Effect of Dispersant Concentration on Preparation of an Ultrahigh

合集下载

人工影响天气纳米碘化银催化剂的制备及表征

人工影响天气纳米碘化银催化剂的制备及表征

人工影响天气纳米碘化银催化剂的制备及表征张景红1金德镇1江中浩2(1.吉林省人工影响天气办公室,长春 130062,2.吉林大学汽车材料教育部重点实验室,长春 130022)摘要采用沉淀法在常温常压下制备了纳米碘化银粒子,对制备的试剂含量(硝酸银浓度、碘化钾浓度、络合剂浓度及分散剂浓度等)及工艺条件对纳米碘化银粒子形态的影响进行了研究。

利用透射电子显微镜和X-射线衍射仪分析了纳米粒子的微观形貌及相结构。

结果表明:纳米碘化银粒子成球形,粒径均匀可控,无明显团聚现象,不同工艺条件下获得的碘化银粒径不同,最大粒径范围在80~90 nm,最小粒径范围在30~40 nm,因为碘化银具有类冰结构,是最佳成冰物质。

所以,纳米碘化银粒子作为人工影响天气催化剂具有极大的应用前景。

关键词:金属材料;纳米;AgI;制备;表征1前言近年来,纳米科技迅速发展,正成为21世纪科技产业革命的重要内容之一。

纳米粒子以其独特的光、声、电、磁、热、催化、力学、化学活性等性质及巨大的潜在的高科技应用前景,成为材料科学研究的热点之一[1]。

随着微粒粒径的减小,其比表面积逐渐增大,吸附能力和催化性能也随之增强。

纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。

随着粒径的减少,表面原子数迅速增加,并极不稳定,具有较高的吸附性和表面活性[2]。

碘化银具有光致变色特性, 广泛应用于光致变色玻璃, 照相感光乳剂等,并由于碘化银具有类冰结构,一直以来是最佳成冰物质[3-7]。

因为碘化银具有云中自然冰核的性质。

根据结晶学原理,晶体在形成过程中首先形成晶核,结构相似的物质由于可作为结构相似物质的晶核,因之可用作结构相似物质的晶种。

所以碘化银是一种很好的人工冰核,是冷云内人工产生冰晶的一种较好的物质,是当前人工影响天气作业中应用广泛、成效明显的催化剂[8]。

纳米级碘化银可望具有新的性质和应用。

目前, 碘化银纳米粒子的制备已见报道[9-12],制备方法主要有气溶胶法、凝胶法、微乳液法、水解法、共沉积法等。

不同分散剂对红黏土颗粒分析试验的影响

不同分散剂对红黏土颗粒分析试验的影响
现出具有一定的粒间连结,颗粒尺寸表现出粉土粒
针对上述情况,需回答两个问题:①对于红黏 土这种具有特殊团粒结构的土,该采用何种浓度的 何种分散剂才能较好反映其真实的粒度成分? ②分散剂对红黏土分散机理是什么?为此,对江西
某地的红黏土进行了室内颗粒分析试验,阐明该红
级特征,成为“假粉性”。 长期以来,对红黏土颗粒成分的分析,存在一定
分散剂处理的红黏土的分 散效果很差,颗分曲线总 体的连续度和光滑度不理 想,曲线的斜率不连续,颗
粒级配不良。加入8%六
composition(Content
di仃erent particle
of
偏磷酸钠作为分散剂后, 土样颗分曲线较为平缓完 整,颗粒级配良好,曲线斜 率连续,说明分散剂作用 效果较好。加入8%草酸 钠,3%氢氧化钠,6%硅酸 钠作为分散剂时,土样颗 分曲线的连续度和光滑度
物颗粒相互吸引,机械力不能使其分开。因为这种 特殊的团粒结构,导致利用密度计方法进行颗粒分 析试验时,不加分散剂情况下,试验用的红黏土的黏 粒含量特别低。 已有研究¨0_131表明,六偏磷酸钠对氧化铁分散 效果较好。分散剂对赤铁矿的分散机理主要是: ①增大赤铁矿矿物颗粒表面电位的绝对值,提高了 颗粒间静电排斥作用;②吸附于赤铁矿矿物表面, 加剧颗粒之间的空间位阻效应,使颗粒间产生强位
2.2
10%时,达到峰值,但浓度 对分散效果的影响并不 大。加入草酸钠作为分散 剂时,黏粒含量最多只有
加入不同的分散剂后。红黏土粒度组分分析 依据现有的土工试验方法和规范,以及前人的 5.9%,分散效果不好。
研究,选用了四种不同的分散剂,分别按不同的浓度 进行颗粒分析的对比试验,其分散剂名称及浓度如
(河海大学土木与交通学院,南京210098)

干法灰化_ICP_AES法测定奶粉中的磷

干法灰化_ICP_AES法测定奶粉中的磷

鲁东大学学报(自然科学版)Ludong U n i versity Journa l (N atura l Sc i ence Editi on)2009,25(1):56 58收稿日期:2008 08 20;修回日期:2008 11 20作者简介:刘振波(1973 ),男,山东烟台人。

讲师,博士,主要从事分析化学研究。

T e:l 137********,E m ai:l li u z henbo99@s i na .co m 。

研究简报干法灰化 I CP AES 法测定奶粉中的磷刘振波,鞠 平,盛 沛,刘永明(烟台大学 化学生物理工学院,山东烟台264005)摘要:用干法灰化法处理奶粉样品,电感耦合等离子体发射光谱法(I CP A ES)测定了样品中磷的含量,并研究了干法灰化最佳温度和仪器最佳工作条件.本法与其他方法比较,处理样品方法简单、快速,测定结果准确可靠,方法检出限为0 0505m g /L,回收率为95 8% 105 2%.关键词:电感耦合等离子体发射光谱法;奶粉;磷中图分类号:O 657 31 文献标志码:A 文章编号:1673 8020(2009)01 0056 03磷是人体必需的重要营养物质,是人体中遗传物质和骨骼、牙齿等重要组成成分.奶粉中的磷主要来自加工过程中添加的磷酸盐,可作为膨松剂使奶粉具有良好的口感[1].奶粉中磷的测定方法有多种,文[2]采用钒钼酸铵比色法测定奶粉中磷的含量,该方法处理样品操作繁琐、费时,不适合大批量样品的测定;文[3]采用火焰原子吸收法间接测定了奶粉中的磷,该法使用试剂多,操作复杂;文[4]采用微波消解法处理奶粉样品,测定了奶粉中钙、铜、铁、钾、镁、磷等9种元素.笔者采用干法灰化法处理奶粉样品,研究了最佳灰化温度等处理条件,称样量少且预处理更简便,用电感耦合等离子体发射光谱法(I C P-AES)测定磷含量,简单快速,取得了较好的效果.1 实验部分1)仪器及工作参数 美国热电公司I ntrep i d II 等离子体原子发射光谱仪,激发功率为1151W,雾化器压力172 4kPa ,溶液冲洗流量1 85mL /m i n ,溶液分析流量1 85mL /m i n ,样品冲洗时间30s ,延迟时间0s .2)试剂及标准溶液 标准溶液有GB W (E )0804317112磷溶液标准物质1000mg /L ,系列酸度为0 0%,2 5%,5 0%,7 5%,9 0%,10 0%,12 0%,15 0%的10m g /L 的磷标准溶液;酸度为10%的系列磷标准溶液0 0,2 5,5 0,7 5,10 0,15 0m g /L.实验所用试剂均为优级纯,水为二次去离子水,奶粉选用市售婴幼儿配方奶粉. 3)样品处理 称取0 1000g 奶粉样品于石英烧杯中,放入马弗炉,设置温度为650 ,灰化2h 至样品呈灰白色粉末,冷却后,加入5 0mL 硝酸,在电热板上低温加热溶解,待样品溶解完全,冷却后转移定容到50mL 容量瓶中,待测.2 结果与讨论1)分析线的选择磷的分析谱线有177 4和178 2n m.对比两条谱线,178 2n m 较177 4nm强度高,信号稳定,信背比佳,所以本法选取178 2n m 作为分析谱线.2)酸度的选择在雾化器压力为172 4kPa ,激发功率为1151W 条件下,研究了酸度对测定结果的影响(图1).由图1可见,当酸度为10%时,信背比最佳.所以本法选择酸度10%.图1 酸度对信背比的影响3)激发功率的选择 以10m g /L 的磷标准溶液,固定雾化器压力为172 4kPa ,进行激发功第1期刘振波,等:干法灰化 ICP AES 法测定奶粉中的磷57率的选择研究,测定结果见图 2.由图2可以得出,当激发功率为1151W 时,信背比最佳.因此选择激发功率为1151W.图2 激发功率对信背比的影响4)雾化器压力的选择 以10m g /L 的磷标准溶液,在最佳激发功率1151W 下,测定雾化器压力对信背比的影响,结果如图3.当雾化器压力为172 4kPa 时,信背比最佳,因此选择雾化器压力为172 4kPa.图3 雾化器压力对信背比的影响5)标准曲线与检出限 在最佳条件下测定系列磷标准溶液得线性回归方程为I =0 4305C (m g /L )-0 0837,R 2=0 9992.据此得出灵敏度S =0 4305.在最佳条件下测定空白液11次,测得谱线平均强度为0 0114,标准偏差 n-1=0 0072,根据I UPAC 的规定,计算检出限C L =3 n-1/S,即为0 0505m g /L ,故可满足测定要求.6)样品处理条件的选择 干法灰化去除了奶粉中的有机成分,磷以磷酸盐形式留在灰烬中.加入硝酸溶解后即可进行测定,本法测试了不同温度下干法灰化的效果,温度太低灰化不完全,不利于溶解;温度太高磷损失增多.通过实验得出650 下进行干法灰化且灰化时间2h 效果最佳.7)测定结果 测定奶粉中磷元素的含量,并与钒钼酸铵比色法相比较,结果见表1.由表1可见本法精密度高,测得结果与比色法结果一致,效果较好.表1 奶粉中磷含量的测定结果样品编号本法/( g !g -1)RSD /%比色法[2]/( g !g -1)136580 743541237051 023508336580 9535178) 回收率 向1号奶粉样品中加入不同量的标准物质做回收实验,结果如表2.由表2可以看出本法回收率在95 8% 105 2%,符合测定要求.表2 回收率实验结果( g)样品编号加标量回收量回收率/%1300 0287 495 82300 0297 299 13300 0301 8100 64600 0607 1101 15600 0623 8104 06600 0631 3105 2综上所述,奶粉在灰化过程中,所含有机物已完全被破坏,磷则以无机盐的形式留下来.本法处理样品简单、易行,检出限低,精密度高,回收率在95 8% 105 2%之间,效果较好,可用于奶粉中磷含量的大批量测定.参考文献:[1] 李良,王晴,陈芳,等.奶粉中氯、磷的∀动态透析#离子色谱法测定研究[J].中国卫生检验杂志,2007,17(6):988.[2] G B /T 5413.22 1997.婴幼儿配方食品和奶粉磷的测定[S].[3] 郭寿鹏,崔东艳,谭林青.火焰原子吸收法间接测定奶粉中的磷[J].化学分析计量,2005,14(5):36.[4] 张遴,赵收创,王昌钊,等.电感耦合等离子体发射光谱法同时测定奶粉中钙铜铁钾镁锰钠锌和磷[J].理化检验 化学分册,2007,43(6):465 467.58鲁东大学学报(自然科学版)第25卷D eter m i nati on of Phosphorus i n M il k Powder A shed by D ryi ng w ithInductively Coupled P l as m a A to m ic Em ission Spectro m etryLI U Zhen bo,J U Ping,S H ENG Pe,i LI U Yong m i n g(S ci ence and Eng i neeri ng College ofC he m i stry and B i o l ogy,Y antaiUn i vers i ty,Y antai264005,Ch i na)Abst ract:The content of phosphorus i n m il k po w der ased by drying m ethod w as de ter m ined by I CP AES(in ducti v ely coupled p las m a ato m ic e m issi o n spectro m etr y).The opti m a l te mperature of ashing te m perature w as stud ied and the best wo r k i n g cond itions of instrum ent w ere estab lished.The m ethod w as si m ple,rapid and ac curate.The detection li m itw as0 505m g/L,and the recover y w as i n the range o f95 8% 105 2%.K ey w ords:i n ductively coup led plas m a ato m ic e m ission spectr o m etry;m il k powder;phosphorus(责任编辑 司丽琴)(上接第55页)Abstrac t I D:1673 8020(2009)01 0052 EAPreparation of Porous Copoly m ers of A crylonitrile w ith M ethyl A crylateby Suspended Emulsion Pol y m erizati onLI U X i n,C H E N H ou,YU M eng m eng,Z HOU W en y i n g,CU I X ian q iang,LI Dong m e i(S chool of Ch e m istry and M ater i als Science,Ludong Un i versity,Y antai264025,Ch i na)Abst ract:Porous acrylon itrile/m ethy l acrylate copo l y m er w as prepared by suspended e mu lsi o n po ly m erization, usi n g w ater as d ispersed phase,acr y lon itrile(AN)and m ethy l acrylate(MA)as conti n uous phase,po lyv i n y l al coho l(PVA)as dispersant agen.t The m orpho l o gy,particle size and size d istri b uti o ns,and the structure ofAN/ MA copoly m ers w ere deter m ined by scann i n g electr on m icroscope,laser partic le ana l y zer,and surface area and porosity ana l y zer.E ffects of concentrati o n of i n itiator,dosage of d ispersan,t w ater/o il m ass ratio,reacti o n te m perature on the m orpho l o gy and structure o fAN/MA copoly m ers w ere i n vesti g ated.The results sho w ed that the particle size d istr i b ution beca m e w i d er w ith i n crease of i n itiator concentration and reacti o n te m perat u re.Lo w concentration of i n itiator had no si g nificant effect on pore size d istri b uti o n.W hen t h e i n itiator concentration fur ther i n creased,pore size distri b ution had no si g nificant changes,but the pore vo l u m e rapidly increased.The pore size d istri b uti o n had no v isible changesw ith i n crease o fwa ter/o ilm ass ratio and reacti o n te m perat u re.The particle size of AN/MA copo l y m ers prepared by suspended e m u lsion po l y m erizati o n was i n t h e range of10 500 m.K ey w ords:suspended e mu lsi o n po l y m erization;po r ous;acry l o nitrile;m e t h yl acr y late(责任编辑 司琴丽)。

光学效应英语作文

光学效应英语作文

光学效应英语作文In the realm of physics, optical phenomena are thecaptivating interactions between light and matter that shape our visual experiences. These phenomena are not only fundamental to our understanding of the world but also play a crucial role in various technologies and applications we encounter daily.Reflection and Refraction: The most common optical effects are reflection and refraction. Reflection occurs when light bounces off a surface, as seen in mirrors that create images. Refraction, on the other hand, happens when light passes through a medium with a different density, causing it to change direction. This is the principle behind lenses used in eyeglasses and cameras.Dispersion: Dispersion is the separation of light into its constituent colors when it passes through a prism. Thiseffect is responsible for the beautiful rainbows we see after a rain shower, as sunlight is refracted and dispersed by raindrops.Diffraction: Diffraction is the bending of light around obstacles or through slits. It is the reason why we can see shadows with sharp edges and why light can spread out to illuminate areas behind an object, even though the object blocks a direct line of sight.Polarization: Polarization is the alignment of light waves in a specific direction. It is used in sunglasses to reduce glare from reflective surfaces like water or glass, making it easier to see in bright conditions.Total Internal Reflection: This occurs when light traveling from a denser medium to a less dense medium hits the boundary at an angle greater than the critical angle. Instead of passing through, the light is completely reflected back into the denser medium. This is the principle behind fiber optics, which is used for high-speed data transmission.Lenses and Optical Instruments: Lenses are the heart of many optical devices, from microscopes to telescopes. They use refraction to magnify, focus, or disperse light, allowing us to see objects at different scales and distances.Laser Technology: Lasers, which produce highly concentrated beams of light, are a product of optical phenomena. They have a wide range of applications, from medical procedures to industrial manufacturing and even in everyday items likelaser pointers.Optical Illusions: Optical illusions exploit the way our eyes and brain process visual information, often playing with perspective, contrast, and color to create images that trick our senses.Conclusion: Optical phenomena are not just scientific curiosities; they are integral to our daily lives. From the way we see the world around us to the technologies thatenhance our experiences, the study of light and its interactions with matter is a fascinating field that continues to inspire innovation and discovery.。

The effect of surfactants on materials properties

The effect of surfactants on materials properties

The effect of surfactants on materialspropertiesSurfactants are compounds that play a crucial role in maintaining the stability and performance of materials in a wide range of industrial applications. These materials include polymers, paints, cosmetics, detergents, and even pharmaceuticals. Surfactants can affect the physical, chemical, and mechanical properties of materials. Their key role is to reduce the surface tension of liquids and solids, enable emulsifications and suspensions, and enhance wetting and spreading of the materials. In this article, we will explore the various ways in which surfactants affect materials properties.1. Surface TensionSurfactants can be characterized as amphiphilic molecules, meaning that they have both hydrophobic and hydrophilic regions. The hydrophobic part of the molecule prefers to stay away from water while the hydrophilic part is attracted to water. This property of surfactants disrupts the hydrogen bonding between water molecules and reduces the surface tension of liquids at the interface with air or other surfaces. This effect is critical in enhancing emulsification and wetting of materials.2. EmulsificationEmulsions are dispersed mixtures of two immiscible liquids such as oil and water. Surfactants can stabilize the emulsions by forming a layer around the dispersed droplets that prevents them from coalescing. The surfactant molecules adsorb at the oil-water interface, reducing the interfacial tension and promoting the formation of small droplets. The choice of surfactant depends on the nature of the materials and the desired stabilityof the emulsion.3. SuspensionSurfactants can also stabilize suspensions of solid particles in liquids. The surfactant molecules adsorb at the surface of the solid particles and form a protective layer thatprevents the particles from agglomerating. This effect is essential in the production of cosmetics, paints, and other products that require stable suspensions.4. WettingWetting is the ability of a liquid to spread on a surface. Surfactants can enhance wetting by reducing the contact angle between the liquid and the surface. This effect is due to the reduction in surface tension and adsorption of the surfactant molecules at the interface, which promotes spreading of the liquid. Surfactants are widely used in cleaning agents, personal care products, and agricultural formulations that require efficient dispersal and wetting.5. RheologySurfactants can affect the rheology of materials by altering their flow properties and viscosity. The surfactant molecules adsorb at the surface of the materials, creating a barrier that inhibits flow. This effect depends on the concentration and type of surfactant used and has significant implications for the processing and performance of materials.6. StabilitySurfactants play a critical role in stabilizing materials such as emulsions, suspensions, and foams. The surfactant molecules form a protective layer around the dispersed phase or bubbles, preventing them from coalescence or rupture. This effect is essential for the shelf life and performance of products such as food, cosmetics, and pharmaceuticals.ConclusionThe effect of surfactants on materials properties is multifaceted and complex. The properties of surfactants such as hydrophobicity, surface activity, and interfacial behavior have significant implications for the performance and stability of materials in various applications. The choice of surfactant, its concentration, and interaction with other components of the material are critical factors that determine the properties of the final product. Understanding the role of surfactants in materials science is essential for designing and processing materials with specific properties for various applications.。

物理学外文翻译

物理学外文翻译

Effect of Quantum Confinement on Electrons and Phonons in Semiconductors We have studied the Gunn effect as an example of negative differential resistance(NDR).This effect is observed in semiconductors,such as GaAs,whose conduction band structure satisfies a special condition,namely,the existence of higher conduction minima separated from the band edge by about 0.2-0.4eV..As a way of achieving this condition in any semiconductor,Esaki and Tsu proposed in 1970 [9.1]the fabrication of an artificial periodic structure consisting of alternate layers of two dissimilar semiconductors with layer superlattice.They suggested that the artificial periodicity would fold the Brillouin zone into smaller Brillouin zones or “mini-zones”and therefore create higher conduction band minima with the requisite energies for Gunn oscillations.iWith the development of sophisticated growth techniques such as molecular beam epitaxy(MBE)and metal-organic chemical vapor deposition(MOCVD)discussed in Sect.1.2,it is now possible to fabricate the superlattices(to be abbreviated as SLs)envisioned by Esaki and Tsu[9.1].In fact,many other kinds of nanometer scale semiconductor structures(often abbreviated as nanostructures)have since been grown besides the SLs.A SL is only one example of a planar or two-dimensional nanostructure .Another example is the quantum well (often shortened to QW).These terms were introduced inSects.1.2and7.15buthavenotyetbeendiscussedindetial.Theproposeof this chapter is to study the electronic and vibrational properties of these two-dimensional nanostructures.Structures with even lower dimension than two have also been fabricated successfully and studied. For example,one-dimensional nanostructures are referred to as quantum wires.In the same spirit,nanometer-size crystallites are known as quantum dots.There are so many different kinds of nanostructures and ways to fabricate them that it is impossible to review them all in this introductory book. In some nanostructures strain may be introduced as a result of lattice mismatch between a substrate and its overlayer,giving rise to a so-called strained-layer superlattice.In this chapter we shall consider only the best-study nanostructures.Our purpose is to introduce readers to this fast growing field.One reason why nanostructures are of great interest is that their electronic and vibrational properties are modified as a result of their lower dimensions and symmetries.Thus nanostructures provide an excellent opportunity for applying the knowledge gained in the previous chapters to understand these new developments in the field of semiconductors physics.Due to limitations of space we shall consider in this chapter only the effects of spatial confinement on the electronic and vibrational properties of nanostructures and some related changers in their optical and transport properties.Our main emphasis will be on QWs,since at present they can be fabricated with much higher degrees of precision and perfection than all other structures.We shall start by defining the concept of quantum confinement and discuss its effect on the electrons and phonons in a crystal.This will be followed by a discussion of the interaction between confined electrons and phonons.Finally we shall conclude with a study of a device(known as a resonant tunneling device)based on confined electrons and the quantum Hall effect(QHE)in a two-dimensional electron gas.The latter phenomenon was discoveredby Klaus von Klitzing and coworkers in 1980 and its significance marked by the award of the 1985 Nobel Prize in physics to von Klitzing for this discovery.Together with the fractional quantum Hall effect it is probably the most important development in semiconductor physics within the last two decades.Quantum Confinement and Density of StatesIn this book we have so far studied the properties of electrons ,phonons and excitons in either an infinite crystal or one with a periodic boundary condition(the cases of surface and interface states )In the absence of defects, these particles or excitations are described in terms of Bloch waves,which can propagate freely throughout the crystal.Suppose the crystal is finite and there are now two infinite barriers,separated by a distance L,which can reflect the Bloch waves along the z direction.These waves are then said to be spatially confined.A classical example of waves confined in one dimension by two impenetrable barriers is a vibrating string held fixed at two ends.It is well-known that the normal vibration modes of this string are standing waves whose wavelength λ takes on the discrete values given by Another classical example is a Fabry-Perot interferometer (which has been mentioned already in Set.7.2.6 in connection with Brillouin scattering).As a result of multiple reflections at the two end mirrors forming the cavity ,electromagnetic waves show maxima and minima in transmission through the interferometer at discrete wavelengths.If the space inside the cavity is filled with air,the condition for constructive interference is given by (9.1).At a transmission minimum the wave can be considered as “confined ”inside the interferometer.n λ=2L/n, n=1,2,3… .(9.1)For a free particle with effective mass *m confined in a crystal by impenetrablebarriers(i.e.,infinite potential energy)in the z direction,the allowed wavevectors z k of the Bloch waves are given byzn κ=2∏/n λ=n ∏/L, n=1,2,3… (9.2)And its ground state energy is increased by the amount E relative to the unconfined case:))(2(2222212Lm m k E z ∏==∆** (9.3)This increase in energy is referred to as the confinement energy of the particle.It is a consequence of the uncertainty principle in quantum mechanics. When the particle is confined within a distance L in space(along the z direction in this case)the uncertainty in the z component of its momentum increases by an amount of the order of /L.The corresponding increase in the particle ’s kinetic energy is then givenby(9.3).Hence this effect is known also as quantum confinement.In addition to increasing the minimum energy of the particle,confinement also causes its excited state energies to become quantized.We shall show later that for an infinite one-dimensional”square well”potential the excited state energies are given by n E∆2,where n=1,2,3…as in (9.2).It is important to make a distinction between confinement by barriers and localization via scattering with imperfections。

钻井液英语

钻井液英语

A氨基三乙酸(NTA)@aminotriacetic acid胺基@amino铵基@ammonium安全地层@safe formation安全试破@safe destruction安全钻井@safe drilling坳陷@down warping region螯合@chelation凹陷@sag凹陷地层@subsidence formation奥陶系@Ordovician systemAPI模拟法@API recommened methodB多靶点@multiple target point白沥青@white asphalt白油@mineral oil白云母@white mica半透膜@semipermeable membrane包被絮凝剂@flocculant包被@envelop包被抑制性@encapsulating ability饱和度@saturation饱和度剖面图@profile map of degree of saturation 饱和盐水@saturated salt water背斜@anticlinal钡@barium苯环@benzene ring苯酚@phenyl hydroxide本质区别@essential difference泵压过高@overhigh pumping pressure比表面积@specific surface area比吸水量@specific absorption比重瓶法@density bottle method避免@avoid蓖麻油@ricinus oil边界摩擦@boundary friction扁藻(浮游植物)@algae变化趋势@variation trend标准化@standardization标准粘度测量@standard visicosity measure表面粗糙度@roughness of the surface表面电位@surface electric potential表面活性剂@surfactant ,surface active agent表面能@interface energy表面粘度@surface viscosity表面抛光@sample surfaceAibbs表面弹性@Aibbs surface elasticity表面张力@surface tension表明@verify /reveal表皮系数(S)@skin coefficient憋钻@bit bouncing宾汉方程@bingham equation丙三醇@glycerine丙烯情@acrylonitrile丙烯酸@acrylic acid丙烯酸盐@acrylate丙烯酰胺@acrylamide薄而韧的泥饼@thin,plastic and compacted mud-cake@薄片@flake薄弱地层@weak formation泊松比@poisson’s ratio剥离@peel off补救@remediation不分散泥浆@nondispersed mud不干扰地质录井@play no role in geological logging不均质储层@heterogeneous reservoir不均匀@uneven不可逆@irreversible不同程度@inordinately部分水解聚丙烯酰胺(PHPA)@partially hydrolyzed polyacrylamideC参数优选@parametric optimization残酸@reacted acid残余饱和度@residual staturation残渣@gel residue , solid residue测量@measure侧链@side chain侧钻水平井@sidetrack horizontal well层间@interlayer层间距@the distance between the two crystal layer, layer distance 层理@bedding层流@layer flow差减法@minusing尝试@trial柴油@diesel oil长连缔合物@long chain associated matter操作方法@operation method超伸井@high deep well超深预探井@ultradeep prospecting well超声波@ultrasonography超高密度泥浆@extremely high density mud超细碳酸钙@super-fine calcium carbonate产层@production/pay zone产层亏空@reservoir voidage产量@production ,output沉淀@precipitation沉降@subside沉降速度@settling rate沉砂@sand setting衬套@sleeve程序@program成对水平井@paired parallel horizontal wells成分@ingredient成胶剂@gelatinizing agent成膜树脂@film-forming resin成岩性差@poor diagenetic grade承压@bearing pressure承压低@lower pressure resistance承压能力@loading capacity尺寸@dimension斥力@repulsion除硫效果@sulfur limitation effect除硫剂@sulfur elimination除砂器@desander触变性@thixotropy触变剂@thixotropic agent垂沉@sag垂直井@vertical well充气钻井液@aerated drilling fluid磁化@magnetization次生有机阳离子聚合物@secondary organic cationic polymer 冲砂@sand removal冲蚀@flush冲刷@washing out冲洗@clean冲洗效率@cleaning efficiency冲洗液@washing fluid从…角度@from the standpoint of丛式井@cluster well稠化剂@gelling agent稠油区@viscous oil area稠油藏@high oil reservoir初步分析@preliminary analysis初始稠度@initial consistency初始粘度@initial viscosity初探@primary investigation处理剂@additive ,treating-agent粗分散泥浆@coarse dispersed mud粗泡沫堵漏工艺@coarse-foam plugging technology促凝剂@accelerating agent醋酸@acetate醋酸钠@sodium acetate窜流@fluid channeling脆裂@embrittlement crack脆性@brittle/crisp ,fragility催化剂@accelerant , catalyst萃取剂@extracting agentD达西定律@Darcy’s equation大段水层@thick aqueous formation大分子氢键络合作用@polycomplexation of hydrogen bond大灰量@mass slurry大井斜角@high deviation angle大块岩样@big rock sample大块钻屑@massive drilling cuttings大类@genera大理石@marble大砾石层@large gravel bed大量分析@quantitative analysis大排量洗井@high flow rate washover大排量循环@high flow rate circulation大位移定向井@extended-reach directional well大斜度钻井@big inclination/angle drilling大直径井眼@large hole代表性岩心@representive core sample单宁酸@tannate单体@monomer单相关分析法@analyzing method of single correlation单相关系数加权@coefficient weighted method of single correlation单轴抗压强度@uniaxial compressive strength氮@nitrogenN-羟甲剂胺@N-hydroxymethyl amine淡水@fresh water单向压力暂堵剂@unidirectional pressure temporary plugging additive 导向螺杆钻具@stearable assemly导向器@guider等温曲线@isothermal curve低毒油基@low toxicity oil based低返速@low return-velocity低固相泥浆@low solid drilling fluid低级醛@low-grade aldehyde低粘土相泥浆@low clay content drilling fluid狄塞尔堵漏剂@diacel plugging agent滴定@titration底水丰富@basal water abundance底水油藏井@bottom water reservoir well第二界面@second contact surface缔合物@associated matter地层@formation地层出液量@formation fluid production地层破碎@straturn breaking地层倾角大@higher formation clination地层水@formation water地层损害@formation damage地面岩心压汞@surface core mercury injection test地下水@groundwater , subsurface water地应力@ground stress地质@geology地质构造@geologic structure淀粉@starch电测@electronic logging电导率@electric conductivity电荷@electricity电化学法@electrochemistry method电解质@electrolyte电镜分析@electronic microscope photos电位@potential fallξ电位@zeta potential电性@electric property电泳法@electrophoresis method电子探针@electron spectrum调查@census顶替过程@displacing operation定量设计@quantitative design定向井@direction well定子@stator冻胶@gel动静弹性模量@dynamic and static elasticity modulus 动力稳定性@settling stability动力学@kinetics动态滤失@dynamic filtration动切力@yield value动塑比@ratio of dynamic shear force/yield value to plastic viscosity 堵漏@plugging堵塞@seal堵塞比(DR)@damage ratio堵塞物@bulkhead堵水@water shutoff毒性大@high toxicity毒性污染环境@toxicity ruins the environment短过渡@short transition time短纤维@brief fiber断层发育@mature fault断裂带@faulted zone对策@countermeasure多产层@multilayered reservoir多分支侧钻井@multi-lateral sidetracking well多功能添加剂@multifunction additive多孔介质@porons medium多目标定向井@multi-target directional well多相稳态胶体悬浮体系@polynomial gel suspension system多元醇@polyatomic alcohol多元非线性回归@multielement non-linesr regression多元统计@multivariate statistics惰性材料@inert material惰性润滑剂@inert lubricantE二次沉淀@secondary precipitation二叠系@Permian system二甲胺@dimethylamine二甲基二烯丙基氯化铵@dimethyl diallyl ammonium chloride二价阳离子@bivalent ion二开@second section二氧化碳(CO2)carbon dioxide二元共聚物@binary polymerF发气剂@gas-development发展趋势@development tendency反排解堵@plug removal by reverse flow范氏力@van der waals force范氏粘度计@fann viscosimeter返回@go back to方便钻井液复合粉@convenient mud compound powder方程@equation芳香烃@aromatic group防窜水泥@anti-fluid-channeling cement防腐@anti-corrosion防卡@pipe-sticking prevention ,anti-sticking防漏失@lost circulation prevention防气窜@anti-fluid-channeling防塌机理@mechanism of anti-caving防塌剂@anti-caving/collapse agent , clay stabilizer防止@prevent…from纺织@textile放空不返@loss of bit load with loss return放射性示踪剂@radioactive tracer tritium非均质@nonhomogeneity非离子@nonionic非牛顿流体@non-newtonian fluid非渗透性@impervious废泥浆@mud disposal沸石@zeolite分布@distribution分段固井技术@stage cementing technology分光度法@spectrophotometer分类@division分散@dispersion分散剂@dispersant分散介质@dispersion medium分析@analysis分形理论@fractal theory分形几何@fractal geometry分子@molecules分子间能量交换@energy exchange between molecules分子量@molecular weight分子链@molecular chain分子形态@shape of molecular chain粉尘@dust粉煤灰@fly ash粉末@powder粉砂质@aleuritic texture酚羟基的邻位或对位氢@p-or o-hydrogen atom of phenolic group 封闭剂@sealing agent封闭稳定@good isolation封堵@formation sealing封堵剂@formation sealant封固段@interval isolation扶正器@centralizer氟硼酸@borofluorhydric浮力效应@effect of buoyancy孵化速度@incubation浮游植物@floating vegetation复合@combine复合离子@multifunctional ionic复合离子聚合物@amphiprotic/amphoteric polymers ,复合金属两性离子聚合物@composite metal zwitterionic polymer复合聚合物泥浆@compound-polymer mud复配方案@compositional formulation复杂地层@complex formation, troublesome region ,trick formation 复杂度@complex rate复杂时效@outage time复杂情况@down-hole troublesome condition腐蚀@corrosion腐蚀电位@corrosion potential腐蚀速率@corrosion rate腐殖酸@humate ,humic acid腐殖酸钾(KHm)@potassium humic辅料@auxiliary material负@negative@负压钻井@underbalanced drilling符合@accord with符合率@coincidence@rate副产品@by-product附加密度@addition mud densityG改善泥饼质量@improvement of mud cake改性@modification改性淀粉@modified starch改性沥青@modified asphalt改造@refomation钙@calcium钙矾石@ettringite钙膨润土钠化@sodium modified calcium betonite@干混拌技术@mixing technology干扰@interfere with甘油@glycerol锆@zirconium高分子@higher molecular weight高分子聚合物@macromoleclar polymer@高分子絮凝剂@polymer flocculant高负荷@high load高级脂肪醇树脂@higher fatty alcohol高价金属阳离子@high valent cationic高角度微裂缝@high angle micro-fracture高矿化度地层水@highly mineralized formation brines 高岭土@kaolinite高炉矿渣(BFS)@blast furnace slag高密度钻井液@high density drilling fluid高难度@high challenge高粘度清扫液@viscous sweeping fluid高砂比@high sand ratio高温静置@quiescence in high temperature高温泥浆@high-temperature mud高吸水量树脂@absorbent resin高温高压流变仪@HTHP rheometer高效润滑剂@super lubricant高压盐水层@high pressured slatwater layer膏岩层@gypsolyte膏质泥岩@creaming mudstone膏状磺化沥青@paste sulphonated asphalt隔离冲洗液@spacer/flushing fluid隔离膜@isolating membrane各向异性@anisotropy工程@engineering共聚@copolymerization共聚物@copolymer共聚物类降粘剂@copolymer thinner狗腿@dogleg构造裂缝@structural fracture固化@solidification固化剂@hardener , curing agent固井技术@cementing technology固体团块@solid cake固相@solid phase固相含量@solid concentration固相颗粒@solid particles固相颗粒侵入@solid invasion固相控制技术@solid control technology固相损害@damage of particles固液分离技术@centrifugal separation method胍胶@guargum瓜尔胶@guar挂片失重法@weight loss method@关掉电机@turn off the power光谱@spectroscopy硅@silicone硅粉@silica powder硅氟@fluosilicic硅铝比@ratio of silicate to aluminium硅酸钠@sodium silicate硅酸盐@silicate滚轮失重法@roller weight loss method国内外@home and abroad过渡金属@transitional metal过平衡压力@over-balanced pressure过剩浓度@residual concentration过氧化物@peroxideH海绿石@chlorite海上@offshore海水泥浆@sea water mud海湾@bay海洋生物@marine animal含量@content含水量@moisture content耗氧量(COD)@chemical oxygen demand耗氧量(BOD520)@biological oxygen demand核桃壳粉@walnut shell flour核磁共振(NMR)@nuclear magnetic resonance 合成@synthesis合成基钻井液@synthetic base drilling fluid合格@eligible合理级配@reasonable distribution褐煤@lignite赫巴模式@Herschel-Buckley model黑色正电胶(BPG)@black positive gel恒定滤失速率@constant filtration rate葫芦串@irregular borehole护胶剂@colloid protecting resistance护胶作用@colloid stability互层@interbeded红外光谱@infrared spectrography花岗岩@granite划眼作业@reaming operation化学螯合剂@chelating agent化学冲洗液@chemically washing solution化学结垢(沉淀)@chemical precipitation环保型@environment friendly /acceptable环境保护@environment protection环空当量密度@annular equivalent density环空返速@velocity in annular@环空压耗@annular pressure lost环氧丙烷@epoxypropare环氧氯丙烷(ECH)@epoxy chloropropane ,epichlorohydric缓蚀剂@corrosion inhibitor磺化@sulfonation磺化酚醛树脂@sulfomethal phenolaldehy resin磺化剂@sulfonating agent磺化类处理剂@sulfonated additives磺化沥青@sulfonated gilsonite磺化沥青泥浆@sulfonated-asphalt mud磺甲基酚醛树脂@sulfonated methypheuo formald-ehyde磺酸基团@sulfonic acid group ,sulfo group灰色关联分析法@gray relative analysis method灰岩@limestone回归分析@regressive analysis回收率@recovery percent回填还耕@refilling for plowland火成岩@igneous rock火山喷发岩@volcanic混合金属层状氢氧化物(MMLHC)@mixed metal layer hydroxide compound 混合金属氢氧化物(MMH)@mixed metal hydroxides混合纤维@composite fiber混合盐水@mixed salt活动套管@moving casing活度@water activity活性硅灰@activated grammite活性粘土矿物@active clayey mineral活性污泥法@activated sludge process宏观@macroscopicJ基液@base fluid机械力@mechanical机械杂质@mechanical impurity机械钻速(ROP)@rate of penetrate及时反出@timely return极限剪切粘度@high shear viscosity极限应变@ultimate strain极性基团@polar group极压润滑剂@pressured/extreme@lubricator挤堵@squeeze激光多普勒测速仪(LDA)@laser Doppler anemometer激光粒度仪@laser particle analyzer激活剂@activator技术措施@technical measure技术讲座@workshop for technology技术经济效果@technical-economic effect技术套管@intermediate casing季铵盐@quaternary ammonium, anionic group钾@potassium ,kalium钾基石灰泥浆@potassium base lime mud甲硅烷基化处理@methylsilicane甲基@methyl甲基硅油聚磺高密度钻井液@methyl silicone oil polysulfonate drilling fluid with high density甲醛@formaldehyde , methanal甲酸盐@formate加量@dosage加重剂@heavy weight additive加重泥浆@weighted mud加重钻井液“垂沉”@sag phenomenon of weighted drilling fluid 架桥粒子@bridge particle价数@valence监督@supervision碱@alkali简化泥浆处理@simplify mud treatment简介@brief de script ion检查井@inspection well检测@inspection/monitor减轻剂@lightening admixture减阻剂@anti-friction agent , drag reducer剪切破坏@shear failure剪切稀释能力@shear thinning property , shearing dilution剪切应力@shear stress键@bond健康,安全与环境(HSE)@health , safety and environment间隙@clearance降解产物@degradation products降粘机理@thinning mechanism降粘剂@thinner,visbreaker降失水剂@fluid loss agent/additive, filtration reducer胶结强度bonding/consolidation strength胶结疏松@weak bonding胶囊破胶剂@encapsulated gel breaker胶凝@gelatify胶凝性质@jellyfication胶乳@latex胶体率@colloid fraction胶体稳定性@colloid stability胶质@gum交联@cross-linking交联剂@cross linker交联冻胶@gel cross-linking交换液@exchange fluid接近@concordant with结垢@precipitation, scale deposit , fouling结构可瞬时形成或拆散@quick formation and breaking结构强度@structural strength@结合@refer to结晶@crystallization结晶水@crystal water接触角@contact angle接枝共聚物@grafting copolymerization解卡剂@pipe free agent介质@medium界面@interface界面胶结@interfacial cementation金属@metal金属离子@metal ions紧密堆积理论@theory of high packing近井壁@near-well zone近平衡钻井@near-balanced drilling浸出液@leaching agent浸酸改造@acidizing经验性总结分析@empirical analysis晶格@lattice bond净化技术@solid control井壁稳定@borehole井壁稳定@hole stability ,stable borehole井底@downhole井底静止温度低(BHST)@low borehole static temperature 井段@interval/section井径@well/hole gauge井径规则@regular and consistent borehole gauge井径扩大率@hole diameter enlargement rate井口@wellhead井漏@lost circulation井身结构@wellbore configuration井下安全@downhole safety井下复杂情况@down hole problem井斜@inclination井眼@well bore ,borehole井眼轨迹@well track井眼净化@hole cleaning井眼缩径@hole shrinkage井眼稳定@hole stability井涌@kick浸泡时间@soak time静切力(结构力)@gel strength/static shear force静损害@static damage静态挂片法@static weight loss method静态滤失@static filtration静液柱压差@hydrostatic column pressure difference@静置@quiescence静止消泡时间@static defoaming time静置沉淀@static settlement居中@centralization居中度@centralizer聚α-烯基polyalphaolifen聚丙烯青铵盐@ammonium@polyacryhoitril聚丙烯酰胺(PAM)@polyacrylamide聚电解质@poly-electrolyte聚合醇@polyalcohol , polyol聚合物不分散泥浆@non dispersed polymer mud聚合物降滤失水剂@polymer filtration control agent聚合物三磺盐水泥浆@three-sulfonated polymer salt mud聚合物钻井液@polymer drilling fluid聚合物混油钻井液@poly-oil mixture drilling fluid聚磺钻井液@sulphonated polymer mud聚结稳定性@coagulation stability聚乙二醇(PEG)@polyethyleneglycol聚乙烯醇(PVA)@polyvinyl alcoholK卡森方程@Casson equation卡钻@pipe-sticking卡钻因子@stuck-pipe factor勘探与开发@exploration and development开发井@development well开钻泥浆@spud mud抗冲击韧性@toughness抗冲击性@impact resistance抗电解质@potential resistance to electrolyte contamination 抗钙@compatibility of calcium抗裂程度@rupture strength抗温抗盐@heat and salinity tolerance抗压强度@compressive strength抗折强度@breaking strength栲胶@tannin , quebrocho克@gram颗粒@particle颗粒级配理论@theory of granulartity苛刻@rigorous可变形粒子@deformation particle可靠@inerrable可逆@reversible可溶性盐@soluble salt可压缩性@compressibility可用性@feasibility可钻性@drillability刻度盘@dial scale坑内密封法@seal in a pit空气湿度@air humidity孔洞@cavern孔喉@pore throat孔隙@pore孔隙度测井@porosity log孔隙压力@pore pressure孔隙液@pore fluid快钻剂@quick drilling矿化度@mineral salt concentration , mineralization矿石@ore矿物@mineral矿物组分@mineralogical composation矿物晶体@mineral crystal矿物油@mineral oil矿渣@slag扩散@diffusionL老化时间@ageing time老区@maturing field雷诺数@Renault number类别@category累计厚度@gross thickness累托石@rectorite沥青@asphalt ,gilsonite,bitumen沥青类产品@gilsonite and similar materials离心法敏感性评价@centrifugation sensitivity evaluation 离心机@centrifugal machine离心机固控技术@centrifugal solid control离子@ionic离子形态@ionic forms粒度@grain grade粒度分布@particles/size distribution粒度分析@particles size analysis粒子@particle砾石充填@gravel pack连通性@formation communication连续提取法@continuous extraction两凝水泥浆@two-stage cementing cement 两性离子@zwitter ionic裂缝@fissure裂缝壁@side of fracture plugging裂隙地层@fractured formation裂隙滞后效应@fracture lag-effect邻井@offset/adjacent well林产@forestry淋洗量@wash out amount磷@phosphorus磷酸@phosphate磷酸氢二铵@diammonium phosphate磷酸盐@phosphate@salt磷酸酯@organic phosphate临界点@critical point临界环空流速@critical annular fluid velocity 临界流量@critical flow velocity临界盐度@critical salinity零点@zero point零析水@zero free water硫@sulfur硫化氢@hydrogen sulfide硫化物@sulfide硫酸@sulfate硫酸钠@sodium sulphate流变参数@reheological parameter流变模式@reheology model流变性@rheology behavior流变性能改进剂@rheology conditioner流变学@rheology流动度@fluidity流动介质@flow media流动孔喉@flowing pore throat流动摩阻压力@flowage friction drag流动实验@flow test流动阻力@flow resistance流沙层@drift sand formation流态@flow pattern流体力学@hydromechanics theory流体输送减阻@accelerating fluid feeding流型@fluid type漏斗粘度@funnel viscosity漏失@lost circulation漏失层位@location of the thief zone漏失通道@porous media陆上@onshore卤虫(甲壳类动物)@crustacean卤水@bitter(luo)@chromium络合@coordination ,chelate络合行为热效应@thermal effect of the coordination 录井@log裸眼@open well裸眼井段@barefoot interval滤饼@filter cake滤失量@filtration滤饼电性质@electro kinetic property滤液@filtrate滤液侵入@filtrate invasion铝@aluminum铝酸盐@aluminate氯酚@chlophenol氯化钙(CaCl2)@calcium chloride氯化物@chlorideKCl溶液@potassium chloride solutionM马来酸酐@maleic anhydride埋深@burial depth满足…需要@meet requirement of曼尼希反应@Mannick reaction芒硝层@chuco毛细管吸收时间测定仪(CST)@capillary suction timer 毛细管压力@capillary pressure酶@enzyme煤层@coal bed煤层气储层@coalbed methane reservoir镁@magnesium门限流动压差@threshold differential pressure of flow 蒙脱石@smectite咪错基@imidazoline醚基@ether密胺树脂@melamine resin密闭液@sealing fluid密度@density密实@dense幂律模式@power law method敏感性@sensitivity敏感性流动实验@flowrate test膜@film , membrane磨铣@mill摩擦@friction摩擦付@friction couples摩擦系数@friction coefficient摩阻损失@friction loss末端毛细管阻力@terminal capillary pressure木质素磺酸盐@lignosulfonate模拟@analog, simulate模式(型)@model目@meshN纳米材料@nano-composite material纳米技术@nano-tech钠@sodium钠化@sodium treatment钠膨润土泥浆@sodium bentonite mud囊衣@capsule dressing囊芯@capsule-core内聚力@cohesion内摩擦角@internal frictional angle内泥饼@internal filter cake内切圆半径inscribed circle radius内烯烃@isomerised@olefins内源和外源颗粒@endogenous and exogenous granula 内在因素@intermediate factor能量交换@energy exchange泥包@bit balling泥饼@mud-cake泥饼强度冲刷仪@mud filter cake tester泥浆处理@mud treatment泥浆跟踪剂@mud tracer泥浆配方@mud formula泥浆转化为水泥浆(MTC)@mud to cement泥岩@mudstone , conglomerate泥页岩@shale ,@argillutite泥质膏岩@argillaceous粘度@viscosity粘度极大值@maximum viscosity粘度计@viscosimeter粘附@adhere粘附张力@adhesive tension粘弹性@viscoelastic粘土@clay粘土分级评价法@method of grading mud-making clay 粘土矿物层间距(d001)@crystal@indices粘土矿物含量@clay mineral content粘土片@clay latice粘土膨胀@clay swelling粘土膨胀倍数@swelling ratio of clays粘土稳定性@clay stability粘性流体@viscous fluid柠檬酸@citric acid凝固点@freezing point凝析油@condensate oil牛顿流体@Newtonian fluid扭距@torque浓度@concentration浓硫酸@strong sulfuric浓缩@concentrationO排列@line along排驱压力@displacement pressure排水@water draining剖面图@profile map泡沫流体实验装置@aerated fluid test simulator泡沫剂@foaming agent泡沫衰变机理@foam decay mechanism泡沫质量@foam quality泡沫钻井液@foam drilling fluid配方@formula ,recipe ,composition配浆时间@drilling fluid preparing time配位体@ligand配伍性@compatibility配制@madeup盆地@basin喷@blowout喷射钻井@jet drilling喷嘴粘度@nozzle viscosity膨润土@bentonite ,montmorillonite膨润土含量@bentonite content膨胀@swell膨胀剂@sweller膨胀率@expansion ratio膨胀性堵漏材料@expandable plugging additives硼冻胶@boracium gel硼砂@borax硼酸盐@borate偏心度@excentricity偏移@shift片麻岩@gneiss漂珠@hollow microsphere品种@variety平衡线膨胀率@equalibrium linear expansion value平衡压力钻井@balanced drilling评价@evaluation评价标准@evaluation criterion评价井@appraisal well平板型层流@plate laminar flow平均井深@average well depth平均线膨胀率@average expansion rate平均直径@mean diameter屏蔽环@shielding zone屏蔽暂堵技术@temporary shielding method ,barrier-building temporary seal incores 破胶剂@gel breaker破胶性@breaking property破裂压力@fracture pressure破裂压力梯度@fracture pressure gradient破乳@break the emulsion破乳剂@demulsifying agent葡萄糖@glucoseQ起到重要作用@play an important role起泡剂@frothing agent起下钻阻卡@blockage during tripping气液表面能@gas-liquid interface energy迁移@migration前置液@prepad fluid铅(Pb)lead潜在因素@implicit factor潜山@buried hill浅高压气层@shallow high pressure gas formation浅海@shallow-water , neritic area浅井@shallow well嵌段聚合物@block polymer欠饱和盐水钻井液@unsaturated salt water drilling fluid 欠平衡钻井@underbanlanced drilling欠压实@uncompaction羟基@hydroxy羟基水@hydroxy water羟丙基淀粉@hydroxypropul starch羟乙基纤维素@hydroxyethyl cellulose强造浆软泥岩@high mud making soft shale桥堵剂@bridge additive切力@shearing force侵入深度@invasion depth侵蚀@erosion亲核化学吸附@nucleophyllic chemical adsorption亲水环境@hydrophilic environment亲水性@hydrophilcity亲油性@lipophilic氢@hydrogen氢氟酸@hydrofluoric acid氢键@hydrogen bond氢氧化钠@alkali氢氧化钙@calcium hydroxide清扫液@sweeping fluid清水@clear water清洗剂@cleaning agent蜻纶@acrylon fiber蜻纶费丝@nitrilon倾角@dip angle丘陵@hill type球形胶束@roundness glues区块@block屈服强度@shear strength屈服值@yielding point曲边三角形@curved line trangle取代度@substituted ratio取芯@core,coring operation取芯进尺@coring footage取芯收获率@coring recovery rate曲线@curve去除@wipe off醛@aldehydeR热采井@thermal production wells热分析@thermoanalysis热滚@hot aging热滚分散实验@roller oven test , hot rolling test热力学@thermodynamics热凝橡胶@coagulative rubber热效应@thermal effect@热稳定性@temperature resistance ,heat stability ,stabilityat high temperature热重法(TG)@thermogravimetry人工神经网络@artificial neural network韧性@tenacity韧性粒子@tenacity particle日产气@daily gas融合@amalgamation溶洞@cave溶胶@sol溶解氧@dissolved oxygen溶蚀@corrode溶蚀性孔洞@solution cave@溶液@solution柔性棒状胶束@flexibility claviform glues蠕虫状胶束@vermiculate glues乳滴聚结实验@emulsion drop aggregation test乳化@emulsify ,emulsion乳化剂@emulsifier乳化钻井液@emulsion drilling fluid乳化作用@emulsification入井液@working fluid软化点沥青@softening point asphalt软泥岩@soft mudstone软件包@software package润滑剂@lubricant润滑仪@lubricity tester润湿反转@wetting transition , wettability reversed润湿性@wettability弱面@weak planeS塞流顶替@plug-flow displacement3r/min读值@3r/m reading三高一适当(3H1S)@three high and one proper三磺饱和盐水泥浆@three-sulfonated-polymer-saturated-brine mud 三钾胺@dimethyl amine三甲基单烯丙基氯化铵@trimethyl allyl ammonium chloride三维网状结构@three-dimensional network structure三乙醇胺@triethavolamine散射@scatter铯@cesium射孔@perforation射孔液@perforation fluidX-射线计算机层析技术(CT)@computerized tomography 沙砾岩@glutenite砂泥岩@sand shale砂岩@sand ,sandstone杀菌剂@bacteriostat筛管@screen pipe上泵容易@easy pumpability上部地层@upper formation /segment上古生界@upper palaeozoic上升趋势@escalating trend上下密度差@difference of densities上下限@top and bottom limitation上游领域@upstream扫描电镜(SEM)@scanning electronic microscope设计@design设计原理@design principle神经网络@nerve network深穿透射孔枪弹@deep penetrating bullet深度@depth深井钻井@deep drilling深探井@exploration well渗流@phase flow s渗漏@leakage渗透@peculation `渗透率@fluid permeability渗透率各向异性@permeability anisotropy渗透率恢复值@return permeability渗透水化@osmotic hydration@渗透性地层@permeable formation渗析纯化purified by dialysis method声波测井@sonic logging声幅值@acoustic amplitude生产能力@production capacity生态环境@ecology environment生物处理@biological treatment生物毒性@biotoxicity生物降解@biological degradation生物聚合物@biological polymer ,xanthan生物流化床法biological fluid bed method生物滤池法@bio-filter process生物转盘法@biological rotary method实验@trail十八醇@octadecanol失水@water loss失重@weightlessness,@weight loss时间推移技术@time delaying method石膏@gypsolyte, gypsum石灰@lime石蜡@alpha , paraffin wax石炭系@carboniferous system石英@quartz石油加工@oil refinery石油裂化@petroleum cracking process施工作业@field operation@事故率@failure rate湿挤压@wet-extrusion室内模拟实验@simulating lab test室内实验和现场@lab and field室内研究@laboratory study室温@ambient temperature适量@defined amount@适应温度@reaction temperature示踪分析法@mud filtrate tracer analysis释放@release收缩@shrink疏水性@hydrophobicity叔胺盐@tertiary ammonium salt数据库@data base数学模型@mathematical model数字模拟@digital analog塑料小球@plastic beads树脂@resin,@colophony s束缚@irreducible束缚水@bond water衰变@decay瞬时滤失@instantaneous filtration , spurt loss瞬时速度@instantaneous velocity双层组合套管固井技术@pipe-in-pipe casing string双电层斥力@double electrode layer repulsion双分支侧钻水平井@bi-lateral sidetracking horizontal well 水包油型乳化液@oil-in-water fluid水不溶物@water insoluble matter水层@water layer水化@hydration水化膨胀分散@hydrous disintegration水化抑制剂@hydrate control水泥环@cement sheath水泥浆@cement slurry水泥石@set cement水泥熟料@cement clinker水泥早强剂@cement hardener水解@hydration水解度@hydrolyzing degree水力学@hydraulics水基泥浆@water-base drilling fluid水敏性@water sensitivity水平井段@net horizontal section水平井段长@extended horizontal depth水平井偏心环空@horizontal eccentric annulus水平位移@horizontal displacement水溶性@water-soluble水溶液@aqueous solution水锁@water lock水眼粘度@bit nozzle viscosity ,Casson high shear viscosity 锶@strontium四苯硼酸钠@sodium tetraphenyl borate四级固控系统@four stage solid control system四球机@four-ball instrument松弛测量法@relaxation measurement松散地层@unconsolidated formation松散吸附水@adsorbed water塑性粘度@plastic viscosity塑性水泥@plastic cement速度场@velocity field速敏@speed-sensitivity速凝@fast setting速凝剂@accelerator酸度计滴定法@acidometer titration酸酐@anhydride酸碱滴定法@acid-base titration酸敏@acid sensitivity酸溶性@acid soluble酸性条件@acidic condition酸性粘土@acid clay酸渣@acid-slug随钻堵漏@plugging while drilling顺利@go smoothly缩合@condensation缩合共聚@condensation-copolymerization缩径@hole shrinkage@羧基@carboxylic ,carboxyl羧甲基纤维素钠(Na-CMC)@sodium salt of carboxy methyl-cellulose T塔里木盆地@tarim basin太古界@archaeozoic滩海@tidal坍塌@slough /cave坍塌压力@collapse pressure坍塌页岩@sloughing shale弹塑性@plastoelasticity弹性力学@elastic mechanic弹性模量@elastic modulus探井@prospecting well碳化@carbonization碳酸钙@calcium carbonate碳酸氢根离子(HCO3-)@bicarbonate ion碳酸盐@carbonate碳质@carbon羰基@carboxide陶粒@ceramsite套管@casing套管壁@casing wall套管居中@casing centralization套管开窗井段@window killing section套管外封隔器@external casing packer特低密度@ultralow density@特性粘度@intrinsic viscosity梯度@gradient梯度多凝水泥浆@gradient multi-setting cement slurry提出@propose提取@extraction体积分布@volume distribution体积分散@volume ratio体积恢复当量@equivalent volume体系@system天然或人造@natural and synthetic填充粒子@filler particle田青粉@sesbania调凝剂@thickening time control agent调整井@adjustment well铁垢@iron dirty。

石油钻井专业词汇英语翻译

石油钻井专业词汇英语翻译

钻井业专业词汇英语翻译氨基三乙酸(NTA) aminotriacetic acid胺基amino铵基ammonium安全地层safe formation安全试破safe destruction安全钻井safe drilling坳陷down warping region螯合chelation凹陷sag凹陷地层subsidence formation 奥陶系Ordovician systemAPI 模拟法API recommened methodB多靶点multiple target point白沥青white asphalt白油mineral oil白云母white mica半透膜semipermeable membrane包被絮凝剂flocculant包被envelop包被抑制性encapsulating ability饱和度saturation饱和度剖面图profile map of degree of saturation饱和盐水saturated salt water背斜anticlinal钡barium苯环benzene ring苯酚phenyl hydroxide本质区另|J essential difference泵压过高overhigh pumping pressure比表面积specific surface area比吸水量specific absorption比重瓶法density bottle method避免avoid蓖麻油ricinus oil边界摩擦boundary friction扁藻(浮游植物)algae变化趋势variation trend标准化standardization标准粘度测量standard visicosity measure表面粗糙度roughness of the surface表面电位surface electric potential表面活性剂surfactant ,surface active agent表面能interface energy表面粘度surface viscosity表面抛光sample surfaceAibbs 表面弹性Aibbs surface elasticity表面张力surface tension表明verify /reveal表皮系数(S) skin coefficient憋钻bit bouncing宾汉方程bingham equation丙三醇glycerine丙烯情acrylonitrile丙烯酸acrylic acid丙烯酸盐acrylate丙烯酰胺acrylamide薄而韧的泥饼thin,plastic and compacted mud-cake薄片flake薄弱地层weak formation泊松比poisson' s ratio剥离peel off补救remediation不分散泥浆nondispersed mud不干扰地质录井play no role in geological logging不均质储层heterogeneous reservoir不均匀uneven不可逆irreversible不同程度inordinately部分水解聚丙烯酰胺(PHPA) partially hydrolyzed polyacrylamideC参数优选parametric optimization残酸reacted acid残余饱和度residual staturation残渣gel residue , solid residue测量measure侧链side chain侧钻水平井sidetrack horizontal well层间interlayer层间距the distance between the two crystal layer, layer distance 层理bedding层流layer flow差减法minusing尝试trial柴油diesel oil长连缔合物long chain associated matter操作方法operation method超伸井high deep well超深预探井ultradeep prospecting well超声波ultrasonography超高密度泥浆extremely high density mud超细碳酸钙super-fine calcium carbonate产层production/pay zone产层亏空reservoir voidage产量production ,output沉淀precipitation沉降subside沉降速度settling rate沉砂sand setting衬套sleeve程序program成对水平井paired parallel horizontal wells成分ingredient成胶剂gelatinizing agent成膜树脂film-forming resin成岩性差poor diagenetic grade承压bearing pressure承压低lower pressure resistance承压能力loading capacity尺寸dimension斥力repulsion除硫效果sulfur limitation effect除硫剂U sulfur elimination除砂器desander触变性thixotropy触变剂U thixotropic agent垂沉sag垂直井vertical well充气钻井液aerated drilling fluid磁化magnetization次生有机阳离子聚合物secondary organic cationic polymer 冲砂sand removal冲蚀flush冲刷washing out冲洗clean冲洗效率cleaning efficiency冲洗液washing fluid从…角度from the standpoint of丛式井cluster well稠化剂gelling agent稠油区viscous oil area稠油藏high oil reservoir初步分析preliminary analysis初始稠度initial consistency初始粘度initial viscosity初探primary investigation处理剂additive ,treating-agent粗分散泥浆coarse dispersed mud粗泡沫堵漏工艺coarse-foam plugging technology促凝剂accelerating agent醋酸acetate醋酸钠sodium acetate窜流fluid channeling脆裂embrittlement crack脆性brittle/crisp fragility催化剂accelerant , catalyst萃取剂extracting agentD达西定律Darcy’ s equation大段水层thick aqueous formation大分子氢键络合作用polycomplexation of hydrogen bond大灰量mass slurry大井斜角high deviation angle大块岩样big rock sample大块钻屑massive drilling cuttings大类genera大理石marble大砾石层large gravel bed大量分析quantitative analysis大排量洗井high flow rate washover大排量循环high flow rate circulation大位移定向井extended-reach directional well大斜度钻井big inclination/angle drilling大直径井眼large hole代表性岩心representive core sample单宁酸tannate单体monomer单相关分析法analyzing method of single correlation单相关系数加权coefficient weighted method of single correlation单轴抗压强度uniaxial compressive strength氮nitrogenN-羟甲剂胺N-hydroxymethyl amine淡水fresh water单向压力暂堵剂unidirectional pressure temporary plugging additive 导向螺杆钻具stearable assemly导向器guider等温曲线isothermal curve低毒油基low toxicity oil based低返速low return-velocity低固相泥浆low solid drilling fluid低级醛low-grade aldehyde低粘土相泥浆low clay content drilling fluid狄塞尔堵漏剂diacel plugging agent滴定titration底水丰富basal water abundance底水油藏井bottom water reservoir well第二界面second contact surface缔合物associated matter地层formation地层出液量formation fluid production地层破碎straturn breaking地层倾角大higher formation clination地层水formation water地层损害formation damage地面岩心压汞surface core mercury injection test地下水groundwater , subsurface water地应力ground stress地质geology地质构造geologic structure淀粉starch电测electronic logging电导率electric conductivity电荷electricity电化学法electrochemistry method电解质electrolyte电镜分析electronic microscope photos电位potential fall己电位zeta potential电性electric property电泳法electrophoresis method电子探针electron spectrum调查census顶替过程displacing operation定量设计quantitative design定向井direction well定子stator冻胶gel动静弹性模量dynamic and static elasticity modulus动力稳定性settling stability动力学kinetics动态滤失dynamic filtration动切力yield value动塑比ratio of dynamic shear force/yield value to plastic viscosity 堵漏plugging堵塞seal堵塞比(DR) damage ratio堵塞物bulkhead堵水water shutoff毒性大high toxicity毒性污染环境toxicity ruins the environment短过渡short transition time短纤维brief fiber断层发育mature fault断裂带faulted zone对策countermeasure多产层multilayered reservoir多分支侧钻井multi-lateral sidetracking well多功能添加剂multifunction additive多孔介质porons medium多目标定向井multi-target directional well多相稳态胶体悬浮体系polynomial gel suspension system 多元醇polyatomic alcohol多元非线性回归multielement non-linesr regression多元统计multivariate statistics惰性材料inert material惰性润滑剂inert lubricantE二次沉淀secondary precipitation二叠系Permian system二甲月安dimethylamine二甲基二烯丙基氯化铵dimethyl diallyl ammonium chloride 二价阳离子bivalent ion二开second section二氧化碳(CO2)carbon dioxide二元共聚物binary polymerF发气剂gas-development发展趋势development tendency反排解堵plug removal by reverse flow范氏力van der waals force范氏粘度计fann viscosimeter返回go back to方便钻井液复合粉convenient mud compound powder方程equation芳香烃aromatic group防窜水泥anti-fluid-channeling cement防腐anti-corrosion防卡pipe-sticking prevention ,anti-sticking防漏失lost circulation prevention防气窜anti-fluid-channeling防塌机理mechanism of anti-caving防塌剂anti-caving/collapse agent , clay stabilizer防止prevent^from纺织textile放空不返loss of bit load with loss return放射性示踪剂radioactive tracer tritium非均质nonhomogeneity非离子nonionic非牛顿流体non-newtonian fluid非渗透性impervious废泥浆mud disposal沸石zeolite分布distribution分段固井技术stage cementing technology分光度法spectrophotometer分类division分散dispersion分散剂dispersant分散介质dispersion medium分析analysis分形理论fractal theory分形几何fractal geometry分子molecules分子间能量交换energy exchange between molecules分子量molecular weight分子链molecular chain分子形态shape of molecular chain粉尘dust粉煤灰fly ash粉末powder粉砂质aleuritic texture酚羟基的邻位或对位氢p-or o-hydrogen atom of phenolic group 封闭剂sealing agent封闭稳定good isolation封堵formation sealing封堵剂U formation sealant封固段interval isolation扶正器centralizer氟硼酸borofluorhydric浮力效应effect of buoyancy孵化速度incubation浮游植物floating vegetation复合combine复合离子multifunctional ionic复合离子聚合物amphiprotic/amphoteric polymers ,复合金属两性离子聚合物composite metal zwitterionic polymer复合聚合物泥浆compound-polymer mud复配方案compositional formulation复杂地层complex formation, troublesome region ,trick formation复杂度complex rate复杂时效outage time复杂情况down-hole troublesome condition腐蚀corrosion腐蚀电位corrosion potential腐蚀速率corrosion rate 腐殖酸humate ,humic acid 腐殖酸钾(KHm) potassium humic 辅料auxiliary material 负negative负压钻井underbalanced drilling 符合accord with符合率coincidence rate 副产品by-product附加密度addition mud density改善泥饼质量improvement of mud cake改性modification改性淀粉modified starch改性沥青modified asphalt改造refomation钙calcium钙矶石ettringite钙膨润土钠化sodium modified calcium betonite干混拌技术mixing technology干扰interfere with甘油glycerol锆zirconium高分子higher molecular weight高分子聚合物macromoleclar polymer高分子絮凝剂polymer flocculant高负荷high load高级脂肪醇树脂higher fatty alcohol高价金属阳离子high valent cationic高角度微裂缝high angle micro-fracture高矿化度地层水highly mineralized formation brines 高岭土kaolinite 高炉矿渣(BFS) blast furnace slag高密度钻井液high density drilling fluid高难度high challenge高粘度清扫液viscous sweeping fluid高砂比high sand ratio高温静置quiescence in high temperature高温泥浆high-temperature mud高吸水量树脂absorbent resin高温高压流变仪HTHP rheometer高效润滑剂super lubricant高压盐水层high pressured slatwater layer膏岩层gypsolyte膏质泥岩creaming mudstone膏状磺化沥青paste sulphonated asphalt隔离冲洗液spacer/flushing fluid隔离膜isolating membrane各向异性anisotropy工程engineering共聚copolymerization共聚物copolymer共聚物类降粘剂copolymer thinner狗腿dogleg构造裂缝structural fracture固化solidification固化剂hardener , curing agent固井技术cementing technology固体团块solid cake固相solid phase固相含量solid concentration固相颗粒solid particles固相颗粒侵入solid invasion固相控制技术solid control technology固相损害damage of particles固液分离技术centrifugal separation method胍胶guargum瓜尔胶guar挂片失重法weight loss method关掉电机turn off the power光谱spectroscopy硅silicone硅粉silica powder硅氟fluosilicic硅铝比ratio of silicate to aluminium硅酸钠sodium silicate硅酸盐silicate滚轮失重法roller weight loss method国内夕卜home and abroad过渡金属transitional metal过平衡压力over-balanced pressure过剩浓度residual concentration过氧化物peroxide海绿石chlorite 海上offshore 海水泥浆sea water mud 海湾bay海洋生物marine animal 含量content含水量moisture content耗氧量(COD) chemical oxygen demand 耗氧量(BOD520) biological oxygen demand 核桃壳粉walnut shell flour核磁共振(NMR) nuclear magnetic resonance 合成synthesis合成基钻井液synthetic base drilling fluid 合格eligible合理级配reasonable distribution 褐煤lignite赫巴模式Herschel-Buckley model 黑色正电胶(BPG) black positive gel 恒定滤失速率constant filtration rate 葫芦串irregular borehole 护胶齐U colloid protectingresistance 护胶作用colloid stability 互层interbeded红外光谱infrared spectrography 花岗岩granite戈U眼作业reaming operation 化学螯合剂chelating agent 化学冲洗液chemically washing solution 化学结垢(沉淀)chemical precipitation 环保型environment friendly /acceptable 环境保护environment protection 环空当量密度annular equivalent density 环空返速velocity in annular 环空压耗annular pressure lost 环氧丙烷epoxypropare环氧氯丙烷(ECH) epoxy chloropropane ,epichlorohydric 缓蚀剂U corrosion inhibitor 磺化sulfonation磺化酚醛树脂sulfomethal phenolaldehy resin 磺化剂sulfonating agent磺化类处理剂sulfonated additives磺化沥青sulfonated gilsonite磺化沥青泥浆sulfonated-asphalt mud磺甲基酚醛树脂sulfonated methypheuo formald-ehyde磺酸基团sulfonic acid group ,sulfo group灰色关联分析法gray relative analysis method灰岩limestone回归分析regressive analysis回收率recovery percent回填还耕refilling for plowland火成岩igneous rock火山喷发岩volcanic混合金属层状氢氧化物(MMLHC) mixed metal layer hydroxide compound 混合金属氢氧化物(MMH) mixed metal hydroxides混合纤维composite fiber混合盐水mixed salt活动套管moving casing活度water activity活性硅灰activated grammite活性粘土矿物active clayey mineral活性污泥法activated sludge process宏观macroscopic基液base fluid机械力mechanical机械杂质mechanical impurity机械钻速(ROP) rate of penetrate及时反出timely return极限剪切粘度high shear viscosity极限应变ultimate strain极性基团polar group极压润滑剂pressured/extreme lubricator挤堵squeeze激光多普勒测速仪(LDA) laser Doppler anemometer激光粒度仪laser particle analyzer激活剂activator技术措施technical measure技术讲座workshop for technology技术经济效果technical-economic effect技术套管intermediate casing季铵盐quaternary ammonium, anionic group车甲potassium ,kalium钾基石灰泥浆potassium base lime mud甲硅烷基化处理methylsilicane甲基methyl甲基硅油聚磺高密度钻井液methyl silicone oil polysulfonatedrilling fluid with high density甲醛formaldehyde , methanal甲酸盐formate力口量dosage力口重剂heavy weight additive加重泥浆weighted mud加重钻井液“垂沉” sag phenomenon of weighted drilling fluid 架桥粒子bridge particle价数valence监督supervision碱alkali简化泥浆处理simplify mud treatment简介brief description检查井inspection well检测U inspection/monitor减轻剂lightening admixture减阻剂U anti-friction agent , drag reducer剪切破坏shear failure剪切稀释能力shear thinning property , shearing dilution剪切应力shear stress键bond健康,安全与环境(HSE) health , safety and environment间隙clearance降解产物degradation products降粘机理thinning mechanism降粘剂thinner,visbreaker降失水剂U fluid loss agent/additive, filtration reducer胶结强度bonding/consolidation strength胶结疏松weak bonding胶囊破胶剂encapsulated gel breaker胶凝gelatify胶凝性质jellyfication胶乳latex胶体率colloid fraction胶体稳定性colloid stability胶质gum交联cross-linking交联剂cross linker交联冻胶gel cross-linking交换液exchange fluid接近concordant with结垢precipitation, scale deposit , fouling结构可瞬时形成或拆散quick formation and breaking结构强度structural strength结合refer to结晶crystallization结晶水crystal water接触角contact angle接枝共聚物grafting copolymerization解卡剂pipe free agent介质medium界面interface界面胶结interfacial cementation金属metal金属离子metal ions紧密堆积理论theory of high packing近井壁near-well zone近平衡钻井near-balanced drilling浸出液leaching agent浸酸改造acidizing经验性总结分析empirical analysis晶格lattice bond净化技术solid control井壁稳定borehole井壁稳定hole stability ,stable borehole井底downhole井底静止温度低(BHST) low borehole static temperature 井段interval/section井径well/hole gauge井径规贝U regular and consistent borehole gauge井径扩大率hole diameter enlargement rate井口wellhead井漏lost circulation井身结构wellbore configuration井下安全downhole safety井下复杂情况down hole problem井斜inclination井眼well bore ,borehole井眼轨迹well track井眼净化hole cleaning井眼缩径hole shrinkage井眼稳定hole stability井涌kick浸泡时间soak time静切力(结构力)gel strength/static shear force静损害static damage静态挂片法static weight loss method静态滤失static filtration静液柱压差hydrostatic column pressure difference静置quiescence静止消泡时间static defoaming time静置沉淀static settlement居中centralization居中度centralizer聚 a 一烯基polyalphaolifen聚丙烯青铵盐ammonium polyacryhoitril聚丙烯酰胺(PAM) polyacrylamide聚电解质poly-electrolyte聚合醇polyalcohol , polyol聚合物不分散泥浆non dispersed polymer mud聚合物降滤失水剂polymer filtration control agent聚合物三磺盐水泥浆three-sulfonated polymer salt mud 聚合物钻井液polymer drilling fluid聚合物混油钻井液poly-oil mixture drilling fluid聚磺钻井液sulphonated polymer mud聚结稳定性coagulation stability聚乙二醇(PEG) polyethyleneglycol聚乙烯醇(PVA) polyvinyl alcoholK卡森方程Casson equation卡钻pipe-sticking卡钻因子stuck-pipe factor勘探与开发exploration and development开发井development well开钻泥浆spud mud抗冲击韧性toughness抗冲击性impact resistance抗电解质potential resistance to electrolyte contamination抗钙compatibility of calcium抗裂程度rupture strength抗温抗盐heat and salinity tolerance抗压强度compressive strength抗折强度breaking strength 栲胶tannin , quebrocho 克gram 颗粒particle颗粒级配理论theory of granulartity苛亥^ rigorous可变形粒子deformation particle 可靠inerrable 可逆reversible可溶性盐soluble salt可压缩性compressibility 可用性feasibility 可钻性drillability 刻度盘dial scale 坑内密封法seal in a pit 空气湿度air humidity 孑1洞cavern孔喉pore throat孔隙pore孔隙度测井porosity log 孔隙压力pore pressure 孔隙液pore fluid 快钻剂quick drilling 矿化度mineral salt concentration , mineralization 矿石ore 矿物mineral矿物组分mineralogical composation 矿物晶体mineral crystal 矿物油mineral oil 矿渣slag 扩散diffusionL老化时间ageing time老区maturing field雷诺数Renault number类别category累计厚度gross thickness累托石rectorite沥青asphalt ,gilsonite,bitumen沥青类产品gilsonite and similar materials 离心法敏感性评价centrifugation sensitivity evaluation 离心机centrifugal machine离心机固控技术centrifugal solid control离子ionic离子形态ionic forms粒度grain grade粒度分布particles/size distribution粒度分析particles size analysis粒子particle砾石充填gravel pack连通性formation communication连续提取法continuous extraction两凝水泥浆two-stage cementing cement两性离子zwitter ionic裂缝fissure裂缝壁side of fracture plugging裂隙地层fractured formation裂隙滞后效应fracture lag-effect邻井offset/adjacent well林产forestry淋洗量wash out amount磷酸phosphate磷酸氢二铵diammonium phosphate磷酸盐phosphate salt磷酸酯organic phosphate临界点critical point临界环空流速critical annular fluid velocity临界流量critical flow velocity临界盐度critical salinity零点zero point零析水zero free water硫sulfur硫化氢hydrogen sulfide硫化物sulfide硫酸sulfate硫酸钠sodium sulphate流变参数reheological parameter流变模式reheology model流变性rheology behavior流变性能改进剂rheology conditioner流变学rheology流动度fluidity流动介质flow media流动孔喉flowing pore throat流动摩阻压力flowage friction drag流动实验flow test流动阻力flow resistance流沙层drift sand formation流态flow pattern流体力学hydromechanics theory流体输送减阻accelerating fluid feeding流型fluid type漏斗粘度funnel viscosity漏失lost circulation漏失层位location of the thief zone漏失通道porous media陆上onshore卤虫(甲壳类动物)crustacean卤水bitter(luo) chromium络合coordination ,chelate络合行为热效应thermal effect of the coordination 录井log裸眼井段barefoot interval滤饼filter cake滤失量filtration滤饼电性质electro kinetic property滤液filtrate滤液侵入filtrate invasion铝aluminum铝酸盐aluminate氯酚chlophenol氯化钙(CaCl2) calcium chloride氯化物chlorideKCl 溶液potassium chloride solutionM马来酸酐maleic anhydride埋深burial depth满足…需要meet requirement of曼尼希反应Mannick reaction芒硝层chuco毛细管吸收时间测定仪(CST) capillary suction timer 毛细管压力capillary pressure酶enzyme煤层coal bed煤层气储层coalbed methane reservoir镁magnesium门限流动压差threshold differential pressure of flow蒙脱石smectite咪错基imidazoline醚基ether密胺树脂melamine resin密闭液sealing fluid密度density密实dense幕律模式power law method敏感性sensitivity敏感性流动实验flowrate test膜film , membrane磨铳mill摩擦friction摩擦付friction couples摩擦系数friction coefficient摩阻损失friction loss末端毛细管阻力terminal capillary pressure木质素磺酸盐lignosulfonate模拟analog, simulate模式(型)model目meshN纳米材料nano-composite material纳米技术nano-tech钠sodium钠化sodium treatment钠膨润土泥浆sodium bentonite mud 囊衣capsule dressing 囊芯capsule-core内聚力cohesion内摩擦角internal frictional angle 内泥饼internal filter cake 内切圆半径inscribed circle radius 内烯烃isomerised olefins内源和夕卜源颗粒endogenous and exogenous granula 内在因素intermediate factor 能量交换energy exchange泥包bit balling泥饼mud-cake泥饼强度冲刷仪mud filter cake tester泥浆处理mud treatment泥浆是艮踪剂mud tracer泥浆配方mud formula泥浆转化为水泥浆(MTC) mud to cement泥岩mudstone , conglomerate泥页岩shale , argillutite泥质膏岩argillaceous粘度viscosity粘度极大值maximum viscosity粘度计viscosimeter粘附adhere粘附张力adhesive tension粘弹性viscoelastic粘土clay粘土分级评价法method of grading mud-making clay粘土矿物层间距(d001) crystal indices粘土矿物含量clay mineral content粘土片clay latice粘土膨胀clay swelling粘土膨胀倍数swelling ratio of clays粘土稳定性clay stability粘性流体viscous fluid柠檬酸citric acid凝固点freezing point凝析油condensate oil牛顿流体Newtonian fluid扭距torque浓度concentration浓硫酸strong sulfuric浓缩concentration排列line along排驱压力displacement pressure排水water draining剖面图profile map泡沫流体实验装置aerated fluid test simulator泡沫剂foaming agent泡沫衰变机理foam decay mechanism泡沫质量foam quality泡沫钻井液foam drilling fluid酉己方formula ,recipe ,composition配浆时间drilling fluid preparing time配位体ligand配伍性compatibility配制madeup盆地basin喷blowout喷射钻井jet drilling喷嘴粘度nozzle viscosity膨润土bentonite ,montmorillonite膨润土含量bentonite content膨胀swell膨胀剂sweller膨胀率expansion ratio膨胀性堵漏材料expandable plugging additives硼冻胶boracium gel硼砂borax硼酸盐borate偏心度excentricity偏移shift片麻岩gneiss漂珠hollow microsphere品种variety平衡线膨胀率equalibrium linear expansion value平衡压力钻井balanced drilling评价evaluation评价标准evaluation criterion评价井appraisal well平板型层流plate laminar flow平均井深average well depth平均线膨胀率average expansion rate平均直径mean diameter屏蔽环shielding zone屏蔽暂堵技术temporary shielding method ,barrier-building temporary seal incores 破胶剂gel breaker破胶性breaking property破裂压力fracture pressure破裂压力梯度fracture pressure gradient破孚1 break the emulsion 破乳剂demulsifying agent 葡萄糖glucose起至“重要作用play an important role起泡剂frothing agent起下钻阻卡blockage during tripping气液表面能gas-liquid interface energy迁移migration前置液prepad fluid铅(Pb)lead潜在因素implicit factor潜山buried hill浅高压气层shallow high pressure gas formation浅海shallow-water , neritic area浅井shallow well嵌段聚合物block polymer欠饱和盐水钻井液unsaturated salt water drilling fluid欠平衡钻井underbanlanced drilling欠压实uncompaction羟基hydroxy羟基水hydroxy water羟丙基淀粉hydroxypropul starch羟乙基纤维素hydroxyethyl cellulose强造浆软泥岩high mud making soft shale桥堵剂bridge additive切力shearing force侵入深度invasion depth侵蚀erosion亲核化学吸附nucleophyllic chemical adsorption亲水环境hydrophilic environment亲水性hydrophilcity亲油性lipophilic氢hydrogen氢氟酸hydrofluoric acid氢键hydrogen bond氢氧化钠alkali氢氧化钙calcium hydroxide清扫液sweeping fluid清水clear water清洗剂cleaning agent 蜻纶acrylon fiber 蜻纶费丝nitrilon 倾角dip angle 丘陵hill type球形胶束roundness glues 区块block屈服强度shear strength 屈服值yielding point 曲边三角形curved line trangle 取代度substituted ratio 取芯core,coring operation 取芯进尺coring footage 取芯收获率coring recovery rate 曲线curve 去除wipe off 醛aldehydeR热采井thermal production wells热分析thermoanalysis热滚hot aging热滚分散实验roller oven test , hot rolling test热力学thermodynamics热凝橡胶coagulative rubber热效应thermal effect热稳定性temperature resistance ,heat stability ,stabilityat high temperature热重法(TG) thermogravimetry人工神经网络artificial neural network韧性tenacity韧性粒子tenacity particle日产气daily gas融合amalgamation溶洞cave溶胶sol溶解氧dissolved oxygen溶蚀corrode溶蚀性孔洞solution cave溶液solution柔性棒状胶束flexibility claviform glues蠕虫状胶束vermiculate glues孚L滴聚结实验emulsion drop aggregation test孚1化emulsify ,emulsion乳化剂emulsifier乳化钻井液emulsion drilling fluid乳化作用emulsification入井液working fluid软化点沥青softening point asphalt软泥岩soft mudstone软件包software package润滑剂lubricant润滑仪lubricity tester润湿反转wetting transition , wettability reversed 润湿性wettability 弱面weak planeS塞流顶替plug-flow displacement3r/min 读值3r/m reading三高一适当(3H1S) three high and one proper三磺饱和盐水泥浆three-sulfonated-polymer-saturated-brine mud 三钾月安dimethyl amine三甲基单烯丙基氯化铵trimethyl allyl ammonium chloride三维网状结构three-dimensional network structure三乙醇月胺triethavolamine散射scatter铯cesium射孑1 perforation射孔液perforation fluidX-射线计算机层析技术(CT) computerized tomography沙砾岩glutenite砂泥岩sand shale砂岩sand ,sandstone杀菌剂U bacteriostat筛管screen pipe上泵容易easy pumpability上部地层upper formation /segment上古生界upper palaeozoic上升趋势escalating trend上下密度差difference of densities上下限top and bottom limitation上游领域upstream扫描电镜(SEM) scanning electronic microscope 设计design设计原理design principle神经网络nerve network深穿透射孔枪弹deep penetrating bullet深度depth深井钻井deep drilling深探井exploration well渗流phase flow s渗漏leakage渗透peculation '渗透率fluid permeability渗透率各向异性permeability anisotropy 渗透率恢复值return permeability 渗透水化osmotic hydration 渗透性地层permeable formation 渗析纯化purified by dialysis method声波测井sonic logging 声幅值acoustic amplitude 生产能力production capacity 生态环境ecology environment 生物处理biological treatment 生物毒性biotoxicity生物降解biological degradation生物聚合物biological polymer ,xanthan 生物流化床法biological fluid bed method 生物滤池法bio-filter process 生物转盘法biological rotary method 实验trail十八醇octadecanol失水water loss失重weightlessness, weight loss时间推移技术time delaying method石膏gypsolyte, gypsum石灰lime石蜡alpha , paraffin wax石炭系carboniferous system石英quartz石油加工oil refinery石油裂化petroleum cracking process施工作业field operation事故率failure rate湿挤压wet-extrusion室内模拟实验simulating lab test室内实验和现场lab and field室内研究laboratory study室温ambient temperature适量defined amount适应温度reaction temperature示踪分析法mud filtrate tracer analysis释放release收缩shrink疏水性hydrophobicity叔胺盐tertiary ammonium salt数据库data base数学模型mathematical model数字模拟digital analog塑料小球plastic beads树月脂resin, colophony s束缚irreducible束缚水bond water衰变decay瞬时滤失instantaneous filtration , spurt loss瞬时速度instantaneous velocity双层组合套管固井技术pipe-in-pipe casing string双电层斥力double electrode layer repulsion双分支侧钻水平井bi-lateral sidetracking horizontal well 水包油型乳化液oil-in-water fluid 水不溶物water insoluble matter水层water layer水化hydration水化膨胀分散hydrous disintegration水化抑制剂hydrate control水泥环cement sheath水泥浆cement slurry水泥石set cement水泥熟料cement clinker水泥早强剂cement hardener水解hydration水解度hydrolyzing degree水力学hydraulics水基泥浆water-base drilling fluid水敏性water sensitivity水平井段net horizontal section水平井段长extended horizontal depth水平井偏心环空horizontal eccentric annulus水平位移horizontal displacement水溶性water-soluble水溶液aqueous solution水锁water lock水眼粘度bit nozzle viscosity ,Casson high shear viscosity牟思strontium四苯硼酸钠sodium tetraphenyl borate四级固控系统four stage solid control system四球机four-ball instrument松弛测量法relaxation measurement松散地层unconsolidated formation松散吸附水adsorbed water塑性粘度plastic viscosity塑性水泥plastic cement速度场velocity field速敏speed-sensitivity速凝fast setting速凝剂accelerator酸度计滴定法acidometer titration酸酐anhydride酸碱滴定法acid-base titration酸敏acid sensitivity酸溶性acid soluble酸性条件acidic condition酸性粘土acid clay酸渣acid-slug随钻堵漏plugging while drilling顺利go smoothly缩合condensation缩合共聚condensation-copolymerization缩径hole shrinkage羧基carboxylic ,carboxyl竣甲基纤维素钠(Na-CMC) sodium salt of carboxy methyl-celluloseT塔里木盆地tarim basin 太古界archaeozoic 滩海tidal坍塌slough /cave坍塌压力collapse pressure 坍塌页岩sloughing shale 弹塑性plastoelasticity 弹性力学elastic mechanic弹性模量elastic modulus探井prospecting well碳化carbonization碳酸钙calcium carbonate碳酸氢根离子(HCO3-) bicarbonate ion碳酸盐carbonate碳质carbon羰基carboxide陶粒ceramsite套管casing套管壁casing wall套管居中casing centralization套管开窗井段window killing section套管外封隔器external casing packer特低密度ultralow density特性粘度intrinsic viscosity梯度gradient梯度多凝水泥浆gradient multi-setting cement slurry提出propose提取extraction体积分布volume distribution体积分散volume ratio体积恢复当量equivalent volume体系system天然或人造natural and synthetic填充粒子filler particle田青粉sesbania调凝剂thickening time control agent调整井adjustment well铁垢iron dirty铁矿粉hematite铁离子(Fe) ferrous ion铁离子稳定剂ferrous stability铁落木质素磺酸盐fer-rochrome lignosulfonte烃类hydro carbons通井drafting process同时simultaneously同心环空concentric annulus统计statistics统计分析statistics analysis投料比rate of charge土酸clay/mud acid钍thorium途径way 突破breakthroughW外部因素external factors夕卜源exogenous完井液completion fluid完善井improved well 完钻井深total depth 烷基化alkylate烷氧基alkoxy万能显微镜all-powerful microscope 维护简单maintenance is simple 危险区dangerous zone 微观microcosmic微晶micro-crystal 微粒迁移fine migration 微裂缝micro-fissure/fracture, microcrack 微米micron, micrometer微泡沫钻井液micro-foam drilling fluid 微膨胀minimum inflation微生物microbe尾管liner位移与垂深比displacement/vertical depth 未动用石油储藏undeveloped reservoir 文献documents published。

碳酸铝铵热分解法制备超细氧化铝粉体

碳酸铝铵热分解法制备超细氧化铝粉体

碳酸铝铵热分解法制备超细氧化铝粉体闫国进陈金身荆运洁(河南工业大学材料科学与工程学院,郑州,450007)摘要以分析纯的NH4Al(SO4)2和NH4HCO3为原料,选择合适的溶液浓度、分散剂及pH值,在合适的工艺条件下,得到NH4Al(OH)2CO3前驱体化合物。

前驱体在1100℃下煅烧1h,得到粒径为80~100nm 的超细α-Al2O3,Al2O3颗粒基本上呈球形,粒度均匀。

研究了溶液浓度、分散剂及pH值对前驱体化合物颗粒细度的影响,用XRD法对前驱体化合物及其煅烧产物进行了表征,并研究了热处理过程中的相变化,对Al2O3多晶转变与热处理温度之间的关系进行了讨论。

用SEM对Al2O3粉体的形貌、大小进行了表征。

该方法工艺简单,原料易得便宜,综合成本较低,易实现工业化生产。

关键词碳酸铝铵;超细氧化铝粉体;热分解;分散剂Preparation of Superfine α-Al2O3 Powder by Pyrolysis of AmmoniumAluminium Carbonate HydroxideYan Guojin Chen Jinshen Jing Yunjie(School of Material Science and Engineer,Henan University of Technology,Zhengzhou 450007)Abstract By using ammonium aluminium sulfate and ammonium hydro-carbonate as the starting materials, selecting suitable solution concentration,dispersant agent and pH value, the ammonium aluminium carbonate hydroxide (NH4Al(OH)2CO3) was prepared. The NH4Al(OH)2CO3 transforms to α-Al2O3completely by calcining at 1100℃ for 1h ,the particle is uniform with a size about 80~100nm.The influences of solution concentration,dispersant agent and pH value on the fineness of the NH4Al(OH)2CO3 precursor was discussed. The products were identified by XRD and SEM. The phase transformation process was studied by XRD, and the relation of different phase transformation of Al2O3and the heat treatment temperature was discussed.The powder morphology and size of Al2O3 was characterized by SEM.Keywords NH4Al(OH)2CO3;superfine α-Al2O3 powder;pyrolysis;dispersant agent超细Al2O3粉体具有高强度、高硬度、抗磨损、耐高温、耐化学腐蚀等优良性质,广泛用于陶瓷和磨料磨具行业。

Determination of trace amounts of manganese

Determination of trace amounts of manganese

Analytica Chimica Acta 522(2004)281–288Determination of trace amounts of manganese in natural waters by flowinjection stopped-flow catalytic kinetic spectrophotometryLing Su a ,1,Jianguo Li a ,Hongbing Ma b ,Guanhong Tao a ,∗aDepartment of Chemistry and Chemical Engineering,Suzhou University,Suzhou 215006,Chinab School of Life Science,Suzhou University,Suzhou 215007,ChinaReceived 29March 2004;received in revised form 6July 2004;accepted 6July 2004Available online 8August 2004AbstractTrace amounts of manganese were analyzed by flow injection catalytic kinetic spectrophotometry,based upon the catalytic effects of Mn(II)on the redox reaction between sodium periodate and 4,4 -bis(dimethylamino)-diphenylmethane.The reaction could occur rapidly at room temperature in the presence of nitriloacetic acid at pH 5.4.The measurements were conducted at 602nm of an unstable intermediate blue product of the reaction,which greatly increased the sample throughput.Flow injection technique was utilized to precisely control the timing of merging and reaction of the sample and reagents.A stopped-flow approach was used to improve the sensitivity of the system.A detection limit (3σ)of 0.073␮g l −1was achieved at a sampling frequency of 60h −1.The relative standard deviation was 0.5%for the determination of 10␮g l −1Mn (n =11).The proposed method was validated by the analysis of an estuarine water reference material,SLEW-2and successfully applied to the analyses of several natural waters.©2004Elsevier B.V .All rights reserved.Keywords:Manganese;Flow injection analysis;Catalytic kinetic spectrophotometry;4,4 -Bis(dimethylamino)-diphenylmethane;Natural waters1.IntroductionSpectrophotometric methods for the determination of manganese have been critically and comprehensively re-viewed by Chiswell et al.[1].The classical photometric method for manganese determination is based on the oxi-dation of Mn(II)to permanganate and the subsequent spec-trophotometric measurement of permanganate [2].However,the method is not suitable for trace analysis due to its fairly low sensitivity.Methods based on the formation of colored complexes of Mn(II)with chromogenic reagents,such as formaldoxime,provide higher sensitivity,with a practical de-tection limit of approximately 0.05mg l −1[3].Much more sensitive methods are the so-called kinetic methods,which are based on the unique catalytic roles of Mn(II)on the re-∗Corresponding author.Fax:+8651265224783.E-mail address:taogh@ (G.Tao).1On leave from Xuzhou V ocational College of Architectural Technology,Xuzhou 221008,China.dox reactions between various organic compounds and oxi-dants [1].The methods are characterized by extremely low detection limits,generally at sub-␮g l −1levels,using simple instruments such as a spectrophotometer [4].However,manual procedures for kinetic measurements are tedious and time-consuming.Moreover,it is difficult to precisely and reproducibly control the timing of the mixing of reagents and sample,and the subsequent measurement of the reaction product,which is essential to achieve good reproducibility.These problems can be easily solved by us-ing flow injection analysis (FIA)technique [5].A number of FIA procedures have been reported for the determina-tion of trace amounts of manganese utilizing the catalytic effect of Mn(II)on the redox reactions between succinimide dioxime and dissolved oxygen [6],Malachite Green and pe-riodate [7],Trion-hydrogen peroxide [8],N ,N -dimethyl-p -phenylenediamine,m -phenylenediamine and hydrogen per-oxide [9],3,4-dihydroxybenzoic acid and hydrogen perox-ide [10],diphenylcarbazone and dissolved oxygen [11],and 2,2 -azinobis(3-ethylbenzothiazoline-6-sulfonic acid)and0003-2670/$–see front matter ©2004Elsevier B.V .All rights reserved.doi:10.1016/j.aca.2004.07.004282L.Su et al./Analytica Chimica Acta 522(2004)281–288periodate [12].In comparison with their batch counterparts,these FIA methods offer better precision and particularly higher automation and sampling throughput,which enhance their potential usefulness in routine analysis.However,fairly long reaction time is often required for these reported sys-tems in order to achieve satisfactory sensitivity.Attempts have been made to enhance the reaction rate by increasing re-action temperatures [6,7,9,10,12],which complicate the FIA setups and might degrade the system performance due to the random release of air-bubbles.In the present paper,we propose a new spectropho-tometric method for the determination of Mn(II),ex-ploiting its catalytic effect on a new reaction between 4,4 -bis(dimethylamino)-diphenylmethane (tetrabase)and sodium e is made of an intermediate unstable blue product of the reaction,which can take place rapidly at room temperature,with an objective to develop a fast and simple method.It has been reported that tetrabase can re-act with chloramines T,an oxidant,to form an indicating blue compound [13–15].The reaction occurs quickly with the catalytic effects of trace amounts of bromide [13,14]and iodide [15],by which they are determined.Flow injection technique is used to reproducibly and precisely control the merging and reaction timing of the reagents and samples.A stopped-flow approach was employed to improve the sensi-tivity of the kinetic-based system while minimizing the dis-persion and reducing the consumption of reagents.2.Experimental 2.1.InstrumentationAn SP-2000spectrophotometer (Spectrum Instruments,Shanghai,China)with an 18␮l flow cell was used astheFig.1.Schematic diagram of FI manifold for the determination of manganese(II)by catalytic kinetic spectrophotometric method.P 1,P 2,peristaltic pumps;V ,injection valve (200␮l sample loop);D,detector (λ=602nm);RC 1,RC 2,reaction coils (L 1=50cm,Ø0.5mm;L 2=20cm,Ø0.5mm);C,carrier (deionized water);R 1,mixture of NTA,NaIO 4and HAc–NaAc buffer (pH 5.4);R 2,tetrabase;S,sample;W,waste.detector.The spectrophotometer was controlled and the ab-sorbance output was recorded by a PC through its serial port.A FIAS-400(Perkin-Elmer)flow injection system was used,which was equipped with one injection valve and two peri-staltic pumps.The rotation speed of the two pumps,their stop-and-go intervals and the actuation of the valve were pro-grammed on and controlled through an IEEE port by the same computer as used for controlling the spectrophotometer.2.2.Reagents and standardsAll chemicals used were of analytical-reagent grade.All solutions were prepared with sub-boiling distilled deionized water.A manganese(II)stock solution (1000mg l −1)was pre-pared by dissolving 0.3076g of MnSO 4·H 2O in 100ml of wa-ter containing 1ml of concentrated nitric acid.Working stan-dard solutions were prepared daily by appropriate dilution of the stock solution.A tetrabase solution was prepared by dis-solving 0.5g of 4,4 -bis(dimethylamino)-diphenylmethane (Merck)in 2ml of concentrated hydrochloric acid and dilut-ing to 100ml with water.Other solutions,i.e.,0.01mol l −1nitrilotriacetic acid (NTA),0.2mol l −1sodium periodate and 2mol l −1acetate buffer solution of pH 5.4,were made by dis-solving the appropriate amounts of the respective reagents in water.Prior to use,they were diluted to the required concen-trations with water.A certified reference material of estuarine water,SLEW-2,from National Research Council of Canada (NRCC)was used to assess the accuracy of the method.2.3.Operating proceduresThe FIA procedures are schematically shown in Fig.1and Table 1.The flow rates for the reagents and sample areL.Su et al./Analytica Chimica Acta 522(2004)281–288283Table 1Operational sequences of the FIA system Step number Time (s)Pump 1Pump 2Valve position Comments 115On On Loading Sample loading 213On Off Injection Injection 330OffOffInjectionStopped flowillustrated in the figure.After the sample loop (200␮l)was filled with a sample in the loading step,which lasted 15s,the injection valve was switched to the injection position to introduce the sample into the carrier stream.The injected sample was merged in sequence with the mixture of NTA,NaIO 4and the acetate buffer,and the tetrabase solution.Re-actions took place in the reaction coils while the mixture of the sample and reagents being transported towards the detec-tor.When the reacting mixture entered the flow cell,i.e.,13s after the injection valve was switched,pump 1was stopped.The stopped-flow step lasted 30s to prolong the reaction time so as to enhance the sensitivity of measurement.The program returned to the loading step to initiate a new analysis circle.The sample residing in the flow cell was washed to waste during the new loading step.In total,60s were required to complete an analytical run.The detection wavelength was set at 602nm.2.4.Sample preparationPrior to analysis,river water samples were treated as follows:50ml of sample was evaporated to about 5ml in a 100ml beaker on a hot plate at about 90◦C.The 1ml of concentrated nitric acid and 0.5ml of H 2O 2(30%)was added and the contents were heated to dryness at 90◦C.Fig.2.Absorption spectrum obtained shortly after sample and reagents entered the flow cell and then the pumps were stopped.The sample concentration was 10.00␮g l −1Mn.Concentrations of reagents used are 10mmol l −1sodium periodate and 1.0mmol l −1of NTA in 0.2mol l −1acetate buffer (pH 5.4),and 0.1mmol l −1tetrabase.Other conditions are the same as shown in Fig.1.After cooling,the digest was diluted to 25ml with water and adjusted to pH 5with saturated ammonium carbonate.It was boiled for 5min to expel the dissolved CO 2.After cooling,the solution was transferred to a 50ml volumetric flask and diluted to the mark with water,which was ready for analysis.Bottled mineral water samples were obtained from a local convenient store and analyzed directly without pretreatment.3.Results and discussion3.1.The chromogenic and measured speciesIn the present paper,the determination of trace amounts of manganese was based on the catalytic effect of Mn(II)on the redox reaction between tetrabase and periodate.It was observed that the color development process took place im-mediately after the reagents and sample were mixed.The absorption spectrum in Fig.2indicates that a blue product with a maximum absorbance at 602nm was formed.How-ever,the blue color faded gradually and the solution became colorless,as shown in Fig.3.The molar absorptivity of the species could reach a maximum of 2.23×106l mol −1cm −1.Unfortunately,because the colored product was not stable for any period of time,it was very difficult to utilize this chro-mogenic reaction for quantitative analysis of manganese if conventional manual operation was used.However,the ab-sorbance of the product could reach to the maximum rapidly at room temperature.This could be exploited to develop a fast analytical method by measuring the absorbance of the transient product if the measurements could be conducted at a preset timing repeatedly with satisfactory precision.In this284L.Su et al./Analytica Chimica Acta 522(2004)281–288Fig.3.Absorbance vs.stopped-flow time measuring at 602nm,monitoring the color development of the transient blue product from 15.00␮g l −1Mn.Shortly after the sample and reagents entered the flow cell of the spectrophotometer,the FIA pumps were stopped to record the absorbance changes.Other conditions are the same as shown in Figs.1and 2.work,the FIA technique was used to reproducibly control the timing of the reactions and measurements.In the present work,no attempt was made to study the mechanism of the chromogenic reaction and identify the color-forming species in detail.However,according to the previously reported manganese-catalyzed reactions [1],the chromogenic process in this work was probably also started from the oxidation of Mn(II)to Mn(III)or (IV)by sodium pe-riodate.Subsequently,the oxidized manganese species was thought to react with tetrabase to produce the blue-colored species.The reduced Mn(II)was oxidized again to higher valent manganese by sodium periodate.Manganese acted as a catalyst and the catalytic reaction could be accelerated strongly by the presence of nitrilotriacetic acid,a so-called activator [1].3.2.Optimization of FIA manifold parametersThe FIA manifold parameters were optimized with the objective of achieving maximum sensitivity while not sacri-ficing the sample throughput.The mixing and reaction coils were made of the narrow-bored tubing of 0.5mm i.d.to min-imize the dispersion.A short reaction coil of 25cm was used and the stopped-flow technique was employed to ensure the adequate mixing of sample and reagents and the necessary reaction time.The stopped-flow technique could effectively decrease the dispersion,increase the sensitivity and reduce the consumption of reagents [5].In the present study,the ab-sorbance reached maximum 30s after the reacting mixture entered the flow cell.Thus a stopped-flow period of 30s was chosen.The flow rates of the carrier stream and reagents usually exert an important influence on the sensitivity in the con-ventional FIA systems.However,their influence became lesssignificant in the present study because the stopped-flow tech-nique and relatively short reaction coils were used.Taking into account the sampling frequency,relatively high flow rates were employed,i.e.1.8,0.9and 0.9ml min −1for the carrier,the mixed reactants and tetrabase,respectively.The flow rate ratios of the carrier and the reagents were set relatively high so as to reduce the dilution of sample when the carrier stream merged with the reagents.The effect of sample volume on the sensitivity was exam-ined by varying it from 100to 500␮l.The absorbance in-creased sharply with increasing volumes from 100to 200␮l,whereas only a slight increase in the peak height was ob-served from 200to 500␮l.Because signal tailing could be-come more serious and thus a longer washing period was required if larger sample volumes were used,a sample vol-ume of 200␮l was employed in this study.The optimized values of the FIA manifold parameters are given in Fig.1.3.3.Optimization of reaction conditionsThe effect of periodate concentrations on the sensitivity of the method was studied over the range of 2.5–20mmol l −1.The results are shown in Fig.4.The peak heights increased gradually with increase in periodate concentration.Although better sensitivities were obtained with higher periodate con-centrations,the baseline absorbance became significant when concentrations of periodate were above 20mmol l −1.A base-line absorbance of 0.02against deionized water was observed when 20mmol l −1periodate was employed.This was be-cause periodate at higher concentrations could oxidize tetra-base directly even without manganese as a catalyst.There-fore,10mmol l −1of sodium periodate was chosen in this study.L.Su et al./Analytica Chimica Acta 522(2004)281–288285Fig.4.Effect of NaIO 4concentration on the catalyzed (1)and uncatalyzed (2)reactions.Other conditions are the same as shown in Figs.1and 2.Fig.5shows the effect of tetrabase concentration on the sensitivity.Increasing the concentration of tetrabase resulted in a rapid increase in sensitivity.The response remained al-most constant beyond 0.1mmol l −1.As also shown in Fig.5,the uncatalyzed reaction become noticeable when higher con-centrations of tetrabase were used.Hence 0.1mmol l −1of tetrabase was used in subsequent experiments.As mentioned before,a metal-catalyzed reaction can sometimes be accelerated by the presence of an activator [1],which often functions by forming a complex with the cata-lyst.In this study,the addition of nitrilotriacetic acid signifi-cantly enhanced the sensitivity,as shown in Fig.6.The peak height increases almost linearly with increasing NTAcon-Fig.5.Effect of tetrabase concentration on the catalyzed (1)and uncatalyzed (2)reactions.Other conditions are the same as shown in Figs.1and 2.centrations from 0to 0.2mmol l −1.It reaches a maximum at 1.0mmol l −1whilst decreases gradually with increasing concentrations from 1.0mmol l −1.The effects of NTA con-centrations on the uncatalyzed reaction were insignificant.Therefore,1.0mmol l −1of NTA was used in this study.Studies on the optimum pH range,by using acetate buffer solutions,yielded the results shown in Fig.7.Optimum re-sponse was obtained in the range of pH 5.2–5.5while the uncatalyzed reaction was negligible in the pH range studied.Thus,a buffer (0.2mol l −1NaAc)of pH 5.4was chosen for further studies.In order to study the effect of reaction temperature,reac-tion coils were immersed in a temperature-controllable water286L.Su et al./Analytica Chimica Acta 522(2004)281–288Fig.6.Effect of NTA concentration on the catalyzed (1)and uncatalyzed (2)reactions.Other conditions are the same as shown in Figs.1and 2.bath.The peak height for a 10␮g l −1manganese sample as well as the baseline increase by ca.3%with increase in tem-perature from 15to 45◦C.This corresponded to a less than 0.1%deviation for a 1◦C fluctuation.As the room tempera-ture could be controlled readily within ±5◦C during a 1-day run,room temperature was thus used for convenience.3.4.Interference studiesThe effects of potential interferences in natural waters in the determination of manganese by the proposed system were studied.The results shown in Table 2indicate the gen-eral freedom from interferences.However,somereductive Fig.7.Effect of pH on the catalyzed (1)and uncatalyzed (2)reactions.Other conditions are the same as shown in Figs.1and 2.ions,i.e.,NO 2−(>20␮g l −1),S 2−(>50␮g l −1),and Fe 2+(>100␮g l −1)could yield adverse effects on the readout.It is perceptible that these reductive ions may interfere the redox reaction,on which the measurement is based,although they were rarely mentioned and discussed in the previous catalytic kinetic systems.In natural waters in the local area,their con-centrations generally range from 20to 200,10to 100,and 5to 50␮g l −1for NO 2−,S 2−,and Fe 2+,respectively [16].In order to eliminate their potential interference,water samples were treated with strong oxidizing agents,i.e.,nitric acid and H 2O 2,prior to analysis as described in Section 2.Therefore,no attempt was made to individually avoid the adverse effects from each of the above-mentioned ions.L.Su et al./Analytica Chimica Acta 522(2004)281–288287Fig.8.Recorded tracings for a series of 0–20.00␮g l −1Mn standard solutions,precision test (10.00␮g l −1Mn)and analyses of two samples using optimized conditions.Table 2Effect of potential interferents on the recovery of manganese (10␮g l −1)InterferentsConcentration (mg l −1)Recovery (%)K +,Na 2+,Cl −,NO 3−,SO 42−,NH 4+10097–103Mg 2+,Ni 2+,Ac −,tartrate,citrate 5098–103Br −,Zn 2+,Ba 2+1097–103I −,F −,Ca 2+,Al 3+,Cd 2+597–102Fe 3+,Pb 2+398Cu 2+,Ag +197Co 2+0.197Fe 2+0.2920.196S 2−0.1860.0595NO 2−0.05880.0296All results are averages of three measurements with 1–2%RSD.3.5.Analytical performance and its use for practical assaysThe system was calibrated with a series of Mn(II)stan-dards having concentrations up to 20␮g l −1.Calibration graphs obeyed the equation A =0.0409C Mn −0.0025(cor-Table 3Analytical results of water samples and recovery tests by proposed method Samples Determined (␮g l −1)Recovery (%)CommentsMineral water 1.66±0.2298±2Analyzed without pretreatmentRiver water 1 6.71±0.0798±2Filtered through 0.45␮m membrane River water 268.8±2.1102±210-Fold dilution,without filtration River water 3182.0±4.9104±320-Fold dilution,without filtration,sampled immediately after rainThe 10␮g l −1Mn(II)was spiked for recovery tests.The measurements were run in triplicate.relation coefficient r 2=0.999),where A is the peak-height absorbance and C Mn the Mn(II)concentration in ␮g l −1.The detection limit was 0.070␮g l −1,based on 3σof a blank so-lution (n =11).The relative standard deviation of the signals at a level of 10␮g l −1Mn(II)was 0.5%(n =11).The sam-ple throughput was 60h −1,i.e.,about 20samples/h measured in triplicate.The range of the detection limit,precision,and sample throughput in some of the previously reported FIA systems [6,9-12]based on the catalytic kinetic principle is 0.020–0.20␮g l −1,1–3%RSD and 8–45h −1,respectively.This shows that the present system is comparable to or slightly better than the previous systems,in which the catalytic reac-tion was enhanced at elevated temperatures.A typical recording of the analyses of a standard series and samples is shown in Fig.8.The practical feasibility of the proposed system was tested on several water samples.Each sample was measured and then spiked with Mn(II)standard solution (10␮g l −1).The results are shown in Table 3and recoveries of the spiked samples are generally satisfactory.Admittedly,the procedure of sample pretreatment used in the present system was time-consuming and complicated.How-ever,it could release Mn(II)ions from all the Mn-containing species to Mn(II)as only Mn(II)ions could be active catalyti-288L.Su et al./Analytica Chimica Acta522(2004)281–288cally.Moreover,the oxidizing agents used in the pretreatment could also eliminate effectively the interference from some reductive ions,such as NO2−,S2−,and Fe2+.The accuracy of the proposed system was evaluated by an-alyzing an NRCC certified water reference material,SLEW-2.A value of16.5±0.25␮g l−1(n=3)was obtained,which was in good agreement with the certified value of17.1±1.1␮g l−1.4.ConclusionThe proposed FIA spectrophotometric system was used successfully for the determination of manganese in natural waters.Taking advantage of the reproducible timing in the FIA system,the unstable intermediate blue product of the manganese-catalyzed reaction between tetrabase and perio-date could be utilized for the quantitative analysis of trace amounts of manganese at room temperature.This greatly improved the sampling frequency and simplified the system configuration.In addition,stopped-flow technique was used to improve the sensitivity of the kinetic-based method.These made the system promising to be used in routine and on-line analysis applications.References[1]B.Chiswell,G.Rauchle,M.Pascoe,Talanta37(1990)237.[2]Z.Marczenko,Separation and spectrophotometric determination ofelements,Horwood,Chichester,1986.[3]J.-F.Liu,Y.-D.Feng,G.-B.Jiang,J.AOAC Int.84(2001)1179.[4]Q.Wei,L.Yan,G.Chang,Q.Ou,Talanta59(2003)253.[5]J.Ruzicka,E.H.Hansen,Flow Injection Analysis,2nd ed.,Wiley,New York,1988.[6]S.Maspoch,M.Blanco,V.Cerda,Analyst111(1986)69.[7]C.Zhang,S.Kawakubo,T.Fukasawa,Anal.Chim.Acta217(1989)23.[8]J.Yang,C.Ma,S.Zhang,Z.Shen,Anal.Chim.Acta235(1990)323.[9]S.Nakano,M.Nozawa,M.Yanagawa,Anal.Chim.Acta261(1992)183.[10]T.Yamane,K.Koshino,Talanta43(1996)963.[11]N.Maniasso, E.A.G.Zaggatto,Anal.Chim.Acta366(1998)87.[12]S.Nakano,K.Tanaka,R.Oki,T.Kawashima,Talanta49(1999)1077.[13]T.Tomiyasu,Y.Taga,H.Sakamoto,N.Yonehara,Anal.Chim.Acta319(1996)199.[14]N.Yonehara,S.Chaen,T.Tomiyasu,H.Sakamoto,Anal.Sci.15(1999)277.[15]B.Rezaei,Anal.Lett.33(2000)2553.[16]J.Liu,H.Lin,Chin.Environ.Monit.18(2)(2002)33.。

翻译——精选推荐

翻译——精选推荐

The significance of froth stability in mineralflotation — A review中文翻译******班级:化工08-1班学号:**********The significance of froth stability in mineral flotation — A review矿物浮选中泡沫稳定性的意义-评论Abstract摘要This paper presents a review of the published articles related to froth stability and its importance in mineral flotation. Froth structure and froth stability are known to play a significant role in determining the mineral grade and recovery achieved in a flotation operation. Froth stability is depending not only on the type and concentration of the frother but also on the nature and amount of the particles present in the system. To date, there is no specific criterion to quantify froth stability although a number of parameters are used as indicators of froth stability. Linking froth stability to the metallurgical performance is also challenged.文章综述了已发表文章涉及矿物浮选过程中泡沫稳定性及其重要性的相关观点。

211188542_创伤弧菌生物被膜形成能力及影响因素的研究

211188542_创伤弧菌生物被膜形成能力及影响因素的研究

高梦迪,宁喜斌. 创伤弧菌生物被膜形成能力及影响因素的研究[J]. 食品工业科技,2023,44(10):138−144. doi:10.13386/j.issn1002-0306.2022080256GAO Mengdi, NING Xibin. Biofilm Forming Ability and Influencing Factors of Vibrio vulnificus [J]. Science and Technology of Food Industry, 2023, 44(10): 138−144. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080256· 生物工程 ·创伤弧菌生物被膜形成能力及影响因素的研究高梦迪1,宁喜斌1,2,3,*(1.上海海洋大学食品学院,上海 201306;2.农业部水产品贮藏保鲜质量安全风险评估试验室(上海),上海 201306;3.国家淡水水产品加工技术研发分中心(上海),上海 201306)摘 要:研究26株创伤弧菌(Vibrio vulnificu s ,Vv )产生物被膜情况及影响生物被膜形成的因素,为有效控制创伤弧菌形成生物被膜提供理论依据。

本研究采用刚果红平板法、改良试管法及改良微孔板法分析25株创伤弧菌分离株及1株标准菌株形成生物被膜的能力,从中选出一株产膜能力最强的菌株,并研究不同初始菌浓度、温度及时间、pH 、NaCl 浓度、金属阳离子以及接触材料对其生物被膜形成的影响。

结果显示,所选菌株中具有生物被膜形成能力的有25株(96.15%)。

其中菌株VvK 产膜能力最强,在25 ℃条件下,初始菌浓度为108 CFU/mL ,含3% NaCl 、pH8~9培养24 h 时,生物被膜形成量最大。

而添加一定浓度的金属阳离子(Cu 2+、Mn 2+、Ca 2+、Mg 2+)后,生物被膜的形成受到不同程度的抑制,其抑制能力依次降低。

泥沙分散剂sdp90使用事项

泥沙分散剂sdp90使用事项

泥沙分散剂sdp90使用事项英文回答:SDP90 is a type of sediment dispersant that is commonly used in various industries, such as oil and gas, mining, and construction. It is designed to effectively break down and disperse sediments, such as sand and clay, in order to improve fluid flow and prevent clogging or blockage in pipelines, tanks, and other equipment.One important consideration when using SDP90 is the dosage. The appropriate dosage of SDP90 depends on various factors, including the type and concentration of sediments, the desired level of dispersal, and the specific application. It is important to carefully follow the manufacturer's instructions and guidelines to ensure the correct dosage is used.Another important aspect to consider is the application method. SDP90 can be applied in different ways, such asthrough direct injection into the sediment or by mixing it with the fluid or water. The choice of application method depends on the specific situation and the equipment available. It is important to ensure proper mixing and distribution of the dispersant to achieve effective sediment dispersal.Furthermore, it is crucial to consider the environmental impact of using SDP90. While SDP90 is designed to be environmentally friendly and biodegradable, it is still important to minimize its release into the environment. Proper containment and disposal measures should be implemented to prevent any potential harm to aquatic life or ecosystems.In addition, it is important to regularly monitor and assess the effectiveness of SDP90 in sediment dispersal. This can be done through sediment sampling and analysis to determine the level of dispersal achieved. Adjustments to the dosage or application method may be necessary based on the results of these assessments.Overall, the use of SDP90 as a sediment dispersant requires careful consideration of dosage, application method, environmental impact, and regular monitoring. By following these guidelines and taking appropriate measures, SDP90 can effectively disperse sediments and improve fluid flow in various industrial applications.中文回答:泥沙分散剂SDP90是一种常用于各个行业的分散剂,包括石油和天然气、矿业和建筑等行业。

219401802_香料对腊肉品质的影响

219401802_香料对腊肉品质的影响

冉佩灵,黄业传,彭春雷,等. 香料对腊肉品质的影响[J]. 食品工业科技,2023,44(13):94−101. doi: 10.13386/j.issn1002-0306.2022100003RAN Peiling, HUANG Yechuan, PENG Chunlei, et al. Effect of Spices on the Quality of Chinese Bacon[J]. Science and Technology of Food Industry, 2023, 44(13): 94−101. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100003· 研究与探讨 ·香料对腊肉品质的影响冉佩灵1,2,黄业传1, *,彭春雷1,许本波3,张克媛1(1.荆楚理工学院生物工程学院,湖北荆门 448000;2.西南科技大学生命科学与工程学院,四川绵阳 621000;3.长江大学生命科学学院,湖北荆州 434023)摘 要:为提高腊肉品质,在腌制过程中分别添加0.6%、1.2%和2.4%的香料提取物(包括花椒、八角、香叶、茴香、肉桂和丁香)。

熏制时,将提取后的香辛料残渣按相应的比例加入到熏烟材料中。

成品真空包装后,分别在冷藏1 d 和120 d 后测定样品的理化指标、脂肪和蛋白质氧化、亚硝酸盐残留量、色泽、质构、微生物含量和感官品质等。

结果表明,添加0.6%的香料对腊肉品质影响不大。

当香料添加量增加到1.2%和2.4%时,能显著抑制脂肪氧化和微生物生长,更好地保持腊肉在冷藏过程中的质地和弹性。

然而,2.4%的香料添加量对腊肉颜色、感官质量和蛋白质氧化有轻微的负面影响。

因此,在腊肉加工过程中,加入适当香辛料能改善腊肉品质,而加入1.2%的香料对提高腊肉品质的效果最好。

关键词:烟熏腊肉,香料,腌制,熏制,低盐腊肉本文网刊:中图分类号:TS251.5 文献标识码:A 文章编号:1002−0306(2023)13−0094−08DOI: 10.13386/j.issn1002-0306.2022100003Effect of Spices on the Quality of Chinese BaconRAN Peiling 1,2,HUANG Yechuan 1, *,PENG Chunlei 1,XU Benbo 3,ZHANG Keyuan 1(1.College of Biological Engineering, Jingchu University of Technology, Jingmen 448000, China ;2.College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China ;3.College of Life Science, Yangtze University, Jingzhou 434023, China )Abstract :In order to improve the quality of Chinese traditional smoked bacon, the 0.6%, 1.2% and 2.4% of spice extracts (including zanthoxylum bungeanum, star anise, bay leave, fennel, cinnamon and clove) were added in the processing of pickling. When being smoked, the corresponding proportion of spice residues after extract was added into the fumigation material. Following vacuum packing, the physicochemical, lipid and protein oxidation, nitrite residue, instrumental color,texture, microbial content, and sensory quality of the samples were respectively determined after 1 and 120 days of refrigeration. The results showed that the addition of 0.6% spice had little effect on bacon quality. The amount of addition amount increased to 1.2% and 2.4%, it could significantly inhibit lipid oxidation and microbial growth, and better maintained the soft texture and good elasticity of bacon during refrigeration. However, the addition of 2.4% had a little negative effect on instrumental color, sensory quality, and protein oxidation of products. Therefore, in the process of bacon processing, adding appropriate spices can improve the quality of bacon, and adding 1.2% spices has the best effect on improving the quality of bacon.Key words :smoke-cured bacon ;spice ;pickling ;smoking ;low salt bacon腊肉是一种历史悠久的中国传统干腌肉制品[1],它是中国传统饮食文化的重要组成部分,主要在四川、广东和湖南等地生产[2]。

土壤环境中粘土的分散凝聚行为及其影响因素

土壤环境中粘土的分散凝聚行为及其影响因素
表面活性剂存在下粘土的分散凝聚实验结果表明:1) 3 种表面活 性剂在土壤中的吸附均在各自 CMC(Critical micelle concentration, 临界胶束浓度)附近达到饱和,饱和吸附量大小顺序为 CTAB(十六 烷基三甲基溴化铵)>> A12E9(十二烷基醇聚氧乙烯醚) > SDBS(十 二烷基苯磺酸钠)。3 种表面活性剂的吸附机理为:首先分别通过静 电引力(CTAB)、氢键(A12E9)、疏水和静电作用(SDBS)在土壤粒子上 形成表面半胶束(单层吸附),随着浓度的增加,均可进一步通过疏水 作用在土壤粒子上形成表面亲水性胶束(双层吸附)。3 种表面活性剂 在吸附机理上的差别源于其带电及两亲基团的不同。2)阳离子表面活 性剂 CTAB 在较低浓度时形成疏水性粒间表面胶束,可使粘粒凝聚, 而在较高浓度时形成亲水性粒内表面胶束,可使粘粒分散。3) 非离 子表面活性剂 A12E9 在粘粒上形成表面胶束,聚氧乙烯链的强烈水化
The results from the experiment of clay dispersion-flocculation with polymers indicated that, 1) Clay particles were flocculated at lower concentration of cationic polymers PAM (Polyacrylamide) due to the bridging action among particles, while dispersed at higher concentration due to the electrostatic repulsion. To cationic polymers, the more intense ionic character, the more intense flocculation it would be to clay particles. 2) Both of anionic polymer AS(strong anion) and AW(week anion) could flocculate clay particles, but AS was better. Anionic polymer of lower concentration had no influence to kaolinite and illite, but it of higher concentration could disperse them better. 3) The higher the molecular weight of litmusless polymer, the better it could flocculate

超高分子质量聚乙烯纤维分散染料染色性能

超高分子质量聚乙烯纤维分散染料染色性能

超高分子质量聚乙烯纤维分散染料染色性能王晓春;闫金龙;张丽平;赵国樑;张健飞【摘要】为解决染料难以对超高分子质量聚乙烯(UHMWPE)纤维上染的问题,筛选具有超高疏水、良好结构平面性的甲基黄分散染料对UHMWPE纤维进行染色,并探讨其染色性能.讨论了染色温度、时间、分散剂(AEO?9)用量及pH值等因素的影响,测定了甲基黄染料对UHMWPE纤维的染色动力学与热力学行为.结果表明,甲基黄染料对UHMWPE纤维具有良好的染色性能,其优化工艺为:染色温度130℃,分散剂用量0.3%,时间60 min,pH值5,此时染色所得纤维各项色牢度均达到3~4级以上;通过拟合计算甲基黄染料对UHMWPE纤维吸附等温线类型为Nernst型吸附,半染时间为24.34 min,130℃时的扩散系数为5.21×10-17 m2/s,标准亲和力约为5.56 kJ/mol.%In order to solve dyeing problem of ultrahigh molecular weight polyethylene ( UHMWPE ) fibers, the dyeing properties of methyl yellow disperse dye with high planarity and super hydrophobic structure were studied. The effects of dyeing parameters such as temperature, time, pH value and the dosage of AEO-9 on the properties of the dyed UHMWPE fiber were investigated. Furthermore, The dyeing kinetics and thermodynamics of methyl yellow dye on UHMWPE fiber were studied. The results show that methyl yellow dye has good dyeing performance on UHMWPE fiber. The optimization process is achieved at the dispersant concentration of 0. 3%, 130 ℃ for 60 min, pH=5,and the rating of color fastness of dyed fibers are higher than 3-4. By simulating and calculating the experimental data, it is indicated that the adsorption process of methyl yellow dye onto UHMWPE fiber fits with the Nernst distributionmechanism, the half-staining time is 24. 34 min, the diffusion coefficiencyat 130 ℃ is 5. 21 × 10 -17 m2/s, and the standard affinity is about 5. 56kJ/mol.【期刊名称】《纺织学报》【年(卷),期】2017(038)011【总页数】7页(P84-90)【关键词】超高分子质量聚乙烯纤维;分散染料;热力学;染色;动力学【作者】王晓春;闫金龙;张丽平;赵国樑;张健飞【作者单位】天津工业大学纺织学院,天津 300387;北京服装学院材料科学与工程学院,北京 100029;北京服装学院材料科学与工程学院,北京 100029;北京服装学院材料科学与工程学院,北京 100029;北京服装学院材料科学与工程学院,北京100029;天津工业大学纺织学院,天津 300387【正文语种】中文【中图分类】TQ342.61超高分子质量聚乙烯(UHMWPE)纤维以其高强度、高模量、低密度、耐磨擦、耐切割等优良特性,在军工国防、航空航海、民用等诸多领域发挥着重要作用,各行业对有色UHMWPE纤维的需求也日趋旺盛。

矿物加工工程专业英语词汇

矿物加工工程专业英语词汇

矿物加工工程专业英语词汇专业英语词汇矿物加工工艺学(浮选部分)英文词汇 floatation 浮选 electrochemical action 电化学作用 froth flotation 泡沫浮选 pyrite 黄铁矿direct flotation 正浮选 calcite 方解石reverse flotation 反浮选 alkyl radical 烃基含氧酸 fineness of grinding 磨矿细度 organic amine 有机胺类 fractionation 分级 carboxylate surfactant 羧酸盐 mineral wettability 矿物润湿性 kerosene 煤油mineral flotability 矿物的可浮性 amphoteric collector 两性两捕收剂equilibrium contact angle 平衡接触角 alkyl radical sulfonate 烃基磺酸盐three phase interface 三相界面 complex 络合物 hydrophobicity of mineral 矿物的疏水性 pH modifying agent pH调整剂 hydrophilicity of mineral 矿物的亲水性 long-chain molecule 长链分子 foam adhesion泡沫附着chalcopyrite 黄铜矿 ionic lattice 离子晶格 galena 方铅矿covalence lattice共价晶格 blende 闪锌矿surface inhomogeneity 表面的不均匀性 oxidized ore 氧化矿 oxidation and dissolution 氧化与溶解 flocculant 絮凝剂 oxidizing agent 氧化剂 non-hydronium flocculant 非离子型絮凝剂 reduction agent 还原剂 desorption 解吸 surface modification of mineral 矿物的表面改性 air bladder 气泡electric double layer 双电层 solubility 溶解度 ionization 电离 specific surface area 比表面积 adsorption 吸附 mineral resources 矿源electrokinetic potential电动电位 three phase air bladder 三相气泡 point of zero charge 零电点 ore magma electric potential 矿浆电位 isoelectricpoint 等电点 mixed potential model 混合电位模型 collecting agent 捕收剂freedom hydrocarbon diversification 自由烃变化 semi micelle adsorption 半胶束吸附 electrostatic pull 静电引力 exchange adsorption 交换吸附intermolecular force 分子间力 competitive adsorption 竞争吸附 goethite 针铁矿 specific adsorption 特性吸附 semi micelle adsorption 半胶束吸附modifying agent 调整剂 concentration of solution 溶液浓度 depressant 抑制剂 flotation machine浮选机 activating agent 活化剂 oxygenation 充气作用 foaming agent 起泡剂 recovery 回收率 hydrophilic group 亲水基团concentrate grade 精矿品位 liberation degree 解离度 handling capacity 处理能力 polar group 极性基团 air bladder collision气泡碰撞 nonpolar group 非极性基团 flotation column 浮选柱 sulphide ore 硫化矿物 ore concentration dressing 富集作用 oxidized mineral 氧化矿物 floatation process 浮选工艺 xanthate 黄药 floatation speed 浮选速率 hydrolysis 水解flotation circuit 浮选流程 medicamentous selectivity药剂的选择性granularity 粒度 catchment action捕收作用 degree of fineness 细度共 16 页第 1 页专业英语词汇pulp density 矿浆浓度 flotation principle flow浮选原则流程 water quality 水质 rate of divergence 分散程度 backwater 回水 dispersant 分散剂 middlings 中矿 semiconductivity of mineral矿物半导性 run of mine 原矿 reagent removal agent 脱药剂 gangue 脉矿矿物加工工艺学(重选部分)英文词汇gravity concentration 重力选矿 Cassiterite 锡石Abkhazite 透闪石棉 Dilated 松散床层Amiantus 石棉 dimensionless parameter 无因次参数 acceptanceoperation 矿石预选 duplex table 双层摇床 Acclivity 斜面 diaphragm jig 隔膜跳汰机 airborne dust 大气浮尘 dwindles out 尖灭 air conveying 风力输送film concentration 流膜选矿 amplitude of vibration 振幅 final velocity 末速度 ancillary mineral 伴生矿物 free settling particle 自由沉降颗粒apparent viscosity 视粘度 free settling ratio 自由沉降比 artificial bedding 人工床层 gravity concentrate 重选精矿 attle 废石 gravitytailings 重选尾矿 average grain diameter 平均粒径 galena 方铅矿axial motion 轴向运动 iron ore pellet 铁矿球团 backwash water 冲洗水jig cycle 跳汰周期 backwater筛下水 heavy liquid 重液barite 菱镁蛇纹岩 heavy-media separator 重介质分选 barren rock 脉石heavy-media suspension 重介质悬浮液 beach ore 砂矿 hydraulic analysis 水力分析 bed separation 分层 high-weir spiral classifier 高堰式螺旋分级机bevel angle 倾斜角 hindered settling 干涉沉降 buddle 淘洗盘 HMS-flotation method 重介质浮选联合分选 buddle jig 动筛跳汰机 Hydrocyclone 水力旋流器 buoyancy 浮力 Laundering 溜槽选矿 buoyant weight 悬浮重量low- weir spiral classier 低堰式螺旋分级机 Caplastometer 粘度计 medium recovery screen 介质回收筛 Centipoises 厘泊 meerschaum 海泡石Centrifugal field 离心力场 menachanite 钛铁砂 Centrifugal jig 离心跳汰机outer vortex 外螺旋线 Circular 圆形跳汰机 particle diameter 颗粒直径Centrifuge 离心机 particle shape 颗粒形状 Classification efficiency 分级效率 particle size accumulation 粒度累积曲线 Classifier 分级机 partition size 分离粒度 Classifier overflow 分级机溢流 jigging 跳汰选矿Classifier sand 分级机返砂 regenerated dense medium 重介质再生 Close sizing 窄级分级 sand table 矿砂摇床 Claster of particles 颗粒群 scalping screen 脱介筛 Coarse feed 粗粒给料 setting vessel 沉降速度 Cyclone 水力旋流器 shaking table 摇床共 16 页第 2 页专业英语词汇sieve compartment 筛网室 submerged spiral type classifler 沉没式分级机 simplex spiral 单螺旋分级机 suction bailer 吸入作用 sinusoidal wave 单层摇床 table 摇床sizing analysis 粒度分析 table riffle 摇床格条silica 硅石 table circuit 摇床流程spherical particle 球形颗粒 table tailing 摇床尾矿spheroid 似球形 table flotation 台浮spindle 针状形 talcum 滑石spiral chute 螺旋溜槽 taraspite 白云石spiral concentrator 螺旋选矿机 wedge angle 锥角stiction 静摩擦 (100) weight 重力矿物加工工艺学(磁电选矿部分)英文词汇Mineral Processing Technology 矿物加工Dry magnetic separation machine 干式磁选机工艺学 Wet feebleness magnetic separation machine 湿Principle of magnetism process 磁选原式弱磁场磁选机理 High magnetic separation machine 强磁场磁选机 Magnetic force 磁力High grads magnetic sparation machine 高梯度磁Ratio magnetic force 比磁力选机Compete force 竞争力 Supercondduct magnetic separation 超导电选Mineral magnetism 矿物的磁性 Concentrator 选矿机 Atomic magnetism moment 原子磁矩 Electrity process 电选 Molecular magnetism moment 分子磁矩Electrity concentrator 电选机 Magnetization & magnetic field 磁化和磁化磁Static separation 静电选矿场 Air-ionization separation 电晕分选Magnetization intensity 磁化强度 Friction electric separation 摩擦电选Ratio susceptibility 比磁化系数 Magnetic process practice 磁选实践Diamagnetism 逆磁性 Nonmetal ore 非金属矿 Paramagnetism 顺磁性 Diamond process 金刚石选矿 Ferromagnetism 铁磁性 Heavy medium reclaim 重介质回收Magnetic domain 磁畴 Primary concentrate 粗精矿 Revers ferromagnetism 反铁磁性 Graphite gangue 石墨尾矿 Subferromagnetism 亚铁磁性 Kaolin magnetic process 高岭土磁选 Coercive force 矫顽力 Block metal ore 黑色金属矿石 Remanence 剩磁 Manganese ore magnetic process 锰矿石磁选Magnetization roasting 磁化焙烧 Coloured metal & rare metal 有色金属和稀有金Deoxidization roasting 还原焙烧属Midlle roasting 中性焙烧 Ilmenite 钛铁矿Oxidation roasting 氧化焙烧 Rutile 金红石Siderite 菱铁矿 Zircon 锆英石Hematite 赤铁矿 Electric process practice 电选实践 Magnetite 磁铁矿Tungstate 钨酸盐Unhydrophite magnetization 疏水磁化 cassiterite 锡石Magnetic process equipment 磁选设备 hematite 赤铁矿Feebleness magnetic separation machine 弱磁场磁gangue 脉石,废石,矸石选机 magnet 磁铁,磁体,磁石共 16 页第 3 页专业英语词汇conductor mineral 导体矿物 conduct 传导 silicate 硅酸盐 induce 诱导,感应,归纳 diatomite 硅藻土 astrict 束缚 hysteresis 磁滞现象 charge 电荷magnetic core . 磁铁芯 electric field .电场 winding 绕组,线圈interfacial 界面的,面间的 medium 介质 magnetism 吸引力 electrophoresis 电泳 electrode 电极,电焊条,电极 screening 筛分 Strontium & iron oxid 锶铁氧体 magnetic field 磁场 Periodic magnetic field 交变磁场 flux 磁通量Pulsant magnetic field 脉动磁场 ferromagnet 铁磁物质 Saturation 饱和ferromagnetism 铁磁性 stainless steel material 不锈钢材料 reunite 团聚polar distance 极距 magnetic system 磁系 mica 云母magnetic agitate 磁搅动 quarte 石英permanent magnet 永久磁铁 stimulate magnetism 激磁 solenoid magnet螺管式磁铁 magnetism circuit 磁路 pyrite 黄铁矿,硫铁矿 magnetic line of force 磁力线 limonite 褐铁矿 commutate quality 整流性 reluctivity 磁阻率Flatation reagent professional wordsAbsorption 吸收 Acylamide 酰胺 Absorption band 吸收光谱带 Addition加添Abstract 抽出,提取 Adhere 粘附,附着 Abundance 丰富,丰度 Adhesion coefficient粘着系数 Accelerant 促进剂 Adhesive粘合剂 Acceptance 验收,接收 Adhesive tension胶结张力界面吸引力 Accumulate 积累,聚集 Adion 吸附离子 Accuracy 准确度 Adsorbate 吸附物 Acctate 醋酸盐 Adsorbent 吸附剂Acctamide 乙酰胺 Adsorption isotherm吸附等温线 Acid 酸,酸的 Adsorption layer吸附层 Acid anion 酸性阴离子 Aero 美国氰胺公司的药剂品牌号Acidation 酸化 Aerofloat 美国氰胺公司的黑药牌号 Acid depression 加酸抑制Aerofloc 絮凝剂牌号 Acid hydrolysis 加酸水解 Aerofroth 起泡剂牌号Acintol 妥尔油制品 Aeromine 阳离子型表面活性剂 Acrylic amide丙烯酰胺Aero promoter促进剂牌号 Activate 活化 Aerosol 润湿剂牌号 Activated adsorption活性吸附 Aerosurf MG-98A 醚胺醋酸盐 Activated molecule 活化分子 Agglomerant 团聚的凝结剂 Activated effect 活化作用 Agglomeration flotation团聚浮选 Activator 活化剂,活性剂 Aggregate of large molecules 大分子团 Acto 精制石油磺酸钠 Aiv-avid亲气的共 16 页第 4 页专业英语词汇Aiv-mineral adhesion空气-矿物粘附 Affached bubble 粘附气泡 Alamine胺的牌号 Bagolax 甲基纤维素 Alcohol醇 Barrett 煤焦杂酚油牌号 Alcohol frother 醇类起泡剂 Benzyl alcohol 苯甲醇 Aliphat- 妥尔油脂肪酸牌号Bromoform 溴仿,三溴甲烷 Aliphatic alcohol 脂肪醇 Bubble 气泡,泡沫Aliphatic acid 脂肪酸 Bubbler 气泡器 Aliphatic amine 脂肪胺 Butyl 丁基Aliphatic dydrocarbon脂肪烃 Butyl aerofoat丁基黑药 Aliquat苯胺盐牌号 Calcium oxide 氧化钙 Alkali 碱 Capillary 毛细管,毛细作用 Alkaliuity 碱度,碱性 Carbitol 卡必醇 Alkane 链烷,烷烃 Carbohydrate 碳水化合物Alkoxy- 烷氧基 Cation 阳离子 Alkoxyamine 烷氧胺 Cationic collector 阳离子捕收 Alkoxy benzene烷氧基苯 Cellulosice CMC 羧甲基纤维素 Alkyl- 烷基Charge 电荷,充电 Alkyl alcohol sulfate 烷基醇硫酸盐 Chelate 螯合物Alkylamine 脂肪胺 Chelate effect 螯合效应 Alkylarsonic acid 烷基砷酸Chelation group 螯合基团 Alkylarylsulfonate 烷基芳基磺酸盐 Chemical adsorption 化学吸附 Aldyl hydroxamic acid 烷基羟污酸 Chemical oreprocessing 化学选矿 Alkyl phosphate 烷基磷酸盐 Chloro acetic acid 氯乙酸Alkyl sodium sulfonate 烷基磺酸钠 Cohesion 粘结力凝聚力 All-flotation approach 全浮处理法 Collector 捕收剂 Allowance 允许,公差 Colloid 胶体All-purpose 通用的 Creosote oil杂酚油 Amine 胺的牌号 Critical PH value 临界PH值 Amino-acid 氨基酸 Concentrate grade精矿品位 Ammonia 氨Concentration 精选、富集 Amphateric 两性的 Cyanide 氰化物 Amphoteric surfactant 两性表面活性剂 Daxad 烷基磺酸钠 Starch 淀粉 Deflocculator 反絮凝剂 Analysis 分析 Defoamer 消泡剂 Angle角,角度 Dehydrating agent脱水剂 Anion 阴离子 Dehydrogenation 脱氧 Anion collector 捕收剂 Delamine 妥尔油胺 Anode 阳极,正极 Dense liqued 重液 Anti-corrosive coating 防腐浮层 Depressant 抑制剂 Antifoamer 消泡剂 Desorbent 解吸剂 Apparent hardness 表现硬度 Deslimie 脱泥 Applicability 活用性,适应性 Desludging agent 脱泥剂 Aqua ion 水合离子 Dicarboxylic acid 二羟酸 Aquation 水合作用 Dodecylamine 十二胺,月桂胺 Armeen 胺的牌号 Dodecylalcohol 十二烷醇Arosurf MG醚胺的牌号 Dodecyl amine-hydrochloride十二胺盐酸盐共 16 页第 5 页专业英语词汇Dresinate 松脂酸皂捕收剂 Electro-kinetic potential 动电势Dual cleaning 二重精选 Electrostatic attraction 静电吸引Duponol 烷基硫酸钠牌号 Emulsifying agent乳化剂Dust-allaying medium 防尘剂 Extract 提取,萃取Dynamic balance 动态平衡 Ferric sulfate 硫酸铁Efficiency 效率,功效 Flotation 浮选Electrochemical approach 电化学处理法矿物加工工艺常用词汇(一) 38浮选机-flotation equipment 1选矿-Mineral separation (ore dressing) 39重选- gravity concentration 2设计-Design3工艺-Process (craftwork) 40特殊选-special selection 4初步设计-Initiative(preliminary) design 41 浮选柱-flotation column 5流程-Flow(circuit) 42脱水机-spin-drier6流程图-flowsheet 43干燥机-drier 7施工设计-working design 44总图-general chart8设计方案-design project 45配置-deploy 9粉碎-comminution 46运输-transport10 磨矿-grinding 47环境保护-environment protect 11浮选-flotation 48场址-field location(site) 12脱水-dehydration 49布置-lay 13干燥车间-drying shop 50设计资料-design information 14尾矿-tailing 51粉碎流程-comminution flow 15精矿-concentrate 52磨矿流程-grinding flow(circuit) 16中矿-middles 53浮选流程-flotation flow 17精选-concentration 54金属矿-metallic mines 18粗选-first concentration 55非金属矿-non-metallic mines 20选矿机-concentrator 56闭路-close circuit(loop) 21矿浆ore pulp 57闭路流程-close flow 22分级-classification 58开路-cut circuit(loop) 22磨矿-grinding 59开路流程-cut flow 23磨矿机-grinding mills 60废水-liquid waste24筛分-screen 61粉尘-powder 25粉碎-crush 62噪声-yawp26筛分机-screener 63污染-contamination 27粉碎机-crusher 64沉淀-form sediment28颚式粉碎机-jaw crusher 65净化-decontaminate 29圆锥粉碎机-cone crusher 66输送-transportation 30冲击式粉碎机impact crusher 67矿石-ore 31辊式粉碎机-crusher rolls 68物料-material32球磨机-ball mill 69给矿-feed ores 33棒磨机-rod mill 70给料-feed stuff34自磨机-autogenous mills 71设备-equipment 35震动筛-vibratory screener 72方案-project36分级机-classification equipment 73标高-elevation 37浮选-flotation 74通道-passage共 16 页第 6 页专业英语词汇75维修-maintain 20筛分速率-screening rate 76检查-check 21筛网-screen mesh 77操作-operation 22筛制、筛比、筛序-screen scale 78化验-test、assay 23筛孔尺寸-screen size 79检测-examine 24套筛-screen set 80坡度-gradient 25筛序-screen size gradation 81起重机-crane 26筛余物screen tailings82堆积-accumulation 27筛下产品-screen throughs(underflow.undersize) 83细粒-granule、fine 28可碎性crushability84粗粒-coarse 29可碎性系数-crushability factor 85尾矿坝-tailing dam 30碎矿仓-crushed ore pocket 86矿仓-feed bin(storehouse) 31粉碎产品-crushed product 87粉矿仓-crushing pocket 32粉碎粒度-crusher size 88产品仓-product bin(storehouse) 33粉碎腔-crushing cavity 89砂泵-pump 34粉碎厂-crushing plant90立式泵-stand pump 35粉碎系数-crushing coefficient 91卧式泵-horizontal pump 36粉碎工段-crushiong section 92耐酸泵-acid-proof pump 37助磨剂-grinding aid 93耐碱泵-alkali-resistant pump 38磨球-grinding ball94勘察-reconnaissance 39 磨矿负荷-grinding charge 95地形-landform 40磨矿效率-grinding efficiency 96工程-engineering 41磨矿-grinding ore 97设计步骤design process 42磨砾-grinding pebble98规模-scale 43磨碎能力-grinding property 99选矿厂-concentrating mill 44研磨试验grinding test100设计内容design content 45磨矿设备-grinding unit(二) 46磨矿速度-grinding rate1 comminution-粉碎 47磨矿功率-grinding power2 comminution engineering-粉碎工程 48磨矿车间-grinding plant 3粉碎机-comminuter 49可磨性-grindability 4粉碎动力学-comminution kinetics 50可磨性指数-grindability index 5筛分曲线图-screen analysis chart 51可磨性指标-grindability rating 6筛孔-screen aperture 52可磨性试验-grindability test 7筛面-screen area 53研磨工-grinder 8筛条screen bar 54磨工车间-grindery9筛框-screen box 55磨矿动力学-grinding kinetics 10筛选厂-screen building 56粉碎能-crushing energy 11筛分机生产能力screen capacity 57粉碎机给矿口-crushing mouth 12筛分槽-screen cell 58粉碎面-crushing face 13筛布-screen cloth 59粉碎力-crushing force 14筛分screen classification 60粉碎机进料口-crusher throat 15筛孔-screen hole 61筛分动力学-screen kinetics 16筛分车间-screenhouse 62选厂矿仓-mill bin17筛分分析-screen analysis 63 选厂中矿mill chats 18滚筒筛-screening-drum 64选厂配置mill configuration 19筛分效率-screening efficiency 65磨过的矿石-milled ore共 16 页第 7 页专业英语词汇66磨机给料-mill feeder 11蓝晶石-talc blue 67选厂给矿-mill-head 12试样缩分-sample division68研磨作用-milling action 13 分样器-sample divider 69磨机衬里mill liner 14精矿取样-concentrate sampling 70入选品位milling grade 15中矿取样-middles sampling 71入选品位矿石milling-grade ore 16尾矿取样-tailing sampling 72磨矿机milling-grinder 17浓缩-thickening 73细碎、精磨-milling grinding 18精矿浓缩-concentrate thickening 74磨矿介质-milling medium 19选矿流程-concentrating circuit 75磨矿法-milling method 20精选机-concentrating mcching 76选矿作业-milling operation 21试样缩分-sample reduction (splitting) 77选矿厂-milling plant 22矿物组成-mineralcomposition 78选厂矿泥-milling slime 23矿物组分-mineral constituent 79选厂厂址-mill site 24矿床-mineral depost80磨机负荷-mill load 25矿物-mineral 81选矿工(工长)millan 26选矿方法mineral dressing method 82磨机需用功率-mill power draft 27选矿厂-concentrating mill 83选矿质量控制mill puality control 28选矿ore dressing,mineral separation 84选矿取样-mill sampling 29矿物分析-mineral analysis 85磨机外壳-mill shell 30矿物组合-mineral association 86磨机矿浆-mill slurries 31 试样袋-sample sack 87磨石-millstone 32矿床-deposit88选矿厂储矿仓mill-storage 33矿物岩相facies 89选厂尾矿-mill tail 34矿物纤维-mineral fiber90选矿用水-mill water 35固、气界面-mineral-air interface 91磨矿机溶液-mill solution 36固、液界面-mineral-water interface 92选矿厂建筑师-millwright 37固、气、液接触mineral-air-water contact 93分级沉淀-class setting 38矿物颗粒-grain94矿粉-mineral fine 39矿物鉴定-mineral identification 95分级-classification 40矿物资源-interest96分级溢流-classifier overflow 41矿物解离-mineralliberation 97分级返砂-classifier sand 42矿物特性mineral character 98分级机-classifier 43矿物储量-mineral reserve 99分级筛-classifying screen 44矿物(成分)检验mineral logical examination 100分级箱-classifying box 45扑收剂-Minerec,flotigan,(三) 46精矿回收率concentrate recovery 1品位-grade 47中矿回收率middles recovery 2精矿品位-concentrate grade 48精选concentration 3尾矿品位-tailing grade 49附着精矿气泡concentratr-loaded bubble 4尾矿场-tail area(pile) 50精选机-concentrating maching 5尾矿仓-tailing bin 51分选判据-concentration criterion 6尾矿滤饼-tailing cake 52富集比-concentration factor 7尾矿坝-tailing dam 53选矿摇床-concentration table 8尾矿池-tailing pond(pit) 54选厂流程concentrator flow 9取样-taking cut(sampling) 5选厂流程图concentrator flow sheet 10滑石talc 56试样品位-sample grade共 16 页第 8 页专业英语词汇57絮凝剂-flocculant 2可选性 Separability 58絮凝-floculate 3地质Geology59絮凝物-flocs 4 选厂Concentrating mills 60絮凝浮选floc flotation5勘探Prospecting 61絮凝作用flocculation 6脉石Gangue62浮选机flotation unit 7选别方法Concentrating methods63浮选剂- flotation agent 8脉石矿物Gangue mineral64整排浮选机flotation bank 9矿产资源Minerals resources 65浮选槽- flotation cell 10矿物Mineral66浮选能力flotation capacity 11试样 Sample67浮选精矿- flotation concentrate 12取样Assay Sampling 68浮选尾矿flotation rejects 13制样Preparation of samples 69浮选中矿- flotation middles 14矿床Deposit 70浮选设备flotation equipment 15矿样Mineral samples71浮选泡沫-flotation froth 16矿物学Mineralogy 72浮选动力学flotation kinetics 17物质组成Material composition 73浮选浸出法-flotation leaching method 18化学分析Chemical analysis 74浮选厂flotation mill 19结构Texture 75浮选油-flotation oil 20氧化矿Oxide ore 76浮选矿浆- flotation pulp 21硫化矿Sulfide ore 77浮选速度-flotation rate 22金属矿物Metallic mineral78浮选试验flotation test 23非金属矿物Nonmetallic mineral79单槽浮选机- flotation unit cell 24石墨Graphite80浮选摇床- flotation table 25破碎Comminution 81摇床浮选-flotation tabling 26颚式粉碎机Jaw crushers82起泡剂Flotol 27对辊机Roll crushers 83流程图-flow line 28筛分Screening84工艺流程图-flow process chart (flow sheet) 29混合矿石Mixed ores 85可选(洗)性-washability 30粒度Particle size86可选性特性- washability characteristic 31粒度分析Particle size analysis 87可选性曲线- washability curve 32选别产品Concentrating products 88可选性指数- washability number 33筛分试样Screening samples 89可选性试验- washability test 34爆破Blow 90可浮性-flotability 35采矿Mining 91可浮性曲线-flotability curve 36粗粒Coarse-grain 92粒度特性-granularity 37细粒Fine-grain93粒度分级试验grading test 38矿浆Ore pulp 94结构-texture 39矿浆浓度Pulp density 95构造-tectonic(structural) 40 矿石特性Ore characteristics 96致密结构-compact texture 41结构特性Texture characteristics97斑状结构porphyritic texture 42矿物分析Mineral analysis 98 粒度分析-granularmetric analysis 43物相分析Phase analysis 99采样-sample collecting 44光谱分析Spectrum analysis 100分样器-sample divider 45可磨性Grindability46硅酸盐Silicate1矿石Ore 47显微镜Microscope共 16 页第 9 页专业英语词汇48磨碎Grinding 75絮凝剂Flocculant49精矿Concentrate 76絮凝浮选Flocculation flotation 50中矿Middling 77浮选机flotation unit, flotation machine 51尾矿Tailing 78浮选药剂Flotation agent52磁选Magnetic separation 79絮凝物Flocs53电选Electrical separation 80絮凝作用Flocculation 54重选Gravity concentration 81选别流程Concentrating flow55重介质选Heavy medium separation 82浮选槽Flotation cell 56硅酸盐矿物Silicate minerals 83浮选精矿Flotation concentrate 57矿物组成Mineral composition 84浮选尾矿Flotation tailing 58品位Grad 85浮选中矿Flotation middling 59矿物岩相Phases 86单槽浮选机Flotation unit cell 60 岩相分析Lithofacies analysis 87浮选试验Flotation test61矿物组合Mineral association 88起泡剂Frother62矿物鉴定Mineral identification 89可浮性Flotability63矿物解离Mineral liberation 90浮选设备Flotation equipment 64构造Structure 91浮选速度Flotation rate65斑状结构porphyritic texture 92捕收剂collector 66致密结构compact texture,dense structure 93浮选能力Flotation capacity67 精矿品位Concentrate grade 94闭路试验closed circuit test 68尾矿品位Tailing grade 95条件试验Factor test69精选Cleaning 96开路试验Open circuit test 70扫选 scavenging;扫选机 scavenger, 97活化剂Activator71精矿回收率Concentrate recovery 98棒磨机 rod mill 72中矿回收率Middling recovery 99球磨机 ball mill 73浮选泡沫Flotation froth 100调整剂Regulating agent74絮凝Flocculate4) beach sand — n. sand ore from beach.〖海滨砂矿〗5) magnetite — n. a mineral with chemical formula FeO〖磁铁矿〗 34共 16 页第 10 页专业英语词汇6) quartz — n. a mineral chemical formula SiO 〖石英〗 27) gangue — n. refuses from mining or ore dressing〖脉石矿物〗8) valuable minerals — n. some minerals which can be used in industries〖有用矿物〗 9) wolframite — n. a mineral with chemical formula (Fe,Mn)WO 〖黑钨矿〗 410) cassiterite — n. a mineral with chemical formula SnO 〖锡石〗 211) diamagnetics — n. some substances which can repel the effect from magnetic field〖抗磁性物质,抗磁质〗〖=diamagnetic substance〗12) paramagnetic substance — n. some substances which can appeal the effect from magnetic field〖顺磁性物质,顺磁质〗13) rutile — n. a mineral with chemical formula TiO 〖金红石〗 214) monasite — n. a mineral with chemical formula (Ce,La)PO, consists of Rare Earth(RE)〖独居石〗 415) siderite — n. a mineral with chemical formula FeCO〖菱铁矿〗 316) pyrrhotite — n. a mineral with chemical formula FeS〖磁黄铁矿〗17) chromite — n. a mineral with chemical formula FeCrO〖铬铁矿〗2418) ferromagnetic substance — n. some substances which have susceptibility to magnetic forces and retainsome magnetism when removed from the field〖铁磁性物质,铁磁质〗19) ilmenite — n. a mineral with chemical formula FeTiO〖钛铁矿〗 320) hematite — n. a mineral with chemical formula FeO〖赤铁矿〗 2313) specular hematite ore — n. a mineral which has chemical composition FeO〖镜铁矿〗 2314) scheelite — n. a mineral which has chemical composition CaWO〖白钨矿〗 415) asbestos — n. soft, fibrous, grey mineral substance that can be made into fire-proof fabrics or solidsheeting and used as a heat-insulating material〖石棉〗16) molybdenum-bearing minerals — n. a mineral containing molybdenum〖含钼矿物〗 5) sulphur — n. light-yellow non-metallic element (symbol S) that burns with a bright flame and a strong smell, used in medicine and industry〖硫〗10) kaolin — n. fine white clay used in making porcelain, etc.〖高岭土、陶土〗 Part 5 Magnetic Intensities Required to Extract Minerals〖第五部分分选矿物所需要的磁场强度〗 Technical Terms〖技术术语〗1) alabandite — n. a mineral which has chemical composition MnS〖硫锰矿〗 2) ankerite — n. a mineral which has chemical compositionCa(Mg,Fe,Mn)[CO]〖铁白云石〗 323) apatite — n. a mineral which has chemical composition Ca[PO](F,Cl,OH)〖磷灰石〗 5434) bastnasite — n. a mineral which has chemical composition(Ce,La)[CO]F〖氟碳铈矿〗 35) biotite — n. a mineral which has chemical compositionK(Mg,Fe)[AlSiO](OH)〖黑云母〗 331026) braunite — n. a mineral which has chemical composition 3MnO?MnSiO〖褐锰矿〗 2337) chromite — n. a mineral which has chemical composition FeCrO〖铬铁矿〗 248) chrysocolla — n. a mineral which has chemical composition CuSiO?2HO〖硅孔雀石〗 329) columbite — n. a mineral which has chemical composition(Fe,Mn)(Nb,Ta)O〖铌铁矿〗 2610) davidite — n. a mineral which has chemical composition (Fe,U,Ce)(Ti,Fe)(O,OH)〖铀钛磁铁矿〗 3711)epidote — n. a mineral which has chemical compositionCa(Al,Fe)[SiO][SiO]O(OH)〖绿帘石〗 2327412) euxenite — n. a mineral which has chemical composition (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)O〖黑稀金矿〗2613) ferberite — n. a mineral which has chemical composition FeWO〖钨铁矿〗 414) franklinite — n. a mineral which has chemical composition ZnFeO 〖锌铁尖晶石〗 2415) garnet — n. a mineral which has chemical composition(Ca,Mg,Fe,Mn)(Al,Fe,Mn,Cr,Ti)(SiO)〖石榴石〗 3 24316) goethite — n. a mineral which has chemical composition FeO?HO〖针铁矿〗 23217) hematite — n.iron oxide which has chemical formula FeO〖赤铁矿〗 2318) hornblende — n. a mineral which has chemical composition(Ca,Mg,Al,Fe,Mn,Na,Na,K)SiO〖角闪石〗 22223共 16 页第 11 页专业英语词汇19) ilmenite — n. a mineral which has chemical composition FeTiO〖钛铁矿〗 320) ilmeno-rutile — n. a mineral which has chemical composition TiO?Fe(Nb,Ta)O〖黑金红石〗 22621) limonite — n. a mineral which has chemical composition FeO?nHO〖褐铁矿〗 23222) maghemite — n.a mineral which has chemical composition FeO〖磁赤铁矿〗 2323)magnetite — n. a mineral which has chemical composition FeO〖磁铁矿〗3424) martite — n. a mineral which has chemical composition FeO〖假象赤铁矿〗 2325) monazite — n. a mineral which has chemical composition(Ce,La,Y,Th)[PO]〖独居石〗 426) muscovite — n. a mineral which has chemical composition KAl[AlSiO](OH)〖白云母〗 2310227) olivine — n. a mineral which has chemical composition (Fe,Mg)[SiO]〖橄榄石〗 2428) pyrochlore(or:pyrochlorite) — n. a mineral which has chemical composition (Ca,Ce)Nb(O,F)〖黄绿石〗 22729) pyrolusite — n. a mineral which has chemical composition MnO〖软锰矿〗 230) pyrrhotite — n. a mineral which has chemical composition FeS〖磁黄铁矿〗 1-x31)renierite — n. a mineral which has chemical compositionCu(Fe,Ge,Zn)(As,S)〖硫铜锗矿〗 3432) rhodochrosite — n. a mineral which has chemical composition MnCO〖菱锰矿〗 333) rhodonite — n. a mineral which has chemical composition MnSiO〖蔷薇辉石〗 334) samarskite — n. a mineral which has chemical composition(Y,Er,Ce,U,Ca,Fe,Pb,Th)(Nb,Ta,Ti,Sn)O〖铌钇26矿〗35) siderite—n. a mineral which has chemical composition FeCO〖菱铁矿〗 336) staurolite — n. a mineral which has chemical compositionFeAl[SiO]O(OH)〖十字石〗 4422237) serpentine — n. a mineral which has chemical composition Mg(SiO) (OH)〖蛇纹石〗 6410838)tantalite(or:tantaline) — n. a mineral which has chemical composition (Fe,Mn)TaO〖钽铁矿〗 2639) titaniferous-magnetite — n. a mineral which has chemical composition (Fe,Ti)O〖含钛磁铁矿〗 3440) tourmaline — n. a mineral which has chemical composition (Na,Ca)(Mg,Al)[BAlSi(O,OH)]〖电气石〗 63363041) uraninite — n. a mineral which has chemical composition UO〖沥青铀矿〗 242)wolframite — n. a mineral which has chemical composition(Fe,Mn)WO〖黑钨矿〗 443) xenotime — n. a mineral which has chemical composition YPO〖磷钇矿〗 41) niobium — n. an element for Nb〖铌〗2) tantalum — n. an element for Ta〖钽〗3) liquid helium — n. helium in liquid state〖液氦〗2) sulphide — n. a kind of mineral containing sulphur〖硫化物、硫化矿〗 3) oxidised minerals — n. 〖氧化矿〗Part 11 Collectors〖第十一部分捕收剂〗Technical Terms〖技术术语〗1) grease tabling — n. a special separation way 〖油膏摇床分选〗 2) creosote — n. tar oil〖焦馏油〗3) skim — vt. throw away or discharge〖撇去、刮去〗4) hydrophilic — adj. a property that polar mineral surface react strongly with water molecules〖亲水的〗5) polarity — n. state in which there are two opposite, conflicting or contrasting qualities, principles ortendencies〖极性〗6) galena — n. 〖方铅矿 PbS〗7) covellite — n. 〖铜蓝、蓝铜矿 CuS〗8) bornite — n. 〖斑铜矿 CuFeS〗 549) chalcocite — n. 〖辉铜矿 CuS〗 210) chalcopyrite — n. 〖黄铜矿 CuFeS〗 211) stibnite — n. 〖辉锑矿 SbS〗 2312) argentite — n. 〖辉银矿 AgS〗 2共 16 页第 12 页专业英语词汇13) bismuthinite — n. 〖辉铋矿 BiS〗 2314) millerite — n. 〖针镍矿NiS〗 15) cobaltite — n. 〖辉砷钴矿 CoAsS〗 16) arsenopyrite — n. 〖毒砂 FeAsS〗 17) pyrite — n. 〖黄铁矿 FeS〗 218) sphalerite — n. 〖闪锌矿 ZnS〗 19) orpiment — n. 〖雌黄 AsS〗2320) pentlandite — n. 〖镍黄铁矿 (Fe,Ni)S〗 9821) realgar — n. 〖雄黄 AsS〗 4422) barite — n. 〖重晶石 BaSO〗 423) anhydrite — n. 〖硬石膏,无水石膏 CaSO〗 424) gypsum — n. 〖石膏 CaSO ?2HO〗 4225) anglesite — n. 〖铅矾 PbSO〗 426) cerrusite — n. 〖白铅矿 PbCO〗 327) malachite — n. 〖孔雀石Cu[CO](OH)〗 23228) azurite — n. 〖蓝铜矿 Cu[CO](OH)〗 3322 29) wulfenite — n. 〖钼铅矿 PbMoO〗 430) fluorite — n. 〖萤石 CaF〗 231) calcite — n. 〖方解石 CaCO〗 332) witherite — n. 〖毒重石 BaCO〗 333) magnesite — n. 〖菱镁矿MgCO〗 334) dolomite — n. 〖白云石 CaMg(CO)〗 3235) apatite — n. 〖磷灰石 Ca(PO)(F,Cl,OH)〗 54336) scheelite — n. 〖白钨矿 CaWO〗 437) smithsonite — n. 〖菱锌矿 ZnCO〗 338) rhodochrosite — n. 〖菱锰矿 MnCO 〗 339) siderite — n. 〖菱铁矿 FeCO〗 340) monazite — n. 〖独居石 (Ce,La,Y,Th)PO〗 441) hematite — n. 〖赤铁矿 FeO〗 2342) magnetite — n. 〖磁铁矿 FeO〗 3443) goethite — n. 〖针铁矿FeO?HO〗 23244) chromite — n. 〖铬铁矿 FeCrO〗 2445) ilmenite — n. 〖钛铁矿 FeTiO〗 346) corundum — n. 〖刚玉,金刚砂 AlO〗 2347)pyrolusite — n. 〖软锰矿 MnO〗 248) limonite — n. 〖褐铁矿 FeO?nHO〗23249) borax — n. 〖硼砂 Na[BO](OH)?8HO〗 2454250) wolframite — n. 〖黑钨矿 (Fe,Mn)WO〗 451) columbite — n. 〖铌铁矿 (Fe,Mn)(Nb,Ta)O〗 2652) tantalite — n. 〖钽铁矿 (Fe,Mn)(Ta,Nb)O〗 26 53) rutile — n. 〖金红石TiO〗 254) cassiterite — n. 〖锡石 SnO〗 2 55) zircon — n. 〖锆石 ZrSiO〗456) willemite — n. 〖硅锌矿 ZnSiO〗 24 57) hemimorphite — n. 〖异极矿 Zn[SiO](OH)?HO〗 4272258) beryl — n. 〖绿柱石 BeAl[Si O]〗 32618 共 16 页第 13 页专业英语词汇59) feldspar — n. 〖长石〗60) sillimanite — n. 〖硅线石 Al[SiO]O〗 2461) garnet — n. 〖石榴石〗62) quartz — n. 〖石英 SiO〗 2Part 12 Anionic Collectors〖第十二部分阴离子捕收剂〗Technical Terms〖技术术语〗1) oxyhydryl collectors — n. 〖烃基含氧酸类捕收剂〗 2) oleicacid — n. 〖油酸〗3) sodium oleate — n. 〖油酸钠〗4) linoleic acid — n. 〖亚油酸〗5) kyanite — n. 〖蓝晶石〗6) ethyl — n. 〖乙基〗7) isopropyl — n. 〖异丙基〗8) isobutyl — n. 〖异丁基〗9) amyl — n. 〖戊基〗10) hexyl — n. 〖己基〗11) xanthate — n. 〖黄药,黄原酸盐〗12) sulphydryl collectors — n. 〖硫代化合物捕收剂〗 Part 13 Cationic Collectors 〖第十三部分阳离子捕收剂〗Technical Terms〖技术术语〗1) amine collectors — n. 〖胺类捕收剂〗 2) electrical doublelayer — n. 〖双电层〗 3) collecting power — n. collective strength〖捕收力〗 4) barite — n. 〖重晶石 BaSO〗 45) carnallite — n. 〖光卤石〗6) sylvite — n. 〖钾盐〗7) alkaline — adj. 〖碱性的〗8) alkali earth metal— n. 〖碱土金属〗 Part 14 Frothers 〖第十四部分起泡剂〗 Technical Terms〖技术术语〗1) bubble attachment — n. 〖气泡附着〗 2) stability — n. 〖稳定性〗3) liquid phase — n. 〖液相〗4) sulphide — n. 〖硫化物〗5) collecting launder — n. 〖收集槽〗 6) mineral processingplant — n. 〖选矿厂〗 7) heteropolar — adj. 〖异极性的〗8) hydroxyl — n. 〖羟基–-OH〗9) carboxyl — n. 〖羧基–-COOH〗10) carbonyl — n. 〖羰基 =C=O〗11) amino group — n. 〖氨基–-NH〗 212) sulpho group — n. 〖磺酸基–-OSOOH〗 213) pine oil — n. 〖松节油〗14) terpineol — n. 〖萜烯醇〗15) cresol — n. 〖甲酚 CHCHOH〗 36416) methyl isobutyl carbinol — n. 〖甲基异丁基甲醇(甲基戊醇) MIBC〗共 16 页第 14 页专业英语词汇 17) diacetone alcohol — n. 〖二丙酮醇〗 18) ethyl acetal — n. 〖乙基二乙醇〗Part 15 Regulators 〖第十五部分调整剂〗 Technical Terms〖技术术语〗。

锂离子电池用草酸亚铁的合成研究

锂离子电池用草酸亚铁的合成研究

锂离子电池用草酸亚铁的合成研究冯雪茹;刘述平;李超【摘要】The effects of synthetic conditions, such as aging time, dispersant concentration, ferrous ion concentration, the product morphology, the tap density and the particle size of ferrous oxalate dehydrate prepared were studied by scanning electron microscopy ( SEM) , laser particle size instrument and the tap density meter in stirring speed.The optimized preparation conditions of ferrous oxalate were as follows: ferrous ion concentration was 85 g/L, dispersant concentration was 0. 65 mol/L, aging time was 9 h. The prepared ferrous oxalate product after secondary washing measured a tap density of 1. 22 g/cm3 and a particle size ( D50) of 3. 16 μm. The lithium iron phosphate was prepared by high temperature solid phase method, using prepared ferrous oxalate as raw material, and the charge and discharge performance of the positive electrode material was good.%采用扫描电镜、激光粒度仪、振实密度仪, 研究了陈化时间、分散剂浓度、亚铁离子浓度对草酸亚铁产品形貌、振实密度和粒径的影响.优化的草酸亚铁制备工艺条件为:亚铁离子浓度为85 g/L, 分散剂浓度为0.65 mol/L, 陈化时间为9 h.制备得到的草酸亚铁产品振实密度为1.22 g/cm3, 粒度 (D50) 为3.16μm;以制备的草酸亚铁为原料, 采用高温固相法合成磷酸铁锂正极材料, 得到的正极材料充放电性能良好.【期刊名称】《广州化工》【年(卷),期】2019(047)001【总页数】3页(P49-51)【关键词】锂离子电池;草酸亚铁;振实密度;粒度【作者】冯雪茹;刘述平;李超【作者单位】中国地质科学院矿产综合利用研究所,四川成都 610041;中国地质科学院矿产综合利用研究所,四川成都 610041;中国地质科学院矿产综合利用研究所,四川成都 610041【正文语种】中文【中图分类】TQ152锂离子电池作为一种绿色电源,已经在无线电通讯、电动自行车和电动汽车等方面得到了广泛应用[1]。

影响豌豆蛋白乳化特性的分子机制

影响豌豆蛋白乳化特性的分子机制

影响豌豆蛋白乳化特性的分子机制卢菊慧;钟芳;陈茂深【摘要】The emulsifying properties of pea proteins and the molecular mechanism that affected the emulsifying properties were investigated in this study.The pea protein powder was used to prepare emulsions using soy bean oil by homogenizing technique.The parameters of the emulsions were studied including the emulsifying property,stability,interfacial adsorption property and the competitive adsorption of components of pea proteins.The results indicated that when the protein concentration was within 1 to 30 mg/mL,with the increasing of concentration,the particle size of emulsions was decreasing,the emulsifying property and stability improved,and protein aggregates werc losing the superiority in competitive adsorption,while the proportion of vicilin and legumin increased.When the protein concentration was higher than 20 mg/mL,the average diamcter of oil droplets was lower than 1.06 μm,the interfacial adsorption of pea proteins would reach the saturation state.While there were more vicilin than legumin in surface proteins,whenthe proportion of aggregates was very low,which was less than the initial pea protein composition.%为了解豌豆蛋白的乳化特性及影响其乳化特性的分子机制,实现豌豆蛋白的高效应用,以豌豆蛋白粉为原料,与大豆油用高压均质法制备乳液,测定豌豆蛋白的乳化能力及稳定性,并考察其在乳液中的界面吸附特性及组分的竞争吸附.结果表明,在蛋白浓度1.0~30.0 mg/mL时,随着蛋白浓度的增加,界面吸附蛋白量显著上升,蛋白聚集体在竞争吸附中失去优势,7S和11S球蛋白的占比逐渐提高,乳液粒径降低,且乳化能力和稳定性增强;蛋白浓度≥20.0 mg/mL时,乳液平均粒径低至1.06 μm,蛋白界面吸附趋于饱和状态,且7S球蛋白在竞争吸附中占明显优势,11S 球蛋白次之,聚集体占比较低,且略低于原蛋白组成.【期刊名称】《食品与机械》【年(卷),期】2018(034)001【总页数】6页(P7-12)【关键词】豌豆;蛋白;乳化特性;界面吸附;竞争吸附【作者】卢菊慧;钟芳;陈茂深【作者单位】江南大学食品学院,江苏无锡214122;江南大学食品学院,江苏无锡214122;江南大学食品学院,江苏无锡214122【正文语种】中文豌豆是仅次于大豆的第二大食用豆类作物,淀粉和蛋白质含量丰富,除食用外,主要用于生产豌豆淀粉及相关产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Effect of Dispersant Concentration on Preparation of an UltrahighDensity ZnO–Al 2O 3Target by Slip CastingYiHua Sun,WeiHao Xiong,ChenHui Li,w and Lu YuanState Key Lab of Material Processing and Die &Mould Technology,Huazhong University of Science and Technology,Wuhan 430074,ChinaThe rheological behavior of concentrated ZnO–Al 2O 3aqueous suspensions has been studied in order to obtain an ultrahigh-density ZnO–Al 2O 3composite ceramic target by slip casting.The influence of the mass fraction of polyacrylic acid (PAA)on the fluidity of slurries and the density and strength of the green and sintered bodies was investigated.The slurries exhibited a near-Newtonian flow behavior and had a lower viscosity with 0.3wt%PAA.The excess of PAA enhanced the green strength and the density and strength of the sintered bodies.An ultrahigh density sintered body (499.7%theoretical density)could be obtained after pressureless sintering at 14001C.The Al species were well distributed in the sintered bodies,which showed a homogeneous,defect-free microstructure with no abnormal grain growth.I.IntroductionSLIPcasting is one of the most widely used preparation meth-ods in the ceramics industry and it has been proven to be a reliable and simple technology for producing homogeneous and dense green bodies,especially for multicomponent systems or composites,and allowing the manufacture of ceramics with large sizes,high densities,and complex shapes.1–3Recently,some multicomponent,advanced ceramics have been studied using slip casting,such as transparent yttrium aluminum garnet,4yttria-stabilized zirconia,5cordierite 6ceramics,and the like.Nowadays,the use of ZnO–Al 2O 3composite ceramics as sputtering targets in commercial magnetron sputtering for the deposition of aluminum-doped zinc oxide (AZO)thin films is gradually increasing.This is attributed to AZO thin films be-coming increasingly used as the transparent and conductive elec-trodes for several optoelectronic devices such as photovoltaic solar cells,liquid crystal displays,or light-emitting diodes.7–9The high density of ceramic targets plays an important role in the sputtering process and final quality of the thin films.10In the past years,there were a number of studies addressing the sinte-ring and grain growth of nanocrystalline ZnO for high densifi-cation,such as Mazaheri et al .,11Qin et al .,12Roy et al .,13and so on.But high-density ZnO–Al 2O 3composites have rarely been studied,especially by colloidal processing.In colloidal processing,particle dispersion is the limiting fac-tor,which affects both the rheology and the homogeneity of suspensions.Polyacrylic acid (PAA)is widely used as a highly effective dispersant that enables the stabilization of most ceramic slurries by ensuring strong electrostatic and steric re-pulsion over the attractive van der Waals forces.As a result,green bodies with a high density and microstructural homoge-neity could be achieved.However,the green bodies are often brittle so that an added binder agent is necessary,such as polyethyleneglycol (PEG).4In our previous study,the well-dispersed ZnO–Al 2O 3slurries could be obtained with 0.2wt%PAA at pH 9and the PEG could be added up to 0.2wt%.14In this paper,the influence of the mass fraction of PAA on the dispersion and rheological behavior of slurries and the relationships between the amount of PAA and the density and strength of green and sintered bodies were further studied.The microstructure of sintered bodies and the distribution of aluminum species in the sintered bodies were investigated.II.Experimental ProceduresCommercial ZnO and a -Al 2O 3powders (99.99%purity,Sumi-tomo,Japan)with specific surface areas (BET)of 10.8and 8.9m 2/g,respectively,and average particle sizes around 260nm and 320nm,respectively,were used.A PAA (MW5000,China National Medicines Corporation Ltd.,Beijing,China)and a polyethylene glycol (MW40000,Nanjing Chemlin Chemical Co.Ltd.,Nanjing,China)were used as the deflocculant agent and binder agent,respectively.Slurries mixed with distilled water,PAA,and mixtures of ZnO and Al 2O 3powders (the ratio of mass is 98:2)were prepared with 0.2wt%PEG at pH 9and at a solids content of 70wt%(cor-responding to 30vol%,on the basis of dry powder weight).The pH was adjusted with ammonia (25wt%).The slurries were treated by ball milling with zirconia grinding media for 36h and subsequently degassed under vacuum.The apparent viscosity of the slurries was measured using a digital rotational viscometer (Brookfield RVDV-E,Holtsville,NY)at the shear rates of 9.3,18.6,46.5,and 93s À1at 251C.The as-prepared slurries were poured into white plaster molds for the production of two kinds of specimens:cylindrical rods for measuring the radial crushing strength and cuboid bars for sintering.After casting,the speci-mens were dried at 1101C for 2h and then sintered at 12001,13001,14001,and 15001C for 2h with a heating rate of 51C/min.The polished,sintered specimens were thermally etched at 12001C for 10min.The densification behavior of green compacts was studied on a dilatometer (DIL 402c,Netzsch,Germany)with a heating rate fixed at 3001C/h.The green and sintered specimens were eval-uated with respect to density (Archimedes’method).The strength of specimens was investigated by performing crushing or bending tests in a mechanical testing device (Instron3369,Norwood).The values obtained were the average of six mea-sured specimens.The fractured and thermally etched surfaces of sintered specimens were analyzed using a scanning electron mi-croscope (SEM,FEI Quanta 200microscope,Eindhoven,the Netherlands)equipped with an energy-dispersive spectrometer (EDS).The phase compositions of the green and sintered spec-imens were identified by X-ray diffraction analysis (XRD,R.Moreno—contributing editorwAuthor to whom correspondence should be addressed.e-mail:li_chenhui@Manuscript No.25949.Received March 2,2009;approved April 22,2009.J ournalJ.Am.Ceram.Soc.,92[9]2168–2171(2009)DOI:10.1111/j.1551-2916.2009.03178.x r 2009The American Ceramic Society2168X’Pert Pro,PANalytical,Almelo,the Netherlands)with a Cu K aradiation (l 51.5406A)operated at 40kV–40mA.III.Results and DiscussionsIn our previous study,the apparent viscosity of ZnO–Al 2O 3slurries with some PAA and PEG added had reached a mini-mum after milling for 36h.When the amount of PEG added was above 0.2wt%,the viscosity remarkably increased,which meant that the slurries deteriorated.The viscosity increased as the solids loading increased,but the slurries had good fluidity expected for slip casting,when the solids loading increased up to 70wt%.Thus,these conditions in the slurries,70wt%solids loading,0.2wt%PEG,and milling for 36h,were selected for further work.The rheological properties of ZnO–Al 2O 3slurries are strongly dependent on the amount of dispersant added,as shown in Fig.1.At low dispersant levels,the slurries show a non-New-tonian behavior.Their viscosities were higher due to insufficient adsorption of PAA for separating the particles apart.The vis-cosity decreased pronouncedly as the PAA additions increased.The slurries with the amount of PAA in the range of 0.15–0.25wt%exhibited nearly constant viscosity and could be fitted to Newtonian flow behavior with only a very slight degree of shear thinning.The viscosity reached a minimum as the dispersant additions reached 0.2wt%.The minimum viscosity was approx-imately 6.6mPa Ás at a shear rate of 93s À1.The optimum dis-persant concentration was determined at the lowest viscosity,in which the maximum level of particle dispersion was indicated.This result was similar to a reported value for nano-ZnO aque-ous suspensions.15The optimum dispersant level suggested that there was an adequate amount of PAA to cover the particle surface.As a result,the particles maintained far apart from each other by electrosteric stabilization.Then,for 0.3wt%,the slur-ries show a near-Newtonian behavior,and the viscosity in-creased a little,probably because of the presence of excess polyelectrolyte.When the amount of PAA further increased,the viscosity increased dramatically and the slurries became non-Newtonian again because of a decrease in the net negative charge of the mixed powders.At low or high dispersant levels,the shear thinning behavior that was clearly observed might be due to the breakdown of the existence of free surface sites and the possible interaction between the polymer chains,respec-tively.16The increased viscosity of the ZnO–Al 2O 3slurries might be due to flocculation.Shrinkage and shrinkage rate curves for the green compacts as a function of temperature are shown in Fig.2.The green compacts prepared from well-dispersed slurries show the typical shrinkage curve of solid-state reaction sintering and a slow densification rate.The linear shrinkage rate is maximal when the temperature reaches 11651C.The densification rate was slug-gish,between 7001and 9501C,and the final density (95%TD)was not reached until 12501C.After sintering at 12001,13001,14001,and 15001C for 2h,the densities of sintered specimens were 5.24,5.51,5.66,and 5.64g/cm 3,respectively.The maxi-mum sintered density was obtained at 14001C,so this condition was selected for further work.Figure 3shows XRD patterns of the green and sintered spec-imens.In the green specimen,some small peaks of a -Al 2O 3(JCPDS card No.071-1124,Density:4.0g/cm 3)were observed.After sintering,the a -Al 2O 3peaks disappeared and some small peaks of ZnAl 2O 4were detected,which means a -Al 2O 3reacted with ZnO to form the ZnAl 2O 4spinel phase (JCPDS card No.073-1961,density:4.64g/cm 3)during pressureless sintering.All diffraction peaks of the major phases can be indexed as a hex-agonal wurtzite ZnO structure (JCPDS card No.079-0205,Density:5.72g/cm 3).For 2.0wt%Al 2O 3in the green body,the calculated theoretical density is 5.671g/cm 3.Considering that the solubility limit of Al in Al 2O 3-doped ZnO sintered body is very small (o 0.3at.%)17and that Al 2O 3reacted with ZnO to form a stable single phase (ZnAl 2O 4spinel phase)during sinte-ring,18and assuming the Al 2O 3in the green body was totally transformed into ZnAl 2O 4after sintering,the concentration of ZnAl 2O 4is 3.59wt%in the sintered body,and the calculated theoretical density of sintered body is 5.673g/cm 3.So we could reasonably deduce that the actual theoretical density is between 5.671and 5.673g/cm 3.Table I shows the density and strength of green and sintered bodies produced from slips with different dispersant concentra-tions.The well-dispersed slurry was achieved for about 0.2wt%PAA,which resulted in the highest green density value.For0.3Fig.1.Effect of the amount of polyacrylic acid (PAA)on the rheolog-ical properties of 30vol%slurries with 0.2wt%polyethyleneglycol at pH9.Fig.2.Shrinkage behavior of ZnO–Al 2O 3green compacts during sinte-ring.Fig.3.X-ray diffraction patterns of the green and sintered specimens.September 2009Communications of the American Ceramic Society 2169wt%PAA,a lesser decrease in the green density was found,in accordance with the lesser increase in the slip viscosity owing to the excess of PAA,but the green body strength increased with an increasing amount of PAA.Although the green density of the former is larger than the latter,the density and strength of the sintered bodies of the latter are larger than the former.In gen-eral,it was observed that well dispersed Newtonian slurries gave very homogeneous microstructures,although the sintered spec-imen derived from a near-Newtonianfluid also had high density without abnormal grain growth and blowhole development (Figs.4and5).The following is a possible explication:the higher strength of green bodies,owing to the excess of PAA,is advantageous to dehydration and other subsequent processes; the excess of PAA can promote Zn ions to dissolve from the ZnO particles’surface to the slurries leading to the ZnO parti-cles’surface with more point defects and dangling bonds in the green bodies,which favors densification during sintering.Figure4shows SEM micrographs of fracture surfaces of the sintered specimens for0.2and0.3wt%PAA.In both speci-mens,the presence of some well-distributed closed pores en-trapped at the grain boundaries and located at triple points with typical sizes of1.5m m or less can be seen.It is clearly seen that the fracture occurred through the grains in both specimens,butthe fracture surface of the latter is rougher than the former, which produced a longer fracture length and consumed more fracture energy,leading to a higher bending strength(148MPa). It should be noted that the near-to-theoretical density bodies (45.66g/cm3)could be obtained after sintering at14001C for 2h.Their relative densities were confirmed to be99.7and99.8% TD,respectively,assuming the theoretical density is5.673g/cm3.Figure5shows ESEM micrographs of the thermally etched surface of the sintered specimen for0.3%wt%PAA.The average grain sizes of the thermally etched specimen are be-tween4and8m m.It is clear that the off-white regions are ZnO phases and the dark regions are ZnAl2O4spinel phases.The homogeneously distributed ZnAl2O4phases are clearly visible as dark patches of the size of1m m or so at the grain boundaries, and even in the grains,predominantly located at triple points. The results of EDS analyses revealed that most of the Al was distributed between the ZnO phases,while only a smaller share was dissolved in the ZnO phases.The peak for the Al species was found in the grain interior,which means that Al both dis-solved into ZnO grains and reacted with ZnO to form ZnAl2O4.17On the basis of Kim’s research,19elemental Al ex-ists in the form of afine-grained ZnAl2O4phase along the grain boundaries,which inhibits the grain growth.The homogeneous distribution of Al species in the microstructure of ZnO–Al2O3 ceramics is of paramount importance to thefinal quality of sputtering thinfilms.IV.ConclusionAt low or high levels of dispersant,the ZnO–Al2O3slurries are a non-Newtonianfluid forflocculation,which occurred because of the insufficient adsorption or excess of PAA,respectively.A well-dispersed ZnO–Al2O3mixture slurry was reached when0.2 wt%PAA was added.At up to0.3wt%PAA,the slurries showed a near-Newtonian behavior.Their viscosity increased slightly but their green body strength also increased.In both cases,the ultrahigh density of ZnO–Al2O3sintered bodies (B5.66g/cm3)could be obtained after pressureless sintering at 14001C for2h.Once0.3wt%PAA is reached,an increase of green body strength for a slight excess of PAA could contribute to the density and strength of the sintered bodies.A maximum sintered density of99.8%TD can be reached.Furthermore,the microstructure observations reveal that very homogeneous,de-fect-free materials are obtained without abnormal grain growth. EDS analyses reveal that Al species are well-distributed both inTable parison of Density and Strength of the Green and Sintered Bodies in Relation to Amounts of PAAPAA content (wt%)Relative density(%TD)Crushing strengthof greenbody(MPa)Bending strengthof sinteredbody(MPa) GreenbodySinteredbody0.154.999.2 2.670.592710 0.266.799.712.572.0145715 0.363.899.818.672.0148715 Fig.4.Scanning electron microscopic images of the fractured surface of the sintered specimens with0.2wt%polyacrylic acid(PAA)(a)and 0.3wt%PAA(b).Fig.5.ESEM image of the thermally etched surface of ZnO–Al2O3 ceramics:(a)in the secondary electron mold;(b)in the backscattering mold with energy-dispersive spectrometer patterns of off-white regions (c)and dark regions(d).2170Communications of the American Ceramic Society Vol.92,No.9ZnO grains and at the grain boundaries.Slip casting allows the manufacturing of a defect-free,homogeneous,and ultrahigh density sputtering target of ZnO–Al2O3composites.References1O.Naoki,H.Yuji,S.Kimiyasu,K.Yoshiaki,K.Shoichi,and W.Koji,‘‘Fab-rication of S Al2O3Slurries and Dense Green Bodies Using Wet Jet Milling,’’J.Am.Ceram.Soc.,89[9]2738–43(2006).2J.Tsubaki,M.Kato,M.Miyazawa,T.Kuma,and H.Mori,‘‘The Effects of the Concentration of a Polymer Dispersant on Apparent Viscosity and Sedimen-tation Behavior of Dense Slurries,’’Chem.Eng.Sci.,56[9]3021–6(2001).3X.Li and Q.Li,‘‘YAG Ceramic Processed by Slip Casting Via Aqueous Slur-ries,’’Ceram.Int.,34[2]397–401(2008).4A.A.Kwadwo,L.M Gary,and Q.D.John,‘‘Aqueous Slip Casting of Transpar-ent Yttrium Aluminum Garnet(YAG)Ceramics,’’Ceram.Int.,34[5]1309–13(2008). 5G.Suarez,M.P.Albano,L.B.Garrido,and E.F.Aglietti,‘‘Dispersion of Concentrated Aqueous Yttria-Stabilized Zirconia with Ammonium Polyacrylate,’’Ceram.Int.,33[6]925–9(2007).6J.B.Rodrigues and R.Moreno,‘‘Effect of Mechanical Activation on the Rheology and Casting Performance of Kaolin/Talc/Alumina Suspensions for Manufacturing Dense Cordierite Bodies,’’Appl.Clay Sci.,38[3–4]209–18(2008). 7W.Lin,R.X.Ma,J.S.Xue,and B.Kang,‘‘RF Magnetron Sputtered ZnO:Al Thin Films on Glass Substrates:A Study of Damp Heat Stability on their Optical and Electrical Properties,’’Sol.Energy Mater.Sol.Cells,91[20]1902–5(2007). 8B.Y.Oh,M.C.Jeong,T.H.Moon,W.Lee,J.M.Myoung,J.Y.Hwang,and D.S.Seo,‘‘Transparent Conductive Al-Doped ZnO Films for Liquid Crystal Displays,’’J.Appl.Phys.,99[12]124505–8(2006).9X.T.Hao,F.R.Zhu,K.S.Ong,and L.W.Tan,‘‘Hydrogenated Aluminium-Doped Zinc Oxide Semiconductor Thinfilms for Polymeric Light-Emitting Di-odes,’’Semicond.Sci.Technol.,21[1]48–54(2006).10E.Medvedovski,N.Alvarez,O.Yankov,and M.K.Olsson,‘‘Advanced In-dium–Tin Oxide Ceramics for Sputtering Targets,’’Ceram.Int.,34[5]1173–82 (2008).11M.Mazaheri,A.M.Zahedi,and S.K.Sadrnezhaadw,‘‘Two-Step Sintering of Nanocrystalline ZnO Compacts:Effect of Temperature on Densification and Grain Growth,’’J.Am.Ceram.Soc.,91[1]56–63(2008).12X.J.Qin,G.J.Shao,R.P.Liu,and W.K.Wang,‘‘Sintering Characteristics of Nanocrystalline ZnO,’’J.Mater.Sci.,40[18]4943–6(2005).13T.K.Roy,D.Bhowmick,D.Sanyal,and A.Chakrabarati,‘‘Sintering Study of Nano-Crystalline Zinc Oxide,’’Ceram.Int.,34[1]81–7(2008).14Y.H.Sun,W.H.Xiong,and C.H.Li,‘‘Study of ZnO–Al2O3Powders Aqueous Suspension on Dispersion Behavior,’’J.Inorg.Mater.,24[2]413–6 (2009).15F.Q.Tang,Y.Sakka,and T.Uchikoshi,‘‘Electrophoretic Deposition of Aqueous Nano-Sized Zinc Oxide Suspension on a Zinc Electrode,’’Mater.Res. Bull.,38[2]207–12(2003).16Y.Otsubo,‘‘Normal Stress Behavior of Highly Elastic Suspensions,’’J.Col-loid Interface Sci.,163[2]507–11(1994).17K.Shirouzu,T.Ohkusa,M.Hotta,N.Enomoto,and J.Hojo,‘‘Distribution and Solubility Limit of Al in Al2O3-Doped ZnO Sintered Body,’’J.Ceram.Soc. Jap.,115[4]254–8(2007).18E.N.Bunting,‘‘Liquidus Curve of System ZnO–Al2O3,’’J.Res.Natl.Bur. Stand.(US),8[2]279–87(1932).19K.H.Kim,S.H.Shim,K.B.Shim,K.Niihara,and J.Hojo,‘‘Microstructural and Thermoelectric Characteristics of Zinc Oxide-Based Thermoelectric Materials Fabricated Using a Spark Plasma Sintering Process,’’J.Am.Ceram.Soc.,88[3] 628–32(2005).&September2009Communications of the American Ceramic Society2171。

相关文档
最新文档