AP2004中文资料
ap(2004)5欧盟橡胶指令
ap(2004)5欧盟橡胶指令欧盟橡胶指令,官方名称为AP(2004)5号指令,是指为了保护消费者和环境安全而制定的指导性法规。
该指令从2004年开始实施,旨在限制和监管橡胶制品中含有的有害物质,以减少对人类和环境的危害。
本文将详细介绍欧盟橡胶指令的背景、主要内容和目标,并分析其对橡胶制品行业和相关利益方的影响。
指令的背景在过去的几十年中,随着工业和科技的发展,橡胶制品广泛应用于各个领域,如汽车制造、建筑和医疗领域。
然而,橡胶制品中含有的某些化学物质,如苯胺和致癌物质苯并(a)芘,对人类和环境可能会产生危害。
为了确保橡胶制品的安全性和环保性,欧盟决定制定橡胶指令进行监管。
指令的主要内容和目标欧盟橡胶指令的主要目标是限制和监管橡胶制品中的有害物质。
其中最重要的限制物质是苯胺类化合物和苯并(a)芘。
这些物质被认为对人类健康有潜在危害,并且在使用过程中可能会释放出来,对环境造成污染。
指令要求橡胶制品的生产商必须确保其产品不含超过法规规定限制值的有害物质。
生产商必须进行相关化学物质分析和测试,以确保产品符合欧盟标准。
同时,指令还规定了相关的测试方法和要求,以确保测试结果的准确性和可比性。
除了限制和监管有害物质,指令还对橡胶制品的标识和认证进行规范。
符合指令要求的产品必须标明相关的认证标志,以便消费者辨识和选择安全和环保的产品。
此外,指令还强调了生产商的责任和义务,要求他们提供相关的安全数据和技术文件,以便监管机构进行审查和验证。
指令对橡胶制品行业的影响欧盟橡胶指令的实施对橡胶制品行业有着重要的影响。
首先,该指令促使生产商对产品质量和安全性进行更加严格的控制和管理。
生产商必须加强对原材料和生产过程的监管,以确保产品不含有害物质,从而提高产品的质量和可靠性。
其次,指令推动了橡胶制品行业的技术创新和发展。
为了满足指令的要求,生产商需要不断改进产品设计和制造工艺,以减少有害物质的使用。
这将促进行业的创新和进步,加快替代有害物质的研发和应用。
AP2004
PWM Buck ControllerFeatures- PWM Buck Control Circuitry- Operating voltage can be up to 27V- Under voltage Lockout (UVLO) Protection - Short Circuit Protection (SCP) - Soft-start circuit- Variable Oscillator Frequency -- 300Khz Max - 1.25V voltage reference Output - 8-pin PDIP and SOP packagesApplications- Backlight inverter - LCD Monitor- XDROM, XDSL Product- DC/DC converters in computers, etc.General DescriptionThe AP2004 integrates Pulse-Width-Modulation (PWM) control circuit into a single chip, mainly designs for power-supply regulator. All the functions include an on-chip 1.25V reference output, an error amplifier, an adjustable oscillator, a soft-start, UVLO, SCP circuitry, and a push-pull output circuit. Switching frequency is adjustable by trimming CT. During low VCC situation, the UVLO makes sure that the outputs are off until the internal circuit operates normally.Pin AssignmentOUT GND SCPSS FBVCC CT COMP( Top View )PDIP/SOPPin DescriptionsNameDescriptionCT TimingCapacitor FB Voltage Feedback SS Soft-Start. COMPFeedback Loop CompensationOUT PWM OutputGND Ground VCC Supply Voltage SCP Short Circuit ProtectionOrdering InformationS: SOP-8LA : TapingL : Lead Free PackagePWM Buck ControllerBlock DiagramOUTFBVCCSCP CTCOMPGNDSSAbsolute Maximum RatingsSymbol ParameterRating Unit V CC Supply voltage 28 V V I Amplifier input voltage 20 V V O Collector output voltage V CC -1.0VVI SOURCE Source current 200 mA I SINK Sink current200 mA T OP Operating temperature range -20 to +85 o C T ST Storage temperature range-65 to +150o C T LEAD Lead temperature 1.6 mm(1/16 inch) from case for 10 seconds260oCPWM Buck ControllerRecommended Operating ConditionsSymbolParameterMin. Max. Unit V CC Supply voltage 3.6 27V V I Amplifier input voltage 1.05 1.45V V O Collector output voltage Vcc-1.5 VI FBCurrent into feedback terminal45 µA R F Feedback resistor 100 k Ω C T Timing capacitor 100 6800pF F OSC Oscillator frequency 10 300 KHz T OPOperating free-air temperature-2085ºCElectrical Characteristics (T A=25ºC, VCC=6V, f=200 Khz)Reference (REF) Symbol Parameter Conditions Min.Typ. Max.UnitComp connect to FB 1.225 1.25 1.275VT A = -20ºC ~ 25ºC -0.1 ±1 % V REF Output voltage change withtemperature T A = 25ºC ~ 85ºC -0.2 ±1 %Under voltage lockout (UVLO) Symbol Parameter Conditions Min.Typ. Max.Unit V UT Upper threshold voltage (V CC ) 2.9 VV LWT Lower threshold voltage (V CC ) 2.4 VV HT Hysteresis (V CC ) I O(REF) = 0.1mAT A = 25ºC500 mV Short-circuit protection (SCP) control Symbol Parameter Conditions Min.Typ. Max.Unit V IT Input threshold voltage T A = 25ºC 0.600.67 0.75V V STB Standby voltage No pull up 100 130 160 mV V LT Latched input voltage No pull up 50 100 mV I SCP Input (source) current V I = 0.7V, T A = 25ºC -10 -15 -20 µAV CT Comparator threshold voltage(COMP)1.5 VOscillator (OSC) Symbol Parameter Conditions Min.Typ. Max.Unit F OSC Frequency C T =270 pF 200 KHzStandard deviation of frequency C T =270 pF 10∆F OSC Frequency change with voltage V CC =3.6V ~ 20V 1%PWM Buck ControllerElectrical Characteristics (Continued) (T A=25ºC, VCC=6V, f=200 Khz)Error-amplifierSymbol Parameter ConditionsMin.Typ. Max. Unit V IO Input offset voltage V O (FB)=1.25V ±6 mV I IO Input offset current V O (FB)=1.25V ±100 nA I IB Input bias currentV O (FB)=1.25V 160 500 nA V CMCommon-mode input voltagerangeV CC =3.6V ~ 20V1.051.45VAVOpen-loop voltageamplificationR F =200 k Ω 70 80 dBGBW Unity-gain bandwidth1.5 MHz CMRR Common-mode rejection ratio 60 80 dB V OH Max. output voltage V ref -0.1 VV OL Min. output voltage1 V I OI Output (sink) current (COMP)V ID = -0.1V, V O = 1.25V 0.5 1.6 mA I OOOutput (source) current(COMP)V ID = 0.1V, V O = 1.25V-45 -70 µA Output sectionSymbol ParameterConditions Min.Typ. Max. Unit I LEAK Leakage current V O = 25V 10 µA Sink current V IN = 20V 200 mA I DRV Source currentV IN = 20V 200 mA V SATOutput saturation voltageI O = 10 mA 1.0 1.5 V I SC Short-circuit output currentV O = 6V120 mA PWM comparatorSymbol ParameterConditionsMin.Typ.Max.UnitV T0 CT 0.6 0.7 V V T100 Input threshold voltage at f =10 KHz (COMP) Maximum duty cycle 1.2 1.3 V Total deviceSymbolParameterConditionsMin.Typ. Max. Unit I CCA Average supply current C T = 270pF6 10 mA Soft StartSymbol Parameter ConditionsMin.Typ. Max. Unit V SS Soft-start Voltage 2.3 VI SSConstant Charge Current20µAPWM Buck ControllerTypical Application CircuitC3Step-Down DC/DC converterTypical CharacteristicsPWM Buck ControllerTypical Characteristics (Continued)Marking Information(Top View)PDIP/SOPLogo ID codeYear: "01" =2001 "02" =2002Xth week: 01~52~PWM Buck ControllerPackage Information(1) PDIP-8L (Plastic Dual-in-line Package )E-PIN O0.118 inchDimensions in millimeters Dimensions in inchesSymbolMin. Nom. Max. Min. Nom. Max.A - - 5.33 - - 0.210A1 0.38 - - 0.015 - - A2 3.1 3.30 3.5 0.122 0.130 0.138B 0.36 0.46 0.56 0.014 0.018 0.022B1 1.4 1.52 1.65 0.055 0.060 0.065 B2 0.81 0.99 1.14 0.032 0.039 0.045C 0.20 0.25 0.36 0.008 0.010 0.014D 9.02 9.27 9.53 0.355 0.365 0.375E 7.62 7.94 8.26 0.300 0.313 0.325E1 6.15 6.35 6.55 0.242 0.250 0.258e - 2.54 - - 0.100 -L 2.92 3.3 3.81 0.115 0.130 0.150 eB 8.38 8.89 9.40 0.330 0.350 0.370 S 0.71 0.84 0.97 0.028 0.033 0.038PWM Buck ControllerPackage Information (Continued)(2) SOP- 8L(JEDEC Small Outline Package)Dimensions In Millimeters Dimensions In InchesSymbolMin. Nom. Max. Min. Nom. Max.A 1.40 1.60 1.75 0.055 0.063 0.0690.040 - 0.100A1 0.10 - 0.25A2 1.30 1.45 1.50 0.051 0.057 0.059B 0.33 0.41 0.51 0.013 0.016 0.020C 0.19 0.20 0.25 0.0075 0.008 0.010D 4.80 5.05 5.30 0.189 0.199 0.209E 3.70 3.90 4.10 0.146 0.154 0.161e - 1.27 - - 0.050 -H 5.79 5.99 6.20 0.228 0.236 0.244L 0.38 0.71 1.27 0.015 0.028 0.050y - - 0.10 - - 0.004θ0O - 8O0O - 8O。
2004中文版ASME规范 第Ⅱ卷 A篇 铁基材料 2006增补
公制单位”用的‘IEEE/ASTM 10-1997’标准的规则。”
右栏第 2 段第 2 行中“……已在美国的 49 个州…… ”修改为:
“……已在美国的 50 个州……”。
按标准标号顺序、在 SA-240/ SA-240M 行下,新增加:
SA-263 铬- 不锈钢复合钢板
A06
SA-264 铬-镍 不锈钢复合钢板
A961 管道用钢法兰,锻造管配件及阀门零件通用要求 重新编号为 2.3 并删除‘SP25’一行。
重新编号为 2.4 并删除“ASME 锅炉及压力容器规范第 IX 卷,焊接 评定”一行。 在新 2.4 节下新增加 2.5 节如下: 2.5 ASME 锅炉及压力容器规范:
第 IX 卷,焊接评定 原 2.4 节重新编号为 2.6,内容不变。
60
SA-105
/SA-105M
5.1.5
句中‘特殊级别’后,增加上角标②,并在 5.1.5 条的译文下,增加注②
如下: ② 关于特殊磅级的定义,见 ASME B16.34。
60
SA-105
5.2
本节修改为:
/SA-105M
5.2 当第 5.1 条要求热处理时,应按 A961 标准做退火、正火、或正
在第 II 卷 A 篇和 B 篇中的非强制性附录-A 中。”。
xlvi~liv 许用的
对部分规范版本修改,另见本增补第 44~45 页。
ASTM 版本
2
Байду номын сангаас
ASME BPVC 2006 增补
第 II 卷 A 篇
铁基材料
04 中文 版页码
章节
修改部位
06 增 补 修 改 内 容
lv-lvi 材料的多重 每一段落的 对全文 7 个小标题,取消原有编号,但标题名称未改变。 性标志准则 小标题 各标题以下的内容,也没有变更。
AP physics C 2004 真题 多项选择试题题目
AP physics C 2004 真题多项选择试题题目Questions 40-4136. Three 1/2 μF capacitors are connected in series as shown in the diagram above. Thecapacitance of the combination is (A) 0.1 μF (B) 1 μF (C) 2/3 μF(D) ? μF (E) 1/6 μF37. A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is(A) 0.1 Ω (B) A particle of charge +e and mass m moves with 10 Ω (C) 12Ω speed v perpendicular to a uniform magnetic field (D) 120 Ω (E) B directed into the page. The path of the particle is 1440 Ω a circl eof radius r, as shown above. 40. Which of the following correctly gives thedirection of motion and the equationrelating v and r ?Direction Equation(A) Clockwise eBr = mv 2 (B) Clockwise eBr = mv 38. A point charge+Q is inside an uncharged (C) Counterclockwise eBr = mv conducting spherical shell that in turn is near 2(D) Counterclockwise eBr = mv several isolated point charges, as shown above. 22(E) Counterclockwise eBr = mv The electric field at point P inside the shell depends on the magnitude of 41. The period of revolution of the particle (A) Q only is (B) the charge distribution on the sphere only (A) mr/eB (B) meB/(C) Q and the charge distribution on the sphere (D) all of the point charges (C) 2πm/eB (D) 2/,meB(E) all of the point charges a nd the charge (E)2/,mreBdistribution on the sphere 42. A 20 μF parallel-plate capacitor is fully charged to 30 39. In a certain region, the electric field along V. The energy stored in the capacitor is most nearly the x-axis is given by 3-3-4(A) 9 x 10 J (B) 9 x 10 J (C) 6 x 10 J 2E = ax + b, where a = 40 V/m -4-7(D) 2 x 10 J (E) 2 x 10 J and b = 4 V/m. The potentialdifference between the origin 43. A potential difference V is maintained between and x = 0.5 m is two large, parallel conducting plates. An (A) -36 V (B) -7 V (C) -3 V (D) 10 V electron starts from rest on the surface of one (E) 16 V plate and accelerates toward the other. Its speed as it reaches the second plate isproportional to(A) 1/V(B)1VV(C)(D) V 2(E) V44. A wire of radius R has a current I uniformly 48. Two conducting cylindrical wires are made outdistributed across its cross-sectional area. of the same material. Wire X has twice theAmpere's law is used with a concentric length and twice the diameter of wire Y. Whatcircular path of radius r, with r < R, to /R of their resistances?is the ratio Rxycalculate the magnitude of the magnetic (A) 1/4 (B) ? (C) 1 (D) 2 (E) 4field B at a distance r from the center of the wire. Which of the following equationsresults from a correct application ofAmpere's law to this situation? 22(A) B(2πr) = μI (B) B(2πr) =μI(r/R) 00(C) B(2πr) = 0 (D) B(2πR) = μI (E) B(2πR) 022= μI(r/R) 0Questions 45-4649. A solid metallic sphere of radius R has chargeQ uniformly distributed on its outer surface. Agraph of electric potential V as a function ofposition r is shown above. Which of thefollowing graphs best represents the magnitudeof the electric field E as a function of position r Particles of charge Q and -4Q are located on the for this sphere? x-axis as shown in the figure above. Assumethe particles are isolated from all other charges.45. Which of the following describes the directionof the electric field at point P ?(A) +x (B) +y (C)-y(D) Components in both the -x- and+y-directions(E) Components in both the+x- and -y-directions46. At which of the labeled points on the x-axis is the electric field zero?(A) A (B) B (C) C (D) D (E) E47. When the switch S is open in the circuitshown above, the reading on the ammeter Ais 2.0 A. When the switch is closed, thereading on the ammeter is(A) doubled(B) increased slightly but not doubled(C) the same(D) decreased slightly but not halved (E) halved50. Two parallel wires, each carrying a current I, repel each other with a force F. If bothcurrents are doubled, the force of repulsion is (A) 2F (B) F (C) 4F22(D) F (E) 8F 4251. A circular current-carrying loop lies so that the plane of the loop is perpendicular to a constant 54. A conducting loop of wire that is initially magnetic field of strength B. Suppose that the around a magnet is pulled away from the radius R of the loop could be made to increase magnet to the right, as indicated in the figure with time t so that R = at, where a is a constant. above, inducing a current in the loop. What is What is the magnitude of the emf that would be the direction of the force on the magnet and generated around the loop as a function of t ? 2the direction of the magnetic field at the (A) 2πBat(B) 2πBat (C) 2πBt 223center of the loop due to the (D) πBat (E) (π/3)Bat induced current? Direction ofMagnetic Field atDirection of Center of Loop dueForce on the Magnet to Induced Current(A) To the right To the right(B) To the right To the left(C) To the left To the right 52. The figures above show parts of two circuits, (D) To the left To the left(E) No direction; To the left each containing a battery of emf ε and internal the force is zero. resistance r. The current in each battery is 1 A, but the direction of the current in one battery is opposite to that in the other. If the potential differences across the batteries' terminals are 10 V and 20 V as shown, what are the valuesof ε and r ? 55. A square loop of wire carrying a current I is (A) ε = 5 V, r = 15 Ω initially in the plane of the page and is located in a uniform magnetic field B that points (B) ε =IOV, r=100 Ω toward the bottom of the page, as shown above. (C) ε = 15 V, r = 5 Ω Which of the following shows the correct initialrotati on of the loop due to the force exerted on (D) ε = 20 V, r = 10 Ωit by the magnetic field? (E) The values cannot be computed unless the complete circuits are shown.53. A charged particle can move withconstant velocity through a regioncontaining both an electric field and amagnetic field only if the(A) electric field is parallel to the magnetic field(B) electric field is perpendicular to the magnetic field(C) electric field is parallel to the velocity vector(D) magnetic field is parallel to the velocity vector(E) magnetic field is perpendicular to the velocity vectorQuestions 59-6156. In the circuit shown above, the equivalent The diagram above shows equipotential lines resistance of the three resistors is produced by an unknown charge distribution. A, (A) 10.5 Ω (B) 15Ω (C) 20 ΩB, C, D, and E are points in the plane. (D) 50 Ω (E) 115 Ω59. Which vector below best describes the direction Questions 57-58of the electric field at point A ?(A) (B) (C) (D)(E) None of these; the field is zero.60. At which point does the electric field havethe greatest magnitude? (A) A As shown in the figure above, six particles, each (B) B with charge +Q, are held fixed and ate equally(C) C spaced around the circumference of a circle of(D) D radius R.(E) E57. What is the magnitude of the resultantelectric field at the center of the circle? 61. How much net work must be done by anexternal force to move a -1 μC point charge 6Q(A) 0 (B) (C) from rest at point C to rest at point E ? 24,,R0(A) -20 μJ(B) -10 μJ 23Q32Q (D) 22(C) 10 μJ ,,,,4R4R00(D) 20 μJ 3Q(E) 30μJ (E) 2,,2R 058. With the six particles held fixed, how muchwork would be required to bring a seventhparticle of charge + Q from very far awayand place it at the center of the circle?23Q6Q(A) 0 (B) (C) 2,,,,24RR00229Q3Q(D) (E) ,,,,2R00R62. One of Maxwell's equations can be written 65. A physics problem starts: "A solid sphere hascharge distributed uniformly throughout. . . " d,as. This equation expresses ,,,Eds,It may be correctly concluded that the dt(A) electric field is zero everywhere inside the the fact that sphere (A) a changingmagnetic field produces (B) electric field inside the sphere is the same an electric field as the electric field outside (B) a changing electric field produces a (C) electric potential on the surface of the magnetic field sphere is not constant (C) the net magnetic flux through a (D) electric potential in the center of the sphere closed surface depends on the is zero current inside (E) sphere is not made of metal (D) the net electric flux through a closed surface depends on the charge inside Questions 66-67 relate to the circuit represented (E) electric charge is conserved below. The switch S, after being open for a long time, is then closed., ,12 V4 HS63. The plates of a parallel-plate capacitor of cross 66. What isthe current in the circuit after the sectional area A are separated by a distance d, switch has been closed a long time? as shown above. Between the plates is a (A) 0 A dielectric material of constant K. The plates are (B) 1.2 A connected in series with a variable resistance R (C) 2 A and a power supply of potential difference V. (D) 3 A The capacitance C of this capacitor will (E) 12 A increase if which of the following isdecreased? (A) A (B) R (C) K 67. What is the potential difference across the (D) d (E) V resistor immediately after the switch is closed? (A) 0 V(B) 2 V(C) 7.2 V(D) 8 V(E) 12 V68. A uniform spherical charge distribution hasradius R.. Which of the following is true of the electric field strength due to this charge 64. The currents in three parallel wires, X, Y, and Z, distribution at a distance r from the center of each have magnitude l and are in the directions the charge? shown above. Wire Y is closer to wire X than to (A) It is greatest when r = 0. wire Z. The magnetic force on wire Y is (B) It is greatest when r = R/2. (A) zero (B) into the page (C) out of the page (C) It is directly proportional to r when r > (D) toward the bottom of the page R. (E) toward the left (D) It is directly proportional to r when r < R. 2(E) It is directlyproportional to r.69. When a negatively charged rod is brought near, but does not touch, the initially uncharged electroscope shown above, the leaves spring apart (I). When the electroscope is then touched with a finger, the leaves collapse (II). When next the finger and finally the rod are removed, the leaves spring apart a second time (III). The charge on the leaves is(A) positive in both I and III(B) negative in both I and III(C) positive in I, negative in III(D) negative in I, positive in III(E) impossible to determine in either I or III70. A sheet of copper in the plane of the page is connected to a battery as shown above, causing electrons to drift through the copper toward the bottom of the page. The copper sheet is in a magnetic field B directed intothe page. P and P are points at the edges of 12the strip. Which of the following statements is true?(A) P is at a higher potential than P. 12(B) P is at a higher potential than P. 21(C) P and P are at equal positive potential. 12(D) P and P are at equal negative potential. 12(E) Current will cease to flow in the copper sheet.。
API_619_2004_(中文版)石油、化工和气体工业用螺杆压缩机
用于石油,化工和天然气行业的旋转 正位移压缩机
API 标准 619 第四版
美国石油协会
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
(工热论坛)收集整理
A2004中文资料
NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.Recommended Substitutions:High Voltage High Current Darlington ArraysA2003, A2004, A2023, A2024Date of status change: May 2, 2005Deadline for receipt of LAST TIME BUY orders: October 28, 2005These parts are in production but have been determined to be LAST TIME BUY . This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently restricted to existing customer applications. The device should not be purchased for new design applications because of obsolescence in the near future. Samples are no longer st Time Buy2003 THRU 2024HIGH-VOLTAGE,HIGH-CURRENT DARLINGTON ARRAYSTest ApplicableLimits Characteristic Symbol Fig.DevicesTest Conditions Min.Typ.Max.Units Output Leakage CurrentI CEX1AA llV CE = 50 V, T A = 25°C —< 150µA V CE = 50 V, T A = 70°C—< 1100µA 1BULN2004A/LV CE = 50 V, T A = 70°C, V IN = 1.0 V—< 5500µA Collector-EmitterV CE(SAT)2A llI C = 100 mA, I B = 250 µA—0.9 1.1V Saturation Voltagel C = 200 mA, I B = 350 µA— 1.1 1.3V I C = 350 mA, I B = 500 µA— 1.3 1.6V Input CurrentI IN(ON)3ULN2003A/LV IN = 3.85 V —0.93 1.35mA ULN2004A/LV IN = 5.0 V —0.350.5mA V IN = 12 V— 1.0 1.45mA I IN(OFF)4A ll l C = 500 µA, T A = 70°C5065—µA Input VoltageV IN(ON)5ULN2003A/LV CE = 2.0 V, l C = 200 mA—— 2.4V V CE = 2.0 V, I C = 250 mA—— 2.7V V CE = 2.0 V, l C = 300 mA—— 3.0V ULN2004A/LV CE = 2.0 V, l C = 125 mA—— 5.0V V CE = 2.0 V, l C = 200 mA—— 6.0V V CE = 2.0 V, I C = 275 mA——7.0V V CE = 2.0 V, l C = 350 mA——8.0V Input Capacitance C IN —A ll —1525pF Turn-On Delay t PLH 8All 0.5 E IN to 0.5 E OUT —0.25 1.0µs Turn-Off Delay t PHL 8All 0.5 E IN to 0.5 E OUT —0.25 1.0µs Clamp DiodeI R 6A ll V R = 50 V, T A = 25°C ——50µA Leakage Current V R = 50 V, T A = 70°C——100µA Clamp Diode V F7AllI F = 350 mA—1.72.0VForward VoltageComplete part number includes suffix to identify package style: A = DIP, L = SOIC.Types ULN2003A, ULN2003L, ULN2004A, and ULN2004L ELECTRICAL CHARACTERISTICS at +25°C (unless otherwise noted).2003 THRU 2024HIGH-VOLTAGE,HIGH-CURRENTDARLINGTON ARRAYS115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000Test Applicable LimitsCharacteristic Symbol Fig.DevicesTest ConditionsMin.Typ.Max.Units Output Leakage CurrentI CEX1AA ll V CE = 95 V, T A = 25°C—< 150µA V CE = 95 V, T A = 70°C—< 1100µA 1BULN2024A/LV CE = 95 V, T A = 70°C, V IN = 1.0 V—< 5500µA Collector-EmitterV CE(SAT)2A llI C = 100 mA, I B = 250 µA—0.9 1.1V Saturation Voltagel C = 200 mA, I B = 350 µA— 1.1 1.3V I C = 350 mA, I B = 500 µA— 1.3 1.6V Input CurrentI IN(ON)3ULN2023A/LV IN = 3.85 V —0.93 1.35mA ULN2024A/LV IN = 5.0 V —0.350.5mA V IN = 12 V— 1.0 1.45mA I IN(OFF)4A ll l C = 500 µA, T A = 70°C5065—µA Input VoltageV IN(ON)5ULN2023A/LV CE = 2.0 V, l C = 200 mA—— 2.4V V CE = 2.0 V, I C = 250 mA—— 2.7V V CE = 2.0 V, l C = 300 mA—— 3.0V ULN2024A/LV CE = 2.0 V, l C = 125 mA—— 5.0V V CE = 2.0 V, l C = 200 mA—— 6.0V V CE = 2.0 V, I C = 275 mA——7.0V V CE = 2.0 V, l C = 350 mA——8.0V Input Capacitance C IN —A ll —1525pF Turn-On Delay t PLH 8All 0.5 E IN to 0.5 E OUT —0.25 1.0µs Turn-Off Delay t PHL 8All 0.5 E IN to 0.5 E OUT —0.25 1.0µs Clamp DiodeI R 6A ll V R = 95 V, T A = 25°C ——50µA Leakage Current V R = 95 V, T A = 70°C——100µA Clamp Diode V F7A llI F = 350 mA—1.72.0VForward VoltageComplete part number includes suffix to identify package style: A = DIP, L = SOIC.Types ULN2023A, ULN2023L, ULN2024A, and ULN2024LELECTRICAL CHARACTERISTICS at +25°C (unless otherwise noted).115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000Dwg. GP-067COLLECTOR-EMITTER SATURATION VOLTAGE Dwg. GP-068INPUT CURRENT IN µA2003 THRU 2024HIGH-VOLTAGE,HIGH-CURRENTDARLINGTON ARRAYS115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000PACKAGE DESIGNATOR “A”Dimensions in Inches (controlling dimensions)Dimension in Millimeters (for reference only)NOTES:1.Leads 1, 8, 9, and 16 may be half leads at vendor’s option.2.Lead thickness is measured at seating plane or below.3.Lead spacing tolerance is non-cumulative.4.Exact body and lead configuration at vendor’s option within limits shown.Dwg. MA-001-16A mm18Dwg. MA-001-16A in182003 THRU 2024HIGH-VOLTAGE,HIGH-CURRENT DARLINGTON ARRAYSPACKAGE DESIGNATOR “L”Dimensions in Inches (for reference only)Dimension in Millimeters (controlling dimensions)NOTES:1.Lead spacing tolerance is non-cumulative.2.Exact body and lead configuration at vendor’s option within limits shown.Dwg. MA-007-16A mm169Dwg. MA-007-16 in1692003 THRU 2024HIGH-VOLTAGE,HIGH-CURRENTDARLINGTON ARRAYS115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000The products described here are manufactured under one or more U.S. patents or U.S. patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, ormanufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsi-bility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.元器件交易网。
AP2004皮拉尼真空计
AP2004皮拉尼真空计AP2004模拟输出:2个设置点 + 模拟输出2个设置点 + RS485ADIXEN在使用这个真空计之前,请仔细阅读此文件。
1、安全1-1.符号注意关于正确处理或使用的重要信息。
1-2.一般安全指令·这个真空计不要使用在腐蚀性或毒性气体的工况腐蚀性气体如含氟的气体可能造成传感器内部损坏,从而导致外部气体泄漏。
这可能造成人身伤害。
·小心安装或拆除真空计将真空计安装在真空管路上之后或拆除其之前,用干净和干燥气体去除传感器内部残余的气体和蒸气。
1-3.专业技术人员注意所有在这个文件中描述的工作要由经过适当技术培训和有足够经验的专业人去执行。
2、质量保证1.这个真空计的保修期为交货后一年。
2.如果这个真空计在这个文件描述的正常操作下发生任何故障,我司将提供免费维修。
3.质量保证是针对该产品。
任何因产品造成的其他损伤不在保质范围内。
4.即使在保质期内,如遇以下损坏需付费维修:ⅰ) 因不正确使用或非法维修及修改造成的损坏。
ⅱ) 在交货之后, 机械撞击造成的损坏。
ⅲ) 连接装置导致故障或损坏。
ⅳ) 因颗粒或外部物体进入传感器造成的损坏。
ⅴ) 因自然灾害造成的损坏例如火灾、地震、洪水或雷击。
ⅵ) 其它不在我们的责任范围之内的损坏。
5.维修或更换零件后的保修期为90天或遵从原先保质期的到期日,两种情况中相对晚到的日期为准。
3、技术参数3-1.详述测量压力范围:5E-2~1E5 (Pa)测量精确性 :5E-2~1E-1 (Pa):±50%:1E-1~1E4(Pa):±15%:1E4~1E5 (Pa):±50%重复性 :1E-1~1E4:2% / 环境温度25℃输入电压 :+14~30VDC(标准 24VDC) / 允许脉动:在2Vp-p下面消耗功率 :2W (消耗电流<150mA)模拟输出:0~10V (查阅 4-1)真空计辨识阻抗:13kΩ (D-sub 5-9pins)设置点:2 个接点输出 (1A30V, DC) ∕ SP・485 version only界面:RS485∕485 version onlyI∕O接口 :D-sub 9 pin(4-40)最大线长:200 m (0.34mm2)工作温度范围:5~60℃贮藏温度范围:-20~70℃匹配皮拉尼传感器:MP-1 (NW16,NW25,φ34ICF ,1/8NPT ,φ15adapter)3-2.尺寸 (下图为NN25接口的传感器)80×40×23mm3-3.零件名称 (下图为NN25接口的传感器M-350 PG-485)3-4.I/O接口的插头分配D-sub 9 Pin (公接头) M-350PG-STDM-350PG-SP M-350PG-4851 模拟输出(+) RS485(+)2 不使用 设置点 COM (继电器触点)3 不使用(N.C.)4 DC 电源输入(+):24VDC5 真空计辨识 (13kΩ)6 不使用 设置点1 (继电器触点)7 不使用设置点2 (继电器触点)8 模拟输出(-) RS485(-) 9DC 电源输入(-):0VDCADIXEN皮拉尼真空计传感器 皮拉尼真空计 控制器 I/O 接口 (D-sub 9P) 设置面板注意不要连接不使用的插脚。
TD62004PA中文资料
5
2001-06-28
TD62003,004PA/APA
6
2001-06-28
TD62003,004PA/APA
7
2001-06-28
TD62003,004PA/APA
8
2001-06-28
PACKAGE DIMENSIONS
DIP16−P−300−2.54A
TD62003,004PA/APA
MIN
― ― ― ― ― ― ― 1000 ― ― 50 50 ― ― ― ― ― ― ― ― ― ―
―
―
―
―
TYP.
― ― ― ― 1.3 1.1 0.9 ― 0.4 0.8 65 65 ― ― ― ― ― ― ― ― ― 15
0.1
0.1
0.2
0.2
MAX
50 100 50 100 1.6 1.3 1.1 ― 0.7 1.3 ― ― 2.6 2.0 4.7 4.4 50 100 50 100 2.0 ―
FEATURES
l Output current (single output) 500 mA (Max.) l High sustaining voltage output
35 V (Min.) (TD62003PA series) 50 V (Min.) (TD62003APA series) l Output clamp diodes l Inputs compatible with various types of logic. TD62003PA, APA RIN = 2.7 kΩ TD62004PA, APA RIN = 10.5 kΩ l Package DIP−16 pin
―
―
最新食品接触材料法规简介及实际应用
CERTIFICATION食品接触材料法规简介及实际应用主要内容食品接触材料定义实际应用国外食品接触材料法规简介中国食品接触材料法规介绍食品接触材料定义:正常使用条件下,各种已经或预期可能与食品或食品添加剂接触,或其成分可能转移到食品中的材料和制品,包括食品生产,加工,包装,运输,储存,销售和使用过程中用于食品的包装材料,容器,工具和设备,及可能直接或间接接触食品的油墨,粘合剂,润滑油等。
食品接触材料的定义1欧盟食品接触材料法律法规简介2美国FDA食品接触材料法律法规简介3德国食品接触材料法律法规简介4法国食品接触材料法律法规简介5其他国外食品接触材料法律法规简介Regulation (EC) NO.1935/2004塑料Regulation (EU) No.10/2011金属及合金Resolution CM/Res(2013)9陶瓷84/500/EEC&2005/31/EC有机涂层Res AP (2004) 1环氧衍生物Regulation (EC) No.1895/2005橡胶Res AP (2004) 4纸张Res AP (2002) 1硅胶Res AP (2004) 5着色剂Res AP (89) 1离子交换和吸附树脂Res AP (2004) 3再生纤维素膜93/10/EEC 木制品软木Res AP (2004) 2油墨与清漆Res AP (2005) 2-欧盟(EC ) No 2023/2006Policy statement concerning tissue paper kitchen towels and napkins厨房用纸和纸巾Amendments to Regulation (EU) No 10/2011Commission Regulation (EU) 2019/37允许使用物质、限值物质、测试内容、其他Commission Regulation (EU) 2018/831Commission Regulation (EU) 2017/752Commission Regulation (EU) 2016/1416Commission Regulation (EU) 2019/1338仅修正了欧盟法规(EU )第10/2011号的附件I ,从而改变了欧盟许可物质清单。
1935 2004 EC
1935/2004/EC标准检测1935/2004/EC号规定导入强制标识, 与食品有直接或间接接触的材料和电器应遵循如下说明:- 或注明“可与食品接触”字样- 或按照器具的使用说明进行,如:咖啡机,电水壶等- 或按1935/2004/EC规定的符号说明常见材料欧洲食品级测试1935/2004/EC的项目要求:1935/2004/EC塑料2002/72/EC 全面迁移测试1935/2004/EC陶瓷玻2005/31/EC 铅镉溶出量测试1935/2004/EC硅橡胶AP(2004)5 全面迁移测试1935/2004/EC三聚氰氨树脂AP(2004)5 全面迁移测试,甲醛溶出量测试1935/2004/EC有机涂层AP(2004)1 全面迁移测试1935/2004/EC橡胶AP(2004)5&93/11/EEC 全面迁移测试,亚硝胺含量测试,芳香胺迁移1935/2004/EC纸张AP(2002)1 五氯苯酚测试,防腐效力测试,重金属测试1935/2004/EC木材五氯苯酚测试,甲醛溶出量测试1935/2004/EC金属、合金、及电镀重金属溶出量测试1935/2004/EC法规适用范围与针对的产品范围:1) 餐具:金属餐具、塑料餐具、木制餐具、一次性餐具等等。
2) 厨具:砧板、调味罐、不锈钢锅、不粘锅、铁锅、搪瓷锅等等。
3) 炊具:蒸笼、铲、勺等等4) 保温容器:不锈钢保温杯、保温壶,保温瓶等等。
5) 厨用小家电:搅拌机、打蛋机、咖啡机等等。
产品材料名称检测项目检测标准1. 橡胶材料或不粘镀层产品总迁移量EN11862. 钢材料铸件成分分析-3. 不锈钢材料铸件成分分析EN100884. 有有机涂层的钢或不锈钢材料涂层总迁移量EN1186 基材铸件成分分析EN10088成品(涂层+基材) 总迁移量CrⅥ迁移量EN11865. 合金或金属涂层材料成品(涂层+基材) Pb、Cd、As含量Ni、Cr、Zn含量Ni、Cr、Zn、Cd、Pb迁移量(如果有镍、铬、锌、镉和铅涂层) EN13881:1996EN13882:19966. 无镀层铝材料成分分析EN 602: 20047. 有机镀层铝材料涂层总迁移量EN1186基材满足6.成分分析要求EN 602: 2004成品(涂层+基材) 总迁移量CrⅥ迁移量EN11868. 瓷釉部分Pb、Cd、CrⅥ迁移量EN13881:1996EN13882:19969. 有机涂层的铸铁材料涂层总迁移量EN1186基材Pb含量-成品(涂层+基材) 总迁移量Pb、Cd、CrⅥ迁移量EN1186EN13881:1996EN13882:199610. 钛材料纯钛Fe、V.、Al含量ISO 5832-2ISO 5832-3不锈钢钛材料Mo、Cu、Zr残留-11. 木质材料五氯苯酚-12.硅材料挥发性有机物质总迁移量Sn迁移量过氧化物残留-13. 有金属镀层的钢或不锈钢材料涂层Pb、Cd、As含量EN1186基材第 2.、3.中铸件成分分析EN10088成品(涂层+基材) Ni、Cr、Zn迁移量EN13881:1996EN13882:19961935/2004/EC法规针对的国家:-1935/2004/EC是一个框架法规,欧盟成员国至今有:奥地利、德国、荷兰、比利时、希腊、葡萄牙、丹麦、爱尔兰、西班牙、芬兰、意大利、瑞典、法国、卢森堡、英国、塞浦路斯、立陶宛、捷克共和国、马尔它、爱沙尼亚、波兰、匈牙利、斯洛文尼亚、拉脱维亚、斯洛伐克、保加利亚、罗马尼亚27个国家,其中德国、法国、英国、意大利有自己国家当地法规,除符合欧盟食品级指令Regulation (EC) No1935/2004要求外,还需要符合德国(LFGB)、法国(DGCCRF)、英国(UK SI 898 : 2005)、意大利(ItalianDecree of the Ministry of Health (DM or DMH)当地法规。
AP统计学讲义课件
AP统计学讲义
2004 AP STATISTICS FREE-RESPONSE QUESTIONS(FORM B) STATISTICS SECTION Ⅱ Part A Questions 1-5
Spend about 65 minutes on this part of the exam.
(b) In this setting, explain how bias may have been introduced based on the way the question was worded and suggest how it could have been worded differently to avoid that bias.
AP统计学讲义
3 Trains carry bauxite ore from a mine in Canada to an aluminum processing plant in northern New York state in hopper cars. Filling equipment is used to load ore into the hopper cars. When functioning properly, the actual weights of ore loaded into each car by the filling equipment at the mine are approximately normally distributed with a mean of 70 tons and a standard deviation of 0.9 ton. If the mean is greater than 70 tons, the loading mechanism is overfilliling equipment is functioning properly, what is the probability that the weight of the ore in a randomly selected car will be 70.7 tons or more? Show your work.
各国食品接触材料测试法规介绍
各国食品接触材料测试法规介绍当今社会食品安全问题已经成为人们日常生活中比较关心的问题,然而食品接触材料是否安全也无法忽视。
欧盟、美国和中国都针对食品接触材料安全问题颁布了相关法规,下面小编讲解一下食品接触材料的检测标准。
欧盟最新颁布针对与食品接触物质的指令1935/2001/EC于2006年10月27日起强制执行。
自此出口欧盟与食品接触的材料必须符合1935/2004/EC相关标准的规定。
常见的各国食品接触材料测试法规:1.Federal Regulation-FDA 21 CFR 175-181(Plastic)美国塑料 GRAS Evaluation(Metal) 美国金属3.California Proposition 65 美国加利福尼亚65号提案4.General Europe Market 欧洲市场Regulation(EC) No 1935/20045.Plastic –EU No. 10/2011 塑料6.Metal –Council of Europe Resolution Cm/Res (2013) 9 金属7.AP(2004)1 涂层8.AP(2004)4/5 橡胶硅胶9.AP(2002)1纸张10.Ceramic -84/500/EEC & 2005/31/EC 陶瓷11.LFGB Section 30 and 31 德国12.French Decree 2007-766;DGCCRF 法国13.Italy DMH 21-3-1973 意大利14.GB中国标准:GB 4806.2-2016 奶嘴Nipple、GB 4806.3-2016搪瓷Enamel、GB 4806.4-2016陶瓷Ceramic、GB 4806.6-2016塑料树脂Plastic Resin、GB 4806.7-2016 塑料成品Plastic Products、GB 4806.8-2016纸和纸板Paper & Paperboard、GB 4806.9-2016金属Metal and Metal alloy、GB 4806.10-2016涂层Painting and Coating、GB 4806.11-2016橡胶及硅橡胶Rubber and Silicone食品接触材料包括:1.塑料、树脂2.橡胶、硅胶3.金属、合金4.纸张、纸板5.玻璃、陶瓷、瓷釉6.着色剂、印刷油墨等常见的食品接触材料产品:1.食物容器(例如:杯,瓶,盘)、烹调器具(例如:锅);2.处理食物的工具(例如:菜刀,砧板);3.运送食物的用具(例如:汤匙,筷子,搅拌器);4.食品包装(例如:聚乙烯包装,铝箔)欧洲食品接触材料测试项目要求:1935/2004/EC塑料(EU)No10/2011 全面迁移测试1935/2004/EC陶瓷玻2005/31/EC 铅镉溶出量测试1935/2004/EC硅橡胶AP(2004)5 全面迁移测试1935/2004/EC三聚氰胺树脂AP(2004)5 全面迁移测试,甲醛溶出量测试1935/2004/EC有机涂层AP(2004)1 全面迁移测试1935/2004/EC橡胶AP(2004)5&93/11/EEC 全面迁移测试,亚硝胺含量测试,芳香胺迁移1935/2004/EC纸张AP(2002)1 **测试,防腐效力测试,重金属测试1935/2004/EC木材**测试,甲醛溶出量测试1935/2004/EC金属、合金、及电镀重金属溶出量测试美国食品接触材料FDA认证测试项目:1. U.S. FDA CFR 21 175.300 有机涂层, 金属和电镀制品要求2. U.S. FDA CFR 21 176.170纸制品要求3. U.S. FDA CFR 21 178.3800 木材要求4. U.S. FDA CFR 21 181.32 or 180.22. ABS要求5. U.S. FDA CFR 21 177.1010 丙烯酸树脂(Acrylic)要求6. U.S. FDA CFR 21 177.1210食品容器的密封圈,密封衬垫要求,如硅橡胶圈7. U.S. FDA CFR 21 177.1350 EVA要求8. U.S. FDA CFR 21 177.1460三聚氰氨树脂(密胺)要求9. U.S. FDA CFR 21 177.1500尼龙塑料要求10. U.S. FDA CFR 21 177.1520 PP要求11. U.S. FDA CFR 21 177.1520 PE,OP要求各国对食品接触材料的管控不仅仅反映在法规当中,也体现在政府的实际行动当中,各国都有相关的政府机构对产品进行抽查和追踪,一旦发现不合格产品,将公开通报不合格产品,并采取召回、退关等强制行动。
2004中文版ASME规范 第Ⅱ卷 B篇 非铁基材料 2005增补
ASME 锅炉及压力容器规范国际性规范II 材料B 篇 非铁基材料2005增补ASME 锅炉及压力容器委员会压力容器分委员会 编著 中国《ASME 规范产品》协作网(CACI ) 翻译、发送2006年3月1日北京中普科标图书有限责任公司免费提供下载地址:h t t p ://w w w .b x k j -s t a n d a r d s .o r g /s t a n d a r d s /A S M E BP V C Z W .as p2005增补发送说明经美国机械工程师学会(ASME )许可,中国《ASME 规范产品》协作网(CACI )翻译出版了2004版ASME 锅炉及压力容器规范和相关规范。
与规范英文原版一样,我们也翻译有关增补。
因为英文原版是活页的,为方便更换,其增补也是活页的。
而规范中译本是装订本,因此我们以表格方式翻译、编辑了增补,即注明04版中文本页码、章节、修改部位和05增补的修改内容。
如修改内容多或有新增和变动较大的图、表,在表格中放不下的,则将修改内容、图、表,放在后面,并注明位于中译本中的页码。
本增补由CACI 聘请徐翔翻译,章小浒校对,CACI 编辑。
中文版增补版权属CACI 所有。
本增补(原版) 在2005年7月1日发布,自发布之日起6个月后生效。
执行时应以英文原版为准。
由于各种原因,本次翻译发送的增补可能会有不足和错误,希望广大用户和读者提出批评和指正,以便改进。
来信请寄:北京市西城区月坛南街26号中国《ASME 规范产品》协作网邮政编码:100825 电子邮箱:caci@ 中国《ASME 规范产品》协作网 2006年3月 北京中普科标图书有限责任公司免费提供下载地址:h t t p ://w w w .b x k j -s t a n d a r d s .o r g /s t a n d a r d s /A S M E B P V C Z W .as p2005年度增补 04中文版页码章节 修改部位 05 增 补 修 改 内 容 xi目录 SB-150 标准号由“SB-150”修改为“SB-150/SB-150M ”。
iP2004资料
i P2004 Featuresi P2004i P2004i P2004i P2004i P2004i P2004i P2004 Draw a horizontal line from the intersection of the vertical line with the SOA curve tothe Y-axis (Output Current). The point at which the horizontal line meets the Y-axis isaxis by adding or subtracting the SOA adjustmentintercept point.Draw a horizontal line from the intersection of the new vertical line with the SOA curve to the Y-axis (Output Current). The point at which the horizontal line meets the Y-axisi P2004i P2004i P2004 Recommended PCB LayoutFigure 14 Top copper and Solder-mask layer of PCB layouti P2004Figure 15 Top & Bottom Component and Via Placement (Topside, Transparent view down)PCB Layout GuidelinesThe following guidelines are recommended to reduce the parasitic values and optimize overall performance.• All pads on the iP2004 footprint design need to be Solder-mask defined (see Figure 14). Also refer toInternational Rectifier application notes AN1028 and AN1029 for further footprint design guidance.• Place as many vias around the Power pads (V IN , V SW , and P GND ) for both electrical and optimal thermalperformance.o Vias in between the different power pads may overlap the pad opening and solder mask edgewithout the need to plug the via hole. Vias with a 13mil drill hole and 25mil capture pad were used in this example.• A minimum of six 10µF, X5R, 16V ceramic capacitors per iP2004 are needed for greater than 25Aoperation. This will result in the lowest loss due to input capacitor ESR.• Placement of the ceramic input capacitors is critical to optimize switching performance. In cases wherethere is a heatsink on the case of iP2004, place all six ceramic capacitors right underneath the iP2004 footprint (see Bottom Component Layer). In cases where there is not heatsink, C1 and C6 on the bottom layer may be moved to the C1x and C6x locations (respectively) on the top component layer (see Top Component Layer). In both cases, C2 – C5 need to be placed right underneath the iP2004 PCB footprint.• Dedicate at least two layer to for PGND only• Duplicate the Power Nodes on multiple layers (refer to AN1029).i P2004i P2004 Figure 18 Tape & Reel Informationi P2004Data and specifications subject to change without notice. 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105。
BQ2004EPN;BQ2004HPN;BQ2004ESNTR;BQ2004HSN;BQ2004ESN;中文规格书,Datasheet资料
Features➤Fast charge and conditioning of nickel cadmium or nickel-metal hydride batteries ➤Hysteretic PWM switch-mode current regulation or gated con-trol of an external regulator ➤Easily integrated into systems or used as a stand-alone charger ➤Pre-charge qualification of tem-perature and voltage ➤Configurable,direct LED outputs display battery and charge status ➤Fast-charge termination by ∆tem-perature/∆time,peak volume de-tection,-∆V,maximum voltage,maximum temperature,and maxi-mum time ➤Optional top-off charge and pulsed current maintenance charging ➤Logic-level controlled low-power mode (<5µA standby current)General DescriptionThe bq2004E and bq2004H Fast Charge ICs provide comprehensive fast charge control functions together with high-speed switching power con-trol circuitry on a monolithic CMOS device.Integration of closed-loop current control circuitry allows the bq2004to be the basis of a cost-effective so-lution for stand-alone and system-integrated chargers for batteries of one or more cells.Switch-activated discharge-before-charge allows bq2004E/H-based charg-ers to support battery conditioning and capacity determination.High-efficiency power conversion is accomplished using the bq2004E/H as a hysteretic PWM controller for switch-mode regulation of the charg-ing current.The bq2004E/H may al-ternatively be used to gate an exter-nally regulated charging current.Fast charge may begin on application of the charging supply ,replacement of the battery ,or switch depression.For safety ,fast charge is inhibited unless/until the battery tempera-ture and voltage are within config-ured limits.Temperature,voltage,and time are monitored throughout fast charge.Fast charge is terminated by any of the following:nRate of temperature rise (∆T/∆t)n Peak voltage detection (PVD)n Negative delta voltage (-∆V)n Maximum voltage n Maximum temperature nMaximum timeAfter fast charge,optional top-off and pulsed current maintenance phases with appropriate display mode selections are available.The bq2004H differs from the bq2004E only in that fast charge,hold-off,and top-off time units have been scaled up by a factor of two,and the bq2004H provides different display selections.Timing differ-ences between the two ICs are illus-trated in Table 1.Display differ-ences are shown in Table 2.1Fast-Charge ICsbq2004E/HDCMDDischarge command DSEL Display select VSEL Voltage termination selectTM 1Timer mode select 1TM 2Timer mode select 2TCO Temperature cutoff TS Temperature sense BATBattery voltage1PN2004E01.eps16-Pin Narrow DIP or Narrow SOIC234 5678161514131211109INH DIS MOD V CC V SS LED 2LED 1SNSDCMD DSEL VSEL TM 1TM 2TCO TS BATSNS Sense resistor input LED 1Charge status output 1LED 2Charge status output 2V SS System ground V CC 5.0V ±10% power MOD Charge current control DISDischarge control outputINH Charge inhibit inputPin Connections SLUS081A - APRIL 2005Pin NamesPin DescriptionsDCMD Discharge-before-charge control inputThe DCMD input controls the conditionsthat enable discharge-before-charge.DCMDis pulled up internally.A negative-goingpulse on DCMD initiates a discharge to end-of-discharge voltage(EDV)on the BAT pin,followed by a new charge cycle start.TyingDCMD to ground enables automaticdischarge-before-charge on every new chargecycle start.DSEL Display select inputThis three-state input configures the chargestatus display mode of the LED1and LED2out-puts and can be used to disable top-off andpulsed-trickle.See Table2.VSEL Voltage termination select inputThis three-state input controls the voltage-termination technique used by thebq2004E/H.When high,PVD is active.When floating,-∆V is used.When pulled low,both PVD and-∆V are disabled.TM1–TM2Timer mode inputsTM1and TM2are three-state inputs thatconfigure the fast charge safety timer,voltagetermination hold-off time,“top-off”,andtrickle charge control.See Table1.TCO Temperature cut-off threshold inputInput to set maximum allowable batterytemperature.If the potential between TSand SNS is less than the voltage at the TCOinput,then fast charge or top-off charge is ter-minated.TS Temperature sense inputInput,referenced to SNS,for an externalthermister monitoring battery temperature. BAT Battery voltage inputBAT is the battery voltage sense input,refer-enced to SNS.This is created by a high-impedance resistor-divider network con-nected between the positive and the negativeterminals of the battery.SNS Charging current sense inputSNS controls the switching of MOD based onan external sense resistor in the currentpath of the battery.SNS is the reference po-tential for both the TS and BAT pins.IfSNS is connected to V SS,then MOD switcheshigh at the beginning of charge and low atthe end of charge.LED1–LED2Charge status outputsPush-pull outputs indicating chargingstatus.See Table2.Vss GroundV CC V CC supply input5.0V,±10%power input.MOD Charge current control outputMOD is a push-pull output that is used tocontrol the charging current to the battery.MOD switches high to enable charging cur-rent to flow and low to inhibit chargingcurrent flow.DIS Discharge control outputPush-pull output used to control an externaltransistor to discharge the battery beforecharging.INH Charge inhibit inputWhen low,the bq2004E/H suspends allcharge actions,drives all outputs to high im-pedance,and assumes a low-power opera-tional state.When transitioning from low tohigh,a new charge cycle is started.2bq2004E/HFunctional DescriptionFigure2shows a block diagram and Figure3shows a state diagram of the bq2004E/H.Battery Voltage and Temperature MeasurementsBattery voltage and temperature are monitored for maximum allowable values.The voltage presented on the battery sense input,BAT,should represent a two-cell potential for the battery under charge.A resistor-divider ratio of:RB1 RB2=N2- 1is recommended to maintain the battery voltage within the valid range,where N is the number of cells,RB1is the resistor connected to the positive battery terminal, and RB2is the resistor connected to the negative bat-tery terminal.See Figure1.Note:This resistor-divider network input impedance to end-to-end should be at least200kΩand less than1MΩ.A ground-referenced negative temperature coefficient ther-mistor placed in proximity to the battery may be used as a low-cost temperature-to-voltage transducer.The tempera-ture sense voltage input at TS is developed using a resistor-thermistor network between V CC and V SS.See Figure1.Both the BAT and TS inputs are referenced to SNS,so the signals used inside the IC are:V BAT-V SNS=V CELLandV TS-V SNS=V TEMPDischarge-Before-ChargeThe DCMD input is used to command discharge-before-charge via the DIS output.Once activated,DIS becomes active (high) until V CELL falls below V EDV,at which time DIS goes low and a new fast charge cycle begins.The DCMD input is internally pulled up to V CC(its inac-tive state).Leaving the input unconnected,therefore, results in disabling discharge-before-charge.A negative going pulse on DCMD initiates discharge-before-charge at any time regardless of the current state of the bq2004.If DCMD is tied to V SS,discharge-before-charge will be the first step in all newly started charge cycles. Starting A Charge CycleA new charge cycle is started by:1.Application of V CC power.2.V CELL falling through the maximum cell voltage,V MCV where:V MCV= 0.8∗V CC±30mV3.A transition on the INH input from low to high.If DCMD is tied low,a discharge-before-charge will be executed as the first step of the new charge cycle.Oth-erwise,pre-charge qualification testing will be the first step.The battery must be within the configured temperature and voltage limits before fast charging begins.The valid battery voltage range is V EDV<V BAT<V MCV where:V EDV= 0.4∗V CC±30mV3bq2004E/HFigure 1.Voltage and Temperature MonitoringThe valid temperature range is V HTF <V TEMP <V LTF ,where:V LTF = 0.4∗V CC ±30mVV HTF = [(1/3∗V LTF ) + (2/3∗V TCO )]±30mVV TCO is the voltage presented at the TCO input pin,and is configured by the user with a resistor divider between V CC and ground.The allowed range is 0.2to 0.4∗V CC .If the temperature of the battery is out of range,or the voltage is too low ,the chip enters the charge pending state and waits for both conditions to fall within their al-lowed limits.During the charge-pending mode,the IC first applies a top-off charge to the battery .The top-off charge,at the rateof of the fast charge,continues until the fast-charge are met or the top-off time-out period is exceeded.The IC then trickle charges until the fast-charge conditions are met.There is no time limit on the charge pending state;the charger remains in this state as long as the voltage or tempera-ture conditons are outside of the allowed limits.If the voltage is too high,the chip goes to the battery absent state and waits until a new charge cycle is started.Fast charge continues until termination by one or more of the six possible termination conditions:n Delta temperature/delta time (∆T/∆t)n Peak voltage detection (PVD)n Negative delta voltage (-∆V)n Maximum voltage n Maximum temperature nMaximum timePVD and -∆V TerminationThe bq2004E/H samples the voltage at the BAT pin once every 34s.When -∆V termination is selected,if V CELL is lower than any previously measured value by 12mV ±4mV (6mV/cell),fast charge is terminated.When PVD termination is selected,if V CELL is lower than any previ-ously measured value by 6mV ±2mV (3mV/cell),fast charge is terminated.The PVD and -∆V tests are valid in the range 0.4∗V CC <V CELL <0.8∗V CC .4bq2004E/HFigure 2.Block Diagram5VSEL InputVoltage TerminationLow DisabledFloat -∆V HighPVDVoltage SamplingEach sample is an average of voltage measurements.The IC takes 32measurements in PVD mode and 16measurements in -∆V mode.The resulting sample peri-ods (9.17ms and 18.18ms,respectively)filter out har-monics centered around 55Hz and 109Hz.This tech-nique minimizes the effect of any AC line ripple that may feed through the power supply from either 50Hz or 60Hz AC sources.Tolerance on all timing is ±16%.Temperature and Voltage Termination Hold-offA hold-off period occurs at the start of fast charging.During the hold-off period,-∆V and ∆T/∆t termination are disabled.The MOD pin is enabled at a duty cycle of 260µs active for every 1820µs inactive.This modulation results in an average rate 1/8th that of the fast charge rate.This avoids premature termination on the voltage spikes sometimes produced by older batteries when fast-charge current is first applied.Maximum voltage and maximum temperature terminations are not af-fected by the hold-off period.∆T/∆t TerminationThe bq2004E/H samples at the voltage at the TS pin every 34s,and compares it to the value measured two samples earlier.If V TEMP has fallen 16mV ±4mV or more,fast charge is terminated.The ∆T/∆t termination test is valid only when V TCO <V TEMP <V LTF .Temperature SamplingEach sample is an average of 16voltage measurements.The resulting sample period (18.18ms)filters out har-monics around 55Hz.This technique minimizes the ef-fect of any AC line ripple that may feed through the power supply from either 50Hz or 60Hz AC sources.Tol-erance on all timing is ±16%.Maximum Voltage,Temperature,and TimeAnytime V CELL rises above V MCV ,the LEDs go off and cur-rent flow into the battery ceases immediately .If V CELL then falls back below V MCV before t MCV =1.5s ±0.5s,the chip transitions to the Charge Complete state (maximum voltage termination).If V CELL remains above V MCV at the expiration of t MCV ,the bq2004E/H transitions to the Bat-tery Absent state (battery removal).See Figure 3.Maximum temperature termination occurs anytime V TEMP falls below the temperature cutoff threshold V TCO .Charge will also be terminated if V TEMP rises above the low temperature fault threshold,V LTF ,after fast charge begins.Corresponding Fast-ChargeRate TM1TM2Typical Fast-Charge Safety Time (min)Typical PVD, -∆V Hold-Off Time (s)Top-Off RatePulse-Trickle Rate Pulse-Trickle Period (Hz)2004E 2004H 2004E 2004H 2004E 2004H 2004E 2004H2004E2004HC/4C/8Low Low 325650137273Disabled Disabled Disabled C/2C/4Float Low 154325546546Disabled C/51215301C C/2High Low 77154273546Disabled C/5127.5152C 1C Low Float 3977137273Disabled C/512 3.757.54C 2C Float Float 193968137Disabled C/512 1.88 3.75C/2C/4High Float 154325546546C/16C/32C/51215301C C/2Low High 77154273546C/8C/16C/5127.5152C 1C Float High 3977137273C/4C/18C/512 3.757.54C2CHighHigh193968137C/2C/4C/5121.883.75Note:Typical conditions = 25°C,V CC = 5.0V .Table 1.Fast Charge Safety Time/Hold-Off/Top-Off Tablebq2004E/Hbq2004E/HTable 2.bq2004E/H LED Output SummaryNote:Pulse trickle is inhibited in Mode 2.6Maximum charge time is configured using the TM pin. Time settings are available for corresponding charge rates of C/4,C/2,1C,and2C.Maximum time-out termi-nation is enforced on the fast-charge phase,then reset, and enforced again on the top-off phase,if selected. There is no time limit on the trickle-charge phase.Top-off ChargeAn optional top-off charge phase may be selected to follow fast charge termination for the C/2through4C rates.This phase may be necessary on NiMH or other battery chemistries that have a tendency to terminate charge prior to reaching full capacity.With top-off en-abled,charging continues at a reduced rate after fast-charge termination for a period of time equal to 0.235∗the fast-charge safety time(See Table1.)Dur-ing top-off,the MOD pin is enabled at a duty cycle of 260µs active for every1820µs inactive.This modula-tion results in an average rate1/8th that of the fast charge rate.Maximum voltage,time,and temperature are the only termination methods enabled during top-off.Pulse-Trickle ChargePulse-trickle charging may be configured to follow the fast charge and optional top-off charge phases to com-pensate for self-discharge of the battery while it is idle in the charger.In the pulse-trickle mode,MOD is active for260µs of a period specified by the settings of TM1and TM2.See Table1.The resulting trickle-charge rate is C/512. Both pulse trickle and top-off may be disabled by tying TM1and TM2to V SS or by selecting Mode2in the dis-play.Charge Status IndicationCharge status is indicated by the LED1and LED2out-puts.The state of these outputs in the various charge cy-cle phases is given in Table2and illustrated in Figure3.In all cases,if V CELL exceeds the voltage at the MCV pin,both LED1and LED2outputs are held low regard-less of other conditions.Both can be used to directly drive an LED.Charge Current ControlThe bq2004E/H controls charge current through the MOD output pin.The current control circuitry is designed to sup-port implementation of a constant-current switching regulator or to gate an externally regulated current source.When used in switch mode configuration,the nominal regulated current is:I REG= 0.225V/R SNSCharge current is monitored at the SNS input by the voltage drop across a sense resistor,R SNS,between the low side of the battery pack and ground.R SNS is sized to provide the desired fast charge current.If the voltage at the SNS pin is less than V SNSLO,the MOD output is switched high to pass charge current to the battery.When the SNS voltage is greater than V SNSHI,the MOD output is switched low—shutting off charging current to the battery.V SNSLO= 0.04∗V CC±25mVV SNSHI= 0.05∗V CC±25mVWhen used to gate an externally regulated current source,the SNS pin is connected to V SS,and no sense re-sisitor is required.7bq2004E/Hbq2004E/HFigure 3.Charge Algorithm State Diagram8Absolute Maximum RatingsSymbol Parameter Minimum Maximum Unit NotesV CC V CC relative to V SS-0.3+7.0VV T DC voltage applied on any pin ex-cluding V CC relative to V SS-0.3+7.0VT OPR Operating ambient temperature-20+70°C CommercialT STG Storage temperature-55+125°CT SOLDER Soldering temperature-+260°C10 sec max.T BIAS Temperature under bias-40+85°CNote:Permanent device damage may occur if Absolute Maximum Ratings are exceeded.Functional opera-tion should be limited to the Recommended DC Operating Conditions detailed in this data sheet.Expo-sure to conditions beyond the operational limits for extended periods of time may affect device reliability.DC Thresholds(T A=T OPR;V CC±10%)Symbol Parameter Rating Tolerance Unit NotesV SNSHI High threshold at SNS result-ing in MOD = Low0.05*V CC±0.025VV SNSLO Low threshold at SNS result-ing in MOD = High0.04 * V CC ±0.025 VV LTF Low-temperature fault0.4*V CC±0.030V V TEMP ≥V LTF inhib-its/terminates charge V HTF High-temperature fault(1/3*V LTF) + (2/3*V TCO)±0.030V V TEMP≤V HTF inhibitschargeV EDV End-of-discharge voltage0.4*V CC±0.030V V CELL<V EDV inhibitsfast chargeV MCV Maximum cell voltage0.8*V CC±0.030V V CELL>V MCV inhibits/terminates chargeV THERM TS input change for∆T/∆tdetection-16±4mV V CC= 5V,T A= 25°C-∆V BAT input change for-∆Vdetection-12±4mV V CC= 5V,T A= 25°CPVD BAT input change for PVDdetection-6±2mV V CC= 5V,T A= 25°Cbq2004E/H9Recommended DC Operating Conditions(T A= T OPR)Symbol Condition Minimum Typical Maximum Unit NotesV CC Supply voltage 4.5 5.0 5.5VV BAT Battery input0-V CC VV CELL BAT voltage potential0-V CC V V BAT- V SNSV TS Thermistor input0-V CC VV TEMP TS voltage potential0-V CC V V TS- V SNSV TCO Temperature cutoff0.2*V CC-0.4*V CC V Valid∆T/∆t rangeV IHLogic input high 2.0--V DCMD,INHLogic input high V CC- 0.3--V TM1, TM2, DSEL, VSEL V ILLogic input low--0.8V DCMD,INHLogic input low--0.3V TM1, TM2, DSEL, VSELV OH Logic output high V CC- 0.8--V DIS, MOD, LED1, LED2,I OH≤-10mAV OL Logic output low--0.8V DIS,MOD,LED1,LED2,I OL≤10mAI CC Supply current-13mA Outputs unloadedI SB Standby current--1µA INH= V ILI OH DIS,LED1,LED2,MOD source-10--mA@V OH= V CC- 0.8VI OL DIS,LED1,LED2,MOD sink10--mA@V OL= V SS+ 0.8VI LInput leakage--±1µA INH, BAT, V = V SS to V CC Input leakage50-400µA DCMD, V = V SS to V CCI IL Logic input low source--70µA TM1, TM2, DSEL, VSEL,V = V SS to V SS+ 0.3VI IH Logic input high source-70--µA TM1, TM2, DSEL, VSEL,V = V CC- 0.3V to V CCI IZ Tri-state-2-2µA TM1,TM2,DSEL,and VSEL should be left disconnected (floating)for Z logic input stateNote:All voltages relative to V SS except as noted. bq2004E/H10分销商库存信息:TIBQ2004EPN BQ2004HPN BQ2004ESNTR BQ2004HSN BQ2004ESN BQ2004ESNTRG4 BQ2004HSNTR BQ2004HSNTRG4BQ2004EPNG4 BQ2004ESNG4。
1935 2004 EC
1935/2004/EC标准检测1935/2004/EC号规定导入强制标识, 与食品有直接或间接接触的材料和电器应遵循如下说明:- 或注明“可与食品接触”字样- 或按照器具的使用说明进行,如:咖啡机,电水壶等- 或按1935/2004/EC规定的符号说明常见材料欧洲食品级测试1935/2004/EC的项目要求:1935/2004/EC塑料2002/72/EC 全面迁移测试1935/2004/EC陶瓷玻2005/31/EC 铅镉溶出量测试1935/2004/EC硅橡胶AP(2004)5 全面迁移测试1935/2004/EC三聚氰氨树脂AP(2004)5 全面迁移测试,甲醛溶出量测试1935/2004/EC有机涂层AP(2004)1 全面迁移测试1935/2004/EC橡胶AP(2004)5&93/11/EEC 全面迁移测试,亚硝胺含量测试,芳香胺迁移1935/2004/EC纸张AP(2002)1 五氯苯酚测试,防腐效力测试,重金属测试1935/2004/EC木材五氯苯酚测试,甲醛溶出量测试1935/2004/EC金属、合金、及电镀重金属溶出量测试1935/2004/EC法规适用范围与针对的产品范围:1) 餐具:金属餐具、塑料餐具、木制餐具、一次性餐具等等。
2) 厨具:砧板、调味罐、不锈钢锅、不粘锅、铁锅、搪瓷锅等等。
3) 炊具:蒸笼、铲、勺等等4) 保温容器:不锈钢保温杯、保温壶,保温瓶等等。
5) 厨用小家电:搅拌机、打蛋机、咖啡机等等。
产品材料名称检测项目检测标准1. 橡胶材料或不粘镀层产品总迁移量EN11862. 钢材料铸件成分分析-3. 不锈钢材料铸件成分分析EN100884. 有有机涂层的钢或不锈钢材料涂层总迁移量EN1186 基材铸件成分分析EN10088成品(涂层+基材) 总迁移量CrⅥ迁移量EN11865. 合金或金属涂层材料成品(涂层+基材) Pb、Cd、As含量Ni、Cr、Zn含量Ni、Cr、Zn、Cd、Pb迁移量(如果有镍、铬、锌、镉和铅涂层) EN13881:1996EN13882:19966. 无镀层铝材料成分分析EN 602: 20047. 有机镀层铝材料涂层总迁移量EN1186基材满足6.成分分析要求EN 602: 2004成品(涂层+基材) 总迁移量CrⅥ迁移量EN11868. 瓷釉部分Pb、Cd、CrⅥ迁移量EN13881:1996EN13882:19969. 有机涂层的铸铁材料涂层总迁移量EN1186基材Pb含量-成品(涂层+基材) 总迁移量Pb、Cd、CrⅥ迁移量EN1186EN13881:1996EN13882:199610. 钛材料纯钛Fe、V.、Al含量ISO 5832-2ISO 5832-3不锈钢钛材料Mo、Cu、Zr残留-11. 木质材料五氯苯酚-12.硅材料挥发性有机物质总迁移量Sn迁移量过氧化物残留-13. 有金属镀层的钢或不锈钢材料涂层Pb、Cd、As含量EN1186基材第 2.、3.中铸件成分分析EN10088成品(涂层+基材) Ni、Cr、Zn迁移量EN13881:1996EN13882:19961935/2004/EC法规针对的国家:-1935/2004/EC是一个框架法规,欧盟成员国至今有:奥地利、德国、荷兰、比利时、希腊、葡萄牙、丹麦、爱尔兰、西班牙、芬兰、意大利、瑞典、法国、卢森堡、英国、塞浦路斯、立陶宛、捷克共和国、马尔它、爱沙尼亚、波兰、匈牙利、斯洛文尼亚、拉脱维亚、斯洛伐克、保加利亚、罗马尼亚27个国家,其中德国、法国、英国、意大利有自己国家当地法规,除符合欧盟食品级指令Regulation (EC) No1935/2004要求外,还需要符合德国(LFGB)、法国(DGCCRF)、英国(UK SI 898 : 2005)、意大利(ItalianDecree of the Ministry of Health (DM or DMH)当地法规。
403A-11G1ElectropaKPN2004帕金斯perkins技术参数资料
Photographs are for illustrative purposes only and may not reflect final specification.All information in this document is substantially correct at time of printing and may be altered subsequently.Publication No.PN2004/06/12 Produced in England ©2012 Perkins Engines Company LimitedThe Perkins ® 400 Series engine family continues to set new standards in the compact engine market. Developed alongside customers to fulfill their needs in the generator set, compressor, agricultural and general industrial markets.These new ElectropaKs provide compact power, from a robust family of 3 and 4cylinder diesel engines designed to provide economic and durable operation at Prime and Standby duties, hitting the key power nodes required by the power generation industry.*Subject to conformance with ASTM D6751 and EN14214.The above ratings represent the engine performance capabilities to conditions specified in ISO 8528/1, ISO 3046/1:1986, BS 5514/1. Derating may be required for conditions outside these; consult Perkins Engines Company Limited. Generator powers are typical and are based on typical alternator efficiencies and a power factor (cos θ) of 0.8.Fuel specification: BS 2869: Part 2 1998 Class A2 or ASTM D975 D2.Rating Definitions: Prime Power: Power available at variable load in lieu of a main power network. Overload of 10% is permitted for 1 hour in every 12 hours operation. Standby (maximum): Poweravailable at variable load in the event of a main power network failure. No overload is permitted.Powered by your needslThe 403A-11G1 ElectropaK is a powerful but quiet 1.1 litre naturally aspirated 3-cylinder compact packageCompact, clean, efficient powerlDesign features on the 400 Series ElectropaKs ensure clean rapid starting in all conditions whilst delivering impressive performance, with low operating costs, in a small, efficient package sizeLower operating costsl Approved for operation on biodiesel* concentrations of up to 20%l Oil and filter changes are 500 hours, dependent on load factorlEngine durability and reliability, the warranty offering and ease of installation combine to drive down the cost of ownershipProduct supportl With highly trained Perkins distributors in thousands ofcommunities in over 180 countries, you are never far away from expert product knowledge, genuine parts and a range of advanced diagnostic technology for keeping your engine in peak conditionlWarranties and Service ContractsWe provide one-year warranties for constant speed engines and two-year warranties for variable speed models, as standard. These are supported by multilevel Extended Service Contracts that can be bought additionallyDiscover more www.perkins.esc/distributor To find your local distributorPhotographs are for illustrative purposes only and may not reflect final specification.All information in this document is substantially correct at time of printing and may be altered subsequently.Publication No.PN2004/06/12 Produced in England ©2012 Perkins Engines Company LimitedPerkins Engines Company Limited Peterborough PE1 5FQ United KingdomTelephone +44 (0)1733 583000 Fax +44 (0)1733 Standard electropaK specification Air inletlMounted air filterFuel systemlMechanically governed cassette type fuel injection pump l Split element fuel filterLubrication systemlWet steel sump with filler and dipstick l Spin-on full-flow lub oil filterCooling systemlThermostatically-controlled system with belt driven coolant pump and pusher fanl Mounted radiator, piping and guardsElectrical equipmentl12 volt starter motor and 12 volt 15 amp alternator with DC outputl Oil pressure and coolant temperature switches l 12 volt shut-off solenoid energised to runl Glow plug cold start aid and heater/starter switchFlywheel and housingl1500 rev/minl High inertia flywheel to SAE J620 Size 165.1 mm (6½ in)Heavyl Flywheel housing SAE 5 LongMountingslFront and rear engine mounting bracketsOptional equipmentlParts bookGeneral DataNumber of cylinders ................................................................3Cylinder arrangement ...........................................Vertical in-line Cycle .............................................................................4 stroke Aspiration .....................................................Naturally aspirated Combustion system ..........................................Indirect injection Compression ratio ..............................................................23:1Bore and Stroke .................................77 x 81 mm (3.0 x 3.2 in) Displacement .......................................1.131 litres (69 cubic in)Direction of rotation ................Anti-clockwiseviewed on flywheel Cooling system .....................................................Water cooled Total coolant capacity ............................5.2 litres (1.37 US gals)Total lubrication system capacity ...........4.9 litres (1.29 US gals) DimensionsLength .......................................................778 mm (30.6 in) Width (including mounting brackets) ..........438 mm (17.2 in) Height ........................................................702 mm (27.6 in)Total weight (dry) ..............................................197 kg (434.4 lb)Final weight and dimensions will depend on completed specification.Option groupsA selection of optional items is available to enable you toprepare a specification precisely matched to your needs.(30.6 in)(17.2 in)702 m m (27.6 i n )。
欧盟及成员国食品接触橡胶制品安全规范要求
欧盟及成员国食品接触橡胶制品安全规范要求一、欧盟食品接触橡胶制品安全规范要求考虑到欧盟各成员国还没有就食品接触橡胶制品的安全技术问题达成协调一致意见,欧盟层面并没有出台专门针对橡胶制品的法规。
因此,现阶段适用于所有食品接触橡胶制品的欧盟法规是欧盟出台的框架性法规和针对具体物质的指令。
任何进口到欧盟的食品接触橡胶制品必须遵循框架性法规中的通用要求以及指令中涉及橡胶制品所用物质的安全卫生要求。
1、(EC)No 1935/2004 法令通用安全规范要求(EC)No 1935/2004 法令《关于拟与食品接触的材料和制品暨废除80/590/EEC 和89/109/EEC 指令》于2004 年底取代早期实施的框架性指令89/109/EEC 及80/590/EEC 而成为欧盟新的食品接触材料框架性条例,由于法规是以法令(Regulation)形式颁布,意味着各成员国无需进行任何转换,而必须直接完整地接受和遵守执行。
因此从某种意义上可以说其法律效力更强。
(1)适用范围和对象No 1935/2004 条例适用范围包括所有预期或可能与食品接触的材料及制品(其中包括:打印油墨、胶标签)。
但是,它不适用于那些作为古董用途的材料及制品以及构成食品的一部分并可以被直接食用的覆盖层或涂料、涂层(如糖衣、肠衣等)制品。
此外,用于公共及消费者用水供应系统的材料及制品也不在该指令的适用范围内,而受另行制定的专门条例管辖。
(2)通用要求作为框架性的条例,它规定了适用于所有食品接触材料的总原则和规定,内容包括适用范围、通用安全要求,活性、职能包装,新物质授权的申请,标签,符合性声明,可追溯性,安全措施等28 个条款。
条例的核心条款是规定了所有食品接触材料必须满足的通用要求:A 食品接触材料和制品,包括活性和智能材料和制品,其生产应符合良好生产规范,从而在正常或可预见的使用条件,其成分向食品的迁移总量不致造成:●危害人体健康;●导致食品成分发生不能接受的变化;●降低食品所特有的感官特性(使食品的味道,气味,颜色等改变);B 食品接触材料和制品的标签、广告以及说明不应误导消费者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PWM Buck ControllerFeatures- PWM Buck Control Circuitry- Operating voltage can be up to 27V- Under voltage Lockout (UVLO) Protection - Short Circuit Protection (SCP) - Soft-start circuit- Variable Oscillator Frequency -- 300Khz Max - 1.25V voltage reference Output - 8-pin PDIP and SOP packagesApplications- Backlight inverter - LCD Monitor- XDROM, XDSL Product- DC/DC converters in computers, etc.General DescriptionThe AP2004 integrates Pulse-Width-Modulation (PWM) control circuit into a single chip, mainly designs for power-supply regulator. All the functions include an on-chip 1.25V reference output, an error amplifier, an adjustable oscillator, a soft-start, UVLO, SCP circuitry, and a push-pull output circuit. Switching frequency is adjustable by trimming CT. During low VCC situation, the UVLO makes sure that the outputs are off until the internal circuit operates normally.Pin AssignmentOUT GND SCPSS FBVCC CT COMP( Top View )PDIP/SOPPin DescriptionsNameDescriptionCT TimingCapacitor FB Voltage Feedback SS Soft-Start. COMPFeedback Loop CompensationOUT PWM OutputGND Ground VCC Supply Voltage SCP Short Circuit ProtectionOrdering InformationS: SOP-8LA : TapingL : Lead Free PackagePWM Buck ControllerBlock DiagramOUTFBVCCSCP CTCOMPGNDSSAbsolute Maximum RatingsSymbol ParameterRating Unit V CC Supply voltage 28 V V I Amplifier input voltage 20 V V O Collector output voltage V CC -1.0VVI SOURCE Source current 200 mA I SINK Sink current200 mA T OP Operating temperature range -20 to +85 o C T ST Storage temperature range-65 to +150o C T LEAD Lead temperature 1.6 mm(1/16 inch) from case for 10 seconds260oCPWM Buck ControllerRecommended Operating ConditionsSymbolParameterMin. Max. Unit V CC Supply voltage 3.6 27V V I Amplifier input voltage 1.05 1.45V V O Collector output voltage Vcc-1.5 VI FBCurrent into feedback terminal45 µA R F Feedback resistor 100 k Ω C T Timing capacitor 100 6800pF F OSC Oscillator frequency 10 300 KHz T OPOperating free-air temperature-2085ºCElectrical Characteristics (T A=25ºC, VCC=6V, f=200 Khz)Reference (REF) Symbol Parameter Conditions Min.Typ. Max.UnitComp connect to FB 1.225 1.25 1.275VT A = -20ºC ~ 25ºC -0.1 ±1 % V REF Output voltage change withtemperature T A = 25ºC ~ 85ºC -0.2 ±1 %Under voltage lockout (UVLO) Symbol Parameter Conditions Min.Typ. Max.Unit V UT Upper threshold voltage (V CC ) 2.9 VV LWT Lower threshold voltage (V CC ) 2.4 VV HT Hysteresis (V CC ) I O(REF) = 0.1mAT A = 25ºC500 mV Short-circuit protection (SCP) control Symbol Parameter Conditions Min.Typ. Max.Unit V IT Input threshold voltage T A = 25ºC 0.600.67 0.75V V STB Standby voltage No pull up 100 130 160 mV V LT Latched input voltage No pull up 50 100 mV I SCP Input (source) current V I = 0.7V, T A = 25ºC -10 -15 -20 µAV CT Comparator threshold voltage(COMP)1.5 VOscillator (OSC) Symbol Parameter Conditions Min.Typ. Max.Unit F OSC Frequency C T =270 pF 200 KHzStandard deviation of frequency C T =270 pF 10∆F OSC Frequency change with voltage V CC =3.6V ~ 20V 1%PWM Buck ControllerElectrical Characteristics (Continued) (T A=25ºC, VCC=6V, f=200 Khz)Error-amplifierSymbol Parameter ConditionsMin.Typ. Max. Unit V IO Input offset voltage V O (FB)=1.25V ±6 mV I IO Input offset current V O (FB)=1.25V ±100 nA I IB Input bias currentV O (FB)=1.25V 160 500 nA V CMCommon-mode input voltagerangeV CC =3.6V ~ 20V1.051.45VAVOpen-loop voltageamplificationR F =200 k Ω 70 80 dBGBW Unity-gain bandwidth1.5 MHz CMRR Common-mode rejection ratio 60 80 dB V OH Max. output voltage V ref -0.1 VV OL Min. output voltage1 V I OI Output (sink) current (COMP)V ID = -0.1V, V O = 1.25V 0.5 1.6 mA I OOOutput (source) current(COMP)V ID = 0.1V, V O = 1.25V-45 -70 µA Output sectionSymbol ParameterConditions Min.Typ. Max. Unit I LEAK Leakage current V O = 25V 10 µA Sink current V IN = 20V 200 mA I DRV Source currentV IN = 20V 200 mA V SATOutput saturation voltageI O = 10 mA 1.0 1.5 V I SC Short-circuit output currentV O = 6V120 mA PWM comparatorSymbol ParameterConditionsMin.Typ.Max.UnitV T0 CT 0.6 0.7 V V T100 Input threshold voltage at f =10 KHz (COMP) Maximum duty cycle 1.2 1.3 V Total deviceSymbolParameterConditionsMin.Typ. Max. Unit I CCA Average supply current C T = 270pF6 10 mA Soft StartSymbol Parameter ConditionsMin.Typ. Max. Unit V SS Soft-start Voltage 2.3 VI SSConstant Charge Current20µAPWM Buck ControllerTypical Application CircuitC3Step-Down DC/DC converterTypical CharacteristicsPWM Buck ControllerTypical Characteristics (Continued)Marking Information(Top View)PDIP/SOPLogo ID codeYear: "01" =2001 "02" =2002Xth week: 01~52~PWM Buck ControllerPackage Information(1) PDIP-8L (Plastic Dual-in-line Package )E-PIN O0.118 inchDimensions in millimeters Dimensions in inchesSymbolMin. Nom. Max. Min. Nom. Max.A - - 5.33 - - 0.210A1 0.38 - - 0.015 - - A2 3.1 3.30 3.5 0.122 0.130 0.138B 0.36 0.46 0.56 0.014 0.018 0.022B1 1.4 1.52 1.65 0.055 0.060 0.065 B2 0.81 0.99 1.14 0.032 0.039 0.045C 0.20 0.25 0.36 0.008 0.010 0.014D 9.02 9.27 9.53 0.355 0.365 0.375E 7.62 7.94 8.26 0.300 0.313 0.325E1 6.15 6.35 6.55 0.242 0.250 0.258e - 2.54 - - 0.100 -L 2.92 3.3 3.81 0.115 0.130 0.150 eB 8.38 8.89 9.40 0.330 0.350 0.370 S 0.71 0.84 0.97 0.028 0.033 0.038PWM Buck ControllerPackage Information (Continued)(2) SOP- 8L(JEDEC Small Outline Package)Dimensions In Millimeters Dimensions In InchesSymbolMin. Nom. Max. Min. Nom. Max.A 1.40 1.60 1.75 0.055 0.063 0.0690.040 - 0.100A1 0.10 - 0.25A2 1.30 1.45 1.50 0.051 0.057 0.059B 0.33 0.41 0.51 0.013 0.016 0.020C 0.19 0.20 0.25 0.0075 0.008 0.010D 4.80 5.05 5.30 0.189 0.199 0.209E 3.70 3.90 4.10 0.146 0.154 0.161e - 1.27 - - 0.050 -H 5.79 5.99 6.20 0.228 0.236 0.244L 0.38 0.71 1.27 0.015 0.028 0.050y - - 0.10 - - 0.004θ0O - 8O0O - 8O。