最新离散数学期末考试题(附答案和含解析3)
离散数学期末考试试题配答案
一.填空题(每小题2分,共10分)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。
2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____,=A _____,=B A __ _____3. 设{}{}b a B c b a A ,,,,==,则=-)()(B A ρρ__ __________,=-)()(A B ρρ_____ ______。
二.选择题(每小题2分,共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。
(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ,求)(),(),(R t R s R r 的关系矩阵,并画出R ,)(),(),(R t R s R r 的关系图。
(10分)5. 试判断),(≤z 是否为格?说明理由。
(5分)(注:什么是格?Z 是整数,格:任两个元素,有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。
(10分)2. 设R 是实数集,b a b a f R R R f +=→⨯),(,:,ab b a g R R R g =→⨯),(,:。
求证:gf 和都是满射,但不是单射。
(10分)一,1, _∃x∃y¬P(x)∨Q(y)2, {2} {4,5} {1,3,4,5}3, {{c},{a,c},{b,c},{a,b,c}} Φ_二,B D三,解:主合取方式:p∧q∨r⇔(p∨q∨r)∧(p∨¬q∨r)∧(¬p∨q∨r)= ∏0.2.4 主析取范式:p∧q∨r⇔(p∧q∧r) ∨(p∧q∧¬r)∨(¬p∧q∧r) ∨(¬p∧¬q∧r) ∨(p∧¬q ∧r)=∑1.3.5.6.7四,1,证明:编号公式依据(1)(¬B∨C)∧¬C前提(2)¬B∨C,¬C(1)(3)¬B(2)(4)A→B (3)(5)¬A(3)(4)(6)¬(¬A∧D)前提(7)A∨¬D(6)(8)¬D(5)(6)2,证明:要证f是满射,即∀y∈R,都存在(x1,x2)∈R×R,使f(x1,x2)=y,而f(x1,x2)=x1+x2,可取x1=0,x2=y,即证得;再证g是满射,即∀y∈R,,都存在(x1,x2)∈R×R,使g(x1,x2)=y,而g(x1,x2)=x1x2,可取x1=1,x2=y,即证得;最后证f不是单射,f(x1,x2)=f(x2,x1)取x1≠x2,即证得,同理:g(x1,x2)=g(x2,x1),取x1≠x2,即证得。
离散数学期末试卷(4套附答案)
一、单项选择题(每小题3分,共30分)1.下列为两个命题变元p,q的最小项的是( ) A .p∧q∧⎤ pB .⎤ p∨qC .⎤ p∧qD .⎤ p∨p∨q 2.下列句子不是命题的是( ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的D .太好了!3.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )4.7.集合A={1,2,…,10}上的关系R={(x ,y )|x +y =10,x ∈A ,y ∈A},则R 的性质是( )A .自反的B .对称的C .传递的、对称的D .反自反的、传递的 5.设论域为{l ,2},与公式)(x xA ∃等价的是( ) A.A (1)∨A (2)B. A (1)→A (2)C.A (1)D. A (2)→A (1)6. 下列关系矩阵所对应的关系具有反自反性的是( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100001 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0010101017. 下列运算不满足...交换律的是( ) A .a *b =a+2bB .a *b =min(a ,b )C .a *b =|a -b |D .a *b =2ab8..设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×> D.<A ,÷> 9. 右图的最大入度是( ) A .0 B .1 C .2D .3第9题图拟题学院(系): 高密校区 适用专业: 学年 2学期 离散数学 (B卷) 试题标准答案10. 设有向图D 的节点数大于1,D=(V ,E )是强连通图,当且仅当( ) A. D 中至少有一条通路 B. D 中至少有一条回路C. D 中有通过每个结点至少一次的通路D. D 中有通过每个结点至少一次的回路 二、填空题(每空3分,共30分)1.设A ={1,2,3,4},B ={2,4,6},则A -B =________,A ⊕B =________。
离散数学期末考试题(附答案和含解析3)
A一、单项选择题2.设集合A={1,2,3},下列关系R 中不是等价关系的是( D )A.R={<1,1>,<2,2>,<3,3>}; B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>};C. R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};D. R={<1,1>,<2,2>,<3,3>,<1,2 >}.3.在公式()F (x ,y )→( y )G (x ,y )中变元x 是( B )x ∀∃A .自由变元;(前面无∀或∃量词) B .既是自由变元,又是约束变元;C .约束变元;(前面有∀或∃量词) D .既不是自由变元,又不是约束变元.4.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是( C )A .1∈A ;B .{1,2,3}A ;C .{{4,5}}A ;D .∅∈A.⊆⊆5.设论域为{l ,2},与公式等价的是( A ))()(x A x ∃A.A (1)A (2); B. A (1)A (2); C.A (1)∧A (2);D. A (2)A (1).∨→→6.一棵树有5个3度结点,2个2度结点,其它的都是l 度结点,那么这棵树的结点数是( B )A.13;B.14 ;C.16 ;D.17 .//设一度结点数为n,则有:5×3+2×2+n=2[(5+2+n)-1]解得:n=7, 所以这棵树的结点数为:m=5+2+7=14.7.设A 是偶数集合,下列说法正确的是( A )A .<A ,+>是群;B .<A ,×>是群;C .<A ,÷>是群;D .<A ,+>, <A ,×>,<A ,÷>都不是群。
离散数学试题带答案(三)
离散数学试题带答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B={3} ; ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = 22n.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2), (b,1)}, 其中双射的是α3, α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B={4} ; A⋃B={1,2,3,4};A-B={1,2} .7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性, 对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1, 0, 0), (1, 0, 1),(1, 1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1•R2 ={(1,3),(2,2),(3,1)} , R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = -1<=x<0 , B-A = {x | 1 < x < 2, x∈R} ,A∩B ={x | 0≤x≤1, x∈R} , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除关系,则R以集合形式(列举法)记为{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)} .14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是∃x(⌝P(x)∨Q(x)) .15.设G是具有8个顶点的树,则G中增加21 条边才能把G变成完全图。
离散数学期末考试题(附答案和含解析)
一、填空2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C)-A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。
6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。
//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a,b),(a,c), (a,d), (b,d), (c,d)} U {(a,a),(b,b)(c,c)(d,d)} 。
//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。
//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图. 自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为 a,b,c,d ,它们的逆元分别为 a,b,c,d 。
//备注:二元运算为x*y=max{x,y},x,y ∈A 。
10.下图所示的偏序集中,是格的为 c 。
//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ。
2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
国家开放大学电大本科《离散数学》2022-2023期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学> 2022-2023期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本息共16分)1, 若集合A = <1,2,3},则下列表述正确的是〈 )•A. {1,2,3}€AB. AC(1,2}C. U,2,3}gAD. {1,2}£A2. 设 A = {1,2,3},B = (1,2,3,4},人到 B 的关系 R = {O ,>> |工 £ A ,了 £ B },则 R =().A. {<1,2>,V2,3>}B. {V1,1>,V1,2>,V1,3>,V1,4>,V1,5>}C. «1,1>,<2,1>)D. {<2,】>,V3,】>,V3,2>}3. 无向图G 的边数是10,则图G 的结点度数之和为(A. 10B. 20C. 30D. 54. 如图一所示,以下说法正确的是〈 )•A. e 是割点B. {a,e}是点割集C. (b.e}是点割集D. {d}是点割集5-设个体域为整数集,则公式Vx3y (x+y = 2)的解释可为().A. 任意整数工,对任意整数y 满足工+了 = 2B. 对任意整数工,存在整数y 满足工+了 = 2C. 存在一整数z,对任意整数y 满足工+了 = 2D. 存在一整数工,有整数了满足x+jr = 2则人 CHBUC )等于 _____ .7. 设 A = {1,2},B = <2,3},C=(3,4},从 A 到 B 的函数/= (VI,2>,V2,3>},从 B到 C 的函数 g = (V2,3>,V3,4>},则 Ran (g 0/)等于 ______ .8. 设G 是汉密尔顿图,S 是其结点集的一个子集,若S 的元素个数为6,则在G-S 中的连通分支数不超过 ________ .二、填空霆(每小题3分,本题共15分)9.设G是有8个结点的连通图,结点的度数之和为24,则可从G中删去 ________ 条边后使之变成树.10.设个体域D = {1,2, 3, 4},则谓词公式(VQ A S)消去量词后的等值式为H.将语句“昨夭下雨,今天仍然下雨.”翻译成命题公式.12. 将i 吾句“我们下午2点或者去礼堂看电彩或者去教室看书.”翻译成命飓公式. 得分评卷人13. 不存在集合A 与B,使得AEB 与AQB 同时成立.14. 如图二所示的图G 存在一条欧拉回路.15. 设 A = {l,2,3},R = (<x,y>l=£A<yCA 且 1+»=4}击={〈工,3>0£人,36人且 工=)},试求 R,S,R" ,r (S ).16. 设图 G = <VtE>»V=(v! 试(1) 画出G 的图形表示; (2) 写出其邻接矩阵; (3) 求出每个结点的度数; (4)画出图G 的补图的图形•17. 求-I (PVQ )VR 的析取范式与主合取范式•18. 试证明门 PVQ»P -*(i (n PVn Q)〉.(仅 一、单项选择题(每小题3分,本题共15分)1.C2. D3. B二、填空题(每小题3分,本题共15分)6. {b t c)7. {3,4)(或 C ) 8.6 9.5评卷人三、逻辑公式翻译(每小题6分,本题共12分)四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14 分)评卷人五、计算题(每小题12分,本题共36分)评卷人六、证明题(本题共8分)10.A(1)AA(2) AA(3) AA(4)三、逻辑公式翻译(每小题6分,本题共12分)11.设P:昨天下雨,Q:今天下雨. (2分)则命题公式为:PAQ. (6分)12.设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书. (2分)则命题公式为门(P-Q). (6分)注:或者(1 PAQ)V(PAi Q)四、判断说明题(每小题7分,本题共14分)13.错误•(3分)例:设A = {a},B^{a,{a}}(5 分)则有AEB且AWB. (7分)说明:举出符合条件的反例均给分.14.正确. (3分)因为图G为连通的,且其中每个顶点的度数均为偶数. (7分)如果具体指出一条欧拉回路也同样给分.五、计算题(每小题12分,本题共36分)15.解:R = {V1,3>,V2,2>,V3,1>} (3分)S = {<1,1>,<2,2>,<3,3>} (6分)7?~* = (<3,1>,<2,2>,<1,3>} (9分)r(S) = (<l,l>,<2,2>,<3,3>} (12分)说明:对于每一个求解项,如果部分正确,可以给对应1分・16.解:(1)(2)邻接矩阵10 0.(3)deg(pi) = 2deg(v2)=2deg(v3)=Odcg(vj = 2 (9 分)(4)补图(12 分)17.解门(PVQ)VR«=>(-, PA-i Q)VR 析取范式(5分)PVR)A(n QVR) (7分)«((n PVK)V(QA-i Q))A(-| QVR) (9分) E((I P VK) V(QA-i Q))A((n QV^>V(P An P)) (10分)«(-i PVR VQ) A(" VR Vi Q) A(i QVk VP)A(i QVRV") ⑴分) «(PV-i QVR)A(i PVQVR)A(rPVi QVR) 主合取范式(12 分)六、证明题(本题共8分)18.证明:(Di PVQ P(1 分)<2)P P(附加前提) (3分)(3)Q T(l)(2)/ (5 分)(4)PAQ T(2)(3)/ (6 分)(5)n(i PV-i Q) T(4)E (7 分)(6)P^n (n PV-i Q) CP 规则(8 分)说明:(D因证明过程中,公式引用的次序可以不同,一般引用前提正确得1分,利用两个公式得出有效结论得1或2分,最后得出结论得2或1分.(2)可以用真值表验证.采用反证法可参照给分.。
离散数学期末考试题及答案
离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是图的边数与顶点数的关系?A. 边数小于顶点数B. 边数等于顶点数C. 边数大于顶点数D. 边数与顶点数无固定关系答案:D2. 有限自动机的英文缩写是什么?A. FAB. PDAC. TMAD. NFA答案:A3. 布尔代数中,德摩根定律是指什么?A. ¬(A ∧ B) 等于¬ A ∨ ¬ BB. ¬(A ∨ B) 等于¬ A ∧ ¬ BC. A ∧ B 等于¬(A ∨ B)D. A ∨ B 等于¬(¬ A ∧ ¬B)答案:B4. 在命题逻辑中,以下哪个符号表示蕴含?A. ∧B. ∨C. →D. ↔答案:C5. 集合A = {1, 2, 3},B = {2, 3, 4},则A ∪ B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 3, 4}答案:A6. 以下哪个选项是正确的递归定义?A. 一个数是偶数当且仅当它是2的倍数B. 一个数是偶数当且仅当它不是2的倍数C. 一个数是偶数当且仅当它是另一个偶数加1D. 以上都是正确的递归定义答案:A7. 有向图和无向图的主要区别是什么?A. 有向图的边有方向,无向图的边没有方向B. 有向图的顶点有方向,无向图的顶点没有方向C. 有向图的边可以相交,无向图的边不可以相交D. 有向图可以有环,无向图不可以有环答案:A8. 在命题逻辑中,以下哪个公式是矛盾的?A. A ∧ ¬ AB. A ∨ ¬ AC. A → BD. A ∧ B ∧ ¬ A答案:A9. 以下哪个是图的同义术语?A. 网络B. 矩阵C. 树D. 以上全部答案:A10. 以下哪个命题逻辑公式是有效的?A. (A → B) ∧ (B → A)B. (A ∧ B) → AC. (A ∨ B) → AD. (A ∧ B) → B答案:B二、填空题(每题2分,共20分)11. 在命题逻辑中,_________ 表示一个命题是真的,而 _________ 表示一个命题是假的。
离散数学期末试卷(3套附答案)
2 离散数学(A 卷) 王军东(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分)1.设A , B 是集合,若A B A =-,则(A) B = ∅ (B) A = ∅ (C) =⋂B A ∅ (D) A B A =⋂2.在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.3.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R4.设p :我们划船,q :我们跑步, 则有命题“我们不能既划船又跑步”符号化为( )(A) ⌝ p ∧⌝ q (B) ⌝ p ∨⌝ q (C) ⌝ (p ↔ q ) (D) ⌝ (⌝ p ∨⌝ q ).5.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( )A .仅是单射B .仅是满射C .是双射D .不是函数6. 设集合A = {1, 2, 3, 4, 5}上的关系R = {(x , y )|x , y ∈ A 且x + y = 6},则R 的性质是( ).(A) 自反的. (B) 对称的. (C) 对称的、传递的. (D) 反自反的、传递的.7. 下列联结词中,不满足交换律的是( ).(A)∧. (B)∨. (C)⊕. (D) →.8..设G 是n 阶简单无向图,则其最大度)(G ∆( ).(A) > n (B) ≤ n . (C) < n . (D) ≥ n .9. 下列所示的哈斯图所对应的偏序集中能构成格的是( )A .B .C .D .课程考试试题学期 学年 拟题人:校对人:拟题学院(系): 适 用 专 业:10. 设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 二、填空题(每空3分,共30分)1.设A={1,2},B={2,3},则A-B=_______, A ⊕B=________,2.设A={2,3 },R ⊆A ×A ,R={(2,3), (2,2)},则R 的自反闭包r(R)=__________,对称闭包s(R)=__________。
离散数学期末考试试题及答案详解
离散数学期末考试试题及答案详解一、【单项选择题】(本大题共15小题,每题3分,共45分)在每题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。
[A] 3 [B] 8 [C]9 [D]272、设A1,2,3,5,8,B1,2,5,7,那么AB( )。
[A] 3,8 [B]3 [C]8 [D]3,83、假设X是Y的子集,那么一定有( )。
[A]X不属于Y [B]X∈Y[C]X真包含于 Y [D]X∩Y=X4、以下关系中是等价关系的是( )。
[A]不等关系 [B]空关系[C]全关系 [D]偏序关系5、对于一个从集合A到集合B的映射,以下表述中错误的选项是( )。
[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象[C]对B的.每个元素都有原象 [D] 对B的元素可以有不止一个原象6、设p:小李努力学习,q:小李获得好成绩,命题“除非小李努力学习,否那么他不能获得好成绩”的符号化形式为( )。
[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},那么A到A的双射共有( )。
[A]3个 [B]6个 [C]8个 [D]9个8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。
[A] G没有奇数度结点 [B] G有1个奇数度结点[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点[A] G中有幺元 [B] G中么元是唯一的[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元10、令p:今天下雪了,q:路滑,那么命题“虽然今天下雪了,但是路不滑”可符号化为( )[A] p→┐q [B] p∨┐q[C] p∧q [D] p∧┐q11、设G=的结点集为V={v1,v2,v3},边集为E={,}.那么G 的割(点)集是( )。
(完整word版)离散数学期末练习题带答案
4, 2 } U I A ,则对应于 R 的划分是(
)。
A. {{ 1},{2,3},{4}}
B. {{ 1,3},{2,4}}
C. {{ 1,3},{2},{4}}
D. {{ 1},{2},{3},{4}}
23.设 G A, 是群,则下列陈述不正确的是(
)。
A. (a 1) 1 a C. an a m an m
Байду номын сангаасC. a b ab 1
D. a b a b 1
19. 设简单图 G 所有结点的度数之和为 50,则 G 的边数为(
(
)
A. 50
B. 25
C. 10
D. 5
20.设简单无向图 G 是一个有 5 个顶点的 4-正则图,则 G 有(
A. 4
B. 5
C. 10
D. 20
)。 )条边。
21.设集合 A {1,2,3,4} , A 上的等价关系 R { 1,1 , 3,2 , 2,3 ,
D. x y lcm{ x, y} ,即 x, y 的最小公倍数
25. 设 X {1,2,3 }, Y { a,b, c, d}, f { 1, a , 2, b , 3, c } ,则 f 是
(
)。
A .从 X 到 Y 的双射
B.从 X 到 Y 的满射,但不是单射
C.从 X 到 Y 的单射,但不是满射
)。
A. G 的所有结点的度数全为偶数
B. G 中所有结点的度数全为奇数
C. G 连通且所有结点度数全为奇数
D. G 连通且所有结点度数全为偶数
36.下列 不.一.定.是树的是( ) A. 无回路的连通图 D
B. 有 n 个结点, n-1 条边的连通图
离散数学试题及答案解析
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
最新国家开放大学电大《离散数学(本)》期末题库及答案
最新国家开放大学电大《离散数学(本)》期末题库及答案考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。
该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
《离散数学》题库及答案一一、单项选择题(每小题3分,本题共15分)1.若集合A={a,b},B={ a,b,{ a,b }},则().A.A⊂B,且A∈B B.A∈B,但A⊄BC.A⊂B,但A∉B D.A⊄B,且A∉B2.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的3.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.34.如图一所示,以下说法正确的是( ) .A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集图一5.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().A.(∀x)(A(x)∧B(x)) B.┐(∃x)(A(x)∧B(x))C.┐(∀x)(A(x) →B(x)) D.┐(∃x)(A(x)∧┐B(x))二、填空题(每小题3分,本题共15分)6.若集合A的元素个数为10,则其幂集的元素个数为.7.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为.8.若A={1,2},R={<x, y>|x∈A, y∈A, x+y=10},则R的自反闭包为.9.结点数v与边数e满足关系的无向连通图就是树.10.设个体域D={a, b, c},则谓词公式(∀x)A(x)消去量词后的等值式为.三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“尽管他接受了这个任务,但他没有完成好.”翻译成命题公式.12.将语句“今天没有下雨.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.下面的推理是否正确,试予以说明.(1) (∀x)F(x)→G(x)前提引入(2) F(y)→G(y)US(1).14.若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,最小元不存在.图二五.计算题(每小题12分,本题共36分)15.求(P∨Q)→(R∨Q)的合取范式.16.设A={0,1,2,3,4},R={<x,y>|x∈A,y∈A且x+y<0},S={<x,y>|x∈A,y∈A且x+y≤3},试求R,S,R•S,R-1,S-1,r(R).17.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它们的权.六、证明题(本题共8分)18.设G是一个n阶无向简单图,n是大于等于2的奇数.证明G与G中的奇数度顶点个数相等(G 是G的补图).试题解答一、单项选择题(每小题3分,本题共15分) 1.A 2.B 3.B 4.D 5.C 二、填空题(每小题3分,本题共15分) 6.1024 7.88.{<1,1>,<2,2>} 9.e=v -110.A (a ) ∧A (b )∧A (c )三、逻辑公式翻译(每小题6分,本题共12分)11.设P :他接受了这个任务,Q :他完成好了这个任务, (2分)P ∧⌝ Q . (6分)12.设P :今天下雨, (2分)⌝ P . (6分)四、判断说明题(每小题7分,本题共14分)13.错误. (3分) (2)应为F (y )→G (x ),换名时,约束变元与自由变元不能混淆. (7分) 14.错误. (3分) 集合A 的最大元不存在,a 是极大元. (7分) 五.计算题(每小题12分,本题共36分)15.(P ∨Q )→(R ∨Q )⇔⌝(P ∨Q )∨(R ∨Q ) (4分) ⇔(⌝P ∧⌝Q )∨(R ∨Q )⇔(⌝P ∨R ∨Q )∧(⌝Q ∨R ∨Q )⇔(⌝P ∨R ∨Q ) ∧R 合取范式 (12分) 16.R =∅, (2分) S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} (4分) R •S =∅, (6分)R -1=∅, (8分) S -1= S , (10分) r (R )=I A . (12分) 17.(10分)权为1⨯3+2⨯3+2⨯2+3⨯2+4⨯2=27 (12分)六、证明题(本题共8分)18.证明:因为n 是奇数,所以n 阶完全图每个顶点度数为偶数, (3分) 因此,若G 中顶点v 的度数为奇数,则在G 中v 的度数一定也是奇数, (6分)ο οο ο ο ο ο ο ο 1 2 23 34 75 12所以G 与G 中的奇数度顶点个数相等. (8分)《离散数学》题库及答案二一、单项选择题(每小题3分,本题共15分)1.若集合A ={1,{2},{1,2}},则下列表述正确的是( ). A .2⊂A B .{1}⊂AC .1∉AD .2 ∈ A2.已知一棵无向树T 中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为( ). A .6 B .4 C .3 D .53.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101110011000011100111110 则G 的边数为( ). A .1 B .7 C .6 D .144.设集合A ={a },则A 的幂集为( ).A .{{a }}B .{a ,{a }}C .{∅,{a }}D .{∅,a }5.下列公式中 ( )为永真式.A .⌝A ∧⌝B ↔ ⌝A ∨⌝B B .⌝A ∧⌝B ↔ ⌝(A ∨B )C .⌝A ∧⌝B ↔ A ∨BD .⌝A ∧⌝B ↔ ⌝(A ∧B )二、填空题(每小题3分,本题共15分)6.命题公式P P ⌝∧的真值是 . 7.若无向树T 有5个结点,则T 的边数为 .8.设正则m 叉树的树叶数为t ,分支数为i ,则(m -1)i = .9.设集合A ={1,2}上的关系R ={<1, 1>,<1, 2>},则在R 中仅需加一个元素 ,就可使新得到的关系为对称的.10.(∀x )(A (x )→B (x ,z )∨C (y ))中的自由变元有 .三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“今天上课.”翻译成命题公式.12.将语句“他去操场锻炼,仅当他有时间.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.设集合A={1,2},B={3,4},从A到B的关系为f={<1, 3>},则f是A到B的函数.14.设G是一个有4个结点10条边的连通图,则G为平面图.五.计算题(每小题12分,本题共36分)15.试求出(P∨Q)→(R∨Q)的析取范式.16.设A={{1}, 1, 2},B={1, {2}},试计算(1)(A∩B)(2)(A∪B)(3)A (A∩B).17.图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, c) , (a, d), (b, c), (b, d), (c, d)},对应边的权值依次为1、2、3、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.六、证明题(本题共8分)18.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.试题解答一、单项选择题(每小题3分,本题共15分)1.B 2.D 3.B 4.C 5.B二、填空题(每小题3分,本题共15分)6.假(或F,或0)7.48.t-19.<2, 1>10.z,y三、逻辑公式翻译(每小题6分,本题共12分)11.设P :今天上课, (2分) 则命题公式为:P . (6分) 12.设 P :他去操场锻炼,Q :他有时间, (2分) 则命题公式为:P →Q . (6分) 四、判断说明题(每小题7分,本题共14分)13.错误. (3分) 因为A 中元素2没有B 中元素与之对应,故f 不是A 到B 的函数. (7分) 14.错误. (3分) 不满足“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.” (7分)五.计算题(每小题12分,本题共36分)15.(P ∨Q )→(R ∨Q )⇔ ┐(P ∨Q )∨(R ∨Q ) (4分)⇔ (┐P ∧┐Q )∨(R ∨Q ) (8分)⇔ (┐P ∧┐Q )∨R ∨Q (析取范式) (12分)16.(1)(A ∩B )={1} (4分)(2)(A ∪B )={1, 2, {1}, {2}} (8分) (3) A -(A ∩B )={{1}, 1, 2} (12分)17.(1)G 的图形表示如图一所示:(3分)(2)邻接矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0111101111011110 (6分) (3)最小的生成树如图二中的粗线所示:图一 ο ο ο ο a b c d1 124 53 图二ο ο ο ο a b cd1 1 2453(10分)权为:1+1+3=5 (12分)六、证明题(本题共8分)18.证明:设∀x∈A,因为R自反,所以x R x,即< x, x>∈R;又因为S自反,所以x R x,即< x, x >∈S.(4分)即< x, x>∈R∩S (6分)故R∩S自反.(8分)《离散数学》题库及答案三一、单项选择题(每小题3分,本题共15分)1.若集合A={ a,{a}},则下列表述正确的是( ).A.{a}⊆A B.{{{a}}}⊆AC.{a,{a}}∈A D.∅∈A2.命题公式(P∨Q)的合取范式是( )A.(P∧Q)B.(P∧Q)∨(P∨Q)C.(P∨Q)D.⌝(⌝P∧⌝Q)3.无向树T有8个结点,则T的边数为( ).A.6 B.7 C.8 D.9 4.图G如图一所示,以下说法正确的是( ).A.a是割点B.{b,c}是点割集C.{b, d}是点割集D.{c}是点割集图一5.下列公式成立的为( ).A.⌝P∧⌝Q ⇔P∨Q B.P→⌝Q⇔⌝P→QC.Q→P⇒ P D.⌝P∧(P∨Q)⇒Q二、填空题(每小题3分,本题共15分)6.设集合A ={2, 3, 4},B ={1, 2, 3, 4},R 是A 到B 的二元关系,},{y x B y A x y x R ≤∈∈><=且且则R 的有序对集合为 .7.如果R 是非空集合A 上的等价关系,a ∈A ,b ∈A ,则可推知R 中至少包含 等元素. 8.设G =<V , E >是有4个结点,8条边的无向连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.9.设G 是具有n 个结点m 条边k 个面的连通平面图,则m 等于 10.设个体域D ={1, 2},A (x )为“x 大于1”,则谓词公式()()x A x ∃的真值为 三、逻辑公式翻译(每小题6分,本题共12分) 11.将语句“今天考试,明天放假.”翻译成命题公式. 12.将语句“我去旅游,仅当我有时间.”翻译成命题公式. 四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.如果图G 是无向图,且其结点度数均为偶数,则图G 是欧拉图.14.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元是f .图二五.计算题(每小题12分,本题共36分)15.设谓词公式)),,()(),()((z x y B z y x A x ∀→∃,试(1)写出量词的辖域; (2)指出该公式的自由变元和约束变元. 16.设集合A ={{1},1,2},B ={1,{1,2}},试计算(1)(A -B ); (2)(A ∩B ); (3)A ×B .17.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4 },E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4) },试 (1)给出G 的图形表示; (2)写出其邻接矩阵;(3)求出每个结点的度数; (4)画出其补图的图形. 六、证明题(本题共8分)18.设A ,B 是任意集合,试证明:若A ⨯A=B ⨯B ,则A=B .试题解答(供参考)一、单项选择题(每小题3分,本题共15分) 1.A 2.C 3.B 4.B 5.D 二、填空题(每小题3分,本题共15分)6.{<2, 2>,<2, 3>,<2, 4>,<3, 3>},<3, 4>,<4, 4>} 7.<a , a >,< b , b > 8.5 9.n +k -210.真(或T ,或1)三、逻辑公式翻译(每小题4分,本题共12分)11.设P :今天考试,Q :明天放假. (2分) 则命题公式为:P ∧Q . (6分)12.设P :我去旅游,Q :我有时间, (2分)则命题公式为:P →Q . (6分) 四、判断说明题(每小题7分,本题共14分)13.错误. (3分)当图G 不连通时图G 不为欧拉图. (7分) 14.错误. (3分) 集合A 的最大元与最小元不存在,a 是极大元,f 是极小元,. (7分) 五.计算题(每小题12分,本题共36分)15.(1)∃x 量词的辖域为)),,()(),((z x y B z y x A ∀→, (3分)∀z 量词的辖域为),,(z x y B , (6分) (2)自由变元为)),,()(),((z x y B z y x A ∀→中的y , (9分)约束变元为x 与z . (12分)16.(1)A -B ={{1},2} (4分)(2)A ∩B ={1} (8分) (3)A ×B={<{1},1>,<{1},{1,2}>,<1,1>,<1, {1,2}>,<2,1>,<2, {1,2}>} (12分) 17.(1)G 的图形表示为(如图三):(3分)图三 (2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110101111000100(6分) (3)v 1,v 2,v 3,v 4结点的度数依次为1,2,3,2 (9分) (4)补图如图四所示:(12分)图四六、证明题(本题共8分)18.证明:设x ∈A ,则<x ,x >∈A ⨯A , (1分) 因为A ⨯A=B ⨯B ,故<x ,x >∈B ⨯B ,则有x ∈B , (3分) 所以A ⊆B . (5分) 设x ∈B ,则<x ,x >∈B ⨯B , (6分) 因为A ⨯A=B ⨯B ,故<x ,x >∈A ⨯A ,则有x ∈A ,所以B ⊆A . (7分) 故得A=B . (8分)《离散数学》题库及答案四一、单项选择题(每小题3分,本题共15分)二、填空题(每小题3分,本题共15分)三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“如果他掌握了计算机的用法,那么他就能完成这项工作.”翻译成命题公式.12.将语句“前天下雨,昨天还是下雨.”翻译成命题公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14分)五、计算题(每小题12分,本题共36分)六、证明题(本题共8分)试题答案《离散数学》题库及答案五一、单项选择题(每小题3分,本题共15分)试题及答案《离散数学》题库及答案六一、单项选择题(每小题3分,本题共15分)二、填空题(每小题3分,本题共15分)三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“昨天下雨”翻译成命题公式.12.将语句“小王今天上午或者去看电影或者去打球”翻译成命题公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14分)五、计算题(每小题12分,本题共36分)六、证明题(本题共8分)试题答案及评分标准(供参考)。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
离散数学期末考试题及答案
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。
A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。
A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。
答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。
离散数学期末考试题及答案
离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,表示两个集合A和B的并集的符号是:A. ∩B. ∪C. ⊂D. ⊆2. 以下哪个命题逻辑表达式是真命题,当P为真,Q为假时?A. ¬PB. P ∧ QC. P ∨ QD. P → Q3. 如果函数f: A → B是一个单射,那么它不能是:A. 满射B. 双射C. 恒等函数D. 逆函数4. 在图论中,一个图G是连通的,当且仅当:A. G是无向图B. G是简单图C. G是完全图D. 对于任意两个顶点,都存在一条路径5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合二、简答题(每题10分,共30分)6. 解释什么是二元关系,并给出一个例子。
7. 描述什么是有向图和无向图的区别。
8. 什么是等价关系,它有哪些性质?三、计算题(每题15分,共30分)9. 给定集合A = {1, 2, 3, 4},B = {a, b, c},定义函数f: A → B,其中f(1) = a, f(2) = b, f(3) = c, f(4) = a。
判断f是否是单射、满射或双射,并给出理由。
10. 计算以下命题逻辑表达式的真值表:(P ∧ Q) → (¬P ∨ R),其中P、Q、R是命题变量。
四、证明题(每题20分,共20分)11. 证明:如果一个图G是连通的,那么它的任意子图也是连通的。
答案一、选择题1. B2. C3. A4. D5. D二、简答题6. 二元关系是定义在两个集合上的一个关系,它将第一个集合中的每个元素与第二个集合中的元素相关联。
例如,如果A是人名的集合,B是年龄的集合,关系R可以是“比...年长”,那么(Alice, 30) ∈ R表示Alice比30岁年长。
7. 有向图由顶点和有向边组成,每条边都有一个方向,表示从一个顶点指向另一个顶点。
无向图由顶点和无向边组成,边没有方向。
离散数学考试试题及答案
离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。
答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。
答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。
答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。
答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。
答案:欧拉路径是一条通过图中每条边恰好一次的路径。
2. 解释什么是二元关系,并给出一个例子。
答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系就是一个二元关系。
3. 请说明什么是递归函数,并给出一个简单的例子。
答案:递归函数是一种通过自身定义来计算函数值的函数。
例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。
四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。
2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。
离散数学期末复习试题及答案(三)
第三章 离散函数1. 边长为1的正方形内放9个点,证明由这些点构成的三角形中, 必有一个三角形面积小于81。
正方形一分为四,由推广鸽洞原理,必有3个点在同一个41中,而这3个点构成的三角形的面积小于814121=⨯ 。
2. 空间六个点,其中任何三点不共线,任何四点不共面,六个 点二二连线,各线用红色,兰色中任取一种着色,证明不论如何 着色,一定存在同色边的三角形。
任取一点为A ,P={除A 外的5个点},R={{与A 的连线是红色},{与A 的连线是蓝色}},3R P =⎥⎥⎤⎢⎢⎡,由推广鸽洞原理,至少有3个点与A 的连线是同色 的,不妨为红色的,若此3个点中有2个点的连线为红色的,则 包括A 在内,已有3个点间的连线是红色的;否则,此3个点间的 连线都是蓝色的。
3. 平面上任给五个格点(坐标为整数的点),求证必有二个点的 连线段的中点也是格点。
每点(x,y)坐标有四种可能:(奇,偶),(偶.奇),(奇,奇),(偶,偶),当且仅 当二个点的二个坐标的奇偶均相同时,连线段的中点也是格点。
245=⎥⎥⎤⎢⎢⎡,必有二个点是同一种情况的,此二个点连线段的中点是格点。
4. 一个正方形分作15×15=225个大小相同的小正方形,每一格中 任意填写1,2,...,56中任一数,求证一定能找到四个小方格,以它 们的中心为平行四边形的顶点(可以是退化的),且对角线的端点所 在小方格的数字之和相等。
关于中心对称的方格有(225-1)/2=112对,每对和的取数范围为2—112,共111种可能,必有二对和的取数是相同的。
5. 任给五个整数,证明必能从其中选出3个,使得它们之和能被3整除。
若5个数中3k,3k+1,3k+2三种形式均有,则每种形式各取一个, 否则⎡5/2⎤ =3,某种形式中必有三个。
6. 边长为1的正方形内任意n个点,至少有二个点的距离<]1[2-n 。
任一边长为a 的正方形内任二点距离a 2<,当k 2+1≤n ≤(k+1)2, 把边长为1的正方形分为k ⋅k 个边长为1/k 的正方形,[]1n k -=, 2个点落在同一小正方形内即可,且不可能n 个点均能在网格交点上。
离散数学考试题及详细参考答案
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A⋃B)-C=(A-B) ⋃(A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→⌝F)→⌝C, B→(A∧⌝S)⇒B→Eb)∀x(P(x)→⌝Q(x)), ∀x(Q(x)∨R(x)),∃x⌝R(x) ⇒∃x⌝P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠∅且B≠∅,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
大学期末离散数学试卷答案
姓名:XXX 学号:XXXXXX 班级:XXX 专业:XXX一、选择题(每题2分,共20分)1. 下列集合中,哪个集合是空集?A. {x | x∈N, x>0}B. {x | x∈Z, x=0}C. {x | x∈R, x≠0}D. {x | x∈Q, x=√2}答案:C解析:空集是不包含任何元素的集合,根据定义,只有选项C中x等于0的整数集合不包含任何元素,故为空集。
2. 设A={1,2,3},B={2,3,4},则A∩B的元素个数是?A. 2B. 3C. 4D. 0答案:A解析:集合A与集合B的交集是指同时属于A和B的元素组成的集合,根据定义,A∩B={2,3},共有2个元素。
3. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∪B的元素个数是?A. 10B. 8C. 5D. 3答案:A解析:集合A与集合B的并集是指属于A或B的元素组成的集合,根据定义,A∪B={1,2,3,4,5,6,7},共有10个元素。
4. 设R为实数集,R上的二元关系“≤”是?A. 自反性B. 对称性C. 传递性D. 反自反性答案:C解析:传递性是指如果a≤b且b≤c,则a≤c。
在实数集上,“≤”满足传递性。
5. 设R为实数集,R上的二元关系“<”是?A. 自反性B. 对称性C. 传递性D. 反自反性答案:C解析:传递性是指如果a<b且b<c,则a<c。
在实数集上,“<”满足传递性。
6. 设A={1,2,3},B={4,5,6},则A×B的元素个数是?A. 3B. 6C. 9D. 12答案:B解析:A×B表示A与B的笛卡尔积,即所有可能的有序对组成的集合。
A×B={(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)},共有6个元素。
7. 设A={1,2,3},B={4,5,6},则A∩B的元素个数是?A. 0B. 1C. 2D. 3答案:A解析:A与B的交集为空集,因为它们没有共同元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新离散数学期末考试题(附答案和含解析3)2.设集合A={1,2,3},下列关系R 中不.是等价关系的是( D ) A.R={<1,1>,<2,2>,<3,3>}; B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>};C. R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};D. R={<1,1>,<2,2>,<3,3>,<1,2 >}.3.在公式(x ∀)F (x ,y )→(∃ y )G (x ,y )中变元x 是( B )A .自由变元;(前面无∀或∃量词)B .既是自由变元,又是约束变元;C .约束变元;(前面有∀或∃量词)D .既不是自由变元,又不是约束变元.4.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是( C )A .1∈A ;B .{1,2,3}⊆A ;C .{{4,5}}⊆A ;D .∅∈A.5.设论域为{l ,2},与公式)()(x A x ∃等价的是( A )A.A (1)∨A (2);B. A (1)→A (2);C.A (1)∧A (2);D. A (2)→A (1).6.一棵树有5个3度结点,2个2度结点,其它的都是l 度结点,那么这棵树的结点数是( B )A.13 ;B.14 ;C.16 ;D.17 .//设一度结点数为n ,则有:5×3+2×2+n=2[(5+2+n)-1]解得:n=7, 所以这棵树的结点数为:m=5+2+7=14.7.设A 是偶数集合,下列说法正确的是( A )A .<A ,+>是群;B .<A ,×>是群;C .<A ,÷>是群;D .<A ,+>, <A ,×>,<A ,÷>都不是群.8.下列图是欧拉图的是( D )10.下面不满足...结合律的运算是( C ) A.),min(b a b a = ; B.),max(b a b a = ; C.)(2b a b a +=;D.ab b a 2= 二、填空题12.设f ∶R →R ,f(x)=x+3,g ∶R →R ,g(x)=2x+1,则复合函数=))(g (f x 42+x , =)x )(f (g 72+x//=))(g (f x f(g(x))=f(2x+1)=(2x+1)+3=2x+4//=))(f (g x =g(f(x))=g(x+3)=2(x+3)+1=2x+7//备注:f g=f g(x)=g(f(x))13.设S 是非空有限集,代数系统<P (S ),∪>中,其中P (S )为集合S 的幂集,则P (S )对∪运算的单位元是 φ,零元是 S .14.设<A ,≤>是格,其中A={1,2,3,4,6,8,12,24},≤为整除关系,则3的补元是 8 . //(注:什么是格? 即任意两个元素有最小上界和最大下界的偏序)15.命题公式)(Q P P ∧→的成真指派为 00,01,11 ,成假指派为 10 .16.设A={<2,2>,<3,4>,<3,5>},B={<1,3>,<2,5>,<3,4>},那么dom (A ∩B)= {3} , ran (A ∪B)= {2,3,4,5}//关系R 的定义域:domR={∃x|y(<x ,y>∈R)},即R 中所有有序对的第一元素构成的集合. 关系R 的值域:ranR={∃y|x(<x ,y>∈R)},即R 中所有有序对的第二元素构成的集合. 关系R 的域:fldR=domR ∪ranR17. 在根树中,若每一个结点的出度 最多为(或≤)m ,则称这棵树为m 叉树.如果每一个结点的出度 都或0,则称这棵树为完全m 叉树.如果这棵树的叶 都在同一层 ,那么称为正则m 叉树.>是一个群,其中Zn={0,1,2,……,n-1},n y x y x mod )(+=⊕,则在 <Z6, ⊕>中,1的阶是 6 ,4的阶是 3 . //单位元是e =019. n 点完全图记为K n ,那么当 n ≤ 4 时,K n 是平面图,当 n ≥ 5 时,K n 是非平面图.20. 若图中存在 回路 ,它经过图中所有的结点恰好 一次 ,则称该图为汉密尔顿图(哈密顿图) . // 欧拉图三、计算题21. 求命题公式)()(P Q Q P ∨⌝→→⌝的主析取范式.解: )()(P Q Q P ∨⌝→→⌝⇔)()(P Q Q P ∨⌝→∨⇔)()(P Q Q P ∨⌝∨∨⌝⇔)()(P Q Q P ∨⌝∨⌝∧⌝⇔))(())(()(Q Q P Q P P Q P ⌝∨∧∨⌝∧⌝∨∨⌝∧⌝⇔))()()()()(Q P Q P Q P Q P Q P ⌝∧∨∧∨⌝∧⌝∨⌝∧∨⌝∧⌝⇔))()()(Q P Q P Q P ∧∨⌝∧∨⌝∧⌝=111000m m m ∨∨=∑)3,2,0(22. 设A ={1,2,3,4},给A 上的二元关系R ={<1,2>,<2,1>,<2,3>,<3,4>},求R的传递闭包.解:由R ={<1,2>,<2,1>,<2,3>,<3,4>},得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0000100001010010R M , 从而⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000101001012MR ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010110103MR , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000101001014MR ,于是 2R ={<1,1>,<1,3>,<2,2>,<2,4>},3R ={<1,2>,<1,4>,<2,1>,<2,3>},4R ={<1,1>,<1,3>,<2,2>,<2,4>}=2R ,故432)(R R R R R t =={<1,1>,<1,2>,<1,3>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<3,4>}23.设A={1,2,3,4,6,8,12,24},R 为A 上的整除关系,试画<A ,R>的哈斯图,并求A 中的最大元、最小元、极大元、极小元.解:<A ,R>的哈斯图如右图所示:A 中的最大元为24、最小元为1、极大元为24、极小元为1.24.求下图所示格的所有5元子格.解:所有5元子格如下:26.用矩阵的方法求右图中结点v 1,v 3之间长度为2的路径的数目.//教材P289、290所以,图中结点v 1,v 3之间长度为2的路径的数目有3条.//备注:邻接矩阵中所有元素之和等于边数.通路(v1->v1,v2,v3,v4…)与回路(v1->v1,v2->v2,v->v3…)四、证明题27. 在整数集Z 上定义:Z ,,1∈∀++=b a b a b a ,证明:<Z , >是一个群.证明:(1)对于Z b a ∈∀,,有Z 1∈++=b a ba ,所以运算 是封闭的.(2)对于Z c b a ∈∀,,,有 2c b a 1c 1b a c )1()(+++=++++=++= b a c b a ,2c b a 11c b a )1()(+++=+++++=++=c b a c b a ,即)()(c b a c b a =,故运算 是可结合的.(3)1-是单位元,因为Z a ∈∀,a a a=+-=-11)1( ,a a a =++-=-11)1( . (4)Z a ∈∀,由112)2(-=+--=--a a a a ,112)2(-=++--=--a a a a ,可知 a --2是a 的逆元.综上所述,<Z , >是一个群.28. 设R 为N ×N 上的二元关系,N N d c b a ⨯>∈<><∀,,,,d b d c R b a =>⇔<><,,,证明R 为等价关系.证明:因为N N b a ⨯>∈<∀,,b b =,所以><><b a R b a ,,,故R 具有自反性. N N d c b a ⨯>∈<><∀,,,,若><><d c R b a ,,,则d b =,即b d =,故><><b a R d c ,,,所以R 具有对称性.N N f e d c b a ⨯>∈<><><∀,,,,,,若><><d c R b a ,,,><><f e R d c ,,, 则d b =,f d =从而f b =,故><><f e R b a ,,,所以R 具有对称性.综上所述,R 为等价关系.五、综合应用题29.在谓词逻辑中构造下面推理的证明:每个在学校读书的人都获得知识.所以如果没有人获得知识就没有人在学校读书.(个体域:所有人的集合)证明:设S (x ):x 是 在学校读书的人, G (x ):x 是获得知识的人.前提:(x ∀)))()((x G x S →;结论:→∃⌝)()(x G x )()(x S x ∃⌝推理过程如下:(1)(x ∀)))()((x G x S → P(2))()(c G c S → US (1)(3))()(x G x ∃⌝ P (附加前提)(4))()(x G x ⌝∀ T(3)E(5))(c G ⌝ US(4) (6))(c S ⌝ T(2)(5)I (7) )()(x S x ⌝∀ UG(6)(8) )()(x S x ∃⌝ T(7)E。