2017杭州市中考数学模拟卷(含试题(卷)分析)难度大
2017年浙江省杭州市中考数学模拟试卷
2017年浙江省杭州市中考数学模拟试卷(4)一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.绝对值最小的有理数是()A.﹣1 B.0 C.1 D.不存在2.已知2x+4y=0,且x≠0,则y与x的比是()A.﹣B.C.﹣2 D.23.下列图形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.平行四边形C.矩形D.正五边形4.在下列运算中,计算正确的是()A.a2+a2=a4 B.a3•a2=a6 C.a8÷a2=a4D.(a2)3=a65.如图,AB是半圆O的直径,∠DBA=20°,则∠C的大小是()A.70°B.100°C.110° D.140°6.对于“”,下面说法不正确的是()A.它是一个无理数B.它是数轴上离原点个单位长度的点表示的数C.若a<<a+1,则整数a为2D.它表示面积为7的正方形的边长7.如图,Rt△ABC的一个顶点B在原点,BC在y轴上,直角边AC=1,BC=2,把Rt△ABC绕点B逆时针旋转90°,顶点A的对应点为A′.若反比例函数y=的图象经过点A′,则m的值为()A.﹣2 B.﹣1 C.1 D.28.已知a,b是实数,设A=,B=,C=,则下列各式中,错误的是()A.A≤C B.B≥C C.A+B=2C D.A2+B2=C29.有A,B两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷A,朝上的数字记作x;小张掷B,朝上的数字记作y.在平面坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王小张各掷一次所确定的点P(x,y)落在矩形内(不含矩形的边)的概率是()A.B.C.D.10.如图,点E在矩形ABCD的边CD上,满足CE:ED=7:4,连结BE,过E作BE的垂线交边AD于点F,已知BE=4EF,DF=a,则AB等于()A. a B. a C.4a D.7a二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若m﹣n=2,m+n=5,则m2+n2的值为.12.若一组数据1,2,3,x的平均数是2,则这组数据的方差是.13.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E,CD=4,AE=2,则⊙O的半径为.14.如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是.15.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,AC,OD交于点P,其中OA=4,OB=3.(1)则OD所在直线的解析式为;(2)则△AOP的面积为.16.在矩形ABCO中,O为坐标原点,A在y轴上,C在x轴上,B的坐标为(8,6),P是线段BC上动点,点D是直线y=2x﹣6上第一象限的点,若△APD是等腰Rt△,则点D的坐标为.三、解答题(共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有些题目有点困难,那么把自己能写出的解答写出一部分也可以.17.如图,把边长为2的正方形剪成四个完全一样的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形.(要求全部用上,互不重叠,互不留隙).(1)长方形(非正方形);(2)平行四边形;(3)四边形(非平行四边形).18.已知关于x的一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.19.一个不透明的口袋里装有分别标有汉字“喜”、“迎”、“峰”、“会”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求球上的汉字刚好是“峰”的概率;(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“喜迎”或“峰会”的概率.20.小明通过观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,要求尺规作图线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明算出OC的值和tan∠AOD是多少?21.在平面直角坐标系xOy中,反比例函数y=的图象经过点A(1,4)、B(m,n).(1)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n 的值;(2)若反比例函数y=的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象求a的取值范围.22.把一副三角板按如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O、与D1E1相交于点F.(1)求线段AD1的长;(2)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.23.我们规定:函数y=(a、b、k是常数,k≠ab)叫广义反比例函数.当a=b=0时,广义反比例函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为广义反比例函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若广义反比例函数y=的图象经过点B、E,求该广义反比例函数的表达式;(3)在(2)的条件下,过线段BE中点M的一条直线l与这个广义反比例函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2017年浙江省杭州市中考数学模拟试卷(4)参考答案与试题解析一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.绝对值最小的有理数是()A.﹣1 B.0 C.1 D.不存在【分析】根据绝对值的含义和求法,可得①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a 的绝对值是零,所以当a是正有理数和负有理数时,它的绝对值都大于0;当a 是零时,a的绝对值是零,所以绝对值最小的有理数是0,据此解答即可.【解答】解:∵当a是正有理数和负有理数时,它的绝对值都大于0;当a是零时,a的绝对值是零,∴绝对值最小的有理数是0.故选:B.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.已知2x+4y=0,且x≠0,则y与x的比是()A.﹣B.C.﹣2 D.2【分析】直接利用已知将原式变形进而得出y与x的比.【解答】解:∵2x+4y=0,且x≠0,∴2x=﹣4y,∴==﹣.故选:A.【点评】此题主要考查了比例式的性质,正确将已知变形是解题关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.平行四边形C.矩形D.正五边形【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A、正三角形是轴对称图形,不是中心对称图形,故A错误;B、平行四边形不是轴对称图形,是中心对称图形,故B错误;C、矩形是轴对称图形,也是中心对称图形,故C正确;D、正五边形是轴对称图形,不是中心对称图形,故D错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.在下列运算中,计算正确的是()A.a2+a2=a4 B.a3•a2=a6 C.a8÷a2=a4D.(a2)3=a6【分析】A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、a2+a2=2a2,本选项错误;B、a3•a2=a5,本选项错误;C、a8÷a2=a6,本选项错误;D、(a2)3=a6,本选项正确.故选D.【点评】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.5.如图,AB是半圆O的直径,∠DBA=20°,则∠C的大小是()A.70°B.100°C.110° D.140°【分析】先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A 的度数,根据圆内接四边形的性质即可得出结论.【解答】解:∵AB是半圆O的直径,∴∠ADB=90°.∵∠DBA=20°,∴∠DAB=90°﹣20°=70°.∵四边形ABCD是圆内接四边形,∴∠C=180°﹣∠DAB=180°﹣70°=110°.故选C.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.6.对于“”,下面说法不正确的是()A.它是一个无理数B.它是数轴上离原点个单位长度的点表示的数C.若a<<a+1,则整数a为2D.它表示面积为7的正方形的边长【分析】根据无理数的意义和数轴的性质进行判断即可.【解答】解:是一个无理数,A正确;±是数轴上离原点个单位长度的点表示的数,B错误;∵2<<2+1,∴若a<<a+1,则整数a为2,C正确;表示面积为7的正方形的边长,D正确,故选:B.【点评】本题考查的是算术的概念和分类,掌握无理数的概念和意义是解题的关键.7.如图,Rt△ABC的一个顶点B在原点,BC在y轴上,直角边AC=1,BC=2,把Rt△ABC绕点B逆时针旋转90°,顶点A的对应点为A′.若反比例函数y=的图象经过点A′,则m的值为()A.﹣2 B.﹣1 C.1 D.2【分析】根据图形旋转的性质求出A′点的坐标,再代入反比例函数函数的解析式即可得出结论.【解答】解:∵Rt△ABC的直角边AC=1,BC=2,∴A′(﹣2,1),∴m=1×(﹣2)=﹣2.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.已知a,b是实数,设A=,B=,C=,则下列各式中,错误的是()A.A≤C B.B≥C C.A+B=2C D.A2+B2=C2【分析】分两种情况:a≤b,a>b,进行讨论即可求解.【解答】解:当a≤b时,A=a,B=b,C=,则A≤C,B≥C,A+B=2C,无法确定A2+B2=C2;当a>b时,A=b,B=a,C=,则A<C,B>C,A+B=2C,无法确定A2+B2=C2;故选:D.【点评】此题考查了实数大小比较,关键是熟练掌握分类思想的运用.9.有A,B两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷A,朝上的数字记作x;小张掷B,朝上的数字记作y.在平面坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王小张各掷一次所确定的点P(x,y)落在矩形内(不含矩形的边)的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小王小张各掷一次所确定的点P(x,y)落在矩形内(不含矩形的边)的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有36种等可能的结果,小王小张各掷一次所确定的点P(x,y)落在矩形内(不含矩形的边)的有15种情况,∴小王小张各掷一次所确定的点P(x,y)落在矩形内(不含矩形的边)的概率是:=.故选B.【点评】此题考查了列表法或树状图法求概率以及坐标与图形的关系.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,点E在矩形ABCD的边CD上,满足CE:ED=7:4,连结BE,过E作BE的垂线交边AD于点F,已知BE=4EF,DF=a,则AB等于()A. a B. a C.4a D.7a【分析】根据CE:ED=7:4,设DE=4x,EC=7x,则AB=DC=11x,证明△BCE∽△EDF,求出a与x的关系,代入AB=11x即可.【解答】解:设DE=4x,EC=7x,则AB=DC=11x,∵∠BEF=90°,∴∠BEC+∠FED=90°,∵四边形ABCD是矩形,∴∠D=∠C=90°,∴∠FED+∠EFD=90°,∴∠BEC=∠EFD,∴△BCE∽△EDF,∴,∵BE=4EF,∴,∴x=,∴AB=11x=11×=,故选B.【点评】本题考查了矩形的性质,矩形的四个角都是直角且对边相等;利用比的关系设未知数,再利用三角形相似对应边的比表示出线段的长,从而得出结论.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若m﹣n=2,m+n=5,则m2+n2的值为14.5.【考点】完全平方公式.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵m﹣n=2,m+n=5,∴(m﹣n)2=m2﹣2mn+n2=4,(m+n)2=m2+2mn+n2=25,则m2+n2=14.5,故答案为:14.512.若一组数据1,2,3,x的平均数是2,则这组数据的方差是.【考点】方差;算术平均数.【分析】先根据平均数的定义确定出x的值,再根据方差的计算公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代值计算即可.【解答】解:∵数据1,2,3,x的平均数是2,∴(1+2+3+x)÷4=2,∴x=2,∴这组数据的方差是: [(1﹣2)2+(2﹣2)2+(3﹣2)2+(2﹣2)2]=;故答案为:.13.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E,CD=4,AE=2,则⊙O的半径为3.【考点】垂径定理;勾股定理.【分析】由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE 的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r的方程,求出方程的解即可得到圆的半径r的值.【解答】解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.故答案为:3.14.如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是a<﹣5.【考点】抛物线与x轴的交点.【分析】函数图象经过四个象限,需满足3个条件:(Ⅰ)函数是二次函数;(Ⅱ)二次函数与x轴有两个交点;(Ⅲ)两个交点必须要在y轴的两侧,即两个交点异号.【解答】解:函数图象经过四个象限,需满足3个条件:(Ⅰ)函数是二次函数.因此a﹣1≠0,即a≠1①(Ⅱ)二次函数与x轴有两个交点.因此△=9﹣4(a﹣1)=﹣4a﹣11>0,解得a<﹣②(Ⅲ)两个交点必须要在y轴的两侧.因此<0,解得a<﹣5③综合①②③式,可得:a<﹣5.故答案为:a<﹣5.15.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,AC,OD交于点P,其中OA=4,OB=3.(1)则OD所在直线的解析式为y=x;(2)则△AOP的面积为.【考点】全等三角形的判定与性质;待定系数法求一次函数解析式;正方形的性质.【分析】(1)根据正方形的性质,可得AD与AB的关系,∠DAB的度数,根据余角的性质,可得∠DAE=∠ABO,根据全等三角形的判定与性质,可得AE、DE 的长度,根据待定系数法,可得答案;(2)根据全等三角形的判定与性质,可得BF、CF的长度,根据待定系数法,可得CA的解析式,根据解方程组,可得P点坐标,根据三角形的面积公式,可得答案.【解答】解:(1)过点D作DE⊥OA于点E,如图所示:∵四边形ABCD是正方形∴AD=AB,∠DAB=∠DEA=∠DAB=90°.∵OA⊥OB∴∠DAE+∠OAB=∠OAB+∠ABO=90°∴∠DAE=∠ABO在DAE和AOB中,,∴△DEA≌△AOB (AAS),∴DE=AO=4,AE=BO=3∴OE=AE+AO=3+4=7∴点D的坐标为(4,7).设OD所在直线的解析式为y=k1x (k1≠0)将点D (4,7)代入得:4k1=7,解得:k1=,所以OD所在直线的解析式为y=x;故答案为:y=x;(2)过点C作CF⊥OB于点F,由第(1)问易得:△AOB≌BFC,BF=4,CF=3,∴OF=OB+BF=7,∴点A的坐标为(0,4),点C的坐标为(7,3)设AC所在直线的解析式为y=2x+b (k2≠0),将点A(0,4),点C(7,3)代入得:,解得:,所以AC所在直线的解析式为y=﹣x+4,联立OD、AC得方程组,解得:,∴点P的坐标为(,)=×4×=;∴S△OAP故答案为:.16.在矩形ABCO中,O为坐标原点,A在y轴上,C在x轴上,B的坐标为(8,6),P是线段BC上动点,点D是直线y=2x﹣6上第一象限的点,若△APD是等腰Rt△,则点D的坐标为(4,2)或(,)或(,).【考点】一次函数图象上点的坐标特征;等腰直角三角形.【分析】可分为当∠ADP=90°,D在AB上方和下方,当∠APD=90°时三种情况,设点D的坐标,列出方程解决问题.【解答】解:①如图1中,当∠ADP=90°,D在AB下方,设点D坐标(a,2a﹣6),过点D作EF∥OC交OA于E,交BC于F,则OE=2a﹣6,AE=AO﹣OE=12﹣2a,在△ADE和△DPF中,∴△ADE≌△DPF,∴AE=DF=12﹣2a,∵EF=OC=8,∴a+12﹣2a=8,∴a=4.此时点D坐标(4,2).②如图2中,当∠ADP=90°,D在AB上方,设点D坐标(a,2a﹣6),过点D作EF∥OC交OA于E,交CB的延长线于F,则OE=2a﹣6,AE=OE﹣OA=2a﹣12,由△ADE≌△DPF,得到DF=AE=2a﹣12,∵EF=8,∴a+2a﹣12=8,∴a=,此时点D坐标(,).③如图3中,当∠APD=90°时,设点D坐标(a,2a﹣6),作DE⊥CB的延长线于E.同理可知△ABP≌△EPD,∴AB=EP=8,PB=DE=a﹣8,∴EB=2a﹣6﹣6=8﹣(a﹣8),∴a=,此时点D坐标(,).∴点D坐标为(4,2)或(,)或(,).故答案为(4,2)或(,)或(,).三、解答题(共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有些题目有点困难,那么把自己能写出的解答写出一部分也可以.17.如图,把边长为2的正方形剪成四个完全一样的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形.(要求全部用上,互不重叠,互不留隙).(1)长方形(非正方形);(2)平行四边形;(3)四边形(非平行四边形).【考点】图形的剪拼.【分析】(1)利用长方形的性质结合基本图形进而拼凑即可;(2)利用平行四边形的性质结合基本图形进而拼凑即可;(3)结合基本图形进而拼凑出符合题意的四边形即可.【解答】解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示:18.已知关于x的一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.【考点】根的判别式.【分析】(1)根据方程有两个实数根,得到根的判别式的值大于或等于0列出关于m的不等式,求出不等式的解集即可得到m的范围;(2)找出m范围中的正整数解确定出m的值,经检验即可得到满足题意m的值.【解答】解:(1)∵一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根,∴△=b2﹣4ac=(2m+2)2﹣4×1×(m2﹣4)=8m+20>0,∴;(2)∵m为负整数,∴m=﹣1或﹣2,当m=﹣1时,方程x2﹣3=0的根为:,(不是整数,不符合题意,舍去),当m=﹣2时,方程x2﹣2x=0的根为x1=0,x2=2都是整数,符合题意.综上所述m=﹣2.19.一个不透明的口袋里装有分别标有汉字“喜”、“迎”、“峰”、“会”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求球上的汉字刚好是“峰”的概率;(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“喜迎”或“峰会”的概率.【考点】列表法与树状图法.【分析】(1)由一个不透明的口袋里装有分别标有汉字“美”、“丽”、“中”、“国”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出的两个球上的汉字恰能组成“美丽”或“中国”的情况,再利用概率公式即可求得答案;【解答】解:(1)∵有汉字“喜”、“迎”、“峰”、“会”的四个小球,任取一球,共有4种不同结果,∴球上汉字是“峰”的概率为=;(2)画树状图如下:所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“喜迎”或“峰会”的情况有4种,概率为==.20.小明通过观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,要求尺规作图线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明算出OC的值和tan∠AOD是多少?【考点】相似形综合题.【分析】(1)利用基本尺规作图的一般步骤画出相等CD;(2)连接AC、DB、AD,根据勾股定理求出AE,根据相似三角形的性质求出OD、OF,根据正切的定义计算即可.【解答】解:(1)如图1所示:线段CD即为所求;(2)如图2所示:连接AC、DB、AD.∵AD=DE=2,∴AE=2.∵CD⊥AE,∴DF=AF=,∵AC∥BD,∴△ACO∽△DBO,∴CO:DO=2:3.∴CO=CD=×2=.∴DO=.∴OF=﹣=.tan∠AOD===5.21.在平面直角坐标系xOy中,反比例函数y=的图象经过点A(1,4)、B(m,n).(1)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n 的值;(2)若反比例函数y=的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象求a的取值范围.【考点】反比例函数与一次函数的交点问题;二次函数的性质.【分析】(1)利用待定系数法求得k的值,把B的坐标代入反比例函数的解析式,则mn=k,然后利用mn表示出所求的式子代入求解;(2)首先求得反比例函数与y=x的交点坐标,根据二次函数的解析式可以得到二次函数的顶点在x轴上,然后分成开口向上和开口向下两种情况讨论即可求解.【解答】解:(1)∵反比例函数y=的图象经过点A(1,4)、B(m,n),∴k=mn=1×4=4,∵二次函数y=(x﹣1)2的图象经过点B,∴n=(m﹣1)2=m2﹣2m+1,∴m3n﹣2m2n+3mn﹣4n=m3n﹣2m2n+mn+2mn﹣4n=mn(m2﹣2m+1)+2mm﹣4n=4n+2×4﹣4n=8;(2)设直线y=x与反比例函数y=交点分别为C、D,解,得:或,∴点C(﹣2,﹣2),点D(2,2).①若a>0,如图1,当抛物线y=a(x﹣1)2经过点D时,有a(2﹣1)2=2,解得:a=2.∵|a|越大,抛物线y=a(x﹣1)2的开口越小,∴结合图象可得,满足条件的a的范围是0<a<2;②若a<0,如图2,当抛物线y=a(x﹣1)2经过点C时,有a(﹣2﹣1)2=﹣2,解得:a=﹣.∵|a|越大,抛物线y=a(x﹣1)2的开口越小,∴结合图象可得,满足条件的a的范围是a<﹣.综上所述,满足条件的a的范围是0<a<2或a<﹣.22.把一副三角板按如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O、与D1E1相交于点F.(1)求线段AD1的长;(2)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.【考点】旋转的性质.【分析】(1)根据等腰直角三角形的性质求出AO=CO=AB,再求出OD1,然后利用勾股定理列式计算即可得解;(2)设直线CB与D2E2相交于P,然后判断出△CPE2是等腰直角三角形,再求出CP,然后与CB相比较即可得解.【解答】解:(1)∵旋转角为15°,∴∠OCB=60°﹣15°=45°,∴∠COB=180°﹣45°﹣45°=90°,∴CD1⊥AB,∴AO=CO=AB=×6=3,∴OD1=DC﹣CO=7﹣3=4,在Rt△AD1O中,由勾股定理得,AD1===5;(2)点B在△D2CE2的内部.理由如下:设直线CB与D2E2相交于P,∵△DCE绕着点C顺时针再旋转45°,∴∠PCE2=15°+30°=45°,∴△CPE2是等腰直角三角形,∴CP=CE2=,∵AB=6,∴CB=AB=3<,即CB<CP,∴点B在△D2CE2的内部.23.我们规定:函数y=(a、b、k是常数,k≠ab)叫广义反比例函数.当a=b=0时,广义反比例函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为广义反比例函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若广义反比例函数y=的图象经过点B、E,求该广义反比例函数的表达式;(3)在(2)的条件下,过线段BE中点M的一条直线l与这个广义反比例函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.【考点】反比例函数综合题.【分析】(1)只需运用矩形的面积公式就可求出函数关系式,从而解决问题;(2)可先求出直线OB和直线CD的解析式,求出它们的交点E的坐标,然后只需运用待定系数法就可解决问题;(3)将坐标原点平移到点M的位置,构建新的坐标系,在新的坐标系中,分点P在点B的左边和右边两种情况讨论,只需先求出点P在新坐标系下的坐标,就可求出点P在原坐标系下的坐标【解答】解:(1)是广义反比例函数;理由:由题意得:(2+x)(3+y)=8.即3+y=,∴y=﹣3=.根据定义,y=是广义反比例函数.(2)如图1,由题意得:B(6,3)、D(3,0),设直线OB的解析式为y=mx,则有6m=3,解得:m=,∴直线OB的解析式为y=x.设直线CD的解析式为y=kx+b,,解得:,∴直线CD的解析式为y=﹣x+3.解方程组,得,∴点E(2,1).将点B(6,3)和E(2,1)代入y=得,解得:,∴广义反比例函数的表达式为y=.(3)满足条件的点P的坐标为(2, +4)或(2+8,).①若点P在点B的左边,如图2①,以点M为原点,构建如图2①所示的新坐标系,在该坐标系下广义函数的解析式为y′=,点B的新坐标为(2,1).∵直线PQ与双曲线y′=都是以点M为对称中心的中心对称图形,∴MP=MQ.∵MB=ME,∴四边形BPEQ是平行四边形,∴S▱BPEQ=4S△BMP=16,=4.∴S△BMP过点P作PG⊥x′轴于G,过点B作BH⊥x′轴于H,根据反比例函数比例系数的几何意义可得:S△PGM=S△BHM=×2=1,=S△PGM+S梯形BHGP﹣S△BHM=S梯形BHGP=4,∴S△BMP设点P在新坐标系中的坐标为(x′,),=(1+)•(2﹣x′)=4,则有S梯形BHGP解得x1′=﹣4﹣2(舍去),x2′=﹣4+2,当x=﹣4+2时,==+2,即点P在新坐标系中的坐标为(﹣4+2, +2),∴点P在原坐标系中的坐标为(2, +4);②若点P在点B的右边,如图2②,同理可得:点P在原坐标系中的坐标为(2+8,),满足条件的点P的坐标为(2, +4),(2+8,)..2017年3月14日第31页(共31页)。
2017年浙江省杭州市中考数学模拟命题比赛试卷
2017年浙江省杭州市中考数学模拟命题比赛试卷(3)一.仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.是一个()A.整数 B.分数 C.有理数D.无理数2.下列计算正确的是()A.的平方根为±8 B.的算术平方根为8C.的立方根为2 D.的立方根为±23.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换 C.旋转变换 D.中心对称变换4.下列各式计算正确的有()A.(p5q4)÷(2p3q)=2p2q3B.(﹣a+5)(﹣a﹣5)=﹣a2﹣25C.D.5.如果圆内接四边形ABCD的对角线交点恰好是该圆的圆心,则四边形ABCD一定是()A.平行四边形B.矩形 C.菱形 D.正方形6.已知a﹣b=1,则a2﹣b2﹣2b的值为()A.1 B.2 C.3 D.47.某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为()A.20% B.80% C.180% D.20%或180%8.为了有效保护环境,某居委会倡议居民将生活垃圾进行可回收的、不可回收的和有害的分类投放,一天,小林把垃圾分装在三个袋中,则他任意投放垃圾,把三个袋子都放错位的概率是()A.B.C.D.9.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个10.已知抛物线y=a(x﹣m)2+n的顶点为A,与y轴的交点为B,若直线AB的解析式为y=﹣2x+b,点A,B关于原点的对称点分别为A′,B′,且四边形ABA′B′为矩形,则下列关于m,n,b的关系式正确的是()A.5m=4b B.4m=5b C.5n=3b D.3n=5b二、填空题(本题有6个小题,每小题4分,共24分)11.已知代数式x2+6x+5与x﹣1的值相等,则x= .12.若非0有理数a使得关于x的分式方程﹣1=无解,则a= .13.如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是.14.在▱ABCD中,AD=2,AB=4,∠A=45°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则弧,线段DC、EC围成的面积是(结果保留π).15.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.三、解答题(本题有7个小题,共66分)17.学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有万人到市图书馆阅读,其中商人所占百分比是,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?18.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.19.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?20.一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.21.已知某商品每件的成本为20元,第x天(x≤90)的售价和销量分别为y元/件和(180﹣2x)件,设第x天该商品的销售利润为w元,请根据所给图象解决下列问题:(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天当天的销售利润不低于4200元?22.如图,已知抛物线y=﹣x2+mx+3与x轴的一个交点A(3,0).(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(﹣2,n)在直线BC上,试判断E 点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;(3)请设法求出tan∠DAC的值.23.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时, = ;②当α=180°时, = .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.2017年浙江省杭州市中考数学模拟命题比赛试卷(3)参考答案与试题解析一.仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.是一个()A.整数 B.分数 C.有理数D.无理数【考点】无理数.【分析】根据无理数的定义即可作答.【解答】解:∵是一个无限不循环小数,∴是一个无理数.故选D.【点评】本题考查了无理数的定义:无限不循环小数为无理数.初中范围内学习的无理数有三类:①π类,如2π,等;②开方开不尽的数,如,等;③虽有规律但是无限不循环的数,如0.1010010001…,等.2.下列计算正确的是()A.的平方根为±8 B.的算术平方根为8C.的立方根为2 D.的立方根为±2【考点】立方根;平方根;算术平方根.【分析】依据平方根、算术平方根、立方根的性质求解即可.【解答】解:A、=8,8的平方根为±2,故A错误;B、=8,8的算术平方根为2,故B错误;C、=8,8的立方根为2,故C正确;D、=8,8的立方根为2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的性质,熟练掌握相关知识是解题的关键.3.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换 C.旋转变换 D.中心对称变换【考点】几何变换的类型.【分析】根据轴对称变换、平移变换、旋转变换和中心对称变换的概念进行判断即可.【解答】解:连接AB,作线段AB的垂直平分线,垂足为O,∴图形1以直线l为对称轴通过轴对称变换得到图形2,A可行;图形1以O为旋转中心,旋转180°得到图形2,C、D可行;故选:B.【点评】本题考查的是几何变换的类型,掌握轴对称变换、平移变换、旋转变换和中心对称变换的概念是解题的关键.4.下列各式计算正确的有()A.(p5q4)÷(2p3q)=2p2q3B.(﹣a+5)(﹣a﹣5)=﹣a2﹣25C.D.【考点】分式的加减法;平方差公式;整式的除法.【分析】根据单项式的除法、平方差公式以及分式的加减法进行计算即可.【解答】解:A、(p5q4)÷(2p3q)=p2q3,故错误;B、(﹣a+5)(﹣a﹣5)=a2﹣25,故错误;C、+=,故错误;D、正确;故选D.【点评】本题考查了分式的加减、平方差公式以及分式的加减,掌握运算法则是解题的关键.5.如果圆内接四边形ABCD的对角线交点恰好是该圆的圆心,则四边形ABCD一定是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】圆内接四边形的性质.【分析】由圆内接四边形ABCD的对角线交点恰好是该圆的圆心,根据直径所对的圆周角是直角,可求得四边形ABCD的四个内角都是直角,即可判定四边形ABCD一定是矩形.【解答】解:∵圆内接四边形ABCD的对角线交点恰好是该圆的圆心,∴∠A=∠B=∠C=∠D=90°,∴四边形ABCD一定是矩形.故选B.【点评】此题考查了矩形的判定以及圆的内接四边形的性质.注意直径所对的圆周角是直角定理的应用是解此题的关键.6.已知a﹣b=1,则a2﹣b2﹣2b的值为()A.1 B.2 C.3 D.4【考点】完全平方公式.【分析】由已知得a=b+1,代入所求代数式,利用完全平方公式计算.【解答】解:∵a﹣b=1,∴a=b+1,∴a2﹣b2﹣2b=(b+1)2﹣b2﹣2b=b2+2b+1﹣b2﹣2b=1.故选:A.【点评】本题考查了完全平方公式的运用.关键是利用换元法消去所求代数式中的a.7.某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为()A.20% B.80% C.180% D.20%或180%【考点】一元二次方程的应用.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.【解答】解:设平均每次降价的百分率为x,根据题意得:400(1﹣x)2=256解得:x=20%或x=1.8(舍去),故选A.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.为了有效保护环境,某居委会倡议居民将生活垃圾进行可回收的、不可回收的和有害的分类投放,一天,小林把垃圾分装在三个袋中,则他任意投放垃圾,把三个袋子都放错位的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】(装可回收的、不可回收的和有害的垃圾的三个袋分别用A、B、C表示,陈放可回收的、不可回收的和有害的垃圾的地方分别为a、b、c)画树状图展示所用6种等可能的结果数,再找出把三个袋子都放错位的结果数,然后根据概率公式求解.【解答】解:(装可回收的、不可回收的和有害的垃圾的三个袋分别用A、B、C表示,陈放可回收的、不可回收的和有害的垃圾的地方分别为a、b、c)画树状图:共有6种等可能的结果数,其中他任意投放垃圾,把三个袋子都放错位的结果数为2,所以他任意投放垃圾,把三个袋子都放错位的概率==.故选C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.10.已知抛物线y=a(x﹣m)2+n的顶点为A,与y轴的交点为B,若直线AB的解析式为y=﹣2x+b,点A,B关于原点的对称点分别为A′,B′,且四边形ABA′B′为矩形,则下列关于m,n,b的关系式正确的是()A.5m=4b B.4m=5b C.5n=3b D.3n=5b【考点】二次函数的性质;一次函数图象上点的坐标特征.【分析】根据题意可知:A(m,n),B(0,b),所以B′的坐标为(0,﹣b),由题意可知:四边形ABA′B′为矩形,所以对角线AA′=BB′.【解答】解:由题意可知:A(m,n),B(0,b),∵点A,B关于原点的对称点分别为A′,B′,∴BB′=|2b|,∵四边形ABA′B′为矩形,∴AA′=BB′,∵OA2=m2+n2,∵AA′2=4OA2=4(m2+n2),∴4(m2+n2)=4b2,把(m,n)代入y=﹣2x+b,∴n=﹣2m+b,∴b2=m2+(﹣2m+b)2,化简可得:5m=4b,故选(A)【点评】本题考查了二次函数的性质,涉及矩形的性质,二次函数的性质,完全平方差公式,综合程度较高.二、填空题(本题有6个小题,每小题4分,共24分)11.已知代数式x2+6x+5与x﹣1的值相等,则x= ﹣2或﹣3 .【考点】解一元二次方程-因式分解法.【分析】根据题意得出x2+6x+5=x﹣1,整理成一般式后利用因式分解法求解可得.【解答】解:根据题意得x2+6x+5=x﹣1,整理得:x2+5x+6=0,∴(x+2)(x+3)=0,∴x+2=0或x+3=0,解得:x=﹣2或x=﹣3,故答案为:﹣2或﹣3.【点评】本题主要考查因式分解法解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.12.若非0有理数a使得关于x的分式方程﹣1=无解,则a= ﹣1或0 .【考点】分式方程的解.【分析】先把分式方程化为整式方程、整理得x﹣2=a,再根据分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0进行解答即可.【解答】解:﹣1=,去分母得:x(x﹣2)﹣(x﹣1)(x﹣2)=a,整理得:x﹣2=a,∵x=1时,分母为零,方程无解,∴a=﹣1,∵x=2时,分母为零,方程无解,∴a=0.故答案为:﹣1或0.【点评】此题主要考查了分式方程无解的条件,关键是掌握在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.13.如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是y=x2+2x+3 .【考点】二次函数图象与几何变换.【分析】设平移后的抛物线解析式为y=x2+2x﹣1+b,把点A的坐标代入进行求值即可得到b的值.【解答】解:设平移后的抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.14.在▱ABCD中,AD=2,AB=4,∠A=45°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则弧,线段DC、EC围成的面积是3﹣(结果保留π).【考点】扇形面积的计算;平行四边形的性质.【分析】根据题意画出图形,过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.【解答】解:如图所示,过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=45°,∴DF=AD•sin45°=,EB=AB﹣AE=4﹣2=2,∴阴影部分的面积=S平行四边形ABCD﹣S扇形DAE﹣S△BCE=4﹣﹣×2×=4﹣﹣=3﹣.故答案为:3﹣.【点评】本题考查的是扇形面积的计算,根据题意画出图形,利用数形结合求解是解答此题的关键.15.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是 2 .【考点】切线的性质.【专题】几何图形问题;压轴题.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.【点评】此题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 4.8 .【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】压轴题.【分析】由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8;故答案为:4.8.【点评】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.三、解答题(本题有7个小题,共66分)17.学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有16 万人到市图书馆阅读,其中商人所占百分比是12.5% ,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用学生数除以其所占的百分比即可得到总人数,然后用商人数除以总人数即可得到商人所占的百分比;(2)用总人数乘以职工占总人数的百分比即可得到职工人数.【解答】解:(1)4÷25%=16 2÷16×100%=12.5%(2)职工人数约为:28000×=10500人答:估计其中约有10500名职工.【点评】本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从两种统计图中整理出进一步解题的有关信息.18.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.【考点】矩形的性质.【专题】证明题.【分析】(1)根据矩形的对角线相等可得AC=BD,然后证明四边形ABEC是平行四边形,再根据平行四边形的对边相等可得AC=BE,从而得证;(2)根据矩形的对角线互相平分求出BD的长度,再根据30°角所对的直角边等于斜边的一半求出CD的长度,然后利用勾股定理求出BC的长度,再利用梯形的面积公式列式计算即可得解.【解答】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8,∵∠DBC=30°,∴CD=BD=×8=4,∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8,在Rt△BCD中,BC===4,∴四边形ABED的面积=(4+8)×4=24.【点评】本题考查了矩形的对角线互相平分且相等的性质,平行四边形的判定与性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.19.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?【考点】一次函数的应用.【专题】函数思想.【分析】(1)根据CO与DE可得出A比B后出发1小时;由点C的坐标为(3,60)可求出B的速度;(2)利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可.【解答】解:(1)由图可知,A比B后出发1小时;B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为s=kt,则3k=60,解得k=20,所以,s=20t,设DE的解析式为s=mt+n,则,解得,所以,s=45t﹣45,由题意得,解得,所以,B出发小时后两人相遇.【点评】本题考查利用一次函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图并获取信息是解题的关键.20.一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为.(1)试求袋中绿球的个数;(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)此题的求解方法是:借助于方程求解;(2)此题需要两步完成,所以采用树状图或者列表法都比较简单.【解答】解:(1)设绿球的个数为x.由题意,得=(2分)解得x=1,经检验x=1是所列方程的根,所以绿球有1个;(2)根据题意,画树状图:由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿),(绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红,红),(红,红).∴P(两次都摸到红球)==;或根据题意,画表格:由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种,∴P(两次都摸到红球)==.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两部以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.已知某商品每件的成本为20元,第x天(x≤90)的售价和销量分别为y元/件和(180﹣2x)件,设第x天该商品的销售利润为w元,请根据所给图象解决下列问题:(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天当天的销售利润不低于4200元?【考点】二次函数的应用.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4200,一次函数值大于或等于4200,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x≤50时,设y与x的函数关系式为y=kx+b,∵当x=1时,y=31,当x=50,y=80,∴,解得:∴y=x+30,∴当1≤x≤50时,w=(x+30﹣20)(180﹣2x)=﹣2x2+160x+1800;当50<x≤90时,w=(80﹣20)(180﹣2x)=﹣120x+10800;(2)w=﹣2x2+180x+1800=﹣2(x﹣40)2+5000,∴当x=40时取得最大值5000元;∵w=﹣120x+10800;∴当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=4800,综上所述,该商品第40天时,当天销售利润最大,最大利润是5000元;(3)当1≤x<50时,y=﹣2x2+160x+1800≥4200,解得20≤x≤60,因此利润不低于4200元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+10800≥4200,解得x≤55,因此利润不低于4200元的天数是50≤x≤55,共6天,所以该商品在销售过程中,共36天每天销售利润不低于4200元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.22.(12分)(2006•益阳)如图,已知抛物线y=﹣x2+mx+3与x轴的一个交点A(3,0).(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(﹣2,n)在直线BC上,试判断E 点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;(3)请设法求出tan∠DAC的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把A点的坐标代入抛物线的解析式,就可以求出m的值,得到抛物线的解析式.在解析式中令y=0,解方程就可以求出与x轴的交点.(2)根据函数解析式就可求出抛物线的顶点坐标,利用待定系数法求出反比例函数的解析式.经过C,B的直线解析式可以用待定系数法求得,进而求出E点的坐标.把E的坐标代入反比例函数解析式,就可以判断是否在反比例函数的图象上.(3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形,△AOC是等腰直角三角形,根据勾股定理就可以求出CD,AC的长度.Rt△ADC中中根据三角函数的定义就可以求出三角函数值.【解答】解:(1)因为A(3,0)在抛物线y=﹣x2+mx+3上,则﹣9+3m+3=0,解得m=2.所以抛物线的解析式为y=﹣x2+2x+3.因为B点为抛物线与x轴的交点,求得B(﹣1,0),因为C点为抛物线与y轴的交点,求得C(0,3).(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4),画这个函数的草图.由B,C点的坐标可求得直线BC的解析式为y=3x+3,∵点E(﹣2,n)在y=3x+3上,∴E(﹣2,﹣3).可求得过D点的反比例函数的解析式为y=.当x=﹣2时,y==﹣2≠﹣3.∴点E不在过D点的反比例函数图象上.(3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形,且CD=.连接AC,则△AOC为等腰直角三角形,且AC=3.因为∠ACD=180°﹣45°﹣45°=90°,∴Rt△ADC中,tan∠DAC=.另解:∵Rt△CFD∽Rt△COA,∴.∵∠ACD=90°,∴tan∠DAC=.【点评】本题主要考查了待定系数法求函数的解析式,以及二次函数顶点坐标的求法.23.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时, = ;②当α=180°时, = .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.【考点】几何变换综合题.【专题】压轴题.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E 分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴=.故答案为:.(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD﹣DE=8﹣2=6,由(2),可得,∴BD==.综上所述,BD的长为4或.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.(2)此题还考查了相似三角形、全等三角形的判定和性质的应用,要熟练掌握.(3)此题还考查了线段长度的求法,以及矩形的判定和性质的应用,要熟练掌握.。
2017年浙江省杭州市中考数学模拟命题比赛试卷7
2017年浙江省杭州市中考数学模拟命题比赛试卷(4)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.如图,右侧立体图形的俯视图是()A.B. C.D.2.在实数,2π,,sin45°中,是有理数的是()A.B.2πC.D.sin45°3.下列各式中,无意义的是()A.B.C.D.4.下列计算正确的是()A.m3+m3=m6B.m3•m2=m6C.(m3)2=m5D.m3÷m2=m5.下列分式中,最简分式是()A.B.C.D.6.下列说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.投掷一粒骰子,连投两次点数相同的概率与连投两次点数都为1的概率是相等的C.从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是必然事件D.一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是7.如图,某小区规划在一个长AD=40m,宽AB=26m的矩形场地ABCD上修建三条同样宽的通道(图中阴影部分),使其中两条与AB平行,另一条与AD平行,其余部分种植花草,要使每一块种植花草的场地面积都是144m2.若设通道的宽度为x(m),则根据题意所列的方程是()A.(40﹣x)(26﹣2x)=144×6 B.(40﹣2x)(26﹣x)=144×6C.(40﹣2x)(26﹣x)=144÷6 D.(40﹣x)(26﹣2x)=144÷68.如图,在矩形ABCD 中,AB=4,AD=6,点F 是AB 的中点,E 为BC 边上一点,且EF ⊥ED ,连结DF ,M 为DF 的中点,连结MA ,ME .若AM ⊥ME ,则AE 的长为( )A .5B .C .D .9.如图,在正五边形ABCDE 中,对角线AD ,AC 与EB 分别交于点M ,N ,则下列结论正确的是( )A .EM :AE=2:B .MN :EM=:C .AM :MN=:D .MN :DC=:2 10.如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D (﹣1,1)且经过点B ,连接AB ,直线AB 与此抛物线的另一个交点为C ,则S △BCD :S △ABO =( )A .8:1B .6:1C .5:1D .4:1二、填空题(本大题共6小题,每小题4分,共24分.) 11.分解因式x (x +4)+4的结果 .12.一个等腰三角形的一个外角等于100°,则这个三角形的三个角应该为 .13.关于x 的一元二次方程﹣x 2+(2k +1)x +2﹣k 2=0有实数根,则k 的取值范围是 . 14.一个数值转换器如左图所示,根据要求回答问题:要使输出值y 大于100,输入的最小正整数x 为 .15.具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作,已知+=,如下图所示:如果=,=,则=+,若D为AB的中点,=,若BE为AC上的中线,则用,表示为.16.如图,A、M是反比例函数图象上的两点,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.BM:DM=8:9,当四边形OADM的面积为时,k=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)17.先化简代数式,再从﹣4<x<4的范围内选取一个合适的整数x代入求值.18.在△ABC中,已知AB=1,AC=,∠ABC=45°,求△ACB的面积.19.2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.请根据以上信息解答问题:(1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.20.用尺规作图的方法(作垂线可用三角板)找出符合下列要求的点.(保留作图痕迹)(1)在图1中的直线m上找出所有能与A,B两点构成等腰三角形的点P,并用P1,P2…等表示;(2)在图2中的直线m上找出所有能与A,B两点构成直角三角形的点Q,并用Q1,Q2…等表示;21.如图,矩形OABC中,点A,点C分别在x轴,y轴上,D为边BC上的一动点,现把△OCD沿OD对折,C点落在点P处.已知点B的坐标为(2,2).(1)当D点坐标为(2,2)时,求P点的坐标;(2)在点D沿BC从点C运动至点B的过程中,设点P经过的路径长度为l,求l的值;(3)在点D沿BC从点C运动至点B的过程中,若点P落在同一条直线y=kx+4上的次数为2次,请直接写出k的取值范围.22.某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x(万元)之间的函数关系满足y1=.该产品的外地销售量y2(万台)与外地广告费用t(万元)之间的函数关系可用如图所示的抛物线和线段AB来表示.其中点A为抛物线的顶点.(1)结合图象,求出y2(万台)与外地广告费用t(万元)之间的函数关系式;(2)求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;(3)如何安排广告费用才能使销售总量最大?23.如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF 重合.(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.2017年浙江省杭州市中考数学模拟命题比赛试卷(4)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.如图,右侧立体图形的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】从上边看立体图形得到俯视图即可.【解答】解:如图,右侧立体图形的俯视图是,故选A2.在实数,2π,,sin45°中,是有理数的是()A.B.2πC.D.sin45°【考点】实数;特殊角的三角函数值.【分析】根据有理数的概念和无理数的概念对各选项分析判断即可得解.【解答】解:A、=2是无理数,故本选项错误;B、2π是无理数,故本选项错误;C、=﹣3是有理数,故本选项正确;D、sin45°=是无理数,故本选项错误.故选C.3.下列各式中,无意义的是()A.B.C.D.【考点】二次根式有意义的条件;立方根.【分析】根据二次根式有意义的条件:被开方数为非负数,以及立方根的概念求解即可.【解答】解:A式中被开方数小于0,故该式无意义;B、C、D三式均有意义.故选A.4.下列计算正确的是()A.m3+m3=m6B.m3•m2=m6C.(m3)2=m5D.m3÷m2=m【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据同底数幂的除法法则、幂的乘方与积的乘方及合并同类项的法则对各选项进行逐一判断即可.【解答】解:A、m3+m3=2m3≠m6,故本选项错误;B、m3•m2=m5≠m6,故本选项错误;C、(m3)2=m6≠m5,故本选项错误;D、m3÷m2=m,故本选项正确.故选D.5.下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【分析】根据最简分式的定义对四个分式分别进行判断即可.【解答】解:A、原式=,所以A选项错误;B、是最简分式,所以B选项正确;C、原式=,所以C选项错误;D、原式=,所以D选项错误.故选B.6.下列说法正确的是()A.在同一年出生的400人中至少有两人的生日相同B.投掷一粒骰子,连投两次点数相同的概率与连投两次点数都为1的概率是相等的C.从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是必然事件D.一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是【考点】概率的意义.【分析】根据概率的意义以及随机事件和必然事件的定义对各选项分析判断即可得解.【解答】解:A、在同一年出生的400人中至少有两人的生日相同,正确,故本选项正确;B、投掷一粒骰子,连投两次点数相同的概率是=,连投两次点数都为1的概率是,不相等,故本选项错误;C、从一副完整的扑克牌中随机抽取一张牌恰好是红桃K,这是随机事件,故本选项错误;D、一个袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是,故本选项错误.故选A.7.如图,某小区规划在一个长AD=40m,宽AB=26m的矩形场地ABCD上修建三条同样宽的通道(图中阴影部分),使其中两条与AB平行,另一条与AD平行,其余部分种植花草,要使每一块种植花草的场地面积都是144m2.若设通道的宽度为x(m),则根据题意所列的方程是()A.(40﹣x)(26﹣2x)=144×6 B.(40﹣2x)(26﹣x)=144×6C.(40﹣2x)(26﹣x)=144÷6 D.(40﹣x)(26﹣2x)=144÷6【考点】由实际问题抽象出一元二次方程.【分析】设通道的宽度为x(m),于是六块草坪的面积为(40﹣2x)(26﹣x),根据面积之间的关系可列方程(40﹣2x)(26﹣x)=144×6.【解答】解:设通道的宽度为x(m),根据题意得(40﹣2x)(26﹣x)=144×6,故选B.8.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF ⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A.5 B. C.D.【考点】矩形的性质.【分析】设BE=x,则EC=6﹣x,由△EBF∽△DCE,得=,列出方程求出x,即可解决问题.【解答】解:设BE=x,则EC=6﹣x,∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∵∠DEC+∠EDC=90°,∴∠FEB=∠EDC,∵∠B=∠C=90°,∴△EBF∽△DCE,∴=,∴=,解得x=2或4(舍弃),当x=2时,EF=2,DE=4,DF==2,∴AM=ME=,∵AM⊥ME,∴∠AME=90°,∴AE===2,故选B.9.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是()A.EM:AE=2:B.MN:EM=:C.AM:MN=:D.MN:DC=:2【考点】正多边形和圆.【分析】根据正五边形的性质得到∠DAE=∠DAE,∠ADE=∠AEM=36°,推出△AME∽△AED,根据相似三角形的性质得到,得到AE2=AD•AM,等量代换即可得到论.【解答】证明:∵五边形ABCDE是正五边形,∴DE=AE=AB,∠AED=∠EAB=108°,∴∠ADE=∠AEM=36°,∴△AME∽△AED,∴,∴AE2=AD•AM,∵AE=DE=DM,∴DM2=AD•AM,设AE=DE=DM=2,∴22=AM(AM+2),∴AM=﹣1,(负值设去),∴EM=BN=AM=﹣1,AD=+1,∵BE=AD,∴MN=BE﹣ME﹣BN=3﹣,∴MN:CD=:2,故选D.10.如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D (﹣1,1)且经过点B ,连接AB ,直线AB 与此抛物线的另一个交点为C ,则S △BCD :S △ABO =( )A .8:1B .6:1C .5:1D .4:1 【考点】二次函数的性质.【分析】设直线AB 的解析式为y=kx +b ,二次函数的解析式为y=a (x +1)2+1,结合点的坐标利用待定系数法求出一次函数与二次函数的解析式,联立一次函数与二次函数解析式解出交点C 的坐标,根据两点间的距离公式求出线段BC 、AB 的长度,再借用点到直线的距离公式(分子部分)寻找到点D 、O 到直线AB 的距离间的关键,借助各比例关系利用三角形的面积公式即可得出结论.【解答】解:设直线AB 的解析式为y=kx +b ,二次函数的解析式为y=a (x +1)2+1, 将点A (1,0)、B (0,2)代入y=kx +b 中得:,解得:,∴直线AB 的解析式为y=﹣2x +2;将点B (0,2)代入到y=a (x +1)2+1中得: 2=a +1,解得:a=1,∴二次函数的解析式为y=(x +1)2+1=x 2+2x +2. 将y=﹣2x +2代入y=x 2+2x +2中得: ﹣2x +2=x 2+2x +2,整理得:x 2+4x=0, 解得:x 1=﹣4,x 2=0,∴点C 的坐标为(﹣4,10). ∵点C (﹣4,10),点B (0,2),点A (1,0), ∴AB==,BC==4,∴BC=4AB .∵直线AB 解析式为y=﹣2x +2可变形为2x +y ﹣2=0, ∴|﹣2+1﹣2|=3,|﹣2|=2.∴S △BCD :S △ABO =4×3:2=12:2=6:1. 故选B .二、填空题(本大题共6小题,每小题4分,共24分.)11.分解因式x(x+4)+4的结果(x+2)2.【考点】因式分解-运用公式法.【分析】先将多项式展开,再利用完全平方公式进行因式分解.【解答】解:x(x+4)+4,=x2+4x+4,=(x+2)2.12.一个等腰三角形的一个外角等于100°,则这个三角形的三个角应该为80°,80°,20°或80°,50°,50°.【考点】等腰三角形的性质.【分析】先求出与这个外角相邻的内角的度数,再根据等腰三角形两底角相等分情况讨论求解.【解答】解:∵一个外角等于100°,∴与这个外角相邻的内角是180°﹣100°=80°,①80°角是顶角时,底角是=50°,三角形的三个角是50°,50°,80°;②80°角是底角时,顶角是180°﹣80°×2=20°,三角形的三个角是80°,80°,20°,综上所述,这个三角形的三个内角分别是:50°,50°,80°或80°,80°,20°.故答案为:80°,80°,20°或80°,50°,50°.13.关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是k≥.【考点】根的判别式.【分析】由于已知方程有实数根,则△≥0,由此可以建立关于k的不等式,解不等式就可以求出k的取值范围.【解答】解:由题意知△=(2k+1)2+4(2﹣k2)=4k+9≥0,∴k≥.14.一个数值转换器如左图所示,根据要求回答问题:要使输出值y大于100,输入的最小正整数x为21.【考点】代数式求值.【分析】根据数值转换器的运算顺序,分两种情况讨论:x是奇数或x是偶数,综合得出结果.【解答】解:根据程序,可知:设x是奇数,则y=5x>100解得x>20,即x的最小正整数是21设x是偶数,则y=3x+35>100解得x>,即x的最小正整数是22综合两种情况,x的最小值是21.15.具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作,已知+=,如下图所示:如果=,=,则=+,若D为AB的中点,=,若BE为AC上的中线,则用,表示为+.【考点】*平面向量.【分析】根据向量减法的三角形法则可知=﹣,即可用,表示.【解答】解:∵=﹣,∴=+﹣=+.故答案为: +.16.如图,A、M是反比例函数图象上的两点,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.BM:DM=8:9,当四边形OADM的面积为时,k=6.【考点】反比例函数综合题.【分析】首先根据四边形OADM的面积为,BM:DM=8:9,及反比例系数k的几何意义求出△OBM的面积,从而得出k的值.【解答】解:∵MB∥x轴,AC∥y轴,∴OBDC是矩形.∵BM:DM=8:9,∴BM:BD=8:17,∴△OBM的面积:矩形OBDC的面积=4:17.∵△OBM的面积=△OAC的面积∴△OBM的面积:[矩形OBDC的面积﹣(△OBM的面积+△OAC的面积)]=△OBM的面积:四边形OADM的面积=4:9∵四边形OADM的面积为.∴△OBM的面积=3根据反比例系数k的几何意义可知k=6.故答案为:6.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)17.先化简代数式,再从﹣4<x<4的范围内选取一个合适的整数x代入求值.【考点】分式的化简求值.【分析】先计算括号里的减法运算,再把除法运算转化成乘法运算,进行约分化简,最后从x的取值范围内选取一数值代入即可.【解答】解:原式===令x=0(x≠±1且x≠2),则原式=18.在△ABC中,已知AB=1,AC=,∠ABC=45°,求△ACB的面积.【考点】解直角三角形.【分析】过A作AD⊥BC,交BC(或BC延长线)于点D,利用勾股定理和三角形的面积公式分别求出S△ABD 和S△ACD,再分∠C为锐角和钝角两种情况求出S△ACB即可.【解答】解:过A作AD⊥BC,交BC(或BC延长线)于点D,如图所示.在Rt△ABD中,AD=BD=AB=,在Rt△ACD中,AC=,AD=,∴CD==, ∴S △ABD =××=,S △ACD =××=.∴当∠C 为锐角时,S △ACB =S △ABD +S △ACD =;当∠C 为钝角时,S △ACB =S △ABD ﹣S △ACD =.19.2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.请根据以上信息解答问题: (1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.【考点】加权平均数;用样本估计总体;扇形统计图;条形统计图. 【分析】(1)用水为3吨的家庭数=150﹣10﹣42﹣32﹣16=50户,淘米水浇花占的比例=1﹣30%﹣44%11%=15%;(2)全校学生家庭月用水总量=3000×150户用水的平均用水量. 【解答】解:(1)(2)全体学生家庭月人均用水量为=9040(吨).答:全校学生家庭月用水量约为9040吨.20.用尺规作图的方法(作垂线可用三角板)找出符合下列要求的点.(保留作图痕迹)(1)在图1中的直线m上找出所有能与A,B两点构成等腰三角形的点P,并用P1,P2…等表示;(2)在图2中的直线m上找出所有能与A,B两点构成直角三角形的点Q,并用Q1,Q2…等表示;【考点】作图—复杂作图.【分析】(1)本题的作图思路是:分别以A,B为圆心,AB为半径,所作的圆与m的交点以及AB垂直平分线与m的交点均是符合条件的点;(2)本题作图思路是:以AB为直径作圆,圆与m的交点以及过A,B所作的圆的切线与m的交点均属符合条件的点.【解答】解:21.如图,矩形OABC中,点A,点C分别在x轴,y轴上,D为边BC上的一动点,现把△OCD沿OD对折,C点落在点P处.已知点B的坐标为(2,2).(1)当D点坐标为(2,2)时,求P点的坐标;(2)在点D沿BC从点C运动至点B的过程中,设点P经过的路径长度为l,求l的值;(3)在点D沿BC从点C运动至点B的过程中,若点P落在同一条直线y=kx+4上的次数为2次,请直接写出k的取值范围.【考点】一次函数综合题.【分析】(1)依照题意画出图形,根据点D的坐标结合矩形的性质即可得出四边形OCDP 是正方形,由此即可得出点P的坐标;(2)由OP的长度为定值,可知点P的运动轨迹为以2为半径的圆弧,结合点B的坐标借助于特殊角的三角函数值得出∠COP=120°,再套用弧长公式即可得出结论;(3)取点E(0,4),过点E作⊙O(弧CP段)的切线EP′,切点为P′,连接PP′,找出点P、P′的坐标,利用待定系数法求出k的值,再结合图形即可得出结论.【解答】解:(1)如图1,当D点坐标为(2,2)时,CD=2,∵OC=2,且四边形OABC为矩形,∴四边形OCDP是正方形,∴OP=2,∴点P的坐标为(2,0).(2)如图2,∵在运动过程中,OP=OC始终成立,∴OP=2为定长,∴点P在以点O为圆心,以2为半径的圆上.∵点B的坐标为(2,2),∴tan∠COB==,∴∠COB=60°,∠COP=120°,∴l=×2π×2=π.(3)在图2的基础上,取点E(0,4),过点E作⊙O(弧CP段)的切线EP′,切点为P′,连接PP′,如图3所示.∵OE=4,OP′=2,∴sin∠OEP′==,∴∠OEP′=30°,∴∠EOP′=60°.∵∠COP=120°,∴∠POP′=60°.∵OP=OP′=60°,∴△OPP′为等边三角形,∵OP=2,∴P(,﹣1),P′(,1).当点P在直线y=kx+4上时,有﹣1=k+4,∴k=﹣;当点P′在直线y=kx+4上时,有1=k+4,∴k=﹣.综上可知:若点P落在同一条直线y=kx+4上的次数为2次,则k的取值范围为﹣≤k<﹣.22.某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x(万元)之间的函数关系满足y1=.该产品的外地销售量y2(万台)与外地广告费用t(万元)之间的函数关系可用如图所示的抛物线和线段AB来表示.其中点A为抛物线的顶点.(1)结合图象,求出y2(万台)与外地广告费用t(万元)之间的函数关系式;(2)求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;(3)如何安排广告费用才能使销售总量最大?【考点】二次函数的应用.【分析】(1)此函数为分段函数,第一段为抛物线,可设出顶点坐标式,代入(0,60)即可求解;第二段为常函数,直接可以写出.(2)由于总投资为40万元,本地广告费用为t万元,则外地广告费用为(40﹣t)万元,分段列出函数关系式.(3)由(2)求得的函数关系式求得销售总量最大时广告费用的安排情况.【解答】解:(1)由函数图象可知,当0≤t≤25时,函数图象为抛物线的一部分,设解析式为y=a(t﹣25)2+122.5,把(0,60)代入解析式得,y2=﹣0.1(t﹣25)2+122.5;当25<t≤40时,y2=122.5;(2)∵本地广告费用为x万元,∴0≤x≤15时,y=3x+122.5;15<x≤25时,y=﹣0.1x2+6x+100;25<x≤40时,y=﹣0.1x2+5x+125.(3)外地广告费用为15万元,本地广告费用25万元.23.如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF 重合.(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.【考点】二次函数综合题.【分析】(1)由已知可得OP=x,OE=y,则PA=4﹣x,AB=3.利用互余关系可证Rt△POE ∽Rt△BPA,由相似比可得y关于x的函数关系式;(2)此时,△PAB、△POE均为等腰直角三角形,BD=BA=3,CD=4﹣3=1,故P(1,0),E(0,1),B(4,3),代入抛物线解析式的一般式即可;(3)以PE为直角边,则点P可以作为直角顶点,此时∠EPB=90°,B点符合;点E也可以作为直角顶点,采用将直线PB向上平移过E点的方法,确定此时的直线EQ解析式,再与抛物线解析式联立,可求点Q坐标.【解答】解:(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠BPE=90度.∴∠OPE+∠APB=90°.又∵∠APB+∠ABP=90°,∴∠OPE=∠PBA.∴Rt△POE∽Rt△BPA.∴.即.∴y=x(4﹣x)=﹣x2+x(0<x<4).且当x=2时,y有最大值.(2)由已知,△PAB、△POE均为等腰直角三角形,可得P(1,0),E(0,1),B(4,3).设过此三点的抛物线为y=ax2+bx+c,则∴y=x2﹣x+1.(3)由(2)知∠EPB=90°,即点Q与点B重合时满足条件.直线PB为y=x﹣1,与y轴交于点(0,﹣1).将PB向上平移2个单位则过点E(0,1),∴该直线为y=x+1.由得∴Q(5,6).故该抛物线上存在两点Q(4,3)、(5,6)满足条件.。
2017年浙江省杭州市江干区中考数学一模试卷(解析)
2017年浙江省杭州市江干区中考数学一模试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.(3分)据报道,2017年2月21日,为期40天的2017年春运正式收官,全国铁路累计发送游客3.57亿人次,创铁路春运旅客发送新纪录,将3.57亿用科学记数法表示为()A.357×106B.3.57×107C.3.57×108D.3.57×1092.(3分)下列计算正确的是()A.=±3 B.﹣2=0 C.﹣= D.=﹣53.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C.D.4.(3分)圆内接四边形ABCD中,已知∠B=60°,则∠D=()A.30°B.40°C.60°D.120°5.(3分)某赛季甲、乙两面运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()A.甲得分的平均数小于乙得分的平均数B.甲得分的中位数小于乙得分的中位数C.甲得分的方差大于乙得分的方差D.甲得分的最小值大于乙得分的最小值6.(3分)如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC 的长度为()A.πB.πC.πD.π7.(3分)一项工程,甲单独做a小时完成,乙单独做b小时完成,甲、乙两人一起完成这项工程所需时间为()A.小时B.小时C.a+b小时D.小时8.(3分)一个均匀的立方体各面上分别标有数字:1,2,3,4,6,8,其表面展开图是如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是()A.B.C.D.9.(3分)如图,△ABC中,D、E两点分别在BC、AD上,且AD平分∠BAC,若∠ABE=∠C,AD:ED=3:1,则△BDE与△ADC的面积比为()A.16:45 B.2:9 C.1:9 D.1:310.(3分)抛物线y=x2+x﹣2与x轴交于A、B两点,A点在B点左侧,与y轴交于点C,若点E在x轴上,点P在抛物线上,且以A、C、E、P为顶点的四边形是平行四边形,则符合条件的点E有()A.1个 B.2个 C.3个 D.4个二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,正确完整地填写答案.11.(4分)某校对九年级全部240名学生的血型作了调查,列出统计表,则该校九年级O型血的学生有人.组别A型B型AB型O 型频率0.40.350.10.1512.(4分)分解因式:a3b﹣2a2b+ab=.13.(4分)用配方法解一元二次方程x2+6x=1时,应该在等式两边都加上.14.(4分)若反比例函数y=的图象经过点(1,2),那么y≥﹣2,x的取值范围是.15.(4分)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为.16.(4分)如图,在平行四边形ABCD中,AD=2CD,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论①∠DCF=∠ECF;②EF=CF;③∠DFE=3∠AEF;④S△BEC <2S△CEF.中一定成立的是.(请填序号)三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)先化简代数式(1+)÷,然后在0≤a<4范围选取一个适当的整数作为a的值代入求值.18.(8分)已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.19.(8分)为了解学生参加体育活动的情况,某地对九年级学生每天参加体育活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生总数和每天体育活动时间为1.5小时的学生数.(2)每天体育活动时间的中位数;(3)该校共有3500名学生,请估计该地九年级每天体育活动时间超过1小时的学生有多少人?20.(10分)(1)我们知道,将一条线段AB分割成大小两条线段AP、PB,使AP>PB,点P把线段AB分成两条线段AP和BP,且=,点P就是线段AB 的黄金分割点,此时的值为(填一个实数):(2)如图,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD长为半径画弧交边AB于E.求证:点E是线段AB的黄金分割点.21.(10分)在平面直角坐标中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0)、点B(点B在点A右侧),与y轴交于点C,tan∠CBA=.(1)求抛物线的表达式;(2)将(1)中抛物线向下平移m个单位,点A、B、C平移后的位置分别为点A1、B1、C1,若点D(10,5)满足∠C1B1D=90°,求平移后抛物线的解析式.22.(12分)(1)如图1,矩形ABCD中,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E,请找出图1中的一个等腰三角形,并证明结论.(2)如图2,矩形ABCD中,AB=3,BC=2,点M为BC中点,连接AM,作∠AME=∠AMB,ME交CD于点E,求CE的长.23.(12分)甲船从A港出发顺流匀速驶向B港,乙船从B港出发逆流匀速驶向A港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A港的距离y1、y2(km )与行驶时间x (h)之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)甲船拖拽的小艇与A港的距离y(km)和经历的时间x(h)之间的函数图象如图2所示,求点C的坐标.2017年浙江省杭州市江干区中考数学一模试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.(3分)据报道,2017年2月21日,为期40天的2017年春运正式收官,全国铁路累计发送游客3.57亿人次,创铁路春运旅客发送新纪录,将3.57亿用科学记数法表示为()A.357×106B.3.57×107C.3.57×108D.3.57×109【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:3.57亿=3.57×108.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.2.(3分)下列计算正确的是()A.=±3 B.﹣2=0 C.﹣= D.=﹣5【分析】A、根据算术平方根的定义可知:=3;B、可以化简为2,可得结果;C、被开方数相同的最简二次根式是同类二次根式,所以与不是同类项,不能合并;D、根据=|a|可得结果:=5,或根据二次根式的非负性得:≥0.【解答】解:A、表示9的算术平方根,值为3,所以此选项不正确;B、﹣2=2﹣2=0,所以此选项正确;C、与不是同类项,故﹣不能继续化简,所以此选项不正确;D、=5,所以此选项不正确;故选B.【点评】本题考查了算术平方根的定义,熟记概念是解题的关键.3.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C.D.【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)圆内接四边形ABCD中,已知∠B=60°,则∠D=()A.30°B.40°C.60°D.120°【分析】直接根据圆内接四边形的性质即可得出结论.【解答】解:∵四边形ABCD是圆内接四边形,∠B=60°,∴∠D=180°﹣60°=120°.故选D.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.5.(3分)某赛季甲、乙两面运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()A.甲得分的平均数小于乙得分的平均数B.甲得分的中位数小于乙得分的中位数C.甲得分的方差大于乙得分的方差D.甲得分的最小值大于乙得分的最小值【分析】结合折线统计图,利用数据逐一分析解答即可.【解答】解:A、由图可知甲运动员10场得分大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项错误;B、由图可知甲运动员10场得分大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项错误;C、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,甲运动员得分的方差大于乙运动员得分的方差,此选项正确.D、由图可知甲运动员得分最小值是5分以下,乙运动员得分的最小值是5分以上,甲运动员得分的最小值小于乙运动员得分的最小值,此选项错误;故选C.【点评】此题主要结合折线统计图,利用中位数、平均数以及方差来进行分析数据,找到解决问题的突破口.6.(3分)如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC 的长度为()A.πB.πC.πD.π【分析】先求得正五边形的内角的度数,然后根据弧长公式即可求得.【解答】解:因为正五边形ABCDE的内角和是(5﹣2)×180=540°,则正五边形ABCDE的一个内角==108°;连接OA、OB、OC,∵圆O与正五边形ABCDE相切于点A、C,∴∠OAE=∠OCD=90°,∴∠OAB=∠OCB=108°﹣90°=18°,∴∠AOC=144°所以劣弧AC的长度为=π.故选B.【点评】本题考查了正五边形的内角和的计算以及弧长的计算,难度适中.7.(3分)一项工程,甲单独做a小时完成,乙单独做b小时完成,甲、乙两人一起完成这项工程所需时间为()A.小时B.小时C.a+b小时D.小时【分析】根据题意可以列出相应的代数式,从而可以解答本题.【解答】解:由题意可得,甲、乙两人一起完成这项工程所需时间为:=(小时),故选A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.(3分)一个均匀的立方体各面上分别标有数字:1,2,3,4,6,8,其表面展开图是如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是()A.B.C.D.【分析】让朝上一面的数字恰好等于朝下一面上的数字的2倍的情况数除以总情况数即为朝上一面的数字恰好等于朝下一面上的数字的2倍的概率.【解答】解:抛掷这个立方体,共6种情况,其中3,6;8,1;4,2是相对的面,2朝上,3朝上的时候共2种情况可使朝上一面的数字恰好等于朝下一面上的数字的2倍,故其概率是.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.(3分)如图,△ABC中,D、E两点分别在BC、AD上,且AD平分∠BAC,若∠ABE=∠C,AD:ED=3:1,则△BDE与△ADC的面积比为()A.16:45 B.2:9 C.1:9 D.1:3【分析】根据已知条件先求得S△ABE :S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE =S △BED 即可求得.【解答】解:∵AD :ED=3:1,∴AE :AD=2:3,∵∠ABE=∠C ,∠BAE=∠CAD ,∴△ABE ∽△ACD ,∴S △ABE :S △ACD =4:9,∴S △ACD =S △ABE ,∵AE :ED=2:1,∴S △ABE :S △BED =2:1,∴S △ABE =2S △BED ,∴S △ACD =S △ABE =S △BED ,∴△BDE 与△ADC 的面积比为2:9,故选B .【点评】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.10.(3分)抛物线y=x 2+x ﹣2与x 轴交于A 、B 两点,A 点在B 点左侧,与y 轴交于点C ,若点E 在x 轴上,点P 在抛物线上,且以A 、C 、E 、P 为顶点的四边形是平行四边形,则符合条件的点E 有( )A .1个B .2个C .3个D .4个【分析】根据平行四边形的定义,画出图象即可解决问题.【解答】解:由图象可知,满足条件的A 、C 、E 、P 为顶点的四边形是平行四边形有四个,故选D.【点评】本题考查二次函数与x轴的交点、平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,正确完整地填写答案.11.(4分)某校对九年级全部240名学生的血型作了调查,列出统计表,则该校九年级O型血的学生有36人.组别A型B型AB型O 型频率0.40.350.10.15【分析】根据该校九年级O型血的学生的频率为0.15,即可得出该校九年级O 型血的学生数.【解答】解:该校九年级O型血的学生有:240×0.15=36人,故答案为:36.【点评】本题主要考查了频数与频率,解题时注意:频率是指每个对象出现的次数与总次数的比值(或者百分比).12.(4分)分解因式:a3b﹣2a2b+ab=ab(a﹣1)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=ab(a2﹣2a+1)=ab(a﹣1)2,故答案为:ab(a﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(4分)用配方法解一元二次方程x2+6x=1时,应该在等式两边都加上9.【分析】配方法解一元二次方程时,等式两边应加上一次项系数一半的平方即可配成完全平方式.【解答】解:用配方法解一元二次方程x2+6x=1时,应该在等式两边都加上32,即9,故答案为:9.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.(4分)若反比例函数y=的图象经过点(1,2),那么y≥﹣2,x的取值范围是x≤﹣1或x>0.【分析】先求出k的值,再求出y=﹣2时x的值,根据反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=的图象经过点(1,2),∴k=1×2=2>0,∴此函数图象的两个分支分别位于第一三象限.∵当y=﹣2时,x=﹣1,∴y≥﹣2时,x≤﹣1或x>0.故答案为:x≤﹣1或x>0.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(4分)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为45°,60°,105°,135°.【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为:45°,60°,105°,135°.【点评】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.16.(4分)如图,在平行四边形ABCD中,AD=2CD,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论①∠DCF=∠ECF;②EF=CF;③∠DFE=3∠AEF;④S△BEC <2S△CEF.中一定成立的是②③④.(请填序号)【分析】如图延长EF交CD的延长线于H.作EN∥BC交CD于N,FK∥AB交BC 于K.利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【解答】解:如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,易证四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥EK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)先化简代数式(1+)÷,然后在0≤a<4范围选取一个适当的整数作为a的值代入求值.【分析】先将原式化简,然后求出该分式有意义时,a的取值范围即可求出答案.【解答】解:原式=(1+)÷=(1+)×=+===a﹣1∵,∴a≠0且a≠1,∵0≤a<4∴a=2时,原式=1【点评】本题考查分式的化简运算,解题的关键是将原式分式化简,本题属于基础题型.18.(8分)已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【解答】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,又∵OA=OB M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,,∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.19.(8分)为了解学生参加体育活动的情况,某地对九年级学生每天参加体育活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生总数和每天体育活动时间为1.5小时的学生数.(2)每天体育活动时间的中位数;(3)该校共有3500名学生,请估计该地九年级每天体育活动时间超过1小时的学生有多少人?【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数;(2)根据条形统计图可以得到这组数据的中位数;(3)用样本中超过1小时的比例乘以总人数3500,即可得该校九年级每天体育活动时间超过1小时的学生有多少人.【解答】解:(1)由条形统计图和扇形统计图可得,0.5小时的有100人占被调查总人数的20%,故被调查的人数有:100÷20%=500,1.5小时的人数有:500×24%=120;(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时;(3)∵×3500=1400(人),∴该地九年级每天体育活动时间超过1小时的学生约为1400人.【点评】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.20.(10分)(1)我们知道,将一条线段AB分割成大小两条线段AP、PB,使AP>PB,点P把线段AB分成两条线段AP和BP,且=,点P就是线段AB的黄金分割点,此时的值为(填一个实数):(2)如图,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD长为半径画弧交边AB于E.求证:点E是线段AB的黄金分割点.【分析】(1)根据题意列出一元二次方程,解方程即可;(2)设BC=a,根据题意用a表示出AB、AC,结合图形、根据黄金分割的定义判断即可.【解答】解:(1)设AB长为1,P为线段AB上符合题意的一点,AP=x,则BP=1﹣x,根据题意得,=,解得,(舍去),故,故答案为:;(2)设BC=a,则AB=2a,则AC=a,由题意得,CD=BC=a,∴AE=AD=a﹣a,BE=AB﹣AE=3a﹣a,∴=,=,∴=,即点E是线段AB的黄金分割点.【点评】本题考查的是黄金分割的概念和性质,掌握把线段AB分成两条线段AC 和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割是解题的关键.21.(10分)在平面直角坐标中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0)、点B(点B在点A右侧),与y轴交于点C,tan∠CBA=.(1)求抛物线的表达式;(2)将(1)中抛物线向下平移m个单位,点A、B、C平移后的位置分别为点A1、B1、C1,若点D(10,5)满足∠C1B1D=90°,求平移后抛物线的解析式.【分析】(1)求出A、B、C三点坐标即可解决问题.(2)如图作DG⊥A1B1于G,延长B1A1交y轴于E.由△EB1C1∽△GDB1,可得=,即=,推出DG=8,推出B1(6,﹣3),推出原来抛物线向下平移3个即可得到新的抛物线,延长即可解决问题.【解答】解:(1)∵C(0,3),∴OC=3,∵tan∠CBA=,∴OB=6,∵A(2,0),B在A右边,∴B(6,0),设抛物线的解析式为y=a(x﹣2)(x﹣6),把(0,3)代入得到a=,∴y=x2﹣2x+3.(2)如图作DG⊥A1B1于G,延长B1A1交y轴于E.∵∠C1B1D=90°,∴△EB1C1∽△GDB1,∴=,∴=,∴DG=8,∴B1(6,﹣3),∴原来抛物线向下平移3个即可得到新的抛物线,∴新的抛物线的解析式为y=x2﹣2x.【点评】本题考查抛物线与x轴的交点、平移变换、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.22.(12分)(1)如图1,矩形ABCD中,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E,请找出图1中的一个等腰三角形,并证明结论.(2)如图2,矩形ABCD中,AB=3,BC=2,点M为BC中点,连接AM,作∠AME=∠AMB,ME交CD于点E,求CE的长.【分析】(1)根据矩形的性质和平行线的性质证明即可;(2)作NH⊥AM于H,证明△NAH∽△AMB,根据相似三角形的性质得到AN•BM=AM2,根据相似三角形的性质即可得到结论.【解答】解:(1)△AMN是等腰三角形,证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,又∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)如图,作NH⊥AM于H,∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠AMN=∠AMB,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∵M为BC中点,∴BM=CM=BC=1,∵AM2=32+12=10,∴AN=5,∴DN=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴=,即=,解得,x=,即DE=,∴CE=.【点评】本题考查的是相似三角形的判定和性质、勾股定理的应用以及等腰三角形的性质和矩形的性质,掌握相似三角形的判定定理和性质定理是解题的关键,注意方程思想的正确运用.23.(12分)甲船从A港出发顺流匀速驶向B港,乙船从B港出发逆流匀速驶向A港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A港的距离y1、y2(km )与行驶时间x (h)之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)甲船拖拽的小艇与A港的距离y(km)和经历的时间x(h)之间的函数图象如图2所示,求点C的坐标.【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:救生圈落入水中后,船顺流行驶的路程=船逆流行驶的路程+救生圈漂流的路程,据此即可解答.【解答】解:(1)乙船在逆流中行驶的速度为6km/h.(2)甲船在逆流中行驶的路程为6×(2.5﹣2)=3(km).(3)设甲船顺流的速度为akm/h,由图象得2a﹣3+(3.5﹣2.5)a=24,解得a=9.(5分)当0≤x≤2时,y1=9x,当2≤x≤2.5时,设y1=﹣6x+b1,把x=2,y1=18代入,得b1=30,∴y1=﹣6x+30,当2.5≤x≤3.5时,设y1=9x+b2,把x=3.5,y1=24代入,得b2=﹣7.5,∴y1=9x﹣7.5.综上所述,y1=(4)水流速度为(9﹣6)÷2=1.5(km/h),设甲船从A港航行x小时救生圈掉落水中.根据题意,得9(2﹣x)=1.5(2.5﹣x)+3,解得x=1.5,1.5×9=13.5,即救生圈落水时甲船到A港的距离为13.5km.∴点C坐标(,).【点评】此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度﹣水流速度.。
浙江省杭州市西湖区2017年中考数学一模试卷(含答案)
浙江省杭州市西湖区2017 年中考数学一模试卷 (解析版 )一 .选择题1.﹣0.25的相反数是()A. B. 4﹣C4.D﹣. 52.据我市统计局在网上发布的数据,2016年我市生产总值( GDP)突破千亿元大关,达到了1050 亿元,将1050 亿用科学记数法表示正确的是()A. 105910C. 1.05118× 10 B. 10.5 × 10× 10 D. 1050 × 103.下列运算正确的是()23A.a+a =aB.( a2)3=a6C.( x﹣ y)2=x2﹣ y2D.a2a3=a64.使不等式 x﹣ 1≥2与 3x﹣ 7< 8 同时成立的 x 的整数值是()A. 3, 4B. 4, 5C. 3, 4, 5D. 不存在5.如图,△ ABC中,∠ C=80°,若沿图中虚线截去∠ C,则∠ 1+∠ 2=()A. 360 °B. 260 °C. 180 °D. 140 °6.有五个相同的小正方体堆成的物体如图所示,它的主视图是()A. B. C. D.7.如图,在 4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A. B. C. D.8.在乡村学校舞蹈比赛中,某校10 名学生参赛成绩统计如图所示,对于这10 名学生的参赛成绩,下列说法中错误的是()A.众数是 90B.中位数是90C.平均数是90D.极差是 159.已知等边△ ABC,顶点 B( 0, 0), C(2, 0),规定把△ABC先沿 x 轴绕着点 C 顺时针旋转,使点 A 落在 x 轴上,称为一次变换,再沿x 轴绕着点 A 顺时针旋转,使点 B 落在 x 轴上,称为二次变换,⋯经过连续 2017 次变换后,顶点 A 的坐标是()A. (4033,)B. ( 4033, 0)C. (4036 ,)D. ( 4036, 0)10.如图,在△ ABC中,∠ ACB=90°, AC=BC=2. E, F 分别是射线AC、 CB 上的动点,且AE=BF, EF与 AB 交于点 G, EH⊥ AB 于点 H,设 AE=x,GH=y,下面能够反映y 与 x 之间函数关系的图象是()A. B. C. D.二 .填空题11.若代数式有意义,则实数x 的取值范围是________.12.分解因式: x3y﹣2x2y2+xy3=________.13.已知三个边长分别为2、 3、 5 的正方形如图排列,则图中阴影部分面积为________.14.如图,在四边形 ABCD中, AD∥ BC,∠ BCD=90°,∠ ABC=45°, AD=CD, CE平分∠ ACB 交 AB 于点 E,在 BC 上截取 BF=AE,连接 AF 交 CE于点 G,连接 DG 交 AC 于点 H,过点 A 作 AN⊥ BC,垂足为 N, AN 交 CE 于点 M.则下列结论:①CM=AF;② CE⊥ AF;③△ ABF∽△ DAH;④ GD 平分∠ AGC,其中正确的序号是 ________.三 .综合题15.计算:(π﹣)0+﹣(﹣ 1)2017﹣tan60 °.16.已知反比例函数的图象与一次函数y2 =ax+b 的图象交于点A( 1, 4)和点 B(m,﹣ 2),(1)求这两个函数的关系式;(2)观察图象,写出使得 y1> y2成立的自变量 x 的取值范围.17.如图所示,图中的小方格都是边长为 1 的正方形,△ ABC 与△ A′ B′ C′是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点 O;(2)直接写出△ ABC与△ A′ B′ C′的位似比;( 3)以位似中心O 为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△ A′ B′C′关于点O 中心对称的△ A″B″ C″,并直接写出△A″ B″ C″各顶点的坐标.18.一种药品在进价上加价100%作为原价,后经两次降价后利润率为28%,求平均每次的降价率?19.小高发现电线杆AB 的影子落在土坡的坡面CD和地面 BC 上,量得 CD=12 米, BC=20 米, CD与地面成30°角,且此时测得 1 米杆的影长为 2 米,求电线杆的高度.(结果保留根号)20.如图,四边形 ABCD中, AC 平分∠ DAB,∠ ADC=∠ ACB=90°, E为 AB 的中点,连接 CE, DE. AC 与DE 相交于点 F.( 1)求证:△ ADF∽△ CEF;( 2)若 AD=4, AB=6,求的值.21.如图, AB 是⊙ O 的直径, C 是的中点,CE⊥ AB于E,BD交CE于F.(1)求证: CF=BF;(2)若 CD=6, AC=8,求 BE、CF的长.22.一服装批发店出售星星童装,每件进价120 元,批发价200 元,多买优惠;凡是一次买10 件以上的,每多买一件,所买的全部服装每件就降低 1 元,但是最低价为为每件160 元,( 1)求一次至少买多少件,才能以最低价购买?( 2)写出服装店一次销售x 件时,能获利润y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围;( 3)一天,甲批发了46 件,乙批发了50 件,店主却发现卖46 件赚的钱反而比卖50 件赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每件160元至少提高到多少?23.综合题( 1)阅读理解:如图①,在△ABC中,若 AB=10, AC=6,求 BC边上的中线AD 的取值范围.解决此问题可以用如下方法:延长 AD 到点 E 使 DE=AD,再连接 BE(或将△ ACD绕着点 D 逆时针旋转 180°得到△ EBD),把 AB、AC, 2AD 集中在△ ABE 中,利用三角形三边的关系即可判断.中线 AD 的取值范围是 ________;( 2)问题解决:如图②,在△ABC中, D 是 BC 边上的中点, DE⊥ DF 于点 D, DE 交 AB 于点 E, DF 交 AC 于点 F,连接 EF,求证: BE+CF>EF;( 3)问题拓展:如图③,在四边形 ABCD中,∠ B+∠ D=180°,CB=CD,∠ BCD=140°,以 C 为顶点作一个 70°角,角的两边分别交 AB,AD 于 E、F 两点,连接 EF,探索线段 BE, DF, EF 之间的数量关系,并加以证明.答案解析部分一.<b >选择题 </b>1.【答案】 A【考点】相反数【解析】【解答】解:﹣0.25 的相反数是0.25,故答案为: A.【分析】只有符号不同的两个数是互为相反数。
2017年浙江省杭州市中考数学试卷(含解析)
2017年浙江省杭州市中考数学试卷一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.25.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m=.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.2017年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.4【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.2【分析】根据绝对值的性质,可得答案.【解答】解:原式1++﹣1=2,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关键.6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.9.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b(m﹣1)a﹣2a=(m﹣1)a>0.故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.(4分)数据2,2,3,4,5的中位数是3.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=50°.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.(4分)若•|m|=,则m=3或﹣1.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于78.【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉30﹣千克.(用含t的代数式表示.)【分析】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=1,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=,∴BG=BH+HG=+.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案;(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
2017年浙江省杭州市中考数学试卷(含答案解析版)
2017年浙江省杭州市中考数学试卷一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1。
5×108B.1.5×109C.0。
15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=( )A.1 B.C.2 D.25.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y6.(3分)若x+5>0,则( )A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则( )A.10。
8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16。
88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,() A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= .13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m= .15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1。
2017年杭州市上城区中考一模数学试卷及答案(pdf版)
A. 11
B. 12
C. 13
D. 11 或 12
8.已知 x 4 是关于 x 的方程 x2 m 1 x 2m 0 的一个实数根,并且这个方程的两个实数根
恰好是等腰 △ABC 的两条边长,则 △ABC 的周长为( )
A. 7
B. 10
C. 11
D. 10 或 11
9.已知平面直角坐标系中, M 在第一象限内,点 M 的坐标
∴ A1B1 A1B2 , C1B1∥A1B2 ∵∠C1B1 A1 =60°,∴∠B1 A1B2 =120° ∴ △B1 A1B2 是顶角为 120°的等腰三角形 ∴ B1B2 = 3B1 A1 ∵ B1 A1 =3 cm,∴ B1B2 =3 3 cm ∵六个菱形均全等,∴ B1B7 =18 3 cm
的最小值为 a,所以最短切线长为 a2 1 ;
10. 连接 BE,EC,则△MEB≌△NEC,得 BM=CN,①正确;AM+CN=AM+BM= 2 当它在延长
线上时,不成立,所以②错误; S△EMN
=
1 2
EM
2
1 2
AE sin
2
=
1 2
2 sin2
=
1 sin2
15.如图所示,以 BC 为底边的等腰三角形有两种,图 1 的面积为 8 4 3 ,图 2 的面积为 8 4 3 ;
A
O
O
B
C
学1
BA C 学2
16.提示:如下图所示,当 A、B、C 在一条直线上时,点 A、B、C 不能构成三角形,因为
A(a,a-1),B(b,b),C(c,c+2),则直线
(完整word)2017年杭州市中考数学试卷及答案,推荐文档
2017年浙江省杭州市中考数学试卷一・选题1・(3 分)- 2?二 C > A ・ 一2 B •一4 C 2 D ・ 4 2.(3分)太阳与地球的平均距离大约是150 000 000千米,数JE 150 000 000用科学般A. 1.5X10BB. 15X1O ?C ・ O.^XlO” D. 15X103・(3分)如图,在ZkABC 中■点D, E 分别在边AB, AC 上DE 〃 BC,若BD 二2AD,若r ,则汽D ・若民,(3 分)若 x+5>0,则()x+l<0 B ・ x-l<oc. —< - 1 D. -2x<12 5 (3分)某景点的参观K 数逐年增加,据统计,2014年为10£万人次,2016 年为16.8万人次 设参观人次的平均年増长率为X,则(〉A- 10.8 <l+x) =16.8 B ・ 16.8 (1- x) =10.8C. 10.8 <l+x ) 2=16.8D. 10£[ Cl+x ) + (1+x ) 21=16.8A.5. A.ADAB —2 EC~2 - (3C. D. DE30^2 )D.则 xc=yc则 2x=3y 6.A.7.4.8.(3 分)如图,在RtAABC 中,ZABC=90°, AB=2, BC=1.把ZiABC分别绕直线AB和BC 旋4周,所得几何体的底面圆的周长分别记作1丄,-,侧面积分别9. 〈3分)设直线x=l 是函数y =ax 2+bx+-c (a, b, c 是实数,且a<0)的图象的 对称轴,( ) A.若 m>l,则(m-l) a-*-b>0 B.若 m>l,则〈m- 1) a +b<0C.若 m<l,贝ij (m*a) a+b>OD.若 m<l» 贝ij (m+1) a+b<010. <3分)如图,在ZkABC 中9 AB=AG BC=12, E 为AC 边的中点,线段BE 的 垂直平分线交边BC 于点D.设BD 二儿tan/ACB=y,则( )二填後11-(4分)数掳2, 2, 3, 4, 5的中位数是 ___________ -12. <4分〉如图,AT 切。
浙江省杭州市开发区2017年中考数学一模试卷 带答案解析
2017年浙江省杭州市开发区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算﹣×3的结果是()A.0 B.1 C.﹣2 D.﹣12.据统计,2017年春节黄金周7天,杭州共接待中外游客约450万人次,将450万用科学记数法表示,以下表示正确的是()A.450×104B.45.0×105C.4.50×106D.4.50×1073.由六个相同的立方体搭成的几何体如图所示,下面有关它的三个视图的说法正确的是()A.左视图与主视图相同B.俯视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.如图,AB∥CD,AD与BC相交于点E,若∠A=40°,∠C=35°,则∠BED=()A.70° B.75° C.80° D.85°5.下列计算正确的是()A.x4+x2=x6B.(a+b)2=a2+b2C.(3x2y)2=6x4y2D.(﹣m)7÷(﹣m)2=﹣m56.下列命题中,真命题是()A.垂直于同一条直线的两条直线互相平行B.平分弦的直径垂直弦C.有两边及一角对应相等的两个三角形全等D.八边形的内角和是外角和的3倍7.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12x B.2×18(42﹣x)=12x C.18(42﹣x)=2×12x D.18(21﹣x)=12x8.某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数20 30根据图标提供的信息,下列结论错误的是()A.这次被调查的学生人数为200人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中最想选F的人数为35人D.被调查的学生中最想选D的有55人9.如图,在反比例函数y=(x>0)的图象上有点P1、P2、P3、P4,P5,它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,S4,则S1+S2+S3+S4的值为()A.4.5 B.4.2 C.4 D.3.810.如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60°,AB=10,CF=EF,则△ABC的面积为()A.20B.25C.30D.40二、填空题(本大题共6小题,每小题4分,共24分)11.因式分解:x2﹣9= .12.如图,四个完全相同的小球上分别写有:0,,﹣5,π四个实数,把它们全部装入一个布袋里,从布袋里任意摸出1个球,球上的数是无理数的概率为.13.不等式组的最大整数解为.14.如图,点A,B,C都在⊙O上,若∠OAC=17°,∠ACB=46°,AC与OB交于点D,则∠ODA的度数为度.15.在矩形ABCD中,∠ABC的平分线交AD于点E,∠BED的平分线交DC于点F,若AB=6,点F恰为DC的中点,则BC= (结果保留根号)16.已知二次函数y=ax2﹣bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是;若a+b的值为非零整数,则b的值为.三、解答题(本大题共7小题,共66分)17.(6分)先化简,再求值: +,其中a=﹣5.18.(8分)乐乐是一名健步运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),并将记录结果绘制成了如图所示的统计图(不完整).(1)若乐乐这个月平均每天健步走的步数为1.32万步,试求她走1.3万步和1.5万步的天数;(2)求这组数据中的众数和中位数.19.(8分)如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,且DE=DC.(1)求证:△BDE≌△ADC;(2)若BC=8.4,tanC=,求DE的长.20.(10分)如图,直线l与x轴,y轴分别交于M,N两点,且OM=ON=3.(1)求这条直线的函数表达式;(2)Rt△ABC与直线l在同一个平面直角坐标系内,其中∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC 沿着x轴向左平移,当点C落在直线l上时,求线段AC扫过的面积.21.(10分)如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为4,△ABC的顶点都在格点.(1)求每个小矩形的长与宽;(2)在矩形网格中找出所有的格点E,使△ABE为直角三角形;(描出相应的点,并分别用E1,E2…表示)(3)求sin∠ACB的值.22.(12分)设抛物线y=mx2﹣2mx+3(m≠0)与x轴交于点A(a,0)和B(b,0).(1)若a=﹣1,求m,b的值;(2)若2m+n=3,求证:抛物线的顶点在直线y=mx+n上;(3)抛物线上有两点P(x1,p)和Q(x2,q),若x1<1<x2,且x1+x2>2,试比较p与q的大小.23.(12分)(1)如图①,四边形ABCD是正方形,点G是BC上的任意一点,BF⊥AG于点F,DE⊥AG于点E,探究BF,DE,EF之间的数量关系,第一学习小组合作探究后,得到DE﹣BF=EF,请证明这个结论;(2)若(1)中的点G在CB的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时BF,DE,EF之间的数量关系;(3)如图③,四边形ABCD内接于⊙O,AB=AD,E,F是AC上的两点,且满足∠AED=∠BFA=∠BCD,试判断AC,DE,BF之间的数量关系,并说明理由.2017年浙江省杭州市开发区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.计算﹣×3的结果是()A.0 B.1 C.﹣2 D.﹣1【考点】1G:有理数的混合运算.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=﹣=﹣1.故选D【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.据统计,2017年春节黄金周7天,杭州共接待中外游客约450万人次,将450万用科学记数法表示,以下表示正确的是()A.450×104B.45.0×105C.4.50×106D.4.50×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:450万=4500000,用科学记数法表示为:4.50×106.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.由六个相同的立方体搭成的几何体如图所示,下面有关它的三个视图的说法正确的是()A.左视图与主视图相同B.俯视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,从左边看得到的图形是左视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,从左边看第一层是三个小正方形,第二层中间一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图,从左边看得到的图形是左视图.4.如图,AB∥CD,AD与BC相交于点E,若∠A=40°,∠C=35°,则∠BED=()A.70° B.75° C.80° D.85°【考点】JA:平行线的性质;K8:三角形的外角性质.【分析】先根据平行线的性质,得出∠D=40°,再根据∠BED是△CDE的外角,即可得出∠BED的度数.【解答】解:∵AB∥CD,∠A=40°,∴∠D=40°,∵∠BED是△CDE的外角,∴∠BED=∠C+∠D=35°+40°=75°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.5.下列计算正确的是()A.x4+x2=x6B.(a+b)2=a2+b2C.(3x2y)2=6x4y2D.(﹣m)7÷(﹣m)2=﹣m5【考点】47:幂的乘方与积的乘方;35:合并同类项;4C:完全平方公式.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)x4与x2不是同类项,不能合并,故A错误;(B)(a+b)2=a2+2ab+b2,故B错误;(C)(3x2y)2=9x4y2,故C错误;故选(D)【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.6.下列命题中,真命题是()A.垂直于同一条直线的两条直线互相平行B.平分弦的直径垂直弦C.有两边及一角对应相等的两个三角形全等D.八边形的内角和是外角和的3倍【考点】O1:命题与定理.【分析】根据平行线的判定,垂径定理,全等三角形的判定以及多边形的内角与外角和对各选项分析判断即可得解.【解答】解:A、垂直于同一条直线的两条直线互相平行是假命题,应为在同一平面内,垂直于同一条直线的两条直线互相平行,故本选项错误;B、平分弦的直径垂直弦是假命题,被平分的弦是直径不一定成立,故本选项错误;C、有两边及一角对应相等的两个三角形全等是假命题,一角必须是两边的夹角,故本选项错误;D、八边形的内角和是外角和的3倍是真命题,内角和是1080°,外角和是360°,故本选项正确.故选D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12x B.2×18(42﹣x)=12x C.18(42﹣x)=2×12x D.18(21﹣x)=12x【考点】89:由实际问题抽象出一元一次方程.【分析】根据题意,可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,12x×2=(42﹣x)×18,故选C.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相8.某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数20 30根据图标提供的信息,下列结论错误的是()A.这次被调查的学生人数为200人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中最想选F的人数为35人D.被调查的学生中最想选D的有55人【考点】VB:扇形统计图;VA:统计表.【分析】由B课程的人数及其百分比可得总人数,即可判断A选项;先求得E课程所占百分比,再乘以360度即可判断B;总人数乘以D、F的百分比即可求得人数,从而判断出C、D选项.【解答】解:A、这次被调查的学生人数为=200人,故此选项正确;B、A课程百分比为×100%=10%,D课程百分比为×100%=25%,则E所对扇形圆心角度数为360°×(1﹣10%﹣15%﹣12.5%﹣25%﹣17.5%)=72°,故此选项正确;C、被调查的学生中最想选F的人数为200×17.5%=35人,故此选项正确;D、被调查的学生中最想选D的有200×25%=50人,故此选项错误;故选:D.【点评】本题主要考查扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.9.如图,在反比例函数y=(x>0)的图象上有点P1、P2、P3、P4,P5,它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,S4,则S1+S2+S3+S4的值A.4.5 B.4.2 C.4 D.3.8【考点】G5:反比例函数系数k的几何意义.【分析】由反比例函数图象上点的坐标特征求出点P5的坐标,把所有的阴影部分向左平移,则所有阴影部分的面积恰好等于矩形P1ABC的面积,再利用矩形的面积公式结合反比例函数系数k的几何意义即可求出结论.【解答】解:当x=10时,y==,∴点P5(10,).∴S1+S2+S3+S4=﹣S矩形BCOD=k﹣2×=4.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义以及矩形的面积,将阴影部分左移找出S1+S2+S3+S4的值恰好为矩形P1ABC的面积是解题的关键.10.如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60°,AB=10,CF=EF,则△ABC的面积为()A.20B.25C.30D.40【考点】KQ:勾股定理;KO:含30度角的直角三角形.【分析】连接AF延长AF交BC于G.设EF=CF=x,连接AF延长AF交BC于G.设EF=CF=x,因为BD、CE是高,所以AG⊥BC,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt△AEF中,由EF=x,∠EAF=30°可得AE=x,在Rt△BCE中,由EC=2x,∠CBE=60°可得BE=x.可得x+x=10,解方程即可解决问题.【解答】解:连接AF延长AF交BC于G.设EF=CF=x,∵BD、CE是高,∴AG⊥BC,∵∠ABC=60°,∠AGB=90°,∴∠BAG=30°,在Rt△AEF中,∵EF=x,∠EAF=30°,∴AE=x,在Rt△BCE中,∵EC=2x,∠CBE=60°,∴BE=x.∴x+x=10,∴x=2,∴CE=4,∴S△ABC=•AB•CE=×10×4=20.故选A.【点评】本题考查勾股定理、直角三角形30度角性质等知识,解题的关键是灵活运用所学知识解决问题,学会关键方程解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题4分,共24分)11.因式分解:x2﹣9= (x+3)(x﹣3).【考点】54:因式分解﹣运用公式法.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.如图,四个完全相同的小球上分别写有:0,,﹣5,π四个实数,把它们全部装入一个布袋里,从布袋里任意摸出1个球,球上的数是无理数的概率为.【考点】X4:概率公式;26:无理数.【分析】根据无理数的定义得到四个数中只有π为无理数,然后根据概率公式求解.【解答】解:从布袋里任意摸出1个球,球上的数是无理数的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了无理数的定义.13.不等式组的最大整数解为 4 .【考点】CC:一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案.【解答】解:解不等式①可得:x>﹣,解不等式②可得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最大整数解为4,故答案为:4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.如图,点A,B,C都在⊙O上,若∠O AC=17°,∠ACB=46°,AC与OB交于点D,则∠ODA的度数为71 度.【考点】M5:圆周角定理.【分析】根据圆周角定理和三角形的内角和即可得到结论.【解答】解:∵∠ACB=46°,∴∠O=92°,∵∠OAC=17°,∴∠ODA=71°,故答案为:71.【点评】此题考查了圆周角定理,此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.15.在矩形ABCD中,∠ABC的平分线交AD于点E,∠BED的平分线交DC于点F,若AB=6,点F恰为DC的中点,则BC= 3+3(结果保留根号)【考点】LB:矩形的性质;KF:角平分线的性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的相等关系,并根据BG=BC+CG 进行计算即可.【解答】解:延长EF和BC,交于点G,如图所示:∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=6,∴等腰直角△ABE中,BE==6,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=6,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC∴=1,∴CG=DE,设CG=DE=x,则AD=6+x=BC,∵BG=BC+CG,∴6=6+x+x,解得:x=3﹣3∴BC=6+(3﹣3)=3+3;故答案为:3+3.【点评】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.16.已知二次函数y=ax2﹣bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是﹣2<a<0 ;若a+b的值为非零整数,则b的值为或.【考点】H3:二次函数的性质.【分析】首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a+b的值为非零实数确定a、b的值,从而确定答案.【解答】解:依题意知a<0,<0,a﹣b+2=0,故b>0,且b=a+2,a=b﹣2,a+b=a+a+2=2a+2,∴a+2>0,∴﹣2<a<0,∴﹣2<2a+2<2,∵a+b的值为非零实数,∴a+b的值为﹣1,1,∴2a+2=﹣1或2a+2=1,∴a=﹣或a=﹣,∵b=a+2,∴b=或b=.故答案为﹣2<a<0;或.【点评】此题主要考查了二次函数的性质和应用,二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是分别求出a、b的取值范围各是多少.三、解答题(本大题共7小题,共66分)17.先化简,再求值: +,其中a=﹣5.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解: +====,当a=﹣5时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.乐乐是一名健步运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),并将记录结果绘制成了如图所示的统计图(不完整).(1)若乐乐这个月平均每天健步走的步数为1.32万步,试求她走1.3万步和1.5万步的天数;(2)求这组数据中的众数和中位数.【考点】VC:条形统计图;W4:中位数;W5:众数.【分析】(1)她走1.3万步的天数为x天,她走1.5万步的天数为y天,根据总天数为30天且平均数为1.32万步,据此可得答案;(2)根据众数和中位数的定义解答即可得.【解答】解:(1)设她走1.3万步的天数为x天,她走1.5万步的天数为y天,根据题意,得:,解得:,∴她走1.3万步的天数为6天,她走1.5万步的天数为4天;(2)由条形图可知,1.4万步的天数最多,有10天,则众数为1.4万步;中位数为第15、16个数据的平均数,则中位数为1.3万步.【点评】本题主要考查条形统计图和众数、中位数的定义,根据条形统计图得出所需数据并熟练掌握平均数、众数、中位数的定义是解题的关键.19.如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,且DE=DC.(1)求证:△BDE≌△ADC;(2)若BC=8.4,tanC=,求DE的长.【考点】KD:全等三角形的判定与性质;T7:解直角三角形.【分析】(1)由AD⊥BC可得∠ADB=∠ADC=90°,又∠ABC=45°易得∠ABC=∠BAD,可得AD=BD,由SAS定理可得△BDE≌△ADC;(2)设DE=x,因为tanC=可得AD=2.5x,可得BC=3.5x,由BC=8.4,可解得x,可得DE.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,,∴△BDE≌△ADC(SAS);(2)解:设DE=x,∵DE=DC,∴DC=x,∵tanC=,∴AD=2.5x,∵AD=BD,∴BD=2.5x,∴BC=BD+CD=3.5x,∵BC=8.4,∴x=2.4,DE=2.4.【点评】本题主要考查了全等三角形的性质和判定,利用方程思想是解答此题的关键.20.(10分)(2017•杭州一模)如图,直线l与x轴,y轴分别交于M,N两点,且OM=ON=3.(1)求这条直线的函数表达式;(2)Rt△ABC与直线l在同一个平面直角坐标系内,其中∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC沿着x轴向左平移,当点C落在直线l上时,求线段AC扫过的面积.【考点】FA:待定系数法求一次函数解析式;Q3:坐标与图形变化﹣平移.【分析】(1)根据OM=ON=3结合图形可得出点M、N的坐标,由点M、N的坐标利用待定系数法即可求出直线MN的函数表达式;(2)通过解直角三角形可得出点C的坐标,设平移后点A、C的对应点分别为A′、C′,利用一次函数图象上点的坐标特征可找出点C′的坐标,根据平移的性质结合平行四边形的面积公式即可求出线段AC扫过的面积.【解答】解:(1)设该直线的函数表达式为y=kx+b(k≠0),∵OM=ON=3,且M、N分别在x轴负半轴、y轴负半轴上,∴M(﹣3,0),N(0,﹣3).将M(﹣3,0)、N(0,﹣3)代入y=kx+b,,解得:,∴这条直线的函数表达式为y=﹣x﹣3.(2)∵A(1,0),B(3,0),∴AB=2.∵∠ABC=90°,AC=2,∴BC=4,∴C(3,4).设平移后点A、C的对应点分别为A′、C′,当y=﹣x﹣3=4时,x=﹣7,∴C′(﹣7,4),∴CC′=10.∵线段AC扫过的四边形ACC′A′为平行四边形,∴S=CC′•BC=10×4=40.答:线段AC扫过的面积为40.【点评】本题考查了待定系数法求一次函数解析式、解直角三角形、一次函数图象上点的坐标特征、平行四边形的面积以及坐标与图形变化中的平移,解题的关键是:(1)根据点M、N的坐标利用待定系数法求出直线MN的函数表达式;(2)通过解直角三角形以及一次函数图象上点的坐标特征找出点C、C′的坐标.21.(10分)(2017•杭州一模)如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为4,△ABC的顶点都在格点.(1)求每个小矩形的长与宽;(2)在矩形网格中找出所有的格点E,使△ABE为直角三角形;(描出相应的点,并分别用E1,E2…表示)(3)求sin∠ACB的值.【考点】LO:四边形综合题.【分析】(1)设每个小矩形的长为x,宽为y,根据图形可知小矩形的长与宽间的数量关系有两个:2个矩形的宽=矩形的长;两个矩形的宽+1个矩形的长=4,据此列出方程组,并解答即可;(2)利用图形和勾股定理逆定理进行解答;(3)利用面积法求得边AC上的高,然后由锐角三角函数的定义进行解答.【解答】解:(1)设每个小矩形的长为x,宽为y,依题意得:,解得,所以每个小矩形的长为2,宽为1;(2)如图所示:;(3)由图可知,S△ABC=4,设AC边上的高线为h,可知,AC•h=4.∵由图可计算AC=2,BC=,∴h=,∴sin∠ACB===.【点评】本题考查了四边形综合题,需要掌握二元一次方程组的应用、勾股定理、勾股定理的逆定理以及锐角三角函数的定义的应用,主要考查学生的理解能力和观察图形的能力,求三角函数值需构建直角三角形是解此类题的常用作法.22.(12分)(2017•杭州一模)设抛物线y=mx2﹣2mx+3(m≠0)与x轴交于点A(a,0)和B(b,0).(1)若a=﹣1,求m,b的值;(2)若2m+n=3,求证:抛物线的顶点在直线y=mx+n上;(3)抛物线上有两点P(x1,p)和Q(x2,q),若x1<1<x2,且x1+x2>2,试比较p与q的大小.【考点】HA:抛物线与x轴的交点;F8:一次函数图象上点的坐标特征;H4:二次函数图象与系数的关系.【分析】(1)把(﹣1,0)代入抛物线的解析式即可求出m的值,令y=0代入抛物线的解析式即可求出点B的坐标.(2)易求抛物线的顶点坐标为(1,3﹣m),把x=1代入y=mx+n中,判断y是否等于1﹣3m即可.(3)根据x1<1<x2,且x1+x2>2,可知P离对称轴较近,然后根据开口方向即可求出p与q的大小关系.【解答】解:(1)当a=﹣1时,把(﹣1,0)代入y=mx2﹣2mx+3,∴解得m=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3,令y=0代入y=﹣x2+2x+3,∴x=﹣1或x=3,∴b=3,(2)抛物线的对称轴为:x=1,把x=1代入y=mx2﹣2mx+3,∴y=3﹣m∴抛物线的顶点坐标为(1,3﹣m),把x=1代入y=mx+n,∴y=m+n=m+3﹣2m=3﹣m∴顶点坐标在直线y=mx+n上,(3)∵x1+x2>2,∴x2﹣1>1﹣x1,∵x1<1<x2,∴|x2﹣1|>|x1﹣1|,∴P离对称轴较近,当m>0时,p<q,当m<0时,p>q,【点评】本题考查抛物线的综合问题,待定系数法求解析式,抛物线的对称轴方程,抛物线的图象与性质,本题属于中等题型.23.(12分)(2017•杭州一模)(1)如图①,四边形ABCD是正方形,点G是BC上的任意一点,BF⊥AG于点F,DE⊥AG于点E,探究BF,DE,EF之间的数量关系,第一学习小组合作探究后,得到DE﹣BF=EF,请证明这个结论;(2)若(1)中的点G在CB的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时BF,DE,EF之间的数量关系;(3)如图③,四边形ABCD内接于⊙O,AB=AD,E,F是AC上的两点,且满足∠AED=∠BFA=∠BCD,试判断AC,DE,BF之间的数量关系,并说明理由.【考点】MR:圆的综合题.【分析】(1)如图1中,结论:DE﹣BF=EF.只要证明△ABF≌△DAE,即可解决问题.(2)结论EF=DE+BF.证明方法类似(1).(3)如图3中,结论:AC=BF+DE.只要证明△ADE≌△BAF以及DE=EC即可解决问题.【解答】解:(1)如图1中,结论:DE﹣BF=EF.理由如下:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵BF⊥AG于点F,DE⊥AG于点E,∴∠AFB=∠DEA=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,,∴△ABF≌△DAE,∴BF=AE,AF=DE,∵AF﹣AE=EF,∴DE﹣BF=EF.(2)结论EF=DE+BF.理由如下:如图2中,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵BF⊥AG于点F,DE⊥AG于点E,∴∠AFB=∠DEA=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,,∴△ABF≌△DAE,∴BF=AE,AF=DE,∴EF=AF+AF=DE+BF.(3)如图3中,结论:AC=BF+DE.理由如下:连接BD.∵∠DBC+∠BDC+∠DCB=180°,∠DAE+∠ADE+∠AED=180°,又∵∠DBC=∠DAE,∠DCB=∠AED,∴∠ADE=∠BDC,∵∠BDC=∠BAF,∴∠ADE=∠BAF,∵AD=AB,∠AED=∠AFB,∴△ADE≌△BAF,∴AE=BF,∵AD=AB,∴∠ADB=∠ABD=∠ACD,∵∠ADE=∠CDB,∴∠CDE=∠ADB,∴∠EDC=∠ECD,∴DE=CE,∴AC=BF+DE.【点评】本题考查圆综合题、正方形的性质、全等三角形的点评和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
【真题】2017年杭州市中考数学试卷含答案解析
2017年浙江省杭州市中考数学试卷参考答案与试题解析选择题一.1.-22=()A.-2B.-4C.2D.4【分析】根据矗的乘方的运算法则求解.【解答】解:-22=-4,故选B.【点评】本题考查了幕的乘方,解答本题的关键是掌握幕的乘方的运算法则.2.太阳与地球的平均距离大约是150000000千米,数据150000000用科学记数法表示为()A. 1.5X108B. 1.5X109C.0.15X109D.15X107【分析】科学记数法的表示形式为aX10n的形式,其中1W a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值VI时,n 是负数.【解答】解:将150000000用科学记数法表示为:1.5X108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为aX10n 的形式,其中lW|a|V10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在AABC中,点D,E分别在边AB,AC上,DE//BC,若BD=2AD,则()B CA.业二B. c.业二 D.匹匚AB2EC2EC2BC2【分析】根据题意得出△A DE-AABC,进而利用已知得出对应边的比值.【解答】VDE//BC,A AADE^AABC,VBD=2AD,.AD_DE_AE_1AB BC AC P贝禅=1,妁EC2.LA,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.|1+归+|1-归=()A.1B.75C.2D.2扼【分析】根据绝对值的性质,可得答案.【解答】解:原式i+/5W^t=2V5,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.设x,y,c是实数,()A、若x=y,贝!J x+c=y-c B.若x=y,贝!J xc=ycC.若乂=),贝I]x=^D.若看矣」则2x=3yc c2c3c【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.6.若x+5>0,则()A.x+l<0B.x-1<OC.普<-lD.-2x<125【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:...x+5>0,Ax>-5,A、根据x+l<0得出xV-1,故本选项不符合题意;B、根据x-1<0得出x<l,故本选项不符合题意;C、根据普<-1得出xV5,故本选项符合题意;□D、根据-2x<12得出x>-6,故本选项不符合题意;故选C.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1- x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次X(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1 ±x)2=b.8.如图,在RtAABC中,ZABC=90°,AB=2,BC=1.把AABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作li,12,侧面积分别记作Si,S2,则()B CA.11:板=1:2,Si:S2=l:2B.1]:12=1:4,S1:S2=l:2C.li:h=l:2,Si:$2=1:4D.li:12=1:4,Si:,2=1:4【分析】根据圆的周长分别计算11,12,再由扇形的面积公式计算S],S2,求比值即可.【解答】解:•.•11=2兀XBC=2兀,h=2兀X AB=4兀,「.li:12=1:2,S1=*X2兀X据=届1,S2=-|-X4兀X寸亏=2、切:,/.Si:S2=l:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2兀r,侧面积=*lr求解是解题的关键.9.设直线x=l是函数y=ax2+bx+c(a,b,c是实数,且aVO)的图象的对称轴,()A.若m>l,贝!J(m-1)a+b>0B.若m>1,贝U(m-1)a+b<0C.若m<l,贝!J(m-1)a+b>0D.若m<l,贝!J(m-1)a+b<0【分析】根据对称轴,可得b=-2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得(m-1)a+b=ma-a-2a=(m-3)a当m<l时,(m-3)a>0,故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=-2a是解题关键.10,如图,在AABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tanZACB=y,则()A.x- y2=3B.2x-y2=9C.3x- y2=15D.4x-y2=21【分析】过A作AQ±BC于Q,过E作EM±BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在RtADEM中,根据勾股定理求出即可.【解答】解:过A作AQ1BC于Q,过E作EM±BC于M,连接DE,VBE的垂直平分线交BC于D,BD=x,.♦.BD=DE=x,VAB=AC,BC=12,tanZACB=y,EM_AQ_BQ=CQ=6,MC CQ7VAQ1BC, EM±BC,.♦.AQ〃EM,•.•E为AC中点,.•.CM=QM=|CQ=3,.♦.EM=3y,/.DM=12-3-x=9-x,在RtAEDM中,由勾股定理得:x2=(3y)2+(9-x)2,即2x-y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.填空题二.11.数据2,2,3,4,5的中位数是3.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.如图,AT切OO于点A,AB是。
浙江省杭州2017届九年级下3月模拟数学试卷含答案
是
.
16.如图 , 抛物线 y1
a( x 2)2
3 与 y2
1 (x
3)2
1 交于
2
点 A (1,3) ,过点 A 作 x 轴的平行线,分别交两条抛物线于点 B、 C.
则以下结论:① 无论 x 取何值, y2 的值总是正数;②
a
3
;
2
③ 当 x 0 时, y2 y1 5 ;④ 当 y2 > y1 时, 0≤ x < 1;⑤ 2AB = 3AC .其中正确结论的编
A.1
B.2
C.3
D.4
5.如图是一块带有圆形空洞和长方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又
可以堵住长方形空洞的是(
)
第 5 题图
A
B
C
D
6. 如图, ⊙ O 是△ ABC 的外接圆, ∠ OCB= 40°,则 ∠A 的度数等于( )
A . 60
B . 50
C. 40
D. 30
7. 如图, AB 是⊙ O 的直径,弦 CD ⊥ A B ,∠ CDB =300,CD = 2 3 ,
题,众数是
题.
答对题数
7
8
9
10
人数
4
13
12
6
15.函数 yl= x ( x≥ 0 ) , y 2
9
( x> 0)的图象如图所示,则以下四个结论:①
x
两函数
图象的交点 A 的坐标为 ( 3 , 3 ) ;② 当 x> 3 时 ,y2> yl;③ 当 x = 1 时, BC = 8 ;④ 当
x 逐渐增大时, yl 随着 x 的增大而增大, y 2 随着 x 的增大而减小.其中正确结论的序号
2017年杭州市中考数学模拟试卷及答案
2017年杭州市中考数学模拟试题一、细心选一选(本题有10个小题,每小题3分,共30分)1. 的倒数是( )A. B. C. D.2.下列运算正确的是( )A. 4a﹣a=3B. a•a2=a3C. (﹣a3)2=a5D. a6÷a2=a33.所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )A. B. C. D.4.,则 ( ).A.60°B. 50°C. 70°D.80°5.若点在反比例函数的图象上,且,则和的大小关系是( )A. B. C. D.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )A.25B.65C.90D.1307.,四边形ABCD中,AD∥BC,AB= ,BC=4,连接BD,∠BA D的平分线交BD于点E,且AE∥CD,则AD的长为( )A. B. C. D.28.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为( )A.10%B.31%C.13%D.11%9.已知二次函数的图象所示,有以下结论:① ;② ;③ ;④ ;⑤ 其中所有正确结论的序号是( )A.①②B. ①③④C.①②③⑤D.①②③④⑤10、在直角坐标系中,有四个点A(-8,3)、B(-4,5)、C(0,n)、D(m,0),当四边形ABCD的周长最短时,的值为( )二、认真填一填(本题有6个小题,每小题3分,共18分)11.分解因式8a2-2=_________________.12.汶川大地震时,航空兵空投救灾物质到指定的区域(圆A)所示,若要使空投物质落在中心区域(圆B)的概率为,则与的半径之比为 .13.已知关于x的分式方程 a+2x+1 =1的解是非正数,则a的取值范围是________.14.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足所示的函数关系,那么实际完成这项工程所用时间比由甲单独完成这项工程所需时间少天。
浙江省杭州市西湖区2017年中考数学一模试卷(有答案)
浙江省杭州市西湖区2017年中考数学一模试卷一.选择题1.﹣0.25的相反数是()A. B. 4 C. ﹣4 D. ﹣52.据我市统计局在网上发布的数据,2016年我市生产总值(GDP)突破千亿元大关,达到了1050亿元,将1050亿用科学记数法表示正确的是()A. 105×109B. 10.5×1010C. 1.05×1011D. 1050×1083.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2D.a2a3=a64.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在5.如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A. 360°B. 260°C. 180°D. 140°6.有五个相同的小正方体堆成的物体如图所示,它的主视图是()A. B. C. D.7.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A. B. C. D.8.在乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90B.中位数是90C.平均数是90D.极差是159.已知等边△ABC,顶点B(0,0),C(2,0),规定把△ABC先沿x轴绕着点C顺时针旋转,使点A落在x轴上,称为一次变换,再沿x轴绕着点A顺时针旋转,使点B落在x轴上,称为二次变换,…经过连续2017次变换后,顶点A的坐标是()A. (4033,)B. (4033,0)C. (4036,)D. (4036,0)10.如图,在△ABC中,∠ACB=90°,AC=BC=2.E,F分别是射线AC、CB上的动点,且AE=BF,EF与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,下面能够反映y与x之间函数关系的图象是()A. B. C. D.二.填空题11.若代数式有意义,则实数x的取值范围是________.12.分解因式:x3y﹣2x2y2+xy3=________.13.已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为________.14.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论:①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是________.三.综合题15.计算:(π﹣)0+ ﹣(﹣1)2017﹣tan60°.16.已知反比例函数的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围.17.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.18.一种药品在进价上加价100%作为原价,后经两次降价后利润率为28%,求平均每次的降价率?19.小高发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=12米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,求电线杆的高度.(结果保留根号)20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,DE.AC与DE相交于点F.(1)求证:△ADF∽△CEF;(2)若AD=4,AB=6,求的值.21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于F.(1)求证:CF=BF;(2)若CD=6,AC=8,求BE、CF的长.22.一服装批发店出售星星童装,每件进价120元,批发价200元,多买优惠;凡是一次买10件以上的,每多买一件,所买的全部服装每件就降低1元,但是最低价为为每件160元,(1)求一次至少买多少件,才能以最低价购买?(2)写出服装店一次销售x件时,能获利润y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲批发了46件,乙批发了50件,店主却发现卖46件赚的钱反而比卖50件赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每件160元至少提高到多少?23.综合题(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.答案解析部分一.<b >选择题</b>1.【答案】A【考点】相反数【解析】【解答】解:﹣0.25的相反数是0.25,故答案为:A.【分析】只有符号不同的两个数是互为相反数。
2017年浙江省杭州XX学校中考数学模拟试卷3月份含答案解析
2017年浙江省杭州XX学校中考数学模拟试卷(3月份)一、选择题:(本题有10个小题,每小题3分,共30分)1.下列各数中,是有理数是()A.B.πC.D.2.当a=,b=1时,代数式(a+2b)(a﹣2b)的值为()A.3 B.0 C.﹣1 D.﹣23.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.4.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数5.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡比为i=1:的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5m B.6m C.7m D.8m6.下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y27.下列命题为假命题的个数有()①相等的角是对顶角;②依次连结四边形四边中点所组成的图形是平行四边形;③在同圆或等圆中,相等的弦所对的圆周角相等;④在同圆中,平分弦的直径垂直于这条弦.A.0个 B.1个 C.2个 D.3个8.对于反比例函数,如果当﹣2≤x≤﹣1时有最大值y=4,则当x≥8时,有()A.最小值y=B.最小值y=﹣1 C.最大值y=D.最大值y=﹣19.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A.B.C.D.10.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.二、填空题:(本题有6个小题,每小题4分,共24分)11.G20峰会于9月4日至5日在浙江杭州召开,主会场场馆规划总建筑面积1302万平方米.1302万用科学记数法可表示为平方米.12.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为度.13.对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持P P′=Q Q′,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有(填序号).14.若关于x的函数y=kx2+2x﹣1的图象与x轴仅有一个交点,则实数k的值为.15.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.16.有下列四个结论:①a÷m+a÷n=a÷(m+n);②某商品单价为a元.甲商店连续降价两次,每次都降10%.乙商店直接降20%.顾客选择甲或乙商店购买同样数量的此商品时,获得的优惠是相同的;③若x2+y2+2x﹣4y+5=0,则y x的值为;④关于x分式方程=1的解为正数,则a>1.请在正确结论的题号后的空格里填“√”,在错误结论的题号后横线里填“×”:①;②;③;④.三、解答题:(本题有7个小题,共66分)17.(1)计算与化简:cos60°•tan30°(2)因式分解:3a2﹣6a+3.18.我校对全部900名学生就校园安全知识的了解程度,采用随机抽样调查的方式进行调查,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,条形统计图中“了解”部分所对应的人数是人;(2)扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(3)若没有达到“了解”或“基本了解”的同学必须重新接受安全教育.请根据上述调查结果估计我校学生中必须重新接受安全教育的总人数大约为人;(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请直接写出恰好抽到1个男生和1个女生的概率.19.用如图①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?20.如图,B、C、D在同一直线上,△ABC和△DCE都是等边三角形,且在直线BD的同侧,BE 交AD于F,BE交AC于M,AD交CE于N.(1)求证:AD=BE;(2)求证:△ABF∽△ADB.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.22.如图,△ABC中,AB=AC=10,BC=4,以AB为直径的⊙O分别交度BC,AC于点D、E.(1)求AE;(2)过D作DF⊥AC于F,请画出图形,说明DF是否是⊙O的切线,并写出理由;(3)延长FD,交AB的延长线于G,请画出图形.并求BG.23.如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)抛物线F上有两点M(x1,y1)、N(x2,y2),若﹣2≤x1<x2,y1<y2,求m的取值范围;(3)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点M(x1,y1)、N(x2,y2),若x1<x2≤﹣2,比较y1与y2的大小;(4)当抛物线F与线段AB有公共点时,直接写出m的取值范围.2017年浙江省杭州中考数学模拟试卷(3月份)参考答案与试题解析一、选择题:(本题有10个小题,每小题3分,共30分)1.下列各数中,是有理数是()A.B.πC.D.【考点】实数.【分析】根据有理数的意义,可得答案.【解答】解:是有理数,故选:A.2.当a=,b=1时,代数式(a+2b)(a﹣2b)的值为()A.3 B.0 C.﹣1 D.﹣2【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式化简,将a与b的值代入计算求出值.【解答】解:原式=a2﹣4b2,当a=,b=1时,原式=2﹣4=﹣2,故选D.3.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选C.4.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数【考点】统计量的选择.【分析】根据中位数的意义分析.【解答】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.5.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡比为i=1:的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A.5m B.6m C.7m D.8m【考点】解直角三角形的应用﹣坡度坡角问题.【分析】利用坡度先求得垂直距离,根据勾股定理求得坡面距离.【解答】解:∵水平距离为4m,坡比为i=1:,∴铅直高度为×4=3m.根据勾股定理可得:坡面相邻两株数间的坡面距离为=5(m).故选A.6.下列计算正确的是()A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y2【考点】整式的混合运算.【分析】先计算出各个选项中式子的正确结果,即可得到哪个选项是正确的,本题得以解决.【解答】解:∵x4+x4=2x4,故选项A错误;∵x3•x2=x5,故选项B错误;∵(x2y)3=x6y3,故选项C正确;∵(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故选项D错误;故选C.7.下列命题为假命题的个数有()①相等的角是对顶角;②依次连结四边形四边中点所组成的图形是平行四边形;③在同圆或等圆中,相等的弦所对的圆周角相等;④在同圆中,平分弦的直径垂直于这条弦.A.0个 B.1个 C.2个 D.3个【考点】命题与定理;对顶角、邻补角;中点四边形;垂径定理;圆心角、弧、弦的关系.【分析】根据对顶角的概念,中点四边形的概念,圆心角、弧、弦的关系以及垂径定理进行判断即可.【解答】解:①相等的角不一定是对顶角,而对顶角相等,故说法①错误;②根据三角形中位线定理,可得依次连结四边形四边中点所组成的图形是平行四边形,故说法②正确;③在同圆或等圆中,同弦或等弦所对的圆周角相等或互补,故说法③错误;④平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故说法④错误;故选:D.8.对于反比例函数,如果当﹣2≤x≤﹣1时有最大值y=4,则当x≥8时,有()A.最小值y=B.最小值y=﹣1 C.最大值y=D.最大值y=﹣1【考点】反比例函数的性质.【分析】根据自变量的取值范围、函数的最大值,可得图象位于第二象限,根据第二象限内反比例函数y随x的增大而增大,可得最大值时的自变量,根据待定系数法,可得反比例函数解析式,根据自变量的取值范围,可得函数值的取值范围.【解答】解:由当﹣2≤x≤﹣1时有最大值y=4,得x=﹣1时,y=4.k=﹣1×4=﹣4,反比例函数解析式为y=﹣,当x≥8时,图象位于第四象限,y随x的增大而增大,当x=8时,y最小值=﹣,故选:A.9.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A.B.C.D.【考点】弧长的计算;矩形的判定与性质.【分析】OP的长度不变,始终等于半径,则根据矩形的性质可得OQ=1,再由走过的角度代入弧长公式即可.【解答】解:∵PM⊥AB于点M,PN⊥CD于点N,∴四边形ONPM是矩形,又∵点Q为MN的中点,∴点Q为OP的中点,则OQ=1,点Q走过的路径长==.故选A.10.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.【考点】平行线分线段成比例.【分析】先作出作BF⊥l3,AE⊥l3,再判断△ACE≌△CBF,求出CE=BF=3,CF=AE=4,然后由l2∥l3,求出DG,即可.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CFB=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故选A.二、填空题:(本题有6个小题,每小题4分,共24分)11.G20峰会于9月4日至5日在浙江杭州召开,主会场场馆规划总建筑面积1302万平方米.1302万用科学记数法可表示为 1.302×107平方米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1302万用科学记数法可表示为 1.302×107平方米,故答案为:1.302×107.12.如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F为圆心,大于EF长为半径作圆弧,两弧交于点G,作射线BG交CD于点H.若∠D=116°,则∠DHB的大小为32度.【考点】作图—基本作图;平行线的性质.【分析】根据AB∥CD,∠D=116°,得出∠CAB=66°,再根据BH是∠ABD的平分线,即可得出∠DHB的度数.【解答】解:∵AB∥CD,∴∠D+∠ABD=180°,又∵∠D=116°,∴∠ABD=64°,由作法知,BH是∠ABD的平分线,∴∠DHB=∠ABD=32°;故答案为:32.13.对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持P P′=Q Q′,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有①(填序号).【考点】几何变换的类型.【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【解答】解:平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案为:①.14.若关于x的函数y=kx2+2x﹣1的图象与x轴仅有一个交点,则实数k的值为0或﹣1.【考点】抛物线与x轴的交点.【分析】令y=0,则关于x的方程kx2+2x﹣1=0只有一个根,所以k=0或根的判别式△=0,借助于方程可以求得实数k的值.【解答】解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.15.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【考点】正方形的性质.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.16.有下列四个结论:①a÷m+a÷n=a÷(m+n);②某商品单价为a元.甲商店连续降价两次,每次都降10%.乙商店直接降20%.顾客选择甲或乙商店购买同样数量的此商品时,获得的优惠是相同的;③若x2+y2+2x﹣4y+5=0,则y x的值为;④关于x分式方程=1的解为正数,则a>1.请在正确结论的题号后的空格里填“√”,在错误结论的题号后横线里填“×”:①×;②×;③√;④×.【考点】配方法的应用;非负数的性质:偶次方;分式的加减法;分式方程的解.【分析】①根据分式的加法法则进行计算即可;②分别计算甲、乙两店降价后的商品价格,再进行比较即可;③根据题目中的式子,运用配方法可以求得x、y的值,从而可以得到代数式的值;④将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.【解答】解:①a÷m+a÷n=+=,故①错误;②甲店降价后的商品价格为:a×0.9×0.9=0.81a,乙店降价后的商品价格为:a×0.8=0.8a,故降价后的商品价格不一样,故②错误;③∵x2+2x+y2﹣4y+5=0,∴(x+1)2+(y﹣2)2=0,∴x+1=0,y﹣2=0,解得x=﹣1,y=2,∴y x的值为:2﹣1=,故③正确;④分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故④错误.故答案为:×、×、√、×.三、解答题:(本题有7个小题,共66分)17.(1)计算与化简:cos60°•tan30°(2)因式分解:3a2﹣6a+3.【考点】特殊角的三角函数值;提公因式法与公式法的综合运用.【分析】(1)根据特殊角三角函数值,可得答案;(2)根据提公因式法、公式法,可得答案.【解答】解:(1)原式=;(2)3a2﹣6a+3=3(a2﹣2a+1)=3(a﹣1)2.18.我校对全部900名学生就校园安全知识的了解程度,采用随机抽样调查的方式进行调查,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,条形统计图中“了解”部分所对应的人数是5人;(2)扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;(3)若没有达到“了解”或“基本了解”的同学必须重新接受安全教育.请根据上述调查结果估计我校学生中必须重新接受安全教育的总人数大约为600人;(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请直接写出恰好抽到1个男生和1个女生的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应的人数;(2)由(1)可求总人数,又“基本了解”的人数为15人,继而所对应扇形的圆心角度数;(3)利用样本估计总体的方法,即可求得答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到1个男生和1个女生的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“了解”部分所对应的人数是60﹣15﹣30﹣10=5;故答案为:60,5;(2)扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°,故答案为:90;(3)根据题意得:900×=600(人),则估计该中学学生中对校园安全知识没有达到“了解”和“基本了解”程度的总人数为600人,故答案为:600;(4)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为:=.19.用如图①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒,现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?【考点】二元一次方程组的应用.【分析】设做第一种x个,第二种y个,根据共有1000张正方形纸板和2000张长方形纸板,列方程组求解.【解答】解:设做第一种x个,第二种y个,由题意得,,解得:.答:做第一种200个,第二种400个.20.如图,B、C、D在同一直线上,△ABC和△DCE都是等边三角形,且在直线BD的同侧,BE 交AD于F,BE交AC于M,AD交CE于N.(1)求证:AD=BE;(2)求证:△ABF∽△ADB.【考点】相似三角形的判定;全等三角形的判定与性质;等边三角形的性质.【分析】(1)利用等边三角形的性质证明△BCE≌△ACD,就可以得出结论;(2)由△BCE≌△ACD,得∠CBE=∠CAD,根据三角形的内角和定理可知:∠AFB=60°=∠ABC,并由公共角∠BAF=∠BAD,得△ABF∽△ADB.【解答】证明:(1)∵△ABC与△DCE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°.∴∠ACB+∠ACE=∠ACE+∠DCE,即∠BCE=∠ACD.在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE;(2)由(1)知:△BCE≌△ACD,∴∠CBE=∠CAD,又∵∠BMC=∠AMF,∴∠AFB=∠ACB=60°=∠ABC,又∵∠BAF=∠BAD,∴△ABF∽△ADB.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.【考点】反比例函数与一次函数的交点问题;平行四边形的性质.【分析】(1)根据在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),可以求得点D的坐标,又因为双曲线y=(k≠0,x>0)过点D,从而可以求得k的值,从而可以求得双曲线的解析式;(2)由图可知三角形CDE的面积等于三角形EDA与三角形ADC的面积之和,从而可以解答本题.【解答】解:(1)∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),∴点D的坐标是(1,2),∵双曲线y=(k≠0,x>0)过点D,∴2=,得k=2,即双曲线的解析式是:y=;(2)∵直线AC交y轴于点E,=S△EDA+S△ADC=,∴S△CDE即△CDE的面积是3.22.如图,△ABC中,AB=AC=10,BC=4,以AB为直径的⊙O分别交度BC,AC于点D、E.(1)求AE;(2)过D作DF⊥AC于F,请画出图形,说明DF是否是⊙O的切线,并写出理由;(3)延长FD,交AB的延长线于G,请画出图形.并求BG.【考点】切线的判定;等腰三角形的性质;勾股定理.【分析】(1)设AE=x,则CE=10﹣x,利用勾股定理即可列出方程求出x的值(2)连接OD,可知OD是△ABC的中位线,从而可知OD∥AC,所以OD⊥DF(3)由于BE∥GF,所以=,求出EF的长度后即可求出BG的长度.【解答】解:(1)设AE=x∴CE=10﹣x,∴由勾股定理可知:BE2=102﹣x2,BE2=(4)2﹣(10﹣x)2∴102﹣x2=(4)2﹣(10﹣x)2∴解得:x=6,∴AE=6,(2)连接OD、AD∵AO是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线∴OD∥AC,∴∠ODF+∠AFD=180°∴∠ODF=90°,∴DF是⊙O的切线,(3)在Rt△ADC中,cosC==在Rt△CDF中,cosC=,∴CF=2,∵EC=AC﹣AE=4∴EF=CE﹣CF=2,∴AF=8,∵BE∥GF∴∴BG=23.如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)抛物线F上有两点M(x1,y1)、N(x2,y2),若﹣2≤x1<x2,y1<y2,求m的取值范围;(3)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点M(x1,y1)、N(x2,y2),若x1<x2≤﹣2,比较y1与y2的大小;(4)当抛物线F与线段AB有公共点时,直接写出m的取值范围.【考点】二次函数综合题.【分析】(1)将点C的坐标代入抛物线的解析式求解即可;(2)先求得抛物线的对称轴,然后依据二次函数的增减性进行判断即可;(3)将x=﹣2代入抛物线的解析式得,然后由py有最小值可求得m的值,然后依据二次函数的性质求解即可;(4)先求得当x=0,x=2时对应的y值,然后依据抛物线与AB有交点可知此时抛物线上对应两点的纵坐标一个大于2,一个小于2,然后列不等式组求解即可.【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=1+2m+m2﹣2.∴m=﹣1.∴抛物线F的表达式是y=x2+2x﹣1.(2)抛物线F的对称轴为:直线x=m,当x≥m时,y随x的增大而增大;.点M、N均在直线x=﹣2的右侧,∴直线x=﹣2必须在直线x=m右侧或与之重合.∴m≤﹣2.(3)当x=﹣2时,=(m+2)2﹣2.∴当m=﹣2时,y P的最小值=﹣2.此时抛物线F的表达式是y=(x+2)2﹣2.∴当x≤﹣2时,y随x的增大而减小.∵x1<x2≤﹣2,∴y1>y2.(4)∵y=(x﹣m)2﹣2,∴抛物线的顶点在直线y=﹣2上.当x=0时,y=m2﹣2.当x=2时,y=m2﹣4m+2.∵抛物线与线段AB有交点,∴(m2﹣4)(m2﹣4m)<0,∴或,解得:﹣2≤m≤0或2≤m≤4.2017年4月23日。
2017年杭州市拱墅区、滨江区、下城区中考一模数学试卷及答案
D.85°
B. a b2 a2 b2
(第 4 题)
C. 3x2 y 2 6x4 y2
D. m7 m2 m5
6.下列命题中,真命题是( )
A.垂直于同一条直线的两条直线互相平行
B.平分弦的直径垂直弦
C.有两边及一角对应相等的两个三角形全等 D.八边形的内角和是外角和的 3 倍
(第 12 题)
5x 8 3(x 1)
13.不等式组
1 2
x
1
7
3 2
x
的最大整数解为________.
14.如图,点 A , B , C 都在 O 上,若 OAC 17 , ACB 46 , AC 与 OB 交于点 D ,
则 ODA 的度数为_________度.
A.左视图与主视图相同 C.左视图与俯视图相同
B.俯视图与主视图相同 D.三个视图都相同
主视方向
(第 3 题) 4.如图,AB∥CD,AD 与 BC 相交于点 E,若 A 40 , C 35 ,则 BED ( )
A
B
E
C
D
A.70° B.75° C.80° 5.下列计算正确的是( ) A. x4 x2 x6
C O
D
A
B
(第 14 题)
15.在矩形 ABCD 中, ABC 的平分线交 AD 于点 E , BED 的平分线交 DC 于点 F ,若 AB 6 ,点 F 恰为 DC 的中点,则 BC ________(结果保留根号).
16. 已知二次函数 y ax2 bx 2a 0 图象的顶点在第二象限,且过点(1,0),则 a 的取值
浙江省杭州市2017年中考数学3月模拟试卷(含解析)
浙江省杭州市2017年中考数学3月模拟试卷(含解析)2017年浙江省杭州市中考数学模拟试卷(3月份)一、选择题(共10小题,每小题3分,满分30分)1.下列四个选项中,计算结果最大的是()A.(﹣6)0 B.|﹣6| C.﹣6 D.2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3.一个几何体的三视图如图所示,那么这个几何体是()A.B. C.D.4.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.5.在式子,,,中,x可以取2和3的是()A. B. C.D.6.把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9)B.2(x﹣3)2C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)7.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1 B.1.5 C.2 D.38.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2 B.48πcm2 C.60πcm2 D.80πcm2 9.如图是二次函数y=﹣x2+2x+4的图象,使y ≤1成立的x的取值范围是()A.﹣1≤x≤3 B.x≤﹣1 C.x≥1 D.x≤﹣1或x≥310.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大二、填空题(本题有6小题,每小题4分,共24分)11.写出一个解为x≥1的一元一次不等式.12.分式方程=1的解是.13.小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是.14.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行米.15.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是.16.如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC 抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B 与楼梯两边都相切,且AO∥GH.(1)如图2①,若点H在线段OB时,则的值是;(2)如果一级楼梯的高度HE=(8+2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是.三、解答题(本题有7小题,第17~19题每题8分,第20~22题每题10分,第23题12分,共66分)17.计算:﹣4cos45°+()﹣1+|﹣2|.18.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)19.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?20.受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x ≤7,且x为整数)之间的函数关系如下表:8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x 的函数关系式为y2=x+62(8≤x≤12,且x为整数).(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.21.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.22.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.23.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC 的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.2017年浙江省杭州市清河中学中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列四个选项中,计算结果最大的是()A.(﹣6)0 B.|﹣6| C.﹣6 D.【考点】有理数大小比较.【分析】计算出结果,然后进行比较.【解答】解:(﹣6)0=1|﹣6|=6,因为﹣6<<1<6,故选B.2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直【考点】直线的性质:两点确定一条直线.【分析】根据公理“两点确定一条直线”来解答即可.【解答】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.3.一个几何体的三视图如图所示,那么这个几何体是()A.B. C.D.【考点】由三视图判断几何体.【分析】首先根据俯视图得到这个几何体为锥体,再根据主视图和左视图得出该几何体是柱体和锥体的组合体.【解答】解:根据俯视图发现该几何体为圆锥,B、C不符合题意,根据主视图和左视图发现该几何体为圆柱和圆锥的结合体,D符合题意,故选D.4.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.【考点】概率公式.【分析】用红球的个数除以球的总个数即可.【解答】解:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选:D.5.在式子,,,中,x可以取2和3的是()A. B. C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义:被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.【解答】解:A、的分母不可以为0,即x﹣2≠0,解得:x≠2,故A错误;B、的分母不可以为0,即x﹣3≠0,解得:x ≠3,故B错误;C、被开方数大于等于0,即x﹣2≥0,解得:x ≥2,则x可以取2和3,故C正确;D、被开方数大于等于0,即x﹣3≥0,解得:x ≥3,x不能取2,故D错误.故选:C.6.把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9)B.2(x﹣3)2C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2,进而利用平方差公式分解因式得出即可.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x ﹣3).故选:C.7.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1 B.1.5 C.2 D.3【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据正切的定义即可求解.【解答】解:∵点A(t,3)在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.故选:C.8.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2 B.48πcm2 C.60πcm2 D.80πcm2【考点】圆锥的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.9.如图是二次函数y=﹣x2+2x+4的图象,使y ≤1成立的x的取值范围是()A.﹣1≤x≤3 B.x≤﹣1 C.x≥1 D.x≤﹣1或x≥3【考点】二次函数与不等式(组).【分析】根据函数图象写出直线y=1以及下方部分的x的取值范围即可.【解答】解:由图可知,x≤﹣1或x≥3时,y ≤1.故选:D.10.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a >0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a <0,则当x≤1时,y随x的增大而增大,故正确;故选D.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个解为x≥1的一元一次不等式x+1≥2 .【考点】不等式的解集.【分析】根据不等式的解集,可得不等式.【解答】解:解为x≥1的一元一次不等式有:x+1≥2,x﹣1≥0等.故答案为:x+1≥2.12.分式方程=1的解是x=2 .【考点】解分式方程.【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣1=3,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.13.小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是240°.【考点】扇形统计图.【分析】用圆周角乘以一水多用的所占的百分比即可求得其所占的圆心角的度数.【解答】解:表示“一水多用”的扇形圆心角的度数是360°×=240°,故答案为:240°.14.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80 米.【考点】函数的图象.【分析】先分析出小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),再根据路程、时间、速度的关系即可求得.【解答】解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.15.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是7 .【考点】全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.【分析】根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.【解答】解:∵矩形ABCD中,G是CD的中点,AB=8,∴CG=DG=×8=4,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在Rt△DEG中,EG==,∴EF=2,∵FH垂直平分BE,∴BF=EF,∴4+2x=2,解得x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故答案为:7.16.如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC 抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B 与楼梯两边都相切,且AO∥GH.(1)如图2①,若点H在线段OB时,则的值是;(2)如果一级楼梯的高度HE=(8+2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是(11﹣3)cm≤r≤8cm .【考点】圆的综合题.【分析】(1)作P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH于点M,求出ML,OM,根据=求解,(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线于点L,由△LDH∽△LPB,得出=,再根据30°的直角三角形得出线段的关系,得到DH和r的关系式,根据0≤d≤3的限制条件,列不等式组求范围.【解答】解:(1)如图2①,P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH于点M,∴∠BPH=∠BLO=90°,∵AO∥GH,∴BL∥AO∥GH,∵∠AOB=120°,∴∠OBL=60°,在RT△BPH中,HP=BP=r,∴ML=HP=r,OM=r,∵BL∥GH,∴===,故答案为:.(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线于点L,∴∠LDH=∠LPB=90°,∴△LDH∽△LPB,∴=,∵AO∥PB,∠A OD=120°,∴∠B=60°,∴∠BLP=30°,∴DL=DH,LH=2DH,∵HE=(8+2)cm∴HP=8+2﹣r,PL=HP+LH=8+2﹣r+2DH,∴=,解得DH=r﹣4﹣1,∵0cm≤DH≤3cm,∴0≤r﹣4﹣1≤3,解得:(11﹣3)cm≤r≤8cm.故答案为:(11﹣3)cm≤r≤8cm.三、解答题(本题有7小题,第17~19题每题8分,第20~22题每题10分,第23题12分,共66分)17.计算:﹣4cos45°+()﹣1+|﹣2|.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用绝对值法则计算即可得到结果.【解答】解:原式=2﹣4×+2+2=4.18.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)【考点】利用轴对称设计图案;坐标与图形性质.【分析】(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.【解答】解:(1)如图2所示,C点的位置为(﹣1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.19.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?【考点】折线统计图;条形统计图;加权平均数;方差.【分析】(1)利用优秀率求得总人数,根据优秀率=优秀人数除以总人数计算;(2)先根据方差的定义求得乙班的方差,再根据方差越小成绩越稳定,进行判断.【解答】解:(1)总人数:(5+6)÷55%=20(人),第三次的优秀率:(8+5)÷20×100%=65%,第四次乙组的优秀人数为:20×85%﹣8=17﹣8=9(人).补全条形统计图,如图所示:(2)=(6+8+5+9)÷4=7,S2乙组=×[(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=2.5,S2甲组<S2乙组,所以甲组成绩优秀的人数较稳定.20.受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x ≤7,且x为整数)之间的函数关系如下表:8至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x 的函数关系式为y2=x+62(8≤x≤12,且x为整数).(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数); 8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.【考点】二次函数的应用.【分析】(1)由表格中数据可猜测,y1是x的一次函数.把表格(1)中任意两组数据代入直线解析式可得y1的解析式.(2)分情况探讨得:1≤x≤7时,利润=p1×(售价﹣各种成本);80≤x≤12时,利润=p2×(售价﹣各种成本);并求得相应的最大利润即.【解答】解:(1)由表格中数据可猜测,y1是x的一次函数.设y1=kx+b则解得:∴y1=2x+54,经检验其它各点都符合该解析式,∴y1=2x+54(1≤x≤7,且x为整数).(2)设去年第x月的利润为w万元.当1≤x≤7,且x为整数时,w=p1=(0.1x+1.1)(92﹣2x﹣54)=﹣0.2x2+1.6x+41.8=﹣0.2(x﹣4)2+45,∴当x=4时,w最大=45万元;当8≤x≤12,且x为整数时,w=p2=(﹣0.1x+3)(92﹣x﹣62)=0.1x2﹣6x+90=0.1(x﹣30)2,∴当x=8时,w最大=48.4万元.∴该厂去年8月利润最大,最大利润为48.4万元.21.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.【解答】解:(1)∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO=,∴CE=BE•tan∠ABO=6×=3,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y=的图象上,∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣.(2)∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO=,∴OA=OB•tan∠ABO=4×=2.∵S△BAF=AF•OB=(OA+OF)•OB=(2+)×4=4+.∵点D在反比例函数y=﹣第四象限的图象上,∴S△DFO=×|﹣6|=3.∵S△BAF=4S△DFO,∴4+=4×3,解得:n=,经验证,n=是分式方程4+=4×3的解,∴点D的坐标为(,﹣4).22.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的长度,再用平行线分线段成比例定理或者三角形相似定理求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B 向AC做的垂线段的长度;【解答】(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE ∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB 的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径为:.所以,点P经过的路径长为或3.23.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC 的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)①如答图1,作辅助线,利用关系式S△OPH=S △OMH﹣S△OMP求解;②本问涉及复杂的分类讨论,如答图2所示.由于点P可能在OC、BC、BK、AK、OA上,而等腰三角形本身又有三种情形,故讨论与计算的过程比较复杂,需要耐心细致、考虑全面.【解答】解:(1)由题意得:A(4,0),C(0,4),对称轴为x=1.设抛物线的解析式为y=ax2+bx+c,则有:,解得.∴抛物线的函数解析式为:y=﹣x2+x+4.(2)①当m=0时,直线l:y=x.∵抛物线对称轴为x=1,∴CP=1.如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.∴CM=CP=1,∴OM=OC+CM=5.S△OPH=S△OMH﹣S△OMP=(OM)2﹣OM•CP=×(×5)2﹣×5×1=﹣=,∴S△OPH=.②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(0,﹣3).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.∴P1(0,3).b)当点P在BC边上时,如答图2﹣2所示,此时PE=4.若PE=PF,则点P为∠OGD的角平分线与BC的交点,有GE=GF,过点F分别作FH⊥PE于点H,FK ⊥x轴于点K,∵∠OGD=135°,∴∠EPF=45°,即△PHF为等腰直角三角形,设GE=GF=t,则GK=FK=EH=t,∴PH=HF=EK=EG+GK=t+t,∴PE=PH+EH=t+t+t=4,解得t=4﹣4,则OE=3﹣t=7﹣4,∴P2(7﹣4,4)c)∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BA与直线l交于点K,则K(,).当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).与a)同理,可求得:EF=.若PE=PF,则8﹣2a=(11﹣3a),解得a=1﹣2<0,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即8﹣2a=•(11﹣3a),解得a=3,符合条件,此时P3(3,2);若PE=EF,则PE=,整理得PF=PE,即(11﹣3a)=(8﹣2a),解得a=5>,故此种情形不存在.d)当点P在线段KA上时,如答图2﹣4所示.∵PE、PF夹角为135°,∴只可能是PE=PF成立.∴点P在∠KGA的平分线上.设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD=MN,由OD=OM+MD=3,可求得M(0,3﹣3).又因为G(3,0),可求得直线MG的解析式为:y=(﹣1)x+3﹣3.联立直线MG:y=(﹣1)x+3﹣3与直线AB:y=﹣2x+8,可求得:P4(1+2,6﹣4).e)当点P在OA边上时,此时PE=0,等腰三角形不存在.综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(7﹣4,4)、(1+2,6﹣4).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学参考公式: (时间100分钟 满分120分)直棱柱的体积公式:V Sh =(S 为底面积,h 为高);圆锥的全面积(表面积)公式:2S rl r ππ=+全(r 为底面半径,l 为母线长) 圆柱的全面积(表面积)公式:222S rh r ππ=+全(r 为底面半径,h 为高)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 设a 3535+-b 633633+-.则21b a-的值为( ) 621 621 621 621+ 2. 如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A .(3213)cm +B 97cmC 85cmD .9cm 3. 如图,1∠的正切值为( )A .31 B .21C .3D .2 4. 下列命题是真命题的有( )①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
A.1个B.2个C.3个D.4个 5. 《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.x y x y +=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )图1 图2 A .2114327x y x y +=⎧⎨+=⎩ B .2114322x y x y +=⎧⎨+=⎩ C .3219423x y x y +=⎧⎨+=⎩ D .264327x y x y +=⎧⎨+=⎩6. 若不等式27125ax x x +->+对11a -≤≤恒成立,则x 的取值范围是( )A. 23x ≤≤B. 11x -<<C. 11x -≤≤D. 23x << 7. 一同学在n 天假期中观察:(1)下了7次雨,在上午或下午; (2)当下午下雨时,上午是晴天; (3)一共有5个下午是晴天; (4)一共有6个上午是晴天。
则n 最小为( )A. 7B. 9C. 10D. 118. 房山区体校甲、乙两队10名参加篮球比赛的队员的身高(单位:cm )如下表所示:队员 1号 2号 3号 4号 5号 甲队 176 175 174 171 174 乙队170173171174182设两队队员身高的平均数分别为x ,x 甲乙,身高的方差分别为2S 甲,2S 乙,则正确的选项是( )A .22x x ,S S =>甲乙甲乙 B .22x x ,S S <<甲乙甲乙C .22x x ,S S >>甲乙甲乙D .22x x ,S S =<甲乙甲乙9. 如图,D 、E 分别为△ABC 的边AB 、AC 上的点,△ACD 与 △BCD 的周长相等,△ABE 与△CBE 的周长相等,记△ABC 的面积为S.若∠ACB=90°,则AD ·CE 与S 的大小关系为( )A.S=AD ·CEB.S>AD ·CEC.S<AD ·CED.无法确定 10. 如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N ,设△BPQ, △DKM, △CNH 的面积依次为S 1,S 2,S 3.若S 1+S 3=20,则S 2的值为( )A .6 B. 8 C. 10 D. 12 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整的填写答案。
11.13483(31)3323-⎛⎫-+---- ⎪ ⎪⎝⎭= . 12.操场上站成一排的100名学生进行报数游戏,规则是:每位同学依次报自己的顺序数的倒数加1.如:第一位同学报(111+),第二位同学报(112+),第三位同学报(113+),……这样得到的100个数的积为 . 13.如图两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,八条直线相交最多有 个交点.14.从﹣1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组122ax x a +≤-≤⎧⎨⎩有解的概率为 _ _ .15.如右图所示,ABCD 是一个正方形,其中几块阴影部分的面积如图所示,则四边形BMQN 的面积为 .16.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N , 且AC ∥QN ,AM=MB=2cm ,QM=4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值 .(单位:秒)三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤。
如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。
17.(本小题满分6分)有4张形状、大小和质地都相同的卡片,正面分别写有字母A 、B 、C 、D 和一个算式,背面完全一致.如图所示,将这4张卡片背面向上洗匀,从中随机抽取1张,不放回,接着再随机抽取1张.(1)请用画树形图或列表法表示出所有的可能结果;(卡片可用A 、B 、C 、D 表示) (2)将“第一张卡片上的算式是正确,同时第二张卡片上的算式是错误”记为事件A ,求事件A 的概率.18.(本小题满分8分)如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=α,且DM 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG ,如果α=45°,AB=AF=3,求FC 和FG 的长. 19.(本小题满分8分)对某一个函数给出如下定义:若存在实数0M >,对于任意的函数值y ,都满足M y M -≤≤,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数1y x=()0x >和()142y x x =+-<≤是不是有界函数?若是有界函A数,求其边界值;(2)若函数1y x =-+()a x b b a ≤≤>,的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数()210y x x m m =-≤≤≥,的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足314t ≤≤? 20.(本小题满分10分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O 1、O 2分别在CD 、AB 上,半径分别是O 1C 、O 2A ,锯两个外切的半圆拼成一个圆;方案三: 沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆; 方案四:锯一块小矩形BCEF 拼到矩形AFED 下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大? (3)在方案四中,设CE=x (0<x <1),圆的半径为y .①求y 关于x 的函数解析式;②当x 取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.21.(本小题满分10分)已知关于x 的一元二次方程03)32()1(2=+-+-x a x a .(1)求证:当a 取不等于l 的实数时,此方程总有两个实数根. (2)若)(,n m n m <是此方程的两根,并且3411=+n m ,直线l :n mx y +=交x 轴于点A ,交y 轴于点B ,坐标原点O 关于直线l 的对称点O ′在反比例函数xky =的图象上,求反比例函数xky =的解析式.(3)在(2)的成立的条件下,将直线l 绕点A 逆时针旋转角)900(0<<θθ,得到直线l ′,l ′交y 轴于点P ,过点P 作x 轴的平行线,与上述反比例函数xky =的图象交于点Q ,当四边形APQO ′的面积为2339-时,求角θ的值. 22.(本小题满分10分)如图,在菱形ABCD 中,AC 、BD 交于点O ,AC=12cm ,BD=16cm 。
动点P 在线段AB 上,由B 向A 运动,速度为1cm/s ,动点Q 在线段OD 上,由D 向O 运动,速度为1cm/s 。
过点Q 作直线EF ┴BD 交AD 于E ,交CD 于F ,连接PF ,设运动时间为t (0<t<8)。
问(1)何时四边形APFD 为平行四边形?求出相应t 的值; (2)设四边形APFE 面积为ycm 2,求y 与t 的函数关系式;. (3)是否存在某一时刻t ,使S四边形APFE :S 菱形ABCD =17:40?若存在,求出相应t 的值,并求出,P 、E 两点间的距离,若不存在,说明理由。
23.(本小题满分10分)如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M 与y 轴相切于点C ,与x 轴交于A ,B 两点,∠ACD=90°,抛物线c bx ax y ++=2经过A ,B ,C 三点.(1)求证:∠CAO=∠CAD ; (2)求弦BD 的长;(3)在抛物线的对称轴上是否存在点P 使ΔPBC 是以BC 为腰的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案一、仔细选一选(本题有10个小题,每小题3分,共30分)二、认真填一填(本题有6个小题,每小题4分,共24分)11 . 12. 101 13.2814.1315. 24 16.t=2或3≤t ≤7或t=8 三、全面答一答(本题有7个小题,共66分) 17.(本小题满分6分)(1)根据题意,可以列出如下的表格:由表可知,随机抽取1张,不放回,接着再随机抽取1张的所有可能的结果有12种.它们出现的可能性相等; (2)由表可知,事件A 的结果有3种, ∴P (A )= 312 =1418.(本小题满分8分)(1)△AME ∽△MFE ,△BMD ∽△MGD ,△AMF ∽△BGM , ∵∠AMD=∠B+∠D ,∠BGM=∠DMG+∠D 又∠B=∠A=∠DME=α ∴∠AMF=∠BGM ,∴△AMF ∽△BGM , (2)连接FG ,由(1)知,△AMF ∽△BGM ,BG BM AM AF =,BG=83∠α=45°, ∴△ABC 为等腰直角三角形,∵M 是线段AB 中点,∴,, AC=BC=4,CF=AC-AF=1,CG=4-83=43,∴由勾股定理得FG=5319.(本小题满分8分) (1)xy 1=(x>0)不是 ,)24(1≤<-+=x x y 是,边界为3 (2)∵y=-x+1 ,y 随x 的增大而减小.当x=a 时,y= -a+1=2, a= -1;当x=b 时,y= -b+1. 212b b a -≤-+<⎧⎨>⎩13b ∴-<≤ (3)若m>1,函数向下平移m 个单位后,x=0时,函数的值小于-1,此时函数的边界t 大于1,与题意不符,故1≤m .当x=-1时,y=1(-1,1);当x=0时,y min =0.都向下平移m 个单位(-1,1-m),(0,-m).(1)1;(2)方案三;(3)①11(2) (0)2211(3) (1)22x x y x x ⎧+<<⎪⎪=⎨⎪-≤<⎪⎩,②12x =,max 54r =,方案四.21.(本小题满分10分)(1)证明∵03)32(2)1(2=+-+-x a x a 为关于x 的一元二次方程∴01≠-a ,即a ≠1 ∴△=222)43(162493)1(4)32(-=+-=⨯-⨯--a a a a a ∴△≥0∴当a 取不等于1的实数时,此方程总有两个实数根.∴31=x ,12=x(2)∵3411=+n m ∴34=+mn n m 又∵m 、n 是方程03)32(2)1(2=+-+-x a x a 的两根 ∴ 2=a ∵n m > ∴3,1==n m ∴直线l 的解析式为3+=x y∴直线l 与x 轴交点A (-3,0)与y 轴交点B (0,3)∴△ABO 为等腰直角三角形 ∴坐标原点O 关于直线l 的对称点O ′的坐标为(-3,3)∴反比例函数的解析式为xy 9-= (3)设点P 的坐标为(0,P ),延长PQ 和AO ′交于点G∵PQ ∥x 轴,与反比例函数图象交于点Q ∴四边形AOPG 为矩形 ∴Q 的坐标为(P9-,P ) ∴G (-3,P ) 当0°<θ<45°,即P >3时 ∵GP =3,GQ =3P9-,GO ′=P -3,GA =P ∴S 四边形APQO ’ =S △APG -S △GQO ’ =21×GA ×GP -21×GQ ×GO ’=21×P ×3-21(3P 9-)×(P -3)=P2279- ∴32392279-=-P ∴P =33 经检验,P =33 符合题意 ∴P (0,33) ∴AP=6 点A 关于y 轴的对称点A ′(3,0),连结A ′P , 易得AP=PA ′=6,又∵AA ′=6 ∴AA ′=AP=A ′P ∴∠PAO =60° ∵∠BAO =45°∴θ=∠PAO -∠BAO =60°-45°=15° 当45°≤θ<90°,即P <-3时, 可类似求得P=33,与P <-3矛盾,所以此时点P 不存在 ∴旋转角θ=15°(1)∵四边形ABCD 是菱形, ∴AB ∥CD ,AC ⊥BD ,OA=OC=12AC=6,OB=OD=12BD=8. 在Rt △AOB 中,226810+=. ∵EF ⊥BD , ∴∠FQD=∠COD=90°. 又∵∠FDQ=∠CDO , ∴△DFQ ∽△DCO . ∴DF QD DC OD =.即108DF t =,∴DF=54t . ∵四边形APFD 是平行四边形, ∴AP=DF . 即10-t=54t ,解这个方程,得t=409. ∴当t=409s 时,四边形APFD 是平行四边形. (2)如图,过点C 作CG ⊥AB 于点G ,∵S 菱形ABCD =AB •CG=12AC •BD , 即10•CG=12×12×16, ∴CG=485. ∴S 梯形APFD =12(AP+DF )•CG =12(10-t+54t )•485=65t+48. ∵△DFQ ∽△DCO , ∴QD QF OD OC =. 即86t QF =, ∴QF=34t . 同理,EQ=34t . ∴EF=QF+EQ=32t . ∴S △EFD =12EF •QD=12×32t ×t=34t 2. ∴y=(65t+48)-34t 2=-34t 2+65t+48. (3)如图,过点P 作PM ⊥EF 于点M ,PN ⊥BD 于点N , 若S 四边形APFE :S 菱形ABCD =17:40,则-34t 2+65t+48=1740×96,即5t 2-8t-48=0, 解这个方程,得t 1=4,t 2=-125(舍去) 过点P 作PM ⊥EF 于点M ,PN ⊥BD 于点N ,当t=4时, ∵△PBN ∽△ABO ,∴PN PB BN AO AB BO==, 即46108PN BN ==. ∴PN=125,BN=165. ∴EM=EQ-MQ=3-125=35.PM=BD-BN-DQ=16-165-4=445. 在Rt △PME 中,221945PM EN =+(cm ). 23.(本小题满分10分)(1)证明:如图1,连接MC ,∵⊙M 与y 轴相切于点C ,∴CM ⊥OC ,∴∠MCO=90°,又∵∠ACD=90° ∴AD 为⊙M 的直径,∵DM=CM ,∠ACD+∠ADC=90°∴∠MCD=∠MDC, ∵∠OCA+∠ACM=∠OCM=90° ∴∠MCD+∠ACM=90°∴∠OCA=∠MCD=∠MDC ∵∠OCA+∠OAC=90° ∴∠OAC=∠CAD ;(2)解:如图1,过点M 作MN ⊥OB 于点N ,由(1)可知,AD 是⊙M 的直径,∴∠ABD=90°,∵MN ⊥AB ,∴∠MNA=90°,∴MN ∥BD ,∴21==BD MN AD AM ∵∠OCM=∠CON=∠MNO=90°,∴四边形COMN 为矩形,∴MN=CO=4,∴BD=2MN=8;(3)解:抛物线的对称轴上存在点P ,使ΔPBC 是以BC 为 腰的等腰三角形.在⊙M 中,弧AC=弧AC , ∴∠ADC=∠ABC,由(1)知,∠ADC=∠OCA, ∴∠OCA=∠OBC在Rt △CAO 和Rt △BOC 中, tan ∠OCA=2142==OC OA ∴tan ∠OBC=21=OB OC ∴OB=2OC=8 ∴A (2,0),B (8,0) ∵抛物线经过A ,B 两点,∴A ,B 关于抛物线的对称轴对称,其对称轴为直线:5=x ;当CP=CB=5时,△PCB 为等腰三角形,在Rt △COB 中,808422222=+=+=OB CO BC如图,在Rt △CM 1P 中,=-=2221CM CP M P 80-25=55 551=M P ,45511+=+=MN M P N P ∴1P )455,5(+同理可求2P 的坐标是)554,5(-当BP=BC=5时,△PCB 为等腰三角形, 719802233=-=-=BN B P N P ∴3P )71,5(同理可得4P 坐标为)71,5(-∴符合条件的点P 有四个,坐标分别为 1P )455,5(+,2P )554,5(-, 3P )71,5(,4P )71,5(-.。