《二次根式》测试题(一)

合集下载

第3章 二次根式 单元测试题(1)

第3章 二次根式 单元测试题(1)

第3章 二次根式 单元测试题(1)一、选择题 1. 在根式15、22b a -、3ab 、631、b a a221中,最简二次根式有( )A.1个B.2个C.3个D.4个 2.能使2)5(--x 有意义的实数x 的值有( )A.0个B.1个C.2个D.无数个 3. 若a+962+-a a =3成立则a 的范围是( )A 、a ≤0B 、a ≤3C 、a ≥-3D 、a ≥3 4.在下列各式的化简中,化简正确的有( )①3a =a a ②5x x -x =4x x ③6a2ba =ab 2b3a ④24+61=106A.1个B.2个C.3个D.4个 5. 已知a <0,化简:aaa22+的结果是 ( )A.1B.-1C.0D.2a6. 若33=43k,则k 是( )A.1B.21 C.3 D.347. 设7的小数部分为b ,那么(4+b)b 的值是( )A.1B.是一个有理数C.3D.无法确定 8. 当x <2y 时,化简:xxyy x y x 322344+-得( )A.x(x-2y)yB.y x2y -x C.(x-2y)y D.(2y-x)y9. 若x <1且y =11)-(x 2-x +3,则y 3y ÷y1×y1的值是( )A.331 B.43 C.163 D.64310.225+·225-的积为( )A.1B.17C.17D. 21 二、填空题1. 试写出和为2的两个无理数 、 .2.化简:3121+=________.3. 化简:(m-n)·m-n 2=________.4.当a=25-1时,化简:a 2-2a+11的结果为________.5.式子32-x 122-的最大值是________.6.计算:(a+2ab +b)÷(a +b )-(b -a )=________.7. 已知-2<m <-1,化简:1214m 4m2+++m -112m -m 2-+m =________.8.若菱形两对角线长分别为(25+32)和(25-32),则菱形面积=________. 9.已知b <0,化简:2a-ba -ab +2++ba ab =________.10. 若238x x +=-x 8+x 则x 的范围是 .三、计算题 1.6÷(31+21)+50 2. (2+23-6)(2-23+6)四、化简下列各式 1.xx2+22x +x 18 2.)(abb b aba a ab a --+⋅-五、解答题1.已知x 、y 为实数,且y =2134124312+--+--x x xx ,求5x-3y 的值.2.已知x 、y 为正数,且x (x +y )=3y (x +5y ),求yxy x y xy x -+++32的值.3.设x 、y 是实数,且x 2+y 2-2x+4y+5=0,求2)3212(1y x +.4. 已知10=m 、试用m 表示518598+的值.5.观察下列各式312311=+,413412=+,514513=+按照上述三个等式及其变化过程, ①猜想561= 。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案一、选择题1. 下列二次根式中,最简二次根式是_____。

A. √36B. √18C. √27D. √50答案:B2. 下列各数中是无理数的是_____。

A. √9B. √16C. √20D. √39答案:D3. 若|x|≤5,则_____。

A. -5≤x≤5B. 0≤x≤5C. -5≤x≤0D.0≤x≤-5答案:A4. 下列等式中,正确的是_____。

A. √(2+√3) = √3 + √2B.√(2-√3) = √3 - √2C. √(2+√3)(2-√3) = 2D. √(2+√3)(2-√3) = √2 - √3答案:C5. 已知 a、b 是正数,且 a+b=1,则_____。

A. √a+√b>1B. √a+√b<1C. √a+√b=1D. 无法确定答案:A二、填空题1. 若一个二次根式的被开方数含有同类项,则可以合并同类项后,再开平方根,即_____。

答案:√(a+b) = √a + √b2. 下列等式中,正确的是_____。

答案:√(2+√3)(2-√3) = 2-√33. 若|x|≤4,则 -4≤x≤4,若将|x|≤4 改写为二次根式,则为_____。

答案:√4≤√x≤√(-4) 或 -√4≤√x≤√44. 已知 a、b 是正数,且 a+b=1,则_____。

答案:√a+√b>1三、解答题1. 化简二次根式:√(3x^2+6x+9)答案:√(3x^2+6x+9) = √(3(x+1)^2) = √3(x+1)2. 求解二次根式方程:√2x-3=5答案:首先将方程两边平方,得 2x-3=25,解得x=14/2=7。

然后将 x=7 代入原方程检验,得√27-3=5,左右两边相等,所以 x=7 是方程的解。

3. 若 |x-1|≤2,求 |x+1| 的最小值。

答案:首先根据 |x-1|≤2,得 -1≤x≤3。

然后根据 |x+1| 的性质,当 x=-1 时,|x+1| 取最小值 0。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案
一、选择题
1. 以下哪个选项不是二次根式?
A. √3
B. √x
C. √x^2
D. √x^3
答案:D
2. 计算√(4×9)的结果是什么?
A. 6
B. 12
C. √36
D. √4×√9
答案:B
3. 以下哪个表达式等于√(2x)?
A. √2x
B. √x×√2
C. √2×√x
D. √2+√x
答案:C
二、填空题
1. 计算√(25)的结果是______。

答案:5
2. 如果√(a+b) = √a + √b,那么a和b的值分别是______。

答案:0
三、解答题
1. 化简下列二次根式:
√(32) = ______。

答案:4√2
2. 解方程:
√x + 3 = 7。

答案:x = 16
四、证明题
1. 证明√2是一个无理数。

答案:略
五、应用题
1. 一个正方形的面积是50平方厘米,求这个正方形的边长。

答案:边长为√50厘米,即5√2厘米。

六、综合题
1. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。

答案:斜边长度为5厘米,根据勾股定理,√(3^2 + 4^2) = √(9
+ 16) = √25 = 5。

七、附加题
1. 如果一个数的平方根等于这个数本身,这个数是多少?
答案:0或1(因为√0 = 0,√1 = 1)
请注意,以上测试题及答案仅供参考,具体题目和答案应根据实际教学大纲和教材内容进行调整。

二次根式单元测试题(卷)经典3套

二次根式单元测试题(卷)经典3套

二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。

1/2=3-2。

1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。

19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。

二次根式经典测试题附答案解析

二次根式经典测试题附答案解析

二次根式经典测试题附答案解析一、选择题1.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .2.a 的值为( ) A .2B .3C .4D .5 【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a ,移项合并,得5a=25,系数化为1,得a=5.故选:D .【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.3.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n的最小值为5.故选:B.【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.4.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式=|-3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.5.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.6.1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.7.有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.8.= )A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】=∴x ≥0,x-6≥0,∴x 6≥.故选B.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<< 【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.-中,是最简二次根式的有( )A .2个B .3个C .4个D .5个 【答案】A【解析】3,不是最简二次根式;,不是最简二次根式;-,不是最简二次根式;是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.11.下列二次根式中的最简二次根式是()A B C D【答案】A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.12x的取值范围是()A.x≥5B.x>-5 C.x≥-5 D.x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】Q有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.13.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.14.1x =-,那么x 的取值范围是( )A .x≥1B .x>1C .x≤1D .x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x 的取值范围.15.在下列各组根式中,是同类二次根式的是( )A BC D【答案】B【解析】【分析】 根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A =不是同类二次根式;B =是同类二次根式;C b ==D 不是同类二次根式;故选:B .【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.16.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.17.下列各式中是二次根式的是()A B C D x<0)【答案】C【解析】【分析】根据二次根式的定义逐一判断即可.【详解】A3,不是二次根式;B1<0,无意义;C的根指数为2,且被开方数2>0,是二次根式;D的被开方数x<0,无意义;故选:C.【点睛】a≥0)叫二次根式.18.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、-B、,此选项正确;C、=(D、=故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.19.若a b>)A.-B.-C.D.【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∵a>b,∴a>0,b<0=,故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.20.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.。

《二次根式》单元测试题(卷)含答案解析

《二次根式》单元测试题(卷)含答案解析

《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、b a x 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ab =2)(ab (ab >0),∴ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值X 围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵x <y <0,∴x -y <0,x +y <0. ∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵0<x <1,∴x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a 【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数X 围内因式分解:(每小题3分,共6分) 21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ). 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1. 25.(a 2m n -mab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=(a 2m n -mab mn +m nn m )·221b a nm=21bn m m n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +. 【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26. ∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652.【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴x =41.当x =41时,y =21.又∵xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xyyx +|-|xy y x -|∵x =41,y =21,∴yx <xy .∴ 原式=xy yx +-yxxy +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

(完整版)二次根式测试题附答案

(完整版)二次根式测试题附答案

二次根式测试题(1)时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1. 下列式子一定是二次根式的是( )A .B .C .D .2--x x 22+x 22-x 2.若,则( )b b -=-3)3(2A .b>3 B .b<3 C .b≥3 D .b≤33.若有意义,则m 能取的最小整数值是( )13-m A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则的结果是( )xx x 2-A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .B .C .D .1448b a 44+a 6.如果,那么( ))6(6-=-∙x x x x A .x≥0 B .x≥6 C .0≤x≤6 D .x 为一切实数7.小明的作业本上有以下四题:①;②;③;④24416a a =a a a 25105=⨯a aa a a =∙=112.做错的题是( )a a a =-23A .① B .② C .③ D .④8.化简的结果为( )6151+A . B . C . D .3011330303033011309.若最简二次根式的被开方数相同,则a 的值为( )a a 241-+与A .B .C .a=1D .a= —143-=a 34=a 10.化简得( ))22(28+-A .—2 B . C .2 D . 22-224-二、填空题(每小题2分,共20分)11.① ;② .=-2)3.0(=-2)52(12.二次根式有意义的条件是 .31-x 13.若m<0,则= .332||m m m ++14.成立的条件是 .1112-=-∙+x x x 15.比较大小: .321316. , .=∙y xy 82=∙271217.计算= .3393a a a a -+18.的关系是 .23231+-与19.若,则的值为 .35-=x 562++x x 20.化简的结果是 .⎪⎪⎭⎫ ⎝⎛--+1083114515三、解答题(第21~22小题各12分,第23小题24分,共48分)21.求使下列各式有意义的字母的取值范围:(1) (2)(3) (4)43-x a 831-42+m x 1-22.化简:(1) (2))169()144(-⨯-22531-(3) (4)5102421⨯-n m 21823.计算:(1) (2) 21437⎪⎪⎭⎫ ⎝⎛-225241⎪⎪⎭⎫ ⎝⎛--(3) (4) )459(43332-⨯⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5) (6) 2484554+-+2332326--四、综合题(每小题6分,共12分)24.若代数式有意义,则x 的取值范围是什么?||112x x -+25.若x ,y 是实数,且,求的值.2111+-+-<x x y 1|1|--y y 二次根式测试题(2)时间:45分钟分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若,则a<0B .a a -=20,2>=a a a 则若C . D . 5的平方根是4284b a b a =52.二次根式的值是( )13)3(2++m m A . B . C . D .02332223.化简的结果是( ))0(||2<<--y x x y x A .x y 2- B .y C .y x -2 D .y -4.若是二次根式,则a ,b 应满足的条件是( )ba A .a ,b 均为非负数 B .a ,b 同号C .a≥0,b>0D .0≥ba5.已知a<b ,化简二次根式的正确结果是( )b a 3-A . B . ab a --ab a -C . D .ab a aba -6.把根号外的因式移到根号内,得( )mm 1-A . B . C . D .m m -m --m-7.下列各式中,一定能成立的是( ).A .B .22)5.2()5.2(=-22)(a a =C .=x-1 D .122+-x x 3392+⋅-=-x x x 8.若x+y=0,则下列各式不成立的是( )A .B .022=-y x 033=+y x C . D .022=-y x 0=+y x 9.当时,二次根式的值为,则m 等于( )3-=x 7522++x x m 5A . B . C . D .22255510.已知,则x 等于( )1018222=++x x x x A .4 B .±2 C .2 D .±4二、填空题(每小题2分,共20分)11.若不是二次根式,则x 的取值范围是 .5-x 12.已知a<2, .=-2)2(a 13.当x= 时,二次根式取最小值,其最小值为 .1+x 14.计算: ; .=⨯÷182712=÷-)32274483(15.若一个正方体的长为,宽为,高为,则它的体积cm 62cm 3cm 2为 .3cm 16.若,则 .433+-+-=x x y =+y x 17.若的整数部分是a ,小数部分是b ,则 .3=-b a 318.若,则m 的取值范围是 .3)3(-∙=-m m m m 19.若 .=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,13220.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= .三、解答题(21~25每小题4分,第26小题6分,第27小题8分,共44分)21. 22.21418122-+-3)154276485(÷+-23. 24. x xx x 3)1246(÷-21)2()12(18---+++25. 26.已知:,求的0)13(27132--+-132-=x 12+-x x 值.27.已知:。

二次根式测试试题及解析

二次根式测试试题及解析

二次根式测试试题及解析一、选择题1.5﹣x ,则x 的取值范围是( )A .为任意实数B .0≤x≤5C .x≥5D .x≤52.下列计算正确的是( )A 5B =2y Ca = D =3.下列计算,正确的是( )A .=B .=C .0=D .10=4.对于所有实数a ,b ,下列等式总能成立的是( )A .2a b =+B 22a b =+C a b =+D a b =+ 5.下列等式正确的是( )A 7=-B 3=C .5D .=6.下列计算正确的是( )A =B .2=C .1=D = 7.下列计算正确的是( )A =B 1-=C =D 6==8.已知44220,24,180x y x y >+=++=、.则xy=( ) A .8 B .9 C .10D .11 9.下列计算正确的是( )A .+=B .()322326a b a b -=-C .222()a b a b -=-D .2422a a b a a b a -+⋅=-++ 10.下列各式中,不正确的是( )A ><C > D 5=11.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.已知实数x 、y 满足2y =,则yx 值是( ) A .﹣2 B .4 C .﹣4 D .无法确定二、填空题13.==________.14.计算(π-3)0-21-2()的结果为_____. 15.若实数x ,y ,m 满足等式 ()223x y m +-=m+4的算术平方根为 ________.16.若6x ,小数部分为y ,则(2x y 的值是___.17.,则x+y=_______.18..19.若a 、b 为实数,且b +4,则a+b =_____.20.1=-==++……=___________. 三、解答题21.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析.【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可.【详解】解:(1该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间.【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】 分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x ---=41(2)(2)2x x x -+-- =42(2)(2)(2)(2)x x x x x +-+-+- =2(2)(2)x x x -+- =12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.23.x 的值,代入后,求式子的值. 【答案】答案见解析.【解析】试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义.试题解析:原式22x x ==--== 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=224.计算:(1)+(2(33+-【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可.【详解】解:(1)+===(2(33+- =5+9-24=14-24=-10.【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x -【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x -∴ 3,4x y ==当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.27.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a b a b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.28.计算(1(2)(()21-【答案】(1)2;(2)24+ 【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1=2+=-=(2)(()21-=22(181)---=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.29.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.30.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭ (2)已知,,a b c为实数且2c =2c ab -的值 【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可;(2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可.【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩,∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】|5|5x x ==-=-,∴5-x≥0,解得:x≤5,故选D .【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.C解析:C【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断.【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;C=,所以C 选项正确;D D 选项错误.故选:C .【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.3.C解析:C【分析】A 、B 、C 、根据合并同类二次根式的法则即可判定;D 、利用根式的运算法则计算即可判定.【详解】解:A 、B 、D 不是同类二次根式,不能合并,故选项不符合题意;C =,故选项正确.故选:C .【点睛】此题主要考查二次根式的运算,应熟练掌握各种运算法则,且准确计算.4.B解析:B【详解】解:A 、错误,∵2=+a bB 、正确,因为a 2+b 2≥0a 2+b 2;CD =|a +b |,其结果a+b 的符号不能确定.故选B .5.B解析:B【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.【详解】解:AB 3=,故本选项符合题意;C 、5=-,故本选项不符合题意;D 、=-,故本选项不符合题意;故选:B .【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.6.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB 、无法计算,故此选项错误;C 、D ,正确.故选:D .【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.7.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】=D. 6===,故本项错误;故选:A .【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.8.D解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可.【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦ 222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+=22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握.9.D解析:D【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.【详解】解:A. =A 选项错误;B. ()()()33322363228a b a b a b -=-=-,故B 选项错误; C. 222()2a b a ab b -=-+,故C 选项错误; D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D .【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.10.B解析:B【解析】=-3,故A 正确;=4,故B 不正确;根据被开方数越大,结果越大,可知C 正确;5=,可知D 正确.故选B.11.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab >0,解得a >0,b >0,因此可知A (a ,b )在第一象限.故选A12.C解析:C【分析】依据二次根式中的被开方数是非负数求得x 的值,然后可得到y 的值,最后代入计算即可.【详解】∵实数x 、y 满足2y =,∴x =2,y =﹣2,∴yx =22-⨯=-4.故选:C .【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 二、填空题13.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.14.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)p p a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣4×2﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.15.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.16.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 17.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:18.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.19.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数20.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n 1=-n 为正整数),则2020++,2020=+,=, 20202=-,2018=,故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

最新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(含答案解析)(1)

最新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(含答案解析)(1)

一、选择题1.下列各式变形中,正确的是( )A .236x x x ⋅=B xC .2211x x x x x ⎛⎫-⋅=- ⎪⎝⎭D .2211234x x x ⎛⎫-+=- ⎪+⎝⎭2.a 的值不可以是( )A .12B .8C .18D .283.8b =+ ).A .3±B .3C .5D .5±4.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .15. )A .8 B .4 C .4D6.(a ﹣4)2=0 )A B . C D .7.n 为( ).A .2B .3C .4D .58.当2a < )A .B .-C .D .-9.下列各式不是最简二次根式的是( )A B C .4 D10.n 可以取的数为( ). A .4B .6C .8D .1211.=x 可取的整数值有( ). A .1个 B .2个C .3个D .4个12. ).A .1x ≤B .1x <C .1≥xD .1x ≠二、填空题13=______. 14.________________. 15ab ,那么2(2)b a +-的值是________. 16.已知m =m a =_____________.17.==ab =________.18.若112a -=1114a a ⎛⎫ ⎪⎝⎭-+的值为_________. 19.已知3y =,则()x x y +的值为_________. 20.若1y =,则x y -=_________.三、解答题 21.计算:2016(2019)|52π-⎛⎫--- ⎪⎝⎭. 22.计算:(1(2)32⎛⎫+ ⎪ ⎪⎝⎭23.(1)解不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解; (2)计算: 24.计算:. 25.我们规定用(a ,b)表示一对数对.给出如下定义:记m =,n = a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”. 例如:(4,1)的一对“对称数对”为(12,1)和(1,12); (1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ;(3)若数对(x ,2)的一个“对称数对”1),则x 的值为 ;(4)若数对(a ,b )的一个“对称数对”ab 的值.26.计算:1.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】依据同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,即可得出结论.【详解】解:A .x 2•x 3=x 5,故本选项不合题意;x =,故本选项不合题意;C.2311x x x x ⎛⎫-⋅=- ⎪⎝⎭,故本选项不合题意; D.2211234x x x ⎛⎫-+=- ⎪+⎝⎭,故本选项符合题意; 故选:D .【点睛】本题考查了同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,解题的关键是熟练掌握运算法则.2.D解析:D【分析】是否为同类二次根式即可.【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D.【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.3.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a≥0,∴a=17,∴b+8=0,解得b=-8,∴==,5故选:C.【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键.4.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A+1+1)=0,故本选项不合题意;B、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意;C﹣2)=3,故本选项不合题意;D)(12,故本选项不合题意.故选:B.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b)(a-b)=a2-b2.5.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===,故选:B.【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.6.A解析:A【分析】先根据算术平方根的非负性、偶次方的非负性求出a、b的值,再代入化简二次根式即可得.【详解】由算术平方根的非负性、偶次方的非负性得:4030ab-=⎧⎨-=⎩,解得43ab=⎧⎨=⎩,3===,故选:A.【点睛】本题考查了算术平方根的非负性、偶次方的非负性、化简二次根式,熟练掌握算术平方根和偶次方的非负性是解题关键.7.B解析:B【分析】27n一定是一个完全平方数,把27分解因数即可确定.【详解】27n一定是一个完全平方数,把27分解因数即可确定.∵22733=⨯,∴n的最小值是3.故选B.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非==.解题关键是分解成一个完全平方数和一个代数式的积的形式.8.B【分析】根据二次根式的性质即可化简.【详解】a<解:∵2-<∴a20∴-故选:B.【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.9.D解析:D【分析】满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,据此判断即可.【详解】A是最简二次根式,故本选项错误;B是最简二次根式,故本选项错误;C.是最简二次根式,故本选项错误;4D=,不是最简二次根式.故选:D.【点睛】本题考查了最简二次根式的定义,掌握最简二次根式条件,是解题的关键.10.C解析:C【分析】是同类二次根式.【详解】解:A2=不是同类二次根式;B不是同类二次根式;C=是同类二次根式,正确;D=不是同类二次根式;故选:C.本题考查了同类二次根式的定义.要化简为最简二次根式后再判断.11.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.12.A解析:A【分析】根据被开方数大于等于0列式计算即可得解.【详解】10x -≥,解得,1x ≤.故选:A .【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题13.【分析】根据二次根式的性质进行化简【详解】解:故答案为:【点睛】本题考查了二次根式的性质与化简解题的关键是掌握二次根式的性质和分母有理化【分析】 根据二次根式的性质进行化简.【详解】3=.故答案为:3. 【点睛】 本题考查了二次根式的性质与化简.解题的关键是掌握二次根式的性质和分母有理化. 14.【分析】利用二次根式的乘法运算法则进行计算即可【详解】解:=故答案为:【点睛】本题考查二次根式的乘法熟练掌握二次根式的乘法运算法则是解答的关键【分析】利用二次根式的乘法运算法则进行计算即可.【详解】=【点睛】本题考查二次根式的乘法,熟练掌握二次根式的乘法运算法则是解答的关键.15.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案.【详解】 解:3134<<,3a ∴=,3b ∴=-,()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.16.1【分析】根据二次根式有意义的条件列出不等式求出am 根据指数为0得到答案【详解】解:根据题意得2020﹣a≥0a ﹣2020≥0解得a =2020则m =0∴am =20200=1故答案为:1【点睛】本题考解析:1【分析】根据二次根式有意义的条件列出不等式,求出a 、m ,根据指数为0,得到答案.【详解】解:根据题意得, 2020﹣a ≥0,a ﹣2020≥0,解得,a =2020,则m =0,∴a m =20200=1,故答案为: 1.【点睛】本题考查的是二次根式有意义的条件和0指数幂,掌握二次根式的被开方数是非负数是解题的关键.17.20【分析】运用二次根式化简的法则先化简再得出的值即可【详解】解:∵∴∴故答案为:20【点睛】本题考查了二次根式的化简求值解题的关键是掌握二次根式运算法则解析:20【分析】运用二次根式化简的法则先化简,再得出a b ,的值即可.【详解】解:∵==,∴a 5=,b 4=,∴ab 20=,故答案为:20.【点睛】本题考查了二次根式的化简求值,解题的关键是掌握二次根式运算法则.18.【分析】先将变形为再把代入求值即可【详解】解:的值为故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式及其变形是解答此题的关键解析:2【分析】先将1114a a ⎛⎫ ⎪⎝⎭-+变形为2112a ⎛⎫- ⎪⎝⎭,再把112a -= 【详解】解:112a -= 1114a a ⎛⎫ ⎪⎝⎭∴-+ 2114a a =-+2112a ⎛=⎫ ⎪⎝⎭- 2= 2=,1114a a ⎛⎫ ⎪⎝⎭∴-+的值为2. 故答案为:2.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式及其变形是解答此题的关键. 19.25【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:25【点睛】本题考查了二次根式有意义解析:25【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以22()(23)525x x y +=+==.故答案为:25.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键. 20.1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0则x=2易得y=1然后把x 与y 的值代入计算即可【详解】由题意得∴∴故答案为:1【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件解析:1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0,则x=2,易得y=1,然后把x 与y 的值代入计算即可.【详解】由题意得2020x x -≥⎧⎨-≤⎩, ∴2x =,0011y =++=,∴1x y -=.故答案为:1.【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数.三、解答题21.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2016(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.22.(1;(2)【分析】(1)先化简二次根式,再合并同类二次根式;(2)用单项式乘多项式的法则进行二次根式的混合运算.【详解】解:(1(2)32⎛⎫+ ⎪ ⎪⎝⎭=32=3+【点睛】本题考查二次根式的化简、二次根式的混合运算等知识,是基础考点,难度较易,掌握相关知识是解题关键.23.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解.(2)先化简二次根式,再合并即可.【详解】解:(1)()3x24x?2x5x1?3⎧--≥-⎪⎨-<-⎪⎩①②由①去括号得,-3x+6≥4-x,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x<2,化系数为1得,x>-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)=55-=【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.24.【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:====【点睛】本题考查了二次根式的混合运算,掌握二次根式混合运算的相关运算法则是解题的关键.25.(1)1(3与1)3, ;(2)13 ;(3)1 ;(4)16ab =或6ab = 【分析】(1)根据“对称数对”的定义代入计算即可;(2)先将数对(3,y)的一对“对称数对”表示出来,根据“数对(3,y)的一对“对称数对”相同”,可得y 的值;(3)先将数对(x ,2)的一对“对称数对”表示出来,根据“数对(x ,2)的一个“对称数对”是1)”,即可得出x 的值;(4)先将数对(a ,b)的一对“对称数对”表示出来,根据“数对(a ,b)的一个“对称数对”是分两种情况进行讨论,分别得出a ,b 的值,然后得出ab 的值.【详解】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为⎝与⎭, ∵数对(3,y )的一对“对称数对”相同,∴= ∴13y =;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”,1), ∴1=, ∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,∴==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=, 综上所述,16ab =或6ab =. 【点睛】 本题考查了实数的运算,“对称数对”的定义.理解题意是解题的关键.26.【分析】化简平方根、去绝对值符号,再合并即可.【详解】解:原式21=+=.【点睛】本题主要考查实数的运算,熟练掌握运算法则和运算顺序是解题的关键.。

二次根式经典测试题及答案

二次根式经典测试题及答案

二次根式经典测试题及答案一、选择题1.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.2.下列计算错误的是( )A =B =C .3=D =【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.3.下列式子正确的是( )A 6=±B C 3=- D 5=-【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. 5=,故D 错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.4.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.5.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.6.下列运算正确的是( )A .B)2=2 CD==3﹣2=1【答案】B【解析】【分析】根据二次根式的性质和加减运算法则判断即可.【详解】根据二次根式的加减,可知A 选项错误;根据二次根式的性质2=a (a≥02=2,所以B 选项正确;(0)=0(=0)(0)a a a a a a ⎧⎪=⎨⎪-⎩><﹣11|=11,所以C 选项错误;DD 选项错误.故选B .【点睛】此题主要考查了的二次根式的性质2=a (a≥0(0)=0(=0)(0)a a a a a a ⎧⎪=⎨⎪-⎩><,正确利用性质和运算法则计算是解题关键.7.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=- C.1)4=D .()422a a -=【答案】C【解析】【分析】根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.8.+在实数范围内有意义的整数x 有( ) A .5个B .3个C .4个D .2个【答案】C【解析】∴30430x x +>⎧⎨-≥⎩ ,解得:433x -<≤, 又∵x 要取整数值,∴x 的值为:-2、-1、0、1.即符合条件的x 的值有4个.故选C.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<<【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数, 则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;=是同类二次根式;B2C b==D不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.11.若x+y=,x﹣y=3﹣的值为()A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、2==D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.13.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.14.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.15.下列二次根式是最简二次根式的是( )ABCD【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.16.下列运算正确的是( )A=B=C123= D2=-【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;=,故C错误;C.3D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.17.若a b>)A.-B.-C.D.【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∵a>b,∴a>0,b<02=-,ab a a ab故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.18.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列二次根式中的最简二次根式是()A B C D【答案】A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D,不是最简二次根式;2故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.20.的结果是A.-2 B.2 C.-4 D.4【答案】B【解析】22故选:B。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案一、选择题(每题3分,共15分)1. 计算下列二次根式的结果:\(\sqrt{4}\) 的值是()A. 2B. -2C. 4D. 02. 对于二次根式 \(\sqrt{9+x}\),若 \(x\) 的值为负数,则下列哪个选项是正确的?A. \(x\) 必须小于 -9B. \(x\) 必须大于 -9C. \(x\) 可以是任何实数D. \(x\) 必须等于 -93. 将下列二次根式化简为最简形式:\(\sqrt{64x^2}\) 可以化简为()A. \(8x\)B. \(8|x|\)C. \(-8x\)D. \(16x\)4. 若 \(\sqrt{a}\) 是有理数,那么 \(a\) 必须满足的条件是()A. \(a\) 必须大于0B. \(a\) 必须等于0C. \(a\) 必须小于0D. \(a\) 可以是任何实数5. 计算下列二次根式的加法:\(\sqrt{7} + \sqrt{7}\) 的结果是()A. \(2\sqrt{7}\)B. \(7\)C. \(14\)D. \(\sqrt{14}\)二、填空题(每题2分,共10分)1. 计算 \(\sqrt{25}\) 的结果是______。

2. 若 \(\sqrt{x} = 5\),则 \(x\) 的值是______。

3. 化简 \(\sqrt{121}\) 的结果是______。

4. 若 \(\sqrt{y} = -4\),那么 \(y\) 是______(填“有理数”或“无理数”)。

5. 计算 \(\sqrt{8} - \sqrt{18}\) 的结果是______。

三、解答题(每题7分,共28分)1. 计算并化简下列二次根式:\(\sqrt{50} - \sqrt{32}\)2. 解下列方程:\(2\sqrt{x} + 5 = 13\)3. 证明:\(\sqrt{2}\) 是无理数。

四、综合题(每题8分,共16分)1. 若 \(\sqrt{3a+1} + 4 = 9\),求 \(a\) 的值。

九年级数学(上)第二十一章《二次根式》测试题及参考答案

九年级数学(上)第二十一章《二次根式》测试题及参考答案

九年级数学(上)《二次根式》测试题一、选择题(每小题3分,共30分)1、使式子1-x 2+x 有意义X 的取值范围是( )A 、X ≤1B 、X ≤1且X ≠-2C 、X ≠-2D X <1且X ≠-22、若代数式x x -+212有意义,则x 的取值范围是( )A 、21->x B 、4±≠x C 、0≥x D 、40≠≥x x 且 3、下列运算正确的是( ) A 、15.05.15.05.122=-=-B 、15.025.02=⨯= ≥C 、5)5(2-=-x xD 、x x x 22-=-4、下列根式中,最简二次根式是( )A 、a 25B 、22b a +C 、2aD 、5.05、已知:直角三角形的一条直角边为9,斜边长为10,则另一条直角边长为( )A 1B 19C 19D 296、若x=-3,则 ︳1-(1+X 2) ︳=( )A 1B -1C 3D -37、24n 是整数,则正整数n的最小值是( )A 4B 5C 6D 78、对于二次根式92+x ,以下说法不正确的是( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是39、下列说法错误是………………………………( ) A.962+-a a 是最简二次根式 B.4是二次根式 C.22b a +是一个非负数 D.162+x 的最小值是410、下列各式中与6是同类二次根式的是 ( ) A.36 B.12 C.32D.18二、填空题(每小题3分,共18分)11、使式子4-X 无意义的x取值是12、已知:X=2.5, 化简(X-2)2+ ︳X-4 ︳的结果是13、10xy .30yx (x>0,y>0)= 14、已知4322+-+-=x x y ,则,=xy . 15、三角形的三边长分别是20 ㎝ 45 ㎝ 40 ㎝,则这个三角形的周长为 16、观察下列各式:322322+=⨯;833833+=⨯;15441544+=⨯;……则依次第四个式子是 ;用)2(≥n n 的等式表达你所观察得到的规律应是 。

二次根式经典测试题附答案

二次根式经典测试题附答案

二次根式经典测试题附答案一、选择题1.下列计算正确的是( )A .4333-=B .235+=C .1212=D .822÷= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、43333-=,错误;B 、2、3不是同类二次根式,不能合并,错误;C 、1222222=⨯=,错误; D 、8242÷==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.2.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴22a a b a b a a b ,故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.3.x 的取值范围是( ) A .x≥76 B .x >76 C .x ≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.4.m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】【详解】A. 18m =4,是同类二次根式,故此选项不符合题意;B. 4m = ,此选项符合题意C. 32m =,是同类二次根式,故此选项不符合题意;D. 627m =3,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.5.如果•6(6)x x x x -=-,那么( ) A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】∵()x ?x 6x x 6-=-,∴x ≥0,x-6≥0,∴x 6≥.故选B.6.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】 2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .7.下列计算或运算中,正确的是()A .2a a =B 1882=C .61523345=D .3327-=【答案】B【解析】【分析】根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.8.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .9.下列式子正确的是( )A 6=±B C 3=- D 5=-【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. 5=,故D 错误.故选:C【点睛】 此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.10.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k 【答案】D【解析】【分析】求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.下列二次根式中的最简二次根式是( )AB C D 【答案】A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.12.下列各式中,是最简二次根式的是( )A B C D【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.(3) C被开方数含能开的尽方的因数或因式,错误.(4) D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.13.下列计算或化简正确的是()A.=BC3==-D3【答案】D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C 3=,故C 错误;D 3===,正确.故选D .14.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.15.计算÷的结果是( )A B C .23 D .34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:÷ 1(24=⨯÷=16=⨯2=. 故选:A .【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.16.下列计算正确的是( )A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、- B 、,此选项正确; C、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.17.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩可求解.18.下列二次根式是最简二次根式的是()ABCD【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含分母,故A不符合题意;B、被开方数含开的尽的因数,故B不符合题意;C、被开方数是小数,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.19.当实数x41y x=+中y的取值范围是() A.7y≥-B.9y≥C.9y<-D.7y<-【答案】B【解析】【分析】根据二次根式有意义易得x的取值范围,代入所给函数可得y的取值范围.【详解】解:由题意得20x-≥,解得2x≥,419x∴+≥,即9y≥.故选:B.【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x的取值是解决本题的关键.20.如图,数轴上的点可近似表示(4630-)6÷的值是()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】-55先化简原式得4545【详解】-原式=45<<3,由于25-<2.∴1<45故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。

初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)

初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)

章节测试题1.【答题】若与互为相反数,则x+y的值=______。

【答案】27【分析】互为相反数的两个数之和等于0.【解答】根据题意得+=0,∵≥0 且≥0∴=0 且=0∴且解得∴x+y=15+12=272.【答题】实数a在数轴上的位置如图,化简+a=______.【答案】1【分析】根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.【解答】解:+a=1﹣a+a=1,3.【答题】函数中自变量的取值范围______.【答案】x≥2【分析】根据被开方数非负来解.【解答】根据被开方数非负,得到关于x的不等式,x-2≥0求解即可.4.【答题】若在实数范围内有意义,则x的取值范围是______.【答案】x≥3【分析】被开方数或被开方式是非负数【解答】由于被开方数或被开方式是非负数得x﹣3≥0,即x≥35.【答题】要使有意义,则x的取值范围是______.【答案】x≥4【分析】根据算术平方根的意义,可知其被开方数为非负数.【解答】根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为:x≥4.方法总结:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.6.【题文】想一想:将等式=3和=7反过来的等式3=和7=还成立吗?式子:9==和4==成立吗?仿照上面的方法,化简下列各式:(1)2(2)11(3)6【答案】成立,、、【分析】当a≥0时,a=,所以对于有理数与二次根式相乘的形式的化简,可以将根号外的非负数通过这样的变形后,再用二次根式的乘法法则化简.【解答】解:等式3=和7=成立,9==和4==成立.(1);(2);(3).方法总结:本题主要考查了二次根式的非负性,二次根式有双重非负性,即二次根式的被开方数是非负数,二次根式的值是非负数,所以每一个非负数都可以根据二次根式的双重非负性写成二次根式的形式.7.【题文】若y=++3,求xy的值。

二次根式经典测试题(附答案解析)

二次根式经典测试题(附答案解析)

二次根式经典测试题(附答案解析)1. 问题:求下列二次根式的值并化简:$$\sqrt{9}$$解析:根据定义,$\sqrt{9}$表示求一个数的平方根,而9的平方根等于3,因此$\sqrt{9}=3$。

2. 问题:计算下列二次根式的值:$$\sqrt{16}+\sqrt{25}$$解析:根据定义,$\sqrt{16}$表示求一个数的平方根,而16的平方根等于4;同样,$\sqrt{25}$表示求一个数的平方根,而25的平方根等于5。

将两个平方根相加得到$$\sqrt{16}+\sqrt{25}=4+5=9$$3. 问题:化简下列二次根式:$$\sqrt{18}$$解析:18可以分解为$2\times9$,而$\sqrt{16}=\sqrt{2\times9}=\sqrt{2}\times\sqrt{9}=\sqrt{2}\times3=\sq rt{18}=3\sqrt{2}$4. 问题:将下列二次根式化为最简形式:$$\sqrt{48}$$解析:48可以分解为$16\times3$,而$\sqrt{48}=\sqrt{16\times3}=\sqrt{16}\times\sqrt{3}=4\sqrt{3}$5. 问题:计算下列二次根式的值:$$\sqrt{64}+\sqrt{81}-2\sqrt{36}$$解析:根据定义,$\sqrt{64}=8$,$\sqrt{81}=9$,$\sqrt{36}=6$。

将这三个值代入原式得到 $$\sqrt{64}+\sqrt{81}-2\sqrt{36}=8+9-2\times6=8+9-12=5$$6. 问题:对于一个正实数x,求下列表达式的值:$$(\sqrt{x}+2)(\sqrt{x}-2)$$解析:根据乘法公式$$(a+b)(a-b)=a^2-b^2$$,将表达式$(\sqrt{x}+2)(\sqrt{x}-2)$代入公式得到 $$(\sqrt{x}+2)(\sqrt{x}-2)=\sqrt{x}^2-(2)^2=x-4$$7. 问题:求下列方程的解集:$$\sqrt{x^2+6x+9}=3$$解析:根据定义,$\sqrt{a}=b$可以转化为$a=b^2$,将方程$\sqrt{x^2+6x+9}=3$转化为$x^2+6x+9=(3)^2=9$。

新初中数学二次根式基础测试题附答案(1)

新初中数学二次根式基础测试题附答案(1)

新初中数学二次根式基础测试题附答案(1)一、选择题1.n的最大值为()A.12B.11C.8D.3【答案】C【解析】【分析】如果实数n取最大值,那么12-n22,从而得出结果.【详解】2时,n取最大值,则n=8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解”的含义.2.(的结果在()之间.A.1和2 B.2和3 C.3和4 D.4和5【答案】B【解析】【分析】的范围,再求出答案即可.【详解】(==22∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.3.下列各式计算正确的是()A1082==-=B.()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.下列各式计算正确的是( )A .2+b =2bB =C .(2a 2)3=8a 5D .a 6÷ a 4=a 2【答案】D【解析】解:A .2与b 不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .5.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.6.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.7.1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.8.m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】【详解】A. 18m =4,是同类二次根式,故此选项不符合题意;B. 4m = ,此选项符合题意C. 32m =,是同类二次根式,故此选项不符合题意;D. 627m = 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<< 【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.已知25523y x x =-+--,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由25523y x x =-+--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .11.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.12.如果一个三角形的三边长分别为12、k 、7221236k k -+|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.13.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;B2=是同类二次根式;C b==D不是同类二次根式;故选:B.本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.14.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.15.计算4÷的结果是( )A .2BC .23D .34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:4÷ 1(24=⨯÷1186=1326=⨯22=.故选:A.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.16.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知一长方体婴儿游泳池的体积为300立方米、高为38米,则该长方体婴儿游泳池的底面积为()A.403平方米B.402平方米C.203平方米D.202平方米【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】解:根据题意,该长方体婴儿游泳池的底面积为300÷38=33008÷=800=202(平方米)故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.17.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2 B6C.236223D.23225【答案】D【解析】【分析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯-=222233-+-=23225+-故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.18.下列二次根式是最简二次根式的是( )A .57B .12C . 6.4D .37【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.19.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】 利用2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可. 【详解】 解:0,,a b a b Q <<>0,a b ∴+<22||a a b b a a b b ∴+++=+++()a a b b =--++a ab b =---+2.a =-故选A . 【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.20.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案### 二次根式测试题及答案#### 题目一:化简下列二次根式1. \(\sqrt{50}\)2. \(\sqrt{32}\)3. \(\sqrt{8}\)#### 答案一:1. \(\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}\)2. \(\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}\)3. \(\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}\)#### 题目二:合并同类二次根式合并下列同类二次根式:\(3\sqrt{2} + 5\sqrt{2} - 2\sqrt{3} + 2\sqrt{3}\)#### 答案二:\(3\sqrt{2} + 5\sqrt{2} - 2\sqrt{3} + 2\sqrt{3} = (3 + 5)\sqrt{2} + (-2 + 2)\sqrt{3} = 8\sqrt{2} + 0\)简化后得:\(8\sqrt{2}\)#### 题目三:二次根式的乘除法计算下列表达式的值:1. \((\sqrt{7} \times \sqrt{3})\)2. \((\frac{\sqrt{5}}{2}) \div (\sqrt{5})\)#### 答案三:1. \(\sqrt{7} \times \sqrt{3} = \sqrt{7 \times 3} =\sqrt{21}\)2. \(\frac{\sqrt{5}}{2} \div \sqrt{5} = \frac{\sqrt{5}}{2} \times \frac{1}{\sqrt{5}} = \frac{1}{2}\)#### 题目四:二次根式的混合运算计算下列表达式的值:\(\sqrt{48} - \frac{1}{\sqrt{3}} + 2\sqrt{6}\)#### 答案四:首先化简 \(\sqrt{48}\):\(\sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3}\)接着计算表达式:\(4\sqrt{3} - \frac{1}{\sqrt{3}} + 2\sqrt{6}\)将 \(\frac{1}{\sqrt{3}}\) 转换为有理化分母:\(\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}\)代入原表达式:\(4\sqrt{3} - \frac{\sqrt{3}}{3} + 2\sqrt{6}\)合并同类项:\(\frac{12\sqrt{3}}{3} - \frac{\sqrt{3}}{3} + 2\sqrt{6} = \frac{11\sqrt{3}}{3} + 2\sqrt{6}\)#### 题目五:二次根式的逆运算如果 \(\sqrt{18x} = 3\sqrt{2x}\),求 \(x\) 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档