高三数学平面向量及其应用测试题

合集下载

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析1.已知,向量与垂直,则实数的值为()A.B.3C.D.【答案】A【解析】因为所以又向量与垂直,所以,,即,解得:故选A.【考点】向量的数量积的应用.2.已知向量=(5,-3),=(-6,4),则=( )A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)【答案】D【解析】根据向量坐标运算法则,=(5,-3)+(-6,4)=(-1,1),选D【考点】平面向量坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知,,如果∥,则实数的值等于()A.B.C.D.【答案】D【解析】由题意,即.【考点】向量平行的充要条件.5.若平面向量满足,垂直于轴,,则____【答案】或【解析】设,所以,因为垂直于轴;所以,解得,或.故答案为或【考点】向量的坐标表示;向量垂直.6.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.7.已知=(3,4),=(2,3),=(5,0),则||•()=()A.(12,3)B.(7,3)C.(35,15)D.(6,2)【答案】C【解析】∵=(3,4),=(2,3),=(5,0),∴||=5,+=(7,3),∴||•()=5(7,3)=(35,15)故选C.8.已知向量=(2,1),=10,|+|=,则||=()A.B.C.5D.25【答案】C【解析】∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.9.若向量,则( )A.(1,1)B.(-1,-1)C.(3,7)D.(-3,-7)【答案】B【解析】解:所以选B.【考点】向量的运算.10.已知平面向量,,那么等于()A.B.C.D.【答案】B【解析】,所以,故选B.【考点】平面向量的坐标运算11.已知外接圆的半径为1,圆心为O.若,且,则等于()A.B.C.D.3【答案】D.【解析】因为,所以,所以,为的中点,故是直角三角形,角为直角.又,故有为正三角形,,,与的夹角为,由数量积公式可得选D.【考点】平面向量的线性运算,平面向量的数量积、模及夹角.12.在复平面内为坐标原点,复数与分别对应向量和,则()A.B.C.D.【答案】B【解析】由复数的几何意义知,,,则,所以,故选B.【考点】1.复数的几何意义;2.平面向量的坐标运算;3.平面向量的模13.已知平面向量,,则向量()A.B.C.D.【答案】B【解析】,故选B.【考点】平面向量的坐标运算14.在平面直角坐标平面上,,且与在直线上的射影长度相等,直线的倾斜角为锐角,则的斜率为 ( )A.B.C.D.【答案】C【解析】设直线l的斜率为k,得直线l的方向向量为,再设与的夹角分别为θ1、θ2,则,因为与在直线上的射影长度相等,所以·=·,即|1+4k|=|-3+k|解之得,k=,故选C.【考点】1.向量在几何中的应用;2.平面向量的坐标运算;3.直线的斜率.15.已知向量a=(1,1),b=(2,x).若a+b与4b-2a平行,则实数x的值是( )A.-2B.0C.1D.2【答案】D【解析】由已知得,,因为与平行,则有,解得.【考点】向量共线的坐标表示16.在中,,,,则的大小为()A.B.C.D.【答案】B【解析】,,即,而,,解得,,,,,,故选B.【考点】1.平面向量的坐标运算;2.平面向量的数量积17.设平面向量,,则 ( )A.B.C.D.【答案】D【解析】因为,所以.【考点】1.平面向量的坐标运算;2.平面向量的模18.已知正边长等于,点在其外接圆上运动,则的最大值是 .【答案】【解析】可以考虑建立如图所示的平面直角坐标系,则,所以,显然,所以的最大值是.【考点】平面向量综合运算.19.已知向量,,且//,则等于 ( )A.B.2C.D.【答案】A【解析】因为,向量,,且//,所以,,解得,,即,故选A.【考点】平面向量的坐标运算,共线向量,向量的模.20.已知,且与共线,则y= .【答案】【解析】因为与共线,所以,解得.【考点】平面向量共线的坐标运算21.已知A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量在方向上的投影为__________.【答案】【解析】,,向量在方向上的投影为==.【考点】1、向量的坐标表示;2、向量的投影.22.设平面向量,,则 .【答案】.【解析】,,,.【考点】1.平面向量的坐标运算;2.平面向量的模的计算23.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且 u//v,则实数x的值是______.【答案】【解析】由,,又,所以,即.【考点】向量的坐标运算.24.已知平面向量,,且,则向量( )A.B.C.D.【答案】A【解析】先用向量的乘积展开,再代入求的坐标,即.【考点】向量的乘积运算.25.已知向量,下列结论中不正确的是()A.B.C.D.【答案】A【解析】根据题意,由于,那么可知,故选项B 正确,对于C,由于成立,根据向量的几何意义可知,垂直向量的和向量与差向量长度相等,故D成立,因此选A.【考点】向量的概念和垂直的运用点评:解决的关键是利用向量的数量积以及向量的共线来得到结论,属于基础题。

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析1.已知向量a=(2,1),b=(0,-1).若(a+λb)⊥a,则实数λ=.【答案】5【解析】因为(a+λb)⊥a,所以【考点】向量数量积2.在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆C上,且AB=2,则的最大值是.【答案】8【解析】设AB中点为M,则.因为圆C:,AB=2,所以,因此的最大值是8.【考点】直线与圆位置关系3.设P是△ABC所在平面内的一点,,则()A.B.C.D.【答案】B【解析】∵,∴P为AC的中点,∴.【考点】向量的运算.4.已知、是两个单位向量,那么下列结论正确的是()A.=B.•=0C.•<1D.2=2【答案】D【解析】A不正确,、的方向不确定.B不正确,当、垂直时,.C不正确,尽管、的长度都是1,但它们的方向不确定,,当两向量的方向相同时,.由于单位向量的模都等于1,但它们的方向不确定,故一定有,从而2=2,故D正确.故选 D.5.设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.8【答案】B【解析】∵A,B,C三点共线,∴,共线,∴存在实数λ,使得可解得,b=2﹣2a∵a>0,b>0∴0<a<1∴==当a=时,取最小值为4故选:B.6.已知直角△ABC中,AB=2,AC=1,D为斜边BC的中点,则向量在上的投影为。

【答案】【解析】在上的投影为.【考点】向量的射影问题.7.在△ABC所在的平面上有一点P满足++=,则△PBC与△ABC的面积之比是________.【答案】【解析】因为++=,所以+++=0,即=2,所以点P是CA边上的靠近A点的一个三等分点,故.8.如图,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,动点P在以点C为圆心,且与直线BD相切的圆上或圆内移动,设=λ+μ (λ,μ∈R),则λ+μ的取值范围是 ().A.(1,2)B.(0,3)C.[1,2]D.[1,2)【答案】C【解析】以A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则B(2,0),D(0,1),C(1,1),设P(x,y),则(x,y)=λ(0,1)+μ(2,0)=(2μ,λ),即令z=λ+μ=+y.由圆C与直线BD相切可得圆C的半径为.由于直线y=-+z与圆C有公共点,所以,解得1≤z≤2.9.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.10.已知点,点,向量,若,则实数的值为()A.5B.6C.7D.8【答案】C【解析】由已知得,又,所以存在实数,使,即,解得,所以正确答案为C.【考点】平行向量11.已知向量a,若向量与垂直,则的值为()A.B.7C.D.【答案】A【解析】由已知得,,又这两个向量垂直,所以,解得,所以正确答案为A.【考点】向量的运算与垂直关系12.直线与抛物线:交于两点,点是抛物线准线上的一点,记,其中为抛物线的顶点.(1)当与平行时,________;(2)给出下列命题:①,不是等边三角形;②且,使得与垂直;③无论点在准线上如何运动,总成立.其中,所有正确命题的序号是___.【答案】;①②③【解析】由抛物线方程知,焦点,准线为。

高三数学平面向量的几何运算试题答案及解析

高三数学平面向量的几何运算试题答案及解析

高三数学平面向量的几何运算试题答案及解析1.在平面直角坐标中,的三个顶点A、B、C,下列命题正确的个数是()(1)平面内点G满足,则G是的重心;(2)平面内点M满足,点M是的内心;(3)平面内点P满足,则点P在边BC的垂线上;A.0B.1C.2D.3【答案】B【解析】对(2),M为的外心,故(2)错.对(3),,所以点P在的平分线上,故(3)错.易得(1)正确,故选B.【考点】三角形与向量.2.如图所示,、、是圆上的三点,的延长线与线段交于圆内一点,若,则()A.B.C.D.【答案】C【解析】由于、、三点共线,设,则,由于、、三点共线,且点在圆内,点在圆上,与方向相反,则存在,使得,因此,,所以,选C.【考点】1.共线的平面向量;2.平面向量的线性表示3. [2014·牡丹江模拟]设e1,e2是两个不共线的向量,且a=e1+λe2与b=-e2-e1共线,则实数λ=()A.-1B.3C.-D.【答案】D【解析】∵a=e1+λe2与b=-e2-e1共线,∴存在实数t,使得b=ta,即-e2-e1=t(e1+λe2),- e2-e1=te1+tλe2,由题意,e1,e2不共线,∴t=-1,tλ=-,即λ=,故选D.4.在平行四边形中,,,为中点,若,则的长为.【答案】6【解析】根据题意可得:,则,化简得:,解得:.【考点】向量的运算5.若向量=(1,2),=(1,﹣1),则2+与的夹角等于()A.﹣B.C.D.【答案】C【解析】∵=(1,2),=(1,﹣1),∴2+=(3,3)=(0,3)则(2+)•()=9|2|=,||=3∴cosθ==∴θ=故选C6.在△ABC中,过中线AD中点E任作一条直线分别交边AB、AC于M、N两点,设=x,=y (xy≠0),则4x+y的最小值是________.【答案】【解析】因为D是BC的中点,E是AD的中点,所以== ( +).又=,=,所以=+.因为M、E、N三点共线,所以=1,所以4x+y=(4x+y)7.已知=(2,0),,的夹角为60°,则.【答案】【解析】.【考点】向量的基本运算.8.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.9.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则=()A.B.C.D.【答案】D【解析】在方格纸上作出,如下图,则容易看出,故选D.【考点】1.向量的加法运算.10.在中,已知是边上的一点,若,,则()A.B.C.D.【答案】A【解析】,即,解得,,故选A.【考点】平面向量的线性表示11.设点为三角形ABC的外心,则.【答案】【解析】出边AB,AC的垂线,利用向量的运算将用表示,利用向量的数量积的几何意义将向量的数量积表示成一个向量与另个向量的投影的乘积.解:过O作OS⊥AB,OT⊥AC 垂足分别为S,T 则S,T分别是AB,AC的中点,则=【考点】向量的运算法则点评:本题考查向量的运算法则、向量数量积的几何意义.12.的外接圆的圆心为,半径为,且,则向量在上的射影的数量为()A.B.C.D.【答案】A【解析】解:由题意因为△ABC的外接圆的圆心为O,半径为2,OA + AB + AC =" 0" 且| OA |="|" AB |,对于 OA + AB + AC =" 0" ⇔ OB =" CA" ,所以可以得到图形为:因为 CA =" OB" ,所以四边形ABOC为平行四边形,又由于| OA |="|" AB |,所以三角形OAB为正三角形且边长为2,所以四边形ABOC为边长为2且角ABO为60°的菱形,所以向量 CA 在 CB 方向上的投影为:| CA |cos< CA , CB >=2×cos30°= 故选:A13.设向量,若a//b,则实数t的值是_______.【答案】 9【解析】考查平面向量的坐标运算及共线性质。

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题1.在中,是边上的高,给出下列结论:①;②;③;其中结论正确的个数是()A.B.C.D.【答案】D【解析】∵,∴,①;②取BC中点M,,而,∴;③,,所以;所以正确的个数为3个.【考点】向量的运算.2.设平面向量,,函数.(1)当时,求函数的取值范围;(2)当,且时,求的值.【答案】(1)(2).【解析】(1).当时,,则,,所以的取值范围是.(2)由,得,因为,所以,得,.3.已知、是两个单位向量,那么下列结论正确的是()A.=B.•=0C.•<1D.2=2【答案】D【解析】A不正确,、的方向不确定.B不正确,当、垂直时,.C不正确,尽管、的长度都是1,但它们的方向不确定,,当两向量的方向相同时,.由于单位向量的模都等于1,但它们的方向不确定,故一定有,从而2=2,故D正确.故选 D.4.设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.8【答案】B【解析】∵A,B,C三点共线,∴,共线,∴存在实数λ,使得可解得,b=2﹣2a∵a>0,b>0∴0<a<1∴==当a=时,取最小值为4故选:B.5.在Rt△ABC中,,,,则_____.【答案】2【解析】作,则,由题设可知是正三角形,所以.【考点】三角形与向量.6.在四边形ABCD中,=(1,2),=(-4,2),则该四边形的面积为()A.B.2C.5D.10【答案】C【解析】因为·=(1,2)·(-4,2)=1×(-4)+2×2=0,所以⊥,且||==,||==2,=||||=××2=5.故选C.所以S四边形ABCD7.已知点P为△ABC所在平面上的一点,且=+t,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()A.0<t<B.0<t<C.0<t<D.0<t<【答案】D【解析】如图,E,F分别为AB,BC的三等分点,由=+t可知,P点落在EF上,而=,∴点P在E点时,t=0,点P在F点时,t=.而P在△ABC的内部,∴0<t<.8.已知向量m,n满足m=(2,0),n=.在△ABC中,=2m+2n,=2m-6n,D为BC边的中点,则||等于().A.2B.4C.6D.8【答案】A【解析】由题意知,=(+)=2m-2n=(1,-).∴||=2.9.在平面四边形ABCD中,满足+=0,(-)·=0,则四边形ABCD是().A.矩形B.正方形C.菱形D.梯形【答案】C【解析】因为+=0,所以=-=,所以四边形ABCD是平行四边形,又(-)·=·=0,所以四边形的对角线互相垂直,所以四边形ABCD是菱形.10.已知点,则与向量同方向的单位向量是( )A.B.C.D.【答案】C【解析】与向量同方向的单位向量是.【考点】单位向量的求法.11.在直角梯形中,,,,,点在线段上,若,则的取值范围是()A.B.C.D.【答案】C【解析】由题意可求得。

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析1.已知向量,,则()A.B.C.D.【答案】B【解析】由题意得,故选B.【考点】本题考查平面向量的坐标运算,属于容易题.2.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足=2,则·(+)=________.【答案】【解析】由=2知,P为△ABC的重心,所以+=2,则·(+)=2·=2||||cos 0°=2×××1=.3.连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,则的概率是()A.B.C.D.【答案】C【解析】由题意知本题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=(m,n)与=(1,﹣1)不可能同向.∴夹角θ≠0.∵θ∈(0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.故选C.4.已知向量,,若与垂直,则实数 ( )A.B.C.D.【答案】A【解析】由题意,因为与垂直,则,解得.【考点】平面向量垂直的充要条件.5.在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为______.【答案】5【解析】建立如图所示的直角坐标系,设DC=m,P(0,t),t∈[0,m],由题意可知,A(2,0),B(1,m),=(2,-t),=(1,m-t),+3=(5,3m-4t),|+3|=≥5,当且仅当t=m时取等号,即|+3|的最小值是5.6.如图,在△ABC中,O为BC的中点,若AB=1,AC=3,〈,〉=60°,则||=________.【答案】【解析】因为〈,〉=60°,所以·=||||·cos 60°=3×=,又=(+),所以=(+)2=,即2= (1+3+9)=,所以||=.7.设P是△ABC所在平面内的一点,,则()A.B.C.D.【答案】B【解析】,故选B.【考点】向量的加减法,加法运算要首尾相接,减法运算要同起点.8.已知A、B、C是直线l上的三点,向量满足,则函数的表达式为.【答案】【解析】这题涉及到向量的一个性质(课本上有一个习题有类似的结论),不在直线上,,则三点共线.利用这个结论本题就有,两边对求导数得:,因此,从而,所以.【考点】三点共线的性质,导数.9.已知向量.(1)若,求;(2)求的最大值.【答案】(1)(2)【解析】(1)由向量垂直的充要条件:,这样就可得到关于的函数 ,化简得的值,结合题中所给的范围,不难确定出的的值; (2)由已知的坐标,可求出的坐标,在根据向量求模的公式由出题中的模的表达式,由三角函数的图象和性质,分析得由的范围求出的范围,进而得出的范围,即可求出的最大值.试题解析:解(1)若,则 3分即而,所以 6分(2) 12分当时,的最大值为 14分【考点】1.向量的运算;2.三角函数的图象和性质10.已知向量,的夹角为,且,则向量在向量方向上的投影是________.【解析】依题意,设,,如图,则,,由于,是直角三角形,且,故向量在向量方向上的投影是0.【考点】平面向量的夹角、模,一个向量在另一个向量上的投影.11.如图,已知圆:,为圆的内接正三角形,为边的中点,当正绕圆心转动,同时点在边上运动时,的最大值是。

高三数学平面向量试题

高三数学平面向量试题

高三数学平面向量试题1.若向量的夹角为,且.则与的夹角为()A.B.C.D.【答案】A【解析】设向量与的夹角等于,因为向量的夹角为,且,所以,,,,.故选A.【考点】平面向量数量积的运算.2.已知向量满足,,,则与夹角是()A.B.C.D.【答案】A【解析】由题设可得,即,所以,即,代入可得,应选答案A。

点睛:本题旨在考查平面向量及平行位置关系等有关知识的综合运用,检测等价化归与转化的数学思想运算求解能力和分析问题解决问题的能力。

3.平面向量不共线,且两两所成的角相等,若,则______.【答案】【解析】因向量不共线,故可设三个向量的始点为,则由题设三个向量两两相等可知每两个向量的夹角均为,则,所以,即,应填答案。

4.平面向量满足,在上的投影为,则的模为()A.2B.4C.8D.16【答案】B【解析】由题意,所以,即,由于,所以,应选答案B。

5.已知平面向量,,则的值是()A.1B.5C.D.【答案】B【解析】由题意可知,则,应选答案B。

6.已知O是三角形ABC所在平面内的一点,D为BC边中点,且,那么( ) A.B.C.D.【答案】A【解析】根据题意可知,,即,所以有,故选B.【考点】向量的运算.7.若的内角的余弦值为,则()A.B.C.D.【答案】B【解析】由题意可得,故,应选答案B。

8.对于非零向量,,下列命题中正确的是A.或B.在方向上的投影为C.D.【答案】C【解析】因为,所以A,D是错的,由投影的定义可知当方向相反时为—,所以B是错的,答案选C.【考点】向量的数量积运算与几何意义9.已知向量, 若, 则实数等于()A.B.C.或D.0【答案】C【解析】.【考点】向量平行的坐标运算.10.已知的外接圆半径为1,圆心为点,且,则的值为()A.B.C.D.【答案】C【解析】因为,所以,所以,又因为,所以,同理可求,所以,故选C.【考点】1.向量的线性运算;2.向量数量积的几何运算.【名师】本题考查向量的线性运算、向量数量积的几何运算,属中档题;平面向量的数量积定义涉及到了两向量的夹角与模,是高考的常考内容,题型多为选择填空,主要命题角度为:1.求两向量的夹角;2.两向量垂直的应用;3.已知数量积求模;4.知模求模;5.知模求数量积.。

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析1.平面向量,,(),且与的夹角等于与的夹角,则 .【答案】2.【解析】由题意得:,选D.法二、由于OA,OB关于直线对称,故点C必在直线上,由此可得【考点】向量的夹角及向量的坐标运算.2.平面向量,,(),且与的夹角等于与的夹角,则()A.B.C.D.【答案】 D.【解析】由题意得:,选D.法二、由于OA,OB关于直线对称,故点C必在直线上,由此可得【考点】向量的夹角及向量的坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知向量a=(cos ,sin ),b=(-sin ,-cos ),其中x∈[,π].(1)若|a+b|=,求x的值;(2)函数f(x)=a·b+|a+b|2,若c>f(x)恒成立,求实数c的取值范围.【答案】(1)x=或x=(2)(5,+∞)【解析】(1)∵a+b=(cos -sin ,sin -cos ),∴|a+b|==,由|a+b|=,得=,即sin 2x=-.∵x∈[,π],∴π≤2x≤2π.因此2x=π+或2x=2π-,即x=或x=.(2)∵a·b=-cos sin -sin cos =-sin 2x,∴f(x)=a·b+|c+b|2=2-3sin 2x,∵π≤2x≤2π,∴-1≤sin 2x≤0,∴2≤f(x)=2-3sin 2x≤5,∴[f(x)]max=5.又c>f(x)恒成立,因此c>[f(x)]max ,则c>5.∴实数c的取值范围为(5,+∞).5.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.6.若向量a=(x-1,2),b=(4,y)相互垂直,则9x+3y的最小值为________.【答案】6【解析】由a⊥b得,4(x-1)+2y=0,即2x+y=2,∴9x+3y=32x+3y≥2=2=6.当且仅当“32x=3y”时,即y=2x时,上式取“=”.此时x=,y=1.7.若向量,满足条件,则x=()A.6B.5C.4D.3【答案】A【解析】∵,,∴8=(8,8)﹣(2,5)=(6,3)∵∴12+3x=30∴x=6故选A8.四边形是平行四边形,,,则= ()A.B.C.D.【答案】(A)【解析】因为.故选(A).【考点】1.向量的加减.2.向量的相等.9.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数()A.B.C.D.【答案】C【解析】设,将直线方程代人,整理得,,所以,,.由于点在圆上,所以,,解得,,故选.【考点】直线与圆的位置关系,平面向量的坐标运算.10.已知向量=(,),=(,),若,则=.【答案】【解析】由已知.,解得,.【考点】平面向量的坐标运算.11.已知向量若,则m=______.【答案】-3【解析】根据向量加法的坐标运算得,,因为,故,故填-3【考点】向量加法向量共线12.设向量,满足,,且与的方向相反,则的坐标为【答案】【解析】设,∵与的方向相反,故又∵,则,解得,,故答案为.【考点】共线向量,平面向量的坐标运算.13.已知向量a=(1,m),b=(m,2),若a∥b,则实数m等于()A.-B.C.-或D.0【答案】C【解析】由a∥b,得m2-2=0,解得m=±.故选C.14.若向量a=(2,3),b=(x,-9),且a∥b,则实数x=________.【答案】-6【解析】a∥b,所以2×(-9)-3x=0,解得x=-6.15.若向量=(2,3),=(4,7),则=________.【答案】(-2,-4)【解析】=+=-=(-2,-4).16.在平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则=________.【答案】(-3,-5)【解析】由题意,得=-=-=(-)-=-2=(1,3)-2(2,4)=(-3,-5).17.在△ABC中,已知a、b、c分别为内角A、B、C所对的边,S为△ABC的面积.若向量p =(4,a2+b2-c2),q=(1,S)满足p∥q,则C=________.【答案】【解析】由p=(4,a2+b2-c2),q=(1,S)且p∥q,得4S=a2+b2-c2,即2abcosC=4S=2absinC,所以tanC=1.又0<C<π,所以C=.18.已知a=(sin α,sin β),b=(cos(α-β),-1),c=(cos(α+β),2),α,β≠kπ+(k∈Z).(1)若b∥c,求tan α·tan β的值;(2)求a2+b·c的值.【答案】(1)-3(2)-1【解析】(1)若b∥c,则2cos(α-β)+cos(α+β)=0,∴3cos αcos β+sin αsin β=0,∵α,β≠kπ+ (k∈Z),∴tan αtan β=-3.(2)a2+b·c=sin2α+sin2β+cos(α-β)cos(α+β)-2=sin2α+sin2β+cos2αcos2β-sin2αsin2β-2=sin2α+cos2αsin2β+cos2αcos2β-2=sin2α+cos2α-2=1-2=-1.19.已知点A(-1,5)和向量a=(2,3),若=3a,则点B的坐标为().A.(7,4)B.(7,14)C.(5,4)D.(5,14)【答案】D【解析】设B(x,y),由=3a,得解得20.已知点点是线段的等分点,则等于.【答案】【解析】由题设,,,,……,,…… , .所以,,,,……,,…… , ,= = ,=所以答案是:【考点】1、等差数列的前项和;2、向量的坐标运算;3、向量的模.21.如图,已知圆,四边形ABCD为圆的内接正方形,E,F分别为边AB,AD的中点,当正方形ABCD绕圆心转动时,的取值范围是()A.B.C.D.【答案】B【解析】因为圆的半径为2,所以正方形的边长为.因为.所以==.所以.故选B.【考点】1.向量的和差.2.向量的数量积.3.由未知线段转化为已知线段.4.化归思想.22. .若向量,则A.B.C.D.【答案】B【解析】【考点】向量的坐标运算.23.若向量,且与的夹角为则 .【答案】(-3,-6)【解析】由与的夹角为知,【考点】向量数量积的性质和向量的坐标运算.24.向量,,则()A.B.C.D.【答案】A【解析】,故选A.【考点】平面向量的减法运算25.在平面直角坐标系中,已知向量若,则x=( ) A.-2B.-4C.-3D.-1【答案】D【解析】∵,∴,则,所以,又,∴,.【考点】1、向量的坐标运算;2、向量共线的坐标表示.26.设、是平面内两个不平行的向量,若与平行,则实数 .【答案】【解析】不妨假设,则,因为,所以.【考点】平面向量的坐标运算.27.已知外接圆的半径为1,圆心为O.若,且,则等于()A.B.C.D.3【答案】D.【解析】因为,所以,所以,为的中点,故是直角三角形,角为直角.又,故有为正三角形,,,与的夹角为,由数量积公式可得选D.【考点】平面向量的线性运算,平面向量的数量积、模及夹角.28.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.29.已知向量,,且,则等于()A.B.C.D.【答案】A【解析】,,且与共线,所以,故选A.【考点】1.共线向量;2.平面向量的坐标运算30.已知向量a=(1,1),b=(2,x).若a+b与4b-2a平行,则实数x的值是( )A.-2B.0C.1D.2【答案】D【解析】由已知得,,因为与平行,则有,解得.【考点】向量共线的坐标表示31.已知.(1)若,求的值;(2)若,且,求的值.【答案】(1);(2)7.【解析】(1)利用向量数量积的坐标表示,可转化为三角函数,然后利用利用三角函数的相关公式对其变形,则可求解;(2)利用向量数量积的坐标表示,可转化为角的三角函数,然后利用角之间的关系,使用两角和与差的三角函数相关公式可求解.试题解析:(1)解:(1)∵∴(2)∵∴,,==7【考点】平面向量的数量积、两角和与差的三角函数、同角三角函数关系式.32.设平面向量,,则 ( )A.B.C.D.【答案】D【解析】因为,所以.【考点】1.平面向量的坐标运算;2.平面向量的模33.已知向量=(cosθ,sinθ),向量=(,-1),则|2-|的最大值与最小值的和是()A.4B.6C.4D.16【答案】C【解析】因为|2-|,故其最大值为,最小值为,它们的和为,选C.【考点】平面向量坐标运算、平面向量的模、两角差的正弦定理.34.已知平面向量,,且,则向量()A.B.C.D.【答案】A【解析】,,且,,解得,,故,故选A.【考点】1.平面向量垂直;2.平面向量的坐标运算35.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】建立如图所示坐标系,不妨设,则,所以,,由与向量的夹角大于,得,即,故答案为.【考点】平面向量的坐标运算,平面向量的数量积、夹角、模.36.已知,,,为坐标原点.(Ⅰ),求的值;;(Ⅱ)若,且,求与的夹角.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求、的坐标,,利用三角函数公式化简求得;(Ⅱ)利用已知条件求,确定的值,在由求解.试题解析:(Ⅰ),,,∴,.(Ⅱ)∵,,,,即,,又,,又,,,∴.【考点】平面向量的坐标运算,向量的夹角与模.37.已知向量,向量,则的最大值和最小值分别为()A.B.C.D.【答案】B【解析】,所以;.【考点】本小题主要考查平面向量坐标运算,求向量的模.38.已知向量,,,若∥,则=___ ..【答案】5【解析】因为,向量,,,所以,,又∥,所以,,故答案为5.【考点】平面向量的坐标运算39.已知平面向量,,如果向量与平行,那么与的数量积等于( )A.B.C.D.【答案】D【解析】,,∴,.∵与平行,∴,解得.∴.∴.故选D.【考点】向量的概念及其与运算,考查向量平行,考查两个向量的数量积.40.已知向量,,若,则=()A.-4B.-3C.-2D.-1【答案】B【解析】由.故选B.【考点】向量的坐标运算41.已知的三个内角所对的边分别为a,b,c,向量,,且.(Ⅰ)求角的大小;(Ⅱ)若向量,,试求的取值范围【答案】(Ⅰ) . (Ⅱ).【解析】(Ⅰ)由题意得,即. 3分由余弦定理得,. 6(Ⅱ)∵, 7∴.∵,∴,∴.∴,故. 12分【考点】平面向量的坐标运算,和差倍半的三角函数公式,正弦型函数图象和性质,余弦定理的应用。

高中数学必修二 专题03 平面向量的应用(课时训练)(含答案)

高中数学必修二  专题03 平面向量的应用(课时训练)(含答案)

专题03 平面向量的应用A 组 基础巩固1.(2020·山东高三期中)(多选题)下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同【答案】AD【解析】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据相等向量的概念知,D 正确.故选:AD2. (2020·北京高二学业考试)(多选题)给出下面四个命题,其中是真命题的是( ) A .0AB BA B .AB BC AC C .AB AC BC += D .00AB +=【答案】AB 【解析】因为0AB BA AB AB ,正确;AB BC AC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误; 0,AB AB +=,所以00AB +=错误.故选:A B .3.最早发现勾股定理的人应是我国西周时期的数学家商高,根据记载,商高曾经和周公讨论过“勾3股4弦5”的问题,我国的《九章算术》也有记载.所以,商高比毕达哥拉斯早500多年发现勾股定理.现有ABC 满足“勾3股4弦5”,如图所示,其中4AB =,D 为弦BC 上一点(不含端点),且ABD 满足勾股定理,则()CB CA AD -⋅=( )A.14425B.25144C.16925D.25169【答案】A【解析】由题意求出125AD =2212144()()525AD CB CA AD AB AD AB AD AD AB -==⋅===,故选A. 4.(多选题)ABC ∆是边长为2的等边三角形,已知向量,a b 满足2AB a =,2AC a b =+,则下列结论中正确的是( )A .a 为单位向量B .b 为单位向量C .a b ⊥D .(4)a b BC +⊥【答案】AD【解析】∵等边三角形ABC 的边长为2,2AB a =,∴||2||2AB a ==,∴||1a =,故A 正确;∵2AC AB BC a BC =+=+,∴BC b =,∴||2b =,故B 错误;由于2,AB a BC b ==,∴a 与b 的夹角为120°,故C 错误; 又∵21(4)4||412402a b BC a b b ⎛⎫+⋅=⋅+=⨯⨯⨯-+= ⎪⎝⎭, ∴(4)a b BC +⊥,故D 正确.5. (2020·北京高二学业考试)已知平面向量满足 ,且与夹角为60°,那么等于( )A .B .C .D .1【答案】C【解析】因为,故选:C. 6.已知O 为ABC ∆内部一点,且5()2AB OB OC =+,则AOB BOC S S ∆∆=( ) A. 1 B. 54 C. 2 D.52 ,a b 1a b ==a b a b ⋅14131211cos 1122a b a b θ⋅=⋅⋅=⨯⨯=【答案】:D.【解析】由题意,5()2OB OA OB OC -=+,即2350OA OB OC ++=。

高三数学平面向量及其应用测试题百度文库

高三数学平面向量及其应用测试题百度文库

一、多选题1.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π2.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 3.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+4.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C5.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+6.在ABC 中,AB =1AC =,6B π=,则角A 的可能取值为( )A .6πB .3π C .23π D .2π 7.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为28.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++ D .AB AC BD CD -+-9.有下列说法,其中错误的说法为( ).A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ=10.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=B .a b ⊥C .()4a b b +⊥ D .1a b ⋅=-11.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC =C .AB DC >D .BC AD ∥12.对于ABC ∆,有如下判断,其中正确的判断是( ) A .若sin 2sin 2A B =,则ABC ∆为等腰三角形 B .若A B >,则sin sin A B >C .若8a =,10c =,60B ︒=,则符合条件的ABC ∆有两个D .若222sin sin sin A B C +<,则ABC ∆是钝角三角形 13.已知ABC ∆中,角A,B,C 的对边分别为a ,b ,c ,且满足,33B a c b π=+=,则ac=( ) A .2B .3C .12 D .1314.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反 C .若a b a b +=-,则a 与b 有相等的模 D .若a b a b -=-,则a 与b 方向相同 15.下列命题中正确的是( )A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-B .对于实数,m n 和向量a ,恒有()m n a ma na -=-C .若()ma mb m =∈R ,则有a b =D .若(,,0)ma na m n a =∈≠R ,则m n =二、平面向量及其应用选择题16.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4B .3C .-4D .517.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若lg lg lg sin a c B -==-,且0,2B π⎛⎫∈ ⎪⎝⎭,则ABC 的形状是( )A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形18.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭19.ABC 中,内角A ,B ,C 所对的边分别为a b c ,,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则ABC 一定为直角三角形;④若3B π=,2a =,且该三角形有两解,则b 的范围是)+∞.以上结论中正确的有( )A .1个B .2个C .3个D .4个20.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心B .垂心C .外心D .内心21.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定D .若||b →确定,则θ唯一确定22.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b cA B B===ABC ∆的面积为( )A .2B .4CD .23.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m24.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )A .a 与b 的夹角为αβ-B .a b ⋅的最大值为1C .2a b +≤D .()()a b a b +⊥-25.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +26.题目文件丢失!27.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形 B .等腰三角形C .等腰直角三角形D .直角三角形28.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形29.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为 A 5B 10C .4D .530.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8331.如图,在ABC 中,14AD AB →→=,12AE AC →→=,BE 和CD 相交于点F ,则向量AF →等于( )A .1277AB AC →→+B .1377AB AC →→+C .121414AB AC →→+ D .131414AB AC →→+ 32.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形D .不确定33.设ABC ∆中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( )A .1233AB AC -+ B .2133AB AC - C .1233AB AC -D .2133AB AC -+34.题目文件丢失!35.如图,在ABC 中,60,23,3C BC AC ︒===,点D 在边BC 上,且27sin BAD ∠=,则CD 等于( )A .233B .33C .332D .33【参考答案】***试卷处理标记,请不要删除一、多选题 1.CD对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解 解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a ba b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.2.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD.本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】由正弦定理可得sin sin a c A C =,所以sin sin c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=,∴ sin sin 2c C A a ==,而a c <,∴ A C <, ∴566C ππ<<, 故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.3.ABD 【分析】 A.根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.4.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 5.AC【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的;根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.6.AD 【分析】由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以.故选:AD 【点睛】 本题考查余弦解析:AD 【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可. 【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅,即2132BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π. 故选:AD 【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.7.CD 【分析】对于A ,利用平面向量的数量积运算判断;对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(解析:CD 【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为2a b b⋅=,错误;对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12= (2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD.【点睛】 本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.8.BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项:,选项不正确;对于选项: ,选项正确;对于选项:,选项不正确;对于选项:选项正确.故选:解析:BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确;对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确;对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.故选:BD【点睛】本题主要考查了向量的线性运算,属于基础题. 9.AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当时,与不一定共线,故A 错误;对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确;对于选项C ,两个非零向量解析:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确; 对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.10.CD【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案.【详解】分析知,,与的夹角是.由,故B 错误,D 正确;由,所以,故A 错误; 由,所以,故C 正确.故选:CD 【点睛】 解析:CD【分析】 分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案.【详解】 分析知1a =,2=b ,a 与b 的夹角是120︒.由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;由()22221243a b a a b b +=+⋅+=-+=,所以3a b +=,故A 错误; 由()()2144440a b b a b b +⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确. 故选:CD【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.11.BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:与显然方向不相同,故不是相等向量,故错误;与表示等腰梯形两腰的长度,所以,故正确;向量无法比较大小,只能比较向量模的大小,故解析:BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误; AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.12.BD【分析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可.【详解】在中,对于A ,若,则或,当A =解析:BD【分析】对于A ,根据三角函数的倍角公式进行判断;对于B ,根据正弦定理即可判断证明;对于C ,利用余弦定理即可得解;对于D ,根据正弦定理去判断即可.【详解】在ABC ∆中,对于A ,若sin 2sin 2A B =,则22A B =或22A B π+=,当A =B 时,△ABC 为等腰三角形;当2A B π+=时,△ABC 为直角三角形,故A 不正确,对于B ,若A B >,则a b >,由正弦定理得sin sin a b A B=,即sin sin A B >成立.故B 正确;对于C ,由余弦定理可得:b C 错误; 对于D ,若222sin sin sin A B C +<,由正弦定理得222a b c +<,∴222cos 02a b c C ab+-=<,∴C 为钝角,∴ABC ∆是钝角三角形,故D 正确; 综上,正确的判断为选项B 和D .故选:BD .【点睛】本题只有考查了正弦定理,余弦定理,三角函数的二倍角公式在解三角形中的综合应用,考查了转化思想,属于中档题.13.AC【分析】将两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】∵,∴①,由余弦定理可得,②,联立①②,可得,即,解得或.故选:AC.【点睛】本题考查余弦定理的应解析:AC【分析】将a c +=两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】∵,3B a c π=+=,∴2222()23a c a c ac b +=++=①,由余弦定理可得,2222cos 3a c ac b π+-=②,联立①②,可得222520a ac c -+=,即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 解得2a c =或12a c =. 故选:AC.【点睛】 本题考查余弦定理的应用,考查计算能力,是基础题.14.ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有.当同向时解析:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.15.ABD解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确.对解析:ABD【详解】解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:()m a b ma mb -=-,故A 正确.对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确. 对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确.故选:ABD .【点睛】本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.二、平面向量及其应用选择题16.C【分析】 先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影.【详解】 对等式AB AC AB AC +=-两边平方得,222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥, ()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,设向量BC 与CA 的夹角为θ,所以,BC 在CA 方向上的投影为16cos 44BC CA BC CA BC BC BC CA CA θ⋅⋅-⋅=⋅===-⋅, 故选C .本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题.17.C【分析】化简条件可得sin a B c ==,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】lg lg lg sin a c B -==-,sin 2a B c ∴==.0,2B π⎛⎫∈ ⎪⎝⎭, 4B π∴=.由正弦定理,得sin sin 2a A c C ==,3sin cos sin 422C A C C C π⎫⎛⎫∴==-=+⎪ ⎪⎪⎝⎭⎭, 化简得cos 0C =.()0,C π∈,2C π∴=, 则4A B C ππ=--=, ∴ABC 是等腰直角三角形.故选:C.【点睛】本题主要考查了正弦定理,三角恒等变换,属于中档题.18.C【解析】【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.19.B【分析】由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误.【详解】①由正弦定理及大边对大角可知①正确;②可得A B =或2A B π+=,ABC 是等腰三角形或直角三角形,所以②错误;③由正弦定理可得sin cos sin cos sin A B B A C -=,结合()sin sin sin cos sin cos C A B A B B A =+=+可知cos sin 0=A B ,因为sin 0B ≠,所以cos 0A =,因为0A π<<,所以2A π=,因此③正确;④由正弦定理sin sin a b A B =得sin sin sin a B b A A==, 因为三角形有两解,所以2,332A B A πππ>>=≠所以sin A ⎫∈⎪⎪⎝⎭,即)b ∈,故④错误. 故选:B【点睛】 本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形技巧,属于中档题.20.B【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心.【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-=即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即有,,PA CB PB CA PC AB ⊥⊥⊥,则点P 为三角形ABC 的垂心.故选:B.【点睛】本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 21.B【分析】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a a θ⋅==时,222min 244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案. 【详解】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈, 所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1, 所以2||b ta -的最小值也为1,即222min 244()()14a b a b f t a-⋅==,222||cos 1b b θ-=, 所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题.22.A【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积.【详解】由正弦定理可知2sin sin sin a b c r A B C ===已知sin cos sin a b c A B B===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC ,即等腰直角三角形的斜边长为所以122ABC S =⨯=. 故选:A【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 23.D【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】 15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC 302sin 45203sin120BC 3tan 30203203ABBC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题. 24.D【分析】由向量夹角的范围可判断A 选项的正误;计算出a b ⋅,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算()()a b a b +⋅-的值可判断D 选项的正误.综合可得出结论.【详解】()cos ,sin a αα=,()cos ,sin b ββ=,则2cos 1a α==,同理可得1b =,a 与b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈.对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且()k k Z αβπ-≠∈,A 选项错误;对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,()cos cos 1,1a b a b θθ⋅=⋅=∈-,B 选项错误;对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误;对于D 选项,()()22220a b a b a b a b +⋅-=-=-=,所以,()()a b a b +⊥-,D 选项正确.故选:D.【点睛】本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题.25.D【分析】根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==,所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 26.无27.D【分析】先根据向量减法与向量数量积化简得边之间关系,再判断三角形形状.【详解】因为()()()222BC BA AC BC BA BC BA BC BA AC +⋅=+⋅-=-=,所以222a c b -=,即ABC 是直角三角形,选D.【点睛】判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用πA B C ++=这个结论.28.D【分析】由已知22:tan :tan a b A B =,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断.【详解】∵22:tan :tan a b A B =, 由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A AB B B B B B AB===, ∵sin sin B 0A ≠, ∴sin cos sin cos A B B A=, ∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈, ∴22A B =或22A B π+=,∴A B =或2A B π+=,即三角形为等腰或直角三角形,故选D .【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.29.B【分析】先根据向量的模将||+||m n n +转化为关于||n 的函数,再利用导数求极值,研究单调性,进而得最大值.【详解】 ()22224419||=1||3m m n m nn m n =+∴+=+⋅+=,,,22n m n +⋅=,()2222=52-m n m m n n n ∴+=++⋅,25||+||m n n n n ∴+=-+,令()(0x x f x xn =<≤=,则()'1f x=,令()'0f x =,得x =∴当0x<<()'0f x >x <<()'0f x <, ∴当x =时, ()f x 取得最大值f =⎝⎭,故选B. 【点睛】向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 30.C【分析】作出图形,先推导出212 AM ABAB⋅=,同理得出212AM AC AC⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值.【详解】如下图所示,取线段AB的中点E,连接ME,则AM AE EM=+且EM AB⊥,()212AM AB AE EM AB AE AB EM AB AB∴⋅=+⋅=⋅+⋅=,同理可得212AM AC AC⋅=,86cos6024AB AC⋅=⨯⨯=,由221212AM AB ABAM AC AC⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC ABAB AC ACλμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29,因此,52743431293λμ+=⨯+⨯=.故选:C.【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题. 31.B【分析】过点F分别作//FM AB交AC于点M,作//FN AC交AB于点N,由平行线得出三角形相似,得出线段成比例,结合14AD AB→→=,12AE AC→→=,证出37AM AC→→=和17AN AB→→=,最后由平面向量基本定理和向量的加法法则,即可得AB→和AC→表示AF→.解:过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N , 已知14AD AB →→=,12AE AC →→=, //FN AC ,则MFE ABE △△和MCF ACD △△,则:MF ME AB AE =且MF MC AD AC=, 即:2MF ME AB AC =且14MF MC AC AB =,所以124MC MF ME AB AC AC ==, 则:8MC ME =,所以37AM AC =, 解得:37AM AC →→=, 同理//FM AB ,NBF ABE △△和NFD ACD △△,则:NF NB AE AB =且NF ND AC AD=, 即:12NF NB AB AC =且14NF ND AC AB =,所以142NB NF ND AC AB AB ==, 则:8NB ND =,即()8AB AN AD AN -=-,所以184AB AN AB AN ⎛⎫-=-⎪⎝⎭,即28AB AN AB AN -=-, 得:17AN AB =, 解得:17AN AB →→=, 四边形AMFN 是平行四边形,∴由向量加法法则,得AF AN AM →→→=+,所以1377AF AB AC →→→=+. 故选:B.本题考查平面向量的线性运算、向量的加法法则和平面向量的基本定理,考查运算能力. 32.B【分析】根据向量运算可知三角形中中线与垂线重合,可知三角形为等腰三角形,即可确定三角形形状.【详解】因为AB AC BA BC →→→→⋅=⋅,所以0AB AC BC →→→⎛⎫⋅+= ⎪⎝⎭, 即0AB CA CB →→→⎛⎫⋅+= ⎪⎝⎭, 所以在ABC 中,AB 与AB 边上的中线垂直,则CA CB →→=, 同理0BC AC AB →→→⎛⎫⋅+= ⎪⎝⎭,AC AB →→=, 所以AC AB CB →→→==,ABC 是等边三角形.故选:B【点睛】 本题主要考查了向量的数量积,向量垂直,考查了运算能力,属于中档题. 33.A【分析】作出图形,利用AB 、AC 表示AO ,然后利用平面向量减法的三角形法则可得出OC AC AO =-可得出结果.【详解】如下图所示:D 为BC 的中点,则()1122AD AB BD AB BC AB AC AB =+=+=+-1122AB AC =+, 2AO OD =,211333AO AD AB AC ∴==+, 11123333OC AC AO AC AB AC AB AC ⎛⎫∴=-=-+=-+ ⎪⎝⎭,【点睛】本题考查利用基底表示向量,考查了平面向量减法和加法三角形法则的应用,考查计算能力,属于中等题.34.无35.A【分析】首先根据余弦定理求AB,再判断ABC的内角,并在ABD△和ADC中,分别用正弦定理表示AD,建立方程求DC的值.【详解】AB=3==,222cos2AB BC ACBAB BC+-∴===⋅又因为角B是三角形的内角,所以6Bπ=,90BAC∴∠=,sin BAD∠=,cos7BAD∴∠==,sin cos7DAC BAD∴∠=∠=,在ABD△中,由正弦定理可得sinsinBD BADBAD⋅=∠,在ADC中,由正弦定理可得sinsinDC CADDAC⋅=∠,()17DC DC⨯=,解得:DC=.故选:A【点睛】本题考查正余弦定理解三角形,重点考查数形结合,转化与化归,推理能力,属于中档题型.。

高三数学平面向量高考题选_word

高三数学平面向量高考题选_word

2010-2014年高考数学试题汇编 平面向量1.ABC V 中,点D 在AB 上,CD 平方ACB ∠.若CB a =uu r ,CA b =uu r ,1a =,2b =,则CD =u u u r(A )1233a b +(B )2133a b + (C )3455a b + (D )4355a b + 2.平面上,,O A B 三点不共线,设,OA a OB b ==,则OAB ∆的面积等于(A 222()a b a b -⋅ (B 222()a b a b +⋅(C 222()a b a b -⋅ (D 222()a b a b +⋅3.已知向量a ,b 满足0,1,2,a b a b ∙===,则2a b -= A. 0B. C. 4 D. 84.设点M 是线段BC 的中点,点A 在直线BC 外,216,BC AB AC AB AC =∣+∣=∣-∣,则AM ∣∣= (A )8 (B )4 (C ) 2 (D )15.如图,在ΔABC 中,AD AB ⊥,3BC =BD ,1AD=,则AC AD ⋅=(A)(B(C(D 6.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为(A) 4-3-+4-+ (D)3-+7.设点M 是线段BC 的中点,点A 在直线BC 外,, AB AC AB AC +=-,则AM = (A )8 (B )4 (C )2 (D )18.在Rt ABC ∆中,C ∠=90°AC=4,则AB AC ⋅uu u r uu u r等于A 、-16B 、-8C 、8D 、169.已知ABC ∆和点M 满足0MA MB MC --→--→--→+=+.若存在实数m 使得AB AC AM m --→--→--→+=成立,则m= A .2 B .3 C .4 D .5 10.如图,正六边形ABCDEF 中,BA CD EF ++= A .0B .BEC .ADD .CF11.已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2 BCD .113.若a ,b ,c 均为单位向量,且0=⋅b a ,0)()(≤-⋅-c b c a ,则||c b a -+的最大值为 (A )12-(B )1(C )2(D )214.已知在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。

历年高三数学高考考点之平面向量的线性问题必会题型及答案

历年高三数学高考考点之平面向量的线性问题必会题型及答案

历年高三数学高考考点之<平面向量的线性问题>必会题型及答案体验高考1.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.2.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m 等于( ) A.-8 B.-6 C.6 D.8 答案 D解析 由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8,故选D.3.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A.4B.-4C.94D.-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t m ·n +|n |2=0, ∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4,故选B.4.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________. 答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.高考必会题型题型一 平面向量的线性运算及应用例1 (1)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 (2)已知在△ABC 中,D 是AB 边上的一点,若AD →=2DB →, CD →=13CA →+λCB →,则λ=_____.答案 (1)D (2)23解析 (1)设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. ∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝ ⎛⎭⎪⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝ ⎛⎭⎪⎫-13,0. (2)因为AD →=2DB →,CD →=13CA →+λCB →,所以CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23.点评 平面向量的线性运算应注意三点 (1)三角形法则和平行四边形法则的运用条件.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(3)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=m a ,CQ →=n b ,CG ∩PQ =H ,CG →=2CH →,则1m +1n=________.答案 (1)A (2)6解析 (1)根据向量的基本定理可得, AD →=AC →+CD →=AC →+(ED →-EC →) =AC →+(2AC →-22BC →)=AC →+2AC →-22(AC →-AB →)=⎝ ⎛⎭⎪⎫1+22·AC →+22AB →, 所以λ=22,k =1+22, 所以λ+k =1+ 2.故选A.(2)由GA →+GB →+GC →=0,知点G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG →=13CD →=16(CA→+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n =6.题型二 平面向量的坐标运算例2 (1)已知点A (-3,0),B (0,3),点O 为坐标原点,点C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.答案 1解析 由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°,知∠xOC =150°,∴tan 150°=3-3λ,即-33=-33λ,∴λ=1.(2)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),求实数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解 ①由题意得(3,2)=m (-1,2)+n (4,1),∴⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.②a +k c =(3+4k ,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0,∴k =-1613.③设d =(x ,y ),则d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧4x -4-2y -1=0,x -42+y -12=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d =(3,-1)或d =(5,3).点评 (1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (a ≠0),则b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(3)向量的坐标运算主要是利用加法、减法、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 变式训练2 (1)如图所示,在△ABC 中,D 为AB 的中点,F 在线段CD 上,设AB →=a ,AC →=b ,AF →=x a +y b ,则1x +2y的最小值为( )A.8+2 2B.8C.6D.6+2 2(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 答案 (1)B (2)m ≠12解析 (1)因为点D 为AB 的中点,所以AB →=2AD →,因为AF →=x a +y b ,所以AF →=2xAD →+yAC →.因为点F 在线段CD 上,所以2x +y =1,又x ,y >0,所以1x +2y=(2x +y )⎝ ⎛⎭⎪⎫1x +2y =4+y x +4x y≥4+2y x ·4xy=8, 当且仅当y =2x =12时取等号,所以1x +2y的最小值为8.(2)因为OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),所以AB →=(3,1),BC →=(-m -1,-m ).由于点A 、B 、C 能构成三角形,所以AB →与BC →不共线,而当AB →与BC →共线时,有3-m -1=1-m ,解得m =12,故当点A 、B 、C 能构成三角形时,实数m 满足的条件是m ≠12.高考题型精练1.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a | D.|-λa |≥|λ|a答案 B解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.2.设点M 是△ABC 所在平面上的一点,且MB →+32MA →+32MC →=0,点D 是AC 的中点,则|MD →||BM →|的值为( )A.13B.12 C.1 D.2 答案 A解析 ∵D 是AC 的中点,延长MD 至E ,使得DE =MD , ∴四边形MAEC 为平行四边形,∴MD →=12ME →=12(MA →+MC →).∵MB →+32MA →+32MC →=0,∴MB →=-32(MA →+MC →)=-3MD →,∴|MD →||BM →|=|MD →||-3MD →|=13,故选A. 3.已知点A (-3,0),B (0,2),点O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →= λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.23答案 D解析 过点C 作CE ⊥x 轴于点E (图略). 由∠AOC =π4,知|OE |=|CE |=2,所以OC →=OE →+OB →=λOA →+OB →, 即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23.4.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( ) A.矩形 B.平行四边形 C.梯形 D.以上都不对 答案 C解析 由已知,得AD →=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →,故AD →∥BC →.又因为AB →与CD →不平行,所以四边形ABCD 是梯形.5.设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 答案 C解析 若a =(4,2),则|a |=25,且a ∥b 都成立; ∵a ∥b ,设a =λb =(2λ,λ),由|a |=25,知4λ2+λ2=20,∴λ2=4,∴λ=±2, ∴a =(4,2)或a =(-4,-2).因此“a =(4,2)”是“a ∥b ”成立的充分不必要条件.6.在四边形ABCD 中,AB ∥CD ,AB =3DC ,点E 为BC 的中点,则AE →等于( )A.23AB →+12AD →B.12AB →+23AD →C.56AB →+13AD →D.13AB →+56AD → 答案 A解析 BC →=BA →+AD →+DC →=-23AB →+AD →,AE →=AB →+BE →=AB →+12BC →=AB →+12⎝ ⎛⎭⎪⎫AD →-23AB →=23AB →+12AD →.7.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A.②③ B.①② C.③④ D.④⑤ 答案 A解析 ①方向不一定相同;④方向可能相反;⑤若b =0,则不对.8.在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)答案 12(5e 1+3e 2)解析 在矩形ABCD 中,因为点O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2).9.在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.答案 45解析 依题意得,AM →=AB →+BC →+CM →=AB →+BC →-14AB →=34AB →+BC →,AN →=AB →+BN →=AB →+12BC →.又AB →=λAM →+μAN →,于是有AB →=λ⎝ ⎛⎭⎪⎫34AB →+BC →+μ⎝⎛⎭⎪⎫AB →+12BC →=⎝ ⎛⎭⎪⎫34λ+μAB →+⎝⎛⎭⎪⎫λ+μ2BC →.又AB →与BC →不共线,因此有⎩⎪⎨⎪⎧34λ+μ=1,λ+μ2=0,由此解得λ=-45,μ=-2λ,所以λ+μ=-λ=45.10.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,如图所示,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,点O 是坐标原点,则|OA →|的最大值为________.答案 2解析 因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC 是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA →|取得最大值,且最大值为2|GA →|=2.11.设e 1,e 2是两个不共线的向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF →=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.(1)证明 由已知得BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB →=2e 1-8e 2,∴AB →=2BD →. 又∵AB →与BD →有公共点B , ∴A ,B ,D 三点共线.(2)解 由(1)可知BD →=e 1-4e 2, ∵BF →=3e 1-k e 2,且B ,D ,F 三点共线, ∴BF →=λBD →(λ∈R ), 即3e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ.解得k =12.12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线; (3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时,a 的值. (1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0. (2)证明 当t 1=1时, 由(1)知OM →=(4t 2,4t 2+2). ∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, 又∵AM →与AB →有公共点A ,∴不论t 2为何实数,A ,B ,M 三点共线.(3)解 当t 1=a 2时, OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →, ∴4t 2×4+(4t 2+2a 2)×4=0, ∴t 2=-14a 2,故OM →=(-a 2,a 2). |AB →|=42,点M 到直线AB :x -y +2=0的距离d =|-a 2-a 2+2|2=2|a 2-1|.∵S △ABM =12,∴12|AB |·d =12×42×2|a 2-1|=12, 解得a =±2, 故所求a 的值为±2.。

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析1.已知点为的外接圆的圆心,且,则的内角等于( ) A.B.C.D.【答案】A【解析】由得,所以四边形为菱形,因此,即.【考点】1.向量运算;2.三角形外心.2.已知是单位向量,.若向量满足()A.B.C.D.【答案】A;【解析】因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.3.已知向量,,则向量在上的正射影的数量为()A.B.C.D.【答案】D【解析】向量在上的正射影的数量为选D.【考点】向量正投影4.设向量,,则向量在向量上的投影为.【答案】-1【解析】由已知向量,,向量在向量上的投影为.【考点】向量的投影.5.已知向量,,若与垂直,则()A.B.C.2D.4【答案】C【解析】因为两向量垂直,所以,即,代入坐标运算:,解得:,所以.【考点】向量数量积的坐标运算6.已知向量满足,,.若对每一确定的,的最大值和最小值分别是,则对任意,的最小值是.【答案】【解析】设,则,设OA中点为D,则,因此四点A,D,B,C共圆,圆心为AB中点M,直径为AB,从而的最大值和最小值分别是因此【考点】向量几何意义7.已知向量满足,则在方向上的投影为.【答案】【解析】根据,求得,根据投影公式可得在方向上的投影为.【考点】向量在另一个向量方向上的投影.8.若O是△ABC所在平面内一点,且满足|-|=|+-2|,则△ABC一定是A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】B【解析】根据题意有,即,从而得到,所以三角形为直角三角形,故选B.【考点】向量的加减运算,向量垂直的条件,三角形形状的判断.9.已知、是不共线的向量,,那么三点共线的充要条件为()A.B.C.D.【答案】B【解析】因为三点共线,所以,所以,故选B.【考点】向量共线的充要条件.10.已知是内的一点,且,,若,和的面积分别为、、,则的最小值是()A.B.C.D.【答案】B【解析】利用向量的数量积的运算求得bc的值,利用三角形的面积公式求得x+y的值,进而把转化为利用基本不等式求得的最小值即可.因为,,所以故选B.【考点】平面向量;均值不等式11.设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,则a 与b的数量积等于()A.-B.-C.D.【答案】D【解析】由已知可得,因为与平行,所以可得,解得.即..故D正确.【考点】1向量共线;2数量积公式.12.在中,已知,,分别是边上的三等分点,则的值是()A.B.C.D.【答案】C【解析】因为、分别是边上的三等分点所以,所以又所以得所以故答案选【考点】1.向量的线性关系;2.向量的数量积.13.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F.设,记,则函数的值域是;当面积最大时,.【答案】,【解析】如图,作,交延长线于,则,易证得,所以设,则所以所以由题知,所以故的值域是因为,所以当面积最大时,,即则在中,所以【考点】1.向量的数量积;2.二次函数的最值.14.边长为2的正三角形内(包括三边)有点,,求的取值范围.【答案】.【解析】如下图所示,建立平面直角坐标系,∴,,,,,∴,即点P的轨迹为圆夹在三角形ABC内及其边界的一段圆弧,在中,有,又∵,即的取值范围是.【考点】平面向量数量积.【思路点睛】平面向量的综合题常与角度与长度结合在一起考查,在解题时运用向量的运算,数量积的几何意义,同时,需注意挖掘题目中尤其是几何图形中的隐含条件,常利用数形结合思想将问题等价转化为利用几何图形中的不等关系将问题简化,一般会与函数,不等式等几个知识点交汇,或利用平面向量的数量积解决其他数学问题是今后考试命题的趋势.15.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC的中点,点P在以A为圆心,AD为半径的圆弧上变动(如图所示).若,其中的取值范围是.【答案】【解析】建立如下图所示直角坐标系,则,,,,,所以,,又因为点在以为圆心、为半径的圆上,且在第一象限,所以点的坐标为,,所以,所以.,,由三角函数的性质可知,函数的值域为,所以的取值范围为.【考点】1.向量的坐标运算;2.圆的参数方程;3.三角函数的性质.【方法点睛】本题主要考查向量的坐标运算、圆的参数方程的应用、三角函数的性质、数形结合思想,属难题.平面向量的坐标运算主要是利用向量加、减、数乘运算的法则进行求解的,若已知有向线段两端点的坐标,应先求出向量的坐标,解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)求解进行,并注意方程思想与转化思想的应用.16.已知向量,,若与平行,则的值是 _.【答案】【解析】由题意与平行,则可得到【考点】共线向量17.在中,,D是边BC上一点,(1)求的值;(2)求的值【答案】(1)(2)【解析】(1)在中,已知三边求一角,故应用余弦定理:,解得,(2)因为,而,因此只需求边AB,这可由正弦定理解得:试题解析:在中,由余弦定理得:.把,,代入上式得.因为,所以.在中,由正弦定理得:.故.所以.【考点】正余弦定理【名师】1.正弦定理可以处理①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角.余弦定理可以处理①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.18.已知向量,其中,则向量的夹角是()A.B.C.D.【答案】D【解析】由于,则,即,则,则有,所以向量的夹角是.【考点】平面向量的数量积的运算.19.(2015秋•上海月考)已知||=2,||=1,的夹角为,则= .【答案】1【解析】代入向量数量级定义式计算.解:=||•||cos=2×1×=1.故答案为:1.【考点】平面向量数量积的运算.20.(2015•河南模拟)已知向量=(2,1),=(0,﹣1).若(+λ)⊥,则实数λ=.【答案】5【解析】本题先将向量坐标化,利用两向量垂直得到它们的数量积为零,求出λ的值,得到本题答案.解:∵向量=(2,1),=(0,﹣1),∴.∵(+λ)⊥,∴2×2+1×(1﹣λ)=0,λ=5.故答案为:5.【考点】平面向量数量积的运算.21.已知两定点,,点P在椭圆上,且满足=2,则为()A.-12B.12C.一9D.9【答案】D【解析】由,可得点的轨迹是以两定点,为焦点的双曲线的上支,且∴的轨迹方程为:,由和联立可解得:,则.故选D.【考点】椭圆的简单性质.22.在边长为1的正三角形ABC中,设,则__________.【答案】.【解析】如图:由知点D是BC边的中点,点E是CA边上靠近点C的一个三等分点,.故答案应填:.【考点】向量的数量积.23.在中,则∠C的大小为()A.B.C.D.【答案】B【解析】,解得,所以,故选B.【考点】平面向量数量积的应用.24.已知点P是内一点,且,则()A.B.C.D.【答案】C【解析】设点M是中点,则点P是一个三等分点,,选C.【考点】向量表示25.知△ABC和点M满足+=-,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】由,得,知点是的重心,由,由于是的重心,所以,,故选C.【考点】平面向量.26.已知向量,设.(1)求函数的解析式及单调增区间;(2)在中,分别为内角的对边,且,求的面积.【答案】(1),;(2)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得,由,可解得函数的单调增区间.(Ⅱ)由,可得,结合范围,可得,从而求得,由余弦定理可解得的值,利用三角形面积公式即可得解.试题解析:解:(Ⅰ)由可得所以函数的单调递增区间为,(Ⅱ)由可得【考点】1.余弦定理;2.三角函数中的恒等变换应用.27.在中,,点是线段上的动点,则的最大值为_______.【答案】.【解析】,所以当M,N重合时,,最大,为,又设所以,显然当时,最大为,故的最大值为3.【考点】数量积的应用.28.已知向量若则()A.B.C.2D.4【答案】C【解析】由已知,因为,所以,,所以.故选C.【考点】向量垂直的坐标运算,向量的模.29.已知||=,||=2,若(+)⊥,则与的夹角是.【答案】150°.【解析】根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.【考点】平面向量数量积的运算.30.已知点为内一点,且则________.【答案】【解析】如图,即,又,所以有,则.【考点】向量的运算.【思路点睛】因为有相同的底边,所以只要分别求得顶点的距离或者其比值便可求得面积之比,显然求比值较容易,由三角形相似的性质可知顶点的距离之比等于的比值,所以要结合利用向量的运算求得的比值.31.若非零向量满足,且,则与的夹角为()A.B.C.D.【答案】D【解析】,因为,所以有,其中为与的夹角,将代入前式中,可求得,故本题的正确选项为D.【考点】向量的运算.32.已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2B.3C.4D.5【答案】B【解析】解题时应注意到,则M为△ABC的重心.解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.【考点】向量的加法及其几何意义.33.等腰直角三角形中,是斜边上一点,且,则.【答案】4【解析】因为,而,.所以答案应填:4.【考点】平面向量数量积的运算.【方法点睛】欲求的值的关键是选为一组基底,用表述出,代入数量积进行运算.另一种方法:以为原点,分别以为轴,建立直角坐标系,则,所以,由知,所以.本题考查平面向量的数量积的运算,属于基础题.34.在中,是上的点,若,则实数的值为___________.【答案】【解析】因为,所以,即,所以,又因为三点共线,所以.【考点】1.向量的线性运算;2.向量共线定理.35.如图,在中,为的中点,为上任一点,且,则的最小值为.【答案】9【解析】因为是中点,所以,又在线段上,所以,且,所以,当且仅当,即时等号成立,所以的最小值为9.【考点】平面向量的基本定理,基本不等式.【名师】设点是直线外任一点,,则是三点共线的充要条件.36.在平面直角坐标系中有不共线三点,,.实数满足,则以为起点的向量的终点连线一定过点()A.B.C.D.【答案】C【解析】由题意得,,所以.设点在向量的中点连线上,则,所以一点过点,故选C.【考点】向量的坐标运算.【方法点晴】本题主要考查了平面向量的坐标运算及平面向量的共线定理的应用,属于中档试题,着重考查了学生的推理、运算能力和转化与化归的思想方法,本题的解答中,根据,设点在向量的中点连线上,利用平面向量的共线定理和平面向量的坐标运算,得到向量的表示,即可到结论.37.四边形中,且,则的最小值为【答案】【解析】通过建立坐标系,设C(a,0),D(0,b),利用数量积的坐标运算得出数量积关于a,b的函数,求出函数的最小值.设AC与BD交点为O,以O为原点,AC,BD为坐标轴建立平面直角坐标系,设C(a,0),D(0,b),则A(a-2,0),B(0,b-3),当时,取得最小值.【考点】平面向量的坐标运算【方法点睛】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.38.已知是两个互相垂直的单位向量,且,则对任意实数,的最小值为____________.【答案】【解析】,建立如图所示的直角坐标系, 取,设.,当且仅当时取等号. 故答案为.【考点】1、向量的几何性质、平面向量的数量积公式;2、利用基本不等式求最值.【易错点晴】本题主要考查向量的几何性质、平面向量的数量积公式以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用“或”时等号能否同时成立).39.已知曲线上的任意点到点的距离比它到直线的距离小1,(1)求曲线的方程;(2)点的坐标为,若为曲线上的动点,求的最小值(3)设点为轴上异于原点的任意一点,过点作曲线的切线,直线分别与直线及轴交于,以为直径作圆,过点作圆的切线,切点为,试探究:当点在轴上运动(点与原点不重合)时,线段的长度是否发生变化?请证明你的结论【答案】(1);(2)的最小值为2;(3)线段的长度为定值【解析】(1)根据抛物线的定义得出轨迹方程;(2)设,将表示为(或)的函数,根据函数性质求出最小值;(3)设坐标和直线的斜率,根据相切得出的关系,求出坐标得出圆的圆心和半径,利用切线的性质得出的长.试题解析:(1)设为曲线上的任意一点,依题意,点到点的距离与它到直线的距离相等,所以曲线是以为焦点,直线为准线的抛物线,所以曲线的方程为(2)设,则因为,所以当时,有最小值2(3)当点在轴上运动(与原点不重合)时,线段的长度不变,证明如下:依题意,直线的斜率存在且不为0,设,代入得,由得将代入直线的方程得,又,故圆心所以圆的半径为当点在轴上运动(点与原点不重合)时,线段的长度不变,为定值【考点】抛物线的定义及其标准方程,向量的数量积运算,直线与圆锥曲线的关系40.平面向量与的夹角为60°,,则等于()A.B.4C.12D.16【解析】,因此,选A.【考点】向量的模41.已知向量,则a与b夹角的大小为_________.【答案】【解析】两向量夹角为,又两个向量夹角范围是,所以夹角为.【考点】向量数量积与夹角公式【名师】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法.42.已知向量,且,则m=A.−8B.−6C.6D.8【答案】D【解析】,由得,解得,故选D.【考点】平面向量的坐标运算、数量积【名师】已知非零向量a=(x1,y1),b=(x2,y2):|a|=|a|=cos θ=cos θ=a·b=0x x+y y=043.在中,点M是边BC的中点.若,则的最小值是____.【答案】【解析】设,由,即有,得,点是的中点,则,.当且仅当取得最小值,且为.则的最小值为,故答案为:.【考点】平面向量数量积的运算.44.已知向量,,则()A.2B.-2C.-3D.4【解析】因,故,应选A。

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题1. 在平面直角坐标系xOy 中,已知圆C :x 2+y 2-6x +5=0,点A ,B 在圆C 上,且AB =2,则的最大值是 .【答案】8【解析】 设AB 中点为M ,则.因为圆C :,AB =2,所以,因此的最大值是8. 【考点】直线与圆位置关系2. 在平面直角坐标中,的三个顶点A 、B 、C ,下列命题正确的个数是( ) (1)平面内点G 满足,则G 是的重心;(2)平面内点M 满足,点M 是的内心;(3)平面内点P 满足,则点P 在边BC 的垂线上;A.0B.1C.2D.3 【答案】B【解析】对(2),M 为的外心,故(2)错. 对(3),,所以点P 在的平分线上,故(3)错.易得(1)正确,故选B. 【考点】三角形与向量.3. 在△ABC 中,AB =2,D 为BC 的中点,若=,则AC =_____ __.【答案】1 【解析】假设.由.所以.由余弦定理可得.所以.【考点】1.解三角形知识.2.向量的运算.4. 在△ABC 中,D ,E 分别为BC ,AC 的中点,F 为AB 上的点,|AF|=|AB|。

若.【答案】3【解析】由题意可知,由平面向量加法的平行四边形法则可得,则,所以。

【考点】1平面向量的加法;2向量共线问题。

5. 已知e l 、e 2是两个单位向量,若向量a=e l -2e 2,b=3e l +4e 2,且a b=-6,则向量e l 与e 2的夹角是 A .B .C .D .【答案】C【解析】由已知,,所以,又,故,选.【考点】平面向量的数量积、模、夹角.6.直线与圆交于不同的两点,,且,其中是坐标原点,则实数的取值范围是()A.B.C.D.【答案】D【解析】设的重点为,则,,由得,,从而得,由点到直线的距离公式可得,解得.【考点】向量在几何中的应用;直线与圆相交的性质.7.在△ABC所在的平面上有一点P满足++=,则△PBC与△ABC的面积之比是________.【答案】【解析】因为++=,所以+++=0,即=2,所以点P是CA边上的靠近A点的一个三等分点,故.8.如图,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,动点P在以点C为圆心,且与直线BD相切的圆上或圆内移动,设=λ+μ (λ,μ∈R),则λ+μ的取值范围是 ().A.(1,2)B.(0,3)C.[1,2]D.[1,2)【答案】C【解析】以A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则B(2,0),D(0,1),C(1,1),设P(x,y),则(x,y)=λ(0,1)+μ(2,0)=(2μ,λ),即令z=λ+μ=+y.由圆C与直线BD相切可得圆C的半径为.由于直线y=-+z与圆C有公共点,所以,解得1≤z≤2.9.已知O是锐角△ABC的外心,若(x,y∈R),则()A.x+y≤-2B.-2≤x+y<-1C.x+y<-1D.-1<x+y<0【答案】C【解析】如图,点在直线上,若,则;点在直线的另一侧,若,则;而,所以中.当圆心到AB的距离接近0时,中的值将无限增大,故选C.【考点】向量.10.设、都是非零向量,下列四个条件中,一定能使成立的是()A.B.C.D.【答案】A【解析】因为,、都是非零向量,分别是的单位向量,意味着方向相反 .所以,一定能使成立的是,选A.【考点】单位向量,共线向量,向量的线性运算.11.如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若||=a,||=b,则=()A.b2-a2 B.a2-b2C.a2+b2 D.ab【答案】A.【解析】,【考点】向量的运算.12.△ABC的外接圆的圆心为O,半径为2,且,则向量在方向上的投影为( )A.B.3C.D.-3【答案】A【解析】过作的垂线,垂足为,,即,即,∴即为边长为2的菱形,,,,,由定义,在上的投影为.【考点】向量投影的定义.13.已知点、、不在同一条直线上,点为该平面上一点,且,则()A.点P在线段AB上B.点P在线段AB的反向延长线上C.点P在线段AB的延长线上D.点P不在直线AB上【答案】B.【解析】点在线段的反向延长线上,故选B.【考点】1.共线向量定理;2.向量加减法的三角形法则.14.设,向量,b=(3,—2),且则|a-b|=()A.5B.C.D.6【答案】B【解析】因为所以6-2x=0,解得x=3,=(-1,5),所以|a-b|=.故选C.【考点】向量垂直的充要条件和向量的模.15.在直角中,,,,为斜边的中点,则 .【答案】.【解析】由于为直角三角形,且,,所以,由正弦定理得,,.【考点】1.正弦定理;2.平面向量的数量积16.在平行四边形中,,,,则【答案】【解析】因为,,,所以,由平面向量的线性运算及,得到即由,得,即而平行四边形中,,所以,所以,.【考点】平面向量的线性运算17.设、都是非零向量,下列四个条件中,一定能使成立的是()A.B.C.D.【答案】A【解析】由得,而表示与同向的单位向量,表示与反向的单位向量,则与反向.故当,与反向,从而推出题中条件,易知都不正确.故选.【考点】1.向量的平行;2.单位向量的意义.18.已知向量的模为1,且满足,则在方向上的投影等于 .【答案】-3【解析】∵,∴①,∵,∴②,②-①得:,投影为:.【考点】1.模式的处理;2.投影的求解方式.19.中,边的高为,若,,,,,则A.B.C.D.【答案】D【解析】如图,在直角三角形中,,则,所以,所以,即,选D.20.已知向量,,,则与夹角的最小值和最大值依次是()A.B.C.D.【答案】C【解析】设与夹角为,∵,,∴点A在以点C(2,2)为圆心半径为的圆上,由题意点B在x轴上,可知直线OA为圆的切线时与夹角取得最小值和最大值,设切线为y=kx,则由得k=,故当k=时与夹角为最小,此时,=,当k=时与夹角为最大,此时,=,故选C21.在边长为1的等边中,设( )A.B.0C.D.3【答案】A【解析】本题考查向量的夹角的概念,向量的数量积.如图:为正三角形,所以的夹角为的夹角为的夹角为;又所以,则故选A22.在平行四边形中,与交于点是线段的中点,的延长线与交于点.若,,则()A.B.C.D.【答案】B【解析】本题考查加法的平行四边形法则及平面几何知识.因为是的中点,所以又因为所以即所以又则则故选B23.(本小题满分12分)将圆按向量平移得到,直线与相交于、两点,若在上存在点,使求直线的方程.【答案】或.【解析】解:由已知圆的方程为,按平移得到.(1分)∵∴.即. (5分)又,且,∴.∴. (7分)设,的中点为D.由,则,又.∴到的距离等于. (9分)即,∴.∴直线的方程为:或. (12分)24.已知是所在平面内一点,为边中点,且,那么()A.B.C.D.【答案】A【解析】略25.平面内有两定点A,B,且|AB|=4,动点P满足,则点P的轨迹是 .【答案】以AB为直径的圆【解析】略26.已知P为ΔABC所在平面内一点,若,则点P轨迹过ΔABC的()A.内心B.垂心C.外心D.重心【答案】D【解析】略27.设点P是ΔABC内一点,且,则x的取值范围是,y的取值范围是。

平面向量及其应用全章综合测试卷(基础篇)(教师版)

平面向量及其应用全章综合测试卷(基础篇)(教师版)

D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2

C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =

高三数学平面向量的概念及几何运算试题答案及解析

高三数学平面向量的概念及几何运算试题答案及解析

高三数学平面向量的概念及几何运算试题答案及解析1.已知平面向量, 且, 则 ( )A.B.C.D.【答案】C【解析】由向量, 且.所以.即.故选C.【考点】1.向量平行的性质.2.向量的模的运算2. [2014·龙岩质检]已知向量a=(1,-1),b=(1,2),向量c满足(c+b)⊥a,(c-a)∥b,则c=()A.(2,1)B.(1,0)C.(,)D.(0,-1)【答案】A【解析】设c=(x,y),则c+b=(x+1,y+2),c-a=(x-1,y+1).由(c+b)⊥a,(c-a)∥b 可得,解得,因此c=(2,1).3.在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.【答案】2【解析】由平行四边行的性质知,AC与BD互相平分,又+==2所以λ=24.在四边形中,,,则四边形的面积为()A.B.C.2D.【答案】A【解析】由,可知四边形为平行四边形,且,因为,所以可知平行四边形ABCD的角平分线BD平分∠ABC,四边形为菱形,其边长为,且对角线对于边长的倍,即,则,即,所以三角形的面积为,所以四边形的面积为,选A5.已知△ABC中,点D是BC的中点,过点D的直线分别交直线AB、AC于E、F两点,若,,则的最小值是()A.9B.C. 5D.【答案】D【解析】由题意得,,又D、E、F在同一条直线上,可得.所以,当且仅当2λ=μ时取等号.故选D.6.在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为() A.B.C.D.1【答案】A【解析】∵M为边BC上任意一点,∴可设.∴N为AM中点,∴.∴.故选A.7.已知双曲线的右顶点、左焦点分别为A、F,点B(0,-b),若,则双曲线的离心率值为()(A)(B)(C)(D)【答案】B【解析】由得,又,,则,,所以有,即,从而解得,又,所以,故选.【考点】向量的运算、双曲线的离心率、解一元二次方程.8.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()A.B.C.D.【答案】A【解析】=(3,-4),则与同方向的单位向量为=(3,-4)=.故选A.9.直线的一个法向量可以是【答案】【解析】已知直线的一般式方程为,因此其一个法向量为.【考点】直线的法向量.10.设a,b是两个非零向量,下列选项正确的是().A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|【答案】C【解析】对于A,可得cos〈a,b〉=-1,因此a⊥b不成立;对于B,满足a⊥b时,|a+b|=|a|-|b|不成立;对于C,可得cos〈a,b〉=-1,因此成立,而D显然不一定成立.11.已知O,A,M,B为平面上不同的四点,且=λ+(1-λ) ,λ∈(1,2),则().A.点M在线段AB上B.点B在线段AM上C.点A在线段BM上D.O,A,M,B四点共线【答案】B【解析】根据题意知=λ+-λ=λ(-)+,则-=λ(-),即=λ.由λ∈(1,2)可以判断出点M在线段AB的延长线上,即点B在线段AM上.12.如图,为直线外一点,若,,,,,,,中任意相邻两点的距离相等,设,,用,表示,其结果为 .【答案】【解析】设的中点为A,则A也是,…的中点,由向量的中点公式可得,同理可得,故.【考点】平面向量的加法法则,中点公式.13.如图,在中,点是边上靠近的三等分点,则()A.B.C.D.【答案】C【解析】由平面向量的三角形法则,可得:,又因为点是边上靠近的三等分点,所以,==.【考点】平面向量的三角形法则.14.在边长为6的等边△ABC中,点M满足,则等于.【答案】 24【解析】【考点】本小题考查向量的线性运算及其向量的数量积。

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析1.已知,若共线,则实数x=A.B.C.1D.2【答案】B【解析】此题考查向量共线的条件;由已知得到,又因为共线,所以。

选B2.已知向量的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】故选C3.已知向量、的夹角为,且,,则向量与向量+2的夹角等于()A.150°B.90°C.60°D.30°【答案】D【解析】设量与向量+2的夹角为故选D4.设向量,是两个相互垂直的单位向量,一直角三角形两条边所对应的向量分别为,,,则的值可能是()A.或B.或C.或D.或【答案】C【解析】若则;若则若则无解;故选C5.已知,则实数k的值是。

【答案】-1【解析】略6.已知:(1)求关于x的表达式,并求的最小正周期;(2)若时,的最小值为5,求m的值.【答案】(1)(2)3【解析】7.已知向量,则实数k的值为()A.B.0C.3D.【答案】C【解析】,又,,即,解得【考点】平面向量的坐标运算。

8.已知平面向量,,,,,,若,则实数()A.4B.-4C.8D.-8【答案】D.【解析】∵,,∴,故选D【考点】平面向量共线的坐标表示.9.若向量,,则=()A.B.C.D.【答案】B【解析】因为向量,,所以.故选B.【考点】向量减法的坐标的运算.10.已知向量,满足,,则夹角的余弦值为( ) A.B.C.D.【答案】D【解析】,,则的夹角余弦值为.故选D.【考点】向量的基本运算.11.已知向量若与平行,则实数的值是()A.-2B.0C.2D.1【答案】C【解析】,根据题意有,解得,故选C.【考点】向量的运算,向量共线的坐标表示.12.(本小题满分12分)已知向量,函数.(1)若,求的值;(2)若,求函数的值域.【答案】(1);(2).【解析】本题主要考查平面向量的数量积的运算、三角函数中的恒等变换的应用、两角和与差的正弦公式、倍角公式、三角函数的值域、正弦函数的图象和性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,运用平面向量的数量积的坐标表示和两角差的正弦公式以及二倍角的余弦公式,即可得到结论;第二问,由,则可以得到,运用正弦函数的图象和性质,即可得到函数的值域.试题解析:(1)向量,则函数,,则,;(2)由,则,,则.则的值域为.【考点】平面向量的数量积的运算、三角函数中的恒等变换应用、三角函数的值域、正弦函数的图象和性质.13.设,,若,则= .【答案】【解析】因为,所以,解得,所以=.【考点】1、平面向量垂直的充要条件;2、平面向量的模.14.己知向量,满足||=||=2且,则向量与的夹角为.【答案】【解析】因为||=||=2,所以由数量积的运算律可将化为,即,所以,故向量与的夹角为.【考点】①向量数量积的运算律;②向量夹角计算公式.15.在△ABC中,若点D满足,则()A.B.C.D.【答案】A【解析】由于,因此.【考点】向量的加法法则.16.设向量,,且,则的值是()A.B.C.D.【答案】C【解析】由得,即,解得,故选C.【考点】向量垂直的条件,向量数量积坐标运算公式.17.已知,,,且与垂直,则实数的值为.【答案】.【解析】本题考查两个向量垂直,向量的数量积的计算,难度简单.由得.由得,所以.【考点】向量垂直,向量的数量积.18.设直角的三个顶点都在单位圆上,点M,则的最大值是()A.B.C.D.【答案】C【解析】由题意,,当且仅当共线同向时,取等号,即取得最大值,最大值是,故选:C.【考点】1.点与圆的位置关系;2.平面向量及应用.【思路点睛】由题意,,当且仅当共线同向时,取等号,即可求出的最大值.19.已知为同一平面内的四个点,若,则向量等于()A.B.C.D.【答案】C【解析】由得,即,故选C.【考点】向量的回头法运算及几何意义.20.已知点,,点在轴上,当取最小值时,点的坐标是()A.B.C.D.【答案】D【解析】设,则,所以,由二次函数的性质得,当时有最小值,所以点的坐标是.【考点】1.向量的运算;2.二次函数.21.已知向量,,,若向量与共线,则的值为()A.B.C.D.【答案】D【解析】由题意得,,故由与共线得,解得,故D项正确.【考点】平面向量的运算及共线定理.22.设是所在平面内一点,且,则()A.B.C.D.【答案】D【解析】,又,所以,即.故选D.【考点】向量的线性运算.23.已知向量的夹角为,,向量,的夹角为,,则与的夹角正弦值为,.【答案】,或【解析】作,则,向量,由题意可得为边长为的等边三角形,向量的夹角为,可得,由,可得四点共圆,在中,,由正弦定理可得,在中,,由余弦定理可得,解得,当在中,同理可得.【考点】平面向量的数量积的运算.24.设向量与的夹角为,且,则等于()A.B.C.D.6【答案】B【解析】,故选B.【考点】平面向量数量积的定义.25.已知向量,,则当时,的取值范围是___________.【答案】.【解析】根据向量的差的几何意义,表示向量终点到终点的距离,当时,该距离取得最小值为1,当时,根据余弦定理,可算得该距离取得最大值为,即的取值范围是,故填:.【考点】平面向量的线性运算.26.如图,在梯形ABCD中,AB∥CD,AB=4,AD=3,CD=2,.若=-3,则=.【答案】【解析】因为,所以【考点】向量数量积27.如图,中,,为的中点,以为圆心,为半径的半圆与交于点,为半圆上任意一点,则的最小值为()A.B.C.D.【答案】D【解析】以为坐标原点,所在直线为轴建立直角坐标系,所以,设且,所以,令,则,其中.所以当时有最小值.故选D.【考点】1、平面向量的数量积公式;2、圆的参数方程的应用.28.梯形中,,则()A.B.C.D.不能确定【答案】C【解析】由梯形易得:,所以,又,所以,由于,所以,可得,故选C.【考点】1、平面向量基本定理;2、向量的平行.29.设向量,若向量与向量垂直,则的值为()A.3B.1C.D.-1【答案】D【解析】因为向量,向量与向量垂直,所以,故选D.考点 1、向量的坐标表示;2、平面向量的数量积公式 .30.边长为的等边三角形中心为,是边上的动点,则()A.有最大值B.有最小值C.是定值D.与的位置有关【答案】C【解析】设是中点,则.故选C.【考点】向量的数量积.【名师】本题是求平面向量的数量积的问题,解题时要把动点与定点结合起来,如果能化动为静,则问题易解.为此可选取两个向量作为基底,其他向量都用它们表示,然后求解,在求数量积时,垂直的向量是我们要着重考虑的,因为垂直的数量积为0,计算时比较方便,易于求解.31.如图,四边形是三个全等的菱形,,设,,已知点在各菱形边上运动,且,,则的最大值为 .【答案】4【解析】根据条件知,G,O,C三点共线,连接OE,则OE⊥GC;∴分别以OC,OE所在直线为x轴,y轴,建立如图所示平面直角坐标系,设棱形的边长为2,则;设,则;∴;∴;∴;设,则,表示在y轴上的截距;当截距最大时,取到最大值;由图形可以看出当直线经过点时截距最大;∴;即x+y的最大值为4.【考点】向量的线性运算.【名师】考查向量的线性运算,通过建立平面直角坐标系,利用向量坐标解决向量问题的方法,能确定平面上点的坐标,以及向量坐标的加法和数乘运算,直线的点斜式方程,线性规划的运用.这是一道综合题,有一定的难度,对学生分析问题解决问题的能力要求较高.32.若向量,,则=()A.B.C.D.【答案】B【解析】由题意,向量,故选B.【考点】向量的运算.33.设是圆上不同的三个点,且,若存在实数,使得,则实数的关系为()A.B.C.D.【答案】A【解析】∵,两边平方得:,∵,∴,故选A.【考点】(1)直线与圆的方程的应用;(2)向量共线定理;(3)平面向量的垂直.【思路点晴】本题主要考查圆的定义及向量的模及其数量积运算,还考查了向量与实数的转化.在向量的加,减,数乘和数量积运算中,数量积的结果是实数,所以考查应用较多.由是圆上不同的三个点,可得,又,所以对两边平方即可得到结论.34.如图,正方形中,为的中点,若,则的值为()A.B.C.1D.-1【答案】A【解析】,又,所以,又,那么.故本题选A.【考点】1.平面向量的线性运算;2.平面向量的基本定理.35.已知角的顶点为坐标原点,始边为轴的正半轴,终边落在第二象限,是其终边上的一点,向量,若,则()A.B.C.D.【答案】D【解析】设与轴正向的夹角为,则,因为角的顶点为坐标原点,始边为轴的正半轴,终边落在第二象限且,所以,.故应选D.【考点】1、向量垂直的性质;2、两角和的正切公式.36.已知非零向量且对任意的实数都有,则有()A.B.C.D.【答案】C【解析】因为非零向量且对任意的实数都有,所以,,,即,,故选C.【考点】1、平面向量数量积公式;2、一元二次方程根与系数的关系.【方法点睛】本题主要考查平面向量数量积公式以及一元二次方程根与系数的关系,属于难题.对于一元二次方程根与系数的关系的题型常见解法有两个:一是对于未知量为不做限制的题型可以直接运用判别式解答(本题属于这种类型);二是未知量在区间上的题型,一般采取列不等式组(主要考虑判别式、对称轴、的符号)的方法解答.37.已知向量,则下列结论正确的是()A.B.C.D.【答案】C【解析】因为,所以A错;因为,所以B错;因为,所以,所以,所以C正确,故选C.【考点】向量平行与垂直的充要条件.38.如图所示,矩形的对角线相交于点,的中点为,若(为实数),则()A.1B.C.D.【答案】C【解析】,,所以,故选C.【考点】平面向量基本定理39.已知向量=(-1,1),向量=(3,t),若∥(+),则t=________.【答案】-3【解析】,由∥(+)得,.【考点】向量平行.40.已知向量,若,则()A.B.C.D.【答案】C【解析】因,故代入可得,故应选C.【考点】向量坐标形式及运算.41.已知向量满足,那么向量的夹角为()A.30°B.60°C.150°D.120°【答案】D【解析】.【考点】向量运算.42.已知非零向量满足,且,则与的夹角为()A.B.C.D.【答案】D【解析】若,则,即有,由,可得,即有,,由,可得与夹角的大小为.故选:D.【考点】向量的夹角.43.等腰直角三角形中,,,点分别是中点,点是(含边界)内任意一点,则的取值范围是()A.B.C.D.【答案】A【解析】以为坐标原点,边所在直线为轴,建立直角坐标系,则,,设,则且,,,令,结合线性规划知识,则,当直线经过点时,有最小值,将代入得,当直线经过点时,有最大值,将代入得,故答案为A.【考点】(1)平面向量数量积的运算;(2)简单线性规划的应用.【方法点睛】本题考查的知识点是平面向量的数量积运算及线性规划,处理的关键是建立恰当的坐标系,求出各点、向量的坐标,利用平面向量的数量积公式,将其转化为线性规划问题,再利用“角点法”解决问题.选择合适的原点建立坐标系,分别给出动点(含参数)和定点的坐标,结合向量内积计算公式进行求解.44.设向量,且,则的值是()A.2B.C.8D.【答案】C【解析】由已知得,∴.【考点】平面向量坐标运算.45.边长为的正三角形,其内切圆与切于点为内切圆上任意一点,则的取值范围为__________.【答案】【解析】以点为坐标原点,所在直线为轴建立平面直角坐标系,如图所示,则点,,内切圆的方程为,设点,则.【考点】向量的坐标运算;向量的数量积.【方法点晴】本题主要考查了平面向量的坐标运算、平面向量的数量接的运算等知识点的应用,解答中,以点为坐标原点,所在直线为轴建立平面直角坐标系,确定点的坐标,利用内切圆得出的坐标,利用向量的数量积的公式和坐标运算,即可求解的取值范围,着重考查了学生的推理与运算能力,属于中档试题.46.平面向量与的夹角为30°,已知,则()A.B.C.D.【答案】D【解析】因,故,故应选D.【考点】向量的有关运算.47.已知非零向量的夹角为,且,则()A.B.1C.D.2【答案】A【解析】由得,,解得,故选A.【考点】向量的数量积.48.在等腰梯形中,已知,点和点分别在线段和上,且,则的值为_____________.【答案】【解析】以为坐标原点,为轴的正方向建立平面直角坐标系,则,所以.【考点】向量的数量积、向量运算.【思路点晴】本题主要考查向量的数量积、向量运算,利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算.对向量与几何图形的综合问题,可通过向量的数量积运算把向量问题转化为代数问题来求解.49.已知是单位圆上的两点(为圆心),,点是线段上不与重合的动点.是圆的一条直径,则的取值范围是()A.B.C.D.【答案】A【解析】,点是线段上,,故选A.【考点】向量及其运算.50.设是单位向量,且,则的最小值为()A.-2B.C.-1D.【答案】D【解析】当时,,故选D.【考点】向量及其基本计算.51.在平行四边形中,为一条对角线,,,则=()A.(2,4)B.(3,5)C.(1,1)D.(-1,-1)【解析】,故选C.【考点】平面向量的线性运算.52.已知在内有一点,满足,过点作直线分别交、于、,若,,则的最小值为A.B.C.D.【答案】A【解析】由知P是的重心,则,所以,∵共线,∴,∴,当且仅当时取等号,∴的最小值为.故选A.【考点】平面向量基本定理,三点共线定理.【名师】设上直线外一点,,则三点共线的条件是.利用此共线定理可以解决平面向量中的共线点问题,通过它把几何问题代数化.53.已知是平面上一定点,是平面上不共线的三个点,动点满足,则点的轨迹一定通过的()A.重心B.垂心C.内心D.外心【答案】A【解析】由正弦定理得,所以,而,所以表示与共线的向量,而点是的中点,即的轨迹一定是通过三角形的重心,故选A.【考点】平面向量.【思路点晴】本题主要考查向量的加法和减法的几何意义,考查了解三角形正弦定理,考查了三角形四心等知识.在几何图形中应用平面向量加法和减法,往往要借助几何图形的特征,灵活应用三角形法则和平行四边形.当涉及到向量或点的坐标问题时,应用向量共线的充要条件解题较为方便.三角形的四心是:内心、外心、重心和垂心.54.已知向量,,且,则.【答案】【解析】因为,所以,所以.【考点】向量运算.55.已知菱形的对角线,则()A.1B.C.2D.【解析】在菱形中,,设相交于点,由向量数量积的几何意义可知,故选C.【考点】向量数量积的几何意义.56.已知向量,向量,则_____________.【答案】【解析】,所以.【考点】向量的坐标运算.57.已知向量满足,且,则___________.【答案】【解析】由于,两边平方得,因为.【考点】向量运算.58.已知向量,满足,,且(),则.【答案】【解析】设,则,又因为,即,所以,解得,即,解得.【考点】向量的坐标运算.59.已知向量_________.【答案】【解析】,解得,,那么,故填:.【考点】向量数量积的坐标表示60.已知向量,,且,则()A.B.C.D.【答案】A【解析】因为所以所以所以故答案选A【考点】向量的数量积;向量的模.61.设向量.若,则实数等于()A.-1B.1C.-2D.2【解析】,∴,得.故选C.【考点】向量的基本运算.62.已知向量,,若,则实数__________.【答案】【解析】因为向量,,所以有 , 若,则有,解得.63.已知,分别是椭圆的左、右焦点.(1)若点是第一象限内椭圆上的一点,,求点的坐标;(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.【答案】(1);(2).【解析】(1)首先得到焦点的坐标,点满足两个条件,一个是点在椭圆上,满足椭圆方程,另一个是将 ,转化为坐标表示,这样两个方程两个未知数,解方程组;(2)首项设过点的直线为,与方程联立,得到根与系数的关系,和,以及,根据向量的数量积可知,为锐角,即,这样代入根与系数的关系,以及,共同求出的取值范围.试题解析:(1)易知.,设,则,又.联立,解得,故.(2)显然不满足题设条件,可设的方程为,设,联立由,得.①又为锐角,又.②综①②可知的取值范围是【点睛】解析几何中的参数范围的考查是高考经常考的的问题,这类问题,要将几何关系转化为代数不等式的运算,必然会考查转化与化归的能力,将为锐角转化为 ,这样就代入根与系数的关系,转化为解不等式的问题,同时不要忽略.64.若向量,且∥,则实数_________.【答案】【解析】依题设,,由∥得,,解得.65.已知向量,若,则__________.【答案】11【解析】由题意可知,因为,所以∙=0,解得m=11.66.已知函数的部分图象如图所示,点,是该图象与轴的交点,过点的直线与该图象交于,两点,则的值为()A.B.C.D.2【答案】D【解析】解:∵函数的周期,则,即C点是一个对称中心,根据向量的平行四边形法则可知: ,则: .本题选择D选项.67.已知向量,若向量与向量共线,则实数__________.【答案】【解析】因为,又因为向量与向量共线,所以,所以.68.(理科)已知平面上共线的三点和与这三点不共线的定点,若等差数列满足:,则数列的前38项之和为__________.【答案】19【解析】三点共线,,,,故答案为.69.已知向量满足,若,的最大值和最小值分别为,则等于()A.B.2C.D.【答案】C【解析】因为所以;因为,所以的最大值与最小值之和为,选C.70.已知向量,,且,则向量和的夹角为()A.B.C.D.【答案】C【解析】,则,,则向量和的夹角为,选C.【点睛】本题考查平面向量的有关知识及及向量运算,借助向量的模方和模,求向量的夹角,本题属于基础题.解决向量问题有两种方法,第一种是借助向量的几何意义,利用加法、减法、数乘、数量积运算,借助线性运算解题,另一种方法是建立适当的平面直角坐标系,利用向量的坐标运算解题.71.在中,,,,,是线段的三等分点,则的值为()A.B.C.D.【答案】B【解析】,,则【点睛】向量的运算有两种方法,一种是线性运算,如本题以为基底,把有关向量利用加法、减法及数乘运算表示出来,然后利用数量积运算计算出结果,另一种方法是建立直角坐标系,把相关点得坐标写出来,然后利用坐标运算公式计算出结果.72.在为所在平面内一点,且,则()A.B.C.D.【答案】A【解析】由题可知.故本题选.点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合.在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.73.已知,,则的最大值是__________.【答案】3【解析】,所以的最大值是3.74.设向量,.则与垂直的向量可以是A.B.C.D.【答案】A【解析】由题意可知:,本题选择A选项.75.已知的外接圆圆心为,且,若,则的最大值为__________.【答案】【解析】设三个角所对的边分别为,由于,,,所以,解得,.76.若向量,且,则的最大值是A.1B.C.D.3【答案】D【解析】× ,选D.77.设,向量且,若不等式恒成立,则实数k的最大值为____.【答案】【解析】由向量平行的充要条件有:,据此可得:,其中整理可得:,当时满足题意,否则:当时,由对称轴处的函数值可得恒成立,综上可得实数k的最大值为.78.已知向量,若与垂直,则实数的值是_________.【解析】,79.已知过抛物线的焦点的直线与抛物线交于,两点,且,抛物线的准线与轴交于点,于点,若四边形的面积为,则准线的方程为( ) A.B.C.D.【答案】A【解析】由题意,知,直线的方程为.设,则,.由,得,即①.设直线的方程为,代入抛物线方程消去,得,所以②.联立①②,得或(舍去),所以.因为=,将的值代入解得,所以直线的方程为,故选A.点睛:本题考查抛物线的几何性质、直线与抛物线的位置关系和平面向量的坐标运算.求解与向量交汇的圆锥曲线问题,通常利用点的坐标对已知的或所求的向量式进行转化,然后再利用解析几何的知识求解.80.(20分)已知为的外心,以线段为邻边作平行四边形,第四个顶点为,再以为邻边作平行四边形,它的第四个顶点为.(1)若,试用表示;(2)证明:;(3)若的外接圆的半径为,用表示.【答案】解:(1)由平行四边形法则可得:即(2)O是的外心,∣∣=∣∣=∣∣,即∣∣=∣∣=∣∣,而,=∣∣-∣∣=0,(3)在中,O是外心A=,B=于是∣∣2=(=+2+2=(),【解析】略81.已知向量a=(cosθ,sinθ),θ∈[0,π],向量b=(,-1).(1)若a⊥b,求θ的值;(2)若|2a-b|<m恒成立,求实数m的取值范围.【答案】(1)(2)(4,+∞)【解析】解:(1)∵a⊥b,∴cosθ-sinθ=0,得tanθ=,又θ∈[0,π],∴θ=.(2)∵2a-b=(2cosθ-,2sinθ+1),∴|2a-b|2=(2cosθ-)2+(2sinθ+1)2=8+8(sinθ-cosθ)=8+8sin(θ-),又θ∈[0,π],∴θ-∈[-,],∴sin(θ-)∈[-,1],∴|2a-b|2的最大值为16,∴|2a-b|的最大值为4,又|2a-b|<m恒成立,∴m>4.故m的取值范围为(4,+∞).82. [2014·牡丹江模拟]设e1,e2是两个不共线的向量,且a=e1+λe2与b=-e2-e1共线,则实数λ=()A.-1B.3C.-D.【答案】D【解析】∵a=e1+λe2与b=-e2-e1共线,∴存在实数t,使得b=ta,即-e2-e1=t(e1+λe2),- e2-e1=te1+tλe2,由题意,e1,e2不共线,∴t=-1,tλ=-,即λ=,故选D.83.已知,若,则__________.【答案】1【解析】因为,所以,,解得。

高三数学平面向量基本定理及坐标表示试题

高三数学平面向量基本定理及坐标表示试题

高三数学平面向量基本定理及坐标表示试题1.若向量=(1,2),=(3,4),则=A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)【答案】A【解析】因为=+=,所以选A.【考点】本题考查平面向量的坐标运算(加法),属基础题.2.若向量,则( )A.(1,1)B.(-1,-1)C.(3,7)D.(-3,-7)【答案】B【解析】解:所以选B.【考点】向量的运算.3.设△ABC的三个内角为A,B,C,向量m=(sinA,sinB),n=(cosB,cosA),若m·n=1+cos(A+B),则C=()(A) (B) (C) (D)【答案】C【解析】依题意得sinAcosB+cosAsinB=1+cos(A+B),sin(A+B)=1+cos(A+B),sinC+cosC=1,2sin(C+)=1,sin(C+)=.又<C+<,因此C+=,C=,选C.4.已知平面向量a=(x1,y1),b=(x2,y2),若|a|=2,|b|=3,a·b=-6,则=.【答案】-【解析】【思路点拨】根据条件求出向量的夹角,进而寻求向量坐标间的关系,化简求值即可. 解:设a,b的夹角为θ,则a·b=|a||b|cosθ=-6,∴cosθ=-1,∴θ=180°.即a,b共线且反向.又∵|a|=2,|b|=3,∴a=-b,x1=-x2,y1=-y2,∴=-.5.已知向量a=(1,-2),b=(m,4),且a∥b,那么2a-b=()A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).6.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.7.在边长为1的正方形ABCD中,E、F分别为BC、DC的中点,则__________.【答案】1【解析】以A为原点,AB,AD分别为x,y轴的正版轴,建立平面直角坐标系,即,,所以【考点】平面向量数量积的运算8.已知向量,,若∥,则代数式的值是.【答案】5【解析】利用向量平行的充要条件,由∥得,即,代入求值式即得.【考点】向量平行.9.已知是同一平面内的三个向量,其中.(1)若,且,求:的坐标(2)若,且与垂直,求与的夹角.【答案】(1);(2).【解析】(1)设根据可得,而由得,联立即可解得;(2)根据向量垂直得,展开整理得,故,即可解得.试题解析:设由得所以,.(2)∵与垂直,∴即;∴∴,∵∴.【考点】1.向量共线的充要条件;2.向量的数量积;3.向量运算的坐标表示.10.是双曲线的两个焦点,过点作与轴垂直的直线和双曲线的交点为,满足,则的值为 .【答案】.【解析】由双曲线方程知,,,又由题意知点,由得,把代入上式解得.【考点】双曲线的性质及向量运算.11.如图所示,是圆上的三点,线段的延长线于线段的延长线交于圆外的一点,若,则的取值范围是()A.B.C.D.【答案】D【解析】线段的延长线与线段的延长线的交点为,则,在圆外,,又、、共线,故存在,使得,且,又,.,.选D.【考点】圆的性质,平面向量基本定理.12.已知向量,若与垂直,则______.【答案】【解析】,,.【考点】1.向量的模;2.向量垂直.13.设 ,向量且 ,则( )A.B.C.D.【答案】B【解析】,则,再利用向量模的计算公式得.【考点】平面向量垂直的充要条件,模的计算.14.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算15.在△ABC中,M是AB边所在直线上任意一点,若=-2+λ,则λ=( )A.1B.2C.3D.4【答案】C【解析】由点分线段所成比例向量形式公式知,,所以.选C.【考点】1.向量的运算; 2.平面向量的基本定理.16.如图,在平面斜坐标系中,,平面上任意一点P关于斜坐标系的斜坐标这样定义:若(其中,分别是轴,轴同方向的单位向量),则P点的斜坐标为(, ),向量的斜坐标为(, ).给出以下结论:①若,P(2,-1),则;②若,,则;③若,,则;④若,以O为圆心,1为半径的圆的斜坐标方程为.其中所有正确的结论的序号是.【答案】①②④【解析】①中是两临边常分别为2,1且一内角为的平行四边形较短的对角线,解三角形可知;结合向量的平行四边形加法法则可知②若,,则是正确的;,,所以③错误;④中设圆上任意一点为【考点】向量坐标的定义及运算点评:本题为新定义,正确理解题中给出的斜坐标并与已知的向量知识相联系是解决问题的关键17.若向量,且,则锐角的大小是【答案】【解析】因为,所以,所以,又为锐角,故.【考点】共线向量点评:本题考查共线向量的坐标运算,记住公式是解题的关键,属基础题.18.以下说法错误的是()A.直角坐标平面内直线的倾斜角的取值范围是B.直角坐标平面内两条直线夹角的取值范围是C.平面内两个非零向量的夹角的取值范围是D.空间两条直线所成角的取值范围是【答案】C【解析】∵两向量可以反向,∴两向量的夹角可以为,所以平面内两个非零向量的夹角的取值范围是,错误,选C【考点】本题考查了空间角的概念点评:掌握平面和空间中的角的概念是解决此类问题的关键,属基础题19.已知△ABC和点M满足.若存在实数m使得成立,则m=( ) A.2B.3C.4D.5【答案】B【解析】因为△ABC和点M满足,所以又,故m=3,选B。

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析1.若向量则()A.B.C.D.【答案】B【解析】∵∴.【考点】向量的运算.2.(2013•重庆)OA为边,OB为对角线的矩形中,,,则实数k= _________.【答案】4【解析】由于OA为边,OB为对角线的矩形中,OA⊥AB,∴=0,即==(﹣3,1)•(﹣2,k)﹣10=6+k﹣10=0,解得k=4,故答案为 43.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.4.已知两点,,若,则点的坐标是 .【答案】【解析】设点的坐标是,则由得即点的坐标是.【考点】向量坐标运算5.已知=(3,4),=(2,3),=(5,0),则||•()=()A.(12,3)B.(7,3)C.(35,15)D.(6,2)【答案】C【解析】∵=(3,4),=(2,3),=(5,0),∴||=5,+=(7,3),∴||•()=5(7,3)=(35,15)故选C.6.已知向量=(2,1),=10,|+|=,则||=()A.B.C.5D.25【答案】C【解析】∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]【答案】D【解析】因为⊥,所以可如图建立直角坐标系,设O(x,y),||=a,||=b,因为=+,所以P(a,b)因为||=||=1,所以由知,点O在以点(a,0)为圆心,1为半径的圆上,所以同理由得,.所以.又由得,而由可得,,即,所以.综上所述,即.8.已知向量若,则m=______.【答案】-3【解析】根据向量加法的坐标运算得,,因为,故,故填-3【考点】向量加法向量共线9.已知平面向量,,那么等于()A.B.C.D.【答案】B【解析】,所以,故选B.【考点】平面向量的坐标运算10.若向量a=(2,3),b=(x,-9),且a∥b,则实数x=________.【答案】-6【解析】a∥b,所以2×(-9)-3x=0,解得x=-6.11.已知A(-2,4)、B(3,-1)、C(-3,-4)且=3,=2,求点M、N及的坐标.【答案】(9,-18).【解析】∵ A(-2,4)、B(3,-1)、C(-3,-4),∴=(1,8),=(6,3),∴=3=(3,24),=2=(12,6).设M(x,y),则有=(x+3,y+4),∴ M点的坐标为(0,20).同理可求得N点的坐标为(9,2),因此=(9,-18).故所求点M、N的坐标分别为(0,20)、(9,2),的坐标为(9,-18).12.在△ABC中,已知a、b、c分别为内角A、B、C所对的边,S为△ABC的面积.若向量p=(4,a2+b2-c2),q=(1,S)满足p∥q,则C=________.【答案】【解析】由p=(4,a2+b2-c2),q=(1,S)且p∥q,得4S=a2+b2-c2,即2abcosC=4S=2absinC,所以tanC=1.又0<C<π,所以C=.13.平面向量,,满足,,,,则的最小值为.【答案】【解析】设,,,,,,由得:,最小值是.【考点】1.向量的坐标表示;2.向量的代数公式;3.二次函数求最值.14.若向量,,且与垂直,则实数的值为.【答案】或【解析】由已知得:.【考点】平面向量.15.设向量,,则向量在向量上的投影为 .【答案】【解析】向量在向量上的投影为.【考点】向量运算.16.如图,已知圆,四边形ABCD为圆的内接正方形,E,F分别为边AB,AD的中点,当正方形ABCD绕圆心转动时,的取值范围是()A.B.C.D.【答案】B【解析】因为圆的半径为2,所以正方形的边长为.因为.所以==.所以.故选B.【考点】1.向量的和差.2.向量的数量积.3.由未知线段转化为已知线段.4.化归思想.17.在平面直角坐标系中,点,,若向量,则实数_____.【答案】4【解析】,因为,故,即,解得.【考点】1、向量的坐标运算;2、向量垂直.18.向量,,且,则锐角的余弦值为()A.B.C.D.【答案】D【解析】.【考点】1、平行向量;2、三角函数的求值.19.在平面直角坐标系中,已知向量若,则x=( ) A.-2B.-4C.-3D.-1【答案】D【解析】∵,∴,则,所以,又,∴,.【考点】1、向量的坐标运算;2、向量共线的坐标表示.20.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.21.若向量,,则___________.【答案】【解析】.【考点】平面向量的坐标运算22.已知正边长等于,点在其外接圆上运动,则的最大值是 .【答案】【解析】可以考虑建立如图所示的平面直角坐标系,则,所以,显然,所以的最大值是.【考点】平面向量综合运算.23.已知,且与共线,则y= .【答案】【解析】因为与共线,所以,解得.【考点】平面向量共线的坐标运算24.已知,且与共线,则y= .【答案】【解析】因为与共线,所以,解得.【考点】平面向量共线的坐标运算25.已知向量,且,则实数的值为( )A.B.C.D.【答案】C【解析】因为,向量,且,所以,,选C.【考点】平面向量的坐标运算,共线向量.26.在平面直角坐标系中,已知点,若,则实数的值为( )A.B.C.D.【答案】C【解析】因为,在平面直角坐标系中,点,所以,,又,所以,,选C.【考点】平面向量的概念,共线向量.27.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】建立如图所示坐标系,不妨设,则,所以,,由与向量的夹角大于,得,即,故答案为.【考点】平面向量的坐标运算,平面向量的数量积、夹角、模.28.设,,若,则实数________.【答案】【解析】因为,又,所以,答案,.【考点】平面向量坐标运算、平面向量数量积.29.平行四边形中,=(1,0),=(2,2),则等于()A.4B.-4C.2D.-2【答案】A【解析】由,所以.故选A.【考点】1.向量的加减运算;2.向量的数量积30.已知向量,,则与夹角的余弦值为()A.B.C.D.【答案】B【解析】,,解得,,所以,,,,故选B.【考点】1.平面向量的坐标运算;2.平面向量的数量积31.已知向量,向量,则的最大值和最小值分别为()A.B.C.D.【答案】B【解析】,所以;.【考点】本小题主要考查平面向量坐标运算,求向量的模.32.设,向量且,则= .【答案】【解析】由,得,所以.【考点】向量垂直的坐标表示.33.若向量,则向量与的夹角的余弦值为 .【答案】【解析】,,两向量的夹角的余弦为.【考点】向量的加、减、数量积运算.34.在ΔABC中,=600,O为ΔABC的外心,P为劣弧AC上一动点,且(x,y∈R),则x+y的取值范围为_____.【答案】[1,2]【解析】如图建立直角坐标系,O为坐标原点,设C(1,0),,,则,,,即,,解得,,又,,.【考点】向量坐标运算、三角函数.35.已知向量,,若,则=()A.-4B.-3C.-2D.-1【答案】B【解析】∵,∴.∴,即,∴.故选B.【考点】向量的坐标运算36.如图,AB是圆O的直径,C、D是圆O上的点,∠CBA=60°,∠ABD=45°,则()A. B. C. D.【答案】A【解析】设圆的半径为1,以作为坐标原点建立坐标系,则,,,,,,,,因为,所以,所以,,所以.【考点】向量运算点评:本题关键是建立坐标系,求出向量坐标,利用向量相等解题是关键,属中档题.37.已知:为单位向量,,且,则与的夹角是()A.B.C.D.【答案】D【解析】由已知得,且,所以与的夹角是,故选D。

高三数学平面向量的几何运算试题答案及解析

高三数学平面向量的几何运算试题答案及解析

高三数学平面向量的几何运算试题答案及解析1.如图所示,、、是圆上的三点,的延长线与线段交于圆内一点,若,则()A.B.C.D.【答案】C【解析】由于、、三点共线,设,则,由于、、三点共线,且点在圆内,点在圆上,与方向相反,则存在,使得,因此,,所以,选C.【考点】1.共线的平面向量;2.平面向量的线性表示2.下列关于向量的命题,正确的是()A.零向量是长度为零,且没有方向的向量B.若=﹣2(a≠0),则是的相反向量C.若=﹣2,则||=2||D.在同一平面上,单位向量有且仅有一个【答案】C【解析】A中,零向量的长度为零,方向是任意的,∴命题错误;B中,相反向量是模长相等,方向相反的向量,∴命题错误;C中,当=﹣2时,||=2||,∴命题正确;D中,单位向量是模长为1的向量,在同一平面上,单位向量有无数个,∴命题错误;故选:C.3.若向量=(1,2),=(1,﹣1),则2+与的夹角等于()A.﹣B.C.D.【答案】C【解析】∵=(1,2),=(1,﹣1),∴2+=(3,3)=(0,3)则(2+)•()=9|2|=,||=3∴cosθ==∴θ=故选C4.向量a、b、c在正方形网格中的位置如图所示.若c=λa+μb(λ、μ∈R),则=________.【答案】4【解析】以向量a、b的交点为原点作直角坐标系,则a=(-1,1),b=(6,2),c=(-1,-3),根据c=λa+μb=λ(-1,1)+μ(6,2)则=4.5.已知和点满足.若存在实数使得成立,则=()A.2B.3C.4D.5【答案】B【解析】试题分析:,因此k=3.故选B..【考点】向量的加法及其几何意义.6.已知,,则向量与的夹角为 .【答案】【解析】∵,,∴,即,∴,∴.【考点】1.向量的运算;2.向量的夹角.7.在中,已知,则||的值为()A.1B.C.D.2【答案】B【解析】由可知为以,设AB中点为D,可知,由,,可得,故选B.【考点】1.向量的加减运算;2.向量的数量积;3.向量的模8.已知△ABC是边长为1的等边三角形,P为边BC上一点,满足=2,则·=.【答案】【解析】,于是.【考点】平面向量基本运算.9.中,为角平分线,为的中点,交于,若,且,,用、表示,,【答案】,,【解析】根据角平分线的性质可知,从而可得,再利用,,再确定时,可以利用,,从而表示出解:由角平分线定理得,,解得,10.设的斜边中点,若,则的值是A.1B.2C.-1D.-2【答案】D【解析】解:因为设的斜边中点,若,则,选D11.如图在平行四边形中,已知,,,E为的中点,则A.B.C.D.【答案】A【解析】解:因为在平行四边形中,已知,,,E为的中点,则12.若O是∆ABC所在平面上任一点,且满足:,则动点P的轨迹必经过∆ABC的A.内心B.外心C.重心D.垂心【答案】C【解析】,AD是BC边中线,故动点P的轨迹必经过∆ABC的重心。

高中数学必修二 第六章 平面向量及其应用 章末测试(基础)(无答案)

高中数学必修二   第六章 平面向量及其应用 章末测试(基础)(无答案)

第六章 平面向量及其应用 章末测试(基础)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·全国·高一课时练习)在△ABC 中,若A=60°,BC=AC=B 的大小为( ) A .30° B .45° C .135° D .45°或135°2.(2021·宁夏·海原县第一中学)已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=( )A .4B .3C .2D .03.(2021·吉林·延边二中高一期中)在Rt ABC 中,斜边BC 长为2,O 是平面ABC 外一点,点P 满足1()2OP OA AB AC =++,则||AP 等于( )A .2B .1C .12D .44.(2021·河北定州·高一期中)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()sin 2sin sin c C a b B a b A -+=-,则C =( ) A .6π B .3π或23πC .23πD .6π或56π5.(2021·全国 )若非零向量,a b 满足3a b =,()23a b b +⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π6.(2021·安徽·寿县第一中学高一月考)在ABC 中,角,,A B C 的对边分别是,,,a b c 向量()2,sin ,m b c C =+向量()sin ,2n B c b =+,且满足2sin ,m n a A ⋅=则角A =( ) A .6πB .3π C .23π D .56π7.(2021·广东·广州大学附属中学 )如图所示的ABC 中,点D 是线段AC 上靠近A 的三等分点,点E 是线段AB 的中点,则DE →=( )A .1136BA BC →→--B .1163BA BC →→--C .5163BA BC →→-- D .5163BA BC →→-+8.(2021·福建省厦门集美中学高一月考)已知在ABC 中,90C ∠=︒,24AB AC ==,点D 沿A C B →→运动,则AD BD ⋅的最小值是( ) A .3- B .1-C .1D .3二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·江苏·镇江市实验高级中学高一月考)已知向量()()()2,13,21,1a b c =-=-=,,,则( ) A .//a b B .()a b c +⊥ C .a b c += D .53c a b =+10.(2021·吉林·延边二中高一月考)在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知cos cos 2B bC a c=-,ABC S =△3b =,则A .1cos 2B = B .cos B =C .a c +=D .a c +=11.(2021·全国·高三专题练习(理))已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为212.(2021·全国·高一课时练习)已知ABC 的内角,,A B C 所对的边分别为,,a b c ,下列四个命题中正确的命题是( ) A .若cos cos cos a b cA B C==,则ABC 一定是等边三角形 B .若cos cos a A b B =,则ABC 一定是等腰三角形 C .若cos ccos b C B b +=,则ABC 一定是等腰三角形 D .若222+>0a b c -,则ABC 一定是锐角三角形三、填空题(每题5分,共20分)13.(2021·全国·高一课时练习)已知,a b 为单位向量,且0a b ⋅=,若25c a b =-,则cos ,a c <>=__.14.(2021·福建·福清西山学校高三月考)如图,在矩形ABCD 中,AB BC =2,点E 为BC 的中点,点F 在边CD 上,若AB AF ⋅AE BF ⋅的值是________.15.(2021·辽宁·东港市第三中学高一期末)在山顶铁塔上B 处测得地面上一点A 的俯角60α=︒,在塔底C 处测得点A 的俯角45β=︒,已知铁塔BC 部分高32米,山高CD =_______.16.(2021·湖北 )如图,在凸四边形ABCD 中,1DA DC ==,AB =,若2B π=,则四边形ABCD 面积的最大值为________.四、解答题(17题10分,其余每题12分,共70分) 17.(2021·全国·高一课时练习)已知()=1,2a ,()=3,1b - (1)求2a b -;(2)设a ,b 的夹角为θ,求cos θ的值; (3)若向量a kb +与a kb -互相垂直,求k 的值.18.(2021·浙江·高一单元测试)已知在ABC 中,cos A =,,,a b c 分别是角,,A B C 所对的边.(1)求tan2A ;(2)若sin 23B π⎛⎫+= ⎪⎝⎭,c =ABC 的面积.19.(2021·浙江·高一单元测试)在①22(sin sin )sin sin sin B C A B C -=-,②sin sin 2B Cb a B +=,③sin cos()6a Bb A π=-这三个条件中任选一个,补充在下面问题中并作答.问题:ΔABC 的内角,,A B C 的对边分别为,,a b c 2b c +=,______,求A 和C . 注:若选择多个条件作答,按第一个解答计分.20.(2021·重庆第二外国语学校高一月考)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 5A =. (1)若ABC 的面积为3,求AB AC ⋅的值;(2)设2sin ,12B m ⎛⎫= ⎪⎝⎭,cos ,cos 2B n B ⎛⎫= ⎪⎝⎭,且//m n ,求()sin 2B C -的值.21.(2021·福建省建瓯市芝华中学高一月考)如图,在平行四边形ABCD 中, 4AB =,2AD =,60BAD ︒∠=,E , F 分别为AB , BC 上的点,且2AE EB =, 2=CF FB .(1)若DE x AB y AD =+,求 x ,x 的值; (2)求AB DE ⋅的值; (3)求cos BEF ∠.22.(2021·全国·高一课时练习)已知函数2()cos 22f x x x π⎛⎫=--+ ⎪⎝⎭(1)求函数f (x )的单调性;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2A f ⎛⎫= ⎪⎝⎭,a =c =1,求△ABC 的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、多选题1.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=2.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,236A a c π===,则角C 的大小是( ) A .6π B .3π C .56π D .23π 3.在ABC 中,3AB =,1AC =,6B π=,则角A 的可能取值为( )A .6π B .3π C .23π D .2π 4.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( ) A .8+33 B .83161+C .8﹣33D .83161-5.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AF CE G =,则( )A .12AF AD AB =+ B .1()2EF AD AB =+ C .2133AG AD AB =- D .3BG GD =6.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )A .2OA OD ⋅=-B .2OB OH OE +=-C .AH HO BC BO ⋅=⋅D .AH 在AB 向量上的投影为2-7.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若a b >,则sin sin AB >B .若sin 2sin 2A B =,则ABC 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形D .若2220a b c +->,则ABC 是锐角三角形 8.给出下列命题正确的是( ) A .一个向量在另一个向量上的投影是向量 B .a b a b a +=+⇔与b 方向相同 C .两个有共同起点的相等向量,其终点必定相同D .若向量AB 与向量CD 是共线向量,则点,,,A B C D 必在同一直线上 9.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=10.在下列结论中,正确的有( )A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等11.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-12.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( )A .a b c +=B .a d b +=C .b d a +=D .a b c +=13.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =14.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=- 15.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反 C .若a b a b +=-,则a 与b 有相等的模 D .若a b a b -=-,则a 与b 方向相同二、平面向量及其应用选择题16.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=A BC .2D .317.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心B .垂心C .外心D .内心18.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定D .若||b →确定,则θ唯一确定19.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=B .1a b ⋅=C .a b =D .0a b ⋅=20.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )344321.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m22.在ABC ∆中,设222AC AB AM BC -=⋅,则动点M 的轨迹必通过ABC ∆的( ) A .垂心B .内心C .重心D . 外心23.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定24.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ⋅=⋅≠,则a b =C .若,,,A B CD 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ⋅>,则a 与b 的夹角为锐角;若0a b ⋅<,则a 与b 的夹角为钝角 25.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( ) A .(-8,1) B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫⎪⎝⎭D .(8,-1)26.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形D .不确定27.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )2228.在矩形ABCD 中,3,3,2AB BC BE EC ===,点F 在边CD 上,若AB AF 3→→=,则AE BF→→的值为( ) A .0B .83C .-4D .429.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形30.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为 A .5B .10C .4D .531.已知菱形ABCD 边长为2,∠B =3π,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( ) A .12B .-12C .13D .-1332.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( ) A .73B .273C .2D .21 33.如图,在ABC 中,14AD AB →→=,12AE AC →→=,BE 和CD 相交于点F ,则向量AF →等于( )A .1277AB AC →→+B .1377AB AC →→+C .121414AB AC →→+ D .131414AB AC →→+ 34.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( )A .(-∞B .)+∞C .(-∞D .)+∞35.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .72【参考答案】***试卷处理标记,请不要删除一、多选题 1.BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, ., 解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断 【详解】解:A .向量数量积不满足结合律,故A 错误,B .1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD , 故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.2.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】由正弦定理可得sin sin a c A C =,所以sin sin 2c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=,∴ sin sin 2c C A a ==,而a c <,∴ A C <, ∴566C ππ<<, 故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.3.AD 【分析】由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】 本题考查余弦解析:AD 【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可. 【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅,即2132BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π. 故选:AD 【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.4.AC 【分析】利用余弦定理:即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:, 即,解得. 故选:AC 【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC 【分析】利用余弦定理:2222cos b a c ac B =+-即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:2222cos b a c ac B =+-,即216310a a -+=,解得8a = 故选:AC 【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.5.AB 【分析】由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误 【详解】 ,即A 正确 ,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有 ∴,即C 错误 同理 ,解析:AB 【分析】由向量的线性运算,结合其几何应用求得12AF AD AB =+、1()2EF AD AB =+、2133AG AD AB =+、2BG GD =,即可判断选项的正误 【详解】 1122AF AD DF AD DC AD AB =+=+=+,即A 正确 11()()22EF ED DF AD DC AD AB =+=+=+,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有||||1 ||||2 GF GEAG CG==∴211121()333333AG AE AC AD AB BC AD AB =+=++=+,即C错误同理21212()() 33333BG BF BA BC CF BA AD AB =+=++=-211()333DG DF DA AB DA=+=+,即1()3GD AD AB=-∴2BG GD=,即D错误故选:AB【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系6.AB【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果.【详解】图2中的正八边形,其中,对于;故正确.对于,故正确.对于,,但对应向量的夹角不相等,所以不成立.故错误.对于解析:AB【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果.【详解】图2中的正八边形ABCDEFGH,其中||1OA=,对于32:11cos4A OA ODπ=⨯⨯=;故正确.对于:22B OB OH OA OE+==-,故正确.对于:||||C AH BC=,||||HO BO=,但对应向量的夹角不相等,所以不成立.故错误.对于:D AH 在AB 向量上的投影32||cos||4AH AH π=-,||1AH ≠,故错误. 故选:AB .【点睛】 本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.7.AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判解析:AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误.【详解】对选项A ,2sin 2sin sin sin a b r A r B A B >⇒>⇒>,故A 正确;对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =⇒= 所以A B =或2A B π+=,则ABC 是等腰三角形或直角三角形.故B 错误;对选项C ,因为cos cos a B b A c -=,所以()sin cos sin cos sin sin A B B A C A C -==+,sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,因为sin 0B ≠,所以cos 0A =,2A π=,ABC 是直角三角形,故③正确; 对D ,因为2220a b c +->,所以222cos 02a b c A ab +-=>,A 为锐角. 但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误.故选:AC【点睛】本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.8.C【分析】对A ,一个向量在另一个向量上的投影是数量;对B ,两边平方化简;对C ,根据向量相等的定义判断;对D ,根据向量共线的定义判断.【详解】A 中,一个向量在另一个向量上的投影是数量,A解析:C【分析】对A ,一个向量在另一个向量上的投影是数量;对B ,两边平方化简a b a b +=+;对C ,根据向量相等的定义判断;对D ,根据向量共线的定义判断.【详解】 A 中,一个向量在另一个向量上的投影是数量,A 错误;B 中,由a b a b +=+,得2||||2a b a b ⋅=⋅,得||||(1cos )0a b θ⋅-=,则||0a =或||0b =或cos 1θ=,当两个向量一个为零向量,一个为非零向量时,a 与b 方向不一定相同,B 错误;C 中,根据向量相等的定义,且有共同起点可得,其终点必定相同,C 正确;D 中,由共线向量的定义可知点,,,A B C D 不一定在同一直线上,D 错误.故选:C【点睛】本题考查了对向量共线,向量相等,向量的投影等概念的理解,属于容易题. 9.ABD【分析】 首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确, ,所以D 正确.故选:ABD解析:ABD【分析】首先理解a a表示与向量a 同方向的单位向量,然后分别判断选项. 【详解】a a 表示与向量a 同方向的单位向量,所以1a a=正确,//a a a 正确,所以AB 正确,当a不是单位向量时,aaa=不正确,cos0aa aa a a aa a a⋅==⨯=,所以D正确.故选:ABD【点睛】本题重点考查向量aa的理解,和简单计算,应用,属于基础题型,本题的关键是理解aa表示与向量a同方向的单位向量.10.BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确解析:BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确;C. 相等向量方向相同,模相等,正确;D. 相反向量方向相反,模相等,故正确;故选:BCD【点睛】本题考查了向量的定义和性质,属于简单题.11.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A选项,,A选项错误;对于B选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B选项错误;对于C选项,解析:AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.故选:AB.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题. 12.ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知成立,故也成立;由向量加法的三角形法则,知成立,不成立.故选:ABD【点睛】本题主要考查 解析:ABD【分析】根据平行四边形及向量的加法法则即可判断. 【详解】 由向量加法的平行四边形法则,知a b c +=成立, 故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立.故选:ABD【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.13.ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等, 解析:ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确.故选:ABD【点睛】本小题主要考查向量数乘运算,属于基础题.14.AB【分析】若,则反向,从而;若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立.【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得;对于选解析:AB【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=;若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立.【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-; 对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ; 对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB.本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.15.ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有.当同向时解析:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.二、平面向量及其应用选择题16.D【详解】由余弦定理得,解得(舍去),故选D.余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!17.B【分析】先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心.【详解】由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,则()()()0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-=即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即有,,PA CB PB CA PC AB ⊥⊥⊥,则点P 为三角形ABC 的垂心.故选:B.【点睛】本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 18.B【分析】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a a θ⋅==时,222min 244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案. 【详解】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈, 所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1, 所以2||b ta -的最小值也为1,即222min 244()()14a b a b f t a-⋅==,222||cos 1b b θ-=, 所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题.19.C【分析】取,a b 夹角为3π,计算排除ABD ,得到答案. 【详解】取,a b 夹角为3π,则0a b -≠,12a b ⋅=,排除ABD ,易知1a b ==. 故选:C .【点睛】本题考查了单位向量,意在考查学生的推断能力.20.A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan 2C ,从而求得tan C .【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-, 又222sin 2sin cos 1222a b c ab C ab C C ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---, 故选:A .【点睛】 本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.21.D【分析】由正弦定理确定BC 的长,再tan30ABBC 求出AB .【详解】 15BCD ∠=︒,45BDC ∠=︒120CBDsin 45BC 302sin 45203sin120BC3tan 3020320ABBC故选D 【点睛】 本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题. 22.D【分析】 根据已知条件可得()222AC AB AC AB BC AM BC -=+⋅=⋅,整理可得()0BC MC MB ⋅+=,若E 为BC 中点,可知BC ME ⊥,从而可知M 在BC 中垂线上,可得轨迹必过三角形外心.【详解】 ()()()222AC AB AC AB AC AB AC AB BC AM BC -=+⋅-=+⋅=⋅ ()20BC AC AB AM ∴⋅+-=()()0BC AC AM AB AM BC MC MB ⇒⋅-+-=⋅+=设E 为BC 中点,则2MC MB ME += 20BC ME ∴⋅= BC ME ⇒⊥ME ⇒为BC 的垂直平分线M ∴轨迹必过ABC ∆的外心本题正确选项:D【点睛】本题考查向量运算律、向量的线性运算、三角形外心的问题,关键是能够通过运算法则将已知条件进行化简,整理为两向量垂直的关系,从而得到结论. 23.C【分析】利用平面向量的数量积的运算性质可得(CA CB + 2222)()0CA CB CA CB b a -=-=-=,从而可得答案.【详解】解:在ABC 中,(CA CB + 2222)()0CA CB CA CB b a -=-=-=, a b ∴=,ABC ∴为等腰三角形,故选:C .【点睛】本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题. 24.C【分析】根据平面向量的定义与性质,逐项判断,即可得到本题答案.【详解】因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ⋅=⋅≠,但a b ≠,故B 不正确;,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,所以AB DC =,故C 正确;0a b ⋅>时,,a b 的夹角可能为0,故D 不正确.故选:C【点睛】本题主要考查平面向量的定义、相关性质以及数量积.25.B【分析】由向量相等的坐标表示,列方程组求解即可.【详解】解:设P(x ,y ),则MP = (x -3,y +2),而12MN =12(-8,1)=14,2⎛⎫- ⎪⎝⎭, 所以34122x y -=-⎧⎪⎨+=⎪⎩,解得132x y =-⎧⎪⎨=-⎪⎩,即31,2P ⎛⎫-- ⎪⎝⎭, 故选B.【点睛】本题考查了平面向量的坐标运算,属基础题.26.B【分析】根据向量运算可知三角形中中线与垂线重合,可知三角形为等腰三角形,即可确定三角形形状.【详解】因为AB AC BA BC →→→→⋅=⋅,所以0AB AC BC →→→⎛⎫⋅+= ⎪⎝⎭, 即0AB CA CB →→→⎛⎫⋅+= ⎪⎝⎭, 所以在ABC 中,AB 与AB 边上的中线垂直,则CA CB →→=,同理0BC AC AB →→→⎛⎫⋅+= ⎪⎝⎭,AC AB →→=,所以AC AB CB →→→==,ABC 是等边三角形. 故选:B 【点睛】本题主要考查了向量的数量积,向量垂直,考查了运算能力,属于中档题. 27.A 【分析】根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解. 【详解】由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点, 根据OA 与OB 在OC 方向上的投影相同,则OA OC OB OC OCOC⋅⋅=,即OA OC OB OC ⋅=⋅,可得4152415a +⨯=⨯-⨯,解得12a =-. 故选:A. 【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力. 28.C 【分析】先建立平面直角坐标系,求出B,E,F 坐标,再根据向量数量积坐标表示得结果. 【详解】 如图所示,AB AF2232,3cos 1133BE EC BE BC AF DF α=⇒==→→=⇒=⇒=.以A 为原点建立平面直角坐标系,AD 为x 轴,AB 为y 轴,则())0,3,,3B FE ⎫⎪ ⎪⎝⎭,因此)BFAEBF232,23264→=-→→=⨯=-=-,故选C.【点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ⋅=⋅;二是坐标公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. 29.D 【分析】由已知22:tan :tan a b A B =,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断. 【详解】∵22:tan :tan a b A B =,由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A A BB B B B B AB===, ∵sin sin B 0A ≠,∴sin cos sin cos A BB A=, ∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈, ∴22A B =或22A B π+=, ∴A B =或2A B π+=,即三角形为等腰或直角三角形,故选D . 【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.30.B 【分析】先根据向量的模将||+||m n n +转化为关于||n 的函数,再利用导数求极值,研究单调性,进而得最大值. 【详解】()22224419||=1||3m m n m n n m n =+∴+=+⋅+=,,,22n m n +⋅=,()2222=52-m nm m n n n ∴+=++⋅,25||+||m n n n n ∴+=-+,令()(0x x f x x n =<≤=,则()'1f x =,令()'0f x =,得x =∴当0x << ()'0f x >x << ()'0f x <, ∴当2x =时, ()f x 取得最大值2f ⎛= ⎝⎭,故选B.【点睛】向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 31.A 【分析】根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论. 【详解】法一:由题意可得BA ·BC =2×2cos3π=2, BD ·CP =(BA +BC )·(BP -BC ) =(BA +BC )·[(AP -AB )-BC ] =(BA +BC )·[(λ-1)·AB -BC ] =(1-λ) BA 2-BA ·BC +(1-λ)·BA ·BC -BC 2 =(1-λ)·4-2+2(1-λ)-4 =-6λ=-3, ∴λ=12,故选A. 法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,),D (-13.令P (x,0),由BD ·CP =(-33)·(x -13=-3x +3-3=-3x =-3得x =1. ∵AP =λAB ,∴λ=12.故选A. 【点睛】1.已知向量a ,b 的坐标,利用数量积的坐标形式求解. 设a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2. 2.通过建立平面直角坐标系,利用数量积的坐标形式计算. 32.C 【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值. 【详解】()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立. 故选:C . 【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力. 33.B 【分析】过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,由平行线得出三角形相似,得出线段成比例,结合14AD AB →→=,12AE AC →→=,证出37AM AC →→=和17AN AB →→=,最后由平面向量基本定理和向量的加法法则,即可得AB →和AC →表示AF →.【详解】解:过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,已知14AD AB →→=,12AE AC →→=,//FN AC ,则MFE ABE △△和MCF ACD △△, 则:MF ME AB AE =且MF MCAD AC=, 即:2MF ME AB AC=且14MF MC AC AB =,所以124MCMF ME AB AC AC ==, 则:8MC ME =,所以37AM AC =,解得:37AM AC →→=,同理//FM AB ,NBF ABE △△和NFD ACD △△,则:NF NB AE AB =且NF NDAC AD =, 即:12NF NB AB AC =且14NF ND AC AB=,所以142NBNF ND AC AB AB ==, 则:8NB ND =,即()8AB AN AD AN -=-,所以184AB AN AB AN ⎛⎫-=- ⎪⎝⎭,即28AB AN AB AN -=-,得:17AN AB =, 解得:17AN AB →→=,四边形AMFN 是平行四边形,∴由向量加法法则,得AF AN AM →→→=+,所以1377AF AB AC →→→=+.故选:B.【点睛】本题考查平面向量的线性运算、向量的加法法则和平面向量的基本定理,考查运算能力. 34.A 【分析】不等式a c b d T -+-≥恒成立,即求a c b d -+-最小值,利用三角不等式放缩+=+()a c b d a c b d a b c d -+-≥---+,转化即求+()a b c d -+最小值,再转化为等边三角形OAB 的边AB 的中点M 和一条直线上动点N 的距离最小值. 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值得解. 【详解】1a b ==,12a b ⋅=,易得,3a b π<>= 设,,,OA a OB b OC c OD d ====,AB 中点为M ,CD 中点为N 则,A B 在单位圆上运动,且三角形OAB 是等边三角形,(.1),(,1)1CD C m m D n n k ,CD 所在直线方程为10x y +-=因为a c b d T -+-≥恒成立,+=+()a c b d a c b d a b c d -+-≥---+,(当且仅当a c -与b d -共线同向,即a b +与c d +共线反向时等号成立)即求+()a b c d -+最小值.+()=()()a b c d OA OB OC OD -++-+=22=2OM ON NM -三角形OAB 是等边三角形,,A B 在单位圆上运动,M 是AB 中点,∴ M 的轨迹是以原点为圆心,半径为32的一个圆.又N 在直线方程为10x y +-=上运动,∴ 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值此时M 到直线10x y +-=的距离32MN232T NM故选:A 【点睛】本题考查平面向量与几何综合问题解决向量三角不等式恒成立.平面向量与几何综合问题的求解坐标法:把问题转化为几何图形的研究,再把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. 35.B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||222PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.。

相关文档
最新文档