气温回暖,某服装店从3月份开始对冬装进行“折上折“(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需490元,设该店冬装原本打x折,则有()A.490(1﹣2x)=1000B.1000(1﹣x2)=490C.1000=490D.1000=490【分析】设该店冬装原本打x折,根据原价及经过两次打折后的价格,可得出关于x的一元二次方程,此题得解.【解答】解:设该店冬装原本打x折,依题意,得:1000(1﹣)2=490.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.(4分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁11.111.110.910.9平均数(米)方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.9.(4分)二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【分析】由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【解答】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选:A.【点评】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.10.(4分)甲、乙、丙三位同学围成一圈玩循环报数游戏,规定:①甲、乙、丙首次报出的数依次1,2.3.接着甲报4.乙报5******,按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是2019时,报数结束;②若报出的数为偶数,则报该数的同学需要拍手一次,在此过程中,丙同学拍手的次数是()A.334B.335C.336D.337【分析】设丙同学第n次报的数为a n(n为正整数),根据报数的规律可找出a n=3n且丙同学报的数奇偶交替出现,再结合2019=673,673÷2=336.5,即可找出结论.【解答】解:设丙同学第n次报的数为a n(n为正整数),根据题意得:a1=3,a2=6,a3=9,a4=12,a5=15,…,∴a n=3n.∴丙同学报的数奇偶交替出现.∵2018=673,673÷2=336.5,∴丙同学需要拍手的次数为336.故选:C.【点评】本题考查了规律型中数字的变化类,根据报数的规律找出甲报的数奇偶交替出现是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)﹣6的相反数等于6.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣6的相反数等于:6.故答案为:6.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.12.(5分)分解因式;ax2+ay2﹣2axy=a(x﹣y)2.【分析】先提取公因式a,在用完全平方公式进行分解即可.【解答】解:ax2+ay2﹣2axy=a(x2+y2﹣2xy)=a(x﹣y)2.故答案为a(x﹣y)2.【点评】本题考查提公因式法和公式法进行因式分解.能够分解完全是解题的关键.13.(5分)如图,在四边形ABCD中,AC=BD=8,E、F、G、H分别是边AB、BC、CD、DA的中点,则EG2+FH2的值为64.【分析】连接HE、EF、FG、GH,根据三角形中位线定理、菱形的判定定理得到平行四边形HEFG是菱形,根据菱形的性质、勾股定理计算即可.【解答】解:连接HE、EF、FG、GH,∵E、F分别是边AB、BC的中点,∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四边形HEFG为平行四边形,∵AC=BD,∴EH=EF,∴平行四边形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案为:64.【点评】本题考查的是中点四边形,掌握三角形中位线定理、菱形的判定和性质定理是解题的关键.14.(5分)如图,点A是x轴负半轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(0,4),设点A的坐标为A(n,0),连接OD,当OD=时,n=﹣2.【分析】先求得OD与y轴的夹角为45°,然后依据OD的长,可求得OF和DF的长,作辅助线,构建全等三角形,再证明△AFD≌△DEC,从而可得到AF=DE=3,从而可得到点A的坐标.【解答】解:如图所示:过点D作EF⊥x轴于F,过C作CE⊥EF于E,∵四边形ABCD为正方形,∴A、B、C、D四点共圆,∠DAC=45°.又∵∠COA=90°,∴点O也在这个圆上,∴∠COD=∠CAD=45°.又∵OD=,∴OF=DF=1.∵C(0,4),∴OC=EF=4,∴DE=4﹣1=3,∵四边形ABCD为正方形,∴AD=CD,∵∠ADC=90°,∴∠ADF+∠CDE=∠CDE+∠DCE=90°,∴∠ADF=∠DCE,∵∠AFD=∠DEC=90°,∴△AFD≌△DEC(SAS),∴AF=DE=3,∴AO=2,∴A(﹣2,0),即n=﹣2;故答案为:﹣2.【点评】本题主要考查的是正方形的性质、全等三角形的性质、四点共圆,证得OD与两坐标轴的夹角为45°是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|+(2cos30°﹣1)0﹣.【分析】原式利用绝对值的代数意义,零指数指数幂法则,以及二次根式性质计算即可求出值.【解答】解:原式=2+1﹣5=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(8分)《九章算术》中有这样道题,原文如下:今有共买豕,人出一百,盈一百,人出九十,适足,问人数、豕价各几何?大意为:今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适,问合伙的人数、猪价各是多少?【分析】设合伙的人数为x人,猪价为y钱,根据“每人出100钱,则会多出100钱;每人出90钱,恰好合适”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设合伙的人数为x人,猪价为y钱,依题意,得:,解得:.答:合伙的人数为10人,猪价为900钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共2小题,每小题8分满分16分)17.(8分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B 两点(点A在第一象限).若点A的横坐标为4.(1)求k的值.(2)根据图象,直接写出当>x时,x的取值范围,【分析】(1)先将x=4代入正比例函数y=x,可得出y=3,求得点A(4,3),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.【解答】解:(1)∵点A一次函数y=x的图象上,∴把x=4代入正比例函数y=x,解得y=3,∴点A(4,3),∵点A与B关于原点对称,∴B点坐标为(﹣4,﹣3),把点A(4,2)代入反比例函数y=;(2)由交点坐标,根据图象可得当>x时,x的取值范围为:x<﹣4或0<x<4.【点评】本题考查了应用待定系数法求反比例函数的解析式,这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.18.(8分)在由边长为1个单位长度的小正方形组成的网格中建立直角坐标系,△ABC的位置如图所示.(1)试在网格图中画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称.(2)直接写出点C1的坐标与线段OC1的长度,【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点C1的位置,写出坐标,利用两点间的距离公式计算即可.【解答】解:(1)△A1B1C1如图所示.(2)C1(﹣2,﹣1),OC1==.【点评】本题考查作图﹣轴对称变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、(本大题共2小题,每小题10分,满分20分)19.(10分)现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:5640 6430 6320 6798 7325 8430 8215 7453 7446 67547638 6834 7325 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95002E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=5,n=1.(2)补全频数分布直方图.(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.【分析】(1)由题干所给数据统计即可得;(2)依据以上所得m、n的值即可补全图形;(3)用C、D、E组的频数和除以数据的总数可得.【解答】解:(1)由题意知,7500≤x<8500的人数m=5,9500≤x<10500的人数n =1,故答案为:5,1;(2)补全频数分布直方图如下:(3)估计该好友的步数不低于7500步(含7530步)的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(10分)如图1所示的是午休时老师们所用的一种折叠椅,现将躺椅以如图2所示的方式倾斜放置,AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,BP是躺椅的伸缩支架,且30°≤BPM≤90°.(结果精确到1厘米;参考数据 1.4, 1.7, 2.2)(1)求此时点C与地面的距离.(2)在(1)的条件下,求伸缩支架BP可达到的最大值.【分析】(1)根据题意和图象,利用锐角三角函数可以解答本题;(2)根据(1)中的条件和图形,可以求得伸缩支架BP可达到的最大值.【解答】解:(1)∵AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,∴点A到地面的距离为:AM•sin s45°=50×=25(厘米),CD=BC•sin30°=72×=36(厘米),∴点C与地面的距离是:25+36≈71(厘米),即此时点C与地面的距离是71厘米;(2)∵AB∥ME,∴点B到ME的距离是25厘米,∴BP=,∵30°≤BPM≤90°,∴当∠MPM=30°时,BP取得最大值,此时BP==50≈70(厘米),即伸缩支架BP可达到的最大值是70厘米.【点评】本题考查解直角三角形的应用、特殊角的三角函数值,解答本题的关键是明确题意,利用数形结合的思想解答.六、(本题满分12分)21.(12分)如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=60°;(2)求证:DE与⊙O相切;(3)点F在上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.【分析】(1)由CD⊥AB和M是OA的中点,利用三角函数可以得到∠DOM=60°,进而得到△OAD是等边三角形,∠OAD=60°.(2)只需证明DE⊥OD.便可以得到DE与⊙O相切.(3)利用圆的综合知识,可以证明,∠CND=90°,∠CFN=60°,根据特殊角的三角函数值可以得到FN的数值.【解答】解:(1)如图1,连接OD,AD∵AB是⊙O的直径,CD⊥AB∴AB垂直平分CD∵M是OA的中点,∴OM=OA=OD∴cos∠DOM==∴∠DOM=60°又:OA=OD∴△OAD是等边三角形∴∠OAD=60°故答案为:60°(2)∵CD⊥AB,AB是⊙O的直径,∴CM=MD.∵M是OA的中点,∴AM=MO.又∵∠AMC=∠DMO,∴△AMC≌△OMD.∴∠ACM=∠ODM.∴CA∥OD.∵DE⊥CA,∴∠E=90°.∴∠ODE=180°﹣∠E=90°.∴DE⊥OD.∴DE与⊙O相切.(3)如图2,连接CF,CN,∵OA⊥CD于M,∴M是CD中点.∴NC=ND.∵∠CDF=45°,∴∠NCD=∠NDC=45°.∴∠CND=90°.∴∠CNF=90°.由(1)可知∠AOD=60°.∴.在Rt△CDE中,∠E=90°,∠ECD=30°,DE=3,∴.在Rt△CND中,∠CND=90°,∠CDN=45°,CD=6,∴.由(1)知∠CAD=2∠OAD=120°,∴∠CFD=180°﹣∠CAD=60°.在Rt△CNF中,∠CNF=90°,∠CFN=60°,,∴.【点评】本题考查圆的综合运用,特别是垂径定理、切线的判定要求较高,同时对于特殊角的三角函数值的运用有所考察,需要学生能具有较强的推理和运算能力.七、(本题满分12分)22.(12分)某4A风景区准备开设风光游览业务,调查后发现,准备4辆风光游览车时,每辆车每天有16班;且每增加1辆风光游览车,每辆车就需减少2个班次若每辆游览车的载客人数为20人,且每班均载满游客,设游览车的辆数为x(x>0),(1)设每天运送的游客人数为w,求w关于x的函数关系式,(2)该景区应开设多少辆游览车,才能运送最多的游客?最多的人数是多少?(3)已知每辆车每个班次的成本为100元,每名游客的游览车票价为10元,另外该景区每天还需支付其他费用共3000元,若每天此项业务的收入为4200元,求x的值.【分析】(1)设游览车的辆数为x,则每辆车每天有[16﹣2(x﹣4)]班,根据每天运送的游客人数=游览车的辆数×每辆车每天的班次数×20,即可得出w关于x的函数关系式;(2)由(1)的结论,利用二次函数的性质即可解决最值问题;(3)根据每天此项业务的收入=每天运送的游客人数×10﹣100×游览车的辆数×每辆车每天的班次数﹣其他费用,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)设游览车的辆数为x,则每辆车每天有[16﹣2(x﹣4)]班,依题意,得:w=20x•[16﹣2(x﹣4)]=﹣40x2+480x.(2)w=﹣40x2+480x=﹣40(x﹣6)+1440,∵a=﹣40<0,∴当x=6时,w取得最大值,最大值为1440.答:该景区应开设6辆游览车,才能运送最多的游客,最多的人数是1440.(3)依题意,得:10×(﹣40x2+480x)﹣100x•[16﹣2(x﹣4)]﹣3000=4200,整理,得:x2﹣12x+36=0,解得:x1=x2=6.答:当每天此项业务的收入为4200元时,x的值为6.【点评】本题考查了一元二次方程的应用以及二次函数的性质,解题的关键是:(1)根据各数量之间的关系,找出w关于x的函数关系式;(2)利用二次函数的性质,求出w 的最大值;(3)找准等量关系,正确列出一元二次方程.八、(本题满分14分)23.(14分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别:S▱ABCD=1:2.是线段AE,GF;S矩形AEFG(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.【分析】(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S矩形AEFG=S▱ABCD,即可得出答案;(2)由矩形的性质和勾股定理求出FH,即可得出答案;(3)折法1中,由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM =CM==3,得出AD=BG=BM﹣GM=1,BC=BM+CM=7;折法2中,由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB =4,DG=NG,NH=CH,BM=FM,MC=CN,求出GH=CD=5,由叠合正方形的性质得出EM=GH=5,正方形EMHG的面积=52=25,由勾股定理求出FM=BM==3,设AD=x,则MN=FM+FN=3+x,由梯形ABCD的面积得出BC=﹣x,求出MC=BC﹣BM=﹣x﹣3,由MN=MC得出方程,解方程求出AD=,BC =;折法3中,由折叠的性质、正方形的性质、勾股定理即可求出BC、AD的长.【解答】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,=S▱ABCD,∴S矩形AEFG:S▱ABCD=1:2;∴S矩形AEFG故答案为:AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH==13,由折叠的性质得:AD=FH=13;(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC =90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM===3,∴AD=BG=BM﹣GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG =NG,NH=CH,BM=FM,MN=MC,∴GH=CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴FM=BM==3,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=(AD+BC)×8=2×25,∴AD+BC=,∴BC=﹣x,∴MC=BC﹣BM=﹣x﹣3,∵MN=MC,∴3+x=﹣x﹣3,解得:x=,∴AD=,BC=﹣=;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=4,GM=FM=4,CM==3,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,∴AD=5.【点评】本题是四边形综合题目,考查了折叠的性质、正方形的性质、勾股定理、梯形面积的计算、解方程等知识;本题综合性强,有一定难度.。
2019届安徽省片九年级第一次联考数学试卷【含答案及解析】
2019届安徽省片九年级第一次联考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 抛物线的对称轴是()A.直线 B.直线 C.y轴 D.直线x=22. 已知(5,-1)是双曲线上的一点,则下列各点中不在该图象上的是()A.(,-15) B.(5,1) C.(-1,5) D.(10,)3. 下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A. B. C.D.4. 已知x:y=5:2,则下列各式中不正确的是()A.= B.= C.= D.=5. 若△ABC∽△A′B′C′,其面积比为1:2,则△ABC与△A′B′C′的相似比为()A.1:2 B. C.1:4 D.6. 如图,在△ABC中,∠ADE=∠C,那么下列等式中,成立的是()A.= B.=C.= D.=7. 将抛物线的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是()A. B.C. D.8. 函数的图象上有两点,,若,则下列结论正确的是()A. B.C. D.、的大小不确定9. 如图,△ABC中,AE交BC于点D,∠C =∠E,AD:DE = 3:5,AE=8,BD=4,则DC的长等于()A. B. C. D.10. 如图,△ABC中,AB=AC=10 cm,BD⊥AC于点D,且BD=6 cm,动点P从点B出发,以1 cm/s的速度,沿B→A的方向运动,到达点A时停止,动点Q从点A出发,以2cm/s的速度,沿A→C的方向运动,到达点C时停止,P、Q两点同时出发,设运动的时间为t (s),△APQ的面积为S(cm2),则S关于t的函数图象大致为()二、填空题11. 写出一个开口向下,顶点坐标是(1,-2)的二次函数解析式.12. 如图,A、B两点被池塘隔开,在AB外取一点C,连接AC、BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于N,量得MN=38m,则AB的长为.13. 已知二次函数的部分图象如图所示,则关于x的一元二次方程的解为.14. 如图,△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,点P为BC的中点,连接DE、PD、PE,下列结论中正确的是.①PD=PE;②=;③△PDE为等边三角形;④当∠ABC=45°,BE=PC三、解答题15. 已知二次函数y=-x2+4x+5,完成下列各题:(1)将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴.(2)求出它的图象与坐标轴的交点坐标.(3)在直角坐标系中,画出它的图象.(4)根据图象说明:当x为何值时,y>0;当x为何值时,y<0.四、填空题16. 如图,点A1(1,0),过A1作轴的垂线交直线于点B1,以A1B1为边向右作正方形,在轴上一边的另一个端点为A2,过A2作轴的长线交直线于点B2,以A2B2为右作正方形,…,依次进行下去.(1)第4个正方形的边长是,第5个正方形的边长是;(2)写出点An的坐标.五、解答题17. 如图,已知抛物线的对称轴为直线,交轴于A、B两点,交轴于C点,其中B点的坐标为(3,0).(1)直接写出A点的坐标;(2)求二次函数的解析式.18. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;(1)先作△ABC关于直线成轴对称的图形,再向上平移1个单位,得到△A1B1C1;(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.19. 如图,已知一次函数的图象与反比例函数的图象交于,两点,且点的横坐标和点的纵坐标都是.求:(1)一次函数解析式;(2)求的面积.20. 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.21. 如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.22. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm 的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.六、计算题23. 某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量w(kg)随销售单价x(元/ kg)的变化而变化,具体变化规律如下表所示24. 销售单价x(元/ kg)……7075808590……月销售量w(kg)……10090807060……td参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。
2019年安徽省中考数学模拟试卷(一)(解析版)
2019年安徽省中考数学模拟试卷(一)一.单项选择题.(本大题共10小题,每小题4分,共40分.每小题只有一个正确答案,请将正确的答案的序号填入括号中.)1.|﹣2|等于()A.﹣2B.﹣C.2D.2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b34.如图所示的几何体,它的俯视图是()A.B.C.D.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)6.某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元D.(1+10%)x万元7.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0B.x2﹣36x+36=0C.4x2+4x+1=0D.x2﹣2x﹣1=08.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同9.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB10.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.)11.已知x=3是关于x的不等式3x﹣的解,则a的取值范围是.12.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO =10,则⊙O的半径长为.13.已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是.14.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD 是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为.三、(本大题共2小题,每小题8分,共16分.)15.计算:(﹣2)2+20180﹣.16.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?四、(本大题共2小题,每小题8分,共16分.)17.在下面16x8的正方形网格中,每个小正方形的边长为1个单位,△ABC是格点三角形(顶点在网格交点处),请你画出:(1)△ABC的中心对称图形,A点为对称中心;(2)△ABC关于点P的位似△A′B′C′,且位似比为1:2;(3)以A、B、C、D为顶点的所有格点平行四边形ABCD的顶点D.18.观察下列等式:第1个等式:a1=第2个等式:a2=第3个等式:a3=…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+…+a2017的值.五、(本大题共2小题,每小题10分,共20分.)19.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)20.已知Rt△ABC,∠ACB=90°,分别按照下列要求尺规作图,并保留作图痕迹.(1)作△ABC的外心O;(2)在AB上作一点P,使得∠CPB=2∠ABC.六、(本题满分12分.)21.某中学为推进素质教育,在初一年级设立了六个课外兴趣小组,如图是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:(1)初一年级共有多少人?(2)补全频数分布直方图.(3)求“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率.七、(本题满分12分.)22.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?八、(本题满分14分.)23.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.2019年安徽省中考数学模拟试卷(一)参考答案与试题解析一.单项选择题.(本大题共10小题,每小题4分,共40分.每小题只有一个正确答案,请将正确的答案的序号填入括号中.)1.|﹣2|等于()A.﹣2B.﹣C.2D.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.如图所示的几何体,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从几何体上面看,2排,上面3个,下面1个,左边2个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可.【解答】解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;D、ax2﹣9,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.6.某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元D.(1+10%)x万元【分析】直接利用2月份比1月份减少了10%,表示出2月份产值.【解答】解:∵1月份产值x亿元,2月份的产值比1月份减少了10%,∴2月份产值达到(1﹣10%)x亿元.故选:A.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.7.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0B.x2﹣36x+36=0C.4x2+4x+1=0D.x2﹣2x﹣1=0【分析】根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△=0时,方程有两个相等的实数根”即可找出结论.【解答】解:A、∵△=(﹣4)2﹣4×1×(﹣4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;B、∵△=(﹣36)2﹣4×1×36=1152>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=42﹣4×4×1=0,∴该方程有两个相等的实数根,C符合题意;D、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同【分析】利用方差的定义、以及众数和中位数的定义分别计算得出答案.【解答】解:∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为=8(环),中位数为=8(环)、众数为8环,方差为×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=(环2),∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为=,中位数为=8(环)、众数为8环,方差为×[2×(7﹣)2+3×(8﹣)2+(9﹣)2]=(环2),则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选:D.【点评】此题主要考查了中位数以及方差以及众数的定义等知识,正确掌握相关定义是解题关键.9.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB【分析】根据平行四边形的判断方法一一判断即可;【解答】解:A、由AE=CF,可以推出DF=EB,DF∥EB,四边形ABCD是平行四边形;B、由DE=BF,不能推出四边形ABCD是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,DF∥EB,四边形ABCD是平D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,DF∥EB,四边形ABCD是平行四边形;故选:B.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.【分析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y=×2×2﹣(2﹣x)×(2﹣x)=﹣x2+2x.当A从D点运动到E点时,即2<x≤4时,y=×[2﹣(x﹣2)]×[2﹣(x﹣2)]=x2﹣4x+8,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.【点评】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.二、填空题(本大题共4小题,每小题5分,共20分.)11.已知x =3是关于x 的不等式3x ﹣的解,则a 的取值范围是 a <4 .【分析】将x =3代入不等式,再求a 的取值范围.【解答】解:∵x =3是关于x 的不等式3x ﹣的解,∴9﹣>2,解得a <4.故a 的取值范围是a <4. 故答案为:a <4.【点评】本题考查了不等式的解的定义及一元一次不等式的解法,根据不等式的解的定义得出9﹣>2是解题的关键.12.如图,菱形ABCD 的边AB =20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,若AO=10,则⊙O 的半径长为 2.【分析】如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得=,即可解决问题.【解答】解:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB =20,面积为320, ∴AB •DH =320, ∴DH =16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2,故答案为:2.【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.13.已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(﹣2,﹣4).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称,据此进行解答.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.14.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为.【分析】设AB=x,利用△BCD∽△BAC,得,列出方程即可解决问题.【解答】解:∵△BCD∽△BAC,∴,设AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4﹣1=3,∵△BCD∽△BAC,∴,∴CD=.故答案为:【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD ∽△BAC解答.三、(本大题共2小题,每小题8分,共16分.)15.计算:(﹣2)2+20180﹣.【分析】首先计算乘方、零次幂和开平方,然后再计算加减即可.【解答】解:原式=4+1﹣6=﹣1.【点评】此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.16.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?【分析】(1)设甲、乙两队合作t天,甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天,所以乙队单独完成这项工程的速度是甲队单独完成这项工程的,由题意可列方程60﹣20=t(1+),解答即可;(2)把在工期内的情况进行比较即可;【解答】解:(1)设甲、乙两队合作t天,由题意得:乙队单独完成这项工程的速度是甲队单独完成这项工程的,∴60﹣20=t(1+)解得:t=24(2)(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.四、(本大题共2小题,每小题8分,共16分.)17.在下面16x8的正方形网格中,每个小正方形的边长为1个单位,△ABC是格点三角形(顶点在网格交点处),请你画出:(1)△ABC的中心对称图形,A点为对称中心;(2)△ABC关于点P的位似△A′B′C′,且位似比为1:2;(3)以A、B、C、D为顶点的所有格点平行四边形ABCD的顶点D.【分析】(1)由A为对称中心,故A点不动,连接BA并延长,使AD=AB,连接CA并延长,使AE=AC,连接ED,三角形AED为三角形ABC关于A中心对称的图形,如图所示;(2)连接AP并延长,使A′P=2AP,连接BP并延长,使B′P=2BP,连接CP并延长,使C′P=2CP,连接A′B′,A′C′,B′C′,△A′B′C′为所求作的三角形;(3)满足题意的D点有3个,分别是以AB为对角线作出的平行四边形ACBD1,以AC为对角线的平行四边形ABCD2,以BC为对角线的平行四边形ABD3C,如图所示.【解答】解:(1)如图所示:△AED为所求作的三角形;(2)如图所示:△A′B′C′为所求作的三角形;(3)如图所示:D1,D2,D3为所求作的点.【点评】此题考查了作图﹣位似变换及旋转变换,以及平行四边形的判定与性质,其中画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形,同时第三问满足题意的点D的位置有3处,注意找全.18.观察下列等式:第1个等式:a1=第2个等式:a2=第3个等式:a3=…请解答下列问题:(1)按以上规律列出第5个等式:a5==×(﹣);(2)用含有n的代数式表示第n个等式:a n==×(﹣)(n为正整数);(3)求a1+a2+a3+…+a2017的值.【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式可得;(3)根据以上所得规律列出算式×(1﹣)+×(﹣)+×(﹣)+……+×(﹣),再进一步计算可得.【解答】解:(1)a5==×(﹣),故答案为:,×(﹣).(2)a n==×(﹣),故答案为:,×(﹣).(3)a1+a2+a3+…+a2017=×(1﹣)+×(﹣)+×(﹣)+……+×(﹣)=×(1﹣+﹣+﹣+……+﹣)=×(1﹣)=×=.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.五、(本大题共2小题,每小题10分,共20分.)19.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)【分析】过点D作DF⊥AB于点F,过点C作CH⊥DF于点H,则DE=BF=CH=10m,根据直角三角形的性质得出DF的长,在Rt△CDE中,利用锐角三角函数的定义得出CE的长,根据BC=BE﹣CE即可得出结论.【解答】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.已知Rt△ABC,∠ACB=90°,分别按照下列要求尺规作图,并保留作图痕迹.(1)作△ABC的外心O;(2)在AB上作一点P,使得∠CPB=2∠ABC.【分析】(1)根据垂直平分线的作法作出AB的垂直平分线交AB于点O即为所求;(2)根据以C为圆心,CO为半径画弧,交AB于点P.【解答】解:(1)如图,点O即为所求:(2)如图,点P即为所求:∵OC=OB,∴∠COP=2∠ABC,∵CO=CP,∴∠CPB=∠COP=2∠ABC.【点评】本题考查了作图﹣复杂作图.解决此类题目的关键是熟悉基本几何图形的性质.六、(本题满分12分.)21.某中学为推进素质教育,在初一年级设立了六个课外兴趣小组,如图是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:(1)初一年级共有多少人?(2)补全频数分布直方图.(3)求“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率.【分析】(1)用科技小组的频数除以它所占的百分比即可得到总人数;(2)先计算出体育小组的人数,然后补全频数分布直方图.(3)利用概率公式求解.【解答】解:(1)32÷10%=320,所以初一年级共有320人;(2)体育小组的人数=320﹣48﹣64﹣32﹣64﹣16=96(人),频数分布直方图为:(3)“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图.七、(本题满分12分.)22.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x 元、每星期售出商品的利润为y 元,请写出y 与x 的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y =(70﹣x ﹣50)(300+20x )=﹣20x 2+100x +6000, ∵70﹣x ﹣50>0,且x ≥0,∴0≤x <20;(2)∵y =﹣20x 2+100x +6000=﹣20(x ﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.八、(本题满分14分.)23.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.【分析】(1)结论:FD=FC,DF⊥CF.理由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【解答】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2019-2020学年安徽省大联考九年级(上)月考数学试卷解析版
2019-2020学年安徽省大联考九年级(上)月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项其中只有一个是正确的)1.(4分)下列函数是二次函数的是()A.y=2x﹣1B.y=ax2+b+c C.y=(x+2)2﹣5D.y=2.(4分)将抛物线y=2x2向右平移1个单位,得到的抛物线是()A.y=2x2+1B.y=2x2﹣1C.y=2(x+1)D.y=2(x﹣1)23.(4分)共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a4.(4分)在平面直角坐标系xOy中,抛物线y=a(x﹣1)2﹣1(a≠0)的顶点坐标是()A.(2,﹣1)B.(﹣1,﹣1)C.(1,1)D.(1,﹣1)5.(4分)若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1B.b>1C.0<b<1D.b<1且b≠06.(4分)下列二次函数的图象中,其对称轴是x=1的为()A.y=x2+2x B.y=x2﹣2x C.y=x2﹣2D.y=x2﹣4x7.(4分)中国贵州省内的射电望远镜(F AST)是目前世界上口径最大,精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点O到口径面AB的距离是100米,若按如图(2)建立平面直角坐标系,则抛物线的解析式是()A.y=x2﹣100B.y=﹣x2﹣100C.y=x2D.y=﹣x28.(4分)某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是()A.B.C.D.9.(4分)如图,P是抛物线y=﹣x2+x+3在第一象限的点,过点P分别向x轴和y轴引垂线,垂足分别为A、B,则四边形OAPB周长的最大值为()A.6B.7.5C.8D.410.(4分)下面所示各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象.正确的是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)已知关于x的一元二次方程x2+bx﹣c=0无实数解,则抛物线y=﹣x2﹣bx+c经过象限.12.(5分)汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式是s=8t﹣2t2,汽车刹车后停下来前进的距离是米.13.(5分)如图,在平面直角坐标系中,A(﹣3,0),B(0,1),形状相同的抛物线Cn(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C8的顶点坐标为().14.(5分)在直角坐标系中,点A的坐标为(3,0),若抛物线y=x2﹣2x+n﹣1与线段OA有且只有一个公共点,则n的取值范围为.二、(本大题共2小题,每小题8分,满分16分)15.(8分)已知二次函数y=0.5x2﹣x﹣0.5求顶点坐标,小明的计算结果与其他同学的不同,请你帮他检查一下,在标出的②③④几个步骤中开始出现错误的是步,请将此题正确的求顶点的计算过程写在下面的方框内.小明的计算过程:y=0.5x2﹣x﹣0.5=x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2∴顶点坐标是(1,﹣2).16.(8分)已知二次函数y=x2﹣2x﹣1.(1)请在表内的空格中填入适当的数;(2)根据列表,请在所给的平面直角坐标系中画出y=x2﹣2x﹣1的图象;(3)当x在什么范围内时,y随x增大而减小;四、(本大题共2小题,每小题8分,满分16分)17.(8分)已知二次函数的图象经过点A(﹣2,0),B(1,3)和点C.(1)点C的坐标可以是下列选项中的(只填序号);①(﹣2,2);②(1,﹣1);③(2,4);④(3,4)(2)若点C坐标为(2,0),求该二次函数的解析式.18.(8分)密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某体育可容纳四千人同时观看比赛,现C区有座位400个,某赛事试营销售阶段发现:当票价为80元时,可售出C区票280张,若每降价1元,可多售出6张票,设降价x元(x取正整数)时,可售出观赛座位票y张.(1)求出y关于x的函数关系式;(2)设C区的总票价为W元,求W关于x的函数关系式,并求出W的最大值.20.(10分)阿波罗尼奥斯(ApolloniusofPerga,约公元前262﹣190年),古希腊数学家,与欧几里得,阿基米德齐名,他的著作《圆锥曲线论》是古代世界光辉的科学成果.材料:《圆锥曲线论》里面对抛物线的定义:平面内一个动点到一个定点与一条定直线的距离之比等于1,或者说:平面内一动点到一定点与一条直线的距离相等的轨迹就是抛物线.问题:已知点P(x,y),A(0,1),直线l:y=﹣1,连接AP,若点P到直线l的距离与P A的长相等,请求出y与x的关系式.解:如图,∵P(x,y),A(0,1),∴P A=∵P(x,y),直线l:y=﹣1,∴点P到直线l的距离为|y+1|,∵点P到直线l的距离与P A的长相等,∴|,平方化简得,y=.若将上述问题中A点坐标改为(1,0),直线l变为x=﹣1,按照问题解题思路,试求出x与y的关系式,并在平面直角坐标系中利用描点法画出其图象,你能发现什么?六、(本题满分12分)21.(12分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了46米木栏.(1)若a=26,所围成的矩形菜园的面积为280平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.七、(本题满分12分)22.(12分)如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)利用直尺和圆规,作出抛物线y=x2+mx+n的对称轴(尺规作图,保留作图痕迹,不写作法);(2)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;(3)在(2)的条件下,点P为抛物线对称轴上的一点,则P A+PC的最小值为.八、(本题满分14分)23.(14分)对于某一函数给出如下定义:对于任意实数m,当自变量x≥m时,函数y关于x的函数图象为G1,将G1沿直线x=m翻折后得到的函数图象为G2,函数G的图象由G1和G2两部分共同组成,则函数G为原函数的“对折函数”,如函数y=x(x≥2)的对折函数为y=.(1)求函数y=(x﹣1)2﹣4(x≥﹣1)的对折函数;(2)若点P(m,5)在函数y=(x﹣1)2﹣4(x≥﹣1)的对折函数的图象上,求m的值;(3)当函数y=(x﹣1)2﹣4x≥n的对折函数与x轴有不同的交点个数时,直接写出n的取值范围.2019-2020学年安徽省大联考九年级(上)月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项其中只有一个是正确的)1.【解答】解:A、该函数式中自变量x的指数是1,它属于一次函数,故本选项错误;B、a=0时,该函数式不是二次函数,故本选项错误;C、该函数式符合二次函数的定义,故本选项正确;D、该函数式右边不是整式,不是二次函数,故本选项错误‘故选:C.2.【解答】解:二次函数y=2x2的图象向右平移1个单位,得:y=2(x﹣1)2,故选:D.3.【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:A.4.【解答】解:(1)∵y=a(x﹣1)2﹣1;∴抛物线的顶点坐标为(1,﹣1);故选:D.5.【解答】解:∵函数y=x2﹣2x+b的图象与坐标轴有三个交点,∴抛物线与x轴有两个交点,与y轴有一个交点,且与x轴、y轴的不能为(0,0),∴(﹣2)2﹣4b>0且b≠0,解得:b<1且b≠0,故选:D.6.【解答】解:∵y=x2+2x=(x+1)2﹣1,∴y=x2+2x的对称轴是直线x=﹣1,故选项A不符合题意;∵y=x2﹣2x=(x﹣1)2﹣1,∴y=x2﹣2x的对称轴是直线x=1,故选项B符合题意;y=x2﹣2的对称轴是直线x=0,故选项C不符合题意,∵y=x2﹣4x=(x﹣2)2﹣4,∴y=x2﹣4x的对称轴是直线x=2,故选项D不符合题意;故选:B.7.【解答】解:由题意可得:A(﹣250,0),O(0,﹣100),设抛物线解析式为:y=ax2﹣100,则0=62500a﹣100,解得:a=,故抛物线解析式为:y=x2﹣100.故选:A.8.【解答】解:由表中数据得x=0和x=4时,y=3;x=1和x=3时,y=0,它们为抛物线上的对称点,而表格中有一组数据计算错误,所以只有x=2时y=﹣1错误.故选:B.9.【解答】解:设P(x,﹣x2+x+3),四边形OAPB周长=2P A+2OA=﹣2x2+2x+6+2x=﹣2x2+4x+6=﹣2(x﹣1)2+8,当x=1时,四边形OAPB周长有最大值,最大值为8.故选:C.10.【解答】解:令ax2+(a+c)x+c=ax+c,解得,x1=0,x2=﹣,∴二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的交点为(0,c),(,0),选项A中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a<0,c>0,故选项A不符题意,选项B中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a>0,c<0,两个函数的交点不符合求得的交点的特点,故选项B不符题意,选项C中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a<0,c>0,交点符合求得的交点的情况,故选项C符合题意,选项D中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a>0,c<0,故选项D不符题意,故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.【解答】解:∵关于x的一元二次方程x2+bx﹣c=0无实数解,∴△=b2+4c<0,∵抛物线y=﹣x2﹣bx+c中,二次项系数﹣1<0,∴抛物线的开口向下,∵判别式=(﹣b)2﹣4×(﹣1)×c=b2+4c<0,∴抛物线与x轴无交点,∴抛物线在x轴的下方,∴抛物线y=﹣x2﹣bx+c经过第三、四象限;故答案为:三、四.12.【解答】解:s=8t﹣2t2=﹣2(t2﹣4t)=﹣2(t﹣2)2+8,故当t=2时,s最大为8m.故答案为:8.13.【解答】解:设直线AB的解析式为y=kx+b,(k≠0),∵A(﹣3,0),B(0,1),∴,解得,∴直线AB的解析式为y=x+1,∵对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,观察发现:每个数都是前两个数的和,∴抛物线C8的顶点坐标的横坐标为55,∴抛物线C8的顶点坐标为(55,).14.【解答】解:∵点A的坐标为(3,0),抛物线y=x2﹣2x+n﹣1=(x﹣1)2+n﹣2与线段OA有且只有一个公共点,∴n﹣2=0或,解得,﹣2≤n<1或n=2,故答案为:﹣2≤n<1或n=2.二、(本大题共2小题,每小题8分,满分16分)15.【解答】解:y=0.5x2﹣x﹣0.5=0.5(x2﹣2x)﹣0.5 ①=0.5(x2﹣2x+1﹣1)﹣0.5 ②=0.5(x﹣1)2﹣1③∴顶点坐标是(1,﹣1)④;故答案为:①;①;②;③;④;16.【解答】解:(1)当x=﹣1时,y=(﹣1)2﹣2×(﹣1)﹣1=2;当x=0时,y=02﹣2×0﹣1=﹣1;当x=1时,y=12﹣2×1﹣1=﹣2;当x=2时,y=22﹣2×2﹣1=﹣1;当x=3时,y=32﹣2×3﹣1=2.填表如下:故答案为:2;﹣1;﹣2;﹣1;2;(2)如图所示:(3)由函数图象可知抛物线的对称轴为x=1,当x<1时,y随x的增大而减小.四、(本大题共2小题,每小题8分,满分16分)17.【解答】解:(1)∵①②的横坐标和A、B的横坐标相同,设经过直线AB的解析式为y=kx+b,∴解得,∴y=x+2,把x=2代入得,y=4,③这个点与A、B共线,故点C的坐标可以是④,故答案为④;(2)设二次函数的解析式为y=a(x+2)(x﹣2),代入(1,3)得3=﹣3a,∴a=﹣1,∴该二次函数的表达式为y=﹣x2+4.18.【解答】解:如图所示建立平面直角坐标系,此时,抛物线与x轴的交点为C(﹣100,0),D(100,0),设这条抛物线的解析式为y=a(x﹣100)(x+100),∵抛物线经过点B(50,150),可得150=a(50﹣100)(50+100).解得,∴.即抛物线的解析式为,顶点坐标是(0,200)∴拱门的最大高度为200米.五、(本大题共2小题,每小题10分,满分20分)19.【解答】解:(1)根据题意得,y=280+6x (2)根据题意得,W=(80﹣x)(280+6x)即.当时,W有最大值.∵x取正整数,∴当x=17时,W最大=24066元20.【解答】解:∵P(x,y),A(1,0),∴点P到直线l的距离为|x+1|.∵点P到直线l的距离与P A的长相等,∴.化简得利用描点法作出图象如图所示.发现:该图象为开口向右的抛物线.六、(本题满分12分)21.【解答】解:(1)设AB=xm,则BC=(46﹣2x+2)m,根据题意得x(46﹣2x+2)=280,解得x1=10,x2=14,当x=10时,46﹣2x+2=28>26,不合题意舍去;当x=14时,46﹣2x+2=20,答:AD的长为20m;(2)设AD=xm,∴S=x(46﹣x+2)=﹣(x﹣24)2+288,当a≥24时,则x=24时,S的最大值为288;当0<a<24时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为24a﹣a2,综上所述,当a≥24时,S的最大值为288m2;当0<a<24时,S的最大值为(24a﹣a2)m2.七、(本题满分12分)22.【解答】解:(1)如图,直线l为所作;(2)∵△OBC是等腰直角三角形,且其腰长为3,即OB=OC=3,∴C(0,3),B(3,0),把C(0,3),B(3,0)分别代入y=x2+mx+n得,解得,∴抛物线解析式为y=x2﹣4x+3;(3)连接BC交直线l于P,如图,则P A=PB,∵PC+P A=PC+PB=BC,∴此时PC+P A的值最小,而BC=OB=3,∴P A+PC的最小值为3.故答案为3.八、(本题满分14分)23.【解答】解:(1)令y=(x﹣1)2﹣4=0,则x=﹣1或3,如图1:即点A,B的坐标为(﹣1,0),(3,0),则对折后函数的顶点坐标为(﹣3,﹣4),该函数表达式为:y=(x+3)2﹣4,即对折函数为.(2)将点P(m,5)代入,解得:m=4或﹣6(不合题意的值已舍去),即m=4或﹣6;(3)①当n<﹣1时,如图2:此时x=n在点A(﹣1,0)的左侧,从图中可以看出:函数与x轴有4个交点(A,B,C,D);②当n=﹣1时,x=n过点A,从图1可以看出:函数与x轴有3个交点;③同理:当﹣1<n<3时,函数与x轴有2个交点;④同理:当n=3时,函数与x轴有3个交点;⑤同理:当n>3时,无交点.。
2019届安徽省中考第一次模试考数学试卷【含答案及解析】
2019届安徽省中考第一次模试考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下面的数中,比0小的是()A. B. C. D. -20162. 如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为()A. B. C. D.3. 计算的结果是()A. B. C. - D.4. 下图中的几何体的左视图是()A. B. C. D.5. 不等式组的解集是()A. B. C. D. 无解6. 寒假结束了,开学后小明对本校七年级部分同学寒假阅读总时间(结果保留整10小时)进行了抽样调查,所得数据整理后制作成如图所示的频数分布直方图。
观察这个频数分布直方图,给出如下结论,正确的是()A. 小明调查了100名同学B. 所得数据的众数是40小时C. 所得数据的中位数是30小时D. 全区有七年级学生6000名,寒假阅读总时间在20小时(含20小时)以上的约有5000名7. 如图,在△ABC中,从A点向∠ACB的角平分线作垂线,垂足为D,E是AB的中点,已知AC=4,BC=6,则DE的长为()A. 1B.C.D. 28. 已知⊙O的半径为,弦AB=2,以AB为底边,在圆内画⊙O的内接等腰△ABC,则底边AB边上的高CD长为()A. B. C. 或 D. 或9. 某企业积极相应政府号召,今年提出如下目标,和去年相比,在产品的出厂价增加10%的前提下,将产品成本降低20%,使产品利润率(利润率=×100%)较去年翻一番.则今年该企业产品利润率为()A. 40%B. 80%C. 120%D. 160%10. 如图,菱形ABCD的边长为4,∠A=30°,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为,△ADP的面积为,则关于的函数图象是()A. B. C. D.二、填空题11. __________。
《权威预测》2019年3月2019届九年级第一次模拟大联考(安徽卷)数学(考试版)
2019届九年级第一次模拟大联考【安徽卷】数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.–4的相反数是A.4 B.–4 C.–14D.142.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿千米,用科学记数法表示1.496亿是A.1.496×107B.1.496×108C.0.1496×108D.14.96×1083.如图,该几何体的俯视图是A .B .C .D .4.下列计算正确的是A.3m+3n=6mn B.y3÷y3=y C.a2•a3=a6D.(x3)2=x65.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于A.70°B.60°C.40°D.30°6.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是A.平均数B.中位数C.众数D.方差7.如果抛物线y=ax2+bx+c经过点(–1,0)和(3,0),那么对称轴是直线A.x=0 B.x=1 C.x=2 D.x=38.现有一块长方形绿地,它的短边长为20m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300m2,设扩大后的正方形绿地边长为x m,下面所列方程正确的是A.x(x–20)=300 B.x(x+20)=300C.60(x+20)=300 D.60(x–20)=3009.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为A.40 B.44 C.84 D.88110.对于不为零的两个实数a,b,如果规定:a★b=()()a b a baa bb+<⎧⎪⎨-≥⎪⎩,那么函数y=2★x的图象大致是A .B .C .D .第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:a3–a=__________.12.若a,b,c是一个三角形的三条边,且a,b–b|=0,则第三边c的取值范围为__________.13.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则BF 的长为__________.14.如图,正方形ABCD中,E为AB边上一点,过点E作EF⊥AB交对角线BD于点F.连接EC交BD于点G.取DF的中点H,并连接AH.若AHEG=47,则四边形AEFH的面积为__________.三、(本大题共2小题,每小题8分,满分16分)15.计算:(–13)–1+(2019)0–4sin60°+|.16.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,1)、B(4,0)、C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°得到△A2B1C2;(2)求点C从开始到点C2的过程中所经过的路径长.18.某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)2五、(本大题共2小题,每小题10分,满分20分)19.用黑白棋子摆出下列一组图形,根据规律可知.(1)在第n个图中,白棋共有__________枚,黑棋共有__________枚;(2)在第几个图形中,白棋共有300枚;(3)白棋的个数能否与黑棋的个数相等?若能,求出是第几个图形,若不能,说明理由.20.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元;(2)若该超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价均提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.六、(本题满分12分)21.如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD,过点C 作CE⊥DB,垂足为E,直径AB与CE的延长线相交于点F.(1)求证:CF是⊙O的切线;(2)当BD=185,sin F=35时,求OF的长.七、(本题满分12分)22.某茶农要对1号、2号、3号、4号四个品种共500株茶树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号茶树幼苗成活率为89.6%,把实验数据绘制成图1和图2所示的两幅不完整的统计图.(1)实验所用的2号茶树幼苗的数量是__________株;(2)求出3号茶树幼苗的成活数,并补全统计图2;(3)该茶农要从这四种茶树中选择两个品种进行推广,请用列表或画树状图的方法求出1号品种被选中的概率.八、(本题满分14分)23.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上,如图2,当点P为AB的中点时,判断△ACE的形状,并说明理由;(3)在(1)的条件下,将正方形ABCD固定,正方形BPEF绕点B旋转一周,设AB=4,BP=a,若在旋转过程中△ACE面积的最小值为4,请直接写出a的值.3。
2019年安徽省中考数学一模试卷和参考答案
2019年安徽省中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A.B.C.D四个选项,其中只有一个是正确的,请将正确答案的代号填入题后括号内1.(4分)计算2﹣1的结果是()A.B.﹣C.﹣2D.22.(4分)经过约38万公里、26天的漫长飞行,2019年1月3日10时26分,“嫦娥四号“探测器自主着陆在月球背面南极一艾特肯盆地内的冯,卡门擅击坑内,实现人类探测器的首次月背软着陆,数据38万用科学记数法可表示为()A.0.38×106B.3.8×107C.3,8×108D.3.8×1053.(4分)下列计算错误的是()A.(ab≠0 )B.ab2÷(b≠0)C.2a2b+3ab2=5a3b3D.(ab2)3=a3b64.(4分)不等式组的解集是()A.x>2B.x≥1C.1≤x<2D.x≥﹣15.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.6.(4分)如图,AB是⊙O的直径,BC是⊙O的弦,∠AOC=80°,则∠C的度数为()A.20°B.30°C.40°D.50°7.(4分)由于春季气温回暖,某服装店从3月份开始对冬装进行“折上折“(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需490元,设该店冬装原本打x折,则有()A.490(1﹣2x)=1000B.1000(1﹣x2)=490C.1000=490D.1000=4908.(4分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁11.111.110.910.9平均数(米)方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁9.(4分)二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限10.(4分)甲、乙、丙三位同学围成一圈玩循环报数游戏,规定:①甲、乙、丙首次报出的数依次1,2.3.接着甲报4.乙报5******,按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是2019时,报数结束;②若报出的数为偶数,则报该数的同学需要拍手一次,在此过程中,丙同学拍手的次数是()A.334B.335C.336D.337二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)﹣6的相反数等于.12.(5分)分解因式;ax2+ay2﹣2axy=.13.(5分)如图,在四边形ABCD中,AC=BD=8,E、F、G、H分别是边AB、BC、CD、DA的中点,则EG2+FH2的值为.14.(5分)如图,点A是x轴负半轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(0,4),设点A的坐标为A(n,0),连接OD,当OD=时,n=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|+(2cos30°﹣1)0﹣.16.(8分)《九章算术》中有这样道题,原文如下:今有共买豕,人出一百,盈一百,人出九十,适足,问人数、豕价各几何?大意为:今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适,问合伙的人数、猪价各是多少?四、(本大题共2小题,每小题8分满分16分)17.(8分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B 两点(点A在第一象限).若点A的横坐标为4.(1)求k的值.(2)根据图象,直接写出当>x时,x的取值范围,18.(8分)在由边长为1个单位长度的小正方形组成的网格中建立直角坐标系,△ABC的位置如图所示.(1)试在网格图中画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称.(2)直接写出点C1的坐标与线段OC1的长度,五、(本大题共2小题,每小题10分,满分20分)19.(10分)现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:5640 6430 6320 6798 7325 8430 8215 7453 7446 67547638 6834 7325 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95002E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=,n=.(2)补全频数分布直方图.(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.20.(10分)如图1所示的是午休时老师们所用的一种折叠椅,现将躺椅以如图2所示的方式倾斜放置,AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,BP是躺椅的伸缩支架,且30°≤BPM≤90°.(结果精确到1厘米;参考数据 1.4, 1.7, 2.2)(1)求此时点C与地面的距离.(2)在(1)的条件下,求伸缩支架BP可达到的最大值.六、(本题满分12分)21.(12分)如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D 作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=°;(2)求证:DE与⊙O相切;(3)点F在上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.七、(本题满分12分)22.(12分)某4A风景区准备开设风光游览业务,调查后发现,准备4辆风光游览车时,每辆车每天有16班;且每增加1辆风光游览车,每辆车就需减少2个班次若每辆游览车的载客人数为20人,且每班均载满游客,设游览车的辆数为x(x>0),(1)设每天运送的游客人数为w,求w关于x的函数关系式,(2)该景区应开设多少辆游览车,才能运送最多的游客?最多的人数是多少?(3)已知每辆车每个班次的成本为100元,每名游客的游览车票价为10元,另外该景区每天还需支付其他费用共3000元,若每天此项业务的收入为4200元,求x的值.八、(本题满分14分)23.(14分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段,;S矩形AEFG:S▱ABCD=.(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.2019年安徽省中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A.B.C.D四个选项,其中只有一个是正确的,请将正确答案的代号填入题后括号内1.(4分)计算2﹣1的结果是()A.B.﹣C.﹣2D.2【解答】解:原式=,故选:A.2.(4分)经过约38万公里、26天的漫长飞行,2019年1月3日10时26分,“嫦娥四号“探测器自主着陆在月球背面南极一艾特肯盆地内的冯,卡门擅击坑内,实现人类探测器的首次月背软着陆,数据38万用科学记数法可表示为()A.0.38×106B.3.8×107C.3,8×108D.3.8×105【解答】解:将38万用科学记数法表示为:3.8×105.故选:D.3.(4分)下列计算错误的是()A.(ab≠0 )B.ab2÷(b≠0)C.2a2b+3ab2=5a3b3D.(ab2)3=a3b6【解答】解:(C)原式=2a2b+3ab2,故选:C.4.(4分)不等式组的解集是()A.x>2B.x≥1C.1≤x<2D.x≥﹣1【解答】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,则不等式组的解集为x>2,故选:A.5.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.6.(4分)如图,AB是⊙O的直径,BC是⊙O的弦,∠AOC=80°,则∠C的度数为()A.20°B.30°C.40°D.50°【解答】解:∵∠AOC=80°,∴∠B=40°,∵OC=OB,∴∠C=∠B=40°,故选:C.7.(4分)由于春季气温回暖,某服装店从3月份开始对冬装进行“折上折“(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需490元,设该店冬装原本打x折,则有()A.490(1﹣2x)=1000B.1000(1﹣x2)=490C.1000=490D.1000=490【解答】解:设该店冬装原本打x折,依题意,得:1000(1﹣)2=490.故选:C.8.(4分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁11.111.110.910.9平均数(米)方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.9.(4分)二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【解答】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选:A.10.(4分)甲、乙、丙三位同学围成一圈玩循环报数游戏,规定:①甲、乙、丙首次报出的数依次1,2.3.接着甲报4.乙报5******,按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是2019时,报数结束;②若报出的数为偶数,则报该数的同学需要拍手一次,在此过程中,丙同学拍手的次数是()A.334B.335C.336D.337【解答】解:设丙同学第n次报的数为a n(n为正整数),根据题意得:a1=3,a2=6,a3=9,a4=12,a5=15,…,∴a n=3n.∴丙同学报的数奇偶交替出现.∵2018=673,673÷2=336.5,∴丙同学需要拍手的次数为336.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)﹣6的相反数等于6.【解答】解:﹣6的相反数等于:6.故答案为:6.12.(5分)分解因式;ax2+ay2﹣2axy=a(x﹣y)2.【解答】解:ax2+ay2﹣2axy=a(x2+y2﹣2xy)=a(x﹣y)2.故答案为a(x﹣y)2.13.(5分)如图,在四边形ABCD中,AC=BD=8,E、F、G、H分别是边AB、BC、CD、DA的中点,则EG2+FH2的值为64.【解答】解:连接HE、EF、FG、GH,∵E、F分别是边AB、BC的中点,∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四边形HEFG为平行四边形,∵AC=BD,∴EH=EF,∴平行四边形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案为:64.14.(5分)如图,点A是x轴负半轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(0,4),设点A的坐标为A(n,0),连接OD,当OD=时,n=﹣2.【解答】解:如图所示:过点D作EF⊥x轴于F,过C作CE⊥EF于E,∵四边形ABCD为正方形,∴A、B、C、D四点共圆,∠DAC=45°.又∵∠COA=90°,∴点O也在这个圆上,∴∠COD=∠CAD=45°.又∵OD=,∴OF=DF=1.∵C(0,4),∴OC=EF=4,∴DE=4﹣1=3,∵四边形ABCD为正方形,∴AD=CD,∵∠ADC=90°,∴∠ADF+∠CDE=∠CDE+∠DCE=90°,∴∠ADF=∠DCE,∵∠AFD=∠DEC=90°,∴△AFD≌△DEC(SAS),∴AF=DE=3,∴AO=2,∴A(﹣2,0),即n=﹣2;故答案为:﹣2.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|+(2cos30°﹣1)0﹣.【解答】解:原式=2+1﹣5=﹣2.16.(8分)《九章算术》中有这样道题,原文如下:今有共买豕,人出一百,盈一百,人出九十,适足,问人数、豕价各几何?大意为:今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适,问合伙的人数、猪价各是多少?【解答】解:设合伙的人数为x人,猪价为y钱,依题意,得:,解得:.答:合伙的人数为10人,猪价为900钱.四、(本大题共2小题,每小题8分满分16分)17.(8分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B 两点(点A在第一象限).若点A的横坐标为4.(1)求k的值.(2)根据图象,直接写出当>x时,x的取值范围,【解答】解:(1)∵点A一次函数y=x的图象上,∴把x=4代入正比例函数y=x,解得y=3,∴点A(4,3),∵点A与B关于原点对称,∴B点坐标为(﹣4,﹣3),把点A(4,2)代入反比例函数y=;(2)由交点坐标,根据图象可得当>x时,x的取值范围为:x<﹣4或0<x<4.18.(8分)在由边长为1个单位长度的小正方形组成的网格中建立直角坐标系,△ABC的位置如图所示.(1)试在网格图中画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称.(2)直接写出点C1的坐标与线段OC1的长度,【解答】解:(1)△A1B1C1如图所示.(2)C1(﹣2,﹣1),OC1==.五、(本大题共2小题,每小题10分,满分20分)19.(10分)现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:5640 6430 6320 6798 7325 8430 8215 7453 7446 67547638 6834 7325 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95002E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=5,n=1.(2)补全频数分布直方图.(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.【解答】解:(1)由题意知,7500≤x<8500的人数m=5,9500≤x<10500的人数n =1,故答案为:5,1;(2)补全频数分布直方图如下:(3)估计该好友的步数不低于7500步(含7530步)的概率为=.20.(10分)如图1所示的是午休时老师们所用的一种折叠椅,现将躺椅以如图2所示的方式倾斜放置,AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,BP是躺椅的伸缩支架,且30°≤BPM≤90°.(结果精确到1厘米;参考数据 1.4, 1.7, 2.2)(1)求此时点C与地面的距离.(2)在(1)的条件下,求伸缩支架BP可达到的最大值.【解答】解:(1)∵AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,∴点A到地面的距离为:AM•sin s45°=50×=25(厘米),CD=BC•sin30°=72×=36(厘米),∴点C与地面的距离是:25+36≈71(厘米),即此时点C与地面的距离是71厘米;(2)∵AB∥ME,∴点B到ME的距离是25厘米,∴BP=,∵30°≤BPM≤90°,∴当∠MPM=30°时,BP取得最大值,此时BP==50≈70(厘米),即伸缩支架BP可达到的最大值是70厘米.六、(本题满分12分)21.(12分)如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D 作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=60°;(2)求证:DE与⊙O相切;(3)点F在上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.【解答】解:(1)如图1,连接OD,AD∵AB是⊙O的直径,CD⊥AB∴AB垂直平分CD∵M是OA的中点,∴OM=OA=OD∴cos∠DOM==∴∠DOM=60°又:OA=OD∴△OAD是等边三角形∴∠OAD=60°故答案为:60°(2)∵CD⊥AB,AB是⊙O的直径,∴CM=MD.∵M是OA的中点,∴AM=MO.又∵∠AMC=∠DMO,∴△AMC≌△OMD.∴∠ACM=∠ODM.∴CA∥OD.∵DE⊥CA,∴∠E=90°.∴∠ODE=180°﹣∠E=90°.∴DE⊥OD.∴DE与⊙O相切.(3)如图2,连接CF,CN,∵OA⊥CD于M,∴M是CD中点.∴NC=ND.∵∠CDF=45°,∴∠NCD=∠NDC=45°.∴∠CND=90°.∴∠CNF=90°.由(1)可知∠AOD=60°.∴.在Rt△CDE中,∠E=90°,∠ECD=30°,DE=3,∴.在Rt△CND中,∠CND=90°,∠CDN=45°,CD=6,∴.由(1)知∠CAD=2∠OAD=120°,∴∠CFD=180°﹣∠CAD=60°.在Rt△CNF中,∠CNF=90°,∠CFN=60°,,∴.七、(本题满分12分)22.(12分)某4A风景区准备开设风光游览业务,调查后发现,准备4辆风光游览车时,每辆车每天有16班;且每增加1辆风光游览车,每辆车就需减少2个班次若每辆游览车的载客人数为20人,且每班均载满游客,设游览车的辆数为x(x>0),(1)设每天运送的游客人数为w,求w关于x的函数关系式,(2)该景区应开设多少辆游览车,才能运送最多的游客?最多的人数是多少?(3)已知每辆车每个班次的成本为100元,每名游客的游览车票价为10元,另外该景区每天还需支付其他费用共3000元,若每天此项业务的收入为4200元,求x的值.【解答】解:(1)设游览车的辆数为x,则每辆车每天有[16﹣2(x﹣4)]班,依题意,得:w=20x•[16﹣2(x﹣4)]=﹣40x2+480x.(2)w=﹣40x2+480x=﹣40(x﹣6)+1440,∵a=﹣40<0,∴当x=6时,w取得最大值,最大值为1440.答:该景区应开设6辆游览车,才能运送最多的游客,最多的人数是1440.(3)依题意,得:10×(﹣40x2+480x)﹣100x•[16﹣2(x﹣4)]﹣3000=4200,整理,得:x2﹣12x+36=0,解得:x1=x2=6.答:当每天此项业务的收入为4200元时,x的值为6.八、(本题满分14分)23.(14分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段AE,GF;S矩形AEFG:S▱ABCD=1:2.(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.【解答】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,∴S矩形AEFG=S▱ABCD,∴S矩形AEFG:S▱ABCD=1:2;故答案为:AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH==13,由折叠的性质得:AD=FH=13;(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM===3,∴AD=BG=BM﹣GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG =NG,NH=CH,BM=FM,MN=MC,∴GH=CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴FM=BM==3,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=(AD+BC)×8=2×25,∴AD+BC=,∴BC=﹣x,∴MC=BC﹣BM=﹣x﹣3,∵MN=MC,∴3+x=﹣x﹣3,解得:x=,∴AD=,BC=﹣=;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=4,GM=FM=4,CM==3,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,∴AD=5.。
2019年3月2019届九年级第一次模拟大联考(安徽卷)-化学(考试版)
(2)通过化学的学习,小芳知道氢氧化钠易吸收空气中的二氧化碳而变质,其反应的化学方程式为
___________________________________。他想用实验检查一下春节用剩的工业酒精中氢氧化钠是
否变质。
实验步骤
实验现象
实验结论
取少量固体酒精于烧杯中,加足量的水充分溶解后静
固体酒精中的氢氧化
不
密
A.图 1 观察木条能否复燃,检验是否为氧气 B.图 2 观察反应有无气泡产生,判断是否为碳酸钠 C.图 3 观察反应剧烈程度,比较镁与锌的活动性 D.图 4 观察燃烧先后顺序,比较可燃物的着火点 10.硝酸铵(NH4NO3)可用于制作烟火和炸药等,其溶解度如下表。下列说法正确的是
温度/℃
0
5
10
但确实发生了化学反应,试与他们一起完成实验方案的设计,实施和评价,并得出有关结论。
【设计实验】
(1)探究稀硫酸与氢氧化钠溶液的反应:
当滴入几滴酚酞试液后,溶液由无色变为________色,根据上述实验中颜色变化,可确定稀硫酸 与氢氧化钠溶液发生了化学变化,反应的化学方程式为:_________________________________。 (2)探究上述稀硫酸与氢氧化钠溶液反应后烧杯中的硫酸是否过量: 根据上述反应过程中溶液变成无色,不能确定稀硫酸是否过量,同学们又分别选取氯化钡溶液、 紫色石蕊试液设计实验方案,请你判断并分析:
___________________________,说明固体酒精中的氢氧化钠已经变质。
(4)要想熄灭火锅里的工业酒精,可用盖子盖上,其主要原理是______。
A.清除可燃物
B.隔绝空气
C.降低可燃物着火点
D.使可燃物的温度降到着火点以下
2019届安徽省名校大联考中考数学模拟试卷(一)(原卷版+解析版)
第1页,共18页2019年安徽省名校大联考中考数学模拟试卷(一)一、选择题(本大题共10小题,共40.0分) 1. -2的绝对值是( )A. 2B.C.D.2. 计算(-2x 2)3的结果是( )A. B. C. D.3. 如图,下列几何体中,俯视图是矩形的是( )A.B.C.D.4. 截止到2018年底,过去五年我国农村贫困人口脱贫人数约为7000万,脱贫攻坚取得阶段性胜利,这里“7000万”用科学记数法表示为( ) A. B. C. D. 5. 不等式组 >的解集在数轴上表示正确的是( )A.B.C.D.6. 如图,a ∥b ,∠1=30°,∠2=70°,则∠3的度数是( )A. B. C. D. 7. 下列关于x 的一元二次方程有实数根的是( )A. B. C. D.8. 如图,点A 、B 、C 在半径为6的⊙O 上,的长为2π,则∠ACB 的大小是( ) A. B. C. D. 9. 如图,已知菱形ABCD 的周长为16,∠ABC =60°,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为( )A. 2B.C. 4D.10.如图,正方形的边长为4cm,点P、点Q都以2cms的速度同时从点A出发,点P沿A→D,点Q沿A→B→C→D向点D运动在这个过程中,若△APQ的面积为S(cm2),运动时间为t(s),则下列最能反映S与t之间函数关系的图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.分解因式:a3-16a=______.12.两个盒子中都各放有一个红色小球和一个黄色小球(所有小球除颜色外均相同),从每个盒子中分别随机摸出一个小球那么所摸出的两个球中是一红一黄的概率为______.13.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,连接OC与半圆相交于点D,则CD的长为______.14.已知在△ABC中,∠ACB=90°,AC=4,BC=3,点M是边AB上的动点,过点M作AB的垂线与BC所在的直线交于点N,若△CMN是等腰三角形,则BN的长为______.三、计算题(本大题共1小题,共8.0分)15.计算:四、解答题(本大题共8小题,共82.0分)16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出九,盈六;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出9元,则多6元;每人出7元,则少4元,问共有多少人?这个物品的价格是多少?解答上述问题.第3页,共18页17. 下列图形都是由完全相同的小梯形按一定规律组成的,观察图形回答下列问题:(1)如果第1个图形的周长为5,那么第2个图形的周长为8,第3个图形的周长为11,…按照这个规律,第4个图形的周长为______;第n 个图形的周长为______(用含n 的式子表示)(2)求第2019个图形的周长.18. 如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标. (2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标.19. 如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需绕行B 地,已知B地位于A 地北偏东67°方向,距离A 地390米,C 地在B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,(即A地与C地之间的距离).(结果保留整数,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)20.如图,已知反比例函数与一次函数y2=k2x+b的图象交于点A(1,8),B(m,-2).(1)求这两个函数的表达式;(2)求△AOB的面积.21.某县政府为了解2018年该县贫困户的脱贫情况,随机调查了部分贫困户,并根据调查结果制作了如下两幅统计图(不完整)请根据统计图回答下列问题(1)随机调查的贫困户有______户,m=______,n=______.并补全条形统计图.(2)扇形统计图中,本年度脱贫部分的圆心角是______度;(3)记者从县扶贫办了解到,该县共有2600户贫困户,请你估计到2018年底该县实现脱贫的贫困户有多少户(含彻底脱贫和本年度脱贫)?22.某旅行社在“五四青年节”期间推出一条成本价为300元/人的省内团队旅行线路,旅行社根据团队报名人数确定报价已知每次出行的旅客人数y(人)与旅游报价x (元/人之间的关系为y=-x+800(400≤x≤700).(1)求此旅行线路单次出行人数为多少时,所需的成本最低,最低成本为多少?(2)当这条旅行线路报价为多少时,旅行社单次出行获得的利润最大?最大利润是多少?线BD平分∠ADC,点E、F是边AD上的动点(点E在点F的左侧)(1)若BE⊥BC,求证:△ABE≌△DBC;(2)若∠EBF=45°,求证:AB2=AF•DE;(3)在(1)(2)的条件下,若AE=6,DF=4,求EF的值.第5页,共18页答案和解析1.【答案】A【解析】解:-2的绝对值是:2.故选:A.直接利用绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】D【解析】解:(-2x2)3=-8x6.故选:D.由积的乘方的性质求解即可求得答案.此题考查了积的乘方与幂的乘方的性质.题目比较简单,解题时要细心.3.【答案】B【解析】解:A项俯视图为两个同心圆;B项俯视图为矩形,符合题意;C项俯视图为三角形;D项俯视图为圆.故选:B.本题考查简单几何体三视图,根据三视图知识即可判断.本题为几何体三视图的应用,通过所学知识、日常观察及空间想象即可轻松选出答案,为基础题.4.【答案】C【解析】解:将7000万用科学记数法表示为:7×107.故选:C.第7页,共18页科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】A【解析】解:由2x>3x-1,解得x<1,x≤1,解得x≤4,∴不等式组的解集为x<1,故选:A.先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答案】A【解析】解:如图:∵a∥b,∴∠1=∠4=30°,∵∠2=70°,∴∠3=70°+30°=100°,故选:A.由a∥b,∠1=30°,根据两直线平行,内错角相等,即可求得∠4的度数,进而利用三角形外角性质得出∠3.此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.7.【答案】D【解析】解:A、这里a=1,b=0,c=1,∵△=b2-4ac=-4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2-4ac=1-4=-3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=-1,c=1,∵△=b2-4ac=1-4=-3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=-1,c=-1,∵△=b2-4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选:D.计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.8.【答案】B【解析】解:连结OA、OB.设∠AOB=n°.∵的长为2π,∴=2π,∴n=60,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:B.第9页,共18页连结OA、OB.先由的长为2π,利用弧长计算公式求出∠AOB=40°,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得到∠ACB=∠AOB=20°.本题考查的是弧长的计算、圆周角定理的应用,掌握弧长的公式l=是解题的关键.9.【答案】B【解析】解:如图,连接CP,AC,CE,交BD于P',∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∴AP+EP=CP+EP,∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,又∵E是AB的中点,菱形ABCD的周长为16,∴CE⊥AB,BE=2,BC=4,∴Rt△BCE中,CE=2,当点E,P,C在同一直线上时,即点P在点P'处时,EP+AP的最小值为CE的长,∴EP+AP的最小值为2,故选:B.连接CP,AC,CE,交BD于P',依据△ADP≌△CDP,可得AP=CP,依据△ABC 是等边三角形,即可得到CE=2,当点E,P,C在同一直线上时,即点P在点P'处时,EP+AP的最小值为CE的长,EP+AP的最小值为2.本题考查轴对称-最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.【答案】C【解析】解:由已知可得点P从A到D运动的时间为2秒,点Q整个过程运动时间为6秒.①当0≤t≤2时,S=•AP•AQ=•2t•2t=2t2,其图象是抛物线,且S最大值为8,此时t=2;②当P点到达D点时停止,Q点继续运动,在2<t≤4时,S=AD•4=8,即面积保持不变;③4<t≤8时,DP=12-2t,S=DP•AD=-4t+24,是一次函数图象.综合以上三种情况,C答案符合.故选:C.分三种情况讨论:①0≤t≤2;②2<t≤4;③4<t≤8,求出这三种情况对应的S与t的函数关系式即可.本题主要考查动点问题中的函数图象问题,解题的关键是动中找静,分析出在自变量取值范围内函数的表达式,根据函数图象进行判断.11.【答案】a(a+4)(a-4)【解析】解:a3-16a,=a(a2-16),=a(a+4)(a-4).先提取公因式a,再对余下的多项式利用平方差公式继续分解.平方差公式:a2-b2=(a+b)(a-b).本题主要考查提公因式法分解因式和利用平方差公式分解因式,难点在于需要进行二次分解.12.【答案】【解析】第11页,共18页解:画树状图如下:由树状图知,共有4种等可能结果,其中所摸出的两个球中是一红一黄的有2种结果,∴所摸出的两个球中是一红一黄的概率为=,故答案为:.画树状图得出所有等可能结果,从中找到符合条件的结果数,再依据概率公式计算可得.此题主要考查了利用树状图求概率,总体数目=部分数目÷相应百分比;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.【答案】2【解析】解:如图,设⊙O与AC相切于点E,连接OE,则OE⊥AC,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∴BC⊥AC,∴OE∥BC,∵AO=OB,∴AE=EC=AC=4,∵OA=AB=5,∴OE=3,∴OD=3,在Rt△ABC中,OC是斜边AB上的中线,∴OC=AB=5,∴CD=OC-OD=5-3=2.第13页,共18页故答案为2.设⊙O 与AC 相切于点E ,连接OE ,则OE ⊥AC ,由AB 2=AC 2+BC 2,证得∠C=90°,即可证得OE ∥BC ,进一步证得E 是AC 的中点,即可得到AE=4,根据勾股定理求得半径,然后根据直角三角形斜边中线的性质得出OC=5,即可求得CD=OC-OD=2.本题考查切线的性质、三角形中位线定理以及直角三角形斜边中线的性质,解题的关键是求得CO 和半径OD 的长,属于中考常考题型.14.【答案】 或6【解析】 解:在Rt △ABC 中,AB==5,如图1,设CN=x ,则MN=x ,∴BN=3-x ,∵∠ACB=∠NMB=90°,∠B=∠B , ∴△BMN ∽△BCA , ∴=,即=, 解得,x=,则BN=3-=;如图2,∵CM=CN ,∴∠∠CMN=∠N ,∵∠BMN=90°, ∴∠CMN=∠B ,∴CN=CM=CB=3,∴BN=CN+CB=6,故答案为:或6.根据勾股定理求出AB ,分点N 在线段BC 上和点N 在线段BC 的延长线上两种情况,根据相似三角形的性质列出比例式,计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.15.【答案】解:原式=×+1-2+=-1.【解析】原式利用特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.【答案】解:设共有x人,可列方程为:9x-6=7x+4.解得x=5,∴9x-6=39(元),答:共有5人,这个物品的价格是39元.【解析】根据这个物品的价格不变,列出一元一次方程进行求解即可,本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.17.【答案】14 (3n+2)【解析】解:(1)设第n个图形的周长为a n(n为正整数).观察图形,可知:a1=5=3×1+2,a2=8=3×2+2,a3=11=3×3+2,…,∴a n=3n+2(n为正整数),∴a4=3×4+2=14.故答案为:14;(3n+2).(2)a2019=3×2019+2=6059.答:第2019个图形的周长为6059.(1)设第n个图形的周长为a n(n为正整数),观察图形,根据各图形周长的变化可找出变化规律“a n=3n+2(n为正整数)”,依此规律即可得出结论;(2)代入n=2019即可求出第2019个图形的周长.本题考查了列代数式以及规律型:图形的变化类,根据各图形周长的变化找出变化规律“a n=3n+2(n为正整数)”是解题的关键.第15页,共18页18.【答案】解:(1)如图所示:点A 1的坐标(2,-4);(2)如图所示,点A 2的坐标(-2,4).【解析】(1)分别找出A 、B 、C 三点关于x 轴的对称点,再顺次连接,然后根据图形写出A 点坐标;(2)将△A 1B 1C 1中的各点A 1、B 1、C 1绕原点O 旋转180°后,得到相应的对应点A 2、B 2、C 2,连接各对应点即得△A 2B 2C 2.本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.19.【答案】解:过点B 作BD ⊥AC 于点D ,∵B 地位于A 地北偏东67°方向,距离A 地390m ,∴∠ABD =67°,∴AD =AB •sin67°=390×=360m , BD =AB •cos67°=390× =150m . ∵C 地位于B 地南偏东30°方向,∴∠CBD =30°,∴CD =BD •tan30°=150×=50 , ∴AC =AD +CD =360+50 ≈446.5(m ).答:A 地到C 地之间高铁线路的长为446.5m .【解析】过点B 作BD ⊥AC 于点D ,利用锐角三角函数的定义求出AD 及CD 的长,进而可得出结论.本题考查的是解直角三角形的应用-方向角问题,熟记锐角三角函数的定义是解答此题的关键.20.【答案】解:(1)∵反比例函数与一次函数y 2=k 2x +b 的图象交于点A (1,8),B (m ,-2).∴k 1=1×8=8,∴反比例函数的解析式为y=,把B(m,-2)代入得,m=,解得m=-4,∴B(-4,-2),解,得,∴一次函数的解析式为y=2x+6;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),∴S△AOB=×6×4+×6×1=15.【解析】(1)由A与B为一次函数与反比例函数的交点,将A坐标代入反比例函数解析式中,求出k1的值,确定出反比例解析式,再将B的坐标代入反比例解析式中求出m的值,确定出B的坐标,将B坐标代入一次函数解析式中即可求出k2和b的值,从而求得一次函数的解析式;(2)求得一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),然后根据△AOB的面积等于两个三角形面积的和求得即可.本题考查了一次函数和反比例函数的交点问题,三角形面积的求法,轴对称的性质,待定系数法求解析式是本题的关键.21.【答案】200 30 5 108【解析】解:(1)随机调查的贫困户有10÷5%=200户,×100%=30%,200-10-60-200×60%=10,×100%=5%,∴m=30,n=4,补全条形统计图如图所求,故答案为:200,30,5;(2)扇形统计图中,本年度脱贫部分的圆心角是360°×30%=108°,故答案为:108;(3)2600×(30%+60%)=2340(户)答:2018年底该县实现脱贫的贫困户有2340户.(1)根据脱贫后返贫的户数和其在扇形统计图中所占比例求出总人数,根据本年度脱贫的户数除以总户数得到结论,然后补全统计图即可;(2)用本年度脱贫户数所占的百分比乘以360°计算即可得解;(3)用总的贫困户数乘以脱贫的户数所占的百分比计算即可得解.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【答案】解:(1)设经营这条旅游线路每月所需要的成本为z,∴z=300(-x+800)=-300x+240000,∵-300<0,∴当x=700时,z最低,即z=30000;(2)设经营这条旅游线路的总利润为w,则w=(x-300)(-x+800)=-x2+1100x-240000=-(x-550)2+61500,当x=550时,w最大=61500.【解析】(1)根据“总成本=每人的成本价×游客人数”可得函数解析式,据此根据一次函数性质可得;(2)根据“总利润=每人的利润×游客人数”得出总利润关于报价的函数解析式,配方成顶点式,利用二次函数的性质可得其最值情况.本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.23.【答案】证明:(1)∵∠ADC=90°,BD平分∠ADC,∴∠ADB=∠BDC=∠A=45°,∴AB=BD,∠ABD=90°,第17页,共18页∴BE⊥BC,∴∠EBC=90°,∴∠ABE=∠CBD,∴△CBD≌△EBA(ASA);(2)由(1)知:△ABD是等腰直角三角形,∴∠A=∠BDE=45°,AB=BD,∵∠EFB=∠BDE+∠DBF=45°+∠DBF,∵∠EBF=45°,∴∠EBD=∠EBF+∠DBF=45°+∠DBF,∴∠EFB=∠EBD,∴△AFB∽△DBE,∴,∴AB•BD=AF•DE=AB2;(3)设EF=x,则AF=6+x,DE=4+x,∵△ABD是等腰直角三角形,∴AD=AB,由(2)知:AB2=AF•DE,∴,x=2,∴EF=2.【解析】(1)根据ASA证明:△ABE≌△DBC;(2)证明△AFB∽△DBE,可得结论;(3)设EF=x,则AF=6+x,DE=4+x,根据(2)中的等式代入,解方程可得结论.本题考查四边形综合题、等腰直角形的判定和性质、勾股定理、一元二次方程的解法、三角形相似的性质和判定等知识,解题的关键是学会利用方程解决问题,属于中考压轴题.。
2019年安徽省名校大联考中考数学模拟试卷(一)(解析版)
2019年安徽省名校大联考中考数学模拟试卷(一)一、选择题(本大题共10小题,共40.0分)1.-2的绝对值是()A. 2B.C.D.2.计算(-2x2)3的结果是()A. B. C. D.3.如图,下列几何体中,俯视图是矩形的是()A. B. C. D.4.截止到2018年底,过去五年我国农村贫困人口脱贫人数约为7000万,脱贫攻坚取得阶段性胜利,这里“7000万”用科学记数法表示为()A. B. C. D.5.不等式组>的解集在数轴上表示正确的是()A. B.C. D.6.如图,a∥b,∠1=30°,∠2=70°,则∠3的度数是()A. B. C. D.7.下列关于x的一元二次方程有实数根的是()A. B. C. D.8.如图,点A、B、C在半径为6的⊙O上,的长为2π,则∠ACB的大小是()A.B.C.D.9.如图,已知菱形ABCD的周长为16,∠ABC=60°,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为()A. 2B.C. 4D.10.如图,正方形的边长为4cm,点P、点Q都以2cms的速度同时从点A出发,点P沿A→D,点Q沿A→B→C→D向点D运动在这个过程中,若△APQ的面积为S(cm2),运动时间为t(s),则下列最能反映S与t之间函数关系的图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.分解因式:a3-16a=______.12.两个盒子中都各放有一个红色小球和一个黄色小球(所有小球除颜色外均相同),从每个盒子中分别随机摸出一个小球那么所摸出的两个球中是一红一黄的概率为______.13.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,连接OC与半圆相交于点D,则CD的长为______.14.已知在△ABC中,∠ACB=90°,AC=4,BC=3,点M是边AB上的动点,过点M作AB的垂线与BC所在的直线交于点N,若△CMN是等腰三角形,则BN的长为______.三、计算题(本大题共1小题,共8.0分)15.计算:四、解答题(本大题共8小题,共82.0分)16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出九,盈六;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出9元,则多6元;每人出7元,则少4元,问共有多少人?这个物品的价格是多少?解答上述问题.17.下列图形都是由完全相同的小梯形按一定规律组成的,观察图形回答下列问题:(1)如果第1个图形的周长为5,那么第2个图形的周长为8,第3个图形的周长为11,…按照这个规律,第4个图形的周长为______;第n个图形的周长为______(用含n的式子表示)(2)求第2019个图形的周长.18.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.19.如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地,已知B地位于A地北偏东67°方向,距离A地390米,C地在B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,(即A地与C地之间的距离).(结果保留整数,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)20.如图,已知反比例函数与一次函数y2=k2x+b的图象交于点A(1,8),B(m,-2).(1)求这两个函数的表达式;(2)求△AOB的面积.21.某县政府为了解2018年该县贫困户的脱贫情况,随机调查了部分贫困户,并根据调查结果制作了如下两幅统计图(不完整)请根据统计图回答下列问题(1)随机调查的贫困户有______户,m=______,n=______.并补全条形统计图.(2)扇形统计图中,本年度脱贫部分的圆心角是______度;(3)记者从县扶贫办了解到,该县共有2600户贫困户,请你估计到2018年底该县实现脱贫的贫困户有多少户(含彻底脱贫和本年度脱贫)?22.某旅行社在“五四青年节”期间推出一条成本价为300元/人的省内团队旅行线路,旅行社根据团队报名人数确定报价已知每次出行的旅客人数y(人)与旅游报价x (元/人之间的关系为y=-x+800(400≤x≤700).(1)求此旅行线路单次出行人数为多少时,所需的成本最低,最低成本为多少?(2)当这条旅行线路报价为多少时,旅行社单次出行获得的利润最大?最大利润是多少?23.如图,四边形ABCD中,∠ADC=90°,∠A=45°,对角线BD平分∠ADC,点E、F是边AD上的动点(点E在点F的左侧)(1)若BE⊥BC,求证:△ABE≌△DBC;(2)若∠EBF=45°,求证:AB2=AF•DE;(3)在(1)(2)的条件下,若AE=6,DF=4,求EF的值.答案和解析1.【答案】A【解析】解:-2的绝对值是:2.故选:A.直接利用绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】D【解析】解:(-2x2)3=-8x6.故选:D.由积的乘方的性质求解即可求得答案.此题考查了积的乘方与幂的乘方的性质.题目比较简单,解题时要细心.3.【答案】B【解析】解:A项俯视图为两个同心圆;B项俯视图为矩形,符合题意;C项俯视图为三角形;D项俯视图为圆.故选:B.本题考查简单几何体三视图,根据三视图知识即可判断.本题为几何体三视图的应用,通过所学知识、日常观察及空间想象即可轻松选出答案,为基础题.4.【答案】C【解析】解:将7000万用科学记数法表示为:7×107.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】A【解析】解:由2x>3x-1,解得x<1,x≤1,解得x≤4,∴不等式组的解集为x<1,故选:A.先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答案】A【解析】解:如图:∵a∥b,∴∠1=∠4=30°,∵∠2=70°,∴∠3=70°+30°=100°,故选:A.由a∥b,∠1=30°,根据两直线平行,内错角相等,即可求得∠4的度数,进而利用三角形外角性质得出∠3.此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.7.【答案】D【解析】解:A、这里a=1,b=0,c=1,∵△=b2-4ac=-4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2-4ac=1-4=-3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=-1,c=1,∵△=b2-4ac=1-4=-3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=-1,c=-1,∵△=b2-4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选:D.计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.8.【答案】B【解析】解:连结OA、OB.设∠AOB=n°.∵的长为2π,∴=2π,∴n=60,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:B.连结OA、OB.先由的长为2π,利用弧长计算公式求出∠AOB=40°,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得到∠ACB=∠AOB=20°.本题考查的是弧长的计算、圆周角定理的应用,掌握弧长的公式l=是解题的关键.9.【答案】B【解析】解:如图,连接CP,AC,CE,交BD于P',∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∴AP+EP=CP+EP,∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,又∵E是AB的中点,菱形ABCD的周长为16,∴CE⊥AB,BE=2,BC=4,∴Rt△BCE中,CE=2,当点E,P,C在同一直线上时,即点P在点P'处时,EP+AP的最小值为CE的长,∴EP+AP的最小值为2,故选:B.连接CP,AC,CE,交BD于P',依据△ADP≌△CDP,可得AP=CP,依据△ABC 是等边三角形,即可得到CE=2,当点E,P,C在同一直线上时,即点P在点P'处时,EP+AP的最小值为CE的长,EP+AP的最小值为2.本题考查轴对称-最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.【答案】C【解析】解:由已知可得点P从A到D运动的时间为2秒,点Q整个过程运动时间为6秒.①当0≤t≤2时,S=•AP•AQ=•2t•2t=2t2,其图象是抛物线,且S最大值为8,此时t=2;②当P点到达D点时停止,Q点继续运动,在2<t≤4时,S=AD•4=8,即面积保持不变;③4<t≤8时,DP=12-2t,S=DP•AD=-4t+24,是一次函数图象.综合以上三种情况,C答案符合.故选:C.分三种情况讨论:①0≤t≤2;②2<t≤4;③4<t≤8,求出这三种情况对应的S与t的函数关系式即可.本题主要考查动点问题中的函数图象问题,解题的关键是动中找静,分析出在自变量取值范围内函数的表达式,根据函数图象进行判断.11.【答案】a(a+4)(a-4)【解析】解:a3-16a,=a(a2-16),=a(a+4)(a-4).先提取公因式a,再对余下的多项式利用平方差公式继续分解.平方差公式:a2-b2=(a+b)(a-b).本题主要考查提公因式法分解因式和利用平方差公式分解因式,难点在于需要进行二次分解.12.【答案】【解析】解:画树状图如下:由树状图知,共有4种等可能结果,其中所摸出的两个球中是一红一黄的有2种结果,∴所摸出的两个球中是一红一黄的概率为=,故答案为:.画树状图得出所有等可能结果,从中找到符合条件的结果数,再依据概率公式计算可得.此题主要考查了利用树状图求概率,总体数目=部分数目÷相应百分比;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.【答案】2【解析】解:如图,设⊙O与AC相切于点E,连接OE,则OE⊥AC,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∴BC⊥AC,∴OE∥BC,∵AO=OB,∴AE=EC=AC=4,∵OA=AB=5,∴OE=3,∴OD=3,在Rt△ABC中,OC是斜边AB上的中线,∴OC=AB=5,∴CD=OC-OD=5-3=2.故答案为2.设⊙O与AC相切于点E,连接OE,则OE⊥AC,由AB2=AC2+BC2,证得∠C=90°,即可证得OE∥BC,进一步证得E是AC的中点,即可得到AE=4,根据勾股定理求得半径,然后根据直角三角形斜边中线的性质得出OC=5,即可求得CD=OC-OD=2.本题考查切线的性质、三角形中位线定理以及直角三角形斜边中线的性质,解题的关键是求得CO和半径OD的长,属于中考常考题型.14.【答案】或6【解析】解:在Rt△ABC中,AB==5,如图1,设CN=x,则MN=x,∴BN=3-x,∵∠ACB=∠NMB=90°,∠B=∠B,∴△BMN∽△BCA,∴=,即=,解得,x=,则BN=3-=;如图2,∵CM=CN,∴∠∠CMN=∠N,∵∠BMN=90°,∴∠CMN=∠B,∴CN=CM=CB=3,∴BN=CN+CB=6,故答案为:或6.根据勾股定理求出AB,分点N在线段BC上和点N在线段BC的延长线上两种情况,根据相似三角形的性质列出比例式,计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.15.【答案】解:原式=×+1-2+=-1.【解析】原式利用特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.【答案】解:设共有x人,可列方程为:9x-6=7x+4.解得x=5,∴9x-6=39(元),答:共有5人,这个物品的价格是39元.【解析】根据这个物品的价格不变,列出一元一次方程进行求解即可,本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.17.【答案】14 (3n+2)【解析】解:(1)设第n个图形的周长为a n(n为正整数).观察图形,可知:a1=5=3×1+2,a2=8=3×2+2,a3=11=3×3+2,…,∴a n=3n+2(n为正整数),∴a4=3×4+2=14.故答案为:14;(3n+2).(2)a2019=3×2019+2=6059.答:第2019个图形的周长为6059.(1)设第n个图形的周长为a n(n为正整数),观察图形,根据各图形周长的变化可找出变化规律“a n=3n+2(n为正整数)”,依此规律即可得出结论;(2)代入n=2019即可求出第2019个图形的周长.本题考查了列代数式以及规律型:图形的变化类,根据各图形周长的变化找出变化规律“a n=3n+2(n为正整数)”是解题的关键.18.【答案】解:(1)如图所示:点A1的坐标(2,-4);(2)如图所示,点A2的坐标(-2,4).【解析】(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.19.【答案】解:过点B作BD⊥AC于点D,∵B地位于A地北偏东67°方向,距离A地390m,∴∠ABD=67°,∴AD=AB•sin67°=390×=360m,BD=AB•cos67°=390×=150m.∵C地位于B地南偏东30°方向,∴∠CBD=30°,∴CD=BD•tan30°=150×=50,∴AC=AD+CD=360+50≈446.5(m).答:A地到C地之间高铁线路的长为446.5m.【解析】过点B作BD⊥AC于点D,利用锐角三角函数的定义求出AD及CD的长,进而可得出结论.本题考查的是解直角三角形的应用-方向角问题,熟记锐角三角函数的定义是解答此题的关键.20.【答案】解:(1)∵反比例函数与一次函数y2=k2x+b的图象交于点A(1,8),B(m,-2).∴k1=1×8=8,∴反比例函数的解析式为y=,把B(m,-2)代入得,m=,解得m=-4,∴B(-4,-2),解,得,∴一次函数的解析式为y=2x+6;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),∴S△AOB=×6×4+×6×1=15.【解析】(1)由A与B为一次函数与反比例函数的交点,将A坐标代入反比例函数解析式中,求出k1的值,确定出反比例解析式,再将B的坐标代入反比例解析式中求出m的值,确定出B的坐标,将B坐标代入一次函数解析式中即可求出k2和b的值,从而求得一次函数的解析式;(2)求得一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),然后根据△AOB的面积等于两个三角形面积的和求得即可.本题考查了一次函数和反比例函数的交点问题,三角形面积的求法,轴对称的性质,待定系数法求解析式是本题的关键.21.【答案】200 30 5 108【解析】解:(1)随机调查的贫困户有10÷5%=200户,×100%=30%,200-10-60-200×60%=10,×100%=5%,∴m=30,n=4,补全条形统计图如图所求,故答案为:200,30,5;(2)扇形统计图中,本年度脱贫部分的圆心角是360°×30%=108°,故答案为:108;(3)2600×(30%+60%)=2340(户)答:2018年底该县实现脱贫的贫困户有2340户.(1)根据脱贫后返贫的户数和其在扇形统计图中所占比例求出总人数,根据本年度脱贫的户数除以总户数得到结论,然后补全统计图即可;(2)用本年度脱贫户数所占的百分比乘以360°计算即可得解;(3)用总的贫困户数乘以脱贫的户数所占的百分比计算即可得解.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【答案】解:(1)设经营这条旅游线路每月所需要的成本为z,∴z=300(-x+800)=-300x+240000,∵-300<0,∴当x=700时,z最低,即z=30000;(2)设经营这条旅游线路的总利润为w,则w=(x-300)(-x+800)=-x2+1100x-240000=-(x-550)2+61500,当x=550时,w最大=61500.【解析】(1)根据“总成本=每人的成本价×游客人数”可得函数解析式,据此根据一次函数性质可得;(2)根据“总利润=每人的利润×游客人数”得出总利润关于报价的函数解析式,配方成顶点式,利用二次函数的性质可得其最值情况.本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.23.【答案】证明:(1)∵∠ADC=90°,BD平分∠ADC,∴∠ADB=∠BDC=∠A=45°,∴AB=BD,∠ABD=90°,∴BE⊥BC,∴∠EBC=90°,∴∠ABE=∠CBD,∴△CBD≌△EBA(ASA);(2)由(1)知:△ABD是等腰直角三角形,∴∠A=∠BDE=45°,AB=BD,∵∠EFB=∠BDE+∠DBF=45°+∠DBF,∵∠EBF=45°,∴∠EBD=∠EBF+∠DBF=45°+∠DBF,∴∠EFB=∠EBD,∴△AFB∽△DBE,∴,∴AB•BD=AF•DE=AB2;(3)设EF=x,则AF=6+x,DE=4+x,∵△ABD是等腰直角三角形,∴AD=AB,由(2)知:AB2=AF•DE,∴,x=2,∴EF=2.【解析】(1)根据ASA证明:△ABE≌△DBC;(2)证明△AFB∽△DBE,可得结论;(3)设EF=x,则AF=6+x,DE=4+x,根据(2)中的等式代入,解方程可得结论.本题考查四边形综合题、等腰直角形的判定和性质、勾股定理、一元二次方程的解法、三角形相似的性质和判定等知识,解题的关键是学会利用方程解决问题,属于中考压轴题.。
2019年最新安徽省中考第一次数学模拟试卷含答案解析
安徽省第一次中考(数学)模拟试卷(含答案)数 学本试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上. 2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1. 2-的倒数是)A ( 21-)B (21)C (2 )D (2-2.随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为)A ( 91021⨯. )B ( 71012⨯ )C ( 910120⨯. )D (81021⨯.3. 下列图形中,既是轴对称图形又是中心对称图形的是)A ( )B ( )C ( )D (4.含︒30角的直角三角板与直线1l 、2l 的位置关系如图1所示,已知21//l l ,A ACD ∠=∠,则1∠=)A (︒70 )B (︒60 )C (︒40 )D (︒305. 下列说法正确的是)A (打开电视,它正在播广告是必然事件)B (要考察一个班级中的学生对建立生物角的看法适合用抽样调查 )C (在抽样调查过程中,样本容量越大,对总体的估计就越准确)D (甲、乙两人射中环数的方差分别为2S 2=甲,4S 2=乙,说明乙的射击成绩比甲稳定6. 若02=-ab a ()0≠b ,则=+ba a)A (0 )B (21)C (0或21)D (1或 27. 图2是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,250.CD AB ==米,51.BD =米,且AB 、CD 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离 地面的距离是)A (2米 )B (52.米 )C (42.米)D (12.米8. 已知31=+x x ,则下列三个等式:①7122=+xx ,②51=-x x ,③2622-=-x x 中,正确的个数有)A ( 0个)B (1个)C ( 2个)D (3个图1图29. 已知二次函数mx x y 22-=(m 为常数),当21≤≤-x 时,函数值y 的最小值为2-,则m 的值是)A (23)B (2)C (23或2)D (23-或2 10. 如图3,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为()46,, 反比例函数xy 6=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将BDE ∆沿DE 翻折至DE B '∆处,点B '恰好落在正比例函数kx y =图象上,则k 的值是 )A ( 52-)B (211-)C (51-)D (241-第二部分(非选择题 共120分)注意事项1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤. 4.本部分共16小题,共120分.二、填空题:本大题共6小题,每小题3分,共18分.11.计算:=-23 ____. 12.二元一次方程组2322+=-=+x yx y x 的解是____. 13.如图4,直线b a 、垂直相交于点O ,曲线C 关于点O 成中心对称,点A 的对称点是点'A ,a AB ⊥于点B ,b D A ⊥'于点D .若3=OB ,2=OC , 则阴影部分的面积之和为____.14.点A 、B 、C 在格点图中的位置如图5所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是_____.15. 庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将 事物无限分割的思想,用图形语言表示为图6.1, 按此图分割的方法,可得到一个等式(符号语言):⋅⋅⋅++⋅⋅⋅+++=n 32212121211. 图6.2也是一种无限分割:在ABC ∆中, 90=∠C ,30=∠A ,过点C 作AB CC ⊥1于点1C ,再过点1C 作BC C C ⊥21于点2C ,又过点2C 作AB C C ⊥32于点3C ,如此无限继续下去,则可将利ABC ∆分割成1ACC ∆、21C CC ∆、321C C C ∆、432C C C ∆、…、n n n C C C 12--∆、….假设2=AC ,这些三角形的面积和可以得到一个等式是_________.16.对于函数m n x x y +=,我们定义11--+='m n mx nx y (n m 、为常数). 例如24x x y +=,则x x y 243+='. 已知:()x m x m x y 223131+-+=. (1)若方程0='y 有两个相等实数根,则m 的值为___________; (2)若方程41-='m y 有两个正数根,则m 的取值范围为__________. 三、本大题共3小题,每小题9分,共27分.17. 计算:272017316020-+-+︒sni .18. 求不等式组⎪⎩⎪⎨⎧≥--+<+02251,312x x x x 的所有整数解.19. 如图7, 延长□ABCD 的边AD 到点F ,使DC DF =,延长CB 到点E ,使BA BE =,分别连结点A 、E 和点C 、F . 求证:CF AE =.四、本大题共3小题,每小题10分,共30分.20. 化简:12121222222-÷⎪⎪⎭⎫ ⎝⎛+----+a aa a a a a a a .21. 为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图8所示.请根据图表信息解答下列问题: (1)在表中:=m ,=n ; (2)补全频数分布直方图;FEDCB A(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A 、C 两组学生的概率是多少?并列表或画树状图说明.22. 如图9,在水平地面上有一幢房屋BC 与一棵树DE ,在地面观测点A 处测得屋顶C 与树梢D 的仰角分别是︒45与︒60,︒=∠60CAD ,在屋顶C 处测得︒=∠90DCA .若房屋的高6=BC 米.求树高DE 的长度.五、本大题共2小题,每小题10分,共20分.23、某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:EDCBA律,给出理由,并求出其解析式; (2)按照这种变化规律,若已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).24.如图10,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且 60=∠ACP ,PD PA =.(1)试判断PD 与⊙O 的位置关系,并说明理由;(2)若点C 是弧AB 的中点,已知4AB =,求CP CE ⋅的值.六、本大题共2小题,第25题12分,第26题13分,共25分.25.在四边形ABCD 中,︒=∠+∠180D B ,对角线AC 平分BAD ∠.(1)如图11.1,若︒=∠120DAB ,且︒=∠90B ,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.A(2)如图11.2,若将(1)中的条件“︒=∠90B ”去掉,(1)中的结论是否成立?请说明理由. (3)如图11.3,若︒=∠90DAB ,探究边AD 、AB 与对角线AC 的数量关系并说明理由.26.如图12.1,抛物线1C :ax x y +=2与2C :bx x y +-=2相交于点O 、C ,1C 与2C 分别交x 轴于点B 、A ,且B 为线段AO 的中点.(1)求ba的值; (2)若AC OC ⊥,求OAC ∆的面积;(3)抛物线2C 的对称轴为l ,顶点为M ,在(2)的条件下:①点P 为抛物线2C 对称轴l 上一动点,当PAC ∆的周长最小时,求点P 的坐标; ②如图12.2,点E 在抛物线2C 上点O 与点M 之间运动,四边形OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点E 的坐标;若不存在,请说明理由.DCBAD CB ADCBA第一次中考(数学)模拟试卷数学参考答案及评分意见第一部分(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.1. )(A2. )(D3. )(D4. )(B5. )(C6. )(C7. )(B8. )(C9. )(D 10.)(B第二部分(非选择题 共120分)二、填空题:本大题共6小题,每小题3分,共18分.11.91;12.⎩⎨⎧-=-=15y x ;13. 6; 14.553; 15.⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++= n434343431233232;16.(1)21=m ;(2)43≤m 且21≠m . 注:(1)第14题,若给出的是化简后正确的等式,也视为正确; (2)第16题,第(1)问1分,第(2)问2分.三、本大题共3小题,每小题9分,共27分.17.解:原式33113232-+-+⨯=……………………………………(8分) =3-.………………………………(9分)18.解:解不等式①得:1->x ……………………………………(3分)解不等式②得:4≤x ……………………………………(6分)所以,不等式组的解集为41≤<-x ……………………………………(8分) 不等式组的整数解为43210,,,,. ……………………………………(9分)19. 证明:□ABCD 中,CD AB =,BE AB =,DF CD =,∴DF BE =.BC AD =, ∴EC AF =………………(6分)又 AF ∥EC ,∴四边形AECF 是平行四边形. ………………(8分) ∴CF AE =………………………(9分)四、本大题共3小题,每小题10分,共30分.20. 解:原式=()()()()()121111122-÷⎥⎦⎤⎢⎣⎡----++a aa a a a a a a ………………(2分)=12112-÷⎪⎭⎫⎝⎛---a a a a a a………………(4分) =121-÷-a a a a ………………(6分) =aa a a 211-⋅-………………(8分) =21…………………………(10分) 21.解:(1)120=m ,30.n =………………(2分)(2);如图2 ………………(4分) (3)C ;………………(6分) (4)FED CBACB A D B A DC AD C B DC BA………………(9分)∴抽中A ﹑C 两组同学的概率为122=P =61…………(10分) 22.解:如图3,在ABC Rt ∆中,︒=∠45CAB ,m BC 6=, ∴26=∠=CABsin BCAC ()m ;…………………(3分)在ACD Rt ∆中,︒=∠60CAD , ∴212=∠=CADcos ACAD ()m ;…………………(6分)在DEA Rt ∆中,︒=∠60EAD ,()m sin AD DE 662321260=⋅=︒⋅=…………………(9分) 答:树DE 的高为66米.…………………(10分) 五、本大题共2小题,每小题10分,共20分 23.解:(1)设b kx y +=,(b k 、为常数,0≠k )∴⎩⎨⎧+=+=645436k .b k ,解这个方程组得⎩⎨⎧=-=51051.b .k ,∴51051.x .y +-=. 当52.x =时,4756≠=.y .∴一次函数不能表示其变化规律. ……………………………………(2分) 设x k y =,(k 为常数,0≠k ),∴5227.k.=, ∴18=k ,∴xy 18=. EDCBA当3=x 时,6=y ;当4=x 时,54.y =;当54.x =时,4=y ; ∴所求函数为反比例函数xy 18=……………………………………(5分) (2)①当5=x 时,63.y =; 40634..=-(万元)∴比2016年降低40.万元. ……………………………………(7分) ②当23.y =时,6255.x =; 630625056255...≈=-(万元) ∴还需要投入技改资金约630.万元. ……………………………………(9分)答:要把每件产品的成本降低到23.万元,还需投入技改资金约630.万元. …………………(10分)24.解:(1)如图4,PD 是⊙O 的切线.证明如下:……………………………………(1分)连结OP ,60=∠ACP ,∴120=∠AOP , OP OA = ,∴ 30=∠=∠OPA OAP ,PD PA =,∴ 30=∠=∠D PAO , ∴ 90=∠OPD ,∴PD 是⊙O 的切线. ……………………………………(4分) (2)连结BC ,AB 是⊙O 的直径, ∴90=∠ACB ,又C 为弧AB 的中点, ∴45=∠=∠=∠APC ABC CAB ,4=AB ,2245== sin AB AC .APC CAB C C ∠=∠∠=∠, ,∴CAE ∆∽CPA ∆,……………………………………(8分)∴CACECP CA =,∴82222===⋅)(CA CE CP .……………………………………(10分)六、本大题共2小题,第25题12分,第26题13分,共25分 25.解:(1)AB AD AC +=.证明如下:在四边形ABCD 中,︒=∠+∠180B D ,︒=∠90B , ∴ ︒=∠90D . ︒=∠120DAB ,AC 平分DAB ∠,∴ 60=∠=∠BAC DAC ,︒=∠90B ,∴AC AB 21=,同理AC AD 21=.∴AB AD AC +=.……………………………(4分) (2)(1)中的结论成立,理由如下:以C 为顶点,AC 为一边作60=∠ACE ,ACE ∠的另一边交AB 延长线于点E , 60=∠BAC ,∴AEC ∆为等边三角形,∴CE AE AC ==,︒=∠+∠180B D ,︒=∠120DAB ,∴60=∠DCB ,∴BEC DAC ∆≅∆,∴BE AD =,∴AB AD AC +=.……………………………………(8分) (3)AC AB AD 2=+.理由如下:过点C 作AC CE ⊥交AB 的延长线于点E ,︒=∠+∠180B D ,︒=∠90DAB ,∴ 90=DCB ,90=∠ACE ,∴BCE DCA ∠=∠,又AC 平分DAB ∠,∴ 45=∠CAB ,∴45=∠E .∴CE AC =.又︒=∠+∠180B D ,CBE D ∠=∠,ACC∴CBE CDA ∆≅∆,∴BE AD =,∴AE AB AD =+. 在ACE Rt ∆中, 45=∠CAB ,∴AC cos ACAE 245==,∴AC AB AD 2=+. ……………………………………(12分)26.解:(1)ax x y +=2,当0=y 时,02=+ax x ,01=x ,a x -=2,∴()0,a B -bx x y +-=2,当0=y 时,02=+-bx x ,01=x ,b x =2,∴()b ,A 0 ∵B 为OA 的中点,∴a b 2-=.∴21-=b a .……………………………………(2分) (2)解⎪⎩⎪⎨⎧--=+=axx y ax x y 222得:ax x ax x 222--=+ ,0322=+ax x , 01=x ,a x 232-=,当a x 23-=时,243a y =, ∴⎪⎭⎫ ⎝⎛-24323a ,a C . ……………………………(3分) 过C 作x CD ⊥轴于点D ,∴⎪⎭⎫⎝⎛-023,a D . ∵︒=∠90OCA ,∴OCD ∆∽CAD ∆,∴CDODAD CD =, ∴OD AD CD ⋅=2,即⎪⎭⎫ ⎝⎛-⋅-=⎪⎭⎫⎝⎛a a a 23214322,∴01=a (舍去),3322=a (舍去),3323-=a ……………………………(5分) ∴3342=-=a OA ,1432==a CD,∴33221=⋅=∆CD OA S OAC ……………………………………(6分) (3)①x x y C 334:22+-=,对称轴332:2=x l , 点A 关于2l 的对称点为)0,0(O ,)1,3(C ,则P 为直线OC 与2l 的交点,设OA 的解析式为kx y =,∴k 31=,得33=k ,则OA 的解析式为x y 33=,当332=x 时,32=y ,∴),(P 32332. ……………………………………(8分)②设)3320(),334,(2≤≤+-m m m E ,则m m m S OBE 3433)334(3322122+-=+-⋅⨯=∆, 而)0,332(B ,)1,3(C ,设直线BC 的解析式为b kx y +=,由⎪⎩⎪⎨⎧+=+=b k b k 332031,解得2,3-==b k , ∴直线BC 的解析式为23-=x y .分)过点E 作x 轴的平行线交直线BC 于点N ,则233342-=+-x m m , 即=x 33234332++-m m ,∴=EN 3323133332343322++-=-++-m m m m m ,∴336163332313312122++-=++-⋅⋅=∆m m )m m (S EBC∴EBC O BE O BCE S S S ∆∆+=四边形)336163()3433(22++-++-=m m m m 24317)23(2333232322+--=++-=m m m ,……………………………………(11分)3320≤≤m ,∴当23=m 时,24317=最大S ,当23=m 时,4523334)23(2=⋅+-=y ,∴),(E 4523,24317=最大S . ……………………………………(13分)。
2019年3月2019届九年级第一次模拟大联考(安徽卷)-道德与法治(全解全析)
2019 届九年级第一次模拟大联考【安徽卷】道德与法治·全解全析1.【参考答案】C【全解全析】整体把握题文意思,要学会接纳自己,欣赏自己。
接纳自己要接纳自己的全部,包括接纳自己的优点,接纳自己的不完美,故①②正确。
③中只有自己才是最好的,这是自负的表现,故错误。
题文中讲到,我们虽然不能像某些方面很优秀的人一样,但是要认识到自己的优点、独特之处,要欣赏自己的独特,故④正确。
本题选C。
3.【参考答案】B【全解全析】党和国家之所以高度重视教师队伍建设,是因为教师是人类文明的传递者,教师肩负着塑造灵魂、塑造人的时代重任,青少年的健康成长离不开老师的关心与帮助,所以①④符合题意。
②错误,学生成长最关键的因素是自身。
③错误,当今世界各国之间的竞争,归根到底是教育的竞争,人才的竞争。
故选B。
4.【参考答案】A【全解全析】本题主要考查增强生命的韧性的相关知识。
在半山腰突然遇到大雨,这是遇到挫折,“往山顶走,固然风雨可能更大,却不足以威胁你的生命”这是一种积极乐观的态度,有战胜挫折的勇气和决心,要挖掘自己的生命力量,故①②正确;③说法太绝对,故错误;④与题意无关;本题选A。
5.【参考答案】A【全解全析】张三开车闯红灯,违反的是道路交通安全法;李某打破沿街的路灯,破坏了社会公共财物,这两种行为都是行政违法行为。
甲将乙打成重伤,使乙丧失了劳动能力,属于严重的违法行为,即刑事违法行为;丙打了丁两个耳光,侵犯了丁的生命健康权,属于民事违法行为。
因此四个片段中的行为分别是行政违法行为、刑事违法行为、行政违法行为、民事违法行为。
选A。
16.【参考答案】A【全解全析】网络的出现为人们的生活提供了便利,网络媒介已经成为外卖企业开拓市场的重要平台。
题干描述启示我们企业之间的相互合作有利于实现双赢,竞争对手若一味相互排斥,势必造成两败俱伤,相互促进、共同提高才是竞争中合作的真谛,双赢是竞争最理想的结果,①②③说法正确,④表述错误。
2019届安徽省中考数学一模试卷 (原卷版+解析版)
安徽省2019年中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.计算2﹣1的结果是()A. B. ﹣ C. ﹣2 D. 22.经过约38万公里、26天的漫长飞行,2019年1月3日10时26分,“嫦娥四号“探测器自主着陆在月球背面南极一艾特肯盆地内的冯,卡门擅击坑内,实现人类探测器的首次月背软着陆,数据38万用科学记数法可表示为()A. 0.38×106B. 3.8×107C. 3,8×108D. 3.8×1053.下列计算错误的是()A. (ab≠0 )B. ab2÷=2ab3(b≠0)C. 2a2b+3ab2=5a3b3D. (ab2)3=a3b64.不等式组的解集是()A. x>2B. x≥1C. 1≤x<2D. x≥﹣15.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是【】。
6.如图,AB是⊙O的直径,BC是⊙O的弦,∠AOC=80°,则∠C的度数为()A. 20°B. 30°C. 40°D. 50°7.由于春季气温回暖,某服装店从3月份开始对冬装进行“折上折“(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需490元,设该店冬装原本打x折,则有()A. 490(1﹣2x)=1000B. 1000(1﹣x2)=490C. 1000(1-)2=490D. 1000(1-)2=4908.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A. 甲B. 乙C. 丙D. 丁9.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限10.甲、乙、丙三位同学围成一圈玩循环报数游戏,规定:①甲、乙、丙首次报出的数依次1,2.3.接着甲报4.乙报5******,按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是2019时,报数结束;②若报出的数为偶数,则报该数的同学需要拍手一次,在此过程中,丙同学拍手的次数是()A.334B. 335C. 336D. 337二、填空题(本大题共4小题,每小题5分,满分20分)11.﹣6的相反数等于_____.12.分解因式;ax2+ay2﹣2axy=_____.13.如图,在四边形ABCD中,AC=BD=8,E、F、G、H分别是边AB、BC、CD、DA的中点,则EG2+FH2的值为_____.14.如图,点A是x轴负半轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是C(0,4),设点A的坐标为A(n,0),连接OD,当OD=时,n=_____.三、解答题15.计算:|﹣2|+(2cos30°﹣1)0﹣.16.《九章算术》中有这样道题,原文如下:今有共买豕,人出一百,盈一百,人出九十,适足,问人数、豕价各几何?大意为:今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适,问合伙的人数、猪价各是多少?17.如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B两点(点A在第一象限).若点A 的横坐标为4.(1)求k的值.(2)根据图象,直接写出当>x时,x的取值范围.18.在由边长为1个单位长度的小正方形组成的网格中建立直角坐标系,△ABC的位置如图所示.(1)试在网格图中画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称.(2)直接写出点C1的坐标与线段OC1的长度,19.现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:请根据以上信息解答下列问题:(1)填空:m=,n=.(2)补全频数分布直方图.(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.20.如图1所示的是午休时老师们所用的一种折叠椅,现将躺椅以如图2所示的方式倾斜放置,AM与地面ME成45°角,AB∥ME,椅背BC与水平线成30°角,其中AM=50厘米,BC=72厘米,BP是躺椅的伸缩支架,且30°≤BPM≤90°.(结果精确到1厘米;参考数据≈1.4,≈ 1.7,≈ 2.2)(1)求此时点C与地面的距离.(2)在(1)的条件下,求伸缩支架BP可达到的最大值.21.如图,AB是⊙O的直径,M是OA的中点,弦CD⊥AB于点M,过点D作DE⊥CA交CA的延长线于点E.(1)连接AD,则∠OAD=°;(2)求证:DE与⊙O相切;(3)点F在上,∠CDF=45°,DF交AB于点N.若DE=3,求FN的长.22.某4A风景区准备开设风光游览业务,调查后发现,准备4辆风光游览车时,每辆车每天有16班;且每增加1辆风光游览车,每辆车就需减少2个班次若每辆游览车的载客人数为20人,且每班均载满游客,设游览车的辆数为x(x>0),(1)设每天运送的游客人数为w,求w关于x的函数关系式,(2)该景区应开设多少辆游览车,才能运送最多的游客?最多的人数是多少?(3)已知每辆车每个班次的成本为100元,每名游客的游览车票价为10元,另外该景区每天还需支付其他费用共3000元,若每天此项业务的收入为4200元,求x的值.23.如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED 和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段,;S矩形AEFG:S▱ABCD=.(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.安徽省2019年中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.计算2﹣1的结果是()A. B. ﹣ C. ﹣2 D. 2【答案】A【解析】【分析】根据负整数指数幂:(a≠0,p为正整数)可得答案.【详解】解:原式=,故选:A.【点睛】此题主要考查了负整数指数幂,关键是掌握计算公式.2.经过约38万公里、26天的漫长飞行,2019年1月3日10时26分,“嫦娥四号“探测器自主着陆在月球背面南极一艾特肯盆地内的冯,卡门擅击坑内,实现人类探测器的首次月背软着陆,数据38万用科学记数法可表示为()A. 0.38×106B. 3.8×107C. 3,8×108D. 3.8×105【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将38万用科学记数法表示为:3.8×105.故选:D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算错误的是()A. (ab≠0 )B. ab2÷=2ab3(b≠0)C. 2a2b+3ab2=5a3b3D. (ab2)3=a3b6【答案】C【解析】【分析】根据分式的运算法则以及整式的运算法则即可求出答案.【详解】解:C选项,原式=2a2b+3ab2,故选:C.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.4.不等式组的解集是()A. x>2B. x≥1C. 1≤x<2D. x≥﹣1【答案】A【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式3x﹣1≥x+1,得:x≥1,解不等式x+4<4x﹣2,得:x>2,则不等式组的解集为x>2,故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是【】。
2019年3月2019届九年级第一次模拟大联考(安徽卷)-化学(全解全析)
化学第1页(共5页)2019届九年级第一次模拟大联考【安徽卷】化学·全解全析12345678910B A B A C B C D BD 1.B 【解析】A 、烧制陶器的过程中有新物质生成,属于化学变化;B 、玉石雕刻的过程中只是形状发生改变,没有新物质生成,属于物理变化;C 、黄酒酿造过程中有新物质酒精生成,属于化学变化;D 、火药爆破的过程中有新物质二氧化碳等生成,属于化学变化。
故选B 。
2.A 【解析】A 、燃放烟花爆竹会产生烟尘和有害气体,造成空气污染,不利于环境保护,符合题意;B 、共享单车绿色出行,可以减少化石燃料的燃烧,减少空气污染,有利于环境保护,不符合题意;C 、限用塑料制品,减少白色污染,有利于环境保护,不符合题意;D 、推广使用清洁能源,减少化石燃料的燃烧,减少了二氧化碳的排放,有利于缓解温室效应,不符合题意。
故选A 。
4.A 【解析】A 、配制NaCl 溶液,量取水时,俯视读数会导致量取的水偏少,故溶质质量分数变大,选项正确;B 、给试管加热时,要进行预热,防止试管受热不均引起炸裂,选项错误;C 、过滤溶液时,漏斗内的液面要低于滤纸的边缘,防止不溶性杂质随滤液一起进入烧杯中,选项错误;D 、一氧化碳为可燃性气体,需要将空气排净后再用酒精灯加热,防止气体不纯引起爆炸,选项错误。
故选A 。
5.C 【解析】A 、明矾溶于水生成的胶状物对杂质进行吸附,使杂质沉降,明矾沉降只能除去水的不溶性的杂质,不能除去水中可溶性的钙、镁化合物,明矾沉降不可将硬水软化,故A 错误;B 、碘是合成甲状腺激素的主要元素,缺乏会患甲状腺肿大,食用加碘盐,预防甲状腺肿大,故B 错误;C 、铁是合成血红蛋白的主要元素,缺乏会患贫血,故C 正确;D 、人体缺锌元素易患侏儒症;钙主要存在于骨胳和牙齿中,使骨和牙齿具有坚硬的结构支架,缺乏幼儿和青少年会患佝偻病,老年人会患骨质疏松,故D 错误。
故选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.【答案】A 2019 届九年级第一次模拟大联考【安徽卷】
数学·全解全析
【解析】–4 的相反数是4.故选
A.2.【答案】B
【解析】数据1.496 亿用科学记数法表示为1.496×108,故选B.3.【答案】A
【解析】从几何体的上面看可得,故选A.
4.【答案】D
【解析】A、3m 与3n 不是同类项,不能合并,故本选项错误;
B、y3÷y3=y,故本选项错误;学-科网
C、a2•a3=a2+3=a5,故本选项错误;
D、(x3)2=x3×2=a6,故本选项正
确.故选D.
5.【答案】D
【解析】如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,
∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1–∠E=70°–40°=30°.故选D.6.【答案】D
【解析】原数据的2、3、3、4 的平均数为
2+(3–3)2×2+(4–3)2]=0.5;
2 +
3 + 3 + 4
4=3,中位数为
3 + 3
2
1
=3,众数为3,方差为
4
×([2–3)
新数据2、3、3、3、4 的平均数为2 + 3 + 3 + 3 + 4
5
1
=3,中位数为3,众数为3,方差为
5
×[(2–3)2+ 数学第1页(共8页)
(3–3)2×3+(4–3)2]=0.4;
∴添加一个数据 3,方差发生变化,故选 D . 7.【答案】B
【解析】∵抛物线 y =ax 2+bx +c 与 x 轴两交点的坐标为(–1,0)和(3,0),
而抛物线 y =ax 2+bx +c 与 x 轴两交点是对称点,∴抛物线的对称轴为直线 x =1.故选 B .
10.【答案】C
【解析】由题意,可得当 2<x ,即 x >2 时,y =2+x ,y 是 x 的一次函数,图象是一条射线除去端点,故 A 、
D 错误;
2 当 2≥x ,即 x ≤2 时,y =– x
,y 是 x 的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四
象限时,0<x ≤2.故 B 错误.故选 C . 11.【答案】a (a +1)(a –1)
【解析】a 3–a =a (a 2–1)=a (a +1)(a –1).故答案为:a (a +1)(a –1).
12. 【答案】2<c <12
【解析】由题意得 a –5=0,7–b =0,解得 a =5,b =7,
∵7–5=2,5+7=12,∴2<c <12.故答案为:2<c <12.
数学 第 2页(共 8页)
2 2 8
13. 【答案】
π
15
【解析】如图,连接 CF ,DF ,则△CFD 是等边三角形,∴∠FCD =60°,
∵在正五边形 ABCDE 中,∠BCD =108°,∴∠BCF =48°,
∴ B F 的长=
48 ⋅π⨯ 2 = 8 8 π,故答案为: π.学-科网
27 14. 【答案】
29
180 15 15
【解析】如图,连接 HE ,HC ,作 HM ⊥AB 于 M ,延长 MH 交 CD 于 N .
∵四边形 ABCD 是正方形,∴DA =DC ,∠ADH =∠CDH =45°,
∵DH =DH ,∴△ADH ≌△CDH (SAS ),∴AH =CH = ,
∵EF ⊥AB ,HM ⊥AB ,DA ⊥AB ,∴EF ∥HM ∥AD ,
∵HF =HD ,∴AM =EM ,∴HA =HE =HC ,
∵∠AMN =∠DAM =∠ADN =90°,∴四边形 AMND 是矩形,∴AM =DN , 由题可证得 DN =HN ,又∵AM =EM ,∴EM =HN , ∴Rt △HME ≌Rt △CNH (HL ),∴∠MHE =∠HCN ,
∵∠HCN +∠CHN =90°,∴∠MHE +∠CHN =90°,
∴∠EHC =90°,∴EC = HE =2,
4 ∵EG = 7
4 10
,∴GC =2– =
,
7 7
EF EG 4
∵EF ∥BC ,∴
=
=
, BC GC 10
数学第3页(共8页)
设 EF =BE =4a ,则 BC =AB =10a ,AE =6a ,AM =ME =3a , EF
∵EF ∥HM ,∴
HM
BE 4a
=
,∴
BM
HM 4a
=
,∴HM =7a ,
7a 1 ∴S 四边形 AEFH =S △AMH +S 梯形 EFHM =
2
1 ×3a ×7a + 2
(4a +7a )×3a =27a 2,
在 Rt △BEC 中,∵BE 2+BC 2=EC 2, 1 27 ∴16a 2
+100a 2
=4,∴a 2
=
29
27 ,∴S 四边形 AEFH =
.
29
故答案为
.
29
17.【解析】(1)①如图,△A 1B 1C 1 为所作;(3 分)
②如图,将△A 2B 2C 2 为所作;(6 分)
(2)从 C 点到 C 1 所经过的路径长为 4, 90 ⋅ π⋅ 4 从点 C 1 到 C 2 所经过的路径长=
180
=2π,
数学 第 4页(共 8页)
数学 第 5页(共 8页)
⎨ ⎨
所以点 C 从开始到点 C 2 的过程中所经过的路径长为 4+2π.(8 分)
1 19.【解析】(1)由题意得:白棋为: 2
1
n (n +1),黑棋为 3n +6;
故答案为: 2
1
n (n +1),3n +6;(4 分)
(2) 2
n (n +1)=300,解得 n =24(已舍去负值).
故第 24 个图形中,白棋共有 300 枚;(7 分) 1
(3) 2
n (n +1)=3n +6,
解得 n =
5 + 73 (负值已舍)为无理数,所以白棋的个数不能与黑棋的个数相等.(10 分)
2
20. 【解析】(1)设甲种苹果的进价为 a 元/千克,乙种苹果的进价为 b 元/千克,
⎧a + b = 18 根据题意得: ⎩3(a + 4) + 4(b + 2) = 82 ⎧a = 10 ,解得 ⎩
b = 8 .(4 分)
答:甲种苹果的进价为 10 元/千克,乙种苹果的进价为 8 元/千克.(5 分)
(2)根据题意得:(4+x )(100–10x )+(2+x )(140–10x )=960, 整理得:x 2–9x +14=0,解得x 1=2,x 2=7,(8 分) 经检验,x 1=2,x 2=7 均符合题意.
数学 第 6页(共 8页)
答:x 的值为 2 或 7.(10 分)
21.
【解析】(1)连接 OC .如图 1 所示:
∵OA =OC ,∴∠1=∠2.(2 分) 又∵∠3=∠1+∠2,∴∠3=2∠1.
又∵∠4=2∠1,∴∠4=∠3,∴OC ∥DB .(4 分)
∵CE ⊥DB ,∴OC ⊥CF .
又∵OC 为⊙O 的半径,∴CF 为⊙O 的切线;(6 分)
(2)连接 AD .如图 2 所示:
∵AB 是直径,∴∠BDA =90°,(8 分)
∵CE ⊥DB ,∴∠CED =90°,
∴CF ∥AD ,∴∠BAD =∠F ,
∴sin ∠BAD =sin F =
BD 3 = AB 5
5 ,∴AB = 3
BD =6,∴OB =OC =3,(10 分)
OC ∵OC ⊥CF ,∴∠OCF =90°,∴sin F =
OF 3 = ,解得 OF =5.(12 分)
5
22.【解析】(1)∵2 号茶树幼苗所占百分比为 1–(30%+25%+25%)=20%,
数学 第 7页(共 8页)
⎨ ⎩
∴实验所用的 2 号茶树幼苗的数量是 500×20%=100(株), 故答案为:100;(4 分)
(2) 实验所用的 3 号茶树幼苗的数量是 500×25%=125(株),
∴3 号茶树幼苗的成活数为 125×89.6%=112(株),(6 分) 补全统计图如下:
(3) 画树状图如下:
(10 分)
由树状图知共有 12 种等可能结果,其中抽到 1 号品种的有 6 种结果,
(8 分)
6 1 所以 1 号品种被选中的概率为 = 12 2
23.【解析】(1)如图 1 中,
.(12 分)
∵四边形 ABCD 和四边形 BPEF 是正方形,
∴AB =BC ,BP =BF ,∴AP =CF ,(2 分)
⎧ AP = CF
在△APE 和△CFE 中, ⎪
∠P = ∠F ,
⎪PE =
EF
∴△APE≌△CFE,∴EA=EC;(5 分)
(2)△ACE 是直角三角形,(6 分)
理由如下:如图2 中,
∵P 为AB 的中点,∴PA=PB,-网
∵PB=PE,∴PA=PE,∴∠PAE=45°,(8 分)
又∵∠BAC=45°,
∴∠CAE=90°,即△ACE 是直角三角形;(10 分)
数学第8页(共8页)。