中考数学较难典型选择题模拟(4)附答案

合集下载

2020年湖南省长沙市教科院中考数学模拟试卷(四)含答案解析

2020年湖南省长沙市教科院中考数学模拟试卷(四)含答案解析

2020年湖南省长沙市教科院中考数学模拟试卷(四)一、选择题(在下列各題的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.(3分)下列实数中,最小的是()A.3B.C.D.02.(3分)据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×10113.(3分)下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x104.(3分)在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.5.(3分)如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°6.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体7.(3分)某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、68.(3分)《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米9.(3分)如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB 长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD =3,则BC长是()A.7B.8C.12D.1310.(3分)“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.2011.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16 12.(3分)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0二、填空题(本大捱共6个小®,每小S3分,共|K分)13.(3分)在函数y=中,自变量x的取值范围是.14.(3分)分解因式:x2y+2xy+y=.15.(3分)不等式组的解集是.16.(3分)两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为.17.(3分)如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为.18.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣|2﹣|+()﹣2﹣2sin60°20.(6分)先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a 的值代入求值.21.(8分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.22.(8分)如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE ∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.23.(9分)上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)24.(9分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?25.(10分)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)将(2)中的抛物线向右平移m(3≤m≤6)个单位,与x轴的两个交点分别为A(x1,0),B(x2,0),若=+,求M的取值范围.26.(10分)如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BEC的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.2020年湖南省长沙市教科院中考数学模拟试卷(四)参考答案与试题解析一、选择题(在下列各題的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.(3分)下列实数中,最小的是()A.3B.C.D.0【分析】先比较各个数的大小,再得出选项即可.【解答】解:∵3>,∴最小的数是0,故选:D.【点评】本题考查了实数的大小比较和算术平方根,能熟记有理数的大小比较法则的内容是解此题的关键.注意:正数都大于0.2.(3分)据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8000000000000=8×1012,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x10【分析】直接利用幂的乘方运算法则以及积的乘方运算法则、单项式乘以单项式运算法则分别判断得出答案.【解答】解:A、3y3•5y4=15y7,故此选项不合题意;B、(a3)2=(a2)3,正确;C、(ab5)2=a2b10,故此选项不合题意;D、(﹣x)4•(﹣x)6=x10,故此选项不合题意;故选:B.【点评】此题主要考查了幂的乘方运算以及积的乘方运算、单项式乘以单项式运算,正确掌握相关运算法则是解题关键.4.(3分)在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:∵袋子中球的总个数为3+4=7(个),其中黑球有4个,∴摸出黑球的概率是,故选:C.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.5.(3分)如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°【分析】根据平行线的性质可得∠AED,结合对顶角可求得∠CEF,可得出答案.【解答】解:∵AB∥CD,∴∠AED=180°﹣∠A=135°,又∵∠CEF和∠AED为对顶角,∴∠CEF=135°.故选:A.【点评】本题主要考查平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.6.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.【解答】解:由主视图和俯视图可得几何体为三棱柱,故选:B.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.7.(3分)某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、6【分析】根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选:D.【点评】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.8.(3分)《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米【分析】首先求得半径的长,然后利用扇形面积公式S=lr求解即可.【解答】解:∵径长(两段半径的和)为16米,∴半径长为8米,∵下周长(弧长)为30米,∴S═lr=×30×8=120平方米,故选:A.【点评】本题考查了扇形的面积的计算及弧长的计算公式,解题的关键是了解计算公式,难度不大.9.(3分)如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB 长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD =3,则BC长是()A.7B.8C.12D.13【分析】由尺规作图可知,MN是线段AB的垂直平分线,即可得出DA=DB=5,依据CD的长即可得到BC=CD+BD=8.【解答】解:由尺规作图可知,MN是线段AB的垂直平分线,∴DA=DB=5,又∵CD=3,∴BC=CD+BD=3+5=8,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.(3分)“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.20【分析】作BF⊥DE于F,AH⊥BF于H,根据等腰直角三角形的性质求出AH,根据正切的定义用EF表示出CF、BF,根据题意列式求出EF,结合图形计算,得到答案.【解答】解:作BF⊥DE于F,AH⊥BF于H,∵∠EBF=45°,∴∠ABH=45°,∴AH=BH=8×=4,在Rt△ECF中,tan∠ECF=,则CF=EF,在Rt△EBF中,∠EBF=45°,∴BF=EF,由题意得,EF﹣EF=10,解得,EF=5+5,则DE=EF+DF=5+5+4≈19,故选:C.【点评】本题考查的是解直角三角形的应用﹣仰角俯角、坡度坡角问题,掌握仰角俯角、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.11.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:C.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.12.(3分)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0【分析】当点M在AB上运动时,MN⊥MC交y轴于点N,此时点N在y轴的负半轴移动,定有△AMC∽△NBM;只要求出ON的最小值,也就是BN最大值时,就能确定点N 的坐标,而直线y=kx+b与y轴交于点N(0,b),此时b的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.【解答】解:连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.【点评】综合考查相似三角形的性质、二次函数的性质、二次函数的最值以及一次函数的性质等知识;构造相似三角形、利用二次函数的最值是解题的关键所在.二、填空题(本大捱共6个小®,每小S3分,共|K分)13.(3分)在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)不等式组的解集是x≤﹣2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤﹣1,得:x≤﹣2,解不等式﹣x+7>4,得:x<3,则不等式组的解集为x≤﹣2,故答案为:x≤﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(3分)两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为11.【分析】根据平均数的计算公式先求出m、n的值,再根据极差的定义即可得出答案.【解答】解:∵两组数据m,6,n与1,m,2n,7的平均数都是8,∴,解得:,故将这两组数据合并成一组数据为:12,6,6,1,12,12,7,则极差为:12﹣1=11.故答案为:11.【点评】本题考查了极差、算术平均数,解答本题的关键是明确题意,求出m、n的值.17.(3分)如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为16.【分析】首先证明OE=BC,再由AE+EO=4,推出AB+BC=8即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故答案为:16.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.18.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有①②③.【分析】①由抛物线的开口方向确定a的正负号,再由对称轴的位置,确定b的正负号,由抛物线与y轴的交点位置,确定c的正负号;②根据抛物线的顶点坐标公式用a表示b和c,再代入5a﹣b+c中,便可得由a的取值范围确定代数5a﹣b+c的正负;③把y=ax2+bx+c=0中,b、c换成a,再解方程便可得判断正误;④分别求出方程ax2+bx+c=1和ax2+bx+c=﹣1的两根和,便可求得原方程四根之和.【解答】解:∵抛物线的开口向上,则a>0,对称轴在y轴的左侧,则b>0,交y轴的负半轴,则c<0,∴abc<0,所以①结论正确;∵抛物线的顶点坐标(﹣2,﹣9a),∴﹣=﹣2,=﹣9a,∴b=4a,c=﹣5a,∴5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②结论正确;∵抛物线y=ax2+bx+c=ax2+4ax﹣5a,当y=0时,ax2+4ax﹣5a=0,即a(x+5)(x﹣1)=0,∴x=﹣5或1,∴方程ax2+bx+c=0的两个根x1=﹣5,x2=1,故结论③正确;若方程|ax2+bx+c|=1有四个根,设方程ax2+bx+c=1的两根分别为x1,x2,则=﹣2,可得x1+x2=﹣4,设方程ax2+bx+c=﹣1的两根分别为x3,x4,则=﹣2,可得x3+x4=﹣4,所以这四个根的和为﹣8,故结论④错误,故答案为①②③.【点评】本题考查二次函数的性质、二次函数图象上的点的特征、抛物线与坐标轴的交点问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣|2﹣|+()﹣2﹣2sin60°【分析】首先计算乘方,然后计算加减,即可.【解答】解:原式=3﹣(2﹣)+4﹣2×=3﹣2++4﹣=5.【点评】本题主要考查了实数的运算,以及求特殊角的锐角三角函数值,正确理解负指数次幂的含义,是解题的关键.20.(6分)先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a 的值代入求值.【分析】直接利用分式的加减运算法则将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【解答】解:原式=,=,=∵从﹣2≤a<2的范围内选取一个合适的整数,∴当a=﹣2时,原式=.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.21.(8分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).【点评】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.22.(8分)如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE ∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】(1)证明:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)解:过A作AH⊥BC于点H,如图所示:∵∠BAC=90°,AB=3,BC=5,∴AC===4,∵S△ABC=BC•AH=AB•AC,∴AH===,∵点E是BC的中点,BC=5,四边形AECD是菱形,∴CD=CE=,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.【点评】本题考查了菱形的判定和性质、平行四边形的判定、勾股定理、三角形面积计算等知识;熟练掌握菱形的判定和性质是解题的关键.23.(9分)上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)【分析】(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意列式计算而得到结果,并检验是原方程的解,而求得.(2)设售价为每千克a元,求得关系式,又由630a ≥7500×1.26,而解得.【解答】解:(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果共购进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.【点评】本题考查了分式方程的应用,由已知条件列方程,并根据自变量的变化范围来求值.24.(9分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是①②④(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?【分析】(1)根据定义添加一组邻边相等即可;(2)先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;(3)由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC=3,A′C′=AC=5,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论.【解答】解:(1)AB=BC或BC=CD或AD=CD或AB=AD.答案:AB=AD.(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③不正确,理由为:有两个内角为直角的“等邻边四边形”不是平行边形时,该结论不成立;④正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;再由由一内角是直角的菱形为正方形推知,④的说法正确.故答案是:①②④;(3)∵∠ABC=90°,AB=4,BC=3,∴AC=5,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC=3,A′C′=AC=5,(I)如图1,当AA′=AB时,BB′=AA′=AB=4;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=5;(III)当A′C′=BC′=5时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=BD,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+C′D2=BC′2∴x2+(x+1)2=52,解得:x1=3,x2=﹣4(不合题意,舍去),∴BB′=x=3(Ⅳ)当BC′=AB=4时,如图4,与(Ⅲ)方法一同理可得:BD2+C′D2=BC′2,设B′D=BD=x,则x2+(x+1)2=32,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;综上所述,要使平移后的四边形ABC′A′是“等邻边四边形”应平移3或.。

2012年初三年级下学期沈阳市第20中学中考数学仿真模拟及答案(4)

2012年初三年级下学期沈阳市第20中学中考数学仿真模拟及答案(4)

图3图2主视图左视图 俯视图A BOM图12012年中考仿真模拟(四)数 学 试 卷 2012.3注意事项:1、本卷共8页,总分120分,考试时间120分钟。

2、答题前请将密封线左侧的项目填写清楚。

卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题,1—6小题,每小题2分;7—12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中是正整数的是……………………………………………………………【 】A .1-B .2)2(- C .15- D 2.检测4袋食盐,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,下列检测结果中,最接近标准质量的是……………………………………………【 】A .+2.1B .+0.7C .-0.8D .-3.2 3.如图1,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB , 则sin ∠AOB 的值等于……………………………………【 】A.12B. 2C. 24. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是……【 】 A .14cm B .15cm C .16cm D . 16cm 或17cm 5.四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差s 2如表所示.如果选出一个成绩较好且 状态稳定的人去参赛,那么应选…………【 】A .甲B .乙C .丙D .丁 6.有3人携带装修材料乘坐电梯,这3人的体重共200kg ,每捆材料重20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载材料( )捆.【 】 A .41 B .42 C .43 D .447.一个几何体的三视图如图2,其中主视图、左视图、都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为………………………………………【 】 A .12π B .2π C . 4π D .8π绝密★启用前8.如图3,AD AC 、分别是O ⊙的直径和弦,且30CAD ∠=︒,OB AD ⊥,交AC 于点B ,若OB =2,则BC 的长等于…………………………………………………【 】 A .2. B .3. C.4 D.9.为了参加2012年石家庄我市举办的铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.设自行车路段的长度为x 米,长跑路段的长度y 米,下面所列方程组正确的是…………………………………【 】A. 5000,15.600200x y x y +=⎧⎪⎨+=⎪⎩B. 5,15.600200x y x y+=⎧⎪⎨+=⎪⎩ C. 5000,15.60020060x y x y +=⎧⎪⎨+=⎪⎩ D. 5,15.62x y x y+=⎧⎪⎨+=⎪⎩ 10. 如图4,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为………………………………………【 】A .y =3B .y =5xC .y =10xD .y =12x11. 如图5,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为……………………………………【 】 A .2 B .3 C .4 D .512.如图6,直线l 是菱形ABCD 和矩形EFGH 的对称轴,C 点在EF 边上,若菱形ABCD 沿直线l 从左向右匀速运动,运动到C 在GH 边上为止,在整个运动的过程中,菱形与矩形重叠部分的面积(S )与运动的路程(x卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.函数y =x 的取值范围是 .14.已知关于x 的方程x 2+bx +a =0的一个根是-a (a ≠0),则a -b 值为 .15.如图7,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为 .16.在边长为1的小正方形组成的44⨯网格中,有如图8所示的A 、B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为 . 17. 如图9,AB 是⊙O 的切线,半径OA =2,OB 交⊙O 于C , ∠B =30°,则劣弧AC 的长是 .(结果保留π)ABCDBAOC图9AB图8A BOC D 图7l 图6 A B C D E F 图5图1018.如下图,观察每一个图中黑色正六边形的排列规律,则第n 个图中黑色正六边形有 个.第1个图 第2个图 第3个图 三、解答题(本大题8个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)先化简,再求值:2(2)2()()()a a b a b a b a b -++-++,其中22a b =-=. 20.(本小题满分8分)如图10,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系.(1)点A 的坐标为 ,点C 的坐标为 .(2)将△ABC 向左平移7个单位,请画出平移后的△A 1B 1C 1.若M 为△ABC 内的一点,其坐标为(a ,b ),则平移后点M 的对应点M 1的坐标为 .(3)以原点O 为位似中心,将△ABC 缩小,使变换后得到的△A 2B 2C 2与△ABC 对应边的比为1∶2.请在网格内画出△A 2B 2C 2,并写出点A 2的坐标: .21.(本小题满分8分)某太阳能热水器经销商在六周内试销A ,B 两个品牌的太阳能热水器,试销期间两种品牌的销量相同,试销结束后,依据统计数据绘制了以下尚不完整的统计图表.(1)在图11-1中,“第五周”所在扇形的圆心角等于 °; (2)在图11-2中补全A 品牌销量折线图,画出B 品牌销量折线图. (3)请分别写出A ,B 两种品牌太阳能热水器周销售量的中位数.(4)如果该经销商决定从这两种品牌中挑选一种作为该品牌的一级代理商,请结合折线的走势进行简要分析,判断该经销商应选择代理哪种品牌的太阳能热水器?22.(本小题满分8分) 石家庄市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这A 品牌销量扇形统计图 图11-1 A 品牌销量折线统图11-2销售/台 时间/周 第六周 第五周 第四周 第三周 第二周 第一周A BC ED 图12-2FA B C E D 图12-1 一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来. 23.(本小题满分9分)数学课上,老师出示了如下框中的题目.小明与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论 当点E 为AB 的中点时,如图12-1,确定线段AE 与DB 的大小关系.请你直接写出结论:AE _______DB (填“>”,“<”或“=”).(2)特例启发,解答题目解:猜测题目中,AE 与DB 的大小关系是:AE _______DB (填“>”,“<”或“=”), 理由如下.如图12-2,过点E 作EF∥BC ,交AC 于点F .(请你完成以下解答过程) (3)拓展结论,设计新题 在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED =EC .若△ABC 的边长为3,AE =1,求CD 的长(请你直接写出结果). 24.(本小题满分9分)如图13-1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图13-2),然后用这条平行四边形纸带按如图13-3 的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图13-2中,计算裁剪的角度∠BAD ;(2)计算按图13-3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.在等边三角形ABC 中,点E 在AB 上, 点D 在CB 的延长线上,且ED =EC ,如图. 试确定线段AE 与DB 的大小关系,并说明 理由.A BCED图13-1 C N D B M A 图13-2 图13-325.(本小题满分10分)由于受金融危机的影响,石家庄某店经销的甲型号手机今年的售价比去年每部降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每部售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每部进价为1000元,乙型号手机每部进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值? 26.(本小题满分12分)如图14,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P 、Q 分别从点A 、B 同时出发,运动速度均为1cm/s ,动点P 沿A →B →C →E 的方向运动,到点E 停止;动点Q 沿B →C →E →D 的方向运动,到点D 停止,设运动时间为x s ,△PAQ 的面积为y cm 2.(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x =2s 时,y =_________cm 2;当x = 9 2s 时,y =_________cm 2;(2)当5≤x ≤14时,求y 与x 之间的函数关系式;(3)当动点P 在线段BC 上运动时,求出使y = 415S 梯形ABCD 的x 的值;(4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.图14CDA B E备用图图12012年中考仿真模拟(四)数学试卷参考答案13.12x ≥-; 14.1-; 15.90°; 16.625; 17.23π; 18.2n . 三、解答题(本大题共8个小题;共72分) 19.原式22222=2222,a ab a b a ab b -+-+++22=4,a b ---------------------------------------5分当2a b ==时,原式22=4(2⨯-20.解:(1)(2,6) (6,4);-------------2分 (2)如图1,--------------------------3分 (7a b -,);-------------------------4分 (3)如图1,两种情况,-----------------6分 (13--,)或(1,3)-----------------------8分 21.解:(1)90°;---------------------1分 (2)折线图如图2所示;----------------4分 (3)A 品牌太阳能热水器周销售量的中位数为:按大小排列后,第3个数与第4个数是8和10, ∴A 的中位数是:(8+10)÷2=9,----------5分 B 品牌太阳能热水器周销售量的中位数为:按大小排列后,第3个数与第4个数是12和8, ∴B 的中位数是:(8+12)÷2=10;---------6分 (4)A 的周销售折线图整体呈上升趋势,而B 的周销售折线图从第三周以后一直呈下降趋势,所以商店应选择代理A 品牌的太阳能热水器.----------8分 22.(1)设甲工程队每天能铺设x 米,则乙工程队每天能铺设(x -20)米. 根据题意得:35025020x x =-.--------------2分 解得:x =70,经检验, x =70是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米. ---------------------4分(2)设分配给甲工程队y 米,则分配给乙工程队(1000-y )米.由题意,得10,70100010.50yy ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤.--------------------6分∵y 以百米为单位,∴分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米; 方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.------------8分A 、B 品牌销量折线统计图图223.解:(1)=.----------------------------------------------2分 (2)=.----------------------------------------------------3分证明:如图3,在等边三角形ABC 中,∠ABC =∠ACB =∠A =60°,AB =BC =AC ,∵EF ∥BC ,∴∠AEF =∠AFE =60°=∠A , ∴△AEF 是等边三角形,∴AE =AF =EF , ∴AB -AE =AC -AF ,即BE =CF .∵ED =EC ,∴∠D =ECB . 又∵∠ABC =∠D +∠BED =60°,∠ACB =∠ECB +∠FCE =60°, ∴∠BED =∠FCE ,∴△DBE ≌△EFC ,∴DB =EF ,∴AE =DB .----------------------------------------7分 (3)4或2.-------------------------------------------------9分 24.(1)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30. ∵纸带宽为15,∴AM =15,-------------------------------------2分 ∵平行四边形ABCD 中, AD ∥BC , ∴∠DAB =∠ABM . ∴在Rt △ABM 中,sin ∠DAB =sin ∠ABM =151302AM AB==, ∴∠DAB =30°.-------4分(2)在图12-3中,将三棱柱沿过点A 的侧棱剪开,得到如图4-1的侧面展开图,将图4-1中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图4-2中的平行四边形AQCP ,此平行四边形即为图12-2中的平行四边形ABCD , 矩形纸带的长即为图4-2中矩形SQTP 的长.------------------------------------------6分 图3-2中,由题意知:AQ = EF = CP =30, 在Rt △AQF 中, QF = CF =cos30AQ=在Rt △CTP 中,CT =cos3015CP =∴所需矩形纸带的长为QF + CF +CT=2⨯=cm .--------------9分25.解:(1由题意得:80000x +500 = 60000x,解得x =1500.经检验x =1500是方程的解.∴今年甲型号手机每部售价为1500元.---------------------------------3分 (2)设购进甲型号手机m 部,由题意得:17600≤1000m +800(20-m )≤18400, 解得8≤m ≤12.∵m 只能取整数,∴m 取8、9、10、11、12,共有5种进货方案.------------6分 (3)方法一:设总获利W 元,则:W =(1500-1000)m +(1400-800-a )(20-m ) =( a -100)m +12000-20a . ∴当a =100时,(2)中所有的方案获利相同.---------------------------10分 方法二:由(2)知,当m =8时,有20-m =12.P C E图4-1A BCE D F图3此时获利y1=(1500-1000)×8+(1400-800-a)×12=4000+(600-a)×12.当m=9时,有20-m=11.此时获利y2=(1500-1000)×9+(1400-800-a)×11=4500+(600-a)×11.由于获利相同,则有y1=y2,即4000+(600-a)×12=4500+(600-a)×11,解得a=100.∴当a=100时,(2)中所有方案获利相同.----------------------------10分26.解:(1)2 , 9 .---------------------------------------------2分(2)如图5-1,当5≤x≤9时,y=S梯形ABCQ-S△ABP-S△PCQ=12(5+x-4)×4-12×5(x-5)-12(9-x)(x-4)=12x2-7x+652.即y=12x2-7x+652.-------------------------------------------4分如图5-2,当9<x≤13时,y=12(x-9+4)(14-x)=-12x2+192x-35.即y=-12x2+192x-35. ----------------------6分如图5-3,当13<x≤14时,y=12×8(14-x)=-4x+56.即y=-4x+56. ------------------------------7分(3)当动点P在线段BC上运动时,∵y=415S梯形ABCD=415×12(4+8)×5=8,∴12x2-7x+652=8 .解得x1=x2=7,∴当x=7时,y=415S梯形ABCD.------------------9分(4)x=209,619,1019.----------------------12分提示:①如图5-4,当P在AB上时,若PQ∥AC,则△BPQ∽△BAC∴BPBQ=BABC,∴5-xx=54,解得x=209.②如图5-5,当P在BC上时,若PQ∥BE,则△CPQ∽△CBE∴CPCQ=CBCE,∴9-xx-4=45,解得x=619.③如图5-6,当P在CE上时,若PQ∥BE,则△EPQ∽△ECD∴EPEQ=ECED,∴14-xx-9=54,解得x=1019.图5-1图5-2(Q)图5-3CDABEPQ CDABEPQCDABEPQ图5-6图5-5图5-4。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)计算:(﹣1)+2的结果是()A.﹣1 B.1 C.﹣3 D.32.(4分)某校开展形式多样的“阳光体育”活动.七(3)班同学积极响应.全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示).由图可知参加人数最多的体育项目是()A.排球B.乒乓球C.篮球D.跳绳3.(4分)如图所示的物体有两个紧靠在一起的圆柱体组成.它的主视图是()A.B.C.D.4.(4分)已知点P(﹣1.4)在反比例函数的图象上.则k 的值是()A.B.C.4 D.﹣45.(4分)如图.在△ABC中.∠C=90°.AB=13.BC=5.则sin A的值是()A.B.C.D.6.(4分)如图.在矩形ABCD中.对角线AC.BD交于点O.已知∠AOB=60°.AC=16.则图中长度为8的线段有()A.2条B.4条C.5条D.6条7.(4分)为了支援地震灾区同学.某校开展捐书活动.九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示.则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(4分)已知线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离9.(4分)已知二次函数y=(x﹣1)2﹣1(0≤x≤3)的图象.如图所示.关于该函数在所给自变量取值范围内.下列说法正确的是()A.有最小值0.有最大值3 B.有最小值﹣1.有最大值0 C.有最小值﹣1.有最大值3 D.有最小值﹣1.无最大值10.(4分)如图.O是正方形ABCD的对角线BD上一点.⊙O与边AB.BC都相切.点E.F分别在AD.DC上.现将△DEF沿着EF对折.折痕EF与⊙O相切.此时点D恰好落在圆心O处.若DE=2.则正方形ABCD的边长是()A.3 B.4 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣1=.12.(5分)某校艺术节演出中.5位评委给某个节目打分如下:9分.9.3分.8.9分.8.7分.9.1分.则该节目的平均得分是分.13.(5分)如图.a∥b.∠1=40°.∠2=80°.则∠3=度.14.(5分)如图.AB是⊙O的直径.点C.D都在⊙O上.连接CA.CB.DC.DB.已知∠D=30°.BC=3.则AB的长是.15.(5分)汛期来临前.滨海区决定实施“海堤加固”工程.某工程队承包了该项目.计划每天加固60米.在施工前.得到气象部门的预报.近期有“台风”袭击滨海区.于是工程队改变计划.每天加固的海堤长度是原计划的1.5倍.这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米.则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).16.(5分)我国汉代数学家赵爽为了证明勾股定理.创制了一副“弦图”.后人称其为“赵爽弦图”(如图1).图2由弦图变化得到.它是由八个全等的直角三角形拼接而成.记图中正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.若S1+S2+S3=10.则S2的值是.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)化简:a(3+a)﹣3(a+2).18.(8分)如图.在等腰梯形ABCD中.AB∥CD.点M是AB的中点.求证:△ADM≌△BCM.19.(8分)七巧板是我们祖先的一项卓越创造.用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图1)经过平移、旋转拼成图形.(1)拼成矩形.在图2中画出示意图.(2)拼成等腰直角三角形.在图3中画出示意图.注意:相邻两块板之间无空隙.无重叠;示意图的顶点画在小方格顶点上.20.(8分)如图.AB是⊙O的直径.弦CD⊥AB于点E.过点B作⊙O 的切线.交AC的延长线于点F.已知OA=3.AE=2.(1)求CD的长;(2)求BF的长.21.(10分)一个不透明的布袋里装有3个球.其中2个红球.1个白球.它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球.记下颜色后放回.并搅均.再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋.搅均后.使摸出1个球是白球的概率为.求n的值.22.(10分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣2.4).过点A作AB⊥y轴.垂足为B.连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c经过点A.①求c的值;②将抛物线向下平移m个单位.使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界).求m的取值范围(直接写出答案即可).23.(12分)2011年5月20日是第22个中国学生营养日.某校社会实践小组在这天开展活动.调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息.解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%.求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.求其中所含碳水化合物质量的最大值.24.(14分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣4.0).点B的坐标是(0.b)(b>0).P是直线AB上的一个动点.作PC⊥x轴.垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上).连接PP′.P′A.P′C.设点P的横坐标为a.(1)当b=3时.①求直线AB的解析式;②若点P′的坐标是(﹣1.m).求m的值;(2)若点P在第一象限.记直线AB与P′C的交点为D.当P′D:DC=1:3时.求a的值;(3)是否同时存在a.b.使△P′CA为等腰直角三角形?若存在.请求出所有满足要求的a.b的值;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】异号两数相加.取绝对值较大加数的符号.再用较大绝对值减去较小绝对值.【解答】解:(﹣1)+2=+(2﹣1)=1.故选:B.【点评】此题主要考查了有理数的加法.做题的关键是掌握好有理数的加法法则.2.【分析】因为总人数是一样的.所占的百分比越大.参加人数就越多.从图上可看出篮球的百分比最大.故参加篮球的人数最多.【解答】解:∵篮球的百分比是35%.最大.∴参加篮球的人数最多.故选:C.【点评】本题对扇形图的识图能力.扇形统计图表现的是部分占整体的百分比.因为总数一样.所以百分比越大.人数就越多.3.【分析】找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看.圆柱从正面看是长方形.两个圆柱.看到两个长方形.故选:A.【点评】此题主要考查了三视图的知识.主视图是从物体的正面看得到的视图.4.【分析】根据反比例函数图象上的点的坐标特征.将P(﹣1.4)代入反比例函数的解析式.然后解关于k的方程即可.【解答】解:∵点P(﹣1.4)在反比例函数的图象上. ∴点P(﹣1.4)满足反比例函数的解析式.∴4=.解得.k=﹣4.故选:D.【点评】此题比较简单.考查的是用待定系数法求反比例函数的解析式.是中学阶段的重点.解答此题时.借用了“反比例函数图象上的点的坐标特征”这一知识点.5.【分析】本题可以利用锐角三角函数的定义求解.sin A为∠A的对边比上斜边.求出即可.【解答】解:∵在△ABC中.∠C=90°.AB=13.BC=5.∴sin A===.故选:A.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中.锐角的正弦为对边比斜边.余弦为邻边比斜边.正切为对边比邻边.6.【分析】因为矩形的对角线相等且互相平分.所以AO=BO=CO =DO.已知∠AOB=60°.所以AB=AO.从而CD=AB=AO.从而可求出线段为8的线段.【解答】解:∵在矩形ABCD中.AC=16.∴AO=BO=CO=DO=×16=8.∵AO=BO.∠AOB=60°.∴AB=AO=8.∴CD=AB=8.∴共有6条线段为8.故选:D.【点评】本题考查矩形的性质.矩形的对角线相等且互相平分.以及等边三角形的判定与性质.7.【分析】频率=.从直方图可知在5.5~6.5组别的频数是8.总数是40可求出解.【解答】解:∵在5.5~6.5组别的频数是8.总数是40.∴=0.2.故选:B.【点评】本题考查频数分布直方图.从直方图上找出该组的频数.根据频率=.可求出解.8.【分析】针对两圆位置关系与圆心距d.两圆半径R.r的数量关系间的联系得出两圆位置关系.【解答】解:依题意.线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.∴R+r=3+2=5.d=7.所以两圆外离.故选:D.【点评】此题主要考查了圆与圆的位置关系.圆与圆的位置关系与数量关系间的联系.此类题为中考热点.需重点掌握.9.【分析】根据函数图象自变量取值范围得出对应y的值.即是函数的最值.【解答】解:根据图象可知此函数有最小值﹣1.有最大值3.故选:C.【点评】此题主要考查了根据函数图象判断函数的最值问题.结合图象得出最值是利用数形结合.此知识是部分考查的重点.10.【分析】延长FO交AB于点G.根据折叠对称可以知道OF⊥CD.所以OG⊥AB.即点G是切点.OD交EF于点H.点H是切点.结合图形可知OG=OH=HD=EH.等于⊙O的半径.先求出半径.然后求出正方形的边长.【解答】解:如图:延长FO交AB于点G.则点G是切点.OD交EF于点H.则点H是切点.∵ABCD是正方形.点O在对角线BD上.∴DF=DE.OF⊥DC.∴GF⊥DC.∴OG⊥AB.∴OG=OH=HD=HE=AE.且都等于圆的半径.在等腰直角三角形DEH中.DE=2.∴EH=DH==AE.∴AD=AE+DE=+2.故选:C.【点评】本题考查的是切线的性质.利用切线的性质.结合正方形的特点求出正方形的边长.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】符合平方差公式的特征.直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式.熟记公式是解题的关键.12.【分析】把5位评委的打分加起来然后除以5即可得到该节目的平均得分.【解答】解:==9.∴该节目的平均得分是9分.故答案为:9.【点评】本题考查的是平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数.它是反映数据集中趋势的一项指标.熟记公式是解决本题的关键.13.【分析】先根据两直线平行.同位角相等.求出∠2的同位角的度数.再利用三角形的外角的性质求得∠3的度数.【解答】解:如图.∵a∥b.∠2=80°.∴∠4=∠2=80°(两直线平行.同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.【点评】本题比较简单.考查的是平行线的性质及三角形外角的性质.特别注意三角形的一个外角等于与它不相邻的两个内角的和.14.【分析】利用直径所对的圆周角是直角得到直角三角形.然后利用同弧所对的圆周角相等.在解直角三角形即可.【解答】解:∵AB是⊙O的直径.∴∠ACB=90°.∵∠D=30°.∴∠A=∠D=30°.∵BC=3.∴AB=6.故答案为:6.【点评】本题考查了圆周角定理及直角三角形的性质.考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力.有利于培养同学们的发散思维能力.15.【分析】首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.【解答】解:由已知得:原计划用的天数为..实际用的天数为.=.则完成整个任务的实际时间比原计划时间少用的天数为.﹣=.故答案为:.【点评】此题考查的知识点是列代数式.解题的关键是根据题意先列出原计划用的天数和实际用的天数.16.【分析】根据图形的特征得出四边形MNKT的面积设为x.将其余八个全等的三角形面积一个设为y.从而用x.y表示出S1.S2.S3.得出答案即可.【解答】解:将四边形MTKN的面积设为x.将其余八个全等的三角形面积一个设为y.∵正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.S1+S2+S3=10.∴得出S1=8y+x.S2=4y+x.S3=x.∴S1+S2+S3=3x+12y=10.故3x+12y=10.x+4y=.所以S2=x+4y=.故答案为:.【点评】此题主要考查了图形面积关系.根据已知得出用x.y表示出S1.S2.S3.再利用S1+S2+S3=10求出是解决问题的关键.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据乘法的分配律.去括号.合并同类项即可.【解答】解:(1)(﹣2)2+(﹣2011)0﹣.=4+1﹣2.=5﹣2;(2)a(3+a)﹣3(a+2).=3a+a2﹣3a﹣6.=a2﹣6.【点评】本题考查实数的综合运算能力.整式的混合运算及零指数幂.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、二次根式等考点的运算.18.【分析】由等腰梯形得到AD=BC.∠A=∠B.根据SAS即可判断△ADM≌△BCM.【解答】证明:在等腰梯形ABCD中.AB∥CD.∴AD=BC.∠A=∠B.∵点M是AB的中点.∴MA=MB.∴△ADM≌△BCM.【点评】本题主要考查对等腰梯形的性质.全等三角形的判定等知识点的理解和掌握.证出证三角形全等的三个条件是解此题的关键.19.【分析】(1)根据七巧板中有两个较小的等腰直角三角形.由一个小正方形进行拼凑即可;(2)根据七巧板中有两个较小的等腰直角三角形.且小正方形的边长与等腰三角形的腰长相等进行拼凑.【解答】解:参考图形如下(答案不唯一).【点评】本题考查的是作图与应用设计作图.熟知七巧板中各图形的特点是解答此题的关键.20.【分析】(1)连接OC.在△OCE中用勾股定理计算求出CE的长.然后得到CD的长.(2)根据切线的性质得AB⊥BF.然后用△ACE∽△AFB.可以求出BF的长.【解答】解:(1)如图.连接OC.∵AB是直径.弦CD⊥AB.∴CE=DE在直角△OCE中.OC2=OE2+CE232=(3﹣2)2+CE2得:CE=2.∴CD=4.(2)∵BF切⊙O于点B.∴∠ABF=90°=∠AEC.又∵∠CAE=∠F AB(公共角).∴△ACE∽△AFB∴=即:=∴BF=6.【点评】本题考查的是切线的性质.(1)利用垂径定理求出CD的长.(2)根据切线的性质.得到两相似三角形.然后利用三角形的性质计算求出BF的长.21.【分析】(1)由一个不透明的布袋里装有3个球.其中2个红球.1个白球.根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果.然后根据概率公式求出该事件的概率;(3)根据概率公式列方程.解方程即可求得n的值.【解答】解:(1)∵一个不透明的布袋里装有3个球.其中2个红球.1个白球.∴摸出1个球是白球的概率为;(2)画树状图、列表得:第二次白红1 红2 第一次白白.白白.红1白.红2红1红1.白红1.红1红1.红2红2红2.白红2.红1红2.红2∴一共有9种等可能的结果.两次摸出的球恰好颜色不同的有4种. ∴两次摸出的球恰好颜色不同的概率为;(3)由题意得:.解得:n=4.经检验.n=4是所列方程的解.且符合题意.∴n=4.【点评】此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据点A的坐标是(﹣2.4).得出AB.BO的长度.即可得出△OAB的面积;(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标.根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.【解答】解:(1)∵点A的坐标是(﹣2.4).AB⊥y轴.∴AB=2.OB=4.∴△OAB的面积为:×AB×OB=×2×4=4.(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.﹣(﹣2)2﹣2×(﹣2)+c=4.∴c=4.②∵y=﹣x2﹣2x+4=﹣(x+1)2+5.∴抛物线顶点D的坐标是(﹣1.5).过点D作DE⊥AB于点E交AO于点F.AB的中点E的坐标是(﹣1.4).OA的中点F的坐标是(﹣1.2). ∴m的取值范围是:1<m<3.【点评】此题主要考查了二次函数的综合应用以及二次函数顶点坐标求法.二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.23.【分析】(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克.列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.列出不等式求解即可.【解答】解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克.由题意得:x+4x+20+400×40%=400.∴x=44.∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克.则所含蛋白质质量为4y克.所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%.∴y≥40.∴﹣5y≤﹣200.∴380﹣5y≤380﹣200.即380﹣5y≤180.∴所含碳水化合物质量的最大值为180克.【点评】本题由课本例题改编而成(原题为浙教版七年级下P96例题).这使学生对试题有“亲切感”.而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点.给出两个量的和的范围.求其中一个量的最值.隐含着函数最值思想.本题切入点较多.方法灵活.解题方式多样化.可用不等式解题.也可用极端原理求解.不同的解答反映出思维的不同层次.24.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1.m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD.根据相似三角形的对应边的比相等.即可求解;(3)分P在第一.二.三象限.三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3.把x=﹣4.y=0代入得:﹣4k+3=0.∴k=.∴直线的解析式是:y=x+3.②P′(﹣1.m).∴点P的坐标是(1.m).∵点P在直线AB上.∴m=×1+3=;(2)∵PP′∥AC.△PP′D∽△ACD.∴=.即=.∴a=;(3)以下分三种情况讨论.①当点P在第一象限时.1)若∠AP′C=90°.P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC.△ACP∽△AOB∴==.即=.∴b=22)若∠P′AC=90°.(如图2).则四边形P′ACP是矩形.则PP′=AC.若△P´CA为等腰直角三角形.则:P′A=CA.∴2a=a+4∴a=4∵P′A=PC=AC.△ACP∽△AOB∴==1.即=1∴b=43)若∠P′CA=90°.则点P′.P都在第一象限内.这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时.∠P′CA为钝角(如图3).此时△P′CA 不可能是等腰直角三角形;③当P在第三象限时.∠P′AC为钝角(如图4).此时△P′CA不可能是等腰直角三角形.所有满足条件的a.b的值为:..【点评】本题主要考查了梯形的性质.相似三角形的判定和性质以及一次函数的综合应用.要注意的是(3)中.要根据P点的不同位置进行分类求解.。

2020年山东省济南市中考数学全真模拟试卷4解析版

2020年山东省济南市中考数学全真模拟试卷4解析版

2020年山东省济南市中考数学全真模拟试卷4解析版一.选择题(共12小题,满分48分,每小题4分)1.下列各数中,其相反数等于本身的是()A.﹣1B.0C.1D.20182.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.下列运算正确的是()A.x3+x2=x5B.2x3•x2=2x6C.x6÷x3=x2D.(3x3)2=9x64.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.5.下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.6.Windows 2000下有一个有趣的“扫雷”游戏.如图是“扫雷”游戏的一部分,说明:图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷.现在还剩下A、B、C三个方格未被探明,其他地方为安全区(包括有数字的方格),则A、B、C三个方格中有地雷概率最大的方格是()A.A B.B C.C D.无法确定7.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°8.已知关于x的方程x2+mx﹣2=0有一个根是2,则m的值为()A.﹣1B.1C.﹣3D.39.已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为()A.x≥﹣2B.x≤3C.x≤﹣2D.x≥310.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为()A.2B.2+C.1+D.11.如图,直线l经过点M(3,0),且平行于y轴,与抛物线y=ax2交于点N,若S=9,则△OMN a的值是()A.B.C.D.12.如图,在四边形ABCD中,DC∥AB,AD=4,CD=3,sin A=sin B=,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD→DC→CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s关于t的函数图象是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)13.分解因式:a3﹣25a=.14.计算:﹣2+(﹣2)0=.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为.16.如图,△ABC在平面直角坐标系内,三个顶点坐标分别为A(0,3),B(3,4),C(2,2).以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点A1的坐标是.17.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为;18.如果一次函数的图象经过点(﹣2,﹣6)和(5,2),那么函数值y随着自变量x的增大而.三.解答题(共9小题,满分78分)19.(6分)先化简,再求值:(3x+2y)2﹣(3x+y)(3x﹣y),其中x=2,y=3.20.(6分)解不等式组:21.(6分)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.22.(8分)如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.(1)求证:∠BAC=∠CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin∠PAB的值.23.(8分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?24.(10分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.25.(10分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线交反比例函数图象于点B.(1)求反比例函数和直线AC的解析式;(2)求△ABC的面积;(3)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D点的坐标.26.(12分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD =80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)27.(12分)如图,在平面直角坐标系中,已知点C(0,4),点A、B在x轴上,并且OA=OC =4OB,动点P在过A、B、C三点的抛物线上.(1)求抛物线的函数表达式;(2)在直线AC上方的抛物线上,是否存在点P,使得△PAC的面积最大?若存在,求出P点坐标及△PAC面积的最大值;若不存在,请说明理由.(3)在x轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:相反数等于本身的数是0.故选:B.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、x3+x2,无法计算,故此选项错误;B、2x3•x2=2x5,故此选项错误;C、x6÷x3=x3,故此选项错误;D、(3x3)2=9x6,故此选项正确;故选:D.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.4.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选:C.【点评】掌握好中心对称与轴对称的概念.判断轴对称的关键是寻找对称轴,两边图象折叠后可重合,判断中心对称是要寻找对称中心,旋转180度后重合.6.【分析】根据图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷,即可得出B,C均不是地雷,即可得出答案.【解答】解:根据题意分析可得:B,C一定不是地雷,∴A处是雷,则B,C处均不地雷,P (A)=1;P(B)=0;P(C)=0.故A、B、C三个方格中有地雷概率最大的是A.故选:A.【点评】此题主要考查了概率的求法与运用,根据已知得出右边2靠近B,C,此时B,C均不是地雷是解决问题的关键.7.【分析】根据平行线的性质,可得∠2=∠3,又根据互为余角的定义,可得∠1+∠3=90°,解答出即可.【解答】解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=90°﹣∠1=90°﹣35°=55°,又∵直尺的两边平行,∴∠2=∠3,∴∠2=55°.故选:C.【点评】本题主要考查了平行线的性质和余角,熟练掌握两直线平行,同位角相等.8.【分析】把x=2代入方程x2+mx﹣2=0得4+2m﹣2=0,然后解关于m的方程即可.【解答】解:把x=2代入方程x2+mx﹣2=0得4+2m﹣2=0,解得m=﹣1.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.【分析】先把(3,0)代入y=kx+b得b=﹣3k,则不等式化为k(x﹣4)+6k≥0,然后在k<0的情况下解不等式即可.【解答】解:把(3,0)代入y=kx+b得3k+b=0,则b=﹣3k,所以k(x﹣4)﹣2b≥0化为k(x﹣4)+6k≥0,因为k<0,所以x﹣4+6≤0,所以x≤﹣2.故选:C.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.【分析】在直角三角形ABC中,利用30度所对的直角边等于斜边的一半表示出AB的长,再利用勾股定理求出BC的长,由CB+BD求出CD的长,在直角三角形ACD中,利用锐角三角函数定义求出所求即可.【解答】解:在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°,BC=k,∴∠CAD=∠CAB+∠BAD=75°,在Rt△ACD中,CD=CB+BD=k+2k,则tan75°=tan∠CAD===2+,故选:B.【点评】此题考查了解直角三角形,涉及的知识有:勾股定理,含30度直角三角形的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.11.【分析】由点M的坐标得到OM=3,由直线l经过点M(3,0),且平行于y轴,可知点N的=9,横坐标为3,代入抛物线y=ax2,求得点N的纵坐标,即求得MN的长度,再代入S△OMN 即可求得a的值.【解答】解:∵直线l经过点M(3,0),且平行于y轴,与抛物线y=ax2交于点N,∴点N的横坐标为3,代入抛物线方程得:y=9a,即MN=﹣9a.=OM•MN=9,OM=3,MN=﹣9a,∵S△OMN解得:a=.故选:B.【点评】本题是二次函数的综合题型,其中涉及到的知识点有交点坐标和三角形的面积求法.由已知点通过找到中间量来求得未知点从而解决问题.12.【分析】过点Q做QM⊥AB于点M,分点Q在线段AD、DC、CB上三种情况考虑,根据三角形的面积公式找出s关于t的函数关系式,再结合四个选项即可得出结论.【解答】解:过点Q作QM⊥AB于点M.当点Q在线段AD上时,如图1所示,∵AP=AQ=t(0≤t≤4),sin A=,∴QM=t,∴s=AP•QM=t2;当点Q在线段CD上时,如图2所示,∵AP=t(4≤t≤7),QM=AD•sin A=,∴s=AP•QM=t;当点Q在线段CB上时,如图3所示,∵AP=t(7≤t≤+3(利用解直角三角形求出AB=+3),BQ=4+3+4﹣t=11﹣t,sin B=,∴QM=(11﹣t),∴s=AP•QM=﹣(t2﹣11t),∴s=﹣(t2﹣11t)的对称轴为直线t=.∵t<11,∴s>0.综上观察函数图象可知D选项中的图象符合题意.故选:D.【点评】本题考查了动点问题的函数图象以及三角形的面积,分点Q在线段AD、DC、CB上三种情况找出s关于t的函数关系式是解题的关键.二.填空题(共6小题,满分24分,每小题4分)13.【分析】首先提取公因式a,再利用平方差进行分解即可.【解答】解:原式=a(a2﹣25)=a(a+5)(a﹣5).故答案为:a(a+5)(a﹣5).【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【分析】原式利用算术平方根定义,以及零指数幂法则计算即可得到结果.【解答】解:原式=3﹣2+1=2,故答案为:2【点评】此题考查了实数的运算,算术平方根,以及零指数幂,熟练掌握运算法则是解本题的关键.15.【分析】根据扇形面积公式计算即可.【解答】解:设扇形的半径为为R,则=6π,解得,R=4,故答案为:4.【点评】本题考查的是扇形面积计算,掌握扇形面积公式S=是解题的关键.16.【分析】利用位似图形的性质得出对应点位置,进而得出答案.【解答】解:如图所示:△A1B1C1即为所求,则点A1的坐标是:(﹣3,2).故答案为:(﹣3,2).【点评】此题主要考查了位似变换以及坐标与图形的性质,得出对应点位置是解题关键.17.【分析】过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明△ABO和△BCE全等,根据全等三角形对应边相等可得OA=BE=4,CE=OB=3,再求出OE,然后写出点C的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.【解答】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(﹣4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(3,1),∵反比例函数y=(k≠0)的图象过点C,∴k=xy=3×1=3,∴反比例函数的表达式为y=.故答案为:y=.【点评】此题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.18.【分析】根据一次函数的单调性即可直接得出答案.【解答】解:∵x=﹣2时,y=﹣6,x=5时,y=2,根据一次函数的单调性可得:函数值y随着自变量x的增大而增大.故答案为:增大.【点评】本题考查了一次函数的性质,属于基础题,关键是掌握一次函数的基本性质.三.解答题(共9小题,满分78分)19.【分析】原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把x与y 的值代入计算即可求出值.【解答】解:原式=9x2+12xy+4y2﹣9x2+y2=5y2+12xy,当x=2,y=3时,原式=5×32+12×2×3=45+72=117.【点评】本题考查的是整式的混合运算,掌握完全平方公式,平方差公式以及合并同类项的法则是解题的关键.20.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.21.【分析】根据翻转变换的性质得到BE=BC=AD,∠EBD=∠CBD,根据平行线的性质得到∠ADB=∠CBD,根据等腰三角形的判定定理得到OB=OD,计算即可.【解答】证明:由折叠的性质可知,BE=BC=AD,∠EBD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠ADB=∠EBD,∴OB=OD,∴OA=OE.【点评】本题考查的是翻转变换的性质、平行四边形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.【分析】(1)根据已知条件得到∠ACB=∠ABP=90°,根据余角的性质即可得到结论;(2)根据相似三角形的判定和性质即可得到结论;(3)根据三角函数的定义即可得到结论.【解答】解:(1)∵AB是⊙O的直径,PB与⊙O相切于点B,∴∠ACB=∠ABP=90°,∴∠A+∠ABC=∠ABC+∠CBP=90°,∴∠BAC=∠CBP;(2)∵∠PCB=∠ABP=90°,∠P=∠P,∴△ABP∽△BCP,∴,∴PB2=PC•PA;(3)∵PB2=PC•PA,AC=6,CP=3,∴PB2=9×3=27,∴PB=3,∴sin∠PAB===.【点评】本题考查了相似三角形的判定和性质,切线的性质,圆周角定理,三角函数的定义,正确的识别图形是解题的关键.23.【分析】设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,根据2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时列出分式方程,求出答案即可.【解答】解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.【点评】本题考查了分式方程的应用;解这类问题时要注意分析题中的等量关系,由时间关系列出方程是解决问题的关键.24.【分析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60,90.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.【点评】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.25.【分析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将A,C坐标代入直线解析式解答即可;(2)把x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标,进而利用三角形面积公式解答即可;(3)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.【解答】解:(1)把点A(3,4)代入y=(x>0),得k =xy =3×4=12,故该反比例函数解析式为:y =.把A (3,4),C (6,0)代入y =mx +n 中,可得:,解得:,所以直线AC 的解析式为:y =﹣x +8;(2)∵点C (6,0),BC ⊥x 轴,∴把x =6代入反比例函数y =,得y ==2. 则B (6,2).所以△ABC 的面积=;(3)①如图,当四边形ABCD 为平行四边形时,AD ∥BC 且AD =BC .∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y A ﹣y D =y B ﹣y C 即4﹣y D =2﹣0,故y D =2.所以D (3,2).②如图,当四边形ACBD ′为平行四边形时,AD ′∥CB 且AD ′=CB .∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y D ′﹣y A =y B ﹣y C 即y D ﹣4=2﹣0,故y D ′=6.所以D ′(3,6).③如图,当四边形ACD ″B 为平行四边形时,AC =BD ″且AC ∥BD ″.∵A (3,4)、B (6,2)、C (6,0),∴x D ″﹣x B =x C ﹣x A 即x D ″﹣6=6﹣3,故x D ″=9.y D ″﹣y B =y C ﹣y A 即y D ″﹣2=0﹣4,故y D ″=﹣2.所以D ″(9,﹣2).综上所述,符合条件的点D 的坐标是:(3,2)或(3,6)或(9,﹣2).【点评】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(3)题时,采用了“数形结合”和“分类讨论”的数学思想.26.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.27.【分析】(1)先确定A(4,0),B(﹣1,0),再设交点式y=a(x+1)(x﹣4),然后把C 点坐标代入求出a即可;(2)作PD∥y轴,如图,易得直线AC的解析式为y=﹣x+4,设P(x,﹣x2+3x+4)(0<x<4),=•PD•4=﹣2x2+8x,则D(x,﹣x+4),再用x表示出PD,接着根据三角形面积公式得到S△PAC然后根据二次函数的性质解决问题;(3)先计算出AC=4,再分类讨论:当QA=QC时,易得Q(0,0);当CQ=CA时,利用点Q与点A关于y轴对称得到Q点坐标;当AQ=AC=4时可直接写出Q点的坐标.【解答】解:(1)∵C(0,4),∴OC=4,∵OA=OC=4OB,∴OA=4,OB=1,∴A(4,0),B(﹣1,0),设抛物线解析式为y=a(x+1)(x﹣4),把C(0,4)代入得a•1•(﹣4)=4,解得a=﹣1,∴抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+3x+4;(2)作PD∥y轴,如图,易得直线AC的解析式为y=﹣x+4,设P(x,﹣x2+3x+4)(0<x<4),则D(x,﹣x+4),∴PD=﹣x2+3x+4﹣(﹣x+4)=﹣x2+4x,=•PD•4=﹣2x2+8x=﹣2(x﹣2)2+8,∴S△PAC当x=2时,S有最大值,最大值为8,此时P点坐标为(2,6);△PAC(3)存在.∵OA=OC=4,∴AC=4,∴当QA=QC时,Q点在原点,即Q(0,0);当CQ=CA时,点Q与点A关于y轴对称,则Q(﹣4,0);当AQ=AC=4时,Q点的坐标(4+4,0)或(4﹣4,0),综上所述,Q点的坐标为(0,0)或(﹣4,0)或(4+4,0)或(4﹣4,0).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图形上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.。

2024年中考数学模拟考试卷(含参考答案)

2024年中考数学模拟考试卷(含参考答案)

2024年中考数学模拟考试卷(含参考答案) 学校:___________班级:___________姓名:___________考号:___________ 一、选择题(各小题的四个选项中,只有一项符合题意)1.2024的倒数是()A.﹣2024B.12024C.2024 D.120242.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣43.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤24.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣15.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣87.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y19.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B 落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=.12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是.13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.参考答案与试题解析一、选择题(各小题的四个选项中,只有一项符合题意)11.2024的倒数是()A.﹣2024B.12024C.2024 D.12024【解答】解:2024的倒数是1 2024故选:D.2.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2 C.a2•a3=a6D.(a﹣2)2=a2﹣4【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.故选:B.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤2【解答】解:∵3x﹣6≥0∴x≥2故选:B.4.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣1【解答】解:A.+无法合并,故此选项不合题意;B.|3.14﹣π|=π﹣3.14,故此选项符合题意;C.a2⋅a3=a5,故此选项不合题意;D.(a﹣1)2=a2﹣2a+1,故此选项不合题意;故选:B.5.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°【解答】解:如图,过点P作P A∥a,则a∥b∥P A∴∠3+∠NP A=180°,∠1+∠MP A=180°∴∠1+∠2+∠3=180°+180°=360°.故选:A.6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣8【解答】解:∵x=2是方程ax﹣b=3的解∴2a﹣b=3∴4a﹣2b=6∴4a﹣2b+1=7故选:A.7.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.【解答】解:画树状图为:(用A、B、C分别表示“二胡课”“轮滑课”“围棋课”三种课程)∵共有9种等可能的结果数,其中两人恰好选择同一课程的结果数为3∴两人恰好选择同一课程的概率=.故选:A.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y1【解答】解:∵反比例函数∴函数图象的两个分支分别在第二、四象限内,且在每一个象限内y随x的增大而增大又∵点A(﹣4,y1),B(2,y2),C(3,y3)∴点A在第二象限内,点B、点C在第四象限内∴y1>0,y2<0,y3<0又∵2<4∴y2<y3∴y2<y3<y1故选:C.9.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.【解答】解:如图所示,连接MN∵边长为2的正方形ABCD的对角线相交于点O∴AD=AB=BC=2∴∵将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E ∴∠AMN=∠ABN=90°,MN=BN,AM=AB=2∴∵∠ACB=45°∴∠MNC=45°∴∴∵AD∥BN∴△ADE∽△NBE∴,即解得.故选:B.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④【解答】解:∵△PBC是等边三角形,四边形ABCD是正方形∴∠PCB=∠CPB=60°,∠PCD=30°,BC=PC=CD∴∠CPD=∠CDP=75°则∠BPD=∠BPC+∠CPD=135°,故①正确;∵∠CBD=∠CDB=45°∴∠DBH=∠DPB=135°又∵∠PDB=∠BDH∴△BDP∽△HDB,故②正确;如图,过点Q作QE⊥CD于E设QE=DE=x,则QD=x,CQ=2QE=2x∴CE=x由CE+DE=CD知x+x=1解得x=∴QD=x=∵BD=∴BQ=BD﹣DQ=﹣=则DQ:BQ=:≠1:2,故③错误;∵∠CDP=75°,∠CDQ=45°∴∠PDQ=30°又∵∠CPD=75°∴∠DPQ=∠DQP=75°∴DP=DQ=∴S△BDP=BD•PD sin∠BDP=×××=,故④正确;故选:D.二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是(4,2).【解答】解:如图所示:位似中心的坐标是(4,2)故答案为:(4,2).13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值 1.2.【解答】解:∵关于x方程(m﹣1)x2﹣=0的有两个实数根∴解得:0≤m≤2且m≠1.故答案为:1.2.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有①③④.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.【解答】解:∵∴4a+b=0故①正确;∵抛物线与x轴的一个交点为(﹣1,0),对称轴为直线x=2∴另一个交点为(5,0)∵抛物线开口向下∴当x=3时,y>0,即9a+3b+c>0故②错误;∵抛物线的对称轴为x=2,C(5,0)在抛物线上∴点(﹣1,y3)与C(5,y3)关于对称轴x=2对称∵,在对称轴的左侧,抛物线开口向下,y随x的增大而增大∴y1<y3<y2故③正确;若图象过(﹣1,0),即抛物线与x轴的一个交点为(﹣1,0)方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根∵x1<x2,抛物线与x轴交点为(﹣1,0),(5,0)∴依据函数图象可知:x1<﹣1<5<x2故④正确故答案为:①③④.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.【解答】解:如图点O的运动路径的长=的长+O1O2+的长==故答案为:.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是()n﹣1.【解答】解:∵直线l为正比例函数y=x的图象∴∠D1OA1=45°∴D1A1=OA1=1∴正方形A1B1C1D1的面积=1=()1﹣1由勾股定理得,OD1=,D1A2=∴A2B2=A2O=∴正方形A2B2C2D2的面积==()2﹣1同理,A3D3=OA3=∴正方形A3B3C3D3的面积==()3﹣1…由规律可知,正方形A n B n∁n D n的面积=()n﹣1故答案为:()n﹣1.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.【解答】解:(1)原式=1﹣2×+2+2=4;(2)由①得:x≤1由②得:x>﹣1∴不等式组的解集为﹣1<x≤1则不等式组的整数解为0,1.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为50.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为213°.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?【解答】解:(1)本次抽样调查的样本容量为:30÷60%=50;故答案为:50;(2)满足欲望的人数有:50×12%=6(人)其他的人数有:50×8%=4(人)补全统计图如下:(3)“因琐事”区域所在扇形的圆心角的度数为:360°×60%=216°;故答案为:216°;(4)2800×(60%+20%)=2240(例)答:估计所有3000例欺凌事件中有2240例事件是“因琐事”或因“发泄情绪”而导致事件发生的.19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.【解答】解:(1)设纽荷尔每箱a元,则默科特每箱(a+20)元由题意得:=解得:a=60经检验,a=60是原分式方程的解∴a+20=80答:纽荷尔每箱60元,默科特每箱80元;(2)设购买纽荷尔x箱,则购买默科特(150﹣x)箱,所需费用为w元由题意得:w=60x+10(150﹣x)=﹣20x+12000∵x≥2(150﹣x)∴x≥100∵﹣20<0∴w随x的增大而减小∴当x=100时,w取得最大值,此时w=﹣20×100+12000=10000答:购买总费用的最大值为10000元.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.【解答】解:(1)∵一次函数y=﹣x+5的图象与过点A(4,a)∴a=﹣4+5=1∴点A(4,1)∵点A在反比例函数的图象上∴n=4×1=4;(2)由,解得或∴B(1,4)∴若x>0,当时x的取值范围是1<x<4;(3)设P(x,﹣x+5),则Q(x,)∴PQ=﹣x+5﹣∵△POQ的面积为1∴=1,即整理得x2﹣5x+6=0解得x=2或3∴P点的坐标为(2,3)或(3,2).21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.【解答】解:(1)∵⊙O与边AB相切于点E,且CE为⊙O的直径∴CE⊥AB∵AB=AC,AD⊥BC∴BD=DC又∵OE=OC∴OD∥EB∴OD⊥CE;(2)连接EF∵CE为⊙O的直径,且点F在⊙O上,∴∠EFC=90°∵CE⊥AB∴∠BEC=90°.∴∠BEF+∠FEC=∠FEC+∠ECF=90°∴∠BEF=∠ECF∴tan∠BEF=tan∠ECF∴又∵DF=1,BD=DC=3∴BF=2,FC=4∴EF=2∵∠EFC=90°∴∠BFE=90°由勾股定理,得∵EF∥AD∴∴.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.【解答】解:(1)把A(﹣1,0)代入y=ax2+2x+3得:0=a﹣2+3解得a=﹣1∴抛物线的解析式为y=﹣x2+2x+3;∵直线y=﹣2x+b与抛物线有唯一交点G∴﹣x2+2x+3=﹣2x+b有两个相等的实数解即x2﹣4x+b﹣3=0有两个相等的实数解∴Δ=0,即16﹣4(b﹣3)=0解得b=7∴直线的解析式为y=﹣2x+7;(2)在y=﹣x2+2x+3中,令y=0得x=﹣1或x=3∴B(3,0)∴抛物线y=﹣x2+2x+3的对称轴为直线x==1由得:∴G(2,3)∵点H为抛物线对称轴上的点∴HB=HA∴HB+HG=HA+HG∴当G,H,A共线时,HB+HG最小,最小值即为AG的长度;如图:由A(﹣1,0),G(2,3)可得直线AG解析式为y=x+1在y=x+1中,令x=1得y=2∴H(1,2);∴OH=OA=2∴△AOH是等腰直角三角形∴∠AHO=45°由对称性可得∠BHO=45°∴∠GHB=90°,即△GHB是直角三角形∵G(2,3),H(1,2),B(3,0)∴HG=,BG=,BH=2设△HBG内切圆的半径为r∴2S△BHG=BH•HG=(HG+BG+BH)•r∴r==∴△HBG内切圆的半径为;(3)存在点K,使△KBC的面积最大,理由如下:过K作KQ∥y轴交BC于Q,如图:设K(m,﹣m2+2m+3)在y=﹣x2+2x+3中,令x=0得y=3∴C(0,3)由B(3,0),C(0,3)可得y=﹣x+3∴Q(m,﹣m+3)∴KQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∴S△KBC=×(﹣m2+3m)×3=﹣(m﹣)2+∴当m=时,S△KBC取最大值∴△KBC的最大面积是.。

2021年蚌埠市五河县中考数学模拟试卷(四)(有答案)

2021年蚌埠市五河县中考数学模拟试卷(四)(有答案)

2021年安徽省蚌埠市五河县中考数学模拟试卷(四)一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)|﹣2|的值是()A.﹣2 B.2 C.D.﹣2.(4分)新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A.2×10﹣5 B.5×10﹣6 C.5×10﹣5 D.2×10﹣63.(4分)计算x4÷x+x3的结果是()A.x4B.x3C.2x3D.2x44.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(4分)如图,下列图形从正面看是三角形的是()A.B.C.D.6.(4分)从一副扑克牌中随机抽出一张牌,得到梅花或者K的概率是()A.B.C.D.7.(4分)某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x天完成,则符合题意的方程是()A. =1 B. =1C. =1 D. =18.(4分)如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.49.(4分)如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个10.(4分)如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD :S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)函数y=+的自变量x的取值范围是.12.(5分)因式分解:x3﹣x2+= .13.(5分)如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为.14.(5分)如图,用完全相同的两个矩形纸片交叉叠合得到四边形ABCD,则四边形ABCD的形状是.三、(本大题共2小题,每小题8分,满分16分)15.(8分),并求出它的所有整数解的和.16.(8分)解方程:①的解x= .②的解x= .③的解x= .④的解x= .…(1)根据你发现的规律直接写出⑤,⑥个方程及它们的解.(2)请你用一个含正整数n的式子表示上述规律,并求出它的解.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2.18.(8分)计算:(1)(2)五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,矩形OABC的顶点C、A分别在x轴和y轴上,点B的坐标为(4,3),双曲线y=(x>0)的图象经过AB的中点D,且与BC交于点E,连接DE.(1)求双曲线的解析式;(2)求tan∠BDE的值;(3)在第一象限内存在点P,使△OPA与△BDE相似,请直接写出满足条件的P点的坐标.20.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.六、(本题满分12分)21.(12分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).七、(本题满分12分)22.(12分)某批发中心销售品牌计算器,成本价12元/个,零售价20元/个,批发优惠规定:一次购买10个以上的,每多买一个,售价降低0.10元(假如某人要买20个计算器,每个降价0.1×(20﹣10)=1元,该人就可以按19元/个进行购买),但批发中心规定最低出售价不得低于16元/个.(1)小李到批发中心购买此计算器然后转卖,问他如何批发购买才能使自己获利多?(2)写出一次购买量x个与批发中心利润y的函数关系式.(3)某天总部询查人员小王从乙那里赚的钱反而比从甲那儿赚的少,问账目有问题吗?八、(本题满分14分)23.(14分)已知∠AOB=45°,P是边OA上一点,OP=4,以点P为圆心画圆,圆P交OA于点C(点P在O、C之间,如图).点Q是直线OB上的一个动点,连PQ,交圆P于点D,已知,当OQ=7时, =.(1)求圆P半径长;(2)当点Q在射线OB上运动时,以点Q为圆心,OQ为半径作圆Q,若圆Q与圆P相切,试求OQ的长度;(3)连CD并延长交直线OB于点E,是否存在这样的点Q,使得以O、C、E为顶点的三角形与△OPQ相似?若存在,试确定Q点的位置;若不存在,试说明理由.2021年安徽省蚌埠市五河县中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)|﹣2|的值是()A.﹣2 B.2 C.D.﹣【解答】解:∵﹣2<0,∴|﹣2|=2.故选:B.2.(4分)新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A.2×10﹣5 B.5×10﹣6 C.5×10﹣5 D.2×10﹣6【解答】解:20万分之一=0.000 005=5×10﹣6.故选:B.3.(4分)计算x4÷x+x3的结果是()A.x4B.x3C.2x3D.2x4【解答】解:x4÷x+x3=x3+x3=2x3,故x4÷x+x3的结果是2x3.故选:C.4.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x≥﹣2;由②得,x<1,故此不等式组的解集为:﹣2≤x<1.在数轴上表示为:故选:C.5.(4分)如图,下列图形从正面看是三角形的是()A.B.C.D.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.6.(4分)从一副扑克牌中随机抽出一张牌,得到梅花或者K的概率是()A.B.C.D.【解答】解:P(得到梅花或者K)=.故选:B.7.(4分)某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x天完成,则符合题意的方程是()A. =1 B. =1C. =1 D. =1【解答】解:设甲、乙共用x天完成,则甲单独干了(x﹣22)天,本题中把总的工作量看成整体1,则甲每天完成全部工作的,乙每天完成全部工作的.根据等量关系列方程得: =1,故选:A.8.(4分)如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4【解答】解:设E点坐标为(x,y),则AO+DE=x,AB﹣BD=y,∵△ABO和△BED都是等腰直角三角形,∴EB=BD,OB=AB,BD=DE,OA=AB,∵OB2﹣EB2=10,∴2AB2﹣2BD2=10,即AB2﹣BD2=5,∴(AB+BD)(AB﹣BD)=5,∴(AO+DE)(AB﹣BD)=5,∴xy=5,∴k=5.故选:C.9.(4分)如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:①如图:正方形ABCD中BA=BC,∠ABP=∠CBP,BP=BP,∴△ABP≌△CBP,那么∠1=∠2,在直角三角形ABG中∠1与∠G互余,∠PCE=90°,那么∠2与∠5互余,∴∠5=∠G,∴EC=EG.在直角三角形FCG中∠3与∠G互余,∠4与∠5也互余,而∠5=∠G,∴∠3=∠4,∴EC=EF,从而得出EG=EF,即E为FG的中点.∴①正确.③∵AB=BC,∠ABD=∠CBD,BP=BP,∴△ABP≌△CBP,∴∠1=∠2,∵AB∥CD,∴∠1=∠DFA,∵AB=BP,∴∠1=∠BPA,∵∠DPF=∠APB,∵EF=CE,∴∠3=∠4,∴∠4=∠DPE,∴D、P、C、E四点共圆,∴∠DEA=∠DCP,∵∠1+∠DAP=90°,∠2+∠DCP=90°,∴∠DAP=∠DCP=∠DEA,∴AD=DE,∴③正确,②∵∠3=∠4,AD=DE(③已求证),∴△CEF∽△CDE,∴=,即CE2=CF•CD,∵∠3=∠4,∴CE=EF,∵E为FG的中点.∴FG=2CE,即CE=FG,∴=CF•CD,即FG2=4CF•CD,∴②正确.④∵四边形ABCD是正方形,∴△PDF∽△PBA,∴==,∴=,∴=,即CF=DF,∴④错误,综上所述,正确的由①②③.故选:C.10.(4分)如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD :S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A.2个B.3个C.4个D.5个【解答】解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△E DO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项①正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项⑤正确;∵∠AOD+∠COB=∠AOD+∠ADO=90°,∠A=∠B=90°,∴△AOD∽△BOC,∴===,选项③正确;同理△ODE∽△OEC,∴,选项④错误;故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)函数y=+的自变量x的取值范围是x≥1且x≠3 .【解答】解:由题意,∴x≥1且x≠3,故答案为∴x≥1且x≠312.(5分)因式分解:x3﹣x2+= x(x﹣)2.【解答】解:x3﹣x2+=x(x2﹣x+)(提取公因式)=x(x﹣)2(完全平方公式).13.(5分)如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为17a2.【解答】解:设直线l与BC相交于点G在Rt△CDF中,CF⊥DG∴∠DCF=∠CGF∵AD∥BC∴∠CGF=∠ADE∴∠DCF=∠ADE∵AE⊥DG,∴∠AED=∠DFC=90°∵AD=CD∴△AED≌△DFC∴DE=CF=a在Rt△AED中,AD2=17a2,即正方形的面积为17a2.故答案为:17a2.14.(5分)如图,用完全相同的两个矩形纸片交叉叠合得到四边形ABCD,则四边形ABCD的形状是菱形.【解答】解:∵两张纸条都是长方形,∴AB∥CD,BC∥AD,∴四边形ABCD为平行四边形.过点A作AE⊥DC于E,AF⊥BC于F.∵两张长方形纸条的宽度相等,∴AE=AF.又∵▱ABCD的面积=DC•AE=BC•AF,∴DC=BC,∴▱ABCD为菱形.故答案是:菱形.三、(本大题共2小题,每小题8分,满分16分)15.(8分),并求出它的所有整数解的和.【解答】解:,解不等式①得x≥﹣1,解不等式②得x≤3,∴原不等式组的解集是﹣1≤x≤3,∴原不等式组的整数解是﹣1,0,1,2,∴所有整数解的和﹣1+0+1+2=2.16.(8分)解方程:①的解x= 0 .②的解x= 1 .③的解x= 2 .④的解x= 3 .…(1)根据你发现的规律直接写出⑤,⑥个方程及它们的解.(2)请你用一个含正整数n的式子表示上述规律,并求出它的解.【解答】解:①x=0②x=1③x=2④x=3.(1)第⑤个方程:解为x=4.第⑥个方程:解为x=5.(2)第n个方程:解为x=n﹣1.方程两边都乘x+1,得n=2n﹣(x+1).解得x=n﹣1.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求.18.(8分)计算:(1)(2)【解答】解:(1)原式=×=1;(2)原式=++=+=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,矩形OABC的顶点C、A分别在x轴和y轴上,点B的坐标为(4,3),双曲线y=(x>0)的图象经过AB的中点D,且与BC交于点E,连接DE.(1)求双曲线的解析式;(2)求tan∠BDE的值;(3)在第一象限内存在点P,使△OPA与△BDE相似,请直接写出满足条件的P点的坐标.【解答】解:(1)∵B(4,3),四边形OABC为矩形,∴OA=BC=3,AB=OC=4,∵D为AB的中点,∴D(2,3),∵双曲线y=(x>0)的图象经过AB的中点D,∴k=2×3=6,∴双曲线解析式为y=;(2)∵点E在BC边上,且在双曲线上,∴点E横坐标为4,代入双曲线解析式可得y==,∴BE=3﹣=,且DE=2,∴tan∠BDE===;(3)在Rt△BDE中,BE=,BD=2,∵△OPA与△BDE相似,且点P在第一象限,∴有∠PAO=∠B=90°或∠APO=90°两种情况,①当∠PAO=90°时,此时点P在直线AB上,则有=或=两种情况,当=时,即=,解得PA=4,此时P点坐标为(4,3);当=时,即=,解得PA=,此时P点坐标为(,3);②当∠PAO=90°时,此时AO为Rt△PAO的斜边,在Rt△BDE中,由勾股定理可求得DE=,∴有=或=,当=时,即=,解得PA=,此时∠PAO=∠BDE=∠BAC,即点P在线段AC上,过P作PF⊥OA于点F,如图1,∴△APF∽△ACO,∴==,即==,解得AF=,PF=,∴OF=3﹣=,∴P(,),当=时,即=,解得PA=,在Rt△PAO中,由勾股定理可求得OP==,过P作PM⊥AO于点M,如图2,则AO•PM=PA•PO,解得PM=,在Rt△OMP中,由勾股定理可得OM==,∴P(,);综上可知P点坐标为此时P点坐标为(4,3)或(,3)或(,)或P(,).20.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.【解答】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是=.六、(本题满分12分)21.(12分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择A或B 题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= 或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= b或 b (用含m, n,b的式子表示).【解答】解:(1)∵点H 是AD 的中点,∴AH=AD ,∵正方形AEOH ∽正方形ABCD ,∴相似比为: ==;故答案为:;(2)在Rt △ABC 中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD 与△ABC 相似的相似比为: =,故答案为:;(3)A 、①∵矩形ABEF ∽矩形FECD ,∴AF :AB=AB :AD ,即a :b=b :a ,∴a=b ;故答案为:②每个小矩形都是全等的,则其边长为b 和a ,则b : a=a :b ,∴a=b ;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b或b.七、(本题满分12分)22.(12分)某批发中心销售品牌计算器,成本价12元/个,零售价20元/个,批发优惠规定:一次购买10个以上的,每多买一个,售价降低0.10元(假如某人要买20个计算器,每个降价0.1×(20﹣10)=1元,该人就可以按19元/个进行购买),但批发中心规定最低出售价不得低于16元/个.(1)小李到批发中心购买此计算器然后转卖,问他如何批发购买才能使自己获利多?(2)写出一次购买量x个与批发中心利润y的函数关系式.(3)某天总部询查人员小王从乙那里赚的钱反而比从甲那儿赚的少,问账目有问题吗?【解答】解:(1)设一次购买x只,才能以最低价购买,则有:0.1(x﹣10)=20﹣16,解这个方程得x=50;答一次至少买50只,才能以最低价购买.(2)y=20x﹣12x=8x(0<x<10),y=(20﹣12)x﹣0.1(x﹣10)x=﹣x2+9x(10<x≤50),y=16x﹣12x=4x(x>50);.(3)y=﹣x2+9x=﹣(x﹣45)2+202.5.①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤90时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=42时,y1=201.6元,当x=52时,y2=197.6元.∴y1>y2.即出现了卖42只赚的钱比卖52只嫌的钱多的现象.八、(本题满分14分)23.(14分)已知∠AOB=45°,P是边OA上一点,OP=4,以点P为圆心画圆,圆P交OA于点C(点P在O、C之间,如图).点Q是直线OB上的一个动点,连PQ,交圆P于点D,已知,当OQ=7时, =.(1)求圆P半径长;(2)当点Q在射线OB上运动时,以点Q为圆心,OQ为半径作圆Q,若圆Q与圆P相切,试求OQ的长度;(3)连CD并延长交直线OB于点E,是否存在这样的点Q,使得以O、C、E为顶点的三角形与△OPQ相似?若存在,试确定Q点的位置;若不存在,试说明理由.【解答】解:(1)过点P作PG⊥OB,垂足为G,∵∠AOB=45°,OP=4,∴PG=OG=4.…(1分)又∵OQ=7,∴GQ=3.从而PQ=5,…(1分)∵,∴PD=2,即⊙的半径长为2.…(1分)(2)设OQ=x,则PQ==.(1分)当⊙P与⊙Q外切时,PQ=OQ+2,即=x+2,…(1分)解得:x=.经检验是方程的根,且符合题意,…(1分)当⊙P与⊙Q 内切时,PQ=OQ﹣2,即=x﹣2,…(1分)解得:x=7.经检验是方程的根,且符合题意,…(1分)所以,当OQ的长度为或7时,⊙P与⊙Q相切.(3)∵∠POQ=∠COE,∵PC=PD,∴∠PDC=∠PCD,从而∠OPQ=2∠OCE≠∠OCE,∴要使△OPQ与△OCE相似,只可能∠OQP=∠OCE,…(1分)当点Q在射线OB上时,∠OQP=45°,∠OPQ=90°.∴OQ=8.…(2分)当点Q在射线OB的反向延长线上时,∠OQP=15°,∠OPQ=30°.过点Q作QH⊥OP,垂足为H,则 PH=QH,设 QH=t,则t+4=t,解得:t=2+2,∴OQ=t=4+4.…(2分)综上,点Q在射线OB上,且OQ=8时,以O、C、E为顶点的三角形与△OPQ相似;或者点Q在射线OB的反向延长线上,且OQ=4+4时,以O、C、E为顶点的三角形与△OPQ相似.。

数学九年级模拟试卷难题【含答案】

数学九年级模拟试卷难题【含答案】

数学九年级模拟试卷难题【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. -1B. 0C. 1D. 32. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = x² + 13. 若直线y = 2x + 3与x轴相交于点A,与y轴相交于点B,则△OAB的面积是:A. 3B. 4.5C. 6D. 94. 已知等差数列{an}的前n项和为Sn = 2n² + 3n,则a3的值为:A. 11B. 12C. 13D. 145. 若复数z满足|z 1| = |z + 1|,则z在复平面内对应点的轨迹是:A. 直线B. 圆C. 椭圆D. 双曲线二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。

()2. 任何实数的平方都是非负数。

()3. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac,当Δ > 0时,方程有两个不相等的实数根。

()4. 在等差数列中,若m + n = p + q,则am + an = ap + aq。

()5. 若复数z满足|z| = 1,则z在复平面内对应点的轨迹是圆。

()三、填空题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1) = _____。

2. 已知等差数列{an}的通项公式为an = 3n 2,则a5 = _____。

3. 若复数z满足|z 1| = |z + 1|,则z在复平面内对应点的轨迹方程是_____。

4. 若函数f(x) = x³ 3x在x = 1处取得极小值,则f'(1) = _____。

5. 若直线y = kx + b与圆(x 1)² + (y + 2)² = 4相切,则k的值为_____。

2023年中考数学全真模拟卷(含答案)四

2023年中考数学全真模拟卷(含答案)四

2023年中考数学全真模拟卷第四模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

每小题给出的四个选项中只有一个....选项是最符合题意的)1.13-的相反数是()A .3B .-3C .13D .13-2.2015年9月14日,通过位于美国的两个LIGO 探测器,人类第一次探测到了引力波的存在,这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差.三百五十万分之一约为0.0000002857.将0.0000002857用科学记数法表示应为()A .72.85710-⨯B .62085710-⨯C .60.285710-⨯D .82.85710-⨯3.在▱ABCD 中,AC AD ⊥,30B ∠=︒,2AC =,则▱ABCD 的周长是()A .4+B .8C .8+D .164.木箱里装有仅颜色不同的8张红色和若干张蓝色卡片,随机从木箱里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有()A .18张B .16张C .14张D .12张5.下列计算正确的是()A .325x x x +=B .()236x x =C .()336x x =D .236a a a ⋅=6.已知一次函数的图象与直线2y x =-平行,且与函数43y x =-的图象交y 轴于同一点,则这个一次函数的解析式是()A .23y x =--B .23y x =-+C .23y x =-D .23y x =+7.一副直角三角板按如图所示的方式摆放,其中点C 在FD 的延长线上,且AB ∥FC ,则∠CBD 的度数为()A .15°B .20°C .25°D .30°8.如图,是某几何体的三视图,根据三视图,描述物体的形状是正确的是()A .圆柱体B .长方体C .圆台D .半圆柱和长方体组成的组合体9.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED △,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,6AF =,4BF =,ADG △的面积为8,则点F 到BC 的距离为()A B C D 10.若二次函数223y ax ax a =-+-(a 是不为0的常数)的图象与x 轴交于A ,B 两点.下列结论:①0a >;②当1x >-时,y 随x 的增大而增大;③无论a 取任何不为0的数,该函数的图象必经过定点()1,3-;④若线段AB 上有且只有5个横坐标为整数的点,则a 的取值范围是1334a <<.其中正确的结论是()A .①②B .②④C .①③D .③④二、填空题(本大题共7小题,每小题4分,共28分)11.函数y =________.12.一组数据3,4,6,8,x 的平均数是6,则这组数据的中位数是________.13.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP.由作法得△OCP ≌△ODP 的根据是_________.14.如图,AB ∥CD ,直线l 平分∠AOE ,∠1=40°,则∠2=_____度.15.我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有________客房间.16.如图,点(4,)B m 在双曲线20(0)y x x=>上,点D 的双曲线6(0)y x x =->上,点A 在y 轴的正半轴上,若A 、B 、C 、D 构成的四边形为正方形,则对角线AC 的长是_____.17.如图,点F 在平行四边形ABCD 的边AD 上,延长BF 交CD 的延长线于点E ,交AC 于点O ,若19AOB COE S S ∆∆=,则AF DF =__________.三、解答题(本大题共3小题,每小题6分,共18分)18.有理数a ,b ,c在数轴上的位置如图所示.(1)a b -______0(填“>”“<”“=”);(2)试化简下式:a b b c a c ---+-.19.如图,点A ,B ,C ,D 在同一直线上,//AE DF ,//CE BF ,AE FD =.求证:AB CD =20.某中学为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1500名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:球类名称人数乒乓球42羽毛球a 排球15篮球33足球b解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,a=________,b=________;(3)试估计上述1500名学生中最喜欢乒乓球运动的人数.四、解答题(本大题共3小题,每小题8分,共24分)21.如图,在145⨯的网格中,每个小正方形的边长都为1.网格线的交点称为格点,以格点为顶点的三角形称为格点三角形.已知直线l 及格点A ,B ,连接AB .(1)请根据以下要求依次画图:①在直线l 的左边画出一个格点ABC ∆(点C 不在直线l 上),且满足格点ABC ∆是直角三角形;②画出ABC ∆关于直线l 的轴对称A B C '''∆.(2)满足(1)的A B C '''∆面积的最大值为多少?22.如图,AB 是⊙O 的直径,点C 是⊙O 上一点(点C 不与点A ,B 重合),点E 是 BC 的中点,连接OE 交弦BC 于点D ,过点B 的直线与OE 的延长线交于点P ,连接AC ,CE ,BE ,∠EBP =∠ECB .(1)求证:BP 是⊙O 的切线;(2)若CE =2,∠EBP =30°,求阴影部分的面积.23.为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:普通板栗(件)精品板栗(件)总金额(元)甲购买情况23350乙购买情况41300(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a 件(10003000a ≤≤),则4000件板栗的销售总利润为w 元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?五、解答题(本大题共2小题,每小题10分,共20分)24.如图,在等边三角形ABC 右侧作射线CP ,∠ACP=α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .(1)依题意补全图形;(2)求∠DBC 的大小(用含α的代数式表示);(3)直接写出∠AEB 的度数;(4)用等式表示线段AE ,BD ,CE 之间的数量关系,并证明.25.已知:如图,在平面直角坐标系xOy 中,二次函数2()40y ax bx a =++≠与x 轴交于点A 、B ,点A 的坐标为(4,0),点B 的坐标为(2,0)-.(1)求该二次函数的表达式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当CQE ∆的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得ODF ∆是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2023年中考数学全真模拟卷答案第四模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

人教版2020年中考数学模拟试题及答案(含详解) (4)

人教版2020年中考数学模拟试题及答案(含详解) (4)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。

2020年天津市中考数学模拟试题(含答案) (4)

2020年天津市中考数学模拟试题(含答案)  (4)

2020年天津市中考数学模拟试卷(典型考点整理)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为美元.9.(3分)已知k为整数,且满足<k<,则k的值是.10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是°.12.(3分)已知二元一次方程组,则2a+3b=.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.14.(3分)已知不等式组无解,则a的取值范围是.15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB【分析】如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即ABAC=ACBC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据方差和平均数的定义即可得到结论.【解答】解:原数据的平方数为=165;原数据的方差为[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2+(165﹣165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2]=,故平均数不变,方差变大,故选:A.【点评】本题考查了方差和平均数,数据定义是解题的关键.6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5【分析】根据题意A、B的横坐标化为相反数,所以设A(﹣m,﹣)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC 即可求得.【解答】解:∵C是AB的中点,∴设A(﹣m,﹣)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.【点评】本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为 1.3×1012美元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)已知k为整数,且满足<k<,则k的值是3.【分析】先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.【点评】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可得出答案.【解答】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.【点评】此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是105°.【分析】利用三角形内角和定理计算即可.【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故答案为:105.【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.(3分)已知二元一次方程组,则2a+3b=9.【分析】将两方程相减即可得.【解答】解:,①﹣②,得:2a+3b=9,故答案为:9.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)已知不等式组无解,则a的取值范围是a≤1.【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【解答】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于﹣1.【分析】由已知得出a﹣c=2,求出a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,即可得出所求的值.【解答】解:∵a﹣b=b﹣c=1,∴a﹣c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,∴ab+bc+ac=a2+b2+c2﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]是解题的关键.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.【分析】设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB =5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.【解答】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.【点评】本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣6×+9=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有80人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.【分析】(1)32÷40%=80(人),课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人),据此补图;(2),所以a=20;(3)根据题意得:1800×=360(人),所以该校全体学生中喜爱“实验实践”的人数约为360人.【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点评】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【点评】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2﹣2AB•AC=BC2,即(m+2)2﹣2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【点评】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【解答】解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)【分析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.【分析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB﹣BM=1,然后利用勾股定理计算AE的长.【解答】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB﹣BM=1,∴AE==.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.【分析】(1)先求出二次函数y=ax2﹣2ax=a(x﹣1)2﹣a顶点C(1,﹣a),当x=1时,一次函数值y=﹣a所以点C在一次函数y=﹣ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k的值为±4;(3)分两种情况讨论:①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a.【解答】解:(1)∵二次函数y=ax2﹣2ax=a(x﹣1)2﹣a,∴顶点C(1,﹣a),∵当x=1时,一次函数值y=﹣a∴点C在一次函数y=﹣ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2﹣2an),∵EF∥y轴,F在一次函数图象上,∴F(n,﹣an).①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,∵a>0,∴当n=﹣1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【点评】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。

最新初三中考数学模拟试卷及答案(4套)

最新初三中考数学模拟试卷及答案(4套)
请你借助数学知识帮助同学们分析老师画的这两个图,通过计算验证说明图1到图2的拼接是否可行,若不行请说明理由,并画出正确的拼接图
25.(本题满分10分)
如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
23.(本题满分10分)
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的 形状,并证明你的结论.
24.(本题满分10分)
数学课上,老师用多媒体给同学们放了2010年春节联欢晚会由魔术界当红艺人刘谦表演的的神奇的障眼法“硬币穿玻璃”魔术,敏捷的身手、幽默的语言把同学们逗得乐不可支。看完后老师说:“今天我也来当一回魔术师给你们现场表演一个数学魔术。”说完便在黑板上画出下面两个图:
(1)甲、乙、丙三辆车中,谁是进货车?
(2)甲车和丙车每小时各运输多少吨?
(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但
丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两
车又工作了几小时,使仓库的库存量为6吨?
28.(本题满分12分)
在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
A.7 B.9 C.9或12 D.12
7.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()
A.正视图的面积最大B.俯视图的面积最大

2023年中考数学综合模拟试题四(含答案)

2023年中考数学综合模拟试题四(含答案)

2023年中考数学综合模拟试题四一、选择题(每题3分,共30分) 1、-2 023的相反数等于( ) A .2 023 B .-2 023C. 12023D .-120232、下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( )3、下列运算正确的是( )A .(-m 2n)3=-m 6n 3B .m 5-m 3=m 2C .(m +2)2=m 2+4D .(12m 4-3m)÷3m=4m 34、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是( )个. A.4 B.5 C.6 D.75、关于x 的一元二次方程(a +2)x 2-3x +1=0有实数根,则a 的取值范围是( )A .a <14且a≠-2B .a≤14C .a≤14且a≠-2D .a <146、我国古代某数学著作中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( )A.{3(y −2)=x 2y −9=x B.{3(y +2)=x 2y +9=x C.{3(y −2)=x 2y +9=x D.{3(y +2)=x2y −9=x7、如图,D ,E ,F 分别是△ABC 各边中点,则以下说法错误的是( ) A .△BDE 和△DCF 的面积相等 B .四边形AEDF 是平行四边形 C .若AB =BC ,则四边形AEDF 是菱形D .若∠A=90°,则四边形AEDF 是矩形 ( 第7题图)8、关于x 的不等式组{x −m <0,3x −1>2(x −1)无解,那么m 的取值范围为( )A. m ≤-1B.m<-1C.-1<m ≤0D.-1≤m<09、如图所示,已知点A,B 分别在反比例函数y= 1x (x>0), y=- 4x (x>0))的图象上,且OA ⊥OB,则OBOA 的值为( ) A.√2 B.4 C.√3 D.2( 第9题图)10、如图所示,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是 △ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设 BD=x,△BDP 的面积为y,则下列能大致反映y 与x 函数关系图象的是( )二、填空题(每题3分,共24分)11、我国某探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 km.12、一组数据5,2,x,6,4的平均数是4,这组数据的方差_____.13、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a 只,则现年20岁的这种动物活到25岁的概率是 ________.14、如图所示,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作射线AP,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD的周长为. (第14题图)15、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人 4盒牛奶,那么剩下28盒牛奶;如果分给每位老人 5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有__________人.16、如图,在矩形ABCD中,AB=3,AD=4,E,F分别是边BC,CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=________时,△AEC′是以AE 为腰的等腰三角形.(第16题图)(第17题图)(第18题图)17、如图,已知正方形ABCD的边长为6,点F是正方形内一点,连接CF,DF,且∠ADF=∠DCF,点E是AD边上一动点,连接EB,EF,则EB+EF长度的最小值为 ________________.18、如图,△ABC是边长为2的等边三角形,AD是BC边上的高,CE是AB边上的高.将△ADC绕点D顺时针旋转得到,其中点A的对应点为点,点C的对应点为点.在旋转过程中,当点落在直线EC上时,的长为______.三、解答题(共9小题,计66分)19、(5分)(12)-1-√−83+|√3-2|+2sin 60°.A DC''A'C'A'A C'20、(5分)先化简,再求值:(3a+1-a+1)÷a 2−4a 2+2a+1,其中a 从-1,2,3中取一个你认为合适的数代入求值.21、(6分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m ,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n ,组成一数对(m ,n). (1)请写出(m ,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.22、(6分)如图所示,某测量小组为了测量山BC 的高度,在地面A 处测得山顶B 的仰角为45°,然后沿着坡度为1∶3的坡面AD 走了200 m 达到D 处,此时在D 处测得山顶B 的仰角为60°,求山BC 的高度.(结果保留根号)23、(6分))某校从全体学生中随机抽取部分学生,调查他们平均每周的劳动时间t(单位:h),按劳动时间分为四组:A 组“t<5”,B 组“5≤t<7”,C 组“7≤t<9”,D 组“t ≥9”.将收集的数据整理后,绘制成如图所示的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是,C组所在扇形的圆心角的大小是;(2)将条形统计图补充完整;(3)该校共有1 500名学生,请估计该校平均每周劳动时间不少于7 h的学生人数.24、(8分)某乡镇对河道进行整治,由甲乙两工程队合做 20天可完成.已知甲工程队单独整治需60天完成.(1)乙工程队单独完成河道整治需多少天?(2)若甲乙两工程队合做a天后,再由甲工程队单独做天(用含a 的代数式表示)可完成河道整治任务;(3)如果甲工程队每天施工费为5 000元,乙工程队每天施工费为1.5万元,先由甲乙两工程队合做,剩余工程由甲工程队单独完成,要使支付两工程队费用最少,并且确保河道在40天内(含 40天)整治完毕,问需支付两工程队费用最少多少万元?25、(8分)如图所示,在Rt△ABC中,∠ABC=90°,以AB 为直径作⊙O,点D 为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.26.(10分)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC =6时,求DE的长.27.(12分)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.参考答案二.填空题第11题:3.2×108 第12题:2 第13题: 58第14题:15 第15题:30 第16题:78 或 43第17题:3√13−3 第18题:√11−√32或√11+√32三.解答题第19题:原式=8第20题:化简,可得,原式=−a −1,因为a ≠−1且a ≠2,所以,当a =3时,原式=−4第21题:(1) 所有可能出现的结果为:(1,1) 、(1,2) 、(1,3) 、(2,1) 、(2,2) 、(2,3) 、(3,1) 、(3,2) 、(3,3) 。

2021年江苏省徐州市中考数学模拟试卷(四)(附答案详解)

2021年江苏省徐州市中考数学模拟试卷(四)(附答案详解)

2021年江苏省徐州市中考数学模拟试卷(四)一、选择题(本大题共8小题,共24.0分)1.−94绝对值是()A. −94B. −49C. 49D. 942.如图是一个机器的零件,则下列说法正确的是()A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 主视图、左视图与俯视图均不相同3.下列计算正确的是()A. (−2a3b)2=−4a6b2B. (−a−b)2=a2−2ab+b2C. 3a⋅(−a)2=3a3D. √5−√3=√24.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A. 6m2B. 7m2C. 8m2D. 9m25.某书店与一所山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量如下(单位:本):300,200,200,300,300,500,则这组数据的众数、中位数分别是()A. 300,150B. 300,200C. 300,300D. 600,3006.黄种人头发直径约为85微米,已知1纳米=10−3微米,数据“85微米”用科学记数法可以表示为()A. 8.5×10−3纳米B. 8.5×103纳米C. 8.5×104纳米D. 8.5×10−4纳米7.如图正方体纸盒,展开后可以得到()A.B.C.D.8.如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论:①ac<0;②当x≥1时,y随x的增大而减小;③2a+b=0;④b2−4ac<0;⑤4a−2b+c>0,其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,共30.0分)9.4的平方根为______.910. √x x 中x 的取值范围是______. 11. 如图,在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC交CD 于点E ,BC =5,DE =2,△BCE 的面积等于______.12. 已知方程组{x −y =53x −2y =0的解也是方程4x −3y +k =0的解,则k 的值为______. 13. 如图,四边形ABCD 为⊙O 的内接四边形,∠BOD =110°,则∠BCD 的度数是______ .14. 一个圆锥的底面半径是2cm ,母线长是6cm ,若将该圆锥侧面沿着母线剪开得到一个扇形,则该扇形的圆心角的度数是______.15. 若正比例函数y =2kx 与反比例函数y =kx (k ≠0)的图象交于点A(m,1),则k 的值是______ .16. 再如图,一艘船由A 港沿北偏东65°方向航行30√2km至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为多少______km .17. 如图,以边长为1的正方形ABCD 的边AB 为对角线作第二个正方形AEBO 1,再以BE为对角线作第三个正方形EFBO 2,如此作下去,…,则所作的第2021个正方形的面积S 2021= ______ .18.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕点B顺时针旋转60°得到△BDE,连接AD,则AD的值是______.三、解答题(本大题共10小题,共86.0分)19.计算:(1)−2√2+|tan45°−√2|+(3.14−π)0+2−2;(2)x2+2x+1x2−1−xx−1.20.(1)解方程:3x(x−2)=x−2(2)解不等式组:{5x−3≤2x+9,①3x>x+102,②21.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是______;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.22.某校本学期开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______ 名;(2)扇形统计图中表示A级的扇形圆心角α的大小是______ ,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数是多少?23.如图,在菱形ABCD中,对角线AC,BD相交于点O,DE//AC,AE//BD.(1)求证:四边形AODE是矩形;(2)连接CE,若AB=2√3,∠BCD=120°,求CE的长.24.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,用60平方米建A类摊位的个数恰好是用同样面积建B类.摊位个数的35(1)求每个A,B类摊位的占地面积各为多少平方米;(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类排位数量的3倍,求最多建多少个A类摊位.25.已知AB是圆O的直径,点C是圆O上一点,点P为圆O外一点,且OP//BC,∠P=∠BAC.(1)求证:PA为圆O的切线;(2)如果OP=AB=10,求AC的长.26.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.如图,煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系.已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400℃时,须停止操作.那么锻造的操作时间最多有多长?(3)如果加工每个零件需要锻造12分钟,并且当材料温度低于400℃时,需要重新煅烧.通过计算说明加工第一个零件,一共需要多少分钟.27.如图①,在矩形ABCD中,AB=6,BC=8.把矩形ABCD沿对角线AC剪开,得到△ABC和△ADC,并把△ADC沿线段CB平移得到△A′D′C′,A′C′与AB相交于点N,D′C′与AC相交于点M(如图②).(1)四边形AMC′N一定是______形;(2)当四边形AMC′N是菱形时求平移的距离;(3)如图③,把△ADC沿线段CB平移使DC与AB重合,得到△A′D′C′,再把△A′D′C′绕点B顺时针旋转,使点D′落在边AC上的点D1处,得到△A1D1B,求△FD1B的面积.28.如图,在平面直角坐标系中,矩形ABCD的三个顶点B(4,0),C(8,0),D(8,−8),抛物线y=ax2+bx经过A,C两点.动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,运动速度均为每秒1个单位长度,运动时间为t秒,过点P作PE⊥AB交AC于点E.(1)求点A的坐标及抛物线的函数表达式;(2)过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG的长有最大值?最大值是多少?(3)连接EQ,是否存在t的值使△ECQ为等腰三角形?若存在,请求出t值;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:∵负数的绝对值等于它的相反数,∴|−94|=94,故选:D.根据负数的绝对值等于它的相反数即可解决.本题考查了绝对值的意义,准确掌握绝对值的意义是解题的关键.2.【答案】A【解析】解:该几何体的主视图与左视图相同,底层是一个矩形,上层的中间是一个矩形;俯视图是两个同心圆.故选:A.根据三视图的定义求解即可.此题主要考查了画几何体的三视图,熟记三视图的定义是解答本题的关键.3.【答案】C【解析】解:A.(−2a3b)2=4a6b2,故此选项不合题意;B.(−a−b)2=a2+2ab+b2,故此选项不合题意;C.3a⋅(−a)2=3a3,故此选项符合题意;D.√5−√3,无法计算,故此选项不合题意;故选:C.直接利用积的乘方运算法则以及完全平方公式和二次根式的加减法则分别计算得出答案.此题主要考查了积的乘方运算以及完全平方公式和二次根式的加减,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:假设不规则图案面积为x,由已知得:长方形面积为20,,根据几何概率公式小球落在不规则图案的概率为:x20当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,=0.35,解得x=7.综上有:x20故选:B.本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高5.【答案】C【解析】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,=300;所以中位数是300+3002故选:C.根据中位数、众数的概念求解即可.本题主要考查众数,中位数和平均数,掌握众数,中位数的概念和平均数的求法是解题的关键.6.【答案】C【解析】解:85微米=85×103纳米=8.5×104纳米.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】A【解析】解:根据题意可知,有两个白色圆的面与有黑色圆的面相邻且有公共顶点.故选:A.根据折叠后白色圆与黑色圆所在的面的位置进行判断即可.本题主要考查了几何体的展开图,实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.8.【答案】C【解析】解:∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x≥1时,y随x的增大而增大,结论②错误;∵抛物线对称轴为直线x=1,=1,∴−b2a∴b=−2a,∴2a+b=0,结论③正确;∵抛物线与x轴有两个交点,∴b2−4ac>0,结论④错误;∵当x=−2时,y>0,∴4a−2b+c>0,结论⑤正确.故选:C.由抛物线的开口方向及与y 轴交点的位置,即可判断①;由二次函数的性质即可判断②;由抛物线对称轴为直线x =1,即可得出b =−2a ,进而可得出2a +b =0,即可判断③;④由抛物线与x 轴的交点情况即可判断④;⑤由当x =−2时,y >0可得出4a −2b +c >0,即可判断⑤.本题考查了二次函数图象与系数的关系以及二次函数的性质,逐一分析五条结论的正误是解题的关键.9.【答案】±23 【解析】解:49的平方根为±√49=±23. 故答案为:±23.根据平方根的定义求解.本题考查了平方根的知识,注意一个正数有两个平方根,它们互为相反数. 10.【答案】x >0【解析】解:由题意得x >0,解得x >0.故答案为:x >0.根据二次根式的被开方数为非负数,分式的分母不等于零列式计算可求解.本题主要考查二次根式有意义的条件,分式有意义的条件,掌握二次根式有意义的条件,分式有意义的条件是解题的关键.11.【答案】5【解析】解:作EF ⊥BC 交BC 于点F ,∵CD 是AB 边上的高,∴CD ⊥BA ,∵BE 平分∠ABC ,∴DE =EF ,∵DE =2,∵BC =5,∴S △BCE =BC⋅EF 2=5×22=5,故答案为:5.先作辅助线EF ⊥BC 交BC 于点F ,然后根据角平分线的性质,可以得到DE =EF ,再根据三角形的面积公式,即可求得△BCE 的面积.本题考查角平分线的性质,解答本题的关键是作辅助线EF ⊥BC ,求出EF 的长.12.【答案】−5【解析】解:{x −y =5①3x −2y =0②, ①×2得2x −2y =10③,③−②得x =−10,把x =−10代入①得y =−15,∴此方程组的解{x =−10y =−15; 把x =−10,y =−15,代入4x −3y +k =0得,4×(−10)−3×(−15)+k =0,解得k =−5;故答案为:−5先用加减消元法解方程组,再把x 、y 的值代入方程求出k 的值.题主要考查了二元一次方程组的解、二元一次方程的解,掌握二元一次方程组的解法是解题关键.13.【答案】125°【解析】解:由圆周角定理得,∠A =12∠BOD =12×110°=55°,∵四边形ABCD 为⊙O 的内接四边形,∴∠BCD =180°−∠A =180°−55°=125°,故答案为:125°.根据圆周角定理求出∠A ,根据圆内接四边形的性质计算,得到答案.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题14.【答案】120°【解析】解:设这个扇形的圆心角为n.由题意,n⋅π⋅6180=2⋅π⋅2,∴n=120°,故答案为:120°.利用弧长公式,构建方程求解即可.本题考查圆锥的计算,弧长公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】±√22【解析】解:∵点A(m,1)在反比例函数y=kx(k≠0)的图象上,∴k=m×1=m,∵点A(m,1)在正比例函数y=2kx的图象上,∴1=2km,即2m2=1,解得m=±√22,即k=±√22.先根据题意用m表示出k,再把点A的坐标代入正比例函数的解析式即可求出m的值,进而得出k的值.本题考查的是反比例函数与一次函数的交点问题,熟知反比例函数中k=xy的知识是解答此题的关键.16.【答案】(30+10√3)【解析】解:如图,过B作BE⊥AC于E,过C作CF//AD,则CF//AD//BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°−20°=45°,AB=30√2km,在Rt △ABE 中,∵∠ABE =45°,∴△ABE 是等腰直角三角形,∵AB =30√2km ,∴AE =BE =√22AB =30(km),在Rt △CBE 中,∵∠ACB =60°,tan∠ACB =BE CE ,∴CE =BEtan60∘=√3=10√3(km),∴AC =AE +CE =30+10√3(km),∴A ,C 两港之间的距离为(30+10√3)km ,故答案为:(30+10√3).过B 作BE ⊥AC 于E ,过C 作CF//AD ,证出∠ACB =60°,由题意得∠CAB =65°−20°=45°,AB =30√2km ,解直角三角形求出AE 、CE 的长,即可得到答案.本题考查了解直角三角形的应用,方向角问题,等腰直角三角形的判定与性质等知识;熟练掌握解直角三角形,作出辅助线构造直角三角形是解题的关键.17.【答案】122020【解析】解:由题意可得,正方形ABCD 的面积是1,所作第二个正方形AEBO 1的面积是(√2)2=12,所作第三个正方形EFBO 2的面积是(√2×√2))2=122,…,则所作的第2021个正方形的面积S 2021=122020,故答案为:122020,根据题意可得,正方形ABCD 的面积是1,所作第二个正方形AEBO 1的面积是(√2)2=12,所作第三个正方形EFBO 2的面积是(√2×√2))2=122,进而可得结果.本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律. 18.【答案】√6+√2【解析】解:连接CD,设AD与BE交于H,如图:∵将△ABC绕点B顺时针旋转60°得到△BDE,∴BC=BD=2,∠DBC=∠ABE=60°,∴△BDC是等边三角形,∴∠BCD=60°,∵∠ACB=90°,∴∠ACD=∠ACB+∠BCD=150°,∴∠CAD=(180°−∠ACD)÷2=15°,∵∠ACB=90°,AC=BC=2,∴∠CAB=45°,AB=2√2,∴∠HAB=∠CAB−∠CAD=30°,∴∠AHB=180°−∠HAB−∠ABE=90°,在Rt△ABH中,AH=AB⋅cos∠HAB=2√2×√32=√6,在Rt△DBH中,DH=BD⋅sin∠DBH=2×√22=√2,∴AD=AH+DH=√6+√2,故答案为:√6+√2.连接CD,设AD与BE交于H,由将△ABC绕点B顺时针旋转60°得到△BDE,可知△BDC 是等边三角形,∠BCD=60°,从而可得∠CAD=15°,即得∠HAB=30°,故∠AHB=90°,在Rt△ABH中,可得AH=√6,在Rt△DBH中,DH=√2,即可得答案.本题考查等腰直角三角形的旋转,解题的关键是掌握旋转的性质,证明∠AHB=90°.19.【答案】解:(1)原式=−√2+|1−√2|+1+14=−√2+√2−1+1+14=14.(2)原式=(x+1)2(x−1)(x+1)−xx−1=x+1x−1−xx−1=x+1−xx−1=1x−1.【解析】(1)根据二次根式的性质、特殊角的锐角三角函数的值、零指数幂的意义以及负整数指数幂的意义.(2)根据分式的减法运算法则即可求出答案.本题考查二次根式的性质、特殊角的锐角三角函数的值、零指数幂的意义以及负整数指数幂的意义、分式的混合运算法则,本题属于基础题型.20.【答案】解:(1)3x(x−2)−(x−2)=0,(x−2)(3x−1)=0,x−2=0或3x−1=0,所以x1=2,x2=13.(2)解不等式①得:x≤4,解不等式②得:x>2,则不等式组的解集为2<x≤4.【解析】(1)先移项得到3x(x−2)−(x−2)=0,然后利用因式分解法求解.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查了解一元二次方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键.21.【答案】(1)13(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率=69=23.【解析】解:(1)因为有A,B,C3种等可能结果,;所以八(1)班抽中歌曲《我和我的祖国》的概率是13.故答案为13(2)见答案【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.【答案】4054°【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(名),故答案为:40;=54°,(2)扇形统计图中表示A级的扇形圆心角α的度数是:360°×640故答案为:54°,C级的人数为:40×35%=14,补充完整的条形统计图如图所示;(3)500×6=75(人),40答:估计该校八年级优秀的人数大约是75人.(1)根据B级的人数和所占的百分比,可以求得本次抽样测试的学生人数;(2)根据条形统计图中的数据,可以计算出扇形统计图中表示A级的扇形圆心角α的度数和C级的人数,即可将条形统计图补充完整;(3)根据题意和统计图中的数据,可以计算出优秀的人数.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是理解两个统计图中数量关系,利用数形结合的思想解答.23.【答案】(1)证明:∵DE//AC,AE//BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴平行四边形AODE是矩形;(2)解:∵四边形ABCD是菱形,∠BCD=120°,∴AD=AB=BC=2√3,OA=OC,OB=OD,AC⊥BD,∠ACB=12∠BCD=60°,∴△ABC是等边三角形,∠AOD=90°,∴AC=AB=2√3,∴OA=12AC=√3,∴OD=√AD2−OA2=√(2√3)2−(√3)2=3,由(1)得:四边形AODE是矩形,∴∠AOE=90°,AE=OD=3,∴CE=√AE2+AC2=√32+(2√3)2=√21.【解析】(1)先证四边形AODE为平行四边形,再由菱形的性质得∠AOD=90°,即可得出结论;(2)证△ABC是等边三角形,得出AC=AB=2√3,则OA=√3,再由勾股定理得出OD的长,然后由矩形的性质和勾股定理求出CE的长即可.本题考查了矩形的判定与性质、菱形的性质、平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等知识,熟练掌握矩形的判定与性质是解题的关键.24.【答案】解:(1)设每个A类摊位占地面积为x平方米,则每个B类摊位占地面积为(x−2)平方米,依题意得:60x =60x−2×35,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,则x−2=5−2=3.答:每个A类摊位占地面积为5平方米,每个B类摊位占地面积3平方米.(2)设A类摊位的数量为m个,则B类摊位的数量为(90−m)个,由题意得:90−m≥3m,解得:m≤22.5,答:A类摊位的数量最多为22个.【解析】(1)设每个A类摊位占地面积为x平方米,则每个B类摊位占地面积为(x−2)平.列出方米,由题意:用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35分式方程,解方程即可;(2)设A类摊位的数量为m个,则B类摊位的数量为(90−m)个,由题意:建造B类摊位的数量不少于A类排位数量的3倍,列出一元一次不等式,解不等式即可.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式.25.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°,又∵OP//BC,∴∠AOP=∠B,∴∠BAC+∠AOP=90°,∵∠P=∠BAC,∴∠P+∠AOP=90°,∴∠PAO=90°,∴PA⊥OA,又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)得:∠PAO=∠ACB=90°,又∵∠P=∠BAC,OP=BA,∴△OAP≌△BCA(AAS),∴BC=OA=12AB=5,∴AC=√AB2−BC2=√102−52=5√3【解析】(1)先由圆周角定理得∠ACB=90°,则∠BAC+∠B=90°.再由平行线的性质得∠AOP=∠B,然后证∠P+∠AOP=90°,则∠PAO=90°,即可得证;(2)先证△OAP≌△BCA(AAS),得BC=OA=12AB=5,再由勾股定理求出AC的长即可.本题考查了切线的判定、圆周角定理、全等三角形的判定与性质、平行线的性质、勾股定理等知识;熟练掌握切线的判定和圆周角定理是解题的关键.26.【答案】解:(1)材料锻造时,设y=kx(k≠0),由题意得600=k8,解得k=4800,当y=800时,4800x=800,解得x=6,∴点B的坐标为(6,800)材料煅烧时,设y=ax+32(a≠0),由题意得800=6a+32,解得a=128,∴材料煅烧时,y与x的函数关系式为y=128x+32(0≤x≤6).∴锻造操作时y与x的函数关系式为y=4800x(x>6);(2)把y=400代入y=4800x中,得x=12,12−6=6(分),答:锻造的操作时间6分钟;(3)当y=800时,即4800x=800,∴x=6,从400升到800需要258min,再加上两次6分钟的锻造,加上煅烧的时间,一共是1698min,∴锻造每个零件需要煅烧两次共12分钟,∴加工第一个零件一共需要1698min.【解析】(1)首先根据题意,材料煅烧时,温度y与时间x成一次函数关系;锻造操作时,温度y与时间x成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;(2)把y=400代入y=4800x中,进一步求解可得答案;(3)根据题意列式计算即可.本题主要考查了反比例函数和一次函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.27.【答案】平行四边【解析】解:(1)∵四边形ABCD是矩形,∴AB//CD,∴AB//C′D′,AC//A′C′,∴四边形AMC′N是平行四边形,故答案是:平行四边形;(2)如图1,∵tan∠ACD=AD′D′M =ADCD=86=43,∴设AD′=4x,D′M=3x,∴AM=5x,∵AM=C′M,∴5x=6−3x,∴x=34,∴AD′=4x=3,∴DD′=8−3=5,∴四边形AMC′N 是菱形时求平移的距离是:5;(3)如图2,作FG ⊥BD 1于G ,∵BD 1=AB =6,∴∠BD 1A =∠BAC ,∵∠A 1BD 1=∠ABA′=∠BAC ,∴∠A 1BD 1=∠AD 1B ,∴FB =FD 1,∴BG =GD 1=12BD 1=3, ∴FG =BG ⋅tan∠FBG =3×43=4,∴S △FD 1B =12BD 1⋅FG =12×6×4=12.(1)由AB//C′D′,AC//A′C′得四边形AMC′N 是平行四边形;(2)设AD′=4x ,D′M =3x ,AM =5x ,由AM =C′M 得5x =6−3x ,进而求得结果;(3)求得在△FBD 1中,tan∠FBD 1=tan∠BAC =43,BD 1=AB =6,FB =FD 1,进而求得结果.本题考查了平行四边形判定,菱形判定,全等三角形判定和性质,相似三角形判定和性质,锐角三角形函数等知识,解决问题的关键是熟练找到前后变换的边角. 28.【答案】解:(1)∵矩形ABCD 的三个顶点B(4,0),C(8,0),D(8,−8),∴AD//x 轴,AB//y 轴,点A 的坐标为(4,−8),将A(4,−8)、C(8,0)两点坐标分别代入y =ax 2+bx 得:{16a +4b =−864a +8b =0, 解得:{a =12b =−4, 故抛物线的解析式为:y =12x 2−4x ;(2)如图1,由题意得:AP =t ,∴PB =8−t ,设直线AC 的解析式为:y =kx +n ,则{8k +n =04k +n =−8,解得:{k =2n =−16, ∴直线AC 的解析式为:y =2x −16,∵PE//BC ,∴△APE∽△ABC ,∴PE BC =AP AB ,即PE 4=t 8,∴PE =12t ,当x =4+12t 时,y =2(4+12t)−16=t −8,∴E(4+12t,t −8),G(4+12t,18t 2−8), ∴EG =t −8−(18t 2−8)=−18t 2+t =−18(t −4)2+2,∵−18<0,∴当t =4时,EG 有最大值是2;(3)有三种情况:①当EQ =QC 时,∵Q(8,−t),E(4+12t,t −8),QC =t ,∴根据两点间距离公式,得:(4+12t −8)2+(t −8+t)2=t 2.整理得13t 2−144t +320=0,(t −8)(13t −40)=0,解得t =4013或t =8(此时E 、C 重合,不能构成三角形,舍去);②当EC =CQ 时,∵E(4+12t,t −8),C(8,0),QC =t , ∴根据两点间距离公式,得:(4+12t −8)2+(t −8)2=t 2, 整理得t 2−80t +320=0,解得:t 1=40−16√5,t 2=40+16√5>8(此时Q 不在矩形的边上,舍去); ③当EQ =EC 时,∵Q(8,−t),E(4+12t,t −8),C(8,0),∴根据两点间距离公式,得:(4+12t −8)2+(t −8+t)2=(4+12t −8)2+(t −8)2, 解得t =0(此时Q 、C 重合,不能构成三角形,舍去)或t =163.综上,t 的值是4013或40−16√5或163.【解析】(1)由于四边形ABCD 为矩形,所以A 点与D 点纵坐标相同,A 点与B 点横坐标相同,可得A(4,−8),将A(4,−8)、C(8,0)两点坐标代入抛物线的解析式可得结论;(2)根据相似三角形的性质求出PE 的长,可得E 和G 的横坐标表达式,代入二次函数解析式和直线AC 的解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答;(3)若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ =QC ,EC =CQ ,EQ =EC 三种情况讨论,根据两点的距离公式列方程即可解答.本题是二次函数的综合题,利用了矩形的性质,待定系数法求二次函数解析式;利用了相似三角形的性质,勾股定理,利用平行于坐标轴两点间的距离公式是第二问解题关键;利用了两点的距离公式列方程可解答第三问等腰三角形两边相等的问题.。

中考数学 易错易错压轴勾股定理选择题专题练习(4)

中考数学 易错易错压轴勾股定理选择题专题练习(4)

中考数学易错易错压轴选择题精选:勾股定理选择题专题练习(4)一、易错易错压轴选择题精选:勾股定理选择题1.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.217B.25C.42D.72.如图,A、B两点在直线l的两侧,点A到直线l的距离AC=4,点B到直线l的距离BD=2,且CD=6,P为直线CD上的动点, 则PA PB-的最大值是()A.62B.22C.210D.63.在ΔABC中,211a b c=+,则∠A( )A.一定是锐角B.一定是直角C.一定是钝角D.非上述答案4.圆柱形杯子的高为18cm,底面周长为24cm,已知蚂蚁在外壁A处(距杯子上沿2cm)发现一滴蜂蜜在杯子内(距杯子下沿4cm),则蚂蚁从A处爬到B处的最短距离为()A.813B.28 C.20 D.1225.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A .25394+B .25392+C .18253+D .253182+ 6.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .17.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .48.在△ABC 中,∠BCA=90∘,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )A .5B .75C .145 D .365 9.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .910.如图,在等边△ABC 中,AB =15,BD =6,BE =3,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 右侧按如图方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是( )A .8B .10C .43D .1211.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm12.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .A .9B .10C .18D .2013.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .514.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )A .49B .25C .12D .10 15.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .1016.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )A .36B .9C .6D .1817.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米18.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .10C .326+D .1219.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )A .3B .5C .4.2D .420.下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .9,41,40a b c ===B .5,5,52a b c ===C .::3:4:5a b c =D .11,12,13a b c === 21.以下列各组数为边长,不能构成直角三角形的是( ) A .3,4,5B .1,1,2C .8,12,13D .2、3、522.有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5B .7C .5D .5或7 23.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )A .12cmB .14cmC .20cmD .24cm24.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )A 5B 51C 51D .51-25.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .626.若△ABC 中,AB=AC=25,BC=4,则△ABC 的面积为( )A .4B .8C .16D .5227.以线段a 、b 、c 的长为边长能构成直角三角形的是( )A .a =3,b=4,c=6B .a =1,b=2,c=3C .a =5,b=6,c=8D .a =3,b=2,c=5 28.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c =B .A BC ∠+∠=∠ C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c = 29.由下列条件不能判定△ABC 为直角三角形的是( )A .∠A+∠B=∠CB .∠A :∠B :∠C=1:3:2C .a=2,b=3,c=4D .(b+c)(b-c)=a² 30.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .3D .2【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.A解析:A【解析】试题解析:作AD ⊥l 3于D ,作CE ⊥l 3于E ,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE ,{BAD CBEAB BC ADB BEC∠=∠=∠=∠,∴△ABD ≌△BCE∴BE=AD=3在Rt △BCE 中,根据勾股定理,得BC=25+9=34, 在Rt △ABC 中,根据勾股定理,得AC=342=217⨯.故选A .考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.2.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE'为矩形,6, 2.B E CD EC BD BD∴=====''2.AE∴=AB'=PA PB-的最大值为:故答案为:3.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc>a 2,再根据(b-c)2≥0,可推导得出b 2 +c 2>a 2,据此进行判断即可得.【详解】∵211a b c =+,∴2b ca bc+ =,∴2bc=a(b+c),∵a、b、c是三角形的三条边,∴b+c>a,∴2bc>a·a,即2bc>a 2,∵(b-c)2≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2≥2bc,∴b 2 +c 2>a 2,∴一定为锐角,故选A.【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2>a 2是解题的关键.4.C解析:C【解析】分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.详解:如图所示,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=2222'++ (cm)=1216=20A D BD故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF的对称点A′是解题的关键.5.A解析:A【解析】分析:将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.详解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF 中,AF=12AP=32,PF=32AP=332. ∴在直角△ABF 中,AB 2=BF 2+AF 2=(4+332)2+(32)2=25+123. 则△ABC 的面积是34•AB 2=34•(25+12)253 故选A . 点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.6.D解析:D【分析】作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C ,此时△ABC 周长最小,根据题意及作图可得出△OAD 是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE 是直角三角形,然后设AB=x ,则OB=3+x ,根据周长最小值可表示出BE=6-x ,最后在Rt △OBE 中,利用勾股定理建立方程求解即可.【详解】解:作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C , 此时△ABC 周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE ,∵△ABC 周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD ⊥OM ,∴△OAD 是等腰直角三角形,∠OAD=45°,由作图可知OM 垂直平分AE ,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE 是直角三角形,设AB=x ,则OB=3+x ,BE=6-x ,在Rt △OBE 中,()()2223+3+6x x =-,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.7.C解析:C【分析】作DE⊥AB于E,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用等等面积法列方程、解方程即可解答.【详解】解:作DE⊥AB于E,如图,在Rt△ABC中,BC22106-8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=12DE•AB=12AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故答案为C.【点睛】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..8.C解析:C【分析】根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,EG⊥CD于G,证明△DHE≌△EGD,利用勾股定理求出75EH DG==,即可得到BE.【详解】∵∠BCA=90∘,AC=6,BC=8, ∴22226810AB AC BC ,∵D 是AB 的中点,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC ,CE=AC=6,∴BD=DE ,作DH ⊥BE 于H ,EG ⊥CD 于G ,∴∠DHE=∠EGD=90︒,∠EDH=12∠BDE=12(180︒-2∠EDC )=90︒-∠EDC , ∴∠DEB= 90︒-∠EDH=90︒-(90︒-∠EDC)=∠EDC ,∵DE=DE ,∴△DHE ≌△EGD ,∴DH=EG ,EH=DG ,设DG=x ,则CG=5-x ,∵2EG =2222DE DG CE CG -=-,∴222256(5)x x -=--,∴75x =, ∴75EH DG ==, ∴BE=2EH=145, 故选:C.【点睛】此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE 转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE ≌△EGD ,由此求出BE 的长度.9.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 10.D解析:D【分析】首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE ≌△FDH ,△DF 2Q ≌△ADE ,然后利用全等三角形的性质,得出点F 运动的路径长.【详解】∵△ABC 为等边三角形,∴∠B =60°,过D 点作DE ′⊥AB ,过点F 作FH ⊥BC 于H ,如图所示:则BE ′=12BD =3, ∴点E ′与点E 重合,∴∠BDE=30°,DEBE,∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,90PED DHFEDP DFHDP FD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DPE≌△FDH(AAS),∴FH=DE∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则四边形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,222F QD DEA90F DQ DAEDF AD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴当点P从点E运动到点A时,点F运动的路径长为12,故选:D.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是作好辅助线. 11.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm ).故选:D .【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.12.C解析:C【分析】将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求.【详解】解:如图,将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,2222'15129A D A B BD ∴--'==.所以底面圆的周长为9×2=18cm.故选:C .【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.13.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB ,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++== 把向上的面展开到正面上,连结AB ,如图3()()2210205725529AB =++==925725625>>∴53752925>>∴需要爬行的最短距离为25cm故选:A .【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.14.C解析:C【解析】试题解析:如图,∵大正方形的面积是25,∴c 2=25,∴a 2+b 2=c 2=25,∵直角三角形的面积是(25-1)÷4=6, 又∵直角三角形的面积是12ab=6, ∴ab=12.故选C. 15.C解析:C【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD 的长,即可得出BC 的长.【详解】在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BC=2BD.∴∠ADB=90°在Rt △ABD 中,根据勾股定理得:22-AB AD 225-3=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.16.A解析:A【分析】先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.【详解】 CE 平分ACB ∠,CF 平分ACD ∠,,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=,111(90222)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,,BCE CEF DCF F ∠=∴∠∠=∠,,ACE CEF ACF F ∴∠=∠∠=∠,3,3EM CM FM CM ∴====,6EF EM FM ∴=+=,在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,故选:A .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.17.A解析:A【解析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键. 18.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB =22(24)2210++=.故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.19.C解析:C【分析】根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA 是4.2尺.故答案选:C .【点睛】本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.20.D解析:D【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形.【详解】解:A 、因为92+402=412,故能构成直角三角形;B 、因为52+52=(252,故能构成直角三角形; C 、因为()()()222345x x x +=,故能构成直角三角形;D 、因为112+122≠152,故不能构成直角三角形;故选:D .【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形. 21.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=(2)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.(2)2+(3)2=(5)2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.22.D解析:D【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边=2234+=5,当4是斜边时,另一条直角边=22473-=,故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.23.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【详解】解:如图:将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A',连接A'B 交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm ,延长BG ,过A'作A'D ⊥BG 于D ,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:12=cm∴则该圆柱底面周长为24cm.故选:D.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.B解析:B【分析】-,点A表示的数为1,得PA=2,根据勾股定理得PB由数轴上点P表示的数为1而即可得到答案.【详解】-,点A表示的数为1,∵数轴上点P表示的数为1∴PA=2,AB=,又∵l⊥PA,1∴PB=∵∴数轴上点C1.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.25.C解析:C【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C.考点:勾股定理的证明.26.B解析:B【分析】作AD⊥BC,则D为BC的中点,即BD=DC=2,根据勾股定理可以求得AD,则根据S=12×BC×AD 可以求得△ABC 的面积. 【详解】解:作AD ⊥BC ,则D 为BC 的中点,则BD=DC=2,∵AB=2522AB BD -,∴△ABC 的面积为S=12×BC×AD=12×4×4=8, 故选:B .【点睛】本题考查了勾股定理的运用,三角形面积的计算,本题中正确的运用勾股定理求AD 是解题的关键. 27.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A 、222346+≠,C 、222568+≠,D 、222325+≠,故错误; B 、2221233+==,能构成直角三角形,本选项正确. 故选B .【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.28.D解析:D 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90︒即可.【详解】解:A 、22251213+=,ABC ∆∴是直角三角形,故能判定ABC ∆是直角三角形;B 、A BC ∠+∠=∠,90C ∴∠=︒,故能判定ABC ∆是直角三角形; C 、::2:3:5A B C ∠∠∠=,518090235C ∴∠=⨯︒=︒++,故能判定ABC ∆是直角三角形;D 、22261012+≠,ABC ∆∴不是直角三角形,故不能判定ABC ∆是直角三角形;故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.29.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.30.D解析:D【分析】24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴=故选D.【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.。

2021届中考数学压轴题型专练04(选择题-几何类)【含答案】

2021届中考数学压轴题型专练04(选择题-几何类)【含答案】

2021届中考数学压轴题型专练 专练04(选择题-几何类)(20道)1.如图,ABCD 是正方形,E 、F 分别是DC 和CB 的延长线上的点,且.DE BF =连接AE 、AF 、EF 、AC ,EF 交AB 于点.G 则下列结论:ADE ①≌ABF ; 45AEF ∠=②;③若3AB =,13DE DC =,则54AEFS=; ④若2AB =,E 为DC 的中点,则10EF AC =其中正确结论的个数是( )A .1个B .2个C .3 个D .4 个【答案】B 【解析】 解:DE BF =,ABF ADE ∠∠=,AB AD =,ADE ∴≌ABF ,故①正确.ADE ≌ABF ,AF AE ∴=,FAB EAD ∠∠=.DAE EAB 90∠∠+=,FAB BAE 90∠∠∴+=,即FAE 90∠=,AFE ∴为等腰直角三角形,AEF 45∠∴=,故②正确.AB 3=,1DE DC 3=,DE 1∴=.22AE AD DE 10∴=+=AEF11SAF AE 1010522∴=⋅==,故③错误; AB 2=,E 为DC 的中点,DE 1∴=,AC 2AB 22==依据勾股定理可知:AE 5=EF 2AE 10==EF 105AC 222==,故④错误. 故选:B . 【点睛】本题主要考查的是正方形的性质、等腰直角三角形的判定和性质、三角形的面积公式,熟练掌握正方形的性质、等腰直角三角形的性质和判定定理是解题的关键.2.如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF 于点M ,N .下列结论:①AF ⊥BG ;②BN =32NF ;③38BM MG =;④BF ²=FN ·AF ;⑤12CGNF ANGD S S =四边形四边形.其中结论正确的个数是( )A .2个B .3个C .4个D .5个【答案】C 【解析】∵四边形ABCD 为正方形, ∴AB=BC=CD ,∵BE=EF=FC ,CG=2GD , ∴BF=CG ,∵在△ABF 和△BCG 中,90AB BCABF BCG BF CG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△BCG , ∴∠BAF=∠CBG ,BG=AF , ∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF ⊥BG ;故①正确; ∵在△BNF 和△BCG 中,CBG NBFNFB CGB∠=∠⎧⎨∠=∠⎩∴△BNF ∽△BCG ,NF CG2∴BN=32NF;故②正确;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,22AB BF+13∵S△ABF=12AF•BN=12AB•BF,∴613,NF=23413,∴AN=AF-913,∵E是BF中点,∴EH是△BFN的中位线,∴EH=12BN=31313,NH=12NF=1313,BN∥EH,∴AH=AN+NH=111313,ANAH=MNEH,解得:2713,∴BM=BN-313,MG=BG-813,∴BMMG=38,故③正确;在△ABF和△BNF中,AFB NFBABF BNF ∠=∠⎧⎨∠=∠⎩,∴△ABF∽△BNF,AF BF∴BF 2= FN·AF ,故④正确, 连接AG ,FG ,根据③中结论:BN=61313,13BG=AF , ∴NG=BG -713, ∵S 四边形CGNF =S △CFG +S △GNF=12CG•CF+12NF•NG =1+1413=2713, S 四边形ANGD =S △ANG +S △ADG =12AN•GN+12AD•DG=6326+32=5113, ∴S 四边形CGNF ≠12S 四边形ANGD ,故⑤错误; ∴正确结论有①②③④,共4个, 故选C. 【点睛】本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边比例相等的性质,本题中令AB=3求得AN ,BN ,NG ,NF 的值是解题的关键.3.如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG ,DE 和FG 相交于点O .设AB =a ,CG =b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③CEGOGC DG =;④(a ﹣b )2•S △EFO=b 2•S △DGO .其中结论正确的个数是( )A .4个B .3个C .2个D .1个【答案】B①①四边形ABCD 和四边形CEFG 是正方形, ①BC=DC ,CG=CE ,①BCD=①ECG=90°,①①BCG=①DCE , 在①BCG 和①DCE 中,{BC DCBCG DCE CG CE=∠=∠=, ①①BCG①①DCE (SAS ), 故①正确;①延长BG 交DE 于点H ,①①BCG①①DCE , ①①CBG=①CDE , 又①①CBG+①BGC=90°, ①①CDE+①DGH=90°, ①①DHG=90°, ①BH①DE ; ①BG①DE . 故①正确;①①四边形GCEF 是正方形, ①GF①CE ,①DG GODC CE =, ①CEGOGC DG =是错误的. 故①错误; ①①DC①EF , ①①GDO=①OEF , ①①GOD=①FOE , ①①OGD①①OFE ,①22()()DGO EFOS DG a b SEF b-==, ①(a -b )2•S △EFO =b 2•S △DGO . 故①正确; 故选B .考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.正方形的性质.4.如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN⊥AQ 交BC 于点N ,作NP⊥BD 于点P ,连接NQ ,下列结论:①AM=MN;②MP=12BD ;③BN+DQ=NQ;④AB BNBM +为定值.其中一定成立的是A .①②③B .①②④C .②③④D .①②③④【答案】D 【解析】如图:作AU①NQ 于U ,连接AN①AC①①①AMN=①ABC=90°① ①A①B①N①M 四点共圆,①①NAM=①DBC=45°①①ANM=①ABD=45°① ①①ANM=①NAM=45°①∴由等角对等边知,AM=MN,故①正确.由同角的余角相等知,∠HAM=①PMN①①Rt①AHM①Rt①MPN①MP=AH=12AC=12BD,故②正确,①①BAN+①QAD=①NAQ=45°①∴三角形ADQ绕点A顺时针旋转90度至ABR,使AD和AB重合,在连接AN,证明三角形AQN①ANR,得NR=NQ则BN=NU①DQ=UQ①∴点U在NQ上,有BN+DQ=QU+UN=NQ,故③正确.如图,作MS①AB,垂足为S,作MW①BC,垂足为W,点M是对角线BD上的点,∴四边形SMWB是正方形,有MS=MW=BS=BW①①①AMS①①NMW①①AS=NW①①AB+BN=SB+BW=2BW①①BW①BM=1①2①①2=22AB BNBM+=,故④正确.故选D①5.正方形 A BCD 中,对角线 A C、BD 相交于点 O,DE 平分∠A DO 交 AC 于点 E ,把∆A DE 沿AD 翻折,得到∆A DE’,点 F 是 DE 的中点,连接 A F、BF、E’F,若2.下列结论:①AD 垂直平分 EE’,② tan∠2-1,③ C∆A DE - C∆ODE =22-1,④ S四边形AEFB= 322其中结论正确的个数是() .A.4 个B.3 个C.2 个D.1 个【答案】B【解析】解:如图,连接EB、EE',作EM⊥AB于M,EE'交AD于N.∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE'=45°,根据对称性,△ADE≅△ADE'≅ABE,∴DE=DE',AE=AE',∴AD垂直平分EE',故①正确,∴EN=NE',∵∠NAE=∠NEA=∠MAE=∠MEA=45°,2,∴AM=EM=EN=AN=1,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=1,2+1,∴tan∠ADE=tan∠ODE=OEDO2-1,故②正确,∴22,∴C△ADE-C△ODE=AD+AE-DO-2,故③错误,∴S△AEB=S△AED=12⨯1⨯(2)=1+22,S△BDE= S△ADB-2 S△AEB=1+ 2∵DF=EF,∴S△EFB=2 2∴S四边形AEFB= S△AEB+ S△EFB=3+222,故④错误,故选C.【点睛】考查翻折变换(折叠问题),全等三角形的性质,面积计算,综合性比较强,对学生能力要求较高.6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC 于点E,F,给出下列四个结论:①△APE≌△CPF,②AE=CF,③△EAF是等腰直角三角形;④S△ABC=2S 四边形AEPF,上述结论正确的有, ,A.1个B.2个C.3个D.4个【答案】C【解析】∵AB=AC①∠BAC=90°,点P是BC的中点,∴AP⊥BC①AP=PC①∠EAP=∠C=45°①∴∠APF+∠CPF=90°①∵∠EPF是直角,∴∠APF+∠APE=90°①∴∠APE=∠CPF①在△APE和△CPF中,45APE CPF AP PCEAP C ∠∠⎧⎪⎨⎪∠∠︒⎩====① ∴△APE ≌△CPF①ASA①① ∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE① ∴△EFP 是等腰直角三角形,故③错误; ∵△APE ≌△CPF① ∴S △APE =S △CPF ①∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =12S △ABC .故④正确, 故选C① 【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF ,从而得到△APE 和△CPF 全等是解题的关键,也是本题的突破点.7.如图,在矩形ABCD 中,AB=3,BC=4,O 为矩形ABCD 对角线的交点,以D 为圆心1为半径作⊙D,P 为⊙D 上的一个动点,连接AP,OP ,则△AOP 面积的最大值为( ,A .4B .215C .358D .174【答案】D 【解析】解:当P 点移动到平行于OA 且与①D 相切时,①AOP 面积的最大,如图, ①P 是①D 的切线,①DP 垂直与切线,延长PD 交AC 于M ,则DM ①AC ① ①在矩形ABCD 中,AB =3①BC =4① ①AC =22AB BC +①OA= 5 2①①①AMD=①ADC=90°①①DAM=①CAD①①①ADM①①ACD①①DM AD CD AC=①①AD=4①CD=3①AC=5①①DM= 12 5①①PM=PD+DM=1+ 125=175①①①AOP的最大面积= 12OA•PM=1517225⨯⨯=174①故选D①【点睛】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大.8.如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①△BAE=△DAF=15°;3GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正确的个数为()A.1B.2C.3D.4【答案】C【解析】①∵四边形ABCD是正方形,∴AB=AD①∠B=∠D=90°①∵△AEF等边三角形,∴AE=AF①∠EAF=60°①∴∠BAE+∠DAF=30°①在Rt△ABE和Rt△ADF中AF AF AB AD=⎧⎨=⎩①∴Rt△ABE≌Rt△ADF①HL①①∴BE=DF①∵BC=CD①∴BC①BE=CD①DF,即CE=CF①∴AC是EF的垂直平分线,∴AC平分∠EAF①∴∠EAC=∠FAC=12×60°=30°①∵∠BAC=∠DAC=45°①∴∠BAE=∠DAF=15°,故①正确;②设EC=x,则FC=x①由勾股定理,得2x①CG=12EF=22x①3∴3CG,故②正确;③由②知:设23262x①∴2=(132x+①∴BE=AB①CE=(132x①x=)312x①∴BE+DF=2×)312x32x,故③错误;④S △CEF =22111·222CE CF CE x ==① S △ABE =12BE•AB=)()2313111··2224x x x =① ∴S △CEF =2S △ABE ① 故④正确,所以本题正确的个数有3个,分别是①②④① 故选C①【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.9.如图,矩形ABCD 中,3动点P 从点A 出发向终点D 运动,连BP ,并过点C 作CH ⊥BP ,垂足为H.①△ABP ∽△HCB;②AH 73③在运动过程中,BP 扫过的面积始终等于CH 扫过的面积:④在运动过程中,点H 233π, 其中正确的有( )A .①②③B .①②④C .②③④D .①③④【答案】B 【解析】①CH ⊥BP ,矩形ABCD 中90ABC ∠=,∴ 90,BAP CHB HBC BPA ∠=∠=∠=∠∴△ABP ∽△HCB ,故①正确;②连接AH AO HO AH HO AO +≥、、,则,当A H O 、、 在同一直线上时,AH 最短, 此时222(3)373AH AO HO =-=+=,即AH 73,故②正确; ③如图所示,在运动过程中,BP 扫过的面积11=2232322ABD S AB AD ∆=⨯⨯=⨯⨯=(3)(2)x x f f ≤扫过的面积223120(3)3=(3)34COQ BOQS S ππ∆⨯⨯+=+=扇形 , ∴BP 扫过的面积不等于(3)(2)x x f f ≤扫过的面积,故③错误;④在运动过程中,点H 的运动路线(轨迹)长为1203233BQ ππ⨯⨯==,故④正确;故答案为:①②④. 【点睛】本题主要考查了轨迹以及矩形的性质的运用,直径所对的圆周角为直角,掌握弧长计算公式以及扇形的面积公式是解题关键.10.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连结BE 分别交AC ,AD 于点F 、G ,连结OG ,则下列结论:①OG =12AB ;②与△EGD 全等的三角形共有5个;③S 四边形ODGF >S △ABF ;④由点A 、B 、D 、E 构成的四边形是菱形.其中正确的是( )A .①④B .①③④C .①②③D .②③④【答案】A【解析】∵四边形ABCD 是菱形,∴AB =BC =CD =DA ,AB ∥CD ,OA =OC ,OB =OD ,AC ⊥BD , ∴∠BAG =∠EDG ,△ABO ≌△BCO ≌△CDO ≌△AOD , ∵CD =DE , ∴AB =DE ,在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABG ≌△DEG (AAS ), ∴AG =DG ,∴OG 是△ACD 的中位线, ∴OG =12CD =12AB , ∴①正确;∵AB ∥CE ,AB =DE , ∴四边形ABDE 是平行四边形, ∵∠BCD =∠BAD =60°, ∴△ABD 、△BCD 是等边三角形, ∴AB =BD =AD ,∠ODC =60°, ∴OD =AG ,四边形ABDE 是菱形, ④正确; ∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG , 在△ABG 和△DCO 中,OD AGODC BAG 60AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩, ∴△ABG ≌△DCO (SAS ),∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=12 AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=14△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选A.【点睛】本题考查菱形的判定与性质, 全等三角形的判定与性质,三角形中位线的性质,熟练掌握性质,能通过性质推理出图中线段、角之间的关系是解题关键.11.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ,③△FPC为等腰三角形;④△APB≌△EPC,其中正确结论的个数为()A.1B.2C.3D.4【答案】B【解析】①如图,EC①BP交于点G①∵点P是点B关于直线EC的对称点,∴EC垂直平分BP①∴EP=EB①∴∠EBP=∠EPB①∵点E为AB中点,∴AE=EB①∴AE=EP①∴∠PAB=∠PBA①∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2①∠PAB+∠PBA①=180°①∴∠PAB+∠PBA=90°①∴AP⊥BP①∴AF∥EC①∵AE∥CF①∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°①∴∠APQ+∠BPC=90°①由折叠得:BC=PC①∴∠BPC=∠PBC①∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°①∴∠ABP=∠APQ①故②正确;③∵AF∥EC①∴∠FPC=∠PCE=∠BCE①∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP①如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC①AD=BC=PC①∠ADF=∠EPC=90°①∴Rt△EPC≌△FDA①HL①①∵∠ADF=∠APB=90°①∠FAD=∠ABP①当BP=AD或△BPC是等边三角形时,△APB≌△FDA①∴△APB≌△EPC①故④不正确;其中正确结论有①②①2个,故选B①点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.12.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于点P.若5APD≌△AEB,②点B到直线AE的距离为6③EB⊥ED,④S△APD+S△APB6.其中正确结论的序号是()2A.①②③B.①②④C.②③④D.①③④【答案】A 【解析】①∵∠EAB +∠BAP=90°,∠PAD +∠BAP=90°, ∴∠EAB=∠PAD , 又∵AE=AP ,AB=AD , ∵在△APD 和△AEB 中,AE AP EAB PAD AB AD ⎧⎪∠∠⎨⎪⎩=== ∴△APD ≌△AEB (SAS ); 故此选项成立; ③∵△APD ≌△AEB , ∴∠APD=∠AEB ,∵∠AEB=∠AEP +∠BEP ,∠APD=∠AEP +∠PAE , ∴∠BEP=∠PAE=90°, ∴EB ⊥ED ; 故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F , ∵AE=AP ,∠EAP=90°, ∴∠AEP=∠APE=45°, 又∵③中EB ⊥ED ,BF ⊥AF , ∴∠FEB=∠FBE=45°, 又∵BE=223BP PE -=, ∴6, 故此选项正确;④如图,连接BD ,在Rt △AEP 中, ∵AE=AP=1, ∴2 ,又∵PB=5 ∴3 ∵△APD ≌△AEB , ∴PD=BE=3,∴S △ABP +S △ADP =S △ABD ﹣S △BDP =12S 正方形ABCD ﹣12×DP ×BE=12×(46)﹣1233=12+62故此选项不正确.综上可知其中正确结论的序号是①②③,故选:A .【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.13.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB,CD 交于点E,F ,连接BF 交AC 于点M ,连接DE,BO.若∠COB,60°,FO,FC ,则下列结论:①FB ⊥OC,OM,CM,②△EOB ≌△CMB,③四边形EBFD 是菱形;④MB ∶OE,3∶2.其中正确结论的个数是( ,A .1B .2C .3D .4【答案】C连接BD①∵四边形ABCD是矩形,①AC=BD①AC①BD互相平分,①O为AC中点,①BD也过O点,①OB=OC①①①COB=60°①OB=OC①①①OBC是等边三角形,①OB=BC=OC①①OBC=60°①在△OBF与△CBF中,FO FC BF BF OB BC⎧⎪⎨⎪⎩===①①①OBF①①CBF①SSS①①①①OBF与△CBF关于直线BF对称,①FB①OC①OM=CM①∴①正确,①①OBC=60°①①①ABO=30°①①①OBF①①CBF①①①OBM=①CBM=30°①①①ABO=①OBF①①AB①CD①①①OCF=①OAE①①OA=OC①易证△AOE①①COF①①OB①EF①∴四边形EBFD 是菱形, ∴③正确,①①EOB①①FOB①①FCB① ①①EOB①①CMB 错误. ∴②错误,①①OMB=①BOF=90°①①OBF=30°①33①OE=OF① ①MB①OE=3①2① ∴④正确; 故选C①点睛:本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识,会综合运用这些知识点解决问题是解题的关键.14.如图,已知E 、F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,则下列结论:①∠AME=90°;②∠BAF=∠EDB ;③MD=2AM=4EM ;④AM=23MF .其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B 【解析】解:在正方形ABCD 中,AB=BC=AD ,∠ABC=∠BAD=90°, ∵E 、F 分别为边AB ,BC 的中点,12AE BF BC ∴==在△ABF 和△DAE 中,AE BF ABC BAD AB AD =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE (SAS ), ∴∠BAF=∠ADE ,∵∠BAF+∠DAF=∠BAD=90°, ∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°-(∠ADE+∠DAF )=180°-90°=90°, ∴∠AME=180°-∠AMD=180°-90°=90°,故①正确; ∵DE 是△ABD 的中线, ∴∠ADE≠∠EDB ,∴∠BAF≠∠EDB ,故②错误; ∵∠BAD=90°,AM ⊥DE , ∴△AED ∽△MAD ∽△MEA , ∴2AM MD ADEM AM AE=== ∴AM=2EM ,MD=2AM , ∴MD=2AM=4EM ,故③正确; 设正方形ABCD 的边长为2a ,则BF=a , 在Rt △ABF 中,2222(2)5AF AB BF a a a =+=+=∵∠BAF=∠MAE ,∠ABC=∠AME=90°, ∴△AME ∽△ABF ,AM AEAB AF∴=即25AM a a=535555MF AF AM a a ∴=-=-=23AM MF ∴=,故④正确 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.15.在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE=4,EF=3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为( )A 10B .192C .34D .10【答案】D 【解析】设点M 为DE 的中点,点N 为FG 的中点,连接MN ,则MN①PM 的长度是定值,利用三角形的三边关系可得出NP 的最小值,再利用PF 2+PG 2=2PN 2+2FN 2即可求出结论.详解:设点M 为DE 的中点,点N 为FG 的中点,连接MN 交半圆于点P ,此时PN 取最小值.∵DE=4,四边形DEFG 为矩形, ∴GF=DE①MN=EF① ∴MP=FN=12DE=2① ∴NP=MN -MP=EF -MP=1①∴PF 2+PG 2=2PN 2+2FN 2=2×12+2×22=10① 故选D①点睛:本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN 的最小值是解题的关键.16.如图,在矩形ABCD 中,3AD=3,点E 从点B 出发,沿BC 边运动到点C ,连结DE ,点E 作DE 的垂线交AB 于点F ,在点E 的运动过程中,以EF 为边,在EF 上方作等边△EFG ,则边EG 的中点H 所经过的路径长是( )A .23B .3C 332D 233【答案】C 【解析】连接FH ,取EF 的中点M ,连接BM ①HM ①在等边三角形EFG 中,EF =FG ①H 是EG 的中点, ∴190,302FHE EFH EFG ∠=∠=∠=,又∵M 是EF 的中点, ∴FM =HM =EM ①在Rt △FBE 中,90FBE ,∠= M 是EF 的中点, ∴BM =EM =FM ① ∴BM =EM =HM =FM , ∴点B ①E ①H ①F 四点共圆, 连接BH ,则30HBE EFH ∠=∠=,∴点H 在以点B 为端点,BC 上方且与射线BC 夹角为30的射线上, 如图,过C 作CH ′⊥BH 于点H ′①∵点E 从点B 出发,沿BC 边运动到点C ①∴点H 从点B 沿BH 运动到点H ′① 在Rt △BH ′C 中,90BH C ∠'=, ∴33cos 323BH BC CBH '=⋅∠'=⨯= ∴点H 所经过的路径长是233. 故选:C. 【点睛】属于综合题,考查等边三角形的性质,锐角三角函数等,综合性比较强,难度较大,对学生综合能力要求较高.17.如图,在矩形ABCD 中,AB =4,AD =6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F ,连接B ′D ,则B ′D 的最小值是( )A .102B .6C .132D .4【答案】A 【解析】解:如图,B ′的运动轨迹是以E 为圆心,以AE 的长为半径的圆.所以,当B ′点落在DE 上时,B ′D 取得最小值.根据折叠的性质,△EBF ≌△EB ′F , ∴EB ′⊥B ′F , ∴EB ′=EB ,∵E 是AB 边的中点,AB =4, ∴AE =EB ′=2,∴DE226210,∴DB′=102.故选A.【点睛】本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D的值最小,是解决问题的关键.18.如图,平行四边形ABCD的对角线AC,BD相交于点O,AE平分∠BAD,分别交BC,BD于点E,P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②7③S平行四边形ABCD=AB•AC④OE=14AD⑤S△APO=312,正确的个数是()A.2B.3C.4D.5【答案】D【解析】①∵AE平分∠BAD①∴∠BAE=∠DAE①∵四边形ABCD是平行四边形,∴AD∥BC①∠ABC=∠ADC=60°①∴∠DAE=∠BEA①∴∠BAE=∠BEA①∴AB=BE=1①∴△ABE是等边三角形,∴AE=BE=1①∵BC=2①∴EC=1①∴∠EAC=∠ACE①∵∠AEB=∠EAC+∠ACE=60°①∴∠ACE=30°①∵AD∥BC①∴∠CAD=∠ACE=30°①故①正确;②∵BE=EC①OA=OC①∴OE=12AB=12①OE∥AB①∴∠EOC=∠BAC=60°+30°=90°①Rt△EOC中,2213 122⎛⎫-=⎪⎝⎭①∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°①∴∠ACB=30°①∴∠ACD=90°①Rt△OCD中,2237 12⎛⎫+=⎪⎪⎝⎭①∴7③由②知:∠BAC=90°①∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=12BC①BC=AD①∴OE=12AB=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴3∴S △AOE =S △EOC =12OE•OC=12×12×3328=① ∵OE ∥AB① ∴12EP OE AP AB ==① ∴12POE AOPS S=① ∴S △AOP =23 S △AOE =2333 本题正确的有:①②③④⑤①5个, 故选D① 【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE 是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.19.如图,在矩形ABCD 中,,ADC 的平分线与AB 交于E ,点F 在DE 的延长线上,,BFE=90°,连接AF,CF,CF 与AB 交于G ,有以下结论: ,AE=BC ,AF=CF ,BF 2=FG•FC ,EG•AE=BG•AB其中正确的个数是( )A .1B .2C .3D .4【答案】C 【解析】①DE平分∠ADC①∠ADC 为直角,∴∠ADE=12×90°=45°①∴△ADE为等腰直角三角形,∴AD=AE①又∵四边形ABCD矩形,∴AD=BC①∴AE=BC②∵∠BFE=90°①∠BEF=∠AED=45°①∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°①∠CBF=∠ABC+∠ABF=135°①∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC①∠AEF=∠CBF①EF=BF①∴△AEF≌△CBF①SAS①∴AF=CF③假设BF2=FG•FC,则△FBG∽△FCB①∴∠FBG=∠FCB=45°①∵∠ACF=45°①∴∠ACB=90°,显然不可能,故③错误,④∵∠BGF=180°-∠CGB①∠DAF=90°+∠EAF=90°+①90°-∠AGF①=180°-∠AGF①∠AGF=∠BGC①∴∠DAF=∠BGF①∵∠ADF=∠FBG=45°①∴△ADF∽△GBF①∴AD DF DF BG BF EF==①∵EG∥CD①∴EF EG EG DF CD AB==①∴AD ABBG GE=①∵AD=AE①∴EG•AE=BG•AB,故④正确,故选C①【点睛】本题考查相似三角形的判定和性质、矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.20.如图,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将△BCF 沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是(,①AE=BF,②AE⊥BF,③sin∠BQP=45,④S四边形ECFG=2S△BGE,A.4B.3C.2D.1【答案】B【解析】解:①E①F分别是正方形ABCD边BC①CD的中点,①CF=BE,在△ABE和△BCF中,①AB=BC①①ABE=①BCF①BE=CF①①Rt△ABE①Rt△BCF①SAS①①①①BAE=①CBF①AE=BF,故①正确;又①①BAE+①BEA=90°①①①CBF+①BEA=90°①①①BGE=90°①①AE①BF,故①正确;根据题意得,FP=FC①①PFB=①BFC①①FPB=90°①①CD①AB①①①CFB=①ABF①①①ABF=①PFB①①QF=QB,令PF=k①k①0),则PB=2k在Rt△BPQ中,设QB=x①①x2=①x①k①2+4k2①①x=52k①①sin=①BQP=BPQB=45,故①正确;①①BGE=①BCF①①GBE=①CBF①①△BGE①△BCF①①BE=12BC①BF5BC①①BE①BF5△BGE的面积:△BCF的面积=1①5①①S四边形ECFG=4S△BGE,故①错误.故选B①点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.。

较难的中考数学试卷

较难的中考数学试卷

1. 已知函数f(x) = 2x - 3,则f(2)的值为()A. 1B. 3C. 5D. 72. 在直角坐标系中,点A(1, 2),点B(-3, 4),则线段AB的中点坐标为()A. (2, 3)B. (-1, 3)C. (-1, 2)D. (2, 1)3. 已知等差数列{an}的前三项分别为a1、a2、a3,且a1 + a3 = 10,a2 = 5,则该等差数列的公差d为()A. 2B. 3C. 4D. 54. 下列命题中正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² + c > b² + cD. 若a > b,则a² + c² > b² + c²5. 已知函数f(x) = x² - 4x + 4,则f(x)的图像是()A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一条直线D. 不是一个函数图像二、填空题(每小题5分,共25分)6. 若等比数列{an}的首项a1 = 3,公比q = 2,则第5项a5 = ________。

7. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为 ________。

8. 已知圆的半径R = 5cm,则该圆的周长L = ________。

9. 若方程2x² - 3x + 1 = 0的两根为x1和x2,则x1 + x2 = ________。

10. 已知函数f(x) = |x - 2|,则f(0)的值为 ________。

11. (10分)已知等差数列{an}的首项a1 = 2,公差d = 3,求该数列的前10项和S10。

12. (10分)在△ABC中,AB = 8cm,BC = 6cm,AC = 10cm,求△ABC的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学较难典型选择题模拟(4)
1.在正方体的表面上画有如图⑴中所示的粗线,图⑵是其展开图的示意图,但只在A 面上画有粗线,那么将图⑴中剩余两个面中的粗线画入图⑵中,画法正确的是( )
2.若m 、n (m<n )是关于x 的方程1()()0x a x b ---=的两根,且a < b ,
则a 、b 、m 、n 的大小关系是( )
A. m < a < b< n
B. a < m < n < b
C. a < m < b< n
D. m < a < n < b 3.右图是一个正方体的平面展开图,这个正方体是( )
4.若正方形网格中的每个小正方形的边长都是1,则把每个小格的顶点叫做格点.现有一
个表面积为12的正方体,沿着一些棱将它剪开,展成以格点为顶点的平面图形,下列四个图形中,能满足题意的是( )
D
C B A
5.将左图中的正方体纸盒沿所示的粗线..
剪开,其平面展开图的示意图为( ) 纸 盒裁剪线
A B C D
6.将一正方体纸盒沿下右图所示
的粗实线剪开,展开成平面图, 其展开图的形状为( ).
A . B. C. D.
纸盒剪裁线正方体纸盒C .
D
C
B
A
M
P
P
P'P'
图2P
7.右图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )
8.如图,已知MN 是圆柱底面的直径,NP 是圆柱的高, 在圆柱的侧面上,点M 、P 嵌有一圈路径最短的金属丝 ,现将圆柱侧面沿NP 剪开,所得的侧面展开图是( )
9. 右图需再添上一个面,折叠后才能围成一个正方体,下面 是四位同学补画的情况(图中阴影部分),其中正确的是(
) A . B. C.
D. 10
. 如图,边长为2的正方体中,一只蚂蚁从正方体下方一边
AB 的中点P 出发,沿着正方体的外表面爬到其一顶点C ′ 处的最短路径是( )
A B .C ..11. 如图,在直角梯形ABCD 中,AD ∥BC ,90C ∠=,
6cm CD =,AD =2cm ,动点P 、Q 同时从点B 出发,点P
沿BA 、AD 、DC 运动到点C 停止,点Q 沿BC 运动到C 点停止,
两点运动时的速度都是1cm/s ,而当点P 到达点A 时,点Q (第11题) 正好到达点C .设P 点运动的时间为(s)t ,BPQ △的面积为 y 2
(cm )
. 下图中能正确表示整个运动中y 关于t 的函数关系的大致图象是( )
A .
B .
C .
D .
12. 如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B C D A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( ) A .32 B .18 C .16
D .10
13.右图是画有一条对角线的平行四边形
纸片ABCD ,用此纸片可以围成一个 无上下底面的三棱柱纸筒, 则所围成 的三棱柱纸筒可能是 ( )
A B C D
14.任何一个正整数n 都可以进行这样的分解:q p n ⨯=(q p 、A
D
B (
C )
A (D )
A (D )
B (
C )
A (D )
B (
C )A (
D )B (C )
是正整数,且q p ≤),如果p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()p
F n q
=
.例如18可以分解成118⨯、29⨯或36⨯,这时就有31(18)62F =
=.给出下列关于()F n 的说法:(1)1(2)2F =;(2)3(24)8
F =;(3)(27)3F =;(4)若n 是一个完全平方数,则()1F n =.其中正确说法的个数是 ( )
A.1 B.2 C.3 D.4
15.已知,如图是一个封闭的正方形纸盒,E 是CD 中点,F 是CE 中点,一只蚂蚁从一个顶点A 爬到另一个顶点G ,那么这只蚂蚁爬行的最短路线是( )
A .A —
B —
C —G B .A —C —G
C .A —E —G
D .A —F —G
16.如图,是一个棱长为2的正方体,一只蜘蛛在
顶点
A 处,一只小昆虫在顶点
B 处,则蜘蛛接近小昆虫时 所爬行的最短路线的长是 (
) A .6 B .
2+..17.如图1,是用边长为2cm 的正方形和边长为2cm 正三角形硬纸片拼成的五边形ABCDE .在桌面上由图1起始位置将图片沿直线l 不滑行地翻滚,翻滚一周后到图2的位置. 则由点A 到点4A 所走路径的长度为( )
A .
310πcm B .()
3
238π
+ cm C .3212πcm D
.313π cm 18
.如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是(

参考答案
1. A
2. A
3. D
4. A
5. C
6. A
7. B
8. A
9. B
10.A
11.B
12.C
13.C
14.B
15.C
16.D
17.B
18.C。

相关文档
最新文档