2013年中考数学较难典型选择题模拟(2)

合集下载

2013年中考数学模拟试题(优质)及答案

2013年中考数学模拟试题(优质)及答案

2 013年中考数学模拟试题(二)时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.一个数的相反数是3,则这个数是( )A .-13 B.13C .-3D .32.下列命题中真命题是( ) A .任意两个等边三角形必相似; B .对角线相等的四边形是矩形; C .以40°角为内角的两个等腰三角形必相似;D .一组对边平行,另一组对边相等的四边形是平行四边形3.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A.15B.13C.58D.385.抛物线y =-(a -8)2+2的顶点坐标是( ) A .(2,8) B .(8,2)C .(-8,2)D .(-8,-2)6.若不等式组841,x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是( )A .m >3B .m ≥3C .m ≤3D .m <37.在平面内有线段AB 和直线l ,点A ,B 到直线l 的距离分别是4 cm,6 cm.则线段AB 的中点C 到直线l 的距离是( )A .1或5B .3或5C .4D .58.正八边形的每个内角为( ) A .12° B .135° C .140° D .144°9.在Rt △ABC 的直角边AC 边上有一动点P (点P 与点A ,C 不重合),过点P 作直线截得的三角形与△ABC 相似,满足条件的直线最多有( )A .1条B .2条C .3条D .4条 10.如图M2-1,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC 上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( )图M2-1A .1 B.54 C.127 D.94二、填空题(本大题共6个小题,每小题4分,共24分) 11.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是____________.12.实数范围内分解因式:x 3-2x =______________.13.已知抛物线y =ax 2+bx +c (a ≠0)经过点(1,2)与(-1,4),则a +c 的值是________. 14.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2 3,那么AP 的长为________.15.已知BD ,CE 是△ABC 的高,直线BD ,CE 相交所成的角中有一个角为50°,则∠BAC 等于________度.16.函数y =12x -4中,自变量x 的取值范围是________.三、解答题(一)(本大题共3小题,每小题5分,共15分) 17.计算:(-2 011)0+-122⎛⎫ ⎪ ⎪⎝⎭+22--2cos60°.18.先化简,再求值:2212442a a a a a a -+⎛⎫- ⎪-+-⎝⎭÷41a ⎛⎫- ⎪⎝⎭,其中a =2- 3.19.已知某开发区有一块四边形的空地ABCD ,如图M2-2所示,现计划在空地上种植草皮,经测量∠A =90°,AB =3 m ,BC =12 m ,CD =13 m ,DA =4 m .若每平方米草皮需要200元,问需要多少投入?图M2-2四、解答题(二)(本大题共3小题,每小题8分,共24分)20.列方程解应用题:A,B两地的距离是80千米,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.21.在图M2-3的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C =90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-4,5),试建立合适的直角坐标系,并写出A、C两点的坐标;(3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2,B2,C2三点的坐标.22.如图M2-4,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案.图M2-5中折线反映了每户居民每月用电电费y(单位:元)与用电量x(单位:度)间的函数关系.(1)根据图象,阶梯电价方案分为三个档次,请填写下表:档次第一档第二档第三档每月用电量x度0<x≤140(2)小明家某月用电120度,需交电费________元;(3)求第二档每月电费y(单位:元)与用电量x(单位:度)之间的函数关系;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,缴纳电费153元,求m的值.图M2-524.已知抛物线y=-x2+2(k-1)x+k+2与x轴交于A,B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.(1)求实数k的取值范围;(2)设OA,OB的长分别为a,b,且a∶b=1∶5,求抛物线的解析式;(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.25.已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB,CD,AD,BC于点M,N,E,F,设a=PM·PE,b=PN·PF,解答下列问题:(1)当四边形ABCD是矩形时,见图M2-6,请判断a与b的大小关系,并说明理由.(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图M2-7,(1)中的结论是否成立?并说明理由.(3)在(2)的条件下,设BPPD=k,是否存在这样的实数k,使得S平行四边形PEAMS△ABD=49?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.图M2-6图M2-72013年中考数学模拟试题(二)1.C 2.A 3.B 4.C 5.B 6.C 7.A 8.B 9.D 10.A 11.11 12.x (x +2)(x -2) 13.3 14.2 3或4 3 15.50°或130° 16.x ≠2 17.解:原式=1+2+2-2-1=218.解:原式=⎣⎢⎡⎦⎥⎤a -1(a -2)2-a +2a (a -2)÷4-a a=a (a -1)-(a -2)(a +2)a (a -2)2·a 4-a =1(a -2)2. 当a =2-3时,原式=13.19.解:如图D100,连接BD .图D100∵∠A =90°,AB =3 m ,DA =4 m ,∴BD =5 m. ∵BC =12 m ,CD =13 m ,∴∠DBC =90°.∴S ABCD =12×3×4+12×5×12=36(m 2).∴36×200=7 200(元).20.解:设公共汽车的速度为x 千米/小时,则小汽车的速度是3x 千米/小时.依题意,得80x =803x +3-13. 解得x =20千米/小时,经检验x =20是原方程的解,故符合题意. ∴小汽车的速度=3x =60(千米/小时). 21.(1)作图如图D101:图D101(2)坐标轴如图所示,A (-1,-1),C (-4,-1). (3)A 2(1,1),B 2(4,-5),C 2(4,1). 22.证明:DE ⊥AG ,DE ∥BF , ∴BF ⊥AG .又∵ABCD 是正方形,∴AD =AB ,∠ABF =∠EAD .在△ABF 和△AED 中,∵AD =AB ,∠ABF =∠EAD ,∠AED =∠AFB , ∴△AED ≌△ABF (AAS). ∴BF =AE .∴AF =BF +EF 得证. 23.解:(1)如下表:档次 第一档 第二档 第三档每月用电量x 度 140<x ≤230x >230 (2)54元(3)设y 与x 的关系式为y =kx +b .∵点(140,63)和(230,108)在y =kx +b 上, ∴⎩⎪⎨⎪⎧63=140k +b ,108=230k +b . 解得⎩⎪⎨⎪⎧k =0.5,b =-7.∴y 与x 的关系式为y =0.5x -7.(4)第三档中1度电交电费=(153-108)÷(290-230)=0.75(元), 第二档中1度电交电费=(108-63)÷(230-140)=0.5(元), ∴m =0.75-0.5=0.25.24.解:(1)设点A (x 1,0),B (x 2,0)且满足x 1<0<x 2. 由题意可知x 1·x 2=-(k +2)<0,即k >-2.(2)∵a ∶b =1∶5,设OA =a ,即-x 1=a ,则OB =5a ,即x 2=5a ,a >0. ∴⎩⎪⎨⎪⎧ x 1+x 2=-a +5a =4a ,x 1·x 2=-a ·5a =-5a 2.即⎩⎪⎨⎪⎧2(k -1)=4a ,-(k +2)=-5a 2. ∴k =2a +1,即5a 2-2a -3=0,解得a 1=1,a 2=-35(舍去).∴k =3.∴抛物线的解析式为y =-x 2+4x +5.(3)由(2)可知,当-x 2+4x +5=0时,可得x 1=-1,x 2=5. 即A (-1,0),B (5,0).∴AB =6,则点D 的坐标为(2,0). 当PE 是⊙D 的切线时,PE ⊥PD .由Rt △DPO ∽Rt △DEP 可得PD 2=OD ·DE ,即32=2×DE .∴DE =92,故点E 的坐标为⎝⎛⎭⎫-92,0. 25.解:(1)如图D102,∵ABCD 是矩形,MN ∥AD ,EF ∥CD , ∴四边形PEAM .PNCF 也均为矩形. ∴a =PM ·PE =S 矩形PEAM ,b =PN ·PF =S 矩形PNCF . 又∵BD 是对角线,∴△PMB ≌△BFP ,△PDE ≌△DPN ,△DBA ≌△DBC .∵S 矩形PEAM =S △BDA -S △PMB -S △PDE ,S 矩形PNCF =S △DBC -S △BFP -S △DPN , ∴S 矩形PEAM =S 矩形PNCF .∴a =b . (2)成立.理由如下:∵ABCD 是平行四边形,MN ∥AD ,EF ∥CD , ∴四边形PEAM ,PNCF 也均为平行四边形. 模仿(1)可证S 平行四边形PEAM =S 平行四边形PNCF .图D102(3)由(2)可知,S 平行四边形PEAM =AE ·AM sin A , S 平行四边形ABCD =AD ·AB sin A∴S 平行四边形PEAM S △ABD =2S 平行四边形PEAM 2S △ABD =2S 平行四边形PEAM S 平行四边形ABCD=2AE ·AM sin A AD ·AB sin A =2·AE AD ·AM AB . 又∵BP PD =k ,即BP BD =k k +1,PD BD =1k +1,而AE AD =BP BD =k k +1,AM AB =PD BD =1k +1, ∴2×k k +1×1k +1=49,即2k 2-5k +2=0.∴解得k 1=2,k 2=12.故存在实数k =2或12,使得S 平行四边形PEAM S △ABD=49.。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013年中考数学复习专题———选择题、填空题(二)

2013年中考数学复习专题———选择题、填空题(二)

2013年中考数学复习专题———选择题、填空题(二)一、选择题1. -3的相反数是( ) A .3B .31 C .-3 D .13-2.下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+3. 如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( ) A.70° B.100° C.110° D.120°4. 某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、9元、10元,则这组数据的中位数与众数分别为( )A.6,6B.7,6C. 7,8D.6,85. 左下图为主视方向的几何体,它的俯视图是( )6.-2的倒数是( ) A .2B .-2C .21 D .21-7.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨 8.将左下图中的箭头缩小到原来的21,得到的图形是( )9.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .51 B .31 C .85 D .8310.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º11. —5的相反数是( )A. 5B. —5C.51 D. 51-12. 地球半径约为6 400 000米,用科学记数法表示为( )A. 0.64×107B. 6.4×106C. 64×105D. 640×10413. 数据8、8、6、5、6、1、6的众数是( )A. 1B. 5C. 6D. 814. 如左图所示几何体的主视图是( )15. 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A. 5B. 6C. 11D. 16二、填空题16. 根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过8000000人次,试用科学记数法表示8000000= . 17.分式方程112=+x x的解x = .A. B. C.D题14图中考数学专题二(第1页,共2页)18. 如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cosB =54, 则AC = .19. 某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 20. 如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .21.已知反比例函数xk y =的图象经过(1,-2),则=k ____________.22.使2-x 在实数范围内有意义的x 的取值范围是______ _____.23.按下面程序计算:输入3=x ,则输出的答案是_______________.25.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.26. 分解因式:______________1022=-x x 27. 不等式093>-x 的解集是 。

2013年中考数学模拟试卷(一、二)(A3版)-----

2013年中考数学模拟试卷(一、二)(A3版)-----

2013年中考数学模拟试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1.9的平方根是【】A.3 B.-3 C.±3 D.62.某种微粒子,测得它的质量为0.000 067 46克,这个质量用科学记数法表示(保留三个有效数字)应为【】A.6.75×10-5克B.6.74×10-5克C.6.74×10-6克D.6.75×10-6克3.下列图形中,既是轴对称图形又是中心对称图形的共有【】A.1个B.2个C.3个D.4个4.某市5月上旬前五天的最高气温如下(单位:°C):28,29,31,29,33,对这组数据,下列说法错误的是【】A.平均数是30 B.众数是29 C.中位数是31 D.极差是55.如图,二次函数2y ax bx c=++的图象经过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是【】A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于水平面主视方向第5题图第6题图第7题图6.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是【】A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆A.30°B.45°C.60°D.90°FEDA第8题图第10题图第13题图二、填空题(每小题3分,共21分)∠AEC=_________.11.圆锥的底面圆直径和母线长均为80cm,则它的侧面展开图的圆心角是_________.12.某市初中毕业男生体育测试项目有四项,其中“立定跳远”、“1 000米跑”、“掷实心球”为必测项目,另一项从“篮球运动”或“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”或“一分钟跳绳”中选择同一个测试项目的概率是__________.16.(8分)先化简2111122xx x x⎛⎫-÷⎪-+-⎝⎭,然后从-2≤x≤2的范围内选择一个合适的整数作为x的值代入求值.17.(9分)为了更好地宣传吸烟的危害,某中学九年级一班数学兴趣小组设计了如下调查问卷,调查了部分吸烟人群,并将调查结果绘制成统计图.42%调查结果的扇形统计图调查结果的条形统计图ACBDE根据以上信息,解答下列问题:(1)本次接受调查的总人数是_________人,并把条形统计图补充完整.(2)在扇形统计图中,C选项的人数百分比是________,E选项所在扇形的圆心角的度数是________.(3)若某地区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?M A E F D B C 18.(9分)已知:如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于E 点,交DF 于M 点,F 是BC 延长线上一点,且CE =CF . (1)求证:BM ⊥DF ;(2)若正方形ABCD 的边长为2,求ME ·MB 的值.19.(9分)甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y (km )与时间x (h )之间的函数关系,折线BC -CD -DE 表示轿车离甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ;(2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.20.(9分)如图所示,当小华站立在镜子EF 前的A 处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据1.73)21.(10分)某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进 A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A ,B 两种纪念品每件各需多少元.(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这 100件纪念品的资金不少于7 500元,但不超过7 650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.(10分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不与点B 重合),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G . (1)当点P 与点C 重合时(如图1),求证:△BOG ≌△POE ; (2)通过观察、测量,猜想:BF PE=________,并结合图2证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BF PE的值.(用含α的式子表示)(1)求过点A ,O ,B 的抛物线解析式.(2)在(1)中抛物线的对称轴上是否存在点M ,使△AOM 的周长最小?若存在,求出点M 的坐标;若不存在,请说明 理由.(3)在x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴 的垂线,交直线AB 于点E ,线段OE 把△AOB 分成两个三角 形,使其中一个三角形的面积与四边形BPOE 的面积之比为 2:3?若存在,求出点P 的坐标;若不存在,请说明理由.y11ACD E FG OAD E F G OOGF ED BCA2013年中考数学模拟试卷(二)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1. 某市1月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是【 】A .-2℃B .8℃C .-8℃D .2℃2. 下列四个图形中,既是轴对称图形又是中心对称图形的有【 】A .4个B .3个C .2个D .1个3. 某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵, 则根据题意列出方程正确的是【 】 A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-=D .5(21)6x x +=4. 一次函数|1|y mx m =+-的图象过点(0,2),且y 随x 的增大而增大,则m =【 】A .-1B .3C .1D .-1或35. 如图所示,把一张矩形纸片对折,折痕为AB ,再把以AB 的中点O 为顶点的平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是【 】BOA BAAA .正三角形B .正方形C .正五边形D .正六边形6. 在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y ) = (y ,x ),如f (2,3) = (3,2);②g (x ,y ) = (-x ,-y ),如g (2,3) =(-2,-3).按照以上变换有f (g (2,3)) =f (-2,-3) =(-3,-2),那么 g (f (-6,7)) =【 】A .(7,6)B .(7,-6)C .(-7,6)D .(-7,-6)7. 如图,等边△ABC 的周长为6π,半径为1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了【 】 A .2周 B .3周 C .4周 D .5周第7题图 第8题图8. 如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,点D 的坐标为(5,4),AD =2.若动点E ,F 同时从点O 出发,点E 沿折线OA -AD -DC 运动,到达C 点时停止;点F 沿OC 运动,到达C 点时停止,它们运动的速度都是每秒1个单位长度.设点E 运动x 秒时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为【 】二、填空题(每小题3分,共21分)9. x 的取值范围是_________.10. 如图,E ,F 分别是正方形ABCD 的边BC ,CD 上的点,BE =CF ,连接AE ,BF .将△ABE 绕正方形的对角线交点O按顺时针方向旋转到△BCF ,则旋转角的度数为_________.F BN CO 第10题图 第12题图11. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程20x px q ++=有实数根的概率是_________.12. 如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB 的度数是 .13. 如图1,用8个同样大小的小立方体粘成一个大立方体,得到的几何体的三视图如图2所示,若小明从这8个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是_____个.14. 如图,□ABCD 的顶点A ,C 在双曲线11y x =-上,B ,D 在双曲线22y x=上,122k k =(k 1>0),AB ∥y 轴,S □ABCD =24,则k 1=_________.15. 已知:在△ABC 中,AC =a ,AB 与BC 所在直线成45°角,AC 与BC cosC=),则A C 边上的中线长是____________.三、解答题(本大题共8小题,满分75分)16. (8分)已知x 是一元二次方程x 2-2x +1=0的根,求代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值.17.(9分)九(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:请解答以下问题:(1)把上面频数分布直方图补充完整,并计算:a=_______,b=________;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1 000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?18.(9分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与B C相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.A B MODC19.(9分)如图,四边形ABCD是正方形,其中A(1,1),B(3,1),D(1,3).反比例函数myx=(x>0)的图象经过对角线BD的中点M,与BC,CD的边分别交于点P,Q.(1)直接写出点M,C的坐标;(2)求直线BD的解析式;(3)线段PQ与BD是否平行?并说明理由.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.22.(10分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么?(2)连接DP,当t为何值时,四边形EQDP能成为平行四边形?(3)当t为何值时,△EDQ为直角三角形?23.(11分)已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为直线x=2.(1)求该抛物线的解析式.(2)点D在线段AB上,且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C出发沿线段CB匀速运动,是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时两点的运动时间t(秒)和点Q的运动速度;若不存在,请说明理由.(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.。

2013年辽宁省本溪市中考数学模拟试卷(二)

2013年辽宁省本溪市中考数学模拟试卷(二)

2013年辽宁省本溪市中考数学模拟试卷(二)2013年辽宁省本溪市中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分.) 1.(3分)的倒数的相反数是( ) .2.(3分)(2011•肇庆)我国第六次人口普查的结果表明,目前肇庆市的人口约为4050000人,这个数用科学记教3.(3分)(2011•肇庆)如图是一个几何体的实物图,则其主视图是( ).CD .5.(3分)(2011•肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )7.(3分)(2011•肇庆)如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )8.(3分)(2011•肇庆)某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是( )9.(3分)如图,在△ABC 中,AB=AC ,BC=10,AD 是底边上的高,AD=12,E 为AC 中点,则DE 的长为( )10.(3分)(2011•安徽)如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( ).CD .二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)(2012•定西)分解因式:a 3﹣a= _________ . 12.(3分)(2011•肇庆)已知两圆的半径分别为1和3.若两圆相切,则两圆的圆心距为 _________ . 13.(3分)下列数据5,3,6,7,6,3,3,4,7,3,6的众数是 _________ ,中位数是 _________ . 14.(3分)(2012•长宁区二模)在一个不透明的袋子里,装有5个红球,3个白球,它们除颜色外大小,材质都相同,从中任意摸出一个球,摸到红球的概率是 _________ . 15.(3分)(2010•宁夏)将半径为10cm ,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 _________ . 16.(3分)如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使得AC=3BC ,CD 与⊙O 相切,切点为D .若CD=3,则线段BC 的长度等于 _________ .17.(3分)(2011•泉州)已知函数y=﹣3(x﹣2)2+4,当x=_________时,函数取得最大值为_________.18.(3分)(2011•东莞)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________.三、解答题(本题共8小题共96分)19.(12分)(1)计算:.(2)解分式方程:.20.(12分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2;(3)△A2B2C2的周长为_________个单位长,面积为_________个平方单位.21.(12分)(2013•封开县二模)某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部分学生进行问卷调查(每人只选一种书籍).如图所示是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了_________名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于_________度;(3)补全条形统计图;(4)该年级有600人,请你估计该年级喜欢“科普常识”的学生人数约是_________人.22.(10分)(2011•盐城)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)23.(10分)(2011•东莞)如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)24.(14分)(2011•深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?25.(12分)(1)正方形ABCD与等腰直角三角形PAQ如图1所示重叠在一起,其中∠PAQ=90°,点Q在BC上,连接PD,△ADP与△ABQ全等吗?请说明理由.(2)如图2,O为正方形ABCD对角线的交点,将一直角三角板FPQ的直角顶点F与点O重合转动三角板使两直角边始终与BC、AB相交于点M、N,使探索OM与ON的数量关系,并说明理由.(3)如图3,将(2)中的“正方形”改成“长方形”,其它的条件不变,且AB=4,AD=6,FM=x,FN=y,试求y与x 之间的函数关系式.26.(14分)(2011•深圳)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(l,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD 于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.2013年辽宁省本溪市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)的倒数的相反数是().首先求得的倒数是2.(3分)(2011•肇庆)我国第六次人口普查的结果表明,目前肇庆市的人口约为4050000人,这个数用科学记教3.(3分)(2011•肇庆)如图是一个几何体的实物图,则其主视图是()D..Cx=,即(,即5.(3分)(2011•肇庆)如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=(),根据平行线分线段成比例定理,即可得∴∴,BF=BD+DF=3+=7.57.(3分)(2011•肇庆)如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE 的大小是()8.(3分)(2011•肇庆)某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是()9.(3分)如图,在△ABC中,AB=AC,BC=10,AD是底边上的高,AD=12,E为AC中点,则DE的长为()CD=BC=×AC=DE=AC=10.(3分)(2011•安徽)如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD 的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是().C D.∴y=AP MN=x∵y=AP MN=xx﹣二、填空题(本大题共8小题,每小题3分,共24分.)11.(3分)(2012•定西)分解因式:a3﹣a=a(a+1)(a﹣1).12.(3分)(2011•肇庆)已知两圆的半径分别为1和3.若两圆相切,则两圆的圆心距为4或2.13.(3分)下列数据5,3,6,7,6,3,3,4,7,3,6的众数是3,中位数是5.14.(3分)(2012•长宁区二模)在一个不透明的袋子里,装有5个红球,3个白球,它们除颜色外大小,材质都相同,从中任意摸出一个球,摸到红球的概率是.故答案为:15.(3分)(2010•宁夏)将半径为10cm,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是.圆锥的高为:=8=.16.(3分)如图,已知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=3,则线段BC的长度等于.OD=BC=OD=,故答案为:17.(3分)(2011•泉州)已知函数y=﹣3(x﹣2)2+4,当x=2时,函数取得最大值为4.18.(3分)(2011•东莞)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为.的面积为=,××=故答案为:三、解答题(本题共8小题共96分)19.(12分)(1)计算:.(2)解分式方程:.+×20.(12分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2;(3)△A2B2C2的周长为(4+2)个单位长,面积为10个平方单位.==AB==2)个单位,2)个单位,4)个单位长,×﹣×4)21.(12分)(2013•封开县二模)某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部分学生进行问卷调查(每人只选一种书籍).如图所示是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了320名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于22.5度;(3)补全条形统计图;(4)该年级有600人,请你估计该年级喜欢“科普常识”的学生人数约是180人.所在扇形圆心角度数为×22.(10分)(2011•盐城)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)==,=∴,BF=20CE=CM+MD+DE=CM+BF+ED=15+20+223.(10分)(2011•东莞)如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)与弦,=劣弧与弦24.(14分)(2011•深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:2,并求出总运费元y(元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?25.(12分)(1)正方形ABCD与等腰直角三角形PAQ如图1所示重叠在一起,其中∠PAQ=90°,点Q在BC上,连接PD,△ADP与△ABQ全等吗?请说明理由.(2)如图2,O为正方形ABCD对角线的交点,将一直角三角板FPQ的直角顶点F与点O重合转动三角板使两直角边始终与BC、AB相交于点M、N,使探索OM与ON的数量关系,并说明理由.(3)如图3,将(2)中的“正方形”改成“长方形”,其它的条件不变,且AB=4,AD=6,FM=x,FN=y,试求y与x 之间的函数关系式.AD OH=∴∴∴26.(14分)(2011•深圳)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(l,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD 于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.∴∴∴,x=(H=,DG==DF+FH+GH+DG=2++=2+2 BD==3,∴,MN=DM=,×或时,﹣+4=,)参与本试卷答题和审题的老师有:zhjh;HLing;wdxwwzy;sd2011;CJX;gsls;yangwy;lantin;sks;星期八;bjy;hdq123;lanchong;zcx;ZJX;wangjc3;Linaliu;HJJ(排名不分先后)菁优网2014年3月16日。

2013年北京市中考数学模拟试卷(2)

2013年北京市中考数学模拟试卷(2)

(第6题图)2013年北京市中考数学模拟试卷(2)学校 姓名 准考证号_________第I 卷(选择题 共32分)一、选择题(每小题4分,共32分)1、|-5|的值是( )A .5 B.-5 C.15 D.15- 2、“2013北京市政府工作报告”提出:“推行新建住宅75 %节能标准,实施既有建筑节能改造1000万平方米,完成住宅供热计量改造6500万平方米。

”用科学计数法表示6500万是( ) A .3105.6⨯ B.21065⨯ C.7105.6⨯ D.7105.6-⨯3、已知△ABC 与△A 1B 1C 1相似,且AB :A 1B 1=1 :2,则△ABC 与△ABC 的面积比为( ) A .1 :1 B.1 :2 C .1 :4 D.1 :84、如图1,将一个底面直径为12CM ,高为8CM 的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图的面积为( ) A .230cm B.230cm π C .260cm π D.2120cm5、在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同。

随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球。

两次都摸到黄球的概率是( ) A .21 B.31 C .41 D.61 6、已知:如图,AB ∥CD ,直线EF 交AB 于点E ,交CD 于点F ,∠FEB 的平分线交CD 于点M ,且∠CFE=120°,则,∠EMF 的度数为( )A .30° B.40° C .120° D.60° 7、某青年足球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数分别是( )A .19,20 B.19,19 C .19,20.5 D.20,198、如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )年龄(单位:岁) 18 21 20 22 19人数 1 2 3 2 4GDCEF ABba(第8题图)s tO A .stOB .C .stOD .stO(第4题图) BACO第II 卷(非选择题 共88分)二、填空题(每小题4分,共16分)9、把二次函数222+-=x x y 化为()k h x y +-=2的形式,结果为 .10、分解因式:x xy 92-= .11、如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长 米. 12、正方形O C B A 111,1222C C B A ,2333C C B A , 按如图所示的方式放置.点 ,,,321A A A 和点 ,,,321C C C 分别在直线b kx y +=和x 轴上,已知点()()2,3,1,121B B ,则4B 的坐标 ,n B 的坐标 .三、解答题(每题5分,共30分)13、()︒--+-⎪⎭⎫ ⎝⎛-60tan 2183101π14、()⎩⎨⎧>+->-036514x x x15、已知02=-y x ,求()y x y xy x yx +∙++-2222的值。

2013年辽宁省沈阳市中考数学模拟试卷(二)

2013年辽宁省沈阳市中考数学模拟试卷(二)

2013年辽宁省沈阳市中考数学模拟试卷(二)2013年辽宁省沈阳市中考数学模拟试卷(二)一.选择题(每题3分,共24分) C .. C D .5.(3分)(2008•重庆)如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( ). C D .6.(3分)下列事件:(1)阴天会下雨(2)随机投硬币,正面朝上(3)13名同学中两人的出生月份相同(4)2012年奥运会在巴西的里约热内卢举行7.(3分)(2012•北京)如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠BOD=76°,则∠BOM 等于( )8.(3分)(2011•西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为()二.填空题(共8题,每题4分,共32分)9.(4分)(2012•本溪)已知1纳米=10﹣9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为_________米.10.(4分)(2012•本溪)分解因式:9ax2﹣6ax+a=_________.11.(4分)(2011•太原)如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是_________.12.(4分)(2011•太原)如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_________(结果保留π).13.(4分)(2011•呼伦贝尔)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第n个图形需_________根火柴棒.14.(4分)如图,一次函数y=﹣2x的图象与二次函数y=﹣x2+3x图象的对称轴交于点B.已知点P是二次函数y=﹣x2+3x图象在y轴右侧部分上的一个动点,将直线y=﹣2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为_________.15.(4分)(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为_________.16.(4分)(2011•江津区)将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是_________.三.解答题(共9小题,共94分)17.(8分)(2010•桂林)计算:4cos30°+18.(8分)(2012•本溪)如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:≈1.414,≈1.732)19.(12分)(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是_________.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.20.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.求证:AM=DF+ME.21.(10分)(2012•本溪)如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC 切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.22.(10分)(2011•日照)如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.23.(12分)(2006•潍坊)为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.y(米)是关于汽车行驶速度x(千米/时)的函数,给出以下三个函数:①y=ax+b;②y=(k≠0);③y=ax2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.24.(12分)(2012•上海)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD 交于点G.(1)求证:BE=DF;(2)当=时,求证:四边形BEFG是平行四边形.25.(14分)(2011•上饶县模拟)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标分别是C_________,D_________;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.2013年辽宁省沈阳市中考数学模拟试卷(二)参考答案与试题解析一.选择题(每题3分,共24分)C..C D.5.(3分)(2008•重庆)如图,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M 从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是().C D.(y=(6.(3分)下列事件:(1)阴天会下雨(2)随机投硬币,正面朝上(3)13名同学中两人的出生月份相同(4)2012年奥运会在巴西的里约热内卢举行7.(3分)(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()∠×8.(3分)(2011•西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为()∴二.填空题(共8题,每题4分,共32分)9.(4分)(2012•本溪)已知1纳米=10﹣9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为 1.58×10﹣7米.10.(4分)(2012•本溪)分解因式:9ax2﹣6ax+a=a(3x﹣1)2.11.(4分)(2011•太原)如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是.CF AE=BD==13AE=故答案为:12.(4分)(2011•太原)如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).,再根据旋转的性质得到,AC=BC=故答案为13.(4分)(2011•呼伦贝尔)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第n个图形需(6n+6)根火柴棒.14.(4分)如图,一次函数y=﹣2x的图象与二次函数y=﹣x+3x图象的对称轴交于点B.已知点P是二次函数y=﹣x2+3x图象在y轴右侧部分上的一个动点,将直线y=﹣2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为(,),(2,2),(,),(,).=PD=a()(,(,,,),)15.(4分)(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为9:1.16.(4分)(2011•江津区)将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是y=(x ﹣5)2+2或y=x2﹣10x+27.三.解答题(共9小题,共94分)17.(8分)(2010•桂林)计算:4cos30°+18.(8分)(2012•本溪)如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:≈1.414,≈1.732)BC=200米,AD=200﹣400+200+﹣19.(12分)(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是5.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.位女同学的概率是.20.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.求证:AM=DF+ME.CE=CDBF=CF=BCCE=21.(10分)(2012•本溪)如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC 切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.;然后根据平行线截线段成比例证得,即,由此可以求得∵∴,即,DG=,DF=22.(10分)(2011•日照)如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.y=,2=.∴,得:×解方程组∴(不合题意,舍去)23.(12分)(2006•潍坊)为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.y(米)是关于汽车行驶速度x(千米/时)的函数,给出以下三个函数:①y=ax+b;②y=(k≠0);③y=ax2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.y=(24.(12分)(2012•上海)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD 交于点G.(1)求证:BE=DF;(2)当=时,求证:四边形BEFG是平行四边形.)利用=得到∴=∴=25.(14分)(2011•上饶县模拟)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标分别是C(4,2),D(1,2);(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.,然后代入直线,即可得到2)先求出顶点坐标为()先设抛物线解析式为,代入解析式得:2),代入解析式得:=2m,=2))2,则顶点坐标为(,设抛物线解析式为,把点代入得,解析式为,则可设解析式为,,代入解析式得,mm=2,解得);参与本试卷答题和审题的老师有:leikun;lanyan;mengcl;星期八;sjzx;ZJX;gsls;hbxglhl;蓝月梦;ZHAOJJ;lf2-9;自由人;dbz1018;lantin;疯跑的蜗牛;王岑;zcx;gbl210;HJJ;MMCH;sd2011;yangwy(排名不分先后)菁优网2014年3月16日。

2013年数学中考模拟试题及参考答案

2013年数学中考模拟试题及参考答案

2013年数学中考模拟试题一、选择题:(本大题共12个小题,满分36分).1.方程x(x-2)+ x-2 = 0的解是()A.x=2 B.x=-2或1 C.x=-1 D.x=2或-12.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则CDOC的值为()A.21B.31C.22D.333.如图,⊙O的半径为2,弦AB=23,点C在弦AB上,AC=41AB,则OC的长为()A.2B.3C.332D.274.如果一个扇形的半径是1,弧长是3π,那么此扇形的圆心角的大小为()A.30° B.45° C.60° D.90°5.圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为()A.1 B.3 C.1或2 D.1或36.下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球7.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.-1<x<5 B.x<-1或x>5C.x<-1且x>5 D. x>58.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2-4ac与反比例函数y=xcba++在同一坐标系内的图象大致为()A.B.C.D.9.一个钢筋三角架三边长分别为20cm,50cm,60cm,现在要做一个和它相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有()A.一种B.两种C.三种D.四种或四种以上10.如图,在△ABC中,EF∥BC,EBAE=21,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(2,0) B.(23,23)C.(2,2)D.(2,2)12.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.311C.310D.4二、填空题:(本大题共5小题,满分20分).13.关于x的两个方程x2-x-2=0与11+x=ax+2有一个解相同,则a= ________________14.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为____________15.如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3,S△PB1C= 3,则BB1=______________16.圆内接正n边形的每个内角都等于135°,则n=________17.如图,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、B n在y轴上,若△A1B0B1、△A2B1B2、…、△A n B n-1B n都为等腰直角三角形(点B0是坐标原点),则△A2013B2012B2013的腰长= _________________三、解答题:(本大题共7小题,共64分).18.(本题满分6分)计算:(-1)2013+(π-3)0+(21)1--2)21(-2题图3题图7题图8题图10题图11题图12题图数学试题第1 页共4 页数学试题 第 2 页 共 4 页19. (本题满分10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°. (1)求证:AE 是⊙O 的切线; (2)当BC=4时,求劣弧AC 的长20、(本题满分8分)某学校课程安排中,各班每天下午只安排三节课,初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率; .21.(本题满分10分)如图,二次函数y=ax 2-4x+c 的图象经过坐标原点,与x 轴交于点A (-4,0). (1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请直接写出点P 的坐标.22.(本题满分10分)⌒ ⌒如图所示,在⊙O 中,AD= AC ,弦AB 与弦AC 交于点A ,弦CD 与AB 交于点F ,连接BC .(1)求证:AC 2=A B•AF ;(2)若⊙O 的半径长为2cm ,∠B=60°,求图中阴影部分面积.23.(本题满分8分)24. (本题满分12分)如图,一次函数122y x =-+分别交y 轴、x 轴于 A 、B 两点,抛物线2y x bx c =-++过A 、B 两点。

2013年中考数学模拟试题二

2013年中考数学模拟试题二

2013年中考数学模拟试题二(时间120分钟,满分150分)一、选择题(共10小题,每小题4分,共40分) 1.有理数15-的绝对值为【 】A.15B. -5C. 15- D.52.下列运算正确的是【 】 A. 3412a a =a⋅ B. ()323692a b=2a b-- C. 633a a =a ÷ D. ()222a+b =a +b3.如图,C 、D 分别EA 、EB 为的中点,∠E=300,∠1=1100,则∠2的度数为【 】A. 080B. 090C. 0100D. 01104.为鼓励大学生创业,我市为在开发区创业的每位大学生提供无息贷款125000元,这个数据用科学计数法表示为(保留两位有效数字)【 】 A. 51.2510⨯ B. 51.210⨯ C. 51.310⨯ D. 61.310⨯5. 下列命题中,错误的是( ).A .三角形两边之和大于第三边B .三角形的外角和等于360°C .三角形的一条中线能将三角形面积分成相等的两部分D .等边三角形既是轴对称图形,又是中心对称图形6.某市5月上旬的最高气温如下(单位:℃):28、29、31、29、33,对这组数据,下列说法错误的是【 】A.平均数是30B. 众数是29C. 中位数是31D. 极差是5 7.下列图形中,既是轴对称图形又是中心对称图形的是【 】A8. 如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周, P 为弧AD 上任意一点,若AC=5,则四边形ACBP 周长的最大值是( )A . 15B .20 C .15+.15+9. 下列说法:①在Rt△ABC 中,∠C=900,CD 为AB 边上的中线,且CD=2,则AB=4; ②八边形的内角和度数为10800; ③2、3、4、3这组数据的方差为0.5; ④分式方程13x 1=x x-的解为2x =3;⑤已知菱形的一个内角为60,一条对角线为,则另一对角线为2。

2013年中考数学模拟试题及参考答案

2013年中考数学模拟试题及参考答案

2013年中考数学模拟考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.-2的相反数是A.-2B.2C.-21 D.212.已知两圆的半径分别为6和4,圆心距为7,则两圆的位置关系是 A .相交B .内切C .外切D .内含3.下列计算中,正确的是( )A .42232a a a =+ B .()52322x x x -=-⋅ C .()53282a a -=- D .22326x x xm m=÷4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个 5.下列说法正确的是A .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 6.下面四个几何体中,左视图是四边形的几何体共有A. 1个B. 2个C. 3个D. 4个7.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为A .(3,1)B .(3,2)C .(2,3)D .(1,3)y C 2C 1C y 24 3B8.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( ) A .201035()2⨯B .201195()4⨯ C . 200995()4⨯ D .402035()2⨯二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.去年冬季的某一天,学校一室内温度是8℃,室外温度是2-℃,则室内外温度相差 ▲ ℃.10.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为 ▲ 平方米. 11.五边形的内角和为 ▲ 度.12.已知反比例函数的图象经过点A (6,-1),请你写出该函数的表达式 ▲ . 13.已知二元一次方程组⎩⎨⎧=-=-52832y x y x ,则y x -的值为 ▲ .14.不等式组30210x x -<⎧⎨-⎩≥的解集是 ▲ .15.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____▲____.16.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.17.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保留π)B 题)yxO BCA (第18题)OAC(第16题)·(第15题)18.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ▲ .三、解答题(本大题共有10小题,共74分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算:(1)200821(1)()162---+; (2)2311()11x x x x--⋅-+. 20.(本题6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 bc 5 104.5——119.56 0.15 合 计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.(本题6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.22.(本题6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?23.(本题8分)如图,点E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(第24题)(第22题)蔬菜种植区域前 侧 空 地F EDCBA(第23题)(1)求证:△AFD ≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本题8分)如图15,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(结果精确到0.1m )(参考数据:2 1.41≈,3 1.73≈) 25.(本题8分)如图,A (-1,0)、B (2,-3)两点在二次函数y 1=ax 2+bx -3与一次函数y 2=-x +m 图像上。

2013年中考数学模拟考试(2)

2013年中考数学模拟考试(2)

2013年中考数学模拟考试一、选择题(每小题3分,共30分)1、在实数0,—1,310.1235中,无理数的个数为( B )A.0个B.1个C.2个D.3个 2、下列运算正确的是( C )A .22a a a =⋅B .33)(ab ab = C .632)(a a = D .5210a a a=÷3、盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( C ) A .23B .15C .25D .354、为了解某市区及周边近170万人的出行情况,科学规划轨道交通,2011年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是( D )A .170万B .400C .1万D .3万5、不等式组 ⎩⎨⎧≥+<-01123x x 的解集在数轴上表示正确的是( D )6下列各式从左到右的变形正确的是( A )A.12222x yx y x y x y --=++ B.0.220.22a b a b ab a b ++=++ C.11x x x y x y+--=-- D.a b a ba b a b+-=-+ 7.若∠A 为锐角,且cotA <3,则∠A ( B )A 、小于300B 、大于300C 、大于450且小于600D 、大于6008、 如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为( D )1 CD9、 如图,△ABC 和△DCE 都是边长为4的等边三角形, 点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( D ) A 、3 B 、23C 、 33D 、 43 10. 下列说法错误的是( B )A. 一个三角形有一个内切圆B.三角形的内心是三边垂直平分线交点C. 三角形内心到三边距离相等D. 等腰三角形的内心在底边的中线上 11.顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( D )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形. 12.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是 ( D ) A .01d << B .5d >C .01d <<或5d >D .01d <≤或5d > 二.填空题(每小题3分,共15分)13、因式分解:14-a = .14.已知相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,则这两个圆的圆心距是_________ _____. 15. 过反比例函数)0(≠=k xky 图像上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B ,C,如果ΔABC 的面积为3,那么k 的值为_____________. 16、如图,点D E F ,,分别是ABC △三边上的中点.若ABC △的面积为4,则DEF △的面积为 .17、用如图所示的大、小正方形和长方形卡片若干张,折成一个长为2a+b,宽为3a+2b 的矩形,,则需要A 类卡片,B 类卡片,C 类卡片一共 张。

2013年中考数学最新模拟试卷(二)

2013年中考数学最新模拟试卷(二)

2.如图所示,一个含60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为【】A.120°B.180°C.240°D.300°60°21第2题图第3题图第6题图3.一个几何体的展开图如图所示,这个几何体是【】A.三棱柱B.三棱锥C.四棱柱D.四棱锥4.已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是【】A.1a<-B.312a-<<C.312a-<<D.32a>5.某次知识竞赛中,10名学生的成绩统计如下:A.学生成绩的极差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分6.如图,⊙C过原点,且与两坐标轴分别交于A,B两点,点A的坐标为(0,3),M是第三象限内弧OMB上一点,∠BMO =120°,则⊙C的半径为【】A.6 B.5 C.3 D.7.小明想测量一棵树的高度,如图,他发现树的影子恰好落在地面和一斜坡上,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【】9.若|1|a-=0,则a+b=______.10.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为______.第10题图第12题图11.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”,如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两个数,能与2组成“V数”的概率是.12.如图,边长为4+m的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.13.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC,BC为直径画半圆,则图中阴影部分的面积为.(结果保留π)NMB3B2B14321O第13题图第14题图第15题图14.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△112A B A,△223A B A,△334A B A…均为等边三角形.若11O A=,则△1n n nA B A+的边长为_____________.15.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE,DF分别交AC,BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为___________.三、解答题(本大题共8小题,满分75分)16.(8分)(1)解不等式组253(1)1132x xx x--⎧⎪-⎨-<⎪⎩≥,并把解集表示在数轴上;30°4ODAEPDAQ BCFE(2)已知11+ab(a ≠b ),求()a b a b --()b a a b -的值.17. (9分)如图,四边形ABCD 是矩形,对角线AC ,BD 相交于点O ,BE ∥AC 交DC 的延长线于点E . (1)求证:BD=BE ;(2)若∠DBC =30︒,BO =4,求四边形ABED 的面积.18. (9分)某市把中学生学习情绪的自我控制能力分为四个等级,即A 级:自我控制能力很强;B 级:自我控制能力较好;C 级:自我控制能力一般;D 级:自我控制能力较差.通过对该市的初中学生学习情绪的自我控制能力的随机抽样调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生?(2)求自我控制能力为C 级的学生人数,并补全条形统计图;(3)求扇形统计图中D 级所占的圆心角的度数;(4)请你估计该市60 000名初中学生中,学习情绪自我控制能力达到B 级及以上等级的人数是多少?19. (9分)如图,一次函数1yk x b=+与反比例函数2k yx=的图象交于A (2,m ),B (n ,-2)两点.过点B 作BC ⊥x 轴,垂足为C ,且S △ABC =5. (1)求一次函数与反比例函数的解析式. (2)若P (p ,y 1),Q (-2,y 2)是函数2k yx=图象上的两点,且y 1≥y 2,求实数p 的取值范围.(3)若点M 是y 轴上满足M A M B -取最大值的点,求点20. (9分)某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD ,斜坡AB 长20m ,坡角∠BAD =60°,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE 的长(结果保留根号); (2)为确保安全,学校计划改造时保持坡脚A 不动,坡顶B 沿BC 削进到F 点处,则BF 至少是多少米?(精确到0.1m )1.414≈1.732≈2.449)OE D C BA 自我调控A 级B 级C 级D 级16%24%32%21. (10分)某电器城经销A 型号彩电,今年四月份毎台彩电售价为2 000元.与去年同期相比,卖出彩电的数量相同,但去年销售额为5万元,今年销售额为4万元.(1)去年四月份每台A 型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B 型号彩电,已知A 型号彩电每台进货价为1 800元,B 型号彩电每台进货价为1 500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案? (3)电器城准备把A 型号彩电继续以原价每台2 000元的价格出售,B 型号彩电以每台1 800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?22. (10分)在△ABC 中,AB =AC ,D 为BC 边的中点,以D 为顶点作∠MDN =∠B .(1)如图1,当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅助线,写出图中所有与△ADE 相似的三角形.(2)如图2,将∠MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交线段AC ,AB 于E ,F 两点(点E 与点A 不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图2中,若AB =AC =10,BC =12,当△DEF 的面积为△ABC 面积的14时,求线段EF 的长.23. (11分)如图,一次函数y =-4x -4的图象与x 轴、y 轴分别交于A ,C 两点,抛物线y =43x 2+bx +c 的图象经过A ,C 两点,且与x 轴交于点B .(1)求抛物线的函数表达式.(2)在抛物线上是否存在一点P (不与点A 重合)使得 △ABC 和△BCP 的面积相等,若存在,请求出点P 的 坐标;若不存在,请说明理由.(3)作直线MN 平行于x 轴,分别交线段AC ,BC 于点 M ,N .问在x 轴上是否存在点Q ,使得△QMN 是等腰 直角三角形?如果存在,求出所有满足条件的Q 点的坐 标;如果不存在,请说明理由.24. 如图,直线1l :y =-x -1与直线2l :1122yx =--交于点P (-1,0).直线1l 与y 轴交于点A .一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点B 1处后,改为垂直于x 轴的方向运动,到达直线1l 上的点A 1处后,再沿平行于x 轴的方向运动,到达直线2l 上的点B 2处后,又改为垂直于x 轴的方向运动,到达直线1l 上点A 2处后,仍沿平行于x 轴的方向运动,….照此规律运动,动点C 依次经过点B 1,A 1,B 2,A 2,B 3,A 3,…,B n ,A n ,….当动点C 到达点A 6处时,运动的总路径的长为.FABD CEMN图2图1N M ED BA25.某数学兴趣小组想测量一棵树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.8米,同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),这部分影长为1.2米,落在地面上的影长为2.4米,则这棵树的高度为________米.第1题图第2题图26.小明从如图所示的二次函数2y ax bx c=++(a≠0)的图象中,观察得出了下面六个结论:①240b ac-<;②0a b c>;③0a b c-+>;④230a b-=;⑤40c b->;⑥30a c+<.你认为其中正确的是___________.27.如图,正方形的边长为2,以各边为直径在正方形内画半圆,则图中阴影部分的面积为___________.(结果保留两位有效数字,参考数据:π≈3.14)第3题图第4题图28.如图,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2013个点的横坐标为___________.29.以AB为直径作一个半圆,圆心为O,C是半圆上一点,且2O C A C B C=⋅,则∠CAB=___________.30.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,AD⊥BC于D,点E,F分别是AB边和AC边上的动点,且∠EDF=90°,连接EF.(1)求D ED F的值.(2)设AE的长为x,△DEF的面积为S,求S关于x的函数关系式.(3)设直线DF与直线AB相交于点G,△EFG能否成为等腰三角形?若能,求AE的长;若不能,请说明理由.AEBFAD31.如图,抛物线y=ax2-2ax+c与x轴的交点为A(-1,0)和B(3,0),与y轴交于点C(0,-3m)(m<0).点D的坐标为(0,1),点E为x轴正半轴上一点,且∠DEO=30°.(1)请用含m的代数式表示抛物线顶点F的坐标;(2)如图,将△DEO绕点E顺时针旋转90°至△D′EO′,若点D′恰好在抛物线上,求此时m的值.(3)在(2)的条件下,抛物线上是否存在点P,使得△BCP和△BCO的面积相等?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.AD2013年中考数学模拟试卷(四)参考答案9.-6 10.20 11.1212.24m +13.542π- 14.12n - 15.1325116612或或三、解答题 16.(1)-3<x ≤-2,在数轴上的表示略;(217.(1)证明略;(2)18.(1)250;(2)80,统计图略;(3)100.8°;(4)24 000. 19.(1)61 yx y x=+=,;(2)p ≤-2或p >0;(3)(0,13).20.(1)1;(2)7.4m .21.(1)2 500元;(2)有四种进货方案:A 型号彩电购进7台,B 型号彩电购进13台, A 型号彩电购进8台,B 型号彩电购进12台, A 型号彩电购进9台,B 型号彩电购进11台, A 型号彩电购进10台,B 型号彩电购进10台;(3)A 型号彩电购进7台,B 型号彩电购进13台,才能使电器城获利最大,最大利润为5 300元. 22.(1)△ABD ,△ACD ,△DCE ;(2)△BDF ∽△CED ∽△DEF ,证明略; (3)5. 23.(1)248=433y x x --;(2)存在,P (4,203);(3)存在,123132(0)(0)(0)223Q Q Q -,,,,,.中考数学真题演练套卷综合训练(一)作业参考答案1.4.2 2.②③⑤⑥ 3.1.72 4.455.15°或75° 6.(1)34;(2)22128384=32525S xx -+;(3)能成为等腰三角形,4224255A EA E ==或.7.(1)(14)F m -,;(2)m =(3)存在,1233((,2222P P +-,.中考数学真题演练套卷综合训练(一)补充题参考答案1.128.。

2013年武汉市中考数学逼真模拟试题(二)

2013年武汉市中考数学逼真模拟试题(二)

图1图22013年武汉市中考数学逼真模拟试题(二)一、选择题1.在2,-2,0,-3中,最大的数是( ).A .2B .-2C .0D .-3 2x 的取值范围为( ). A.x ≥3 B. x ≤3 C.x ≥-3 D.x ≤-3 3.如图,数轴上表示的是下列哪个不等式组的解集( ). A.53x x -⎧⎨-⎩≥>B.53x x -⎧⎨-⎩>≥ C.53x x -⎧⎨-⎩<≤ D.53x x -⎧⎨-⎩>≤4. 有两个事件,事件A :367人中至少有两人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( ).A.事件A 、B 都是随机事件 B .事件A 是随机事件,事件B 是必然事件 C .事件A 、B 都是必然事件 D .事件A 是必然事件,事件B 是随机事件5.已知x 1、x 2是方程x 2-3x-5=0的两根,则x 1·x 2的值是( ).A .-3B .3C .5D .-5 6. 如图,由5个完全相同的小正方形组合成一个立体图形,它的左视图是( ).A. B. C. D.7.如图是由正三角形、正方形及正六边形组成的图案. 按此规律,第16个图案中,正三角形的个数为( ).A .82B .72C .83D .738.如图,把△ABC 绕着点C 顺时针旋转20°,得到△EDC ,DE 交AC 于点H ,若AC ⊥DE ,则∠A 的度数是( ).A .50°B .60°C .70°D .75°9.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如下统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款( ). A .30元 B .33元 C .36元 D .35元C B DEAAM C D B C DM A B N 10.如图,等腰梯形ABCD 中,AD ∥BC ,AB=CD ,将梯形ABCD 沿对角线AC 折叠,使D 点落在BC 边的点E 处,若BE=2,CE=3,则折叠线AC 的长度为( ).A.5B.C.二、填空题 11.计算: tan60°= .12.据报道,武汉市今年开工及建设启动的四条轨道交通线路,总投资约82 000 000 000元. 将82 000 000 000 用科学计数法表示为 .13.某班6名同学在一次“1分钟仰卧起坐”测试中,成绩分别为(单位:次):39,45,42,37,41,39,则这组数据的众数是 .14.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A 、B 两地之间的距离为 千米. 15.如图,等腰△ABC 中,AB=AC ,BC ∥x 轴,点A 、点C 在反比例函数4y x=(0x >)的图象上,点B 在反比例函数1y x=(0x >)的图象上,则△ABC 的面积为________.16.如图,在Rt △ABC 中,∠ACB=90°,D 为AC 的中点,M 为BD 的中点,将线段AD 绕A点任意旋转(旋转过程中始终保持点M 为BD 的中点),若AC=4,BC=3,那么在旋转过程中,线段CM 长度的取值范围是 .三、解答题 17.(本题满分6分)解方程:213x x x +=+.18.(本题满分6分) 在平面直角坐标系中,直线y=kx-4经过点P (2,-8),求关于x 的不等式kx-4≥0的解集. 19.(本题满分6分)如图,在△ABC 和△DCB 中,AB=DC ,AC=DB ,AC 、DB 交于点M. (1)求证:△ABC ≌△DCB ;(2)作CN ∥BD ,BN ∥AC ,CN 交BN 于点N ,四边形BNCM 是什么四边形?请直接写出你的结论,不需要证明.20.(本题满分7分) 某班“2013年新春联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、 2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率是 ; (2)如果小芳、小明都有翻两.张.牌.的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.他们获奖的机会相等吗?请通过列表法或画树形图 说明你的理由.图1图221.(本题满分7分)在平面直角坐标系中有线段AB 和点A ′,已知A 点的坐标为(-2,1),B 点的坐标为(-3,-2),A ′点的坐标为(1,2),分别按下列要求完成各题. (1)如图1,平移线段AB ,使点A 移到点A′的位置,请在图中作出平移后的线段A′B′,并直接写出B ′点的坐标为 ;(2)如图2,线段AB 与A′B′关于某条直线l 对称,请用尺规作图....的方法在图中画出对称轴l (保留作图痕迹......),并直接写出对称轴l 的解析式为 ; (3)如图3,线段AB 绕图中某点P 顺时针方向旋转90°,点A 恰好旋转到点A′的位置,请在图中画出点P 的位置,并画出点B 的对应点B ′,直接写出:P 点的坐标为 ,在旋转过程中线段AB 扫过的面积为 .22.(本题满分10分)如图1,等腰△ABC 中,AC=BC=5,AB=,O 为腰AC 上的一个动点,以O 为圆心OA 为半径作⊙O 交AB 于点P ,PD ⊥BC 于点D. (1)求证:PD 为⊙O 的切线;(2)如图2,当O 点运动到⊙O 恰好与BC 相切时,设切点为E 点,连接CP , 求tan B C P ∠的值.23.(本题满分10分)某公司准备投资开发A 、B 两种新产品,信息部通过市场调研得到两条信息:信息一:如果投资A 种产品,所获利润A y (万元)与投资金额x (万元)之间满足正比例函数关系:y kx =;信息二:如果投资B 种产品,所获利润B y (万元)与投资金额x (万元)之间满足二次函数关系:2B y ax bx =+.根据公司信息部报告,A y 、B y (万元)与投资金额x (万元)的部分对应值如上表所示:(1)填空:A y = ; B y = ;(2)如果公司准备投资15万元同时开发A 、B 两种新产品,设公司所获得的总利润为W(万元),B .种产品...的投资金额为x (万元),试求出W 与x 之间的函数关系式; (3)请你设计一个在⑵中公司能获得最大总利润的投资方案.24.(本题满分10分) △ABC 是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG ,使正方形的一条边DE 落在BC 上,顶点F 、G 分别落在AC 、AB 上. Ⅰ.证明:△BDG ≌△CEF ;Ⅱ.探究:怎样在铁片上准确地画出正方形. 小聪和小明各给出了一种想法:(1)小聪想:要画出正方形DEFG ,只要能计算出正方形的边长就能求出BD 和CE 的长,从而确定D 点和E 点,再画正方形DEFG 就容易了. 设△ABC 的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .(2)小明想:不求正方形的边长也能画出正方形. 具体作法是: ①在AB 边上任取一点G ’,如图作正方形G ’D ’E ’F ’;②连结BF ’并延长交AC 于点F ;③过点F 作FE ∥F ’E ’交BC 于点E ,FG ∥F ′G ′交AB 于点G ,GD ∥G ’D ’交BC 于点D ,则四边形DEFG 即为所求的正方形.你认为小明的作法正确吗?说明理由.25.(本题满分12分)如图1,已知抛物线1C :22y ax =-的顶点为点P ,交x 轴于A 、B两点(A 点在B 点左侧),且sin 13A B P ∠=.(1)求抛物线的函数解析式;(2)过点A 的直线交第一象限的抛物线于点C ,交y 轴于点D ,若△ABC 的面积被y 轴分为1∶5两个部分,求直线AC 的解析式; (3)如图2,将抛物线1C 绕顶点P 旋转180°得到抛物线2C ,Q 为y 轴负半轴上的一点,过点Q 任作直线交旋转后的抛物线2C 于M 、N 两个不同点,是否存在这样的点Q ,使得∠MPN 恒为直角?若存在,请求出Q 点的坐标;若不存在,请说明理由.2013年武汉市中考数学逼真模拟试题(二)参考答案1~5 A B B D D 6~10 B A C B C11、3 12、8.2×101013、39 14、450 15、109 16、213<CM <25317、x=6 18、x ≤-2 19、略 20、⑴21 ⑵获奖机会不均等,小芳获奖概率P1=43 小明获奖概率P2=65 (树形图略)21、⑴B ′(0,-1) ⑵y=-3x ⑶P (0,0) 2π22、⑴证:连OP ∵OP=OA AC=BC ∴∠A=∠B=∠OPA ∴OP ∥BC ∵PD ⊥BC ∴PD ⊥OP ∴PD 为⊙O 的切线⑵解:连OE 过C 作CF ⊥AB 于F ,则F 为AB 的中点 ∵AC=BC=5 CF=25 ∴AF=BF=5 CF=25 ∴tanA=tanB=2 易证:四边形OPDE 为正方形 ∴设OP=OE=PD=ED=r 则BD=2r CE=5-23r OC=5-r在Rt △OCE 中,(5-23r )2+r 2=(5-r )2 解得:r=920 ∴CD=935PD=920 ∴tan ∠BCP=743520==CDPD23、⑴0.6x -0.2x 2+2.6x⑵w= -0.2x 2+2.6x+0.6(15-x )= -0.2x 2+2x+9 ⑶w=-0.2(x-5)2+14 当x=5时,Wmax=1424、Ⅰ、证明:∵∠B=∠C ∠GDB=∠FEC=90° GD=FE ∴△BDG ≌△CEFⅡ、⑴∵∠B=∠C=60° ∴DG=EF=3BD=3CE设BD=CE=x 则正方形边长为3x ∵BC=2 ∴3x+2x=2∴x=322+∴正方形边长为3232+⑵答:小明的做法正确证明:易证四边形DEFG 为矩形∵FE ∥F ′E ′ FG ∥F ′G ′∴△BEF ∽△BE ′F ′ △BFG ∽△BF ′G ′ ∴FGG F BFBF EFF E '`'''== ∵E ′F ′=F ′G ′ ∴EF=FG∴矩形DEFG 为正方形25、⑴∵sin ∠ABP=13132 P (0,-2) ∴OB=3 ∴B (3,0) A (-3,0)∴9a-2=0 a=92 ∴抛物线的解析式为y=92x 2-2⑵过C 作CE ⊥x 轴于E, ∵S △AOD=61S △ABC AB=2OA ∴CE=3OD∵△AOD ∽△AEC ∴31==AEOA CEOD ∵OA=3 ∴AE=9 ∴OE=6在y=92x 2-2中,令x=6 则y=6 ∴C (6,6) ∵A (-3,0)∴直线AC 的解析式为:232+=x y⑶答:存在。

2013年历年初三数学中考模拟试卷及答案

2013年历年初三数学中考模拟试卷及答案

2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。

2013年数学中考模拟试题(含答案)共两套

2013年数学中考模拟试题(含答案)共两套

2013年数学中考模拟试题一、选择题:(本大题共10题,每小题3分,共30分;每小题只有一个正确答案,请 把正确答案的字母代号填在下面的表内,否则不给分) 1. 下列各数(-2)0 , - (-2), (-2)2, (-2)3中, 负数的个数为 ( ) A.1 B. 2 C. 3 D. 42.下列图形既是轴对称图形, 又是中心对称图形的是:( )3. 资料显示, 2005年“十 一”黄金周全国实现旅游收入 约463亿元,用科学记数法表示463亿这个数是:( )A. 463×108B. 4.63×108C. 4.63×1010D. 0.463×10114.“圆柱与球的组合体”如左图所示,则它的三视图是( )A .B .C. D5. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是()A .284+x B .542010+x C .158410+x D .1542010+x 6. 二次函数y = ax 2+ bx +c 的图象如图所示, 则下列结论正确的是: ( )A. a >0,b <0,c >0B. a <0,b <0,c >0C. a <0,b >0,c <0D. a <0,b >0,c >07.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图是( ) A .61 B .31 C .21 D .326题图 7题图题图8中∠C=108°BE 平分∠ABC ,则∠AEB 等于 ( ) A . 180° B .36° C . 72° D . 108°9.如图,在△ABC 中,∠C =90°,AC >BC ,若以AC 为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC 为高的圆锥的侧面积为S 2 , 则( ) A .S 1 =S 2 B .S 1 >S 2 C .S 1 <S 2 D .S 1 ,S 2的大小大小不能确定10.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交(本大题共5题,每小题3分,共15分;请把答案填在下表内相应的题号下,否则不给分)11.为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计湖里有鱼 ________条.12. 如图,D 在AB 上,E 在使△ABE ≌△12题图13.如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则圆环的面积为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B
C
(B) D
A
B
C
(D) …
(A) D l
2013中考数学较难典型选择题模拟(2)
1. 已知一列数:1,-2,3,-4,5,-6,7…将这列数排成下列形式: 第1行 1 第2行 -2 3
第3行 -4 5 -6
第4行 7 -8 9 -10 第5行 11 -12 13 -14 15 … …
按照上述规律排列下去,那么第10行从左边数第5个数等于( ) A .50 B .-50 C .60 D .-60
2. 如图,在一个33⨯方格纸上,若以格点(即小正方形的顶点)为顶点
画正方形,在该33⨯方格纸上最多可画出的正方形的个数是( )
个.
A.13
B.14
C.18
D.20
3.将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动 (不滑动),当正方形滚动两周时,正方形的顶点A 所经过的路线的长是( )
A .()428cm ππ+
B .()8216cm ππ+
C .()828cm ππ+
D .()4216cm ππ+
4.已知一个等边三角形的边长为2,分别以它的三个顶点 为圆心,边长为半径画弧,得到右图,那么图中所有的弧长的和是 ( )
A .4π
B .6π
C .8π
D .10π
5.下列四个展开图中能够构成如图所示模型的是( )
A .
B .
C .
D .
6.在综合实践活动课上,小红准备用两种不同颜色的布料缝制一个正方形座垫,座垫的图案如右图所示,应该选下图中的哪一块布料才能使其与右图拼接符合原来的图案模式
( )
A .
B .
C .
D .
7.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距离A 地18km 的B 地,他们离出发地的距离
t(h)之间的函数关系的图象如图所示.合图象描述的说法是( ) A. 甲在行驶的过程中休息了一会
1
y
x
o
1
1
B.乙在行驶的过程中没有追上甲
C. 乙比甲先到了B 地
D. 甲的行驶速度比乙的行驶速度大
8、如图,正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,
且AE =BF =CG =DH .设小正方形EFGH 的面积为y ,AE 为x ,则y 关于x 的函数图象大致是


A 、
B 、
C 、
D 、
O 0.5 2 2.5 t(h)
9.定义b a ab b a ++=*,若273=*x ,则x 的值是( )
A. 3
B. 4
C.6
D.9
10.如图是某一立方体的侧面展开图,则该立方体是( )
11. 如图,在矩形ABCD 中,AB =3,
AD =4,点P 在AD 上,PE ⊥
AC 于E ,
PF ⊥BD 于F ,则PE +PF 等于( )
A.75
B.125
C.135
D.145
12.如图是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示4个入球孔.如果1
个球按图中所示的方向被击中(球
AB


A D
B
C
E F
P 3号袋
2号袋1
可以经过多次反射,并且不会在台球桌中间停止),那么该球最后将落入的球袋是( ) A .1号袋 B .2号袋 C .3号袋 D .4号袋
13. 根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解
x 的范围是(

A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x << D.
6.19 6.20x <<
14.如图2
AB


15.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )
参考答案 1. B 2. D 3. B 4. B 5. C 6. C 7. C 8. B 9. C 10. D 11. B 12.
D
O
P
M O
M '
M
P
A .
O
M '
M
P
B .
O
M '
M
P
C .
O
M '
M
P
D .
13. C
14. D
15. D。

相关文档
最新文档