2016沪教版八年级第二学期数学教学进度表

合集下载

新沪科版八年级下数学教学计划及教学进度表

新沪科版八年级下数学教学计划及教学进度表

新沪科版八年级下数学教学计划及教学进度表教学计划:
单元一:平面直角坐标系
1. 坐标系的建立及表示方法
2. 点的坐标及点的平移
3. 线段的坐标及线段的平移
4. 直角坐标系的使用
单元二:一次函数
1. 一次函数的概念及表示方法
2. 一次函数的图像及性质
3. 一次函数与直线的关系
4. 一次函数的应用
单元三:一元一次方程
1. 一元一次方程的解的概念及求解方法
2. 一元一次方程的应用
3. 二元一次方程的解的概念及求解方法
4. 二元一次方程的应用
单元四:相似与全等
1. 相似的概念及判定条件
2. 相似三角形的性质
3. 全等的概念及判定条件
4. 全等的性质
单元五:面积与体积
1. 平行四边形的面积计算
2. 直角三角形的面积计算
3. 梯形的面积计算
4. 三棱柱、四棱柱、平面图形的体积计算
单元六:排列与组合
1. 排列与组合的概念及计算方法
2. 排列组合的应用
3. 排列组合的概率计算
4. 有重复元素的排列组合
教学进度表:
第一周:单元一:平面直角坐标系
第二周:单元一:平面直角坐标系
第三周:单元二:一次函数
第四周:单元二:一次函数
第五周:单元三:一元一次方程
第六周:单元三:一元一次方程
第七周:单元四:相似与全等
第八周:单元四:相似与全等
第九周:单元五:面积与体积
第十周:单元五:面积与体积
第十一周:单元六:排列与组合
第十二周:单元六:排列与组合
注:本教学计划及教学进度表仅供参考,具体进度可根据实际情况进行调整。

2023-2024学年(沪科版)八年级数学下册名师教学设计:一元二次方程的解法——因式分解法

2023-2024学年(沪科版)八年级数学下册名师教学设计:一元二次方程的解法——因式分解法

2023-2024学年(沪科版)八年级数学下册名师教学设计:一元二次方程的解法——因式分解法一. 教材分析《2023-2024学年(沪科版)八年级数学下册》中一元二次方程的解法——因式分解法,是学生在学习了方程的解法、一元二次方程的定义及判别式等知识后,进一步学习一元二次方程的解法。

因式分解法是一元二次方程的一种重要解法,它把一元二次方程转化为两个一次因式的方程,使问题变得简单。

本节课的教学内容,旨在让学生掌握因式分解法解一元二次方程的方法,提高学生解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程的解法,对解方程的过程有一定的了解。

同时,学生已经学习了因式分解的知识,对因式分解的方法和步骤有一定的了解。

但学生对一元二次方程的解法——因式分解法可能还比较陌生,需要通过本节课的学习,让学生理解和掌握这一方法。

三. 教学目标1.知识与技能目标:使学生理解一元二次方程的解法——因式分解法,并能运用因式分解法解一元二次方程。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:一元二次方程的解法——因式分解法。

2.难点:如何判断一元二次方程是否可以通过因式分解法求解,以及如何运用因式分解法解一元二次方程。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生自主探究。

2.合作学习法:学生分组讨论,共同解决问题,培养学生的合作能力。

3.实践操作法:学生通过动手操作,实践因式分解法解一元二次方程的过程,提高学生的实践能力。

六. 教学准备1.教师准备:教师准备PPT,内容包括一元二次方程的定义、判别式、因式分解法等。

2.学生准备:学生准备笔记本,用于记录学习内容。

七. 教学过程1.导入(5分钟)教师通过提问,引导学生回顾一元一次方程的解法,为新课的学习做好铺垫。

八年级数学下册21.5二元二次方程和方程组教学设计沪教版五四制

八年级数学下册21.5二元二次方程和方程组教学设计沪教版五四制

八年级数学下册21.5二元二次方程和方程组教学设计沪教版五四制一. 教材分析《沪教版八年级数学下册》21.5节主要讲述二元二次方程和方程组的概念、性质及其解法。

通过本节课的学习,学生能够理解二元二次方程和方程组在实际问题中的应用,掌握求解二元二次方程组的方法,提高解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了二元一次方程和方程组的相关知识,具备了一定的数学思维能力。

但部分学生对二次项的理解和运用还不够熟练,对于如何将实际问题转化为二元二次方程组可能还存在一定的困难。

三. 教学目标1.知识与技能:理解二元二次方程和方程组的概念,掌握求解二元二次方程组的方法。

2.过程与方法:通过实例分析,培养学生将实际问题转化为二元二次方程组的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和解决问题的能力。

四. 教学重难点1.重点:二元二次方程和方程组的概念、性质及其解法。

2.难点:如何将实际问题转化为二元二次方程组,以及求解过程中的计算和分析。

五. 教学方法采用问题驱动法、案例分析法、合作学习法和引导发现法进行教学。

通过设置问题情境,引导学生主动探究,合作交流,发现和总结二元二次方程和方程组的解法,提高学生解决实际问题的能力。

六. 教学准备1.教学PPT:制作包含二元二次方程和方程组概念、性质、解法及相关实例的PPT。

2.练习题:准备一定数量的练习题,用于巩固所学知识。

3.教学素材:收集一些实际问题,用于引导学生将问题转化为二元二次方程组。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出二元二次方程和方程组的概念,激发学生的学习兴趣。

2.呈现(10分钟)利用PPT展示二元二次方程和方程组的概念、性质,并通过实例进行分析,让学生理解二元二次方程组在实际问题中的应用。

3.操练(10分钟)让学生分组合作,解决一些简单的二元二次方程组问题,培养学生的团队合作意识和解决问题的能力。

沪科版八年级数学下册17.1一元二次方程 课程教学设计

沪科版八年级数学下册17.1一元二次方程  课程教学设计

沪科版八年级数学下册17.一元二次方程(第1课时)
二、得出新知,运用强化
1、指出符合上述特征的方程叫做一元二次方程,得到一元二次方程的定义并判断下列方程是否是一元二次方程:
练习:课本P21练习第一题;
2.指出:能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根).
练习:(1)判断未知数的值x=-1,x=0,x=2是不是方程2
2x x -=的根. (2)若关于x 的一元二次方程(m+2)x2+5x+m2-4=0,有一个根为0,求m 的值.
(3)已知a 是方程 x2+2x -2=0 的一个实数根,求 2a2+4a+2020的值. (整体思想)
4、一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗? 引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学
生运用字母,找到一元二次方程的一般形式 ax 2
+bx+c=0(a ≠0)
(1)提问a =0时方程还是一元二次方程吗?为什么?讲解方程中ax 2
、bx 、c 各项的名称及a 、b 的系数名称.
(2)强调:一元二次方程的一般形式中,二次项必须存在,而且左边通常按未知数的次数从高到低排列,“=”的右边必须整理成0. 5、强化概念
例1 把方程3x (x -1)=2(x -2)-4化成一般形式,并写出它的二次项系数、一次项系数及常数项.
解: 去括号,得 3x ²-3x =2x -4-4.化简得到一般形式: 3x ²-5x +8=0.
它的二次项系数是3,一次项系数是-5,常数项是8. 课本p21页第2题 三、课堂小结
四、作业布置
1.课本P22习题17.1第2、3题
2.同步练习17.1
教学反思。

八年级数学下册21.6二元二次方程组的解法1教学设计沪教版五四制

八年级数学下册21.6二元二次方程组的解法1教学设计沪教版五四制

八年级数学下册21.6二元二次方程组的解法1教学设计沪教版五四制一. 教材分析《沪教版五四制》八年级数学下册21.6节,主要讲述了二元二次方程组的解法。

这部分内容是整个初中数学的重要部分,也是学生学习数学的难点之一。

教材通过引入二元二次方程组的概念,让学生了解并掌握其解法,培养学生解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了初一、初二级别的数学知识,对解一元二次方程、解二元一次方程组等概念有一定的了解。

但二元二次方程组作为一种新的方程形式,其解法较为复杂,需要学生进行适当的过渡和引导。

三. 说教学目标1.让学生理解二元二次方程组的概念,掌握其解法。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生的逻辑思维能力和团队协作能力。

四. 说教学重难点1.重点:二元二次方程组的概念及其解法。

2.难点:如何将实际问题转化为二元二次方程组,并灵活运用解法求解。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究二元二次方程组的解法。

2.利用多媒体手段,如PPT、视频等,生动展示二元二次方程组的解法过程。

3.分组讨论,让学生在团队中互相学习,提高协作能力。

六. 说教学过程1.引入新课:通过一个实际问题,引导学生思考如何用数学方法解决此类问题。

2.讲解概念:介绍二元二次方程组的概念,让学生理解其含义。

3.演示解法:利用多媒体手段,展示二元二次方程组的解法过程。

4.练习巩固:让学生通过练习题,巩固所学解法。

5.拓展应用:引导学生将实际问题转化为二元二次方程组,并求解。

6.总结反馈:对学生的学习情况进行总结,查漏补缺。

七. 说板书设计板书设计要清晰、简洁,能够突出二元二次方程组的概念和解法。

主要包括以下几个部分:1.二元二次方程组的定义2.二元二次方程组的解法步骤3.实际问题转化为二元二次方程组的例子八. 说教学评价教学评价主要包括两个方面:1.过程评价:观察学生在课堂上的参与程度、思考问题的深度以及团队协作能力。

最新沪科版八年级下数学教学计划及进度表

最新沪科版八年级下数学教学计划及进度表

最新沪科版八年级下数学教学计划及进度表一、教材分析本学期教学内容,共计五章,知识的前后联系分析如下:第十六章二次根式本章学习二次根式的概念、性质和它的运算,分两节1. 二次根式,2. 二次根式的运算。

二次根式的重点是二次根式的化简与计算,难点是正确理解和运用公式。

第十七章一元二次方程本章通过实际问题让学生初步体会一元二次方程的概念、并且进一步探究一元二次方程的解法和根的判别式。

使学生了解一元二次方程的根与系数的关系,最终掌握一元二次方程的应用。

第十八章勾股定理直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余, 30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

第十九章四边形四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。

因此,四边形既是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。

本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。

从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化第二十章数据的初步分析本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

二、学生基本情况我班学生人数为63人,上学期学生期末考试的成绩总体来看,成绩不算太好。

在学生所学知识的掌握程度上,已经开始出现两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,相对正规教学来说,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。

2024年春学期沪科版初中数学八年级下册教学进度表

2024年春学期沪科版初中数学八年级下册教学进度表
5
18
6.24——6.28
总复习
5
19
7.01——7.05
期末测试
5
17.1 一元二次方程
17.2 一元二次方程的解法
5
5
3.25——3.29
17.3 一元二次方程的根的判别式
17.4 一元二次方程的根与系数的关系
5
6
4.01——4.03
17.5 一元二次方程的应用
本章复习
3
清明节
4.04——4.06
7
4.08——4.12
本章复习与测试
5
8
4.15——4.19
第18章 勾股定理
沪科版初中数学八年级下册教学进度表
(2023——2024学年度)
周次
时间
教 学 内 容
周课时数
备注
1
2.26——3.01
开学第一课
第16章 二次根式
16.1 二次根式
5
2
3.04——3.08
16.2 二次根式的运算
本章复习
5
3
3.11——3.15
本章复习与测试
5
4
3.18——3.22
第17章 一元二次方程
19.4 综合与实践 多边形的镶嵌
5
14
5.27——5.31
本章复习与测试
5
15
6.03——6.07
第20章 数据的初步分析
20.1 数据的频数分布
20.2 数据的集中趋势与离散程度
5
16
6.11——6.14
20.3 综合与实践 体重指数
本章复习
4
端午节
6.08——6.10
17

沪教版(上海)数学八年级第二学期-22.6 三角形的中位线 教案

沪教版(上海)数学八年级第二学期-22.6 三角形的中位线 教案

课题:三角形的中位线教学目标1、理解三角形中位线的概念,知道三角形中位线和中线的区别。

2、经历三角形中位线性质的探索过程,掌握三角形中位线定理,体会转化的思想方法,并能运用该定理进行简单的计算和论证,解决一些实际问题。

3.通过对问题的探索,学生提高分析问题与解决问题的能力,体验数学学习的探索性和乐趣。

状态分析教学内容分析教学重点:掌握三角形中位线定理及其推导,并能应用定理进行简单的计算和证明。

教学难点:三角形中位线定理证明中添加辅助线的思想方法。

内容分析:本节课是九年制义务教育初二第二学期三角形的中位线的第一课时。

本节课以“探”为主,第二节课以“用”为主。

三角形中位线的概念和三角形中位线定理,是三角形非常重要的概念与定理,它揭示了连结三角形任意两边中点所得的线段与第三边的位置关系和倍分关系,是学习梯形中位线定理必不可少的基础知识。

因此正确理解三角形中位线概念和性质是学好本节的关键。

针对本班学生的知识结构和心理特征,选择引导探索法,从生活实际引入课题,通过学生自主探索,合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。

学生分析学生已学习了三角形的中线、角平分线、高和平行四边形和特殊的平行四边形的判定及其性质,会运用已学知识进行几何证明及计算,有一定的数形结合能力和探究能力,但若遇需添加辅助线加以证明较困难。

教学准备制作多媒体课件、尺、量角器教学过程教学步骤教师教学活动设计学生学习活动设计设计意图情景引入小小设计师:为响应虹桥枢纽地区西部会展板块的有序发展,现将部分村庄拆迁后组建成三个新小区(如图所示),现在请你帮忙设计一条马路,使三个小区到马路的距离相等,马路应如何建造?思考并简述理由从实际问题出发,激发学生学习兴趣,引入新授。

AB CD EmF HG。

沪教版数学八年级下册21.4《二元二次方程组》教学设计

沪教版数学八年级下册21.4《二元二次方程组》教学设计

沪教版数学八年级下册21.4《二元二次方程组》教学设计一. 教材分析《二元二次方程组》是沪教版数学八年级下册第21章“方程与不等式”的第四节内容。

本节课的主要内容是让学生掌握二元二次方程组的定义、解法及应用。

通过学习,学生能理解二元二次方程组的概念,掌握用代入法、消元法求解二元二次方程组的方法,并能够解决实际问题。

教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析学生在八年级上册已经学习了二元一次方程组的相关知识,对解方程组有一定的基础。

但二元二次方程组与二元一次方程组在形式和求解方法上有较大的区别,需要学生重新建立认知结构。

此外,学生需要进一步培养抽象思维能力、问题解决能力和合作交流能力。

三. 教学目标1.知识与技能目标:理解二元二次方程组的定义,掌握用代入法、消元法求解二元二次方程组的方法,并能够解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生抽象思维能力和问题解决能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:二元二次方程组的定义,代入法、消元法求解二元二次方程组。

2.难点:理解二元二次方程组的解法及应用。

五. 教学方法1.情境教学法:通过生活实例引入二元二次方程组,激发学生学习兴趣。

2.启发式教学法:引导学生主动探究二元二次方程组的解法,培养学生的抽象思维能力。

3.合作学习法:学生进行小组讨论,共同解决问题,提高学生的合作交流能力。

4.反馈评价法:及时给予学生反馈,鼓励学生积极参与课堂活动。

六. 教学准备1.教学课件:制作课件,展示二元二次方程组的相关概念、解法及应用。

2.练习题:准备适量的练习题,巩固所学知识。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例引入二元二次方程组,激发学生学习兴趣。

如:某商店同时销售两种商品A和B,售价分别为每件100元和80元。

八年级数学下册21.4无理方程2教学设计沪教版五四制

八年级数学下册21.4无理方程2教学设计沪教版五四制

八年级数学下册21.4无理方程2教学设计沪教版五四制一. 教材分析八年级数学下册21.4无理方程2教学设计沪教版五四制,这一节内容是在学生已经掌握了无理数的概念、实数的概念以及一元二次方程的解法的基础上进行学习的。

无理方程是实数范围内的一类方程,它不能用传统的解法直接求解,需要采用特殊的方法。

本节内容主要介绍了求解无理方程的方法,包括换元法、有理化方法等,以及如何运用这些方法解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于无理数和一元二次方程的概念有一定的了解。

但是,对于无理方程的解法,大部分学生可能会感到困惑,因此需要通过实例讲解,让学生理解无理方程的解法,并能够运用到实际问题中。

三. 说教学目标1.知识与技能:使学生掌握无理方程的解法,能够运用无理方程的解法解决实际问题。

2.过程与方法:通过实例讲解,培养学生解决无理方程的能力,提高学生的数学思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和自信心。

四. 说教学重难点1.教学重点:无理方程的解法,包括换元法、有理化方法等。

2.教学难点:如何运用无理方程的解法解决实际问题。

五. 说教学方法与手段1.教学方法:采用实例讲解法、问题驱动法、合作交流法等。

2.教学手段:利用多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何解决无理方程。

2.新课讲解:讲解无理方程的解法,包括换元法、有理化方法等,并通过实例进行讲解。

3.课堂练习:让学生进行课堂练习,巩固所学知识。

4.实际问题解决:让学生运用无理方程的解法解决实际问题。

5.总结:对本节课的内容进行总结,强调无理方程的解法和实际问题的解决方法。

七. 说板书设计板书设计如下:无理方程的解法设t = a + b√c ,则原方程可以转化为关于 t 的一元二次方程。

2.有理化方法将方程两边同时乘以共轭式,将无理方程转化为有理方程。

八. 说教学评价通过课堂练习和实际问题解决的情况,评价学生对无理方程解法的掌握程度。

八年级数学下册22.5等腰梯形2等腰梯形教学设计沪教版五四制

八年级数学下册22.5等腰梯形2等腰梯形教学设计沪教版五四制

八年级数学下册22.5等腰梯形2等腰梯形教学设计沪教版五四制一. 教材分析等腰梯形是八年级数学下册的教学内容,属于平面几何的一部分。

通过对等腰梯形的性质和判定定理的学习,使学生了解等腰梯形的特点,掌握等腰梯形的判定方法,以及会运用等腰梯形的性质解决实际问题。

沪教版的教材在五四制下,对此部分内容的安排较为合理,既有理论的阐述,也有大量的练习题,有助于学生巩固所学知识。

二. 学情分析学生在学习等腰梯形之前,已经掌握了四边形的性质,平行四边形、梯形的判定和性质,以及三角形的相关知识。

因此,学生具备一定的图形认知能力和逻辑思维能力。

但在学习等腰梯形时,仍需加强对等腰梯形性质的理解,以及灵活运用判定定理解决实际问题。

三. 教学目标1.了解等腰梯形的定义和性质,掌握等腰梯形的判定方法。

2.能够运用等腰梯形的性质解决实际问题,提高学生的应用能力。

3.培养学生的空间想象能力,提高学生的逻辑思维能力。

四. 教学重难点1.等腰梯形的性质及其证明。

2.等腰梯形的判定方法的灵活运用。

3.运用等腰梯形的性质解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究等腰梯形的性质和判定方法。

2.运用多媒体辅助教学,展示等腰梯形的图形,增强学生的空间想象能力。

3.采用小组合作学习,培养学生团队协作能力,提高学生的沟通能力。

4.注重练习,巩固所学知识,提高学生的应用能力。

六. 教学准备1.多媒体教学设备。

2.等腰梯形的模型或图片。

3.相关练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示等腰梯形的图片,引导学生观察等腰梯形的特点,激发学生的学习兴趣。

2.呈现(10分钟)介绍等腰梯形的定义,引导学生理解等腰梯形的性质。

通过多媒体展示等腰梯形的性质及其证明过程,使学生掌握等腰梯形的判定方法。

3.操练(15分钟)针对等腰梯形的性质和判定方法,设计一系列练习题。

让学生独立完成,并及时给予反馈,巩固所学知识。

4.巩固(10分钟)采用小组合作学习的方式,让学生运用等腰梯形的性质解决实际问题。

沪教版(上海)数学八年级第二学期-22.7 向量 教案

沪教版(上海)数学八年级第二学期-22.7  向量 教案

课题22.7 向量教学目标知识目标理解向量的基本概念以及零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念.能力目标体验向量是集数形于一身的概念,是数学中数形结合思想的体现. 情感目标感受向量与代数、几何之间的联系,认识其应用价值和文化价值.教学重点向量的概念和零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念.教学难点会判断平行向量、共线向量、相等向量、相反向量.教法学法讲授法、讨论法.课后反馈教学环节及内容设计思路情境实例如图所示,缉私船从港口A行驶到海岛B,然后驶向海面C处执行任务,那么经过两次航行,我们用既有大小又有方向的有向线段AC来表示缉私船的位移.知识学习我们将既有大小又有方向的量叫做向量.以点A为起点,点B为终点的有向线段是向量的几何表示,记作AB,读作向量AB.如缉私船以港口A为从位移的实例出发使学生自然的走向知识点.起点行驶到终点海岛B的航行,就可以用AB表示.向量也可用不带箭头的小写字母a、b、c…表示,印刷用黑体表示.向量AB的大小叫做向量的模,记作AB.a向量的模记作a.模为0的向量叫做零向量,记作0,零向量的方向是不确定的.模为1的向量叫做单位向量.与向量a同方向的单位向量常记作a,显然1=a.大小相等,并且方向相同的两个向量a与b,叫做相等向量,记作a=b.与a大小相等但方向相反的向量叫做a的相反向量(或负向量),记作-a.显然有AB BA-=,-(-a)= a.方向相同或相反的两个非零向量叫做平行向量.如图所示,在梯形ABCD中,AB∥CD,点E在底边AB上,且EC∥AD,则图中向量可以表示为AE、AB、EB、CB、DC、DA、EC.可以发现,(1)AE DC=且两个向量AE和DC方向相同,所以AE DC=.(2)DA与EC大小相等,方向相反,所以是互为相反的向量,即DA EC=-.(3)与向量DC平行的向量有AE、EB和AB.注意:由于任意一组平行向量都可平移到同一直线带领学生分析,引导式启发学生得出向量的有关概念及其表示方法.上,因此平行向量也叫共线向量.特别地,规定零向量与任何向量共线.知识应用例1如图所示,设点O是正六边形ABCDEF的中心,AO=a,BO=b,CO=c,试用a、b、c分别表示下列向量:(1)与AO、BO、CO相等的向量;(2)与BO相反的向量;(3)与CO平行的向量.解由于点O是正六边形ABCDEF的中心,由图中各条边的关系得:(1)AO OD FE BC====a;BO OE AF===b;CO OF==c.(2)BO DC-==-b.(3)与CO平行的向量有OF、AB、ED,它们可以表示为OF∥AB∥ED∥c.巩固练习1.试举例说明在日常生活中的向量和标量.例1学生讨论后,个别回答.通过例题进一步领会相等向量、相反向量与平行向量的概念,注意观察学生是否理解知识点.2.下列各量中,向量有;标量有.(填写序号)①密度;②体积;③位移;④加速度;⑤重力;⑥功;⑦电阻;⑧风速.3.有两个向量a、b,判断下面说法是否正确:(1)若a=b,则=a b; ( )(2)若=a b,则a=b; ( )(3)若>a b,则a>b; ( )(4)若a=b,b=c,则a=c. ( )4.有三条船从某港口出发,甲船向北航行100海里,乙船向东航行50海里,丙船向北偏东45°航行100海里,若以港口为坐标原点,以正东方向为x轴,以正北方向为y轴,建立平面直角坐标系,试在坐标系中分别作出它们的位移.5.已知D、E、F分别是△ABC的边AB、BC、CA的中点,请写出图中满足下列条件的向量:(1)与AD相等的向量;(2)DE的负向量;(3)分别与DE、EF、FD相等的向量;(4)与EF平行的向量.归纳小结练习由学生先自行完成,再选取部分同学回答所做的结果,教师补充.学生小结,培养学生反思学习过程能力.本节课重点学习向量的概念,以及相等向量、相反向量、平行向量的有关概念.。

2023-2024学年八年级数学下册17.4一元二次方程的根与系数的关系教学设计 新版沪科版

2023-2024学年八年级数学下册17.4一元二次方程的根与系数的关系教学设计 新版沪科版

2023-2024学年八年级数学下册17.4一元二次方程的根与系数的关系教学设计新版沪科版一. 教材分析《2023-2024学年八年级数学下册17.4一元二次方程的根与系数的关系》是新版沪科版教材中的一节内容。

本节课主要让学生掌握一元二次方程的根与系数之间的关系,能够根据方程的根判断方程的系数,并能够运用这一关系解决实际问题。

教材中通过实例引导学生探究根与系数的关系,并通过练习题进行巩固。

二. 学情分析学生在学习本节课之前,已经学习了一元二次方程的解法,对一元二次方程的概念和性质有一定的了解。

但是,对于根与系数之间的关系,学生可能还没有直观的认识。

因此,在教学过程中,需要引导学生通过实例探究,发现并理解根与系数之间的关系。

三. 教学目标1.让学生掌握一元二次方程的根与系数之间的关系。

2.培养学生通过实例探究,发现并理解数学规律的能力。

3.培养学生运用数学知识解决实际问题的能力。

四. 教学重难点1.教学重点:一元二次方程的根与系数之间的关系。

2.教学难点:理解并运用根与系数之间的关系解决实际问题。

五. 教学方法1.实例探究:通过实例引导学生发现并理解根与系数之间的关系。

2.小组讨论:让学生在小组内进行讨论,共同解决问题。

3.练习巩固:通过练习题让学生巩固所学知识。

4.实际应用:让学生运用所学知识解决实际问题。

六. 教学准备1.教学PPT:制作教学PPT,展示实例和练习题。

2.练习题:准备一些练习题,用于巩固所学知识。

3.教学素材:准备一些与实际生活相关的问题,用于引导学生运用所学知识解决实际问题。

七. 教学过程1.导入(5分钟)利用PPT展示一元二次方程的解法,引导学生回顾一元二次方程的概念和性质。

然后提出问题:“你们知道一元二次方程的根与系数之间有什么关系吗?”引发学生的思考。

2.呈现(15分钟)利用PPT展示实例,引导学生探究一元二次方程的根与系数之间的关系。

通过计算实例,让学生观察根与系数之间的关系,并引导学生总结出规律。

沪科版八年级数学下册教学设计《第16章二次函数16.1二次函数》

沪科版八年级数学下册教学设计《第16章二次函数16.1二次函数》

沪科版八年级数学下册教学设计《第16章二次函数16.1二次函数》一. 教材分析《第16章二次函数16.1二次函数》是沪科版八年级数学下册的教学内容。

这部分内容主要介绍了二次函数的定义、性质和图象。

教材通过具体的例子引导学生理解和掌握二次函数的概念,并通过练习题让学生巩固所学知识。

教材还介绍了二次函数的图象特点,如开口方向、对称轴等,以及如何通过图象来解决实际问题。

二. 学情分析学生在学习这部分内容时,已经掌握了函数的基本概念和一次函数的知识。

他们对函数有一定的理解,但可能对二次函数的概念和性质较为陌生。

学生需要通过实例和练习来加深对二次函数的理解,并通过图象来观察和分析二次函数的特点。

三. 教学目标1.了解二次函数的定义和性质。

2.能够写出二次函数的一般形式。

3.能够通过图象观察和分析二次函数的特点。

4.能够解决实际问题,运用二次函数的知识。

四. 教学重难点1.二次函数的定义和性质。

2.二次函数图象的特点。

3.解决实际问题,运用二次函数的知识。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,让学生主动学习和理解二次函数的知识。

2.使用多媒体教学,通过动画和图象展示二次函数的性质和图象特点,帮助学生直观地理解和记忆。

3.提供丰富的练习题,让学生通过实践来巩固和应用所学知识。

六. 教学准备1.准备相关的教学PPT和动画演示文稿。

2.准备练习题和实际问题案例。

3.准备黑板和粉笔,用于板书和解释。

七. 教学过程1.导入(5分钟)通过提出一个问题,如“一个物体做匀速直线运动,其速度与时间的关系是什么?”来引发学生对函数的思考。

然后引入二次函数的概念。

2.呈现(10分钟)使用PPT或动画演示文稿来展示二次函数的一般形式和图象。

通过具体的例子来解释二次函数的定义和性质,如开口方向、对称轴等。

3.操练(10分钟)让学生分组讨论和解答一些简单的二次函数问题。

教师可以提供一些提示和指导,帮助学生解决问题。

2024年沪科版八年级的数学教学计划(4篇)

2024年沪科版八年级的数学教学计划(4篇)

沪科版八年级的数学教学计划一、理论学习二、做好各时期的计划为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及八年级的数学教学任务和内容,做好学期教学工作的总体计划和安排,并且对各单元、各课题的进度情况进行详细计划。

三、备好每堂课认真钻研新的课程标准和教材,做好初中八年级阶段的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以不为提高自己的教学理论水平和教学实践能力。

四、做好课堂教学创设教学情境,激发学习兴趣,爱因斯坦曾经说过:“兴趣是的`老师。

”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。

结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。

相尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。

五、批改作业精批细改好每一位学生的每份作业,学生的作业缺陷,师生都心中有数。

对每位同学的作业订正和掌握情况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。

六、做好课外辅导全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学生障碍,增强学生信心,尽可能“吃得了”。

积极开展数学讲座,课外兴趣小组等课外活动。

充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。

总之通过做好教学工作的每一环节,尽的努力,想出各种有效的办法,以提高教学质量。

沪科版八年级的数学教学计划(二)一、教材目标及要求:1、一元一次不等式(组)的重点是不等式的基本性质,一元一次不等式(组)的解法及其运用,难点是不等式基本性质的理解和运用,一元一次不等式(组)的运用。

3、分式的重点是分式的四则运算,难点是分式的四则混算、解分式方程以及列分式方程解应用题。

沪教版初中八年级数学第二学期试用本教案

沪教版初中八年级数学第二学期试用本教案

一次函数的概念【教学目标】1.理解一次函数、常值函数的概念;2.理解一次函数与正比例函数的关系;3.会利用待定系数法求一次函数的解析式。

【教学重难点】1.一次函数与正比例函数概念的关系;2.用待定系数法求一次函数的解析式;3.一次函数与正比例函数概念的关系;4.用待定系数法求一次函数的解析式。

【教学过程】一、创设情境,复习导入问题1:汽车油箱里原有汽油120升,已知每行驶10千米耗油2升,如果汽车油箱的剩余是y(升)汽车行驶的路程为x(千米),试用解析式表示y与x 的关系。

分析:每行驶10千米耗油2升,那么每行驶1千米耗油0.2升,因此y与x 的函数关系式为:y=120-0.2x(0≤x≤600)。

当然,这个函数也可表示为:y=-0.2x+120(0≤x≤600)。

说明:当一个函数以解析式表示时,如果对函数的定义域未加说明,那么定义域由这个函数的解析式确定;否则,应指明函数的定义域。

这个函数是不是我们所学的正比例函数?它与正比例函数有何不同?它的图像又具备什么特征?从今天开始我们将讨论这些问题。

二、学习新课1.概念辨析问题2:某人驾车从甲地出发前往乙地,汽车行驶到离甲地80千米的A处发生故障,修好后以60千米/小时的速度继续行驶。

以汽车从A处驶出的时刻开始计时,设行驶的时间为t (小时),某人离开甲地所走的路程为s (千米),那么s 与t 的函数解析式是什么?类似问题1:这个函数解析式是:S=60t+80。

思考:这个解析式和y=-0.2x+120有什么共同特点?说明:通过讨论使学生能够从它们的函数表达式得出表示函数的式子都是自变量的一次整式。

如果我们用k 表示自变量的系数,b 表示常数。

这些函数就可以写成:y=kx+b (k ≠0)的形式。

一般地,形如y=kx+b (k 、b 是常数,且k ≠0)的函数,叫做一次函数(linear function )。

一次函数的定义域是一切实数。

当b=0时,y=kx+b 即y=kx (k 是常数,且k ≠0)。

八年级数学教师工作计划表

八年级数学教师工作计划表

八年级数学教师工作计划表
9月:
- 准备课程大纲和教材
- 设计开学第一周的课程计划
10月:
- 教授整数的加减法
- 教授分数的加减法
- 组织小测验,检查学生的学习情况
11月:
- 引导学生学习代数表达式
- 引导学生学习一元一次方程的解法
- 安排学生组队进行实际问题的解决
12月:
- 教授平行线及其性质
- 教授三角形及其性质
- 组织学生进行几何证明的练习
1月:
- 复习前面学过的知识点
- 组织学生进行期中考试
2月:
- 教授比例与相似
- 教授百分数
- 组织学生进行课外数学知识竞赛
3月:
- 引导学生学习数据的收集和处理
- 教授统计图表的制作
- 组织学生完成小型统计调查
4月:
- 复习前面学过的知识点
- 组织学生进行期末考试
- 总结本学期的教学工作,为下学期做准备。

沪教版(上海)数学八年级第二学期-21.6 二元二次方程组的解法(2) 教案

沪教版(上海)数学八年级第二学期-21.6  二元二次方程组的解法(2)  教案

§21.6二元二次方程组的解法(2)一、教学目标:1、 掌握用“因式分解法”解由两个二元二次方程组成的方程组。

2、 在学习过程中体会解此类特殊二元二次方程组的基本策略是“降次”。

3、 通过解简单的二元二次方程组,进一步理解“消元”、“降次”的数学方法,获得对事物可以相互转化的数学思想。

二、教学重点:让学生经历探索Ⅱ、Ⅱ型二元二次方程组解法的过程,学会用因式分解法来解这类特殊的方程组。

三、教学难点:能正确组合由两个二元二次方程因式分解后形成的二元一次方程组。

四、教学过程: (一)复习引入:问:1、根据二元二次方程组的意义,你可以举出哪几种不同类型的二元二次方程组?我们可以用什么方法求解?(学生举例分析)师:这些解题的过程体现了转化的数学思想,把二元转化成一元,把二次转化成一次,就可以把新问题转化成我们已有的知识来解决。

教师板书:2、你觉得还有什么类型的二元二次方程组问题你没有解决?你可以尝试举个例子吗? 师:今天我们就来解决两个都是二元二次方程的二元二次方程组的解法。

引出课题 (二)学习新课:1、出示: ⎪⎩⎪⎨⎧=+-=+065202222y xy x y x 这个方程组你能不能先办法解决?请同学们试着解解看。

解:将方程②的左边因式分解变形为0)3)(2(=--y x y x ,方程②可变形为02=-y x 或03=-y x二、一型方程组消元降次一元整式方程二元一次方程组将它们与方程①组合分别组成方程组,得(Ⅰ) ⎩⎨⎧=-=+022022y x y x 或 (Ⅱ)⎩⎨⎧=-=+032022y x y x解方程组(Ⅰ)得⎩⎨⎧==2411y x⎩⎨⎧-=-=2422y x 解方程组(Ⅱ)得⎪⎩⎪⎨⎧==22333y x ⎪⎩⎪⎨⎧-=-=22344y x 所以原方程组的解为⎩⎨⎧==2411y x⎩⎨⎧-=-=2422y x ⎪⎩⎪⎨⎧==22333y x ⎪⎩⎪⎨⎧-=-=22344y x反馈练习:(1)⎪⎩⎪⎨⎧=+-=-0404222xy x y x (2)⎪⎩⎪⎨⎧=+=++516442222y x y xy x 先请学生分析解题思路,再写出解题过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十一
4/25-4/29
22.2(3、4、5节)特殊的平行四边形(1、2)
十二
5/2-5/6
特殊的平行四边形(3、4、5),梯形22.4,22.5(1),
十三
5/9-5/13
22.5(2),中位线22.6(1、2、3节),向量22.7,
十四
5/16-5/20
向量的加减法22.8(1、2)22.9(2节),
2.要加强学习指导,帮助学生突破难点;
3.关注学生学习过程评价,促进学生主动学习、提高数学基本素养。
3、学生现状分析
优秀学生较少;有12个左右特困生。
4、教学措施设想
及建议
1.提高教学效率;
2.加强学生指导;
3.适当反馈;
4.提高学生学习数学的能力和兴趣。
二、教学进度表
周次
日期
计划进度
完成情况

2/18-2/19
一次函数20.1,20.2(1)

2/22-2/26
20.2(2、3),20.3(1、2),20.4(1)

2/29-3/4
20.4(2),小结和测试,整式方程21.1

3/7-3/11
整式方程21.2(1、2、3),分式方程21.3(1)

3/14-3/18
21.3(2、3),无理方程21.4(1、2)
3.14月考

3/21-3/25
二元二次方程组21.5,21.6(1、2),
列方程(组)(3、4、5节),单元复习

4/4-4/8
多边形22.1(1、2),平行四边形22.2(1、2)

4/11-4/15
期中复习

4/18-4/22
期中考试
期中考试
2015学年度第二学期教学计划、进度表
执教老师_________执教学科__数学_______年级__八____班级_________
一、教学工作计划
1、教材类别
(新教材、老教材)
新教材
2、本学期教学主要
任务和要求
教学任务:完成一次函数,代数方程,四边形,概率初步等内容;
教学要求:
1.要从具体事例和学生已有的知识出发,进行基本概念教学;
5.17月考
十五
5/23-5/27
概率初步23.1,23.2,23.3(1、2、3)
十六
5/30-6/3
23.4(1、2),
十七
6/6-6/10
考前复习
十八
6/13-6/17
考前复习
十九
6/20-6/24
期末考试
期终考试
二十
6/27-6/30
相关文档
最新文档