第二章(矩阵)
第二章 矩阵
" a1n ⎞ ⎟ " a21 ⎟ % # ⎟ ⎟ " amn ⎟ ⎠
⎛ 1 2 3⎞ ⎛ 3 6 9 ⎞ ⎟ ⎟ ⎜ ⎜ 3 × ⎜ 4 5 6 ⎟ = ⎜12 15 18 ⎟ ⎜ 7 8 9 ⎟ ⎜ 21 24 27 ⎟ ⎠ ⎠ ⎝ ⎝
4.矩阵乘法的定义和性质: 当矩阵 A 的列数和 B 的行数相等时,A 和 B 才能相乘,乘积记作 AB. AB 的行数和 A 相等,列数和 B 相等. AB 的(i,j)位元素等于 A 的第 i 个行向量和 B 的第 j 个列向量(维数相同)对应分量乘积之和.
总结:对一个 n 阶方阵 A,我们引入了取行列式、转置、逆矩阵、伴随矩阵这四种运算,即 | A |, A , A , A . 这 四种运算,除了取行列式与求伴随不可互换外,相互之间都是可换的,即: (1) | A |=| A | ;
T T
T
−1
*
(2) | A |=| A | ; (5) ( A ) = ( A ) ;
令 Cm × p
⎛ c11 c12 ⎜ ⎜ c21 c22 = AB = ⎜ # # ⎜ ⎜c ⎝ m1 cm 2
" c1 p ⎞ ⎟ " c2 p ⎟ , 则 % # ⎟ ⎟ " cmp ⎟ ⎠
cij = ai1b1 j + ai 2b2 j + " + ainbnj
矩阵的乘法在规则上与数的乘法有不同: ① 矩阵乘法有条件. ② 矩阵乘法无交换律. 即 AB 一般不等于 BA 。 ③ 矩阵乘法无消去律,即一般地 由 AB=0 推不出 A=0 或 B=0. 由 AB=AC 和 A≠0 推不出 B=C.(无左消去律) 由 BA=CA 和 A≠0 推不出 B=C. (无右消去律) 常见错误:把数的乘法的性质简单地搬用到矩阵乘法中来. 例 1。举例说明,由 AB = 0 ⇒
《线性代数》第二章矩阵
《线性代数》
第二章 矩 阵
本章重点:
•矩阵的运算、矩阵的初等行变换、矩
阵的秩和逆矩阵
本章难点:
•求逆矩阵
一、矩阵的概念
(一)矩阵的概念
a11 a12 a1n
A
a21
a22
a2n
am1
am2
amn
矩阵表示一张数表;
称为:m×n矩阵
记作:Amn
2
5
4
1
2
【解答】
由(1)(2)两题又验证,
152
10 31
1 0
矩阵乘法的交换律不成立。 即有:AB≠BA。
2 0 11
50
31
(2)11 0
51 30
1 3
2
5
210
am1 am2
在它的每个元素前 添上一个负号,就
得到A的负矩阵
a1n
a2n
amn
类似实数 里的负数.
7、单位矩阵
主对角线上的元素都是1,其余元素
都是0的n阶方阵。 记为:In或I
1 0 0
In
0
1
0
0 0 1
nn
主对角线以外的元素
全为零的方阵
1 1 2 1 2 1
3 3
0
2
2
0
5
1
3 9
3 0
6 6
线性代数第2章矩阵
1 0
0 1
+ 00
2n
0
=
1 0
2n
1
.
2.2.12 转置矩阵
将 m n 矩阵
a11 a12
A
a21
a22
am1 a m2
a1n
a2n
amn
的行、列互换得到的矩阵,称为A的转置矩阵, 记为A T,即
a11 a21 AT a12 a22
am1
am
2
a1n a 2n
amn
其中 AT的第i行第j列的元素等于A的第j行第i列的
det
A
21
22
2n
a a a
n1
n2
nn
为方阵A的行列式,记为det A。
方阵行列式定理
定理1 设A、B是任意两个n阶方阵,则
det (AB) = det A det B。
这个定理告诉我们: 1. 两个同阶方阵相乘的行列式等于这两个方 阵的行列式相乘; 2. 两个同阶行列式相乘也可以先求相应的乘 积矩阵,然后求这个乘积矩阵的行列式。 一般地: (1) det (A+B)≠det A + det B (2) det( kA)≠k det A,若A为n阶方阵, 则有 det( kA) = k n det A。
例如 设
A
=
1 1
1 1 ,
B
=
1 1
1
1
,
则
1 1 1 1 0 0
AB = 1
1 1
1
=
0
0 .
称矩阵A是B的左零因子,矩阵B是A的右零因 子。
2.2.11 矩阵A的m次幂
设A为n阶方阵,m为正整数,则
2.1 矩阵的概念
与另外 m 个变量
P29 例3
之间存在如下的线性关系:
线性变换的系数可构成矩阵
A ( a ij ) m n .
线性变换和矩阵之间存在着一一对应关系.
16
§2.1 矩阵的概念 第 附:图像举例 二 章 矩 阵
30 33 37 40 48 58 53 52 65 64 71 69 62 68 76 67 74 86 88 70 58 48 37 33
a a 0 (?) aI a n n
0
11
§2.1 矩阵的概念 第 三、几种特殊的矩阵 二 章 3. 方阵 (1) 单位矩阵 矩 (2) 数量矩阵 阵 (3) 对角矩阵
1
2
0
0
记为 Λ diag ( 1 , 2 , , n ) . n n n
a11 a12 a 21 a 22 (A b) am1 am 2 a1 n a2 n am n b1 b2 bm
称为方程组的增广矩阵. 15
§2.1 矩阵的概念 第 例 二 章 矩 阵 线性变换是指 n 个变量
数表内部 进行操作
4
§2.1 矩阵的概念 第 二、矩阵的定义与一些基本概念 二 1. 矩阵的定义 章 定义 由 m×n 个数 ai j 排成的 m 行 n 列的数表 矩 阵 P26
定义 2.1 记为
A 或者
Am n
称为 m×n 阶矩阵,简记为 A
(a i j )mn
或
(a i j ) .
5
补
数表
第2章 矩阵
2、函数meshgrid的调用格式为:[u,v]= meshgrid(s,t) 注:其中s,t是两个行向量 例:如果s=[s1 s2 s3 s4],t=[t1 t2 t3],则上述命令生成两个(3×4) 阶矩阵:
s1 u s1 s1
s2 s2 s2
s3 s3 s3
s4 s4 s4
1、先创建向量,再创建矩阵
a12
v 2 a21 v 3 a31
v 4 a41
a22 a32
a42
a23 a33
a43
a v 1;
v2;
v3 ;
v4
注:其中分号表示行的结束。
2、直接创建矩阵 a=[a11 a12 a13;a21 a22 a23;a31 a32 a33;a41 a42 a43] 或形象的描述方法: a=[ a11 a12 a13;… a21 a22 a23;… 其中省略号是必须的。 a31 a32 a33;… a41 a42 a43] 或通过在每一行的末尾处按下Enter键来完成: a=[ a11 a12 a13 a21 a22 a23 a31 a32 a33 a41 a42 a43]
四、列矩阵和Leabharlann 矩阵2、行矩阵 当 aij = a1j(即只有一行时),称为行矩阵或者行向量, 记做:
a a11 a12 a1n a1 a2 an (1 n)
注:在MATLAB中,这是向量的默认定义。 五、矩阵和向量的转置 矩阵的转置用(’)表示:
a11 a T a ' 12 a1n a21 ... am1 a22 ... am 2 ( n m) a2 n ... amn
线性代数第2章矩阵PPT课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
第2章 矩阵及其运算
第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵(一)矩阵及相关概念1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n n n ≠≠=得不到由,.............. (2122221)11211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵,记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵 、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵 1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nn n n n n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算1.矩阵的加法CB A B A b a cC n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设 ,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A k kA 111))(3(---=AB AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律 A A T T =))(1( T T kA kA =))(2( T T T A B AB =))(3(T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n A A n )2())(3(2≥=-**n A A A n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T T T T T D BC AD C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O BC O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A EBA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵(一)矩阵的初等变换及相关概念1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换(1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去(4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换)(5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位鞠振宁经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P )()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E k E k E E E ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A E A B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~r E PAQ Q n P m n m A BPAQ Q P B A B A六、常考题型及其解题方法与技巧题型一、有关矩阵的概念及运算题型二、求方阵的幂n A数学归纳法思路,可用相似对角化来求个线性无关的特征向量有,当思路可用二项式定理展开则且,能分解成两个矩阵的和,若思路律就可很方便地求出个矩阵的乘积,用结合能分解为一列与一行两则,若思路,43)(,2,1)(1nn n nA n A CB A CB BC C B A A A A A r +==+== 题型三、求与已知矩阵可交换的矩阵题型四、有关初等变换的问题题型五、关于伴随矩阵的命题题型六、矩阵可逆的计算与证明⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B A E E A A E E A A AA EBA E AB B 111-1-1-1-1114)()();()(3121,,分块矩阵法思路,初等变换法思路,伴随矩阵法思路或使,定义法,找出思路 题型七、求解矩阵方程为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A B A r A r A B B Ax 2,,1)()(.2.111--===。
高等代数-矩阵
• 列向量 n=1的特殊矩
阵
a1
a2
M
am
• 行向量 m=1的特殊矩阵
a1 a2 L an
特殊矩阵及其元素表示_5
• n维标准单位向量
1 0
0
e1
0
M
,
e2
1
M
,L
, en
0
M
0
0
1
特殊矩阵及其元素表示_6
• n阶基础矩阵Eij
0
O
Eij
0 O
a11 b11 a12 b12 a11 b11 a12 b12 a11 b11
a21 b21 a22 b22
a21
a22
b21
a12 b12 b22
矩阵的加减法2_运算规则
• 运算规则
✓交换律: A+B = B+A ✓结合律: (A+B)+C = A+(B+C) ✓0+A=A+0 = A ✓A+ (-A) = 0 ✓A+(-B) = A-B
产品 产量 产品1
分厂1 20 分厂2 30
产品2
17 20
产品3
12 10
3200
17 20
1102
这里2×3个数排成2行3列,成为一个整体,抛 去它所包含的实际意义,构成了高等代数中的 一个2×3阶矩阵。
关于矩阵_1
• 矩阵这个词是由西尔维斯特(Sylvester, 18141897)于1850年首先提出。他是犹太人,故他 在取得剑桥大学数学荣誉会考第二名的优异成 绩时,仍被禁止在剑桥大学任教。从1841年起 他接受过一些较低的教授职位,也担任过书记 官和律师。经过一些年的努力,他终于成为霍 布金斯大学的教授,并于1884年70岁时重返英 格兰成为牛津大学的教授。他开创了美国纯数 学研究,并创办了《美国数学杂志》。在长达 50多年的时间内,他是行列式和矩阵论始终不 渝的作者之一。
(完整版)线性代数吴赣昌第二章
使 AB BA成立,必须满足一定的条件。
(2)由这个例子还可知,A O ,B O ,
但却有 AB O,所以由 AB O,不能得
出 A O 或 B O的结论。若 A O,而 A(X Y ) O,不能得出 X Y 的结论。
例3: 某厂向三个商店发送四种产品的数量可列成矩阵
a11 a12 a13 a14 A a21 a22 a23 a24
a31 a32 a33 a34
这四个产品的单价及单位重量可列成矩阵
b11
B
b21
b31 b41
b12
b22
b32 b42
求 AB ,并指出 AB 的含义。
2、线性方程组的矩阵表示
对线性方程组
a11x1 a12 x2
三、 矩阵与矩阵相乘 1、定义
定义5: 设 A (aij )是一个 m s 矩阵,B (bij )
是一个 s n 矩阵,那么规定矩阵 A 与
B 矩阵的乘积是一个 m n矩阵 C (cij ),
s
其中 cij ai1b1 j ai2b2 j aisbsj aikbkj k 1
一、矩阵的加、减法 1、定义
定义1: 设有两个 m n矩阵 A (aij ) 和 B (bij ) ,
规定 A 和 B 的和为
a11 b11 a21 b21 am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n a2n b2n
amn bmn
a21x1
a22 x2
am1x1 am2 x2
a1n xn b1 a2n xn b2
amn xn bm
a11 a12
第二章 矩阵
在n阶矩阵A (aij )中,若当i j时都有aij 0,
称A为上三角矩阵。
同样,若在n阶矩阵A中,当i j时都有aij 0,
称A为下三角矩阵。
5 1 2 4
0 2 4 3
0 0
0 0
3 0
5 7
1 0 0 0
2 3 0 0
0 6
5 8
4 9
10
2. 矩阵的运算
定义1.4 矩阵的和(矩阵的加法)
b22
b23
b21
b22
b23
0
1
0
0 1 1 b31 b32 b33 b31 b32 b33 0 1 1
b11
b12
b13 b11 b12 b13 b13
b21
b22
b23
b21
b22 b23
b23
b21 b31 b22 b32 b23 b33 b31 b22 b33 b33
AB
(aij
bij ) mn
am1 bm1
a1n b1n
amn bmn
A-B=A+(-B)
A+(-A)= 0
定义1.5 矩阵的数乘
数k与m n矩阵A (aij )的数量乘积仍是m n矩阵,
ka11 ka12 L ka1n
记为kA,定义为kA
(kaij )mn
ka21 M
b11 b12 0
得到 b13 b23 b21 0, b22 b33
B
0
b22
0
b31 b32 b22
例题1.3 下面的对角矩阵A满足aii a jj (i j;
a11 0 L 0
A
0
a22 L
线性代数(复旦大学出版社)第二章 矩阵
第二章矩阵第一节矩阵的概念1、分类:行矩阵:只有一行的矩阵列矩阵:只有一列的矩阵零矩阵O:元素全为零的矩阵单位阵E:主对角线上元素为1,其他元素为0的方阵数量阵(纯量阵):λE对角阵:不在主对角线上的元素都为0的方阵上(下)三角阵:主对角线上以下(上)的元素全为0的方阵2、两矩阵同型:两个矩阵行数且列数都相等两矩阵相等:两矩阵同型,且对应元素相等。
记做A=B。
3、不同型的零矩阵是不相等的第二节矩阵的运算设A,B,C为m×n矩阵,λ, μ为数一、加法:只有同型矩阵才能进行加法运算(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+O=A二、减法:A-B=A+(-B) -B称为B的负矩阵三、乘法:1、只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(行矩阵)的行数时,两个矩阵才能相乘。
简记为:(m×s)(s×n)=(m×n)例: A为2×3矩阵,B为3×2矩阵,则AB=C为2×2矩阵2、数与矩阵:(1)(λμ)A=λ(μA)=μ(λA)(2)(λ+μ)A=λA+μA(3)λ(A+B)=λA+λ B(4)1*A=A, (-1)*A=-A矩阵与矩阵:(1)结合律:(AB)C=A(BC)(2)分配律:A(B+C)=AB+AC(B+C)A=BA+CA(3)λ(AB)=(λA)B=A(λB)(4)EA=AE=A(5)A k A l=A k+l(6)(A k)l=A kl3、矩阵乘法不满足交换律,即(AB)C≠(AC)B另外:(1)一般有AB≠BA (A与B可交换时,等式成立)(2)AB=O,不能推出A=O或B=O(3)AB=AC,A≠O,不能推出B=C(4)(AB)k≠A k B k(A与B可交换时,等式成立)4、可交换的:对于两个n阶方阵A,B,有AB=BA,则称A与B是可交换的。
纯量阵与任意同行方阵都是可交换的。
第二章:矩阵
矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.本章核心内容如下:(1)矩阵的幂运算:①秩为1的矩阵:1)(=A r ,可以分解为列矩阵(向量)×行矩阵(向量)的形式,再采用结合律;②型如,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000000c b a A 或⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000c b a ,或⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡k c k b a k 000,利用二项式展开;③利用特征值和相似对角化:∧=−AP P 1;④分块矩阵:⎥⎦⎤⎢⎣⎡=C B A 00.(2)伴随矩阵重要公式及求法:①伴随的秩序:⎪⎩⎪⎨⎧−<−===1)(01)(1)()(*n A r n A r n A r nA r ;②伴随得特征值:*1*(,)A AA AX X A A A X X λλλ− == ⇒ =;(※※)③伴随的重要公式:1*−=n AA ***)(AB AB =A AA n 2**)(−=(3≥n)1*−=A A A /AA A *1=−,*1*)(A k kA n −=,AAA A ==−−*11*)()(,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛***B A OO A B B O O A ,⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛O A B B A O O B A O mn***)1((m m A ×n n B ×)(3)逆矩阵:①求1−A 的方法:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛==⇒=−−−−−−−−.43,21111111*1*1O A B O O B A O B O O A B O O A A A A A A A B A E B A A n n )分块矩阵法:(;为三阶、四阶数值型)()初等行(列)变换法(;为二阶、三阶数值型)法()();为抽象矩阵:)定义法((②逆的重要公式:()111−−−=A B AB T T A A )()(11−−=()*11*)(−−=A A ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−111B A B A ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−111A B B A ⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B O CB A A B O C A ⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B CA B O A BC O A (4)初等矩阵变换:①初等变换(3)方法:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯⎯⎯⎯⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎯⎯⎯⎯⎯⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+100010041)3(100030001)2(100001010)1(1000100012141232列)行(至第列)倍乘行(第行(列)倍乘第行(列)变换(交换)A ②初等变换的求逆(3)公式:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛1000010101000010101-,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛10000103101000030101-,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛51000100015000100011-(5)矩阵方程:①B AX =⇒B A X 1−=;②B XA =⇒1−=BA X ;③C AXB =⇒11−−=CB A X .(系数矩阵一般可逆)(6)矩阵的秩:①)()()(T T AA r A r A r ==;②)()(kA r A r =(0≠k);③)()()(B r A r B A r +≤±;④)}(),(min{)(B r A r AB r ≤⇔)()(A r AB r ≤,)()(B r AB r ≤;⑤0=××s n n m B A n B r A r ≤+⇒)()(;⑥⎪⎩⎪⎨⎧−<−===1)(01)(1)()(*n A r n A r nA r n A r ;⑦B A ~)()(B r A r =⇒.本章重点是伴随矩阵、可逆矩阵、初等变换、矩阵的秩,在这一章中必有一道小题4分.从历年真题考题来看,初等变换、矩阵的秩尤其重要.一、选择题:1、设B A ,均为n 阶矩阵(2≥n ),E 为单位矩阵,则有()(A)2222)(B AB A B A ++=+(C)22))((B A B A B A −=+−(C)))((2E A E A E A +−=−(D)222)(B A AB =2、设C B A ,,均为n 阶矩阵,且A 可逆,下列命题正确的是()(A)若BC BA =,则C A =(B)若CB AB =,则C A =(C)若0=AB ,则0=B (D)若0=BC ,则0=C 3、设B A ,均为n 阶方阵,满足等式0=AB ,则必有()(A)0=A 或0=B (B)=+B A (C)0=A 或0=B (D)0=+B A 4、设B A ,为n 阶对称矩阵,且B 可逆,则下列矩阵中为对称矩阵的是()(A)AB AB 11−−−(B)A B AB 11−−+(C)11−−AB B(D)2)(AB 5、设矩阵33)(×=ij a A 满足T A A =*,其中*A 为A 的伴随矩阵,T A 为A 的转置矩阵,若13111,,a a a 2为三个相等的正数,则11a 为()(A)33(B)3(C)31(D)36、设n 阶矩阵A 非奇异(2≥n ),*A 是A 的伴随矩阵,则()(A)A A A n 1**)(−=(B)A A An 1**)(+=(C)AAA n 2**)(+=(D)AAAn 2**)(+=7、设A 是任一n 阶方阵(3≥n ),*A 是A 的伴随矩阵,又k 为常数,且10±≠,k ,则必有=*)(kA ()(A)*kA(B)*1A k n −(C)*A kn(D)*1A k−8、设B A ,为n 阶矩阵,**,B A 分别为B A ,的伴随矩阵,分块矩阵⎥⎦⎤⎢⎣⎡=B O O A C ,则C 的伴随矩阵=*C ()(A)⎥⎦⎤⎢⎣⎡**B B O O A A (B)⎥⎦⎤⎢⎣⎡**A A O OB B (C)⎥⎦⎤⎢⎣⎡**A B OO B A (D)⎥⎦⎤⎢⎣⎡**B A OO A B 9、设n 阶方阵C B A ,,满足关系式E ABC =,其中E 是n 阶单位阵,则下式未必有()(A)EBCA =(B)EA B CT T T=(C)ECAB=(D)EACB =10、设C B A ,,为n 阶方阵,且E CA BC AB ===,则=++222C B A ()(A)0(B)E(C)E2(D)E311、设)21,0,...,0,21(=a ,矩阵a a E A T −=,a a E B T 2+=,其中E 是n 阶单位阵,则AB 等于()(A)0(B)E −(C)E (D)aa E T +12、设C B A ,,均为n 阶矩阵,E 是n 阶单位阵,若AB E B +=,CA A C +=,则C B −为()(A)E (B)E−(C)A (D)A−13、设11,,,−−++B A B A B A 均为n 阶可逆矩阵,则111)(−−−+B A 等于()(A)11−−+B A (B)BA +(C)B B A A 1)(−+(D)1)(−+B A 14、设A 为3阶矩阵,将A 的第2行加到第1行得到B ,再将B 的第1列的)1(−倍加到第2列得到C ,记⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100010011P ,则:()(A)AP P C1−=(B)1−=PAP C (C)AP P C T =(D)TPAP C =15、设P A ,均为3阶矩阵,TP 为P 的转置,且,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=200010001AP P T 若),,(321ααα=P ,),,(3221αααα+=Q ,则:AQ Q T 等于()(A)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛200011012(B)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛200021011(C)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛200010002(D)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛20002000116、设A 为3阶矩阵,将A 的第2列加到第1列,得到B ,再交换B 的第2行与第3行得到E ,记,,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=01010000110001100121P P 则:=A ()(A)21P P (B)211P P −(C)12P P (D)112−P P 17、设B A ,为非零矩阵,且O AB =,则A 和B 的秩()(A)必有一个等于零(B)都小于n (C)一个小于n(D)一个等于n二、填空题:18、计算下列行列式乘积:①=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛231343452161.②()=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛312321.③()=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛321312.④()=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321332313232212131211321x x x a a a a a a a a a x x x .19、设E A 23=,证明:E A 2+可逆,并求=+−1)2(E A .20、设T a)1,0,1(−=,矩阵T aa A =,n 为正整数,则=−n A aE .21、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101020101A ,而2≥n 为正整数,则=−−12n n A A .22、设3阶矩阵B A ,满足E B A AB =−−,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=102020101A ,则=B .23、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,*A 是A 的伴随矩阵,则=−1*)(A .24、设4阶方阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−=1100210000120025A ,则=−1A .25、设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=−000000000000121⋯⋯⋮⋮⋮⋮⋯⋯nn a a a a A ,其中n i a i ,...,2,1,0=≠,则.1=−A 26、设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=7600054000320001A ,E 为4阶单位矩阵,且)()(1A E A EB −+=−,则:=+−1)(B E .27、设矩阵A 满足042=−+E AE A ,其中E 为单位矩阵,则=−−1)(E A .28、设矩阵⎥⎦⎤⎢⎣⎡−=3211A ,E A A B 232+−=,则=−1B .29、设B A ,均为3阶矩阵,E 是3阶单位矩阵.已知B A AB +=2,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=202040202B ,则=−−1)(E A .30、计算:=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2013201200101010054343232101010100.31、矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0111001100010000A ,则=)(3A r .32、已知A 是非零矩阵,且O A =2,则=)(*A r .33、设B A ,均为n 阶矩阵,且1−=B ABA ,E 为单位矩阵,则=++−)()(AB E r AB E r .三、解答题:34、已知实矩阵33)(×=ij a A 满足以下条件:(1)ij ij A a =(3,2,1,=j i ),其中ij A 是ij a 的代数余子式;(2)011≠a .计算行列式A .35、设0=k A (k 为正整数),证明:121...−−++++=−k A A A E A E )(.36、设方阵A 满足:O E A A =−−22,证明:A 及E A 2+都可逆,并求1−A 及1)2(−+E A .37、设B A ,为n 阶方阵,若B A AB +=.(1)证明:E A −可逆且BA AB =;(2)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=200012031B ,求矩阵A .38、已知B A ,为3阶矩阵,且满足E B B A 421−=−,其中E 是3阶单位矩阵.(1)证明:矩阵E A 2−可逆;(2)若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=200021021B ,求矩阵A .39、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=321011330A ,且满足B A AB 2+=,求矩阵B .40、设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−=390013000003000013000013A ,求n A .一、选择题:1、答案:(C).【考点】考查矩阵运算.解:矩阵运算,一般没有BA AB ≠.例,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛936624312312321,()13332112321312=×+×+×=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛BA AB ≠⇒;例,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛341201104321⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛214343210110BA AB ≠⇒;222332)(×××=AB B A ,333223)(×××=BA A B BA AB ≠⇒;333113)(×××=AB B A (左行右列),111331)(×××=BA A B (左行右列)BA AB ≠⇒.特别地,22))((B BA AB A B A B A −+−=−+,222)(B BA AB A B A +++=+但:E A E A E A −=−+2))((,EA A E A ++=+2)(22))((23E A A E A E A ++−=−))((23E A A E A E A +−+=+【注】:尤其要注意kE A =3的情形.))((23E A A E A E A ++−=−))((23E A A E A E A +−+=+2、答案:(C).【考点】考查矩阵运算.解:对于(A),C A A BC BA =⇒′≠⎭⎬⎫=可逆,但C A B BC BA =⇒⎭⎬⎫=可逆.例:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛993312516321,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛993311116321⇒C A ≠.故(A)错误.对于(B),C A A CB AB =≠⇒⎭⎬⎫=可逆,但C A B CB AB =⇒⎭⎬⎫=可逆.例:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−993362311521,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛993362311111⇒C A ≠.故(B)错误.对于(C),则对0=AB ,左乘1−A ,01=−AB A ,则0=B .故(C)正确.对于(D),0=AB ≠0=⇒A 或者0=B .例:O =⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛000021-4-24221,()01-11321=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛.故(D)错误.3、答案:(C).【考点】考查矩阵运算.解:对0=AB ,用行列式乘法公式:0==AB B A .则0=A 或0=B .4、答案:(B).【考点】考查矩阵(对称、反对称)运算.解:对于(A),TT T T T T T B A A B A B AB A B AB)()()()()(111111−−−−−−−=−=−1111)()(−−−−−=−=AB A B B A A B T T T T ,所以(A)不对.对于(B),TT T T T T T B A A B A B AB A B AB)()()()()()()(111111−−−−−−+=+=+A B AB AB A B B A A B T T T T 111111)()()()(−−−−−−+=+=+=,所以(B)不对.对于(C),1111)()()()()(−−−−===BAB B A B B A B AB BT T T T T T T ,所以(C)不对.对于(D),2222)()(])[(])[(BA A B AB AB T T T T===,所以(D)不对.5、答案:(A).【考点】考查矩阵(ij ijA a =或T A A =*)的运算.解:由于T A A =*,即:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡332313322212312111332313322212312111a a a a a a a a a A A A A A AA A A ,因此ij ij A a =,所以03211222111313121211111312>=++=++=a a a a A a A a A a A ,又T A A =*,两边取行列式,则:A A AA T ===−13*,即A A =2,则有1=A ,因此,13211=a ,3311=a .6、答案:(C).【考点】考查矩阵伴随.解:根据伴随矩阵的关系:E A A A AA ==**.现将*A 视为关系式中的A ,则有:E A A A A A *******)()(==,由1*−=n AA 及AA A=−1*)(可得:A A AA AA A An n 211****)()(−−−===.7、答案:(B).【考点】考查矩阵伴随.解:当A 可逆时,由1*−=A A A 有:*111*1)()(A k A kA k kA kA kA n n −−−=⋅==.8、答案:(D).【考点】考查矩阵伴随(分块矩阵).解:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛==−−−−1111*B O O A B A B O O A B O O A C C C ⎥⎦⎤⎢⎣⎡=**B A O O A B .9、答案:(D).【考点】考查矩阵(定义)的逆.解:由C B A ,,都是n 阶方阵,且E ABC =知:①E BC A =)(,即A 与BC 互为逆矩阵,则有:E BCA =,故(A)正确.②T T T T T A B C ABC E E ===)(,故(B)正确;③E C AB =)(,即AB 与C 互为逆矩阵,则有:E CAB =,故(C)正确.10、答案:(D).【考点】考查矩阵(定义)的逆.解:由C B A ,,为n 阶方阵,且E CA BC AB ===,我们取C B A ,,为n 阶单位阵.故E C B A 3222=++.11、答案:(C).【考点】考查矩阵乘法.解:a aa a a a E a a a a a a E a a E a a E AB T T T T T T T T )(2))((2)2)((+−=+−=+−=E a a a a E T T =+−=.12、答案:(A).【考点】考查矩阵逆运算.解:由AB E B +=⇒E B A E =−)(⇒1)(−−=A E B ;由CA A C+=⇒A A E C =−)(⇒1)(−−=A E A C ;所以E A E A E A E A A E C B =−−=−−−=−−−−111))(()()(.13、答案:(C).【考点】考查矩阵(定义)的逆.解:利用矩阵逆的运算法则:AA B B B A B A AB E A B A 1111111111)(])([)]([)(−−−−−−−−−−+=+=+=+或者1111))(()()(−−−−++=++=B A B A B A B B A A E,则:B A B B A A +=+−−])(11,⇒=+−−−111)(B A B B A A 1)(−+.14、答案:(B).【考点】考查矩阵初等变换.解:按照已知条件,用初等变换描述有:AB ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=100010011B C 因此A C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000100111100010011−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−PAP .15、答案:(A).【考点】考查初等变换.解:因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+100011001),,(),,(3213221ααααααα,即:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100011001P Q ,于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100011001)(100010011100011001100011001AP P P A P AQ Q T TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011012100011001200010001100010011.16、答案:(D).【考点】考查初等变换.解:依题意,B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100011001,E B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100001,即:B Ap =1,E B P =2⇒E Ap p =)(12,所以11121112−−−−==P P EP P A .17、答案:(B).【考点】考查矩阵O AB =的秩.解:由矩阵B A ,非零⇒1)(≥A r 1)(≥B r 又O AB =⇒nB r A r ≤+)()(因此,矩阵B A ,的秩都小于n .二、填空题:18、答案:①⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=+−=×+−×+×−=+−=×+−×+×−=+−=×+−×+×=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛35153612323)3(4135815224)3(51215218121)3(611231343452161;②()()12)12642232221(312321==++=×+×+×=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛;③()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛963321642321312;④()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡33322311332322211231321211132132332313232212131211321x a x a x a x a x a x a x a x a x a x x x x x a a a a a a a a a x x x 233332231313322322221212311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++=121231132112233322222111222x x a x x a x x a x a x a x a +++++=.【考点】考查行列式计算.【注】:s m s n n m C B A ×××=.19、答案:10)42(2E A A +−.【考点】考查矩阵的逆运算.解:由E A 23=变形为:E E A A E A 10)42)(2(2=+−+,于是:E E A A E A =+−+10)42()2(2,故10)42()2(21E A A E A +−=+−.20、答案:)2(2n a a−.【考点】考查1)(=Taa r 的有关行列式运算.解:因⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==101000101)101(101T aa A ,而2101)101(=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−==a a A T ,所以A A n n 12−=,)2(202002022211111n n n n n n n a a a a a A aE A aE −=−−=−=−−−−−−.21、答案:O .【考点】考查矩阵运算.解:由于11)2(2−−−=−n n n A E A A A ,而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=−1010001012E A ,又O A E A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=−101020101101000101)2(,所以O A A n n =−−12.22、答案:21.【考点】考查矩阵的逆及行列式值.解:由E B A AB =−−,即:E A B E A E A +=−+))((.因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=+202030102E A ,知E A +可逆,故1)(−−=E A B .而2002010100=−=−E A .又因AA 11=−,故21)(1=−=E A B .23、答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡543022001101.【考点】考查伴随运算.解:由EA AA =*知:E A AA =*,故AA A =−1*)(,又10543022001==A ,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−543022001101)(1*A .24、答案:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−3131003231000520021.【考点】考查分块矩阵求逆.解:由⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=−−−1110000C B C B A ,设⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡=−−5221122511B ,⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡−=−−112131112111C ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−=−313100323100005200211102100001200251-1A .【注】在今后考研中一定还要注意⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=−−−−O BC O O C B O A 1111这种题型.25、答案:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=−−01000010000110001211n n a a a a A ⋯⋮⋮⋮⋮⋯⋯⋯.【考点】考查分块矩阵求逆.解:由⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=−−−−O BC O O C B O A 1111,又⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=−21111a a C ⋱,所以,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=−−01000010000110001211n n a a a a A ⋯⋮⋮⋮⋮⋯⋯⋯.26、答案:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−4300032000210001【考点】考查矩阵的逆运算.解:若先求出1)(−+A E,再作矩阵乘法求出B ,最后通过求逆得到1)(−+B E .因此要求我们利用单位矩阵恒等变形:1`11)(2)]()[()()()(−−−+=++−+=+−+=+A E A E A E A E E A E A E E B .所以)(21])(2[)(11`1A E A E E B +=+=+−−−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=4300032000210001或者,由)()(1A E A E E B −+=+−,左乘A E +得:A E EB A E −=++))((⇒EA E A E A EB A E 2)()(=++−=+++即有:E B E A E 2))((=++.以下同解.27、答案:2)2(E A +.【考点】考查抽象矩阵定义法求可逆矩阵.解:由042=−+E AE A ⇒EE A E A 2)2)((=+−即:E E A E A =+−2)2()(2)2()(1E A E A +=−−.28、答案:⎥⎥⎦⎤⎢⎢⎣⎡−−11210.【考点】考查矩阵逆运算.解:因为))(2(232E A E A E A A B−−=+−=,所以1111)2()()])(2[(−−−−−−=−−=E A E A E A E A B 又⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡−=−−−021*******)(11E A ,⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡−−=−−−12111211)2(11E A .所以,=−1B ⎥⎦⎤⎢⎣⎡−021221=⎥⎦⎤⎢⎣⎡−1211⎥⎥⎦⎤⎢⎢⎣⎡−−11210.29、答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.【考点】考查矩阵的逆运算.解:由B A AB +=2⇒E E B E A 2)2)((=−−,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−=−−001010100)2(21)(1E B E A .30、答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡345234123.【考点】考查初等行变换.解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡3452341230010101005434323210101010020132012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡34523412331、答案:1)(3=Ar .【考点】考查矩阵的幂运算.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00120001000000002A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0010000000000003A ,所以1)(3=A r .32、答案:0.【考点】考查伴随矩阵的秩.解:由O A =2知,5)()(≤+A r A r ,所以4)(<A r ,故0)(=A r .33、答案:n .【考点】考查矩阵的秩.解:由1−=B ABA 知,E ABAB =,所以OE AB E AB =−+))((则n E AB r E AB r ≤−++)()(.又E E AB AB E 2)()(=++−,所以nE r E AB r AB E r =≥++−)2()()(因此,n E AB r E AB r =−++)()(.三、解答题:34、答案:1.【考点】考查行列式(矩阵)计算:T A A =*或ij ij a A =.(与选择题第5题同解)解:由于T A A =*,即:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡332313322212312111332313322212312111a a a a a a a a a A A A A A AA A A ,因此ij ij A a =,所以03211222111313121211111312>=++=++=a a a a A a A a A a A ,又T A A =*,两边取行列式,则:A A AA T ===−13*,即A A =2,则有1=A .35、答案:原命题成立.【考点】考查0=k A 的相关运算.解:由0=k A 知:)...(21E A A A E A E A E k k k ++++−=−=−−−)(所以,)...(121−−++++−=−k A A A E E A )(,故命题成立.36、答案:)(1E A A −=−;)3(41)2(1E A E A −−=+−.【考点】考查抽象矩阵的逆.(定义法)解:①由EA A O22−−=⇒)(2E A A E −=,故)(1E A A −=−;②由EA A O 22−−=⇒E E A E A 4)3)(2(−=−+,故)3(41)2(1E A E A −−=+−.37、答案:(1)1)(−−+=⇒E B E A ;(2)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2000131-0211A .【考点】考查矩阵的逆运算.解:(1):由AB B A =+知:=+−−E B A AB E E B E A =−−)()(.所以E A −可逆,且E A E B −=−−1)(1)(−−+=⇒E B E A .EE A E B =−−)()(即:0=−−A B BA ⇒BAB A =+又AB B A =+所以BA AB =.(2)由于11100002030)(−−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=−E B ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1000031-0210,故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2000131-0211A .38、答案:)4(8121-E B E A −=−)(;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=200011020A .【考点】考查矩阵的逆运算.解:(1)由EB B A421−=−左乘A 知:042=−−AB AB .从而E E B E A 8)4(2=−−)(,即E E B E A =−⋅−)4(812)(.则E A 2−可逆,且)4(8121-E B E A −=−)(.(2)由(1)知1)4(82−−+=E B E A .而112-0002-102-3-4−−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−)(E B ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=21-00083-81-04141-故⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=200011020A .【注意】如果只要证明E A 2−可逆,那么由042=−−A B AB A B E A 42=−⇒)(.因为A 可逆,知.0443≠=A A 故02≠⋅−B E A ,就可证出E A 2−可逆.39、答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−011321330.【考点】考查矩阵运算.解:B A AB 2+=⇒A B E A =−)2(,而021210113322≠=−−−=−E A ,故A E A B 1)2(−−=,由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=−100010001121011332)2(⋮⋮E E A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→2112123121232321100010001⋮所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=−21212123212123321)2(1-E A 因此,A E A B 1)2(−−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=212121232121232321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−321011330=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−011321330.【注】此题还可以用伴随矩阵来求逆,不妨试一试,但要注意计算准确.40、答案:见解析.【考点】考查矩阵的幂运算.解:将矩阵A 分块,⎥⎦⎤⎢⎣⎡=n nn C OO B A ,D E B +=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=30001000101000100013300130013,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000100010D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0000001002D ,O D D n ===...3,所以,22211333)3(D C D C D E B n n n n n n n −−++=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−−−000000300000300030300030003221111n n n n n n n n nC C C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=−−−n n n n n n n n n C C C 300330333112211()13313913−⎟⎟⎠⎞⎜⎜⎝⎛−=⎥⎦⎤⎢⎣⎡−−=C ,所以,()()()133113311331−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−=⋯n C ()⎥⎦⎤⎢⎣⎡⋅⋅−⋅−⋅=⎥⎦⎤⎢⎣⎡−−=−⎟⎟⎠⎞⎜⎜⎝⎛−=1-1-1-1-1-1-636961633913613316n n n n n n 所以⎥⎦⎤⎢⎣⎡=n nn C OO B A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅−⋅−⋅=−−−−−−−11111122116369000663000003000033000333n n n n n n n n n n n n nC C C .。
线性代数第二章,矩阵及其运算
a1n b1
a2n
b2
L L
amn bm
§2 矩阵的运算
一、加法
设 A (ai j )mn , B (bi j )mn 都是m n 矩阵,则加法定义为
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
显然,
AB B A
a22
L
L L L
am1 am2 L
a1n
a11 a21 L
a2n
,记
AT
a12
a22
L
L
L L L
amn
a1n an2 L
则称
AT
A
是
的转置矩阵。
am1
am 2
L
amn
显然,
① ( AT )T A ,② ( A B)T AT BT ,③( A)T AT ,④( AB)T BT AT
2. 即使 Amn , Bnm ,则Amn Bnm 是m 阶方阵,而Bnm Amn 是n 阶方阵;
3. 如 果 A , B
都 是n
阶
方
阵
,
例
如
2
A
1
4
2
,
B
2
3
4
6
,则
16
AB
8
32 16
,而BA
0 0
0
0
;
AB BA
综上所述,一般
(即矩阵乘法不满足交换率)。
但是下列性质显然成立:
三、乘法
乘法运算比较复杂,首先看一个例子
设变量t1, t2 到变量 x1, x2 , x3 的线性变换为
线性代数第二章 矩阵
(1)
其中 x1, x2 , , xn 是 n 个未知数,m 是方程的个数,
ai(j i 1, 2, , m,j 1, 2, , n)称为线性方程组的系
数,b1, b2, , bm 称为线性方程组的常数项.
由 n 个数 c1, c2 , , cn组成的有序数组 (c1, c2 , , cn ) 称为方程组(1)的解, 是指当 x1, x2 , , xn 分别用 c1, c2 , , cn 替换后,(1)的每个等式都变成了恒
例1 解线性方程组
x1 2x2 2x1 3x2
x3
x4 x4
2, 3,
x1 x2 x3 2x4 3.
我们就可以只考虑方程组的系数和常数项组成的 一个矩形数阵(后面我们称这种矩形数阵为矩阵), 对于方程组(1),其对应的矩形数阵为
a11 a12 a21 a22
等式. 方程组(1)的解的全体组成一个集合,这个集合
称为方程组(1)的解集合. 求解方程组实质上就是找到方程组的所有解,即求
出它的解集合. 把具有相同解集合的两个方程组称为同解的方程组.
定义1 对线性方程组(1)进行如下三种变形,称 为线性方程组的初等变换:
1)用一个非零数 k 乘以某一个方程; 2)用任意数 k 乘以一个方程加到另外一个方程上; 3)交换两个方程的位置.
1.矩阵的加法
第二章 矩阵
第一节 矩阵的基本概念
一、矩阵的引入
所谓具有 m 个方程 n 个未知数的线性方程组的 一般形式是指
a11x1 a12 x2
a21x1
a22 x2
am1x1 am2 x2
线性代数课件第2章矩阵
(2)分配律:A(B C) AB AC, (B C)A BACA
(3)对任意数 有 (AB) ( A)B A(B)
(4)设 A是 m n矩阵 ,则
Em Amn A,mn Amn En Amn
或简记为 EA AE A
即单位矩阵是矩阵乘法的单位元,作用类似
于乘法中的数1. 20
(2)列矩阵 当 n 时1 ,即只有一列的矩阵
b1
B
b2
称为列矩阵或列向量. bm
3
(3)零矩阵 所有元素全为零的矩阵称为零
矩阵,记为O.例如,m n的零矩阵可记为
0 0
0
Omn
0
0
0
0
0
0
(4)方阵 行.数和列数都等于 n的矩阵,称 为 n 阶矩阵或 n阶方阵,记为 A,n
记为
1 0
0
E
En
0
1
0
或
0
0
1
1
1
1
7
(7)n阶数量矩阵 主对角元素等于同一个数
k 的 n阶对角阵,称为 n阶数量矩阵,记为
k 0
0
kE
0
k
0
或
0
0
k
k
k
.
k
8
2.2 矩阵的运算
9
2.2.1 矩阵的线性运算
1.矩阵的加法
定义2 两个 m n的同型矩阵 A (和aij ) B 的(bij )
A1n A2n Ann
称为矩阵的伴随矩阵.
31
定理1 设 A是 n阶方阵, A为* 的A 伴随矩阵,则
定理2 阶AA方*阵 A可* A逆 A E ,且
n
A A 0
第二章矩阵概念
矩阵概念和理论是学习经典数学的基础,又 是最有实用价值的数学概念和理论。特别是 计算机的广泛应用,它已成为现代各科技领 域处理信息的量化和表格化及信息分析处理 的强有力的工具。
§2.1 矩阵的概念
2.1 .1 关于矩阵的实际例子
先看三个实际例子:
例2.1 设要将某种物质从三个产地、、运 往四个销地、、、,用表示由产地调往销地 的物质数量,那么这一调运方案可用下面的 表格表示:
C A B 0 0 1 4
45
2
0
0
59
2
7 9 1 3 2 2 0 0 16 4 4 0
为上半年完成的物质调运表。
由于矩阵的加法是把对应元素相加,而数的加
法满足交换律与结合律,因此易知矩阵的加法 满足:
交换律 A+B=B+A,
矩阵
b11 b12 b1p
B b21
b22
b2 p
,
bn1
bn2
bnp
n
则由元素 cij ai1b1 j ai2b2 j ... ainbnj aik bkj
(i=1,2,…,m;j=1,2,…,p)
aij bij(i=1,2,…,m;j=1,2,…,n),则称矩阵
A 与B 相等,记为A=B。也就是说,两个矩阵 完全一样时,才叫做相等。
特别当m=n时,矩阵 A (aij )nn称为n阶方阵。
当m=1时,即只有一行的矩阵 A [a1, a2 ,..., an ]1n
称为行矩阵或行向量。
第 二 章 矩 阵 内容概述
则线性方程组
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 am1 x1 am 2 x2 amn xn bm
可表为: AX=B。
5) A乘B,左乘还是右乘的区别。
满足: 1)A
T T
A,
T T T T
2) (kA) kA
T T
3) ( A B) A B . 4) ( AB) B A . 5) A为n阶方阵 A A
1 1 1 1 4 T T T 例:A , B ; 求 ( AB ) , B A . 2 3 2 0 3
由这个定义可知: 1)如果矩阵A的列数等于矩阵B的行数,则A与B 可以相乘。 2)矩阵C的行数等于矩阵A的行数,矩阵C的列数 等于矩阵B的列数。 3)乘积C的第i行第j列的元素Cij等于矩阵A的第 i行的元素与矩阵B的第j列的对应元素乘积之和。
1 2 3 1 2 例:A 0 1 2 , B 0 3 ; 求AB 1 2 1 1 2
第二章 矩 阵 内容概述
• 矩阵是数学中的一个重要的概念; 它是线性代数的主要研究对象之一,在 科学技术及经济领域中有广泛的应用。 这一章的目的是引入矩阵的概念及运算, 并讨论它们的一些基本性质,最后给出 两种求逆矩阵的方法。
§2.1 矩阵的概念
• (矩阵的定义) 由m×n个数aij排成一个m行n列的矩形 表 a11 a12 a1n
(二)矩阵的乘法
例:某地有、两工厂生产甲、乙、丙 三种产品, 矩阵A表示每种产品的数量, 矩阵B表示每种产品的 单位价格和单位利润, 矩阵C表示各工厂的总收入和 总利润,即: a11 A a 21
工程数学第二章矩阵课件
68 34
上页
下页
返回
结束
例 6 若 A 为 n 阶方阵, k 为实数,则 kA kn A .
证 由于 A 为 n 阶方阵, k 为实数,根据数与矩阵乘法的定义知, kA 是将 A 的 每个元素都乘以 k ,在求 kA 时,根据行列式性质的单行可提性,每一行提出一个 k , 所以 kA kn A .
例1
已知
a
3
b
a
3
b
c
7
d
2c d 3
,求
a,b,c, d
.
解 根据题意,得
a b 7,
2c d 3,
cd
3,
a b 3
故 a 5,b 2,c 2, d 1 .
上页
下页
返回
结束
例2 设
A
1 3
2 4
,
B
0 1
2 1
,
试求:(1) A 与 B 是否相等?(2) A , B .
;
0
0
A
0
0 0
0 0
0 2 1 0 4 2
0
3
2
5
1
3
10 2 5
4
1
.
0 A 称为 A 的负矩阵,记为 A,其中 A与 A 的每个对应元素都互为相反数.
上页
下页
返回
结束
矩阵加法具有如下性质:
假设 A, B,C, 0 均为 m n 矩阵,则 (1) A B B A(交换律); (2) (A B) C A (B C) (结合律); (3) A 0 0 A A; (4) A (A) 0 .
5
3
7 5
4 2
第二章 矩阵及其运算
a2n xn
0,
(2)
am1x1 am2x2 amnxn 0,
称为n 元齐次线性方程组(system of homogeneous
linear equations). .
n 元线性方程组通常简称为线性方程组或方程组.
对于齐次线性方程组(2), x1=x2= … =xn=0 一 定是它的解,称为方程组(2)的零解(null solution);
其中bi 1 表示第 i 种货物的单价, bi 2 表示第 i 种货物的单件重量.
五、矩阵与线性变换
n 个变量 x1 , x2 , , x与n m 个变量 y1 , y2 , , y之m 间的
关系式
y1 a11 x1 a12 x2
y2 a21 x1 a22 x2
ym am1 x1 am2 x2
a11a12 a1n
0 a22
a2n
0 0
ann
a11 a1n1 a1n
a21
a2n1
0
ann 0
0
5. 形如 下面两个矩阵 的方阵称为下三角矩阵(lower triangular matrix).
a11 0 a21 a22
an1
an2
0 0
如果存在不全为零的数是(2)的解,则称为其非零
解(non-zerou solution).
非齐次方程组可能有解可能无解.
例如 x y 0,
(1)x y 2;
x (2)x
y y
0, 1,
x1 x2 0, (3)2x1 2x2
0,
x y 2; 3x1 3x2 0;
(1)有唯一解,(2)无解,(3)有无穷多解.
am1 am2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何与代数主讲: 张小向第二章矩阵第一节矩阵的代数运算第二节可逆矩阵第三节分块矩阵第四节矩阵的秩第五节初等矩阵第六节用Matlab解题§2.1 矩阵的代数运算一. 矩阵的线性运算1. 加法产品发到各商场的数量A B C 甲200180190乙100120100第一次产品发到各商场的数量A B C 甲220185200乙105120110第二次产品发到各商场的数量A B C甲两次累计:420一. 矩阵的线性运算1. 加法产品发到各商场的数量A B C甲200180190乙100120100第一次产品发到各商场的数量A B C甲220185200乙105120110第二次产品发到各商场的数量A B C甲两次累计:420 365§2.1 矩阵的代数运算§2.1 矩阵的代数运算一. 矩阵的线性运算1. 加法产品发到各商场的数量A B C甲200180190乙100120100第一次产品发到各商场的数量A B C甲220185200乙105120110第二次产品发到各商场的数量A B C甲两次累计:420 365 390§2.1 矩阵的代数运算一. 矩阵的线性运算1. 加法产品发到各商场的数量A B C甲200180190乙100120100第一次产品发到各商场的数量A B C甲220185200乙105120110第二次产品发到各商场的数量A B C甲两次累计:420 365 390§2.1 矩阵的代数运算一. 矩阵的线性运算1. 加法产品发到各商场的数量A B C甲200180190乙100120100第一次产品发到各商场的数量A B C甲220185200乙105120110第二次产品发到各商场的数量A B C甲两次累计:420 365 390§2.1 矩阵的代数运算一. 矩阵的线性运算1. 加法产品发到各商场的数量A B C甲200180190乙100120100第一次产品发到各商场的数量A B C甲220185200乙105120110第二次产品发到各商场的数量A B C甲两次累计:420 365 390§2.1 矩阵的代数运算一. 矩阵的线性运算1. 加法420 365 390205 240 210A + B=200 180 190100 120 100A=220 185 200105 120 110B=(1) 大前提: 同类型(2) 具体操作: 对应元素相加§2.1 矩阵的代数运算一. 矩阵的线性运算1. 加法A = [a ij]m⨯n与B = [b ij]m⨯n的和:C= [c ij]m⨯n= [a ij+b ij]m⨯n.]m⨯n, 记-A= [-a ij]m⨯n , 注:①设矩阵A= [aij——A的负矩阵.②设A, B是同型矩阵, 则它们的差定义为A+ (-B). 记为A -B.即A-B= A+ (-B).2. 数乘设矩阵A= [aij]m⨯n, 数k与A 的乘积定义为[k a ij]m⨯n,记为k A或A k.注: 矩阵的线性运算即k A= A k=k a11k a12… k a1nk a21k a22… k a2n… … … …k a m1k a m2… k a mn加法数乘有时, 加下标指明其阶数.通常用O表示零矩阵.0 00 00 0 000 00 0 00 0 00 0 0例如, 上述零矩阵分别可以记为:O2O2 3O3零矩阵——元素全为零.3. 性质设A, B, C, O是同型矩阵, k, l是数, 则(1) A+ B= B+ A,(2) (A+ B) + C= A+ (B+ C),(3) A+ O= A,(4) A+ (-A) = O,(5) 1A= A,(6) k(lA) = (kl)A,(7) (k + l)A= kA+ lA,(8) k(A+ B) = kA+ kB,(9) kA= O⇔(k= 0或A= O).产品甲乙丙丁单价(元/箱)20503025重量(Kg/箱)16201616A B C总价(元)总重(Kg)二. 矩阵的乘积某厂家向A, B, C三个代理商发送四款产品.A B C甲200180190乙100120100丙150160140丁180150150数量(箱)产品18000产品甲乙丙丁单价(元/箱)20503025重量(Kg/箱)16201616A B C总价(元)总重(Kg)二. 矩阵的乘积某厂家向A, B, C三个代理商发送四款产品.A B C甲200180190乙100120100丙150160140丁180150150数量(箱)产品18000 18150产品甲乙丙丁单价(元/箱)20503025重量(Kg/箱)16201616A B C总价(元)总重(Kg)二. 矩阵的乘积某厂家向A, B, C三个代理商发送四款产品.A B C甲200180190乙100120100丙150160140丁180150150数量(箱)产品18000 18150 16750产品甲乙丙丁单价(元/箱)20503025重量(Kg/箱)16201616A B C总价(元)总重(Kg)二. 矩阵的乘积某厂家向A, B, C三个代理商发送四款产品.A B C甲200180190乙100120100丙150160140丁180150150数量(箱)产品18000 18150 1675010480产品甲乙丙丁单价(元/箱)20503025重量(Kg/箱)16201616A B C总价(元)总重(Kg)二. 矩阵的乘积某厂家向A, B, C三个代理商发送四款产品.A B C甲200180190乙100120100丙150160140丁180150150数量(箱)产品18000 18150 1675010480 10240产品甲乙丙丁单价(元/箱)20503025重量(Kg/箱)16201616A B C总价(元)总重(Kg)二. 矩阵的乘积某厂家向A, B, C三个代理商发送四款产品.A B C甲200180190乙100120100丙150160140丁180150150数量(箱)产品18000 18150 1675010480 10240 9680a11x1+a12x2+…+a1n x n=b1a21x1+a22x2+…+a2n x n= b2… … … … … … …a s1x1+a s2x2+…+a sn x n=b sb =b1b2…b sa11a12 (1)a21a22 (2)… … … …a s1a s2… a snA=A x= bx=x1x2…x n第二章 矩阵§2.1 矩阵的代数运算1. 定义A = [aij]ms与B = [bij]sn的乘积是一个 mn矩阵C = [cij]mn , 其中 cij = ai1b1j + ai2b2j +…+ aisbsj = aikbkj.k=1s记为C = AB. 称AB为“以A左乘B” 或 “以B 右乘A”.如 a11 a12 a13 a21 a22 a23 b11 b12 b21 b22 b31 b32=a11b11+a12b21+a13b31 a11b12+a12b22+a13b32a21b11+a22b21+a23b31 a21b12+a22b22+a23b32第二章 矩阵§2.1 矩阵的代数运算0 0 0 0 0 0 =a11 a12 a21 a22 a31 a32 0a12+0a22+0a32 0a12+0a22+0a32 0 0 0 0 0 00a11+0a21+0a31 0a11+0a21+0a31 a11 a12 a13 a21 a22 a23=O=OOA = O, AO = O.第二章 矩阵§2.1 矩阵的代数运算1 0 0 0 1 0 0 0 1a11 a12 a21 a22 a31 a32a11 a12 a11 a12 a21 a22 = a21 a22 a31 a32 a31 a32a11 a12 1 0 = a21 a22 0 1 a31 a321 0 …0 0 1 …0 En =称为n阶单位矩阵.EA = A, AE = A.… …0 0 … 1 nn…第二章 矩阵§2.1 矩阵的代数运算2. 矩阵乘积的特殊性 (1)只有当矩阵A的列数等于矩阵B的行数时, 乘积AB才有意义. (2) Amn, Bnm AB和BA都有意义. 但AB是m阶方阵, BA是n阶方阵. 当m n时, AB与BA不是同类型的. 当m = n时, AB与BA是同阶方阵, 但AB与BA未必相等. 例如:第二章 矩阵§2.1 矩阵的代数运算1 21 2 1 0 0 11 2 1 2 0 0 1 0 = 2 4 0 0 0 1 3 3 6 1 1 2 = 1 1 2 2 2 4 2 2 41 1 = 3 3 3 3 2 2 1 2 0 0 = 1 2 0 01 2 1 21 1 2 2第二章 矩阵§2.1 矩阵的代数运算1 0 1 0 1 1 0 1 1 0 = = 0 2 0 2 0 22 0 2 2 1 0 1 0 = 0 2 0 2对角矩阵 1 0 … 0 0 2 … 0… 0 … … 0 … n简记为diag[1, 2, …, n].A, B为同阶对角阵 AB = BA.第二章 矩阵§2.1 矩阵的代数运算a c 1 0b d 0 01 0 0 0 a b c d k 0 0 ka = c a = 0 a b c d0 0 b 0 ka = kc k 0 0 k kb kd … …a c 0 0数量(纯量)矩阵b d 1 0 a = c 0 0 …0 0 a c b d1 0 a = 0 0 c c d b = 0 0 d k 0 0 kA与任意n阶方阵B可交换A为n阶数量矩阵.… …0 0 … k第二章 矩阵§2.1 矩阵的代数运算注:矩阵乘积数乘a1 a2 … an n1矩阵a1 a1b ba1 a2 a2b ba2 … b = … = … =b an a nb ban n1矩阵 11矩阵 数b(a1, a2, …, an) = (ba1, ba2, …, ban)第二章 矩阵§2.1 矩阵的代数运算(3)1 2 1 1 2 0 0 1 0 = 2 2 4 0 0 0 1 1 1 1 2 0 0 = 2 2 1 2 0 0AB = O (A = O或B = O).(AB = AC 且 A O) B = C.(BA = CA 且 A O) B = C.第二章 矩阵§2.1 矩阵的代数运算3. 性质 设k是数, 矩阵A, B, C 使以下各式中一端 有意义, 则另一端也有意义并且等式成立: (1) (AB)C = A(BC),a11a12a13a21a 22a 23如A = ,b11b12b21b22b31b32B= ,c11c12c21c22C=.a11b11+a12b21+a13b31a11b12+a12b22+a13b32a21b11+a22b21+a23b31a21b12+a22b22+a23b32 AB=BC=b11c11+b12c21b11c12+b12c22b21c11+b22c21b21c12+b22c22b31c11+b32c21b31c12+b32c22我们比较(AB)C和A(BC)的“规格”以及它们的第一行第一列处的元素.a11b11+a12b21+a13b31a11b12+a12b22+a13b32a21b11+a22b21+a23b31a21b12+a22b22+a23b32 AB=BC=b11c11+b12c21b11c12+b12c22b21c11+b22c21b21c12+b22c22b31c11+b32c21b31c12+b32c22a11a12a13a21a22a23A= ,c11c12c21c22C=.a11b11+a12b21+a 13b 31a 11b 12+a 12b 22+a 13b32a 21b 11+a 22b21+a 23b 31a 21b 12+a 22b 22+a23b32AB=BC =b11c11+b12c21b11c12+b12c22b21c11+b22c21b21c12+b22c22b31c11+b32c21b31c12+b32c22 a11a12a13a21a22a23A =(a11b11+a12b21+a13b31)c11+(a11b12+a12b22+a13b32)c21c11c12c21c22C=a(b c+b c)+a(b c+b c)+a(b c+b c) a11b11c11+ a12b21c11+ a13b31c11+ a11b12c21+ a12b22c21+ a13b32c21==∑a1p b p 1p =13∑a1p b p 2p =13( )c 11( )c 21(a11b11+a 12b 21+a 13b 31)c 11+(a 11b 12+a 12b 22+a 13b32)c 21 a(b c +b c )+a (b c +b c)+a(b c+b c ) a11b11c11+ a12b21c11+ a13b31c11+ a11b12c21+ a12b22c21+ a13b32c21==[(]=12=∑[(∑a1p b p q)c q1]q=12p=13(a11b 11+a 12b 21+a 13b 31)c 11+(a 11b 12+a 12b 22+a 13b 32)c 21a11(b 11c 11+b 12c 21)+a12(b21c11+b 22c21)+a 13(b 31c 11+b32c 21) a11b11c11+ a 12b21c11+ a 13b31c11+ a 11b 12c 21+ a 12b22c21+ a13b32c21==∑u 1q c q 1q =12= ∑[(∑a1p b pq)c q1]q =12p =13= ∑(∑a1p b pq c q1)q=12p=13=∑(∑a1p b pq c q1)q=12p=13= ∑[a1p(∑b pq c q1)]23= ∑a1p v p13∑u1q c q 1q =12= ∑[(∑a1p b pq)c q1]q =12p =13= ∑(∑a1p b pq c q1)q =12p =13= ∑(∑a1p b pq c q1)q =12p =13= ∑[a1p(∑b pq c q1)]q =12p =13= ∑a1p v p 1p =13一般地, 设A= [aij]m⨯k, B= [b ij]k⨯s, C= [c ij]s⨯n , AB= U= [u ij]m⨯s, BC= V= [v ij]k⨯n ,则(AB)C= UC与A(BC) = AV都是m⨯n矩阵, 且(AB)C= UC的(i, j)元素是它恰好是A(BC) = AV的(i, j)元素.可见(AB)C= A(BC ).∑u iq c qjq =1s= ∑[(∑a ip b pq)c qj ]q =1sp =1k= ∑(∑a ip b pq c qj )q =1sp =1k= ∑(∑a ip b pq c qj )q =1sp =1k= ∑[a ip(∑b pq c qj )]q =1sp =1k= ∑a ip v pjp =1k设k是数, 矩阵A, B, C 使以下各式中一端有意义, 则另一端也有意义并且等式成立:(1) (AB)C= A(BC),(2) A(B+C) = AB+ AC,(A+B)C= AC+BC,(3) (kA)B= k(AB ).3. 性质4. 方阵A的正整数幂A1= A, A2= AA, …, A k+1= A k A.A k A l= A k+l , (A k )l= A kl(AB)k= A k B k但即使A 与B是同阶方阵,也未必成立!注: ①若AB= BA, 则(AB)k= A k B k.②A=0 10 0,B=1 00 0,AB=0 00 0,BA=0 10 0,AB BA, 但(AB)k= A k B k成立. 容易验证(AB)k= A k B k③要说明即使A与B是同阶方阵,也未必成立, 只要举出一个反例即可.例如A =1 10 0,B=1 01 0,AB=2 00 0,A2= 1 10 0= A,当然这里AB BAB2=1 01 0=B,(AB)2= 4 00 0,A2B2= AB=2 00 0,=1 11 1.结合律的妙用之一设A= BC , 其中B = , C = [1 2 3],123(还有“妙用之二”喔~~~!)A 100=?1 2 32 46369则A = ,CB= [123]123= 1⨯1+ 2⨯2+ 3⨯3= 14.A100= (BC)(BC)(BC)…(BC)(BC)(BC)= B(CB)(BC)C…B(CB)(CB)CA ——方阵f(x) = a s x s+ a s-1x s-1+ … + a1x+ a 0f (A) = a s A s+ a s-1A s-1+ … + a1A+ a0Ef(x) ——多项式注意!!!5. 方阵A的多项式②(A-B)2= A2-AB-BA+ B 2注: ①(A+ B)2= (A+ B )(A+ B )= A2+ AB + BA + B 2③(A+ B )(A-B ) = A 2-AB+ BA-B 2④A B = B A ⇒(A+ B)n= A n+ C1 A n-1B+ C 2A n-2B 2+… + C n-1A B n-1+ B nn nn例1. 计算λ1 00 λ10 0 λ.n解: 令A =λ0 00 λ00 0 λ, B=0 1 00 0 10 0 0, 则AB= BA, 且A n=λn0 00 λn00 0 λn, B2=0 0 10 0 00 0 0, B3= O.故原式= (A+B)nn(n-1)2= A n+ nA n-1B+ A n-2B2= …三. 矩阵的转置1. 定义: A =a11a 12… a 1na 21a 22 (2)… … … …a m1a m 2… a mnA T =的转置a11a12a1n…a21a22a2n…………a m1a m2a mn…(1) (A T)T= A,(2) (A+B)T= A T+ B T,(3) (kA)T = kA T,(4) (AB)T = B T A T .2. 性质A BABA TB T(AB)Tiii∙ijjj∙a j1b1i+ a j2b2i+ …b1i a j1+ b2i a j2+ …3. 对称矩阵则称A为对称矩阵.若矩阵A= [aij]m⨯n满足A T= A, 即1 2211 0-10x3-130m= n且a ij= a ji(i, j= 1, 2, …, n)4. 反对称矩阵则称A为反对称矩阵.若矩阵A= [aij]m⨯n满足A T= -A, 即0 -2200 1-1-10 31-30m= n且a ij= -a ji(i, j= 1, 2, …, n),注: A 是方阵(A+A T)T= A+A T ,(A-A T)T= -(A-A T ),⇒A =A +A T2+A-A T2四. 复矩阵的共轭复矩阵A =z11z12 (1)z21z22 (2)… … … …z m1z m2… z mn的共轭复数z= a+ b i的共轭z= a-b i-a+ b ia-b i A=z11z12 (1)z21z22 (2)… … … …z m1z m2… z mn.----------。