Computing & Applications Noisy Fingerprints Classification with Directional Based Features

合集下载

云计算(Cloud-Computing)是分布式处理(Distributed-Computing

云计算(Cloud-Computing)是分布式处理(Distributed-Computing

关于“云计算”概念的资料汇总云计算(Cloud Computing)是分布式处理(Distributed Computing)、并行处理(Parallel Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。

云计算的基本原理是,通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将更与互联网相似。

这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统.这可是一种革命性的举措,打个比方,这就好比是从古老的单台发电机模式转向了电厂集中供电的模式。

它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。

最大的不同在于,它是通过互联网进行传输的.云计算的蓝图已经呼之欲出:在未来,只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。

从这个角度而言,最终用户才是云计算的真正拥有者.云计算的应用包含这样的一种思想,把力量联合起来,给其中的每一个成员使用。

从最根本的意义来说,云计算就是利用互联网上的软件和数据的能力。

对于云计算,李开复(现任Google全球副总裁、中国区总裁)打了一个形象的比喻:钱庄. 最早人们只是把钱放在枕头底下,后来有了钱庄,很安全,不过兑现起来比较麻烦。

现在发展到银行可以到任何一个网点取钱,甚至通过ATM,或者国外的渠道。

就像用电不需要家家装备发电机,直接从电力公司购买一样。

“云计算”带来的就是这样一种变革——由谷歌、IBM这样的专业网络公司来搭建计算机存储、运算中心,用户通过一根网线借助浏览器就可以很方便的访问,把“云”做为资料存储以及应用服务的中心。

目前,PC依然是我们日常工作生活中的核心工具—-我们用PC处理文档、存储资料,通过电子邮件或U盘与他人分享信息。

如果PC硬盘坏了,我们会因为资料丢失而束手无策。

而在“云计算”时代,“云"会替我们做存储和计算的工作。

Cognitive Computing Fundamentals

Cognitive Computing Fundamentals

Cognitive Computing FundamentalsCognitive computing is a rapidly growing field that combines artificial intelligence, machine learning, and natural language processing to create systems that can understand, reason, and learn. In this article, we will explore the fundamentals of cognitive computing, including its key concepts, applications, and benefits.At its core, cognitive computing seeks to mimic the human brain's ability to process information and make decisions. This involves using algorithms and models to analyze vast amounts of data, identify patterns, and generate insights. By leveraging advanced technologies such as deep learning and neural networks, cognitive computing systems are able to continuously improve their performance over time.One key concept in cognitive computing is natural language processing (NLP), which enables computers to understand and generate human language. NLP algorithms can parse text, extract meaning, and even carry on conversations with users. This technology is used in a wide range of applications, from chatbots and virtual assistants to sentiment analysis and document summarization.Another important concept in cognitive computing is machine learning, which allows systems to learn from data without being explicitly programmed. By training algorithms on large datasets, machines can recognize patterns and make predictions with a high degree of accuracy. This is particularly useful in areas such as image recognition, speech recognition, and predictive analytics.One of the key benefits of cognitive computing is its ability to automate tasks that were previously thought to require human intelligence. For example, cognitive systems can analyze medical images to detect diseases, sift through vast amounts of legal documents to find relevant information, and recommend personalized products to customers based on their preferences. This not only saves time and money, but also enables businesses to make better decisions and deliver superior services to their customers.In addition to automation, cognitive computing also enables organizations to unlock valuable insights from their data. By analyzing structured and unstructured data sources, cognitive systems can uncover hidden patterns, trends, and relationships that would be difficult or impossible for humans to identify. This can lead to more informed decision-making, greater operational efficiency, and competitive advantages in the marketplace.Overall, cognitive computing represents a major step forward in the evolution of artificial intelligence. By combining the power of machine learning, natural language processing, and other advanced technologies, cognitive systems are able to perform complex tasks that were once the exclusive domain of human intelligence. As the field continues to advance, we can expect to see even greater applications of cognitive computing in areas such as healthcare, finance, cybersecurity, and more.In conclusion, cognitive computing is a transformative technology that has the potential to revolutionize how we interact with machines and process information. By harnessing the power of artificial intelligence and machine learning, cognitive systems are able to understand, reason, and learn in ways that were previously thought to be beyond the reach of computers. As the capabilities of cognitive computing continue to expand, we can expect to see even greater advancements in a wide range of industries and applications.。

互联网专业术语一览

互联网专业术语一览

互联网专业术语一览在当今信息时代,互联网已成为人们生活的一部分,而互联网专业术语则是描述和解释互联网相关概念的重要工具。

以下是一份互联网专业术语的一览,帮助读者更好地理解和应用这些术语。

1. 网络协议(Network Protocol)网络协议是互联网数据传输的规则和标准。

常见的网络协议包括TCP/IP、HTTP、FTP等,它们确保信息在互联网上的传输顺利和安全。

2. 网络安全(Cybersecurity)网络安全是保护互联网用户和系统免受网络威胁的一种技术和措施。

它包含防火墙、密码学、入侵检测系统和安全认证等方法,目的是确保互联网的稳定和安全。

3. 云计算(Cloud Computing)云计算是一种通过互联网提供计算资源和数据存储的方式。

它允许用户通过云服务提供商访问和使用应用程序、数据和计算资源,无需本地硬件和软件的支持。

4. 数据中心(Data Center)数据中心是一个集中存储和管理大量计算机服务器和数据的设施。

它提供服务器、存储、网络设备和其他关键基础设施,以支持云计算、大数据分析和其他业务需求。

5. 人工智能(Artificial Intelligence)人工智能是模拟和实现人类智能的一种科技。

它涉及机器学习、自然语言处理和计算机视觉等技术,能够使计算机系统模仿和执行类似于人类的思维和决策过程。

6. 物联网(Internet of Things)物联网是一种通过互联网连接和交互的智能设备网络。

它使传感器、摄像头、智能家电和其他物理设备能够实时通信和共享数据,以实现自动化和智能化的功能。

7. 虚拟现实(Virtual Reality)虚拟现实是一种通过计算机技术创建逼真而沉浸式的虚拟环境。

用户可以通过佩戴虚拟现实头盔和操作手柄等设备,与虚拟世界进行交互和体验。

8. 区块链(Blockchain)区块链是一种分布式账本技术,用于记录和验证交易数据的安全和透明。

它被广泛应用于加密货币和金融领域,以及供应链管理和智能合约等领域。

计算机英文术语大全

计算机英文术语大全

计算机英文术语大全1. computing:一般译为:数据处理技术、信息处理技术特殊译为:计算技术network computing=NC 联网信息处理和应用技术2. system:为达到既定的目标,实现某些功能,完成指定的任务而把若干组成部分有机地联系起来的一种整体或集合体。

① system of linear equations:线性方程组② Carterian system:笛卡尔坐标系; solar system:太阳系③ decimal syste m:十进制④ system of notation:记数法⑤ Communist system:共产主义制度;ideological system:思想体系3. client & server:客户子系统和服务子系统4.network layer:网络层;session layer:话路层5.major node:大节点;minor node:小节点6.Job Control:作业控制程序control:控制权、控制器、控制符、控件、技术或措施(e.g. security control)7.default:系统设定值较有实力的公司与厂商提供的较好的(应用)系统中,通常对事先可以确定的参数,指定一个“一般情况下要取的值“,这样,程序员无暇作深入细致的研究,未能明察秋毫也无妨,就default了!8.function:功能;函数;操作程序;操作例程9.storage/memory:A.storage:存储器(件); B.memory:内存C.virtual storage:虚拟内存通常人们说A模拟simulation(仿真emulation)B时,A和B是两个互不相关的实体,只是在功能作用、能力等方面是相同或相似的。

当我们说C虚拟D时,C和D是紧密相关的,C绝对离不开D,而C仅仅是一种概念的抽象,D才是真正的实体。

必须以实体为依据方可理解C,则C是D的一部分加上其它的实体而组成的一种综合体,而且C的局部性能必然低于D,整体性能也必然高于D,否则没有任何意义。

并行计算的基本原理

并行计算的基本原理

并行计算的特点
为利用并行计算,通常计算问题表现为以下特征: 为利用并行计算,通常计算问题表现为以下特征: (1)将工作分离成离散部分,有助于同时解决; )将工作分离成离散部分,有助于同时解决; (2)随时并及时地执行多个程序指令; )随时并及时地执行多个程序指令; (3)多计算资源下解决问题的耗时要少于单个计算资源下的耗时。 )多计算资源下解决问题的耗时要少于单个计算资源下的耗时。 并行计算是相对于串行计算来说的, 并行计算是相对于串行计算来说的,所谓并行计算分为时间上的并行和 空间上的并行。 时间上的并行就是指流水线技术, 空间上的并行。 时间上的并行就是指流水线技术,而空间上的并行则是指用 多个处理器并发的执行计术语(2)
Shared Memory(共享内存): ):完全从硬件的视角来描述计算机体系 (共享内存): 结构,所有的处理器直接存取通用的物理内存(基于总线结构)。在 编程的角度上来看,他指出从并行任务看内存是同样的视图,并且能 够直接定位存取相同的逻辑内存位置上的内容,不管物理内存是否真 的存在。 Symmetric Multi-Processor(对称多处理器): ):这种硬件体系结构 (对称多处理器): 是多处理器共享一个地址空间访问所有资源的模型;共享内存计算。 Distributed Memory(分布式存储): ):从硬件的角度来看,基于网络 (分布式存储): 存储的物理内存访问是不常见的。在程序模型中,任务只能看到本地 机器的内存,当任务执行时一定要用通信才能访问其他机器上的内存 空间。 Communication:并行任务都需要交换数据。有几种方法可以完成, : 例如:共享内存总线、网络传输,然而不管用什么方法,真实的数据 交换事件通常与通信相关。 Synchronization:实时并行任务的调度通常与通信相关。总是通过 : 建立一个程序内的同步点来完成,一个任务在这个程序点上等待,直 到另一个任务到达相同的逻辑设备点是才能继续执行。同步至少要等 待一个任务,致使并行程序的执行时间增加。

云计算Cloud-Computing-外文翻译

云计算Cloud-Computing-外文翻译

毕业设计说明书英文文献及中文翻译学生姓名:学号:计算机与控制工程学院:专指导教师:2017 年 6 月英文文献Cloud Computing1。

Cloud Computing at a Higher LevelIn many ways,cloud computing is simply a metaphor for the Internet, the increasing movement of compute and data resources onto the Web. But there's a difference: cloud computing represents a new tipping point for the value of network computing. It delivers higher efficiency, massive scalability, and faster,easier software development. It's about new programming models,new IT infrastructure, and the enabling of new business models。

For those developers and enterprises who want to embrace cloud computing, Sun is developing critical technologies to deliver enterprise scale and systemic qualities to this new paradigm:(1) Interoperability —while most current clouds offer closed platforms and vendor lock—in, developers clamor for interoperability。

边缘计算缩写

边缘计算缩写

边缘计算(Edge Computing)是一种新兴的计算模式,它将数据处理和存储功能从云端转移到离用户更近的边缘设备上,以提高数据处理速度和降低延迟。

边缘计算技术的应用范围非常广泛,包括智能家居、智能医疗、智能交通、智能制造等领域。

本文将详细介绍边缘计算的缩写及其相关内容。

一、边缘计算的缩写边缘计算的缩写是EC,它是英文单词Edge Computing的缩写。

在国内,边缘计算也被称为“边缘智能”,“边缘云”等。

EC技术是一种新兴的计算模式,它将数据处理和存储功能从云端转移到离用户更近的边缘设备上,以提高数据处理速度和降低延迟。

二、边缘计算的应用边缘计算技术的应用范围非常广泛,包括智能家居、智能医疗、智能交通、智能制造等领域。

下面将分别介绍这几个领域的应用情况。

1. 智能家居智能家居是边缘计算技术的一个重要应用领域。

在智能家居系统中,各种智能设备需要实时响应用户的指令,例如智能音箱、智能灯泡、智能门锁等。

EC技术可以将这些智能设备的数据处理和存储功能从云端转移到离用户更近的边缘设备上,以提高数据处理速度和降低延迟。

同时,EC技术还可以提高智能设备的安全性,保护用户的隐私数据。

2. 智能医疗智能医疗是边缘计算技术的另一个重要应用领域。

在智能医疗系统中,各种医疗设备需要实时响应医生的指令,例如心电图仪、血压计、呼吸机等。

EC技术可以将这些医疗设备的数据处理和存储功能从云端转移到离医生更近的边缘设备上,以提高数据处理速度和降低延迟。

同时,EC技术还可以提高医疗设备的安全性,保护患者的隐私数据。

3. 智能交通智能交通是边缘计算技术的另一个重要应用领域。

在智能交通系统中,各种交通设备需要实时响应交通管理部门的指令,例如交通信号灯、车辆识别设备、路面监测设备等。

EC 技术可以将这些交通设备的数据处理和存储功能从云端转移到离交通管理部门更近的边缘设备上,以提高数据处理速度和降低延迟。

同时,EC技术还可以提高交通设备的安全性,保护交通数据的安全性。

The History of Computing

The History of Computing

Concept
of the stored program
Charles Babbage

Invents Difference Engine in 1823

Adds, subtracts, multiplies, and divides Components of modern computer
The History of Computing
A Brief Introduction
Why You Need to Know About…the History of Computing

Fields altered by computer communication devices



The Computer Era Begins: The First Generation

1950s: First Generation for hardware and software



Software separates from hardware and evolves
Circuit Boards in the Third Generation
Integrated

circuits (IC) on chips

Miniaturized circuit components on board Semiconductor properties Reduce cost and size Improve reliability and speed Program to manage jobs Utilize system resources Allow multiple users

计算机的专有名词解释

计算机的专有名词解释

计算机的专有名词解释近年来,计算机科技的高速发展,如同一股劲力强劲的狂风,将我们带入一个被信息和科技浸透的时代。

随之而来的是大量的计算机专有名词不断涌现,对于非专业人士来说,这些名词常常令人眼花缭乱。

在本文中,我们将对一些常见的计算机专有名词进行解释,以助读者更好地理解计算机科技的重要概念以及其在现代社会中的应用。

一、人工智能(Artificial Intelligence,简称AI)人工智能是指计算机系统通过模拟人类智能的某些行为和功能,实现自主学习、自动推理和自主决策的能力。

人工智能技术的核心是机器学习(Machine Learning)和深度学习(Deep Learning),它们依赖于庞大的数据集和复杂的算法,能够处理复杂的任务和问题。

二、大数据(Big Data)大数据是指规模巨大、来源多样的数据集合。

在计算机领域中,大数据涉及到数据的存储、处理和分析,需要使用到特定的技术和工具,以便更好地挖掘数据中的信息和洞见。

大数据分析称为“数据挖掘”,它能帮助企业和组织做出更明智的决策。

三、云计算(Cloud Computing)云计算是指通过互联网来共享计算资源和服务。

使用云计算技术可以允许用户在任何地方、任何时间、通过任何设备访问存储在云端的数据和应用程序。

云计算可以提供更高的灵活性和可扩展性,降低了成本并提高了可用性。

四、物联网(Internet of Things,简称IoT)物联网是指通过互联网连接各种物理设备,使它们能够相互通信和协作。

物联网的应用包括智能家居、智能城市、智能交通等领域。

通过物联网,各种传感器和设备可以实时收集、传输和分析数据,从而提供更智能、高效的服务和解决方案。

五、虚拟现实(Virtual Reality,简称VR)虚拟现实是一种计算机技术,通过模拟或重现真实环境,使用户能够沉浸其中,并与虚拟环境进行互动。

虚拟现实通常涉及使用特殊的头戴式显示设备和手持控制器,通过感应器和跟踪技术实现用户的身体感知和行为反馈。

Introduction to Computing(计算概论)

Introduction to Computing(计算概论)

• 论坛主页
– /group/cs101pku
• 论坛邮件组
–A
• 交作业到
–a
选课登记
• /~course/cs101/201 2/regcourse.html
– 学号,姓名,姓名拼音,身份,院系,Email
Happy Feet © Kingdom Feature Productions; Lord of the Rings © New Line Cinema
Distributed Problems
• Indexing the web (Google) • Simulating an Internet-sized network for networking experiments (PlanetLab) • Speeding up content delivery (Akamai)
Outline(概要)
• 课程由来 • 课程安排
Computing
• Computing is usually defined like the activity of using and developing computer technology, computer hardware and software.
Moore’s Law
Computer Speedup
Moore’s Law: “The density of transistors on a chip doubles every 18 months, for the same cost” (1965)
Image: Tom’s Hardware
• 百科全书
– / – / 4,043,111 5,287,597
• 课程讨论组

计算用英语怎么说

计算用英语怎么说

计算用英语怎么说导读:我根据大家的需要整理了一份关于《计算用英语怎么说》的内容,具体内容:计算有"核算数目,根据已知量算出未知量;运算"和"考虑;谋虑"两种含义。

那么你知道吗?下面来学习一下吧。

计算的英语说法1:...计算有"核算数目,根据已知量算出未知量;运算"和"考虑;谋虑"两种含义。

那么你知道吗?下面来学习一下吧。

计算的英语说法1:calculate计算的英语说法2:compute计算的英语说法3:count计算的相关短语:count the number of people present;计算出席人数calculate the cost of prodution;计算生产成本reckon sth. in;把某事物计算在内calculate to a nicety;计算准确mathematicl calculation;数学计算计算的英语例句:1. They found their computers producing different results from exactly the same calculation.他们发现他们的计算机进行完全相同的计算会得出不同的结果。

2. Take a hundred and twenty values and calculate the mean.取120个值计算平均数。

3. But by the year 2020 business computing will have changed beyond recognition.但是到了2020年,商业计算会变得面目全非。

4. Several countries in eastern Europe are counting the cost of yesterdays earthquake.东欧的几个国家正在计算昨天的地震带来的损失。

计算机英文怎么说

计算机英文怎么说

计算机英文怎么说计算机俗称电脑,是一种用于高速计算的电子计算机器,对人类的生产活动和社会活动产生了极其重要的影响。

如今我们的日常生活已经离不开电脑,那么你知道计算机用英文怎么说吗?下面店铺为大家带来计算机的英文说法和例句,供大家参考学习。

computer英 [kəmˈpju:tə] 美 [kəmˈpjutɚ]calculator英 [ˈkælkjuleitə] 美 [ˈkælkjəˌletɚ]calculating machine英 [ˈkælkjəˌleɪtɪŋ məˈʃi:n] 美 [ˈkælkjəˌletɪŋ məˈʃin]计算机网络 computer network个人计算机 personal computer数控计算机 digital control computer微型计算机 microcomputer1. He programmed his computer to compare all the possible combinations.他给他的计算机编制了一套程序,以比较所有可能的组合。

2. They found their computers producing different results from exactly the same calculation.他们发现他们的计算机进行完全相同的计算会得出不同的结果。

3. Who wants to buy a computer from a failing company?谁愿意从一家要倒闭的公司买计算机呢?4. Computers and electronics are growth industries and need skilled technicians.计算机与电子行业属于蓬勃发展的产业,需要娴熟的技术人员。

5. Finding a volunteer to write the computer program isn't a problem.找个志愿者编这个计算机程序不成问题。

什么是云计算(cloud computing)

什么是云计算(cloud computing)

什么是云计算(cloud computing)云计算是一种基于因特网的超级计算模式,在远程的数据中心里,成千上万台电脑和服务器连接成一片电脑云。

因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。

用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。

那么,it精英们如何看待云计算的呢?IBM的创立者托马斯·沃森曾表示,全世界只需要5台电脑就足够了。

比尔·盖茨则在一次演讲中称,个人用户的内存只需640K足矣。

李开复打了一个很形象的比喻:钱庄。

最早人们只是把钱放在枕头底下,后来有了钱庄,很安全,不过兑现起来比较麻烦。

现在发展到银行可以到任何一个网点取钱,甚至通过ATM,或者国外的渠道。

就像用电不需要家家装备发电机,直接从电力公司购买一样。

云计算就是这样一种变革——由谷歌、IBM这样的专业网络公司来搭建计算机存储、运算中心,用户通过一根网线借助浏览器就可以很方便的访问,把“云”做为资料存储以及应用服务的中心。

狭义的云计算是指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。

提供资源的网络被称为“云”。

“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。

这种特性经常被称为像水电一样使用IT基础设施。

广义的云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。

这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务。

(一)原理:云计算(Cloud Computing)是分布式处理(Distributed Computing)、并行处理(Parallel Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。

云计算的基本原理是,通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将更与互联网相似。

网络计算的三种计算模式

网络计算的三种计算模式

普及计算强调环境驱动性。这要求 普及计算强调环境驱动性。 普及计算对环境信息具有高度的可 感知性,人机交互更自然化, 感知性,人机交互更自然化,设备 和网络的自动配置和自适应能力更 强,所以普及计算的研究涵盖传感 器、人机交互、中间件、移动计算、 人机交互、中间件、移动计算、 嵌入式技术、网络技术等领域。 嵌入式技术、网络技术等领域。
什么是网络计算? 什么是网络计算?
“网络计算”是把网络连接起 来的各种自治资源和系统组合起 来,以实现资源共享、协同工作 和联合计算,为各种用户提供基 于网络的各类综合性服务。
网络计算的主要内容; 网络计算的主要内容;
人们把企业计算(Enterprise Computing)、 人们把企业计算(Enterprise Computing)、 网格计算(Grid Computing)、 网格计算(Grid Computing)、对等计算 (Peer-To-Peer)和普及计算 和普及计算(Pervasive (Peer-To-Peer)和普及计算(Pervasive Computing)归类为网络计算 归类为网络计算。 Computing)归类为网络计算。
I. 以大型计算机为中心
通过硬件连线把简单的终端接 到主机上; 到主机上; 所有用户的击键和光标位置传 入主机, 入主机,所有从主机返回的结 果,显示在终端屏幕的特定位 置;
分时共享模式, 分时共享模式,所有的程序和数据 都存储在大型的主机中(数据库、 都存储在大型的主机中(数据库、 应用程序、通信程序), ),资源集中 应用程序、通信程序),资源集中 控制; 控制; 利用主机的能力运行应用程序, 利用主机的能力运行应用程序,利 用无智能的终端来对应用进行控制; 用无智能的终端来对应用进行控制; 优点:数据存取管理方便、 优点:数据存取管理方便、安全性 好; 缺点:系统投资大,维护费用高; 缺点:系统投资大,维护费用高;

ScientificComputing科学计算

ScientificComputing科学计算

数据质量不均
不同来源的数据质量参差不齐, 需要进行数据清洗和预处理,以 确保数据分析的准确性。
实时性要求高
在某些领域,如金融、交通等, 数据需要实时处理和分析,对计 算速度提出了更高的要求。
高性能计算挑战
计算资源需求大
01
科学计算涉及大规模数值模拟和数据处理,需要高性能的计算
机硬件和软件资源。
算法优化需求迫切
02
为了提高计算效率和精度,需要不断优化算法和并行计算技术。
能源消耗与散热问题
03
高性能计算机在运行过程中会产生大量的热量和能源消耗,需
要解决散热和节能问题。
人工智能与机器学习在科学计算中的应用前景
自动化建模与优化
利用机器学习技术,可以自动 建立预测模型和优化模型,提
高科学计算的效率和精度。
虚拟实验与模拟
云计算平台
Amazon Web Services (AWS)
提供了强大的云计算资源,包括计算、存储和数据库服务,支持科学计算任务 的分布式处理和高性能计算。
Google Cloud Platform (GCP)
提供了高性能计算、大数据处理和机器学习等服务,适用于大规模科学计算和 数据分析。
04
科学计算案例研究
如PyCharm、RStudio、Visual Studio等,这些IDE提供了 代码编辑、调试、运行和项目管理等功能,提高了科学计算 的开发效率。
数学软件包
Matlab
广泛应用于工程和科学计算,提供了 大量的数学函数和工具箱,支持矩阵 运算、数值分析、信号处理和图形可 视化等。
Mathematica
Scientific Computing 科学计

目录

云计算技术在

云计算技术在
云计算的业务接口 为了方便用户业务由传统IT系统向云计算环境的迁移,云计算应对用户提供统一的业务接口。业务接口的统一不仅方便用户业务向云端的迁移,也会使用户业务在云与云之间的迁移更加容易。在云计算时代,SOA架构和以Web Service为特征的业务模式仍是业务发展的主要路线。
PART 03
数据管理技术 云计算的特点是对海量的数据存储、读取后进行大量的分析,如何提高数据的更新速率以及进一步提高随机读速率是未来的数据管理技术必须解决的问题。云计算的数据管理技术最著名的是谷歌的BigTable数据管理技术,同时Hadoop开发团队正在开发类似BigTable的开源数据管理模块。
数据存储技术 云计算系统需要同时满足大量用户的需求,并行地为大量用户提供服务。因此,云计算的数据存储技术必须具有分布式、高吞吐率和高传输率的特点。目前数据存储技术主要有Google的GFS(Google File System,非开源)以及HDFS(Hadoop Distributed File System,开源),目前这两种技术已经成为事实标准。
云计算技术关键技术
LOGO
云计算技术关键技术
LOGO
虚拟机技术 虚拟机,即服务器虚拟化是云计算底层架构的重要基石。在服务器虚拟化中,虚拟化软件需要实现对硬件的抽象,资源的分配、调度和管理,虚拟机与宿主操作系统及多个虚拟机间的隔离等功能,目前典型的实现(基本成为事实标准)有Citrix Xen、VMware ESX Server 和Microsoft Hype-V等。
云计算技术关键技术
LOGO
分布式编程与计算 为了使用户能更轻松的享受云计算带来的服务,让用户能利用该编程模型编写简单的程序来实现特定的目的,云计算上的编程模型必须十分简单。必须保证后台复杂的并行执行和任务调度向用户和编程人员透明。当前各IT厂商提出的“云”计划的编程工具均基于Map-Reduce的编程模型

计算机专业常用英语词汇总结

计算机专业常用英语词汇总结

计算机专业常用英语词汇总结计算机专业英语词汇指与计算机硬件、软件、网络等多方面有关的英语词汇,主要包括硬件基础、计算机系统维护、计算机网络基础、软件、程序设计语言、计算机网络技术、IT职场英语等词汇。

店铺为大家总结一些计算机常用词汇:compilation 编辑compilation time 编译时间compilation unit 编译单位compilc 编译compile 编辑compile and go 编译及执行compile phase 编译时间compile time 编译时间compile, machine language 机器语言编译compile-time error 编译时期错误compiled resource file 编译资源文件compilei 编译器compiler 编译器compiler defect report 编译器缺失报告compiler diagnostcs 编译程序侦断compiler directive 编译程序定向compiler generatoi 编译程序产生器compiler interface 编译器界面compiler language 编译器语言compiler manager 偏译器经理compiler options 编译器任选compiler vs. interpreter 编译器对编译器compiler, cobol cobol编译器compiler-complier 编译程序的编译程序compilers 编译器compiling duration 编译期间compiling routine 编译例程compiling time 编译时间complement base 互补基点complement instruction 补码指令complement on n n补码complement on n-1 n-1补码complement, diminished 减少补码complement, nines 九补码complement, noughts 0补码complement, ones 1补码complement, tens 10补码complement, two 2补码complementary 补色complementary bipolar ic 互补双极集成电路complementary metal oxide semiconductor (cmos) 互补式金氧半导体complementary mos(cmos) 互补金属氧化半导体complementary operation 互补运算complementary operations 互补运算complementary operator 互补运算子complementary scr(cscr) 互补硅控整流器complementei 补码器complementing 互补complete carry 完全进位complete object 终衍物件complete operation 完全作业complete routine 完全例程completeness 完整性completeness check 完整检查completeness errors (remote computing sy) 完成误差completion code 整体码complex bipolai 复合双极complex constant 复合常数complex data 复合贫籵complex decision-making simulation 复合决策模拟complex instruction set computer (cisc) 复杂指令集计算机complex instruction set computing (cisc) 复杂指令运算complex number 复数complex relocatable expression 复数可重置表示法complex script 复杂脚本complex-bound 复杂系结compliant 相容compliant naming 适用的名称compnter, first generation 第一代计算器component 组件component address 组件地址component code generator 组件程序代码产生器component density 组件密度component derating 分件降低定额component erroi 组件误差component fail impact analysis, cfia 组件失误撞击分析component gallery 组件展示廊component load balancing 组件负载平衡component name 组件名称component object 组件对象component object model 组件对象模型 (com) component object model (com) 组件对象模型component project 组件项目component registrar 组件登录器component selector 组件选取器component services explorer 组件服务总管component site 组件站台component software 组件软件component stress 组件应力component tray 组件匣component video 成分视讯component wizard 组件精灵component, solide-state 固态组件component-based development 组件式软件开发技术compose 撰写compose buffer 撰写缓冲区composite 合成composite black 合成黑色composite cable 复成电境composite conductoi 复合导体composite console 复合控制台composite control 复合控件composite data servicevendoi 复合数据服务贩责者composite display 合成屏幕composite filter 复合滤波器composite module data set 复合模块数据集composite module library 复合模块数据馆composite modules 复合模块composite moniker 复合型composite operator 复合运算子composite video 复合视讯composite video input 复合视讯输入composited circuit 复成电路compositing 复合composition error 组合误差composition file 复合档composition video signal 复合视频信号compound condition 复合条件compound document 复合文件compound document files 复合文件档案compound file 复合档案compound logical element 多逻辑组件compound-assignment operator 复合设定运算子compoundstatement 复合叙述compress 压缩compressed files 压缩档compressed serial link internet protocol, compressed slip 压缩式串连链接因特网协议compressed video vs. facsimile 压缩视频对传真compression 压缩方式compression algorithm 压缩算法compression format 压缩格式compression scheme 压缩方法compression, data 数据压缩compression, zero 零压缩compression/decompression (codec) 编码/译码compressor 压缩器compromise net 协调网络computation, address 地址计算computation, implicit 隐含计算computational stability 计算稳定度computcr-aided dispatch(cad) 计算器辅助发送compute 运算compute mode 计算型computer 计算机;计算器computer & communications research labs (itri) 工研院计算机与通讯工业研究所computer administrative records 计算器管理记录computer aided logistic support (cals) 计算机辅助后勤支持系统computer aided software engineering (case) 计算机辅助软件工程computer animation 计算器电影制作computer application 电脑应用系统computer architecture 电脑体系结构computer bureau 电脑服务中心computer capacity 计算器容量computer cartography 计算器制图法computer center 电脑中心computer center manager 计算器中心管理人computer circuits 计算器电路computer communications 计算机通信computer communications system 计算器通信系统computer conferencing 电子计算器会议computer configuration 计算器组态computer configuration 计算器组态computer console 计算器控制台computer control 计算器控制computer duplex 计算器双工computer emergency response team 电脑紧急应变小组computer equation 计算器方程式computer equipment operation 电脑设备操作computer generated image (imagery, cgi) 计算机产生的影像computer graphics (cg) 计算机图形;计算器制图法computer graphics (cg) 计算器制图法computer graphics interface (cgi) 计算机图形接口computer graphics technology 计算器制图法技术computer image processing 计算器影像处理computer installation (service) 安装计算机 [ 服务 ]computer instruction 计算器指令computer instruction code 计算器指令码computer instruction code 计算器指令码computer instruction set 计算器指令集computer integrated manufacturing (cim) 计算机整合制造computer interface types 计算器分界面类型computer interface unit (ciu) 计算器界面单位computer language 计算器语言computer language symbols 计算器语言符号computer learning 计算器学习computer letter 计算器信件computer logic 计算器逻辑computer memory 计算机内存computer micrographics 计算器微图形computer name 计算机名称computer network 电脑网络computer network components 计算器网络组件computer numerical control 计算器数值控制computer operating procedures manual 电脑操作程序手册computer operation 计算器运算computer operator 电脑操作员computer output microfilm (com) 计算器输出微胶片computer output microfiche 电脑输出缩微胶片computer output microfilm 电脑输出缩微胶卷computer output microfilmer (com) 计算器输出微影机computer output microform 电脑输出缩微方式computer peripherals 计算器外围设备computer power center (cpc) 计算机动力中心computer program 电脑程式computer program origin 计算器程序原始computer programming language 计算器程序语言computer project 电脑计划computer readable medium 电脑可读媒体computer scicnccs (cs) 计算器科学computer service level requirement 电脑服务水平要求computer service orsanization 计算器服务组织computer simulatoi 计算器仿真器computer site preparation 电脑场地准备工作computer storage 计算器储存器computer stores 计算器商店computer system 电脑系统computer system audit 计算器系统审计computer telephony integration (cti) 计算机语音整合computer terminal 电脑终端机computer time 计算器时间computer utility 计算器公用computer virus 电脑病毒computer vision 计算机视觉computer word 计算器字computer-aided design & drafting (cadd) 计算机辅助设计与绘图computer-aided design (cad) 计算机辅助设计computer-aided education (cae) 电脑辅助教育computer-aided engineering (cae) 计算机辅助工程computer-aided experiment (cae) 计算机辅助实验computer-aided instruction (cai) 计算机辅助教学computer-aided manufacturing (cam) 计算机辅助制造computer-aided publishing 电脑辅助出版computer-aided test (cat) 计算机辅助测试computer-assisted learning (cal)计算机辅助学习computer-assisted management 计算器辅助管理computer-assisted publishing 电脑辅助出版computer-assisted software engineering tool 计算机辅助软件工程工具computer-assisted typesetting 电脑辅助排字computer-based automation (cba) 计算器基准自动化computer-based training (cbt) 计算机辅助训练computer-controlled pattern generator 计算器控制型样产生器computer-generated (cg) 计算机合成的computer-generated map 计算器产生地图computer-independent language 计算器通用语言computer-integrated manufacturing (cim) 计算机整合制造computer-mediated communication (cmc) 计算机媒介沟通;计算机中介传播(沟通)computer-operated memory test system 计算器运算记忆测试系统computer-oriented language 机向语言computerarchitecture 计算机结构computerese 计算机文computerization 电脑化computerization requirement 电脑化需求computerization strategy 电脑化策略computerized foreman 计算机化领班computerized hyphenation 计算机化忠诚computerized numerical control (cnc) 计算机化数字控制computerized patient record (cpr) 电子病历computerized tomography 计算机化断层摄影术computer、communication、consumer electronics (3c) 3c多元化技术整合computex computexcomputing 计算computing amplifier 计算放大器computing element 计算组件computing machinery 计算器械computing power 计算能力computing, multiaccess 多重接达计算computor, sensor-based 传感器为基础的系统comsat 通信卫星con 主控台concatenate 序连concatenate data set 序连资料集concatenated key 串连索引键concatenation 序连concatenation character 序连字符concatenation operator 串连运算子concentrated messages 集中信息concentration 集中concentration, data 资料集中concentrator terminal buffer(ctb) 集讯器终端机缓冲器concept coordination 概念协调conceptual data model 概念数据模型conceptual infrastructure 概念基本建设conceptual level 概念级conceptual modei 概念模式conceptual model 概念模型conceptual modeling 概念模拟conceptual schema 概念模式conceptual system design 概念系统设计concert 音乐会concordance 索引concordance program 索引程序concordant 调和排列concrete 具象的concrete syntax 具体语法concrete syntax of sgml sgml的具体语法concrete syntax parameter 具体语法参数concurrcnt 同作concurrency 并行性concurrency mode 同作模态concurrency, executive-system 执行系统同作concurrency, operations(real-time) 实时同作操作concurrency, real-time 实时同作concurrent connections 同时联机concurrent i/o 同作输出入concurrent operating control 同作作业控制concurrent operation 同作运算concurrent processing 同作处理concurrent real-time processing 同作实时处理concurrent/concurrency 并行。

great principles of computing

great principles of computing

COMMUNICATIONS OF THE ACMNovember 2003/Vol. 46, No. 1115Computer science was born in the mid-1940s with the construction of the first electronic computers.In just 60 years, computing has come to occupy a central place in science, engineering,business, and everyday life.Many whose lives are touched by computing want to know how computers work and how dangerous or risky they are;some want to make a profes-sion from working with com-puters; and most everyone asks for an uncomplicated frame-work for understanding this complex field. Can their ques-tions be answered in a com-pact, compelling, and coherent way?In what follows, I willanswer affirmatively, offering a picture of the great principles of computing. There are two kinds: principles of computation structure and behavior, which I call mechanics, and principles of design. What we call principles are almost always distilled from recur-rent patterns observed in practice.Do practices shape to underlying principles? Do principles shape to practice? It is impossible to tell. Inmy description, therefore, I portray principles and practices as two equal dimensions of computing.A principles-based approach is not new to science. The mature disciplines such as physics, biol-ogy, and astronomy portray them-selves with such an approach.Each builds rich structures from a small set of great principles.Examples of this approach areLectures in Physics by Richard Feynman [4], The Joy of Science by Robert Hazen and James T re-fil [5], and Cosmos by Carl Sagan [7]. Newcomers find a princi-ples-based approach to be much more rewarding because it pro-motes understanding from the beginning and shows how the science transcends particular technologies.In my portrait, the contexts of use and their histories are imbued into principles, computing prac-tices, and core technologies.Indeed, you cannot understand a principle without knowing where it came from, why it is important,why it is recurrent, why it is uni-versal, and why it is unavoidable.Numerous application domains have influenced the design of all our core technologies. For exam-ple, the different styles of the lan-guages Ada, Algol, Cobol, C++,Fortran, HTML, Java, Lisp, Perl,Prolog, and SQL flow out of the application domains that inspired them. You cannot make sense of the debates about the limits of machine intelligence without understanding cognitive science and linguistic philosophy. In soft-ware, unless you understand theGreat Principles of ComputingM I C H A E L S C H R O E T E RPeter J. DenningThe great principles of computing have been interred beneath layers oftechnology in our understanding and our teaching. It is time to set them free.The Profession of IT16November 2003/Vol. 46, No. 11COMMUNICATIONS OF THE ACMCOMMUNICATIONS OF THE ACM November 2003/Vol. 46, No. 111718November 2003/Vol. 46, No. 11COMMUNICATIONS OF THE ACMand designing experiments to vali-date algorithms and systems.• Innovating: Exercising leader-ship to design and bring about lasting changes to the ways groups and communities operate. Innova-tors watch for and analyze oppor-tunities, listen to customers,formulate offers customers see as valuable, and manage com-mitments to deliver the promised results. Innovators are history-makers who havestrong historical sensibilities.• Applying: Working withpractitioners in applicationdomains to produce computing systems that support their work. Working with othercomputing professionals to pro-duce core technologies that sup-port many applications.I cannot overemphasize the importance of including comput-ing practices in a portrait of our field. If we adopt a picture that ignores practices, our field will end up like the failed “new math” of the 1960s—all concepts, no prac-tice, lifeless; dead.Our portrait is now complete(see Figure 2). It consists of com-puting mechanics (the laws anduniversal recurrences that governthe operation of computations),design principles (the conventions for designing computations), com-puting practices (the standardways of building and deployingcomputing systems), and coretechnologies (organized around shared attributes of application domains). Although not shown in the figure, the entire framework floats in a rich contextual sea of application domains, collectivelyexerting strong influences on core technologies, design, mechanics,and practice. Each level of the pic-ture has a characteristic question that justifies its place in the hierar-chy and exposes the integral role of practices (see T able 3).Implications By aligning with traditions of other science fields, a portrait of computing organized around great principles and practices promotes greater understanding of the science and engineeringbehind information technology.It significantly improves our abil-ity to discuss risks, benefits, capa-bilities, and limitations with peo-ple outside the field. It recognizes that computing is action-oriented and has many customers, and that the context in which com-puting is used is as important asthe mechanics of computing. It also clarifies professional compe-tence, which depends on dexterity with mechanics, design, practices,core technologies, and applica-tions.For years, many others have seen our field as programming.Through our 1989 Computing as a Discipline report [3] we hoped to encourage new curricula that would overcome this misleading image. But this was not to be. Our practice of embedding a program-ming language in the first courses,started when languages were easy for beginners, has created a mon-ster. Our students are being over-whelmed by the complexities of languages that many experts findCOMMUNICATIONS OF THE ACMNovember 2003/Vol. 46, No. 1119Table 3. Levels of action in computing practices. Our competence is judged not by our principles, but by the quality of what we do.20November 2003/Vol. 46, No. 11COMMUNICATIONS OF THE ACM。

Cloud-computing云计算纯英文介绍PPT课件

Cloud-computing云计算纯英文介绍PPT课件
(3)Infrastructure services(IaaS)
"Cloud" infrastructure consisting of multiple servers, provide measurement services to customers.
7
Specific introduction to cloud
LOGO Company Logo
c Cloud omputing
--------------New business Computational model
1
可编辑
Content
1 Definition of Cloud Computing 2 Feature and background of
Hardwarecentric
Softwarecentric
6
Servicecentric
可编辑
The main forms of service
(1)Software as a Service(SaaS)
SaaS service providers deploy application software on the server, users on demand ordered from the manufacturer via the Internet, service providers charge based on customer's needs, and to provide
可编辑
computing model
House come from : made yourself
buy land design district buy materials build houses matching furniture

COMPUTING AS A DISCIPLINE

COMPUTING AS A DISCIPLINE
This article has been condensed from the Report of the ACM Task Force on the Core of Computer Science. Copies of the report in its entirety may be ordered, prepaid, from ACM Order Department P.O. Box 64145 Baltimore, MD 21264 Please specify order #201880. Prices are $7.00 for ACM members, and $12.00 for nonmembers.
Janua y 1989
Байду номын сангаас
Volume 32
Number I
Communications of the ACM
9
Report
the nature of our discipline, we sought a framework, not a prescription; a guideline, not an instruction. We invite you to adopt this framework and adapt it to your own situation. We are pleased to present a new intellectual framework for our discipline and a new basis for our curricula. CHARTER OF THE TASK FORCE The task force was given three general charges: 1. Present a description of computer science that emphasizes fundamental questions and significant accomplishments. The definition should recognize that the field is constantly changing and that what is said is merely a snapshot of an ongoing process of growth. 2. Propose a teaching paradigm for computer science that conforms to traditional scientific standards, emphasizes the development of competence in the field, and harmoniously integrates theory, experimentation, and design. 3. Give a detailed example of an introductory course sequence in computer science based on the curriculum model and the disciplinary description. We immediately extended our task to encompass both computer science and computer engineering, because we concluded that no fundamental difference exists between the two fields in the core material. The differences are manifested in the way the two disciplines elaborate the core: computer science focuses on analysis and abstraction; computer engineering on abstraction and design. The phrase discipline of computing is used here to embrace all of computer science and engineering. Two important issues are outside the charter of this task force. First, the curriculum recommendations in this report deal only with the introductory course sequence. It does not address the important, larger question of the design of the entire core curriculum, and indeed the suggested introductory course would be meaningless without a new design for the rest of the core. Second, our specification of an introductory course is intended to be an example of an approach to introduce students to the whole discipline in a rigorous and challenging way, an “existence proof” that our definition of computing can be put to work. We leave it to individual departments to apply the framework to develop their own introductory courses that meet local needs. PARADIGMS FOR THE DISCIPLINE The three major paradigms, or cultural styles, by which we approach our work provide a context for our definition of the discipline of computing. The first paradigm, theory, is rooted in mathematics and consists of four steps followed in the development of a coherent, valid theory: (1) characterize objects of study (definition); (2) hypothesize possible relationships among them (theorem);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S.N. Sarbadhikari, J. Basak, S.K. Pal and M.K. Kundu
Machine Intelligence Unit, Indian Statistical Institute, Calcutta, India
A methodology is described for classifying noisy fingerprints directly from raw unprocessed images. The directional properties of fingerprints are exploited as input features by computing one-dimensional fast Fourier transform (FFT) of the images over some selected bands in four and eight directions. The ability of the multilayer perceptron (MLP) for generating complex boundaries is utilised for the purpose of classification. The superiority of the method over some existing ones is established for fingerprints corrupted with various types of distortions, especially random noise. Keywords: Fast Fourier Transform (FFT); Multilayer Perceptron (MLP); (Noisy) fingerprint classification
Correspondence and offprint requests to: Dr M.K. Kundu, Machine Intelligence Unit, Indian Statistical Institute, 203, B.T. Road, Calcutta 700035, India. Email: malay@isical.ac.in
1. Introduction
Fingerprints are recognised as a basic tool for positive identification of individuals, be it for criminals in law enforcement, for security clearance in the armed services, or for normal civilian identification purposes. However, it also becomes necessary to maintain large files of print records for this process. Automated computer processing promises a fast and accurate alternative in this sphere. Automated fingerprint classification poses an interesting problem in pattern recognition, especially for forensic applications. The computer based identification of fingerprints involves two major steps: [1] (a) 'preprocessing' like enhancement of images, thinning of ridges and extraction of features; and
Neural Comput & Applic (1998)7:180-191 9 1998 Spfinger-Verlag London Limited
Neural Computing & Applications
Noisy Leabharlann ingerprints Classification with Directional FFT Based Features Using MLP
Noisy Fingerprints Classification
181
quality of fingerprint data is often found to be very poor because of the faint nature, noise and incompleteness. Conventional preprocessing techniques based on heuristic logic are usually incapable of handling such situations, often leading to erroneous processed results at the cost of expensive computer time. So it is desirable to have a system where such time consuming and error prone preprocessing techniques could be avoided altogether. By computing input features directly from the raw fingerprints, the uncertainties in reaching a decision, and also the overall computational burden, are greatly reduced [9,10]. Based on this realisation, Pal and Mitra [11] computed fuzzy geometrical features and probabilistic entropy measures directly from unprocessed fingerprint images for their classification using the multilayer perceptron (MLP). Another investigation on fingerprint classification [12] uses a fuzzy MLP, [12] which exploits the nonlinear boundary generating capability of MLP and the uncertainty handling capacity of fuzzy sets to provide a more intelligent system. However, in earlier work [12,11], the performance of the neural nets in the presence of random noise was not very satisfactory. Moreover, it has been observed that obtaining fuzzy geometrical features is computationally expensive. An important characteristic feature of an image is the texture [13]. By using textural features instead of geometric features, one can make computations easily, and also preserve the directional (semiglobal) properties. The power spectral (Fast Fourier transform, or FFT) approach for estimating the texture of an image [14,15] is an established method. In the case of fingerprints, where there is a definite periodicity (of ridges/valleys) and directionality, FFT could be a suitable quantifier of the texture in different directions. For the various fingerprint types, the FFT components are likely to be different. Moreover, since these features are global in nature, they are likely to be less sensitive to random noise. The present article aims at developing an MLPbased methodology for fingerprint classification, exploiting the characteristics of FFT-based textural features, derived from the grey images, as input. Here the FFT is computed over only a few directional bands. This allows us to extract the specific directional properties of the various fingerprint types, and also reduces the computation time. The performance of the network, in the presence of different types of noise, is studied. The network's performance is also compared with some existing methods and the KNN classifier. Apart from that, whether the fractal dimensions of the FFT coefficients'
相关文档
最新文档