2019年度江苏南京中考数学试卷

合集下载

2019年江苏省南京市中考数学真题试卷附解析

2019年江苏省南京市中考数学真题试卷附解析

2019年江苏省南京市中考数学真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若⊙O 1 和⊙O 2相交于A 、B 两点,⊙O 1 和⊙O 2的半径分别为2 和,公共弦长为 2,∠O 1AO 2的度数为( )A .105°B .75°或 15°C .105°或 15°D .15° 2.若半径为1cm 和2cm 的两圆相外切,那么与这两个圆都相切且半径为3cm 的圆的个数为( )A .5个B .4个C .3个D .2个 3.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d(天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )4.线段 PQ 的黄金分割点是R (PR>RQ ),则下列各式中正确的是( )A .PR RQ PQ PQ= B .PR QR PQ PR = C .PQ RQ PR PQ = D .PR PQ PQ QR = 5.二次函数28y x x c =−+的最小值是( )A .4B .8C .-4D .16 6.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( ) A .41x x >⎧⎨−⎩,≤ B .41x x <⎧⎨−⎩,≥ C .41x x >⎧⎨>−⎩, D .41x x ⎧⎨>−⎩≤, 7.把m 2(m-n )+m (n-m )因式分解等于( ) A .(m-n )(m 2-m ) B .m (m-n )(m+1) C .m (n-m )(m+1) D .m (m-n )(m-1)8.现有两根木棒,它们的长度分别是40 cm ,50 cm ,若要钉一个三角形的木架,则下列四根木棒中应选取( )A .lOcm 的木棒B . 40 cm 的木棒C . 90 cm 的木棒D. 100 cm 的木棒9. 一副三角板按如图方式摆放,且∠1 的度数比∠2 的度数大50°,若设∠1 =x °,∠2 =y °,则可得到方程组为( )A . 50180x y x y =−⎧⎨+=⎩B . 50180x y x y =+⎧⎨+=⎩C . 5090x y x y =−⎧⎨+=⎩D . 5090x y x y =+⎧⎨+=⎩10.如图,△BEF 是由△ABC 平移所得,点A ,B ,E 在同一直线上,若∠F=35°,∠E= 50°,则∠CBF 是( )A .35°B .60°C .80D .无法确定11.如图所示,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆孔,最后将正方形纸片展开,得到的图案是( )12.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是 ( )A .x ·40%×80%=240B .x (1+40%)×80%=240C .240×40%×80%=xD .x ·40%=240×80%13. 甲、乙、丙三筐青菜的质量分别是 102 kg 、97 kg 、99 kg ,若以 100 kg 为基准,并记为0,则甲、乙、丙三筐青菜的质量分别表示为( )A .2,3,1B .2,-3,1C .2,3,-1D .2,- 3,-1二、填空题14.在Rt △ABC 中,若∠C= 90°,AC=24,AB=25,则sinB= .15.如图,将矩形纸片ABCD 的一角沿EF 折叠,使点C 落在矩形ABCD 的内部C '处,若35EFC ∠=°,则DEC '∠= 度.16.计算题: (1) 12-18-5.0+31 (2) ⎪⎪⎭⎫ ⎝⎛−÷1213112 (3)221811139134187⎪⎭⎫ ⎝⎛−−⎪⎭⎫ ⎝⎛−17.等角的余角相等,改写成“如果……那么……”的形式: ,该命题是(填“真”或“假”)命题.18.如图,是一个圆形转盘,现按1:2:3:4分成四个部分,分别涂上红,黄,蓝,绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为 .19.方程组233410x y x y −=⎧⎨+=⎩的解是 ,方程组23431y x x y =−⎧⎨−=⎩的解是 . 20.判断下列说法是否正确,正确的打“√”,错误的打“×”.(1)面积相等的两个三角形全等. ( )(2)周长相等的两个三角形全等.’( )(3)三边对应相等的两个三角形全等. ( )(4)全等三角形的面积相等,周长相等. ( )21.有 3、4、-6、10四个数,每个数用且只用一次进行加减乘除运算,使其结果等于24,列式为 .三、解答题22.某市在城市建设中,要折除旧烟囱AB (如图所示),在烟囱正西方向的楼CD 的顶端C ,测得烟囱的顶端A 的仰角为45,底端B 的俯角为30,已量得21m DB =.(1)在原图上画出点C 望点A 的仰角和点C 望点B 的俯角,并分别标出仰角和俯角的大小.(2)拆除时若让烟囱向正东倒下,试问:距离烟囱东方35m 远的一棵大树是否被歪倒的烟囱砸着?请说明理由.23.如图所示,抛物线245y x x =−++与x 轴交于A 、B 两点,与y 轴交于D 点,抛物线的顶点为 C ,求四边形 ABCD 的面积.24.试写出一个实际生活中的反比例函数.25.推动信息技术的发展,举行了电脑设计作品比赛,各班派学生代表参加,现将所有比赛成绩(得分取整数,满分为100分)进行处理然后分成五组,并绘制了频数分布直方图,请结合图中提供的信息,解答下列问题:(1)参加比赛学生的总人数是多少?(2)80.5~90.5这一分数段的频数、频率是多少?(3) 根据统计图,请你也提出一个问题,并做出回答.26.如图,已知 B,A,E三点在同一直线上,AD⊥BC,垂足为 D,EG⊥BC,垂足为G,EG交AC于点F,且AE=AF,请说明AD平分∠BAC的理由.27.如图,△ACB 和△ECD都是等腰直角三角形,∠ACB= ∠ECD = 90°,D为 AB边上的一点,试说明:(1)△ACE≌△BCD;(2) AD2+BD2=DE2.28.画出如图所示的轴对称图形的对称轴,并回答下列问题:(1)连结BD,则对称轴和线段BD有怎样的位置关系?(2)原图形中有哪些相等的角?哪些全等的三角形?(3)分别作出图形中点F、G的对称点.29.某班同学去社会实践基地参加实践活动,一部分同学抬土,另一部分同学挑土. 已知全班共有竹筐 58 只,扁担 37 根,要使每一位同学都能同时参加抬土或挑土,应怎样分配抬土和挑土人数?30.在y kx b=+中,当 x=2 时,y=8;当 x=-1时,y=-7,求k,b 的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.B5.D6.B7.A8.B9.D10.A11.CB13.D二、填空题14.242515. 7016. ⑴227337−; ⑵12; ⑶ 0. 17.如果两个角是相等角的余角,那么这两个角相等18.52 19. 21x y =⎧⎨=⎩,45x y =⎧⎨=⎩ 20.(1)× (2)× (3)√ (4)√21.3(6104)24⨯−++=三、解答题22.解:(1)略;(2)画CG ⊥AB ,垂足为G ,连结CA ,CB ,在Rt AGC △中,45ACG =∠.()21m AG CG DB ∴===,在Rt BCG △中,)3tan 30tan 3021m 3BG CG DB =⋅=⋅=⨯=,∴烟囱高)()21m 33.124m AB =+≈,33.12435m m <,∴这棵大树不会被歪倒的烟囱砸着.连结OC ,令245=0x x −++,解得15x =,21x =−,∴A(- 1 ,0) ,B(5 ,0) , D(0 , 5).∵2245(2)9y x x x =−++=−−+,∴C(2,9).连结CO. ∴11115525930222AOD COD BOC ABCD s s s S ∆∆∆=++=⨯⨯+⨯⨯+⨯⨯=四边形 24.化肥厂生产化肥的总任务一定时,每天生产化肥 y(吨)和生产天数 x(天)之间成反比例关系 25.⑴52人;(2)80.5~90.5这一分数段的频数为10,频率是265 ;(3)答案不唯一,提问题举例: 90.5~100.5分数段内的学生与50.5~60.5分数段内的学生哪一个多?答:在90.5~100.5分数段内的学生多.26.略27.(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE ,即∠BCD=∠ACE , ∵△ACB 和△ECD 都是等腰直角三角形,∴AC=BC ,DC=EC ,∴△ACE ≌△BCD .(2)∵△ACB 是等腰直角三角形,∴∠B=∠BAC=45°.∵△ACE ≌△BCD ,∴∠CAE=∠B=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°. ∴△ADE 是直角三角形,∴AD 2+AE 2=DE 2.由(1)知,AE=BD ,∴AD 2+BD 2=DE 2.28.如图所示,连结BD ,作线段BD 的垂直平分线m ,直线m•就是所求的对称轴.(1)对称轴垂直平分线段BD ;(2)原图形中相等的角有:∠B=∠D ,∠BAC=∠DEC ,∠BCA=∠DCE ,∠CAE=∠CEA ,∠BCE=∠DCA ,∠BAE=∠DEA .全等的三角形有:△ABC 和△EDC ;(3)点F 、G 的对称点分别是F ′、G ′,如图所示.29.分配抬土 32 人,挑土21 人30.k=, b=-25。

2019年江苏省南京市中考数学试卷及答案

2019年江苏省南京市中考数学试卷及答案

2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是它们在数轴上的对应点的位置可以是(()A.B.C.D.5.(2分)下列整数中,与10最接近的是()A.4B.5C.6D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算的结果是.9.(2分)分解因式(a﹣b)2+4ab的结果是.第1页(共7页)10.(2分)已知2是关于x的方程x2﹣4x+m=0的一个根,则m=.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.(2分)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)18.(7分)解方程: 1.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m°,从与的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1②AC D D DG AB BC G2.以点D 为圆心,DG 长为半径画弧,交AB 于点E .3.在EB 上截取EF =ED ,连接FG ,则四边形DEFG 为所求作的菱形. (1)证明小明所作的四边形DEFG 是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D 的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD 的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点A (x 1,y 1)和B (x 2,y 2),用以下方式定义两点间距离:d (A ,B )=|x 1﹣x 2|+|y 1﹣y 2|.【数学理解】(1)①已知点A (﹣2,1),则d (O ,A )= .②函数y =﹣2x +4(0≤x ≤2)的图象如图①所示,B 是图象上一点,d (O ,B )=3,则点B 的坐标是 .(2)函数y (x >0)的图象如图②所示.求证:该函数的图象上不存在点C ,使d (O ,C )=3.(3)函数y =x 2﹣5x +7(x ≥0)的图象如图③所示,D 是图象上一点,求d (O ,D )的最小值及对应的点D 的坐标. 【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.B;2.D;3.B;4.A;5.C;6.D;二、填空题(本大题共10小题,每小题2分,共20分。

2019江苏南京中考数学试卷

2019江苏南京中考数学试卷

2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.)1. 2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.面积为4的正方形的边长是()A.4的平方根 B.4的算术平方根C.4开平方的结果 D.4的立方根4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.76.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

)7.﹣2的相反数是;的倒数是.8.计算﹣的结果是.9.分解因式(a﹣b)2+4ab的结果是.10.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102 98 80 93 127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分)17.计算(x+y)(x2﹣xy+y2)18.解方程:﹣1=.19.如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.23.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m 的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF 的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.7【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

2019年江苏省南京市中考数学试卷(后附答案)

2019年江苏省南京市中考数学试卷(后附答案)

2019年江苏省南京市中考数学试卷题号一二三四总分得分一、选择题(本大题共6小题,共12.0分)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A. 0.13×105B. 1.3×104C. 13×103D. 130×1022.计算(a2b)3的结果是()A. a2b3B. a5b3C. a6bD. a6b33.面积为4的正方形的边长是()A. 4的平方根B. 4的算术平方根C. 4开平方的结果D. 4的立方根4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A. B.C. D.5.下列整数中,与10-√13最接近的是()A. 4B. 5C. 6D. 76.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A. ①④B. ②③C. ②④D. ③④二、填空题(本大题共10小题,共20.0分)7.-2的相反数是______;1的倒数是______.28.计算14-√28的结果是______.√79.分解因式(a-b)2+4ab的结果是______.10.已知2+√3是关于x的方程x2-4x+m=0的一个根,则m=______.11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______,∴a∥b.12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有______cm.13. 为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上 人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是______. 14. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,点C 、D 在⊙O上.若∠P =102°,则∠A +∠C =______.15. 如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长______.16. 在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是______. 三、计算题(本大题共2小题,共14.0分) 17. 计算(x +y )(x 2-xy +y 2)18. 解方程:xx−1-1=3x 2−1.四、解答题(本大题共9小题,共74.0分)19. 如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F .求证:△ADF ≌△CEF .20.如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是______.22.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.23.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x-3.(1)当k=-2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1-x2|+|y1-y2|.【数学理解】(1)①已知点A(-2,1),则d(O,A)=______.②函数y=-2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是______.(2)函数y=4(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使xd(O,C)=3.(3)函数y=x2-5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)答案和解析1.【答案】B【解析】解:13000=1.3×104故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:(a2b)3=(a2)3b3=a6b3.故选:D.根据积的乘方法则解答即可.本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.【答案】B【解析】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.已知正方形面积求边长就是求面积的算术平方根;本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.【答案】A【解析】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.【答案】C【解析】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10-最接近的是6.故选:C.由于9<13<16,可判断与4最接近,从而可判断与10-最接近的整数为6.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.【答案】D【解析】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.7.【答案】2 2【解析】解:-2的相反数是2;的倒数是2,故答案为:2,2.根据只有符号不同的两个数互为相反数,乘积为的两个数互为倒数,可得答案.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.【答案】0【解析】解:原式=2-2=0.故答案为0.先分母有理化,然后把二次根式化为最简二次根式后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.【答案】(a+b)2【解析】解:(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+9b2=(a+b)2.故答案为:(a+b)2.直接利用多项式乘法去括号,进而合并同类项,再利用公式法分解因式得出答案.此题主要考查了运用公式法分解因式,正确应用公式是解题关键.10.【答案】1【解析】解:把x=2+代入方程得(2+)2-4(2+)+m=0,解得m=1.故答案为1.把x=2+代入方程得到关于m的方程,然后解关于m的方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.【答案】∠1+∠3=180°【解析】解:∵∠1+∠3=180°,∴a∥b(同旁内角互补,两直线平).故答案为:∠1+∠3=180°.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.本题主要考查了平行的判定,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.12.【答案】5【解析】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20-15=5(cm).故答案为:5.根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.13.【答案】7200【解析】解:估计该区12000名初中学生视力不低于4.8的人数是12000×=7200(人),故答案为:7200.用总人数乘以样本中视力不低于4.8的人数占被调查人数的比例即可得.本题主要考查用样本估计总体,用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.【答案】219°【解析】解:连接AB,∵PA、PB是⊙O的切线,∴PA=PB,∵∠P=102°,∴∠PAB=∠PBA=(180°-102°)=39°,∵∠DAB+∠C=180°,∴∠PAD+∠C=∠PAB+∠DAB+∠C=180°+39°=219°,故答案为:219°.连接AB,根据切线的性质得到PA=PB,根据等腰三角形的性质得到∠PAB=∠PBA=(180°-102°)=39°,由圆内接四边形的性质得到∠DAB+∠C=180°,于是得到结论.本题考查了切线的性质,圆内接四边形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.15.【答案】√10【解析】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴==,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴==,∴NE=x,∴BE=BN+EN=x,CE=CN-EN=x,由勾股定理得:AE2=AB2-BE2=AC2-CE2,即52-(x)2=(2x)2-(x)2,解得:x=,∴AC=2x=;故答案为:.作AM⊥BC于E,由角平分线的性质得出==,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出==,NE=x,BE=BN+EN=x,CE=CN-EN=x,再由勾股定理得出方程,解方程即可得出结果.本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.16.【答案】4<BC≤8√33【解析】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质;作出△ABC的外接圆进行推理计算是解题的关键.17.【答案】解:(x+y)(x2-xy+y2),=x3-x2y+xy2+x2y-xy2+y3,=x3+y3.故答案为:x3+y3.【解析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.18.【答案】解:方程两边都乘以(x+1)(x-1)去分母得,x(x+1)-(x2-1)=3,即x2+x-x2+1=3,解得x=2检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.【解析】方程两边都乘以最简公分母(x+1)(x-1)化为整式方程,然后解方程即可,最后进行检验.本题考查了分式方程的求解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.【答案】证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A =∠ECF ,∠ADF =∠E ,∴△ADF ≌△CEF (ASA ).【解析】依据四边形DBCE 是平行四边形,即可得出BD=CE ,依据CE ∥AD ,即可得出∠A=∠ECF ,∠ADF=∠E ,即可判定△ADF ≌△CEF .本题主要考查了平行四边形的判定与性质以及全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.20.【答案】解:(1)这5天的日最高气温和日最低气温的平均数分别是x −高=23+25+23+25+245=24,x −低=21+22+15+15+175=18, 方差分别是S 高2=(23−24)2+(25−24)2+(23−24)2+(25−24)2+(24−24)25=0.8,S 低2=(21−18)2+(22−18)2+(15−18)2+(15−18)2+(17−18)25=8.8, ∴S 高2<S 低2,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.【解析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s 2来表示,计算公式是:s 2=[(x 1-)2+(x 2-)2+…+(x n -)2](可简单记忆为“方差等于差方的平均数”).本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.21.【答案】23【解析】 解:(1)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,∴甲同学随机选择两天,其中有一天是星期二的概率为=;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),∴乙同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:.(1)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.【答案】证明:连接AC,∵AB=CD,∴AB⏜=CD⏜,∴AB⏜+BD⏜=BD⏜+CD⏜,即AD⏜=CB⏜,∴∠C=∠A,∴PA=PC.【解析】连接AC,由圆心角、弧、弦的关系得出=,进而得出=,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.23.【答案】解:(1)k=-2时,y1=-2x+2,根据题意得-2x+2>x-3,解得x<3;5(2)当x=1时,y=x-3=-2,把(1,-2)代入y1=kx+2得k+2=-2,解得k=-4,当-4≤k<0时,y1>y2;当0<k≤1时,y1>y2.【解析】(1)解不等式-2x+2>x-3即可;(2)先计算出x=1对应的y2的函数值,然后根据x<1时,一次函数y1=kx+2(k 为常数,k≠0)的图象在直线y2=x-3的上方确定k的范围.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.24.【答案】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=AH,CH∴AH=CH•tan∠ACH≈0.51CH,,在Rt△BHC中,tan∠BCH=BHCH∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH-0.4CH=33,解得,CH=300,∴EH=CH-CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH-DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.【解析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25.【答案】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x-50×40)=642000解得x1=30,x2=-30(舍去).所以3x =90,2x =60,答:扩充后广场的长为90m ,宽为60m .【解析】设扩充后广场的长为3xm ,宽为2xm ,根据矩形的面积公式和总价=单价×数量列出方程并解答.题考查了列二元一次方程解实际问题的运用,总价=单价×数量的运用,解答时找准题目中的数量关系是关键.26.【答案】(1)证明:∵DE =DG ,EF =DE ,∴DG =EF ,∵DG ∥EF ,∴四边形DEFG 是平行四边形,∵DG =DE ,∴四边形DEFG 是菱形.(2)如图1中,当四边形DEFG 是正方形时,设正方形的边长为x .在Rt △ABC 中,∵∠C =90°,AC =3,BC =4,∴AB =√32+42=5,则CD =35x ,AD =54x ,∵AD +CD =AC ,∴35x +54x =3,∴x =6037,∴CD =35x =3637,观察图象可知:0≤CD <3637时,菱形的个数为0.如图2中,当四边形DAEG 是菱形时,设菱形的边长为m .∵DG ∥AB , ∴CD CA =DG AB ,∴3−m 3=m 5, 解得m =158, ∴CD =3-158=98,如图3中,当四边形DEBG 是菱形时,设菱形的边长为n .∵DG ∥AB ,∴CG CB =DG AB ,∴4−n 4=n 5, ∴n =209,∴CG =4-209=169,∴CD =√(209)2−(169)2=43, 观察图象可知:当0≤CD <3637或43<CD ≤98时,菱形的个数为0,当CD =3637或98<CD ≤43时,菱形的个数为1,当3637<CD ≤98时,菱形的个数为2.【解析】(1)根据邻边相等的四边形是菱形证明即可.(2)求出几种特殊位置的CD 的值判断即可.本题考查相似三角形的判定和性质,菱形的判定和性质,作图-复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度.27.【答案】3 (1,2)【解析】解:(1)①由题意得:d(O,A)=|0+2|+|0-1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0-x|+|0-y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2-3x+4=0,∴△=b2-4ac=-7<0,∴方程x2-3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x-0|+|x2-5x+7-0|=|x|+|x2-5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2-5x+7|=x+x2-5x+7=x2-4x+7=(x-2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=-x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.(1)①根据定义可求出d(O,A)=|0+2|+|0-1|=2+1=3;②由两点间距离:d(A,B)=|x1-x2|+|y1-y2|及点B是函数y=-2x+4的图象上的一点,可得出方程组,解方程组即可求出点B的坐标;(2)由条件知x>0,根据题意得,整理得x2-3x+4=0,由△<0可证得该函数的图象上不存在点C,使d(O,C)=3.(3)根据条件可得|x|+|x2-5x+7|,去绝对值后由二次函数的性质可求出最小值;(4)以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=-x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处,可由d(O,P)≥d(O,E)证明结论即可.考查了二次函数的综合题,涉及的知识点有新定义,解方程(组),二次函数的性质等.第21页,共21页。

江苏南京2019中考试题数学卷含答案

江苏南京2019中考试题数学卷含答案

初中毕业生学业考试南京市数学一.选择题根1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.70 000据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示是3545 10 A.0.710 B. 710 C. 710D. 70 ????,它们之间的距离可以表示为、-32.数轴上点A、B表示的数分别是5 |3+5 B. -3-5 C. |-3+5| D. |--5A .-363.下列计算中,结果是的是a C.. B.AD.4.下列长度的三条线段能组成钝角三角形的是7, 4,5 C. 3,4,6 D. 3,4.A3,4,4 B. 3,,则它的内切圆的半径为5.己知正六边形的边长为2 D.A B.. C. 2的x的方差相等,则6.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9 值为 D. .或 B. C. 或6 A二.填空题388______.7. 化简:;______1?x?x________. 在实数范围内有意义,则x若式子的取值范围是8._______. 9. 分解因式的结果是25?) =”号填“>________10.比较大小:””<”或“.(231_______. 的解是方程11.?x2x?x?xxxxx,1,的两个根,且是方程12.设-=221121??xx=_______.则______,21如图,扇形OAB的圆心角为122°,C是弧13. AB上一点,则_____°.1ADO,下列结论、BD相交于点O,△ABO≌△AC14. 如图,四边形ABCD的对角线_______. 其中正确结论的序号是≌△ADC;④DA=DC,②①AC⊥BD;CB=CD;③△ABC的中位线,且∥BD.EF是△ODB,、如图,ABCD相交于点O,OC=2,OD=3AC15. ________. EF=2的长为,则AC,则菱形的AECF的面积为5016.如图,菱形ABCD的面积为120,正方形.边长为_______解答题三..并写出它的整数解 17. 解不等式组计算18.学校统名学生,他们参加了一次数学测试,1000个班,某校九年级有19. 24共计了所有学生的乘积,得到下列统计图, 2求该校九年级学生本次数学测试成绩的平均数;1)()下列关于本次数学测试说法正确的是()(2.九年级学生成绩的众数与平均数相等A B.九年级学生成绩的中位数与平均数相等 C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数名学生,可以用他们成绩的平均数估计九年级学生成绩的平均300随机抽取D.数。

2019年江苏省南京市中考数学试卷(详解版)

2019年江苏省南京市中考数学试卷(详解版)

请你继续探
索,直接写出菱形的个数及对应的 的长的取值范围.
答案
(1) 证明见解析.
(2) 当

时,菱形的个数为 ;


时,菱形的个数为 ,

时,菱形的个数为 .
解析
(1) ∵






∴四边形
是平行四边形,


∴平行四边形
是菱形,
(2) 如图 中,当四边形
是正方形时,设正方形的边长为 ,
C
D
G
AE F 图
21 某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.
(1) 甲同学随机选择两天,其中有一天是星期二的概率是多少?
(2) 乙同学随机选择连. 续. 的. 两. 天. ,其中有一天是星期二的概率是

答案
(1) . (2)
解析
(1) 甲同学随机选择两天,所有可能出现的结果共有 种,即 星期一,星期二 、 星期一

中,∵
B
















观察图象可知:
时,菱形的个数为 .
如图 中,当四边形
是菱形时,设菱形的边长为 .
C
D
G
FB 图






解得



如图 中,当四边形
是菱形时,设菱形的边长为 .
C
D
G
AE


2019江苏南京中考数学试卷

2019江苏南京中考数学试卷

2019年江苏省南京市中考数学试卷一、选择题(本大题共 小题,每小题 分,共 分.). 年中国与“一带一路”沿线国家货物贸易进出口总额达到 亿美元.用科学记数法表示 是(). × . × . × . × .计算( ) 的结果是(). . . . .面积为 的正方形的边长是(). 的平方根 . 的算术平方根 . 开平方的结果 . 的立方根 .实数 、 、 满足 > 且 < ,它们在数轴上的对应点的位置可以是(). .. ..下列整数中,与 ﹣最接近的是(). . . . .如图,△ 是由△ 经过平移得到的,△ 还可以看作是△ 经过怎样的图形变化得到?下列结论: 次旋转; 次旋转和 次轴对称; 次旋转; 次轴对称.其中所有正确结论的序号是(). . . .二、填空题(本大题共 小题,每小题 分,共 分。

).﹣ 的相反数是;的倒数是..计算﹣的结果是..分解因式( ﹣ ) 的结果是..已知 是关于 的方程 ﹣ = 的一个根,则 =..结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴ ∥ ..无盖圆柱形杯子的展开图如图所示.将一根长为 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 ..为了了解某区初中学生的视力情况,随机抽取了该区 名初中学生进行调查.整理样本数据,得到下表:视力以下以上人数根据抽样调查结果,估计该区 名初中学生视力不低于 的人数是..如图, 、 是 的切线, 、 为切点,点 、 在 上.若∠ = °,则∠ ∠ =..如图,在△ 中, 的垂直平分线 交 于点 , 平分∠ .若 = , = ,则 的长..在△ 中, = ,∠ = °,∠ >∠ ,则 的长的取值范围是.三、解答题(本大题共 小题,共 分).计算( )( ﹣ ).解方程:﹣ =..如图, 是△ 的边 的中点, ∥ , ∥ , 与 相交于点 .求证:△ ≌△ ..如图是某市连续 天的天气情况.( )利用方差判断该市这 天的日最高气温波动大还是日最低气温波动大; ( )根据如图提供的信息,请再写出两个不同类型的结论..某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.( )甲同学随机选择两天,其中有一天是星期二的概率是多少? ( )乙同学随机选择连续的两天,其中有一天是星期二的概率是 ..如图, 的弦 、 的延长线相交于点 ,且 = .求证: = ..已知一次函数= ( 为常数, ≠ )和= ﹣ .( )当 =﹣ 时,若>,求 的取值范围.( )当 < 时,>.结合图象,直接写出 的取值范围..如图,山顶有一塔 ,塔高 .计划在塔的正下方沿直线 开通穿山隧道 .从与 点相距 的 处测得 、 的仰角分别为 °、 °,从与 点相距 的 处测得 的仰角为 °.求隧道 的长度.(参考数据: °≈ , °≈ .).某地计划对矩形广场进行扩建改造.如图,原广场长 ,宽 ,要求扩充后的矩形广场长与宽的比为 : .扩充区域的扩建费用每平方米 元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米 元.如果计划总费用 元,扩充后广场的长和宽应分别是多少米?.如图 ,在 △ 中,∠ = °, = , = .求作菱形 ,使点 在边 上,点 、 在边 上,点 在边 上.小明的作法.如图 ,在边 上取一点 ,过点 作 ∥ 交 于点 . .以点 为圆心, 长为半径画弧,交 于点 ..在 上截取 = ,连接 ,则四边形 为所求作的菱形. ( )证明小明所作的四边形 是菱形.( )小明进一步探索,发现可作出的菱形的个数随着点 的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的 的长的取值范围..【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系 ,对两点 (,)和 (,),用以下方式定义两点间距离: ( , )=﹣﹣.【数学理解】( ) 已知点 (﹣ , ),则 ( , )= .函数 =﹣ ( ≤ ≤ )的图象如图 所示, 是图象上一点, ( , )= ,则点 的坐标是 .( )函数 =( > )的图象如图 所示.求证:该函数的图象上不存在点 ,使 ( , )= .( )函数 = ﹣ ( ≥ )的图象如图 所示, 是图象上一点,求 ( , )的最小值及对应的点 的坐标.【问题解决】( )某市要修建一条通往景观湖的道路,如图 ,道路以 为起点,先沿 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共 小题,每小题 分,共 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上).( 分) 年中国与“一带一路”沿线国家货物贸易进出口总额达到 亿美元.用科学记数法表示 是(). × . × . × . × 【分析】科学记数法的表示形式为 × 的形式,其中 ≤ < , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值> 时, 是正数;当原数的绝对值< 时, 是负数.【解答】解: = ×故选: .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 × 的形式,其中 ≤ < , 为整数,表示时关键要正确确定 的值以及 的值. .( 分)计算( ) 的结果是(). . . .【分析】根据积的乘方法则解答即可.【解答】解:( ) =( ) = .故选: .【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积..( 分)面积为 的正方形的边长是(). 的平方根 . 的算术平方根. 开平方的结果 . 的立方根【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为 的正方形的边长是,即为 的算术平方根;故选: .【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键..( 分)实数 、 、 满足 > 且 < ,它们在数轴上的对应点的位置可以是(). .. .【分析】根据不等式的性质,先判断 的正负.再确定符合条件的对应点的大致位置.【解答】解:因为 > 且 < ,所以 < .选项 符合 > , < 条件,故满足条件的对应点位置可以是 .选项 不满足 > ,选项 、 不满足 < ,故满足条件的对应点位置不可以是 、 、 .故选: .【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断 的正负..( 分)下列整数中,与 ﹣最接近的是(). . . .【分析】由于 < < ,可判断与 最接近,从而可判断与 ﹣最接近的整数为 .【解答】解:∵ < < ,∴ << ,∴与最接近的是 ,∴与 ﹣最接近的是 .故选: .【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键..( 分)如图,△ 是由△ 经过平移得到的,△ 还可以看作是△ 经过怎样的图形变化得到?下列结论: 次旋转; 次旋转和 次轴对称;次旋转; 次轴对称.其中所有正确结论的序号是(). . . . 【分析】依据旋转变换以及轴对称变换,即可使△ 与△ 重合.【解答】解:先将△ 绕着 的中点旋转 °,再将所得的三角形绕着 的中点旋转 °,即可得到△ ;先将△ 沿着 的垂直平分线翻折,再将所得的三角形沿着 的垂直平分线翻折,即可得到△ ;故选: .【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共 小题,每小题 分,共 分。

2019江苏省南京市中考数学真题及答案

2019江苏省南京市中考数学真题及答案

2019江苏省南京市中考数学真题及答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.(2分)下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算﹣的结果是.9.(2分)分解因式(a﹣b)2+4ab的结果是.10.(2分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102 98 80 93 127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.(2分)如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)18.(7分)解方程:﹣1=.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D 在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.(2分)下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.7【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

(完整版)2019年南京市中考数学试题、答案(解析版)

(完整版)2019年南京市中考数学试题、答案(解析版)

2019年南京市中考数学试题、答案(解析版)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13 000亿美元.用科学记数法表示13 000是( ) A .50.1310⨯B .41.310⨯C .31310⨯D .213010⨯ 2.计算()32a b 的结果是( )A .23a bB .53a bC .6a bD .63a b 3.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根4.实数a 、b 、c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( )ABC D5.下列整数中,与10( )A .4B .5C .6D .76.如图,'''A B C △是由ABC △经过平移得到的,'''A B C △还可以看作是ABC △经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④第Ⅱ卷(非选择题 共108分)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填在题中的横线上) 7.2-的相反数是 ;12的倒数是 .8.的结果是 .9.分解因式()24a b ab -+的结果是 .10.已知2是关于x 的方程240x x m +﹣=的一个根,则m = .11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵ ,∴a b ∥.12.无盖圆柱形杯子的展开图如图所示.将一根长为20 cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 cm .13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:根据抽样调查结果,估计该区12 000名初中学生视力不低于4.8的人数是 . 14.如图,P A 、PB 是O e 的切线,A 、B 为切点,点C 、D 在O e 上.若102P ∠︒=,则A C ∠+∠= .15.如图,在ABC △中,BC 的垂直平分线MN 交AB 于点D ,CD 平分ACB ∠.若=2AD ,3BD =,则AC 的长 .16.在ABC △中,4AB =,60C ∠=,A B ∠>∠,则BC 的长的取值范围是 . 三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分7分)计算()22()x y x xy y +-+18.(本小题满分7分) 解方程:23111x x x -=--.19.(本小题满分7分)如图,D 是ABC △的边AB 的中点,DE BC ∥,CE AB ∥,AC 与DE 相交于点F .求证:ADF CEF V V ≌.20.(本小题满分8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大; (2)根据如图提供的信息,请再写出两个不同类型的结论.21.(本小题满分8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是 .22.(本小题满分8分)如图,O e 的弦AB 、CD 的延长线相交于点P ,且AB CD =.求证:PA PC =.23.(本小题满分8分)已知一次函数12y kx =+(k 为常数,0k ≠)和23y x =-. (1)当2k =-时,若12y y >,求x 的取值范围.(2)当1x <时,12y y >.结合图象,直接写出k 的取值范围.24.(本小题满分8分)如图,山顶有一塔AB ,塔高33 m .计划在塔的正下方沿直线CD 开通穿山隧道EF .从与E 点相距80m 的C 处测得A 、B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度. (参考数据:tan220.40︒≈,tan270.51︒≈.)25.(本小题满分8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充后的矩形广场长与宽的比为32:.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642 000元,扩充后广场的长和宽应分别是多少米?26.(本小题满分9分)如图①,在Rt ABC △中,90C ∠=︒,3AC =,4BC =.求作菱形DEFG ,使点D 在边AC 上,点E 、F 在边AB 上,点G 在边BC 上.图1(1)证明小明所作的四边形DEFG 是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D 的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD 的长的取值范围.27.(本小题满分11分) 【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间距离:()1212,d A B x x y y +--=. 【数学理解】(1)①已知点()2,1A -,则(),d O A = .②函数()2402y x x =-+≤≤的图象如图①所示,B 是图象上一点,(),3d O B =,则点B 的坐标是 .图1 图2 图3(2)函数4(0)y x x=>的图象如图②所示.求证:该函数的图象上不存在点C ,使(),3d O C =.小明的作法1.如②,在边AC 上取一点D ,过点D 作DG AB ∥交BC 于点G .图22.以点D 为圆心,DG 长为半径画弧,交AB 于点E . 3.在EB 上截取EF ED =,连接FG ,则四边形DEFG 为所求作的菱形.(3)函数()2570y x x x +-=≥的图象如图③所示,D 是图象上一点,求(),d O D 的最小值及对应的点D 的坐标. 【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)图22019年南京市中考数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】B【解析】413000 1.310=⨯,故选B. 【考点】用科学记数法表示较大的数 2.【答案】D 【解析】原式()32363=a b a b ⋅=,故选D.【考点】积的乘方,幂的乘方 3.【答案】B【解析】面积为4,2是4的算术平方根,故选B. 【考点】算术平方根的意义 4.【答案】A【解析】由a b >,ac bc <知0c <,根据此条件可以判断A 图正确,故选A. 【考点】由数的大小及符号确定点在数轴上的位置 5.【答案】C【解析】因为,所以3.54,所以 3.54-->,所以10 3.510104-->,即6.5106>,所以最接近6,故选C.用有理数估计无理数的大小,要借助完全平方数实现。

2019年江苏省南京市中考数学试卷以及解析答案

2019年江苏省南京市中考数学试卷以及解析答案

2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算﹣的结果是.9.(2分)分解因式(a﹣b)2+4ab的结果是.10.(2分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.(2分)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)18.(7分)解方程:﹣1=.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m 的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

2019年江苏省南京市中考数学试卷及解析(word版)

2019年江苏省南京市中考数学试卷及解析(word版)

2019年江苏省南京市中考数学试卷及解析(word版)一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2019年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.分析:根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2019年江苏南京)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.(2019年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.(2019年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.分析:根据无理数的定义进行估算解答即可.解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.(2019年江苏南京)8的平方根是()A.4 B.±4 C.2D.分析:直接根据平方根的定义进行解答即可解决问题.解:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2019年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4) D.(,)、(﹣,4)分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A 作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2019年江苏南京)﹣2的相反数是,﹣2的绝对值是.分析:根据相反数的定义和绝对值定义求解即可.解:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(2019年江苏南京)截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2019年江苏南京)使式子1+有意义的x的取值范围是.分析:根据被开方数大于等于0列式即可.解:由题意得,x≥0.故答案为:x≥0.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.(2019年江苏南京)2019年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.(2019年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.(2019年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.(2分)(2019年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.(2019年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.(2019年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16.(2019年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如的取值范围是.分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2019年江苏南京)解不等式组:.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.解:,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.(2019年江苏南京)先化简,再求值:﹣,其中a=1.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解:原式=﹣==﹣,当a=1时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2019年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(2019年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(2019年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.解:(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(8分)(2019年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.(2019年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.24.(2019年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.25.(2019年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.26.(2019年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.27.(2019年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.。

2019年江苏南京中考数学试题(解析版)

2019年江苏南京中考数学试题(解析版)

2019年南京市中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共6小题,每小题2分,合计12分.{题目}1.(2019年江苏南京)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元,用科学记数法表示13000是( )A .0.13×105B .1.3×104C .13×103D .130×102{答案}B{解析}本题考查了科学记数法.13000=1.3×10000=1.3×104.因此本题选B . {分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}2.(2019年江苏南京)计算(a 2b )3的结果是( )A .a 2b 3B .a 5b 3C .a 6bD .a 6b 3{答案}D{解析}本题考查了幂的运算.(a 2b )3=(a 2)3b 3=a 6b 3.因此本题选D .{分值}2{章节:[1-14-1]整式的乘法}{考点:幂的乘方}{考点:积的乘方}{类别:常考题}{难度:1-最简单}{题目}3.(2019年江苏南京)面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 {答案}B{解析}本题考查了算术平方根的意义.面积为4=2.因此本题选B . {分值}2{章节:[1-6-1]平方根}{考点:算术平方根的应用}{类别:易错题}{难度:2-简单}{题目}4.(2019年江苏南京)实数a ,b ,c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( ){答案}A{解析}本题考查了实数的大小比较、不等式的性质.∵a >b ,∴表示数a 的点在表示数b 的点的右边.∵a >b 且ac <bc ,∴c <0,即表示数c 的点在原点的左边.因此本题选A . {分值}2{章节:[1-9-1]不等式}{考点:数轴表示数}{考点:实数的大小比较}{考点:不等式的性质}{类别:常考题}{类别:思想方法}A .B .C .D .{难度:2-简单}{题目}5.(2019年江苏南京)下列整数中,与10( )A .4B .5C .6D .7{答案}C{解析}本题考查了实数的估算.∵9<13<16,∴3<4,-4<-3,10-4<10<10-3,即6<107.这说明10在6与7之间.∵3.52<13,∴3.5106.5.这说明106.∴与10最接近的整数是6.因此本题选C .{分值}2{章节:[1-6-3]实数}{考点:无理数的估值}{考点:有理数部分与无理数部分}{类别:常考题}{难度:3-中等难度}{题目}6.(2019年江苏南京)如图,△A ′B ′C ′是由△ABC 经过平移得到的,△A ′B ′C ′还可以看作是△ABC 经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A .①④B .②③C .②④D .③④{答案}D{解析}本题考查了图形变换及相互间的关系.连接AA ′,在AA ′上任取一点A 1.(1)如图1(1),分别取AA 1和A 1A ′的中点O 1,O 2,将△ABC 绕点O 1旋转180°得△A 1B 1C 1,将△A 1B 1C 1绕点O 2旋转180°得△A ′B ′C ′;(2)如图1(2),分别作AA 1和A 1A ′的垂直平分线l 1,l 2,△ABC 关于l 1对称的三角形是△A 2B 2C 2,△A 2B 2C 2关于l 2对称的三角形是△A ′B ′C ′.结论①②不正确.故选D .因此本题选D .{分值}2{章节:[1-23-2-1]中心对称} C A B B ′ C ′ A ′ 图1(2) l 1 l 2 C 2 B 2 A 2图1(1)CAB ′A ′第6题图{考点:平移的性质}{考点:轴对称的性质}{考点:旋转的性质}{考点:几何选择压轴}{类别:发现探究}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共10小题,每小题2分,合计20分.{题目}7.(2019年江苏南京)-2的相反数是______;12的倒数是______.{答案}2,2{解析}本题考查了相反数、倒数的概念.a的相反数是-a,nm的倒数是mn.因此本题答案是2,2.{分值}2{章节:[1-1-2-3]相反数}{章节:[1-1-4-2]有理数的除法}{考点:相反数的定义}{考点:倒数}{类别:常考题}{难度:1-最简单}{题目}8.(2019年江苏南京)______.{答案}0{解析}本题考查了二次根式的计算.原式==0.因此本题答案是0.{分值}2{章节:[1-16-3]二次根式的加减}{考点:二次根式的加减法}{类别:常考题}{难度:2-简单}{题目}9.(2019年江苏南京)分解因式(a-b)2+4ab的结果是______.{答案}(a+b)2{解析}本题考查了乘法公式和因式分解.原式=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.因此本题答案是(a+b)2.{分值}2{章节:[1-14-3]因式分解}{考点:完全平方公式}{考点:因式分解-完全平方式}{类别:常考题}{难度:2-简单}{题目}10.(2019年江苏南京)已知2x的方程x2-4x+m=0的一个根,则m=______.{答案}1{解析}本题考查了一元二次方程根与系数的关系或者根的定义.设原方程的另一根为x1,则由根与系数的关系得(2+x1=4,(2x1=m.解得x1=2,m=1.因此本题答案是1.{分值}2{章节:[1-21-1]一元二次方程}{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:一元二次方程的定义}{考点:根与系数关系}{类别:常考题}{难度:3-中等难度}{题目}11.(2019年江苏南京)结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______,∴a ∥b .{答案}∠1+∠3=180°{解析}本题考查了平行线的判定.图中∠2、∠3、∠4分别是∠1的同位角、同旁内角和内错角.因此同旁内角互补应表示为∠1+∠3=180°.因此本题答案是∠1+∠3=180°.{分值}2{章节:[1-5-2-2] 平行线的判定}{考点:同旁内角互补两直线平行}{考点:几何说理}{类别:常考题}{难度:1-最简单}{题目}12.(2019年江苏南京)无盖圆柱杯子的展开图如图所示,将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有______cm .{答案}5{解析}本题考查了勾股定理的应用.当筷子倾斜放置时,∵以9和12=15,20-15=5,∴木筷露在杯子外面的部分至少有5cm .因此本题答案是5.{分值}2{章节:[1-17-1]勾股定理}{考点:几何体的展开图}{考点:勾股定理的应用}{类别:常考题}{难度:3-中等难度}{题目}13.(2019年江苏南京)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生第12题图 ab c1 2 34 第11题图{答案}7200{解析}本题考查了利用样本估计总体的思想.视力不低于4.8的人数=80+93+127=300.由样本估计总体的思想,可知求所结果=300500×12000=7200(人). 因此本题答案是7200.{分值}2{章节:[1-10-1]统计调查}{考点:抽样调查}{考点:用样本估计总体}{类别:常考题}{难度:1-最简单}{题目}14.(2019年江苏南京)如图,P A ,PB 是⊙O 的切线,A ,B 为切点,点C ,D 在⊙O 上,若∠P =102°,则∠A +∠C =______°.{答案}219{解析}本题考查了圆周角定理的推论、切线长定理.连接AB ,则∠DAB +∠C =180°.由切线长定理可知P A =PB ,∴∠P AB =12×(180°-∠P )=39°. ∴∠P AD +∠C =∠P AB +∠DAB +∠C =180°+39°=219°.因此本题答案是219.{分值}2{章节:[1-24-2-2]直线和圆的位置关系}{考点:圆内接四边形的性质}{考点:切线长定理}{类别:常考题}{难度:3-中等难度}{题目}15.(2019年江苏南京)如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长为______.{答案{解析}本题考查了垂直平分线的性质和相似三角形.∵DN 垂直平分BC ,∴DB =DC .∴∠B =∠DCB .M N DCAB 第15题图第14题图∵CD 平分∠ACB ,∴∠ACD =∠DCB ,∴∠ACD =∠B .又∠A =∠A ,∴△ACD ∽△ABC . ∴AC AB =AD AC,即AC 2=AD ·AB . ∴AD =2,BD =3,∴AB =5.∴AC{分值}2{章节:[1-27-1-1]相似三角形的判定}{考点:垂直平分线的性质}{考点:相似三角形的判定(两角相等)}{类别:常考题}{难度:3-中等难度}{题目}16.(2019年江苏南京)在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是______.{答案}4<BC{解析}本题考查了三角函数、轨迹等知识.∠A =∠B 时,△ABC 是等边三角形,此时BC =AB =AC =4.∵∠A >∠B ,∴BC >4.如图2,作△ABC 的外接圆O ,则当BC 是直径BC ′时,BC 的值最大.此时BC ′=sin 60AB. 综上所述,BC 的长的取值范围是4<BC. 因此本题答案是4<BC. {分值}2{章节:[1-24-2-1]点和圆的位置关系}{考点:等边对等角}{考点:解直角三角形}{考点:点与圆的位置关系}{考点:几何填空压轴}{类别:发现探究}{难度:5-高难度}{题型:4-解答题}三、解答题:本大题共11小题,合计88分.{题目}17.(2019年江苏南京)计算:(x +y )(x 2-xy +y 2).{解析}本题考查了整式的乘法.运用多项式乘多项式的法则进行计算.{答案}解:(x +y )(x 2-xy +y 2)=x 3-x 2y +xy 2+x 2y -xy 2+y 3=x 3+y 3.{分值}7′图2{章节:[1-14-1]整式的乘法}{难度:2-简单}{类别:常考题}{考点:多项式乘以多项式}{题目}18.(2019年江苏南京)解方程:1x x --1=231x -. {解析}本题考查了解分式方程.(1)去分母;(2)解整式方程;(3)验根.{答案}解:方程两边乘(x -1)(x +1),得x (x +1)-(x -1)(x +1)=3.解得x =2.检验:当x =2时,(x -1)(x +1)≠0.所以,原分式方程的解为x =2.{分值}7{章节:[1-15-3]分式方程}{难度:2-简单}{类别:常考题}{考点:一元二次方程的应用—增长率问题}{考点:解含两个分式的分式方程}{考点:分式方程的检验}{题目}19.(2019年江苏南京)如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F ,求证:△ADF ≌△CEF .{解析}本题考查了.先证四边形DBCE 是平行四边形,再用“角边角”或“角角边”证△ADF 与△CEF 全等.{答案}证明:∵DE ∥BC ,CE ∥AB ,∴四边形DBCE 是平行四边形.∴BD =CE .∵D 是AB 的中点,∴AD =DB .∴AD =CE .∵CE ∥AB ,∴∠A =∠ECF ,∠ADF =∠E .∴△ADF ≌△CEF .{分值}7{章节:[1-18-1-2]平行四边形的判定}{难度:3-中等难度}{类别:常考题}{考点:全等三角形的判定ASA,AAS}{考点:两组对边分别平行的四边形是平行四边形}{题目}20.(2019年江苏南京)下图是某市连续5天的天气情况.F DE CAB 第19题图(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据上图提供的信息,请再写出两个不同类型的结论.{解析}本题考查了方差的应用、数据的分析.{答案}解:(1)这5天的日最高气温和日最低气温的平均数分别是x 高=15(23+25+23+25+24)=24,x低=15(21+22+15+15+17)=18.方差分别是2 s 高=15[(23-24)2+(25-24)2+(23-24)2+(25-24)2+(24-24)2]=0.8,2 s 低=15[(21-18)2+(22-18)2+(15-18)2+(15-18)2+(17-18)2]=8.8.由2s高<2s低可知,这5天的日最低气温的波动较大.(2)本题答案不唯一,下列解法供参考.例如,①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是2℃、3℃、8℃、10℃、7℃,可以看出雨天的日温差较小.②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了.{分值}8{章节:[1-20-2-1]方差}{难度:3-中等难度}{类别:常考题}{考点:方差的实际应用}{考点:用样本估计总体}{题目}21.(2019年江苏南京)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是______.{解析}本题考查了用列举法求概率.{答案}解:(1)甲同学随机选择两天,所有可能出现的结果共有6种,即(星期一,星期二)、(星期一,星期三)、(星期一,星期四)、(星期二,星期三)、(星期二,星期四)、(星期三,星期四),这些结果出现的可能性相等,所有结果中,满足有一天是星期二(记为事件A)的结果有3种,即(星期一,星期二)、(星期二,星期三)、(星期二,星期四),所以P(A)=36=12.(2)23.[解析]乙同学随机选择连续的两天,所有可能出现的结果共有3种,即(星期一,星期二)、(星期二,星期三)、(星期三,星期四),这些结果出现的可能性相等,所有结果中,满足有一天是星期二(记为事件B )的结果有2种,即(星期一,星期二)、(星期二,星期三),所以P (B )=23. {分值}8{章节:[1-25-2]用列举法求概率}{难度:3-中等难度}{类别:常考题}{考点:一元二次方程的应用—增长率问题}{考点:两步事件不放回}{题目}22.(2019年江苏南京)如图,⊙O 的弦AB ,CD 的延长线相交于点P ,且AB =CD ,求证:P A =PC .{解析}本题考查了“三组量”之间的关系或垂径定理等知识.{答案}证法1:如图3(1),连接AC .∵AB =CD ,∴»AB =»CD. ∴»AB +»BD =»CD +»BD ,即»AD =»CB. ∴∠C =∠A .∴P A =PC .证法2:如图3(2),过点O 分别作OM ⊥AB ,ON ⊥CD ,垂足分别为M ,N .连接OA ,OC ,OP . ∵OM ⊥AB ,ON ⊥CD ,∴AM =12AB ,CN =12=CD . ∵AB =CD ,∴AM =CN .在Rt △OAM 和Rt △OCN 中,∠OMA =ONC =90°,根据勾股定理,得OMON又OA =OC ,AM =CN ,∴OM =ON .又OP =OP ,∴Rt △OPM ≌Rt △OPN .∴PM =PN .∴PM +AM =PN +CN ,即P A =PC .{分值}7{章节:[1-24-1-2]垂直于弦的直径}{章节:[1-24-1-3]弧、弦、圆心角}{难度:3-中等难度}{类别:常考题}图3(2)图3(1) 第22题图{考点:全等三角形的判定HL}{考点:垂径定理}{考点:圆心角、弧、弦的关系}{题目}23.(2019年江苏南京)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x -3.(1)当k =-2时,若y 1>y 2,求x 的取值范围.(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.{解析}本题考查了一次函数与不等式的关系、数形结合思想等.{答案}解:(1)当k =-2时,y 1=-2x +2.根据题意,得-2x +2>x -3.解得x <53. (2)-4≤k ≤1且k ≠0.[解析]如图4,直线y 2=x -3上横坐标是1的点D 的纵坐标是-2.①当直线y 1=kx +2经过点D (1,-2)时,k =-4.此时符合题意;②当直线y 1=kx +2与直线y 2=x -3平行时,k =1.此时符合题意;③当直线y 1=kx +2与直线y 2=x -3的交点P 在射线DC 上时,符合题意,此时k 的取值范围是-4<k <1且k ≠0.综上所述,k 的取值范围是-4≤k ≤1且k ≠0.{分值}8{章节:[1-19-3]一次函数与方程、不等式}{难度:4-较高难度}{类别:思想方法}{类别:易错题}{考点:一次函数的图象}{考点:一次函数的性质}{考点:两直线相交或平行问题}{考点:一次函数与一元一次不等式}{题目}24.(2019年江苏南京)如图,山顶有一塔AB ,塔高33m .计划在塔的正下方沿直线CD 开通穿山隧道EF .从与E 点相距80m 的C 处测得A ,B 的仰角分别为27°、22°,从与F 点相距50m 的D 处测得A 的仰角为45°.求隧道EF 的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.){解析}本题考查了三角函数的实际应用.{答案}解:如图5,延长AB 交CD 于点H ,则AH ⊥CD .第24题图图4在Rt △ACH 中,∠ACH =27°,∵tan27°=AH CH , ∴AH =CH ·tan27°.在Rt △BCH 中,∠BCH =22°,∵tan22°=BH CH, ∴BH =CH ·tan22°.∵AB =AH -BH ,∴CH ·tan27°-CH ·tan22°=33.解得CH ≈300.∴AH =CH ·tan27°≈153.在Rt △ADH 中,∠D =45°,∵tan45°=AH HD, ∴HD =AH =153.∴EF =CD -CE -FD =CH +HD -CE -FD=300+150-80-50=323.答:隧道EF 的长度约为323m .{分值}12{章节:[1-28-2-2]非特殊角}{难度:3-中等难度}{类别:常考题}{考点:解直角三角形的应用-仰角}{题目}25.(2019年江苏南京)某地计划对矩形广场进行扩建改造.如图,原广场长50m ,宽40m ,要求扩充后的矩形广场长与宽的比为3∶2.扩充区域的扩建费用每平方米30元,扩建后和扩充区域都铺设地砖.铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?{解析}本题考查了一元二次方程的应用.{答案}解:设扩充后广场的长为3x m ,则宽为2x m .根据题意,得3x ·2x ·100+30(3x ·2x -50×40)=642000.解得x 1=30,x 2=-30(不合题意,舍去).所以3x =90,2x =60.答:扩充后广场的长和宽应分别为90m 和60m .{分值}8{章节:[1-21-4]实际问题与一元二次方程}{难度:3-中等难度}{类别:常考题}{考点:一元二次方程的应用—面积问题}{题目}26.(2019年江苏南京)如图①,在Rt △ABC 中,∠C =90°,AC =3,BC =4.求作菱形DEFG,第25题图图5使点D在边AC上,点E,F在边AB上,点G在边BC上.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.{解析}本题考查了菱形的判定、相似三角形、分类讨论思想等.第(2)问,思考点D在CA边上由点C向点D移动时,以点D为圆心,DG长为半径画弧,弧与AB 边是否有交点、有几个交点;当DG增大时,还要考虑点F是否在AB边上.{答案}证明:(1)∵DG=DE,DE=EF,∴DG=EF.∵DG∥EF,∴四边形DEFG是平行四边形.又DE=EF,∴□DEFG是菱形.(2)当0≤CD<3637或43<CD≤3时,菱形的个数为0;当CD=3637或98<CD≤43时,菱形的个数为1;当3637<CD≤98时,菱形的个数为2.[解析]AB5,AB边上的高CM=AB ACBCg=125.设DG=x,则由△CDG∽△CAB可知CD=35 x.①如图6(1),当DE⊥AB时,由相似三角形的性质,得DG AB =CNCM,即5x=125125x-.解得x=6037.此时CD=3637.②如图6(2),当DG=DE2=DA=x时,由△CDG∽△CAB,得CD CA =DGAB,即33x-=5x.解得x=158.此时CD=98.BCAGFDE图6(1)MNF)CGD图6(3)C1GD122图6(2)C图①小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.CA BGFDE图②第26题图③如图6(3),当点F 与点B 重合时,DG =DE =EB =x .由△ADE ∽△ACB ,得DE CB =AE AB ,即4x =55x . 解得x =209.此时CD =43. 综上所述,当0≤CD <3637或43<CD ≤3时,菱形的个数为0;当CD =3637或98<CD ≤43时,菱形的个数为1;当3637<CD ≤98时,菱形的个数为2. {分值}9{章节:[1-27-1-1]相似三角形的判定}{难度:5-高难度}{类别:思想方法}{类别:高度原创}{考点:线段尺规作图}{考点:菱形的判定}{考点:由平行判定相似}{题目}27.(2019年江苏南京)[概念认识]城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点A (x 1,y 1和B (x 2,y 2),用以下方式定义两点间的距离:d (A ,B )=|x 1-x 2|+|y 1-y 2|.[数学理解](1)①已知点A (-2,1),则d (O ,A )=______;②函数y =-2x +4(0≤x ≤2)的图象如图①所示,B 是图象上一点,d (O ,B )=3,则点B 的坐标是______.(2)函数y =4x(x ≥0)的图象如图②所示.求证:该函数的图象上不存在点C ,使d (O ,C )=3. (3)函数y =x 2-5x +7(x ≥0)的图象如图③所示,D 是图象上一点,求d (O ,D )的最小值及对应的点D 的坐标.[问题解决](4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)第27题图 图④第27题图 M N{解析}本题考查了一次函数、反比例函数、二次函数的图象和性质;一元二次方程根的判别式;转化思想;数学应用意识等.{答案}解:(1)①3;②(1,2).[解析]①d (O ,A )=|-2-0|+|1-0|=2+1=3;②设点B 的坐标为(t ,-2t +4)(0≤t ≤2),则|t -0|+|-2t +4-0|=3,即|t |+2|t -2|=3.∵0≤t ≤2,∴t -2<0.∴t +2(2-t )=3.解得t =1.此时-2t +4=2.∴点B 的坐标为(1,2).(2)假设函数y =4x(x >0)的图象上存在点C (x ,y ),使d (O ,C )=3. 根据题意,得|x -0|+|4x-0|=3. 因为x >0,所以4x >0,|x -0|+|4x -0|=x +4x. 所以x +4x=3. 方程两边乘x ,得x 2+4=3x .整理,得x 2-3x +4=0.因为a =1,b =-3,c =4,b 2-4ac =(-3)2-4×1×4=-7<0,所以方程x 2-3x +4=0无实数根.所以函数y =4x(x >0)的图象上不存在点C ,使d (O ,C )=3. (3)设D (x ,y ).根据题意,得d (O ,D )=|x -0|+|x 2-5x +7-0|=|x |+|x 2-5x +7|.因为x 2-5x +7=(x -52)2+34,又x ≥0, 所以d (O ,D )=x +x 2-5x +7=x 2-4x +7=(x -2)2+3.所以当x =2时,d (O ,D )有最小值3,此时点D 的坐标是(2,1).(4)如图5,以M 为原点,MN 所在直线为x 轴建立平面直角坐标系xOy .将函数y =-x 的图象沿y 轴正方向平移,直到与景观湖边界所在曲线有交点时停止.设交点为E ,过点E 作EH ⊥MN ,垂足为H .修建方案是:先沿MN 方向修建到H 处,再沿HE 方向修建到E 处.理由:设过点E 的直线l 1与x 轴相交于点F .在景观湖边界所在曲线上任取一点P ,过点P 作直线l 2∥l 1,l 2与x 轴相交于点G .因为∠EFH =45°,所以EH =FH ,d (O ,E )=OH +EH =OF .同理d (O ,P )=OG .因为OG ≥OF ,所以d (O ,P )≥d (O ,E ).因此,上述方案修建的道路最短.{分值}11{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质}{章节:[1-26-1]反比例函数的图像和性质}{难度:5-高难度}{类别:高度原创}{类别:发现探究}{类别:新定义}{考点:平面直角坐标系}{考点:根的判别式}{考点:一次函数的图象}图7{考点:反比例函数的图象}{考点:二次函数y=ax2+bx+c的性质} {考点:几何综合}。

2019南京数学中考真题(解析版)

2019南京数学中考真题(解析版)

2019南京数学中考真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共6小题)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.76.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(共10小题)7.﹣2的相反数是;的倒数是.8.计算﹣的结果是.9.分解因式(a﹣b)2+4ab的结果是.10.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(共11小题)17.计算(x+y)(x2﹣xy+y2)18.解方程:﹣1=.19.如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.23.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019南京数学中考真题(解析版)参考答案一、单选题(共6小题)1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【知识点】科学记数法—表示较大的数2.【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【知识点】幂的乘方与积的乘方3.【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【知识点】立方根、算术平方根、平方根4.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【知识点】实数与数轴5.【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【知识点】估算无理数的大小6.【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【知识点】几何变换的类型二、填空题(共10小题)7.【分析】根据只有符号不同的两个数互为相反数,乘积为的两个数互为倒数,可得答案.【解答】解:﹣2的相反数是2;的倒数是2,故答案为:2,2.【知识点】相反数、倒数8.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2﹣2=0.故答案为0.【知识点】二次根式的混合运算、分母有理化9.【分析】直接利用多项式乘法去括号,进而合并同类项,再利用公式法分解因式得出答案.【解答】解:(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2.故答案为:(a+b)2.【知识点】因式分解-运用公式法10.【分析】把x=2+代入方程得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.【知识点】一元二次方程的解11.【分析】两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.【解答】解:∵∠1+∠3=180°,∴a∥b(同旁内角互补,两直线平).故答案为:∠1+∠3=180°.【知识点】平行线的判定12.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解答】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.【知识点】勾股定理的应用、几何体的展开图13.【分析】用总人数乘以样本中视力不低于4.8的人数占被调查人数的比例即可得.【解答】解:估计该区12000名初中学生视力不低于4.8的人数是12000×=7200(人),故答案为:7200.【知识点】用样本估计总体14.【分析】连接AB,根据切线的性质得到P A=PB,根据等腰三角形的性质得到∠P AB=∠PBA=(180°﹣102°)=39°,由圆内接四边形的性质得到∠DAB+∠C=180°,于是得到结论.【解答】解:连接AB,∵P A、PB是⊙O的切线,∴P A=PB,∵∠P=102°,∴∠P AB=∠PBA=(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°,故答案为:219°.【知识点】圆周角定理、切线的性质15.【分析】证出∠ACD=∠DCB=∠B,证明△ACD∽△ABC,得出=,即可得出结果.【解答】解:∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A=∠A,∴△ACD∽△ABC,∴=,∴AC2=AD×AB=2×5=10,∴AC=.故答案为:.【知识点】线段垂直平分线的性质、相似三角形的判定与性质、勾股定理16.【分析】作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.【解答】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.【知识点】三角形三边关系三、解答题(共11小题)17.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(x+y)(x2﹣xy+y2),=x3﹣x2y+xy2+x2y﹣xy2+y3,=x3+y3.故答案为:x3+y3.【知识点】多项式乘多项式18.【分析】方程两边都乘以最简公分母(x+1)(x﹣1)化为整式方程,然后解方程即可,最后进行检验.【解答】解:方程两边都乘以(x+1)(x﹣1)去分母得,x(x+1)﹣(x2﹣1)=3,即x2+x﹣x2+1=3,解得x=2检验:当x=2时,(x+1)(x﹣1)=(2+1)(2﹣1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.【知识点】解分式方程19.【分析】依据四边形DBCE是平行四边形,即可得出BD=CE,依据CE∥AD,即可得出∠A=∠ECF,∠ADF=∠E,即可判定△ADF≌△CEF.【解答】证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A=∠ECF,∠ADF=∠E,∴△ADF≌△CEF(ASA).【知识点】全等三角形的判定20.【分析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“方差等于差方的平均数”).【解答】解:(1)这5天的日最高气温和日最低气温的平均数分别是==24,==18,方差分别是==0.8,==8.8,∴<,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.【知识点】方差21.【分析】(1)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果.【解答】解:(1)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,∴甲同学随机选择两天,其中有一天是星期二的概率为=;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),∴乙同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:.【知识点】列表法与树状图法22.【分析】连接AC,由圆心角、弧、弦的关系得出=,进而得出=,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.【解答】证明:连接AC,∵AB=CD,∴=,∴+=+,即=,∴∠C=∠A,∴P A=PC.【知识点】圆心角、弧、弦的关系23.【分析】(1)解不等式﹣2x+2>x﹣3即可;(2)先计算出x=1对应的y2的函数值,然后根据x<1时,一次函数y1=kx+2(k为常数,k≠0)的图象在直线y2=x﹣3的上方确定k的范围.【解答】解:(1)k=﹣2时,y1=﹣2x+2,根据题意得﹣2x+2>x﹣3,解得x<;(2)当x=1时,y=x﹣3=﹣2,把(1,﹣2)代入y1=kx+2得k+2=﹣2,解得k=﹣4,当﹣4≤k<0时,y1>y2;当0<k≤1时,y1>y2.【知识点】一次函数的性质、一次函数与一元一次不等式24.【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.【知识点】解直角三角形的应用-仰角俯角问题25.【分析】设扩充后广场的长为3xm,宽为2xm,根据矩形的面积公式和总价=单价×数量列出方程并解答.【解答】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x﹣50×40)=642000解得x1=30,x2=﹣30(舍去).所以3x=90,2x=60,答:扩充后广场的长为90m,宽为60m.【知识点】一元二次方程的应用26.【分析】(1)根据邻边相等的平行四边形是菱形证明即可.(2)求出几种特殊位置的CD的值判断即可.【解答】(1)证明:∵DE=DG,EF=DE,∴DG=EF,∵DG∥EF,∴四边形DEFG是平行四边形,∵DG=DE,∴四边形DEFG是菱形.(2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x.在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB==5,则CD=x,AD=x,∵AD+CD=AC,∴+x=3,∴x=,∴CD=x=,观察图象可知:0≤CD<时,菱形的个数为0.如图2中,当四边形DAEG是菱形时,设菱形的边长为m.∵DG∥AB,∴=,∴=,解得m=,∴CD=3﹣=,如图3中,当四边形DEBG是菱形时,设菱形的边长为n.∵DG∥AB,∴=,∴=,∴n=,∴CG=4﹣=,∴CD==,观察图象可知:当0≤CD<或<CD≤3时,菱形的个数为0,当CD=或<CD≤时,菱形的个数为1,当<CD≤时,菱形的个数为2.【知识点】相似三角形的判定与性质、作图—复杂作图、菱形的判定27.【分析】(1)①根据定义可求出d(O,A)=|0+2|+|0﹣1|=2+1=3;②由两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|及点B是函数y=﹣2x+4的图象上的一点,可得出方程组,解方程组即可求出点B的坐标;(2)由条件知x>0,根据题意得,整理得x2﹣3x+4=0,由△<0可证得该函数的图象上不存在点C,使d(O,C)=3.(3)根据条件可得|x|+|x2﹣5x+7|,去绝对值后由二次函数的性质可求出最小值;(4)以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处,可由d(O,P)≥d(O,E)证明结论即可.【解答】解:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2﹣3x+4=0,∴△=b2﹣4ac=﹣7<0,∴方程x2﹣3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x﹣0|+|x2﹣5x+7﹣0|=|x|+|x2﹣5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2﹣5x+7|=x+x2﹣5x+7=x2﹣4x+7=(x﹣2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.【知识点】二次函数综合题。

2019年江苏省南京市中考数学试卷(真题卷)

2019年江苏省南京市中考数学试卷(真题卷)

2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算﹣的结果是.9.(2分)分解因式(a﹣b)2+4ab的结果是.10.(2分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.(2分)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)18.(7分)解方程:﹣1=.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m 的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.7【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

2019年江苏省南京市中考数学试卷

2019年江苏省南京市中考数学试卷

2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.(2分)下列整数中,与10最接近的是()A.4 B.5 C.6 D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算的结果是.9.(2分)分解因式(a﹣b)2+4ab的结果是.10.(2分)已知2是关于x的方程x2﹣4x+m=0的一个根,则m=.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整4.8的人数是.14.(2分)如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)18.(7分)解方程:1.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D 在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【解答】解:13000=1.3×104故选:B.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.5.(2分)下列整数中,与10最接近的是()A.4 B.5 C.6 D.7【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10最接近的是6.故选:C.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.二、填空题(本大题共10小题,每小题2分,共20分。

江苏省南京市2019年中考数学试卷

江苏省南京市2019年中考数学试卷

江苏省南京市2019年中考数学试卷一、单选题1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A. 0.13×105B. 1.3×104C. 13×103D. 130×102【答案】B2.计算(a2b)3的结果是()A. a2b3B. a5b3C. a6bD. a6b3【答案】 D3.面积为4的正方形的边长是()A. 4的平方根B. 4的算术平方根C. 4开平方的结果D. 4的立方根【答案】B4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A. B. C. D.【答案】A5.下列整数中,与10−√13最接近的是()A. 4B. 5C. 6D. 7【答案】C6.如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A. ①④B. ②③C. ②④D. ③④【答案】 D二、填空题7.﹣2的相反数是________;1的倒数是________.2【答案】2;2√28的结果是________.8.计算√7【答案】09.分解因式(a−b)2+4ab的结果是________.【答案】(a+b)210.已知x= 2+√3是关于x的方程x2−4x+m=0的一个根,则m=________.【答案】111.结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵________,∴a∥b.【答案】∠1+∠3=180°12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有________cm.【答案】513.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是________.【答案】720014.如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=________°.【答案】21915.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为________.【答案】√1016.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是________. 【答案】4<BC⩽83√3三、解答题17.计算(x+y)(x2−xy+y2).【答案】解:(x+y)(x2−xy+y2)=x3−x2y+xy2+x2y−xy2+y3=x3+y3.18.解方程xx−1−1=3x2−1.【答案】解:方程两边乘(x−1)(x+1),得x(x+1)−(x−1)(x+1)=3.解得x=2.检验:当x=2时,(x−1)(x+1)≠0.所以,原分式方程的解为x=2.19.如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证△ADF≌△CEF.【答案】证明:∵DE//BC,CE//AB,∴四边形DBCE是平行四边形.∴BD=CE.∵D是AB的中点,∴AD=DB.∴AD=CE.∵CE∥AB,∴∠A=∠ECF,∠ADF=∠E.∴△ADF≌△CEF20.如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大; (2)根据如图提供的信息,请再写出两个不同类型的结论.【答案】 (1)解:这5天的日最高气温和日最低气温的平均数分别是 x̅高=23+25+23+25+245=24,x̅低=21+22+15+15+175=18 .方差分别是s 高2=(23−24)2+(25−24)2+(23−24)2+(25−24)2+(24−24)25=0.8 , s 低2=(21−18)2+(22−18)2+(15−18)2+(15−18)2+(17−18)25=8.8 .由 s 高2<s 低2可知,这5天的日最低气温的波动较大(2)解:本题答案不唯一,例如,①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是 2°C 、 3°C 、 8°C 、 10°C 、 7°C ,可以看出雨天的日温差较小.②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动. (1)甲同学随机选择两天,其中有一天是星期二的概率是多少? (2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.【答案】 (1)解:画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个, ∴甲同学随机选择两天,其中有一天是星期二的概率为 612=12 ;(2)解:乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),∴乙同学随机选择连续的两天,其中有一天是星期二的概率是:2;3故答案为:2322.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证PA=PC.【答案】解:如图,连接AC.∵AB=CD,∴AB̂=CD̂.∴AB̂+BD̂=CD̂+DB̂,即AD̂=CB̂.∴∠C=∠A.∴PA=PC.23.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x−3.(1)当k=﹣2时,若y1>y2,求x的取值范围;(2)当x<1时,y1>y2.结合图像,直接写出k的取值范围.【答案】(1)解:当k=−2时,y1=−2x+2.根据题意,得−2x+2>x−3.解得x<53(2)解:当x=1时,y=x−3=−2,把(1,−2)代入y1=kx+2得k+2=−2,解得k=−4,当−4≤k<0时,y1>y2;当0<k≤1时,y1>y2.∴k的取值范围是:−4⩽k⩽1且k≠024.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51)【答案】解:如图,延长AB交CD于点H,则AH⊥CD.在Rt△ACH中,∠ACH=27°,∵tan27°=AH.CH∴AH=CH⋅tan27°.在Rt△BCH中,∠BCH=22°,∵tan22°=BH,CH∴BH=CH⋅tan22°.∵AB=AH−BH,∴CH⋅tan27°−CH⋅tan22°=33.∴CH≈300.∴AH=CH⋅tan27°≈153.在Rt△ADH中,∠D=45°,∵tan45°=AH,HD∴HD=AH=153.∴EF=CD−CE−FD=CH+HD−CE−FD=300+153−80−50=323.因此,隧道EF的长度约为323m.25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?【答案】解:设扩充后广场的长为3x m,宽为2x m.根据题意,得3x⋅2x⋅100+30(3x⋅2x−50×40)=642000.解得x1=30,x2=−30(不合题意,舍去).所以3x=90, 2x=60.答:扩充后广场的长和宽应分别为90m和60m26.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.(1)证明小明所作的四边形DEFG是菱形;(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【答案】(1)证明:∵DG=DE,DE=EF,∴DG=EF.又DG∥EF,∴四边形DEFG是平行四边形.又DE=EF,∴▱DEFG是菱形(2)解:如图1中,当四边形DEFG是正方形时,设正方形的边长为x. 在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB=√32+42=5,则CD=35x,AD=54x,∵AD+CD=AC,∴35x+ 54x=3,∴x=6037,∴CD=35x= 3637,观察图象可知:0≤CD<3637时,菱形的个数为0. 如图2中,当四边形DAEG是菱形时,设菱形的边长为m. ∵DG∥AB,∴CDCA =DGAB,,∴3−m3=m5,解得m=158,∴CD=3− 158=98,如图3中,当四边形DEBG 是菱形时,设菱形的边长为n. ∵DG ∥AB , ∴ CGCB =DGAB , ∴4−n 4=n5 ,∴n =209,∴CG =4 −209=169,∴CD = √(209)2−(169)2=43 ,观察图象可知:当 0⩽CD <3637 或 <43<CD ⩽3 时,菱形的个数为0; 当 CD =3637 或 98<CD ⩽43 时,菱形的个数为1; 当 3637<CD ⩽98 时,菱形的个数为2. 27.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点A( x 1 , y 1 )和B( x 2 , y 2 ),用以下方式定义两点间距离:d(A ,B)= |x 1−x 2| + |y 1−y 2| .(1)【数学理解】①已知点A(﹣2,1),则d(O ,A)=________;②函数 y =−2x +4 (0≤x≤2)的图像如图①所示,B 是图像上一点,d(O ,B)=3,则点B 的坐标是________.(2)函数 y =4x (x >0)的图像如图②所示,求证:该函数的图像上不存在点C ,使d(O ,C)=3.(3)函数y=x2−5x+7(x≥0)的图像如图③所示,D是图像上一点,求d(O,D)的最小值及对应的点D的坐标.(4)【问题解决】某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【答案】(1)3;(1,2)(2)解:假设函数y=4x(x>0)的图像上存在点C(x,y),使d(O,C)=3.根据题意,得|x−0|+|4x−0|=3.因为x>0,所以4x>0, |x−0|+|4x−0|=x+4x.所以x+4x=3.方程两边乘x,得x2+4=3x.整理,得x2−3x+4=0.因为a=1,b=−3,c=4,b2−4ac=(−3)2−4×1×4=−7<0,所以方程x2−3x+4=0无实数根.所以函数y=4x(x>0)的图像上不存在点C,使d(O,C)=3.第 11 页 共 11 页(3)解:设 D(x ,y) .根据题意,得 d(O ,D)=|x −0|+|x 2−5x +7−0|=|x|+|x 2−5x +7| .因为 x 2−5x +7=(x −52)2+34>0 ,又 x ⩾0 ,所以 d(O ,D)=|x|+|x 2−5x +7|=x +x 2−5x +7=x 2−4x +7=(x −2)2+3 .所以当 x =2 时, d(O ,D) 有最小值3,此时点 D 的坐标是 (2, 1) .(4)解:如图,以 M 为原点, MN 所在直线为 x 轴建立平面直角坐标系 xOy .将函数 y =−x 的图像沿 y 轴正方向平移.直到与景观湖边界所在曲线有交点时停止.设交点为 E ,过点 E 作 EH ⊥MN ,垂足为 H .修建方案是:先沿 MN 方向修建到 H 处,再沿 HE 方向修建到 E 处.理由:设过点 E 的直线 l 1 与 x 轴相交于点 F .在景观湖边界所在曲线上任取一点 P ,过点 P 作直线 l 2∥l 1,l 2 与 x 轴相交于点 G .因为 ∠EFH =45° ,所以 EH =HF ,d(O ,E)=OH +EH =OF .同理 d(O ,P)=OG .因为 OG ⩾OF ,所以 d(O ,P)⩾d(O ,E) .因此,上述方案修建的道路最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.)1. 2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.面积为4的正方形的边长是()A.4的平方根 B.4的算术平方根C.4开平方的结果 D.4的立方根4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.下列整数中,与10﹣最接近的是()A.4 B.5 C.6 D.76.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

)7.﹣2的相反数是;的倒数是.8.计算﹣的结果是.9.分解因式(a﹣b)2+4ab的结果是.10.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102 98 80 93 127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分)17.计算(x+y)(x2﹣xy+y2)18.解方程:﹣1=.19.如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.23.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m 的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF 的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.7【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是2;的倒数是2.【分析】根据只有符号不同的两个数互为相反数,乘积为的两个数互为倒数,可得答案.【解答】解:﹣2的相反数是2;的倒数是2,故答案为:2,2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.(2分)计算﹣的结果是0.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2﹣2=0.故答案为0.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.(2分)分解因式(a﹣b)2+4ab的结果是(a+b)2.【分析】直接利用多项式乘法去括号,进而合并同类项,再利用公式法分解因式得出答案.【解答】解:(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+9b2=(a+b)2.故答案为:(a+b)2.【点评】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.10.(2分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=1.【分析】把x=2+代入方程得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵∠1+∠3=180°,∴a∥b.【分析】两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.【解答】解:∵∠1+∠3=180°,∴a∥b(同旁内角互补,两直线平).故答案为:∠1+∠3=180°.【点评】本题主要考查了平行的判定,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解答】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.【点评】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是7200.【分析】用总人数乘以样本中视力不低于4.8的人数占被调查人数的比例即可得.【解答】解:估计该区12000名初中学生视力不低于4.8的人数是12000×=7200(人),故答案为:7200.【点评】本题主要考查用样本估计总体,用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.(2分)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=219°.【分析】连接AB,根据切线的性质得到P A=PB,根据等腰三角形的性质得到∠P AB=∠PBA=(180°﹣102°)=39°,由圆内接四边形的性质得到∠DAB+∠C=180°,于是得到结论.【解答】解:连接AB,∵P A、PB是⊙O的切线,∴P A=PB,∵∠P=102°,∴∠P AB=∠PBA=(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°,故答案为:219°.【点评】本题考查了切线的性质,圆内接四边形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.【分析】作AM⊥BC于E,由角平分线的性质得出==,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出==,NE=x,BE=BN+EN=x,CE=CN﹣EN=x,再由勾股定理得出方程,解方程即可得出结果.【解答】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴==,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴==,∴NE=x,∴BE=BN+EN=x,CE=CN﹣EN=x,由勾股定理得:AE2=AB2﹣BE2=AC2﹣CE2,即52﹣(x)2=(2x)2﹣(x)2,解得:x=,∴AC=2x=;故答案为:.【点评】本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是4<BC≤.【分析】作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC =∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.【解答】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.【点评】本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质;作出△ABC的外接圆进行推理计算是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(x+y)(x2﹣xy+y2),=x3﹣x2y+xy2+x2y﹣xy2+y3,=x3+y3.故答案为:x3+y3.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.18.(7分)解方程:﹣1=.【分析】方程两边都乘以最简公分母(x+1)(x﹣1)化为整式方程,然后解方程即可,最后进行检验.【解答】解:方程两边都乘以(x+1)(x﹣1)去分母得,x(x+1)﹣(x2﹣1)=3,即x2+x﹣x2+1=3,解得x=2检验:当x=2时,(x+1)(x﹣1)=(2+1)(2﹣1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.【点评】本题考查了分式方程的求解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.【分析】依据四边形DBCE是平行四边形,即可得出BD=CE,依据CE∥AD,即可得出∠A=∠ECF,∠ADF=∠E,即可判定△ADF≌△CEF.【解答】证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A=∠ECF,∠ADF=∠E,∴△ADF≌△CEF(ASA).【点评】本题主要考查了平行四边形的判定与性质以及全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.【分析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“方差等于差方的平均数”).【解答】解:(1)这5天的日最高气温和日最低气温的平均数分别是==24,==18,方差分别是==0.8,==8.8,∴<,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.【点评】本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.【分析】(1)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果.【解答】解:(1)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,∴甲同学随机选择两天,其中有一天是星期二的概率为=;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),∴乙同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.【分析】连接AC,由圆心角、弧、弦的关系得出=,进而得出=,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.【解答】证明:连接AC,∵AB=CD,∴=,∴+=+,即=,∴∠C=∠A,∴P A=PC.【点评】本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.【分析】(1)解不等式﹣2x+2>x﹣3即可;(2)先计算出x=1对应的y2的函数值,然后根据x<1时,一次函数y1=kx+2(k为常数,k≠0)的图象在直线y2=x﹣3的上方确定k的范围.【解答】解:(1)k=﹣2时,y1=﹣2x+2,根据题意得﹣2x+2>x﹣3,解得x<;(2)当x=1时,y=x﹣3=﹣2,把(1,﹣2)代入y1=kx+2得k+2=﹣2,解得k=﹣4,当﹣4≤k<0时,y1>y2;当0<k≤1时,y1>y2.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m 的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?【分析】设扩充后广场的长为3xm,宽为2xm,根据矩形的面积公式和总价=单价×数量列出方程并解答.【解答】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x﹣50×40)=642000解得x1=30,x2=﹣30(舍去).所以3x=90,2x=60,答:扩充后广场的长为90m,宽为60m.【点评】题考查了列二元一次方程解实际问题的运用,总价=单价×数量的运用,解答时找准题目中的数量关系是关键.26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【分析】(1)根据邻边相等的四边形是菱形证明即可.(2)求出几种特殊位置的CD的值判断即可.【解答】(1)证明:∵DE=DG,EF=DE,∴DG=EF,∵DG∥EF,∴四边形DEFG是平行四边形,∵DG=DE,∴四边形DEFG是菱形.(2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x.在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB==5,则CD=x,AD=x,∵AD+CD=AC,∴x=,∴CD=x=,观察图象可知:0≤CD<时,菱形的个数为0.如图2中,当四边形DAEG是菱形时,设菱形的边长为m.∵DG∥AB,∴=,∴=,解得m=,∴CD=3﹣=,如图3中,当四边形DEBG是菱形时,设菱形的边长为n.∵DG∥AB,∴=,∴n=,∴CG=4﹣=,∴CD==,观察图象可知:当0≤CD<或<CD≤时,菱形的个数为0,当CD=或<CD≤时,菱形的个数为1,当<CD≤时,菱形的个数为2.【点评】本题考查相似三角形的判定和性质,菱形的判定和性质,作图﹣复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=3.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是(1,2).(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【分析】(1)①根据定义可求出d(O,A)=|0+2|+|0﹣1|=2+1=3;②由两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|及点B是函数y=﹣2x+4的图象上的一点,可得出方程组,解方程组即可求出点B的坐标;(2)由条件知x>0,根据题意得,整理得x2﹣3x+4=0,由△<0可证得该函数的图象上不存在点C,使d(O,C)=3.(3)根据条件可得|x|+|x2﹣5x+7|,去绝对值后由二次函数的性质可求出最小值;(4)以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E 作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处,可由d(O,P)≥d(O,E)证明结论即可.【解答】解:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2﹣3x+4=0,∴△=b2﹣4ac=﹣7<0,∴方程x2﹣3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x﹣0|+|x2﹣5x+7﹣0|=|x|+|x2﹣5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2﹣5x+7|=x+x2﹣5x+7=x2﹣4x+7=(x﹣2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.【点评】考查了二次函数的综合题,涉及的知识点有新定义,解方程(组),二次函数的性质等.。

相关文档
最新文档