[精品]2016-2017学年江西省上饶市余干县八年级(上)期末数学试卷与参考答案
2016-2017年江西省上饶市余干县八年级上学期期末数学试卷与答案
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2016-2017学年江西省上饶市余干县八年级(上)期末数学试卷一、选择题(每小题3分,共18分)1.(3分)一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.92.(3分)如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.④3.(3分)如果等腰三角形两边长是9cm和4cm,那么它的周长是()A.17cm B.22cm C.17或22cm D.无法确定4.(3分)下列运算中正确的是()A.2x+3y=5xy B.a3﹣a2=aC.(a﹣1)(a﹣2)=a2+a﹣2 D.(a﹣ab)÷a=1﹣b5.(3分)若分式有意义,则x应满足()A.x=0 B.x≠0 C.x=1 D.x≠16.(3分)甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共6题,共18分)7.(3分)一个正多边形的每个内角度数均为135°,则它的边数为.8.(3分)已知图中的两个三角形全等,则∠α的度数是.9.(3分)已知等腰三角形的一边长等于4,一边长等于9,则这个三角形的周长为.10.(3分)多项式x2+mx+25恰好是另一个多项式的平方,则m=.11.(3分)分解因式:x3﹣4x=.12.(3分)分式方程﹣=1的解是.三、(每小题6分,共5题,共30分)13.(6分)计算:(1)﹣(﹣1)2012﹣(π﹣3.14)0+3(2)+.14.(6分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.15.(6分)已知,如图AB=CD,E、F在AC上,∠AFB=∠CED=90°,AE=CF,求证:AB∥DC.16.(6分)先化简,再求值:,其中a=﹣1.17.(6分)先化简,再求值:(+)÷,x在1,2,﹣3中选取合适的数代入求值.四、(每小题8分,共4题,共32分)18.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.19.(8分)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.20.(8分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位、再沿y轴向下平移1个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.21.(8分)学习“分式”一章后,老师写出下面的一道题让同学们解答.计算:﹣其中小明的解答过程如下:解:原式=﹣( A )=x﹣3﹣2(x﹣1)(B )=x﹣3﹣2x+2 (C )=﹣x﹣1 (D )(1)上述计算过程中,是从哪一步开始出现错误的?请写出该步代号:;(2)写出错误原因是;(3)写出本题正确的解答过程.22.(10分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.23.(12分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)2016-2017学年江西省上饶市余干县八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.9【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.2.(3分)如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.④【解答】解:第①块只保留了原三角形的一个角和部分边,根据这块不能配一块与原来完全一样的;第②、③只保留了原三角形的部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第④块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带④去,故选:D.3.(3分)如果等腰三角形两边长是9cm和4cm,那么它的周长是()A.17cm B.22cm C.17或22cm D.无法确定【解答】解:当腰长为9cm时,则三角形的三边分别为9cm、9cm、4cm,满足三角形的三边关系,此时周长为22cm,当腰长为4cm时,则三角形的三边分别为4cm、4cm、9cm,而4+4<9,不满足三角形的三边关系,不符合题意;所以该三角形的周长为22cm,故选B.4.(3分)下列运算中正确的是()A.2x+3y=5xy B.a3﹣a2=aC.(a﹣1)(a﹣2)=a2+a﹣2 D.(a﹣ab)÷a=1﹣b【解答】解:A、2x与3y不能合并,错误;B、a3与a2不能合并,错误;C、(a﹣1)(a﹣2)=a2﹣3a+2,错误;D、(a﹣ab)÷a=1﹣b,正确;故选D5.(3分)若分式有意义,则x应满足()A.x=0 B.x≠0 C.x=1 D.x≠1【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选D.6.(3分)甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A.=B.=C.=D.=【解答】解:设甲每天完成x个零件,则乙每天完成(x﹣4)个,由题意得,=,故选:A.二、填空题(每小题3分,共6题,共18分)7.(3分)一个正多边形的每个内角度数均为135°,则它的边数为8.【解答】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数n==8,∴该正多边形为正八边形,故答案为8.8.(3分)已知图中的两个三角形全等,则∠α的度数是50°.【解答】解:∵两个三角形全等,∴α=50°.故答案为:50°.9.(3分)已知等腰三角形的一边长等于4,一边长等于9,则这个三角形的周长为22.【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9﹣9<4,所以能构成三角形,周长是:9+9+4=22.故答案为:22.10.(3分)多项式x2+mx+25恰好是另一个多项式的平方,则m=±10.【解答】解:∵x2+mx+25恰好是另一个多项式的平方,∴m=±2×5=±10.故答案为:±10.11.(3分)分解因式:x3﹣4x=x(x+2)(x﹣2).【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).12.(3分)分式方程﹣=1的解是无解.【解答】解:方程的两边同乘(x﹣2),得1+1﹣x=x﹣2,解得x=2,检验:把x=2代入(x﹣2)=0,故原方程无解.故答案为:无解.三、(每小题6分,共5题,共30分)13.(6分)计算:(1)﹣(﹣1)2012﹣(π﹣3.14)0+3(2)+.【解答】解:(1)原式=﹣1﹣1+6=﹣2+6;(2)原式=+=.14.(6分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.【解答】解:∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD﹣∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=78°.15.(6分)已知,如图AB=CD,E、F在AC上,∠AFB=∠CED=90°,AE=CF,求证:AB∥DC.【解答】证明:∵∠AFB=∠CED=90°,∵AE=CF,∴AF=CE,在Rt△CED和Rt△AFB中,,∴Rt△CED≌Rt△AFB(HL),∴∠C=∠A,∴AB∥CD.16.(6分)先化简,再求值:,其中a=﹣1.【解答】解:原式=a﹣a2+a2﹣3=a﹣3,当a=﹣1时,原式=﹣1﹣3=﹣4.17.(6分)先化简,再求值:(+)÷,x在1,2,﹣3中选取合适的数代入求值.【解答】解:(+)÷===x﹣3,∵当x=1和x=﹣3时原分式无意义,∴当x=2时,原式=2﹣3=﹣1.四、(每小题8分,共4题,共32分)18.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.【解答】证明:(1)∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,∴CD⊥AB.19.(8分)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【解答】证明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.20.(8分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位、再沿y轴向下平移1个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5).21.(8分)学习“分式”一章后,老师写出下面的一道题让同学们解答.计算:﹣其中小明的解答过程如下:解:原式=﹣( A )=x﹣3﹣2(x﹣1)(B )=x﹣3﹣2x+2 (C )=﹣x﹣1 (D )(1)上述计算过程中,是从哪一步开始出现错误的?请写出该步代号:B;(2)写出错误原因是分式运算不能去分母;(3)写出本题正确的解答过程.【解答】解:(1)分式加减的过程中丢掉了分母,所以B步出现了错误.故答案为:B(2)出现错误的原式是:混淆了解分式方程与异分母分式加减法法则.,分式加减的过程中去掉了分母.故答案为:分式运算不能去分母(3)﹣=﹣===﹣22.(10分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.【解答】解:(1)由折叠的性质得出△ADE≌△A′DE,∠ADE=∠A′DE,∠AED=∠A′ED,∠A=∠A′,(2)∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠1=180°﹣2∠AED,∠2=180°﹣2∠ADE,∵∠AED=x,∠ADE=y,∴∠1=180°﹣2∠AED=180°﹣2x,∠2=180°﹣2∠ADE=180°﹣2y,(3)∵∠A′+∠A′DE+∠A′ED=180°,∴∠A′DE+∠A′ED=180°﹣∠A′,∵∠A=∠A′,∴∠A′DE+∠A′ED=180°﹣∠A,∵∠A′DE=∠ADE,∠A′ED=∠AED∴∠ADE+∠AED=180°﹣∠A,∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴2(∠AED+∠ADE)=360°﹣∠1﹣∠2,∴∠AED+∠ADE=180°﹣(∠1+∠2),∴∠A=(∠1+∠2),∴2∠A=∠1+∠2.23.(12分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)【解答】解:(1)设第一批T恤衫每件进价是x元,由题意,得=,解得x=90,经检验x=90是分式方程的解,符合题意.答:第一批T恤衫每件的进价是90元;(2)设剩余的T恤衫每件售价y元.由(1)知,第二批购进=50(件).由题意,得120×50×+y×50×﹣4950≥650,解得y≥80.答:剩余的T恤衫每件售价至少要80元.。
上饶市八年级上学期期末数学试卷
上饶市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七上·赣县期中) 如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A . a2﹣πB . (4﹣π)a2C . πD . 4﹣π2. (2分) (2017八上·南漳期末) 下面计算结果正确的是(()A . b3•b3=2b3B . x4•x4=x16C . (ab2)3=a3b6D . (﹣2a)2=﹣4a23. (2分) (2017八上·南漳期末) 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A .B .C .D .4. (2分) (2017八上·南漳期末) 要使分式有意义,则x满足的条件是()A . x=0B . x≠0C . x>0D . x<05. (2分) (2017八上·南漳期末) 如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A . 66°B . 60°C . 56°D . 54°6. (2分) (2015八上·宜昌期中) 如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A . ﹣3B . 3C . 0D . 17. (2分) (2017八上·南漳期末) 禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为()A . 102×10﹣7mB . 1.02×10﹣7mC . 102×10﹣6mD . 1.02×10﹣8m8. (2分) (2017八上·南漳期末) 等腰三角形一边长为4,一边长9,它的周长是()A . 17B . 22C . 17或22D . 不确定9. (2分)下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A . ①和②B . ②和③C . ①和③D . ①②③10. (2分) (2017八上·南漳期末) 如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,则下列说法正确的是()A . AD垂直FEB . AD平分EFC . EF垂直平分ADD . AD垂直平分EF二、填空题 (共8题;共8分)11. (1分) (2017七上·济源期中) 在数轴上与-3的距离等于5的点表示的数是________.12. (1分) (2017八上·南漳期末) 若分式的值为0,则x的取值为________.13. (1分) (2017八上·南漳期末) 长为10,7,5,3的四根木条,选其中三根组成三角形,有________种选法.14. (1分) (2017八上·南漳期末) 如图,AB∥CD,∠A=45°,∠C=∠E,则∠C=________度.15. (1分) (2017八上·南漳期末) 已知4x2+mx+9是完全平方式,则m=________.16. (1分) (2017八上·南漳期末) 如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD:AB________.17. (1分) (2017八上·南漳期末) 如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是________.(不再添加辅助线和字母)18. (1分) (2017八上·南漳期末) 在平面直角坐标系xOy中,已知A(2,﹣2),在y轴上确定点P,使△AOP 为等腰三角形,则符合条件的点P的个数的点P有________个.三、解答题 (共8题;共71分)19. (10分)解方程:(1) 3(x﹣2)2=27(2)2(x﹣1)3+16=0.(2) 2(x﹣1)3+16=0.20. (5分)已知:和互为相反数,求3x﹣y的立方根.21. (10分)(2012·徐州)(1)计算:;(2)解不等式组:.22. (6分) (2017八上·南漳期末) 如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)图中的全等三角形有________;(2)从你找到的全等三角形中选出其中一对加以证明.23. (10分) (2017八上·南漳期末) 如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1 ,写出点C关于x轴的对称点C1的坐标;(2) P为x轴上一点,请在图中画出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).24. (10分) (2017八上·南漳期末) 如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=4,PE=1.(1)求∠BPQ的度数;(2)求AD的长.25. (10分) (2017八上·南漳期末) 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同.(1)原计划平均每天生产多少台机器?(2)若该工厂要在不超过5天的时间,生产1100台机器,则平均每天至少还要再多生产多少台机器?26. (10分) (2017八上·南漳期末) 如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点.(1)求证:△ABE≌△DBC;(2)判定△BMN的形状,并证明你的结论.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共71分)19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
上饶市八年级上学期期末数学试卷
上饶市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)二次根式的有理化因式是()A .B . +C .D . ﹣2. (2分)(2019·北京模拟) 如图,已知数轴上的点A,O,B,C,D分别表示数﹣2,0,1,2,3,则表示数2﹣的点P应落在线段()A . AO上B . OB上C . BC上D . CD上3. (2分)已知直角三角形两边的长为3和4,则此三角形的周长为().A . 12B . 7+C . 12或7+D . 以上都不对4. (2分)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是()A . (2,0)B . (﹣1,1)C . (﹣2,1)D . (﹣1,﹣1)5. (2分) (2017七下·徐州期中) 如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为()A . ①②B . ①③C . ②③D . 以上都错6. (2分) (2016八上·九台期中) 下列命题中,是假命题的是()A . 互补的两个角不能都是锐角B . 所有的直角都相等C . 乘积是1的两个数互为倒数D . 若a⊥b,a⊥c,则b⊥c7. (2分) (2019八上·扬州期末) 已知一次函数y=kx+b(k≠0),若k+b=0,则该函数的图像可能是()A .B .C .D .8. (2分)甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有()A . 1个B . 2个C . 3个D . 4个9. (2分) (2018八上·郓城期中) 已知,那么的值为()A . -lB . 1C .D .10. (2分) (2019八上·宝安期末) 如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面米,则小巷的宽度为A . 米B . 米C . 2米D . 米11. (2分)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将ΔA BE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=().A .B .C .D . 212. (2分) (2016七下·澧县期中) 某商场购进甲、乙两种服装后,都加价40%标价出售.“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售.某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A . 50、100B . 50、56C . 56、126D . 100、12613. (2分)等腰三角形的一个角是100°,则其底角是()A . 40°B . 100°C . 80°D . 100°或40°14. (2分)已知和是二元一次方程ax+by+3=0的两个解,则一次函数y=ax+b(a≠0)的解析式为()A . y=﹣2x﹣3B . y=x+C . y=﹣9x+3D . y=-x-15. (2分)(2019·张家港模拟) 某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如下表所示:()鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分別为A . 24.5,24.5B . 24.5,24C . 24,24D . 23.5,24二、填空题 (共6题;共6分)16. (1分) (2015七下·启东期中) 的立方根是________.17. (1分)已知方程组,则x+y的值为________.18. (1分)为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是________ .19. (1分) (2020八上·大洼期末) 已知△ABC中,AH⊥BC,垂足为H,若AB+BH=CH,∠ABH=80°,则∠BAC=________ 。
20162017学年度上学期期末八年级数学试题含答案
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2016-2017学年初二上学期期末数学试卷(含答案)word版
EDCBA2016-2017学年初二上学期期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1. 下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A B C D 2. 下列计算正确的是( )A .32x x x =+B .632x x x =⋅C .623)(x x =D .339x x x =÷ 3.下列式子为最简二次根式的是( )A 、3B 、4C 、8D 、21 4.如果2-x 有意义,那么x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x <25.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm6.如图,所示的图形面积由以下哪个公式表示 2222222222.()().()=2.()2.()()A a b a a b b a bB a b a ab bC a b a ab bD a b a b a b -=-+---++=++-=-+7.若分式211x x --的值为0,则x 的值为( )A . 1.x =B . 1.x =-C . 1.x =±D . 1.x ≠ 8.若11,x x -=则221x x+的值是 ( ) A .3 B .2 C .1 D .49. 如图,△ABC中, AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,连接OC,OB,则图中全等的三角形有A.1对B.2对C.3对D.4对10.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.二、填空题(本题共14分,每空2分)11. 中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素, 这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学技术法表示为.12. 如图,AB=AC,点E,点D分别在AC,AB上,要使△ABE≌△ACD,应添加的条件是 .(添加一个条件即可)13.若22(3)16+-+是一个完全平方式,那么m应为 .x m x14.如图,Rt △ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=150,BM=2,则 △AMB 的面积为 .15.在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有 个. 16. 观察下列关于自然数的等式:514322=⨯- ① 924522=⨯- ② 1334722=⨯- ③根据上述规律解决下列问题:⑴完成第四个等式: ;⑵写出你猜想的第n 个等式(用含n 的式子表示) ;三、解答题(本题共56分)解答题应写出文字说明,验算步骤或证明过程。
20162017学第一学期期末测试卷
2016—2017学年度第一学期期末测试卷八年级(初二)数学参考答案及评分意见一、选择题(本大题共8小题,每题3分,共24分)1.D ; 2.C ; 3.B ; 4.B ; 5.D ; 6.A ; 7.D ; 8.B .二、填空题(本大题共6小题,每题3分,共18分)9.x ≠2; 10.1; 11.10; 12.130°; 13.(﹣1,0);14.(0,2)或(0,﹣2)或(4,﹣2).三、解答题(本大题共4小题,每题6分,共24分)15.解:(1)原式=﹣4b ·a 4b 2÷(﹣2a )……………1分 =2a 4-1b 1+2……………2分 =2a 3b 3.……………3分 (2)原式=x [x (x -2y )+y 2]……………1分 =x (x 2-2xy +y 2)……………2分 =x (x -y )2.……………3分 16.解:(1)原式=2(1)(1)1a a a a -+-+……………1分 =221111a a a a -+=++.……………2分 当a =99时,原式=11991100=+.……………3分 (2)方程两边同乘(x +1)(x -1),得x (x +1)=3(x -1)+(x +1)(x -1).……………1分 解得x =2.……………2分 查验:当x =2时,(x +1)(x -1)≠0,∴x =2是原方程的解.……………3分 17.解:由题意,得60,80.x y xy --=⎧⎨+=⎩ ∴6,8.x y xy -=⎧⎨=-⎩……………2分 (1)原式=(x -y )2+2xy=62+2×(﹣8)=20.……………4分 (2)原式=x 2+y 2+2xy -2(x -y )=20+2×(﹣8)-2×6=﹣8.……………6分 18.(1)证:∵3×4=12,∴x a ·x b =x c .……………1分 即x a +b =x c . ∴a +b =c .……………3分 (2)解:由(1)知a +b =c ,∴a -c =﹣b .……………4分 ∴x a +3b -c =x 3b -b =x 2b =(x b )2=42=16.……………6分四、解答题(本大题共3小题,每题8分,共24分)19.解:(1)①a2+2ab+b2;②(a+b)2 ……………2分等式是a2+2ab+b2=(a+b)2 ……………4分(2)a2+3ab+2b2=(a+2b)(a+b) ……………6分对应的拼图是:……………8分20.解:(1)设每件乙种服装的进价为x元,每件甲种服装的进价为(x+20)元,那么依照题意,得2000800220x x=⨯+,解得x=80.……………2分经查验知,x=80是方程的解,且适合题意,∴x+20=100.……………3分∴每件甲种服装的进价为100元,每件乙种服装的进价为80元.……………4分(2)甲种服装的件数为2000÷100=20,乙种服装的件数为800÷80=10,……………5分设每件乙种服装的售价为y元,则依照题意,得20(130-100)+10(y-80)≥780,………6分解得y≥98.……………7分∴每件乙种服装的售价至少是98元.……………8分21.证:(1)在AB上截取AG=AF,连接DG.∵AD平分∠BAC,∴∠DAF=∠DAG.∵AD=AD,∴△ADF≌△ADG.……………1分∴∠AFD=∠AGD,FD=GD.……………2分∵FD=BD,∴GD=BD,∴∠DGB=∠B.…………3分∵∠DGB+∠AGD=180°.∴∠B+∠AFD=180°.……………4分(2)AE=AF+FD,其证明进程是:……………5分由(1)知∠B+∠AFD=180°.∵∠B+2∠DEA=180°.∴∠AFD=2∠DEA.……………6分在△DGE中,∠AGD=∠DEA+∠EDG,且∠AGD =∠AFD.∴∠DEA=∠EDG.……………7分∴DG=EG=FD.∴AE=AG+EG=AF+FD.……………8分五、探讨题(本大题共1小题,共10分)22.解:(1)①CF=BD,CF⊥BD.……………2分②当点D在线段BC的延长线上时,所画如图2所示.…………3分①中的结论仍然成立,其理由是:……………4分在△ABC中,AB=AC,∠BAC=90°,∴∠ACB=∠B=45°.在△ADF中,AD=AF,∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF.∴△ACF≌△ABD.∴CF=BD.……………5分∴∠ACF=∠B=45°.∴∠FCB=∠ACF+∠ACB=45°+45°=90°.∴CF⊥BD.……………6分(2)CF⊥BC,其证明进程是:……………7分过A作AE⊥AC交BC于E,那么∠CAE=90°.∵∠ACB=45°,∴∠AEC=45°.∴△ACE是等腰直角三角形,∴AC=AE.……………8分在△ADF中,AD=AF,∠DAF=90°,∴∠F AD-∠CAD=∠CAE-∠CAD.即∠CAF=∠EAD.∴△ACF≌△AED.∴∠ACF=∠AED=45°.……………9分∴∠FCB=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BC.……………10分。
2016-2017学年第一学期人教版八年级上册期末数学试卷含答案
2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a22.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)23.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.计算:+=__________.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于__________.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是__________度.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为__________.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为__________.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=__________.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是__________cm2.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式__________;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式__________.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△EFD.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标__________;(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.2016-2017学年八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.计算(a2)3的结果是( )A.a5B.a6C.a8D.3a2【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答】解:(a2)3=a6.故选:B.【点评】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故选D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.4.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵AC=DF,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据AAS,也可证明△ABC≌△DEF,故B正确;但添加AB=DE时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形全等的HL定理.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°【考点】三角形内角和定理.【分析】先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.7.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x﹣2y变形为3x÷(32)y是解此题的关键.8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题(共7小题,每小题3分,满分21分)9.计算:+=2.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.【考点】因式分解-提公因式法.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE 的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13或14.【考点】等腰三角形的性质;三角形三边关系.【分析】分4是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4是腰长,则三角形的三边分别为4、4、5,能组成三角形,周长=4+4+5=13,②若4是底边,则三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,综上所述,这个三角形周长为13或14.故答案为:13或14.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.【考点】含30度角的直角三角形;角平分线的性质.【分析】作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.【解答】解:作EG⊥OA于G,如图所示:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴∴EF=2EG=4.故答案为:4.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.15.将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是18cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC=×6×6=18cm2.故答案是:18.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.三、解答题(共8小题,满分75分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图1),根据图形的面积,写出它能说明的乘法公式(a+b)2=a2+2ab+b2;(2)请同学们观察用硬纸片拼成的图形(如图2),根据图形的面积关系,写出一个代数恒等式.【考点】完全平方公式的几何背景.【分析】(1)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,2个矩形的边长相同,且长为a,宽为b,则2个矩形的面积为2ab,空白的是两个正方形,较大的正方形的边长为a,面积等于a2,小的正方形边长为b,面积等于b2,大正方形面积减去2个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,4个矩形的边长相同,且长为a,宽为b,则4个矩形的面积为4ab,中间空心的正方形的边长为a﹣b,面积等于(a﹣b)2,大正方形面积减去4个阴影矩形的面积就等于中间空白部分的面积.【解答】解:(1)∵阴影部分都是全等的矩形,且长为a,宽为b,∴2个矩形的面积为2ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴空白正方形的面积为a2和b2,∴(a+b)2=a2+2ab+b2.故答案为(a+b)2=a2+2ab+b2.(2)∵四周阴影部分都是全等的矩形,且长为a,宽为b,∴四个矩形的面积为4ab,∵大正方形的边长为a+b,∴大正方形面积为(a+b)2,∴中间小正方形的面积为(a+b)2﹣4ab,∵中间小正方形的面积也可表示为:(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.【点评】本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2+2xy,其中x=(3﹣π)0.y=2.【考点】整式的混合运算—化简求值;零指数幂.【专题】计算题;整式.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣y2+x2﹣2xy+y2+2xy=2x2,当x=(3﹣π)0=1时,原式=2.【点评】此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=2时,原式=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式(β﹣α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后求解即可.(2)同(1)即可得出结果.【解答】解:(1)∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵AE是角平分线,∴∠BAE=∠BAC=×80°=40°,∵AD是高,∴∠BAD=90°﹣∠B=90°﹣40°=50°,∴∠DAE=∠BAD﹣∠BAE=50°﹣40°=10°;(2)∵∠B=α,∠C=β(α<β),∴∠BAC=180°﹣(α+β),∵AE是角平分线,∴∠BAE=∠BAC=90°﹣(α+β),∵AD是高,∴∠BAD=90°﹣∠B=90°﹣α,∴∠DAE=∠BAD﹣∠BAE=90°﹣α﹣[90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F 或AB∥EF或AC=ED;(2)添加了条件后,证明△ABC≌△EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC≌△EFD,已知BC=DF,AB=EF,具备了两组边对应相等,故添加∠B=∠F或AB∥EF或AC=ED后可分别根据SAS、AAS、SSS来判定其全等;(2)因为AB=EF,∠B=∠F,BC=FD,可根据SAS判定△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220﹣90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=8,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),从9:20到下午1:40,共计4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.(1)如图①,若点C的横坐标为5,直接写出点B的坐标(0,2);(提示:过C作CD⊥y 轴于点D,利用全等三角形求出OB即可)(2)如图②,若点A的坐标为(﹣6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=AO,即可解题.【解答】解:(1)如图1,作CD⊥BO于D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO和△BCD中,,∴△ABO≌△BCD(AAS),∴CD=BO=2,∴B点坐标(O,2);故答案为:(0,2);(2)如图3,作EG⊥y轴于G,∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,∴∠BAO=∠EBG,在△BAO和△EBG中,,∴△BAO≌△EBG(AAS),∴BG=AO,EG=OB,∵OB=BF,∴BF=EG,在△EGP和△FBP中,,∴△EGP≌△FBP(AAS),∴PB=PG,∴PB=BG=AO=3.【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。
【精品】2017年江西省上饶市余干县八年级上学期期中数学试卷带解析答案
2016-2017学年江西省上饶市余干县八年级(上)期中数学试卷一、选择题(每小题3分,共6题,共18分)1.(3分)三角形的内角和等于()A.90°B.180°C.300° D.360°2.(3分)下列说法正确的是()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A.①②B.②③C.③④D.②④3.(3分)如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D4.(3分)如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是()A.10cm B.15cm C.20cm D.25cm5.(3分)下列美丽的车标中是轴对称图形的个数有()A.1个 B.2个 C.3个 D.4个6.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.A.1 B.2 C.3 D.4二、填空题(每小题3分,共6题,共18分)7.(3分)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=.8.(3分)如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件是.9.(3分)如图,在矩形ABCD中,点P在AB上,且PC平分∠ACB.若PB=3,AC=10,则△PAC的面积为.10.(3分)已知A(1,﹣2)与点B关于y轴对称.则点B的坐标是.11.(3分)三角形ABC中,AD是中线,且AB=4,AC=6,求AD的取值范围是.12.(3分)当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”中最小的内角为30°,那么其中“特征角”的度数为.三、(每小题6分,共5题,共30分)13.(6分)一个零件的形状如图所示,按规定∠A等于90°,∠B、∠D应分别等于20°和30°,小李量得∠BCD=145°,他断定这个零件不合格,你能说出其中的道理吗?14.(6分)如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.15.(6分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.16.(6分)如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)当∠B=40°时,求∠ADC的度数;(2)若AB=10cm,CD=4cm,求△ABD的面积.17.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.四、(每小题8分,共4题,共32分)18.(8分)如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.19.(8分)填写下列空格,完成证明.已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠3=∠F证明:因为AD是△ABC的角平分线(已知)所以∠1=∠2 ()因为EF∥AD(已知)所以∠3=∠()∠F=∠()所以∠3=∠F().20.(8分)如图,OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,连接DE,猜想DE与OC的位置关系?并说明理由.21.(8分)如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE 于E,EF⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.五、(共1题,共10分)22.(10分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.六、(共1题,共12分)23.(12分)如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB 的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)2016-2017学年江西省上饶市余干县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共6题,共18分)1.(3分)三角形的内角和等于()A.90°B.180°C.300° D.360°【解答】解:因为三角形的内角和为180度.所以B正确.故选:B.2.(3分)下列说法正确的是()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A.①②B.②③C.③④D.②④【解答】解:①三角形的角平分线是线段,说法错误;②三角形的三条角平分线都在三角形内部,且交于同一点,说法正确;③锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;④三角形的一条中线把该三角形分成面积相等的两部分,说法正确.故选:D.3.(3分)如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D【解答】解:A,添加∠A=∠D,满足SSA,不能判定△ABC≌△DEF;B,添加∠ACB=∠F,满足SAS,能判定△ABC≌△DEF;C,添加∠B=∠DEF,满足SSA,不能判定△ABC≌△DEF;D,添加∠ACB=∠D,两角不是对应角,不能判定△ABC≌△DEF;故选:B.4.(3分)如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是()A.10cm B.15cm C.20cm D.25cm【解答】解:如图,过点M作MN⊥AB于N,∵∠C=90°,AM平分∠CAB,∴MN=CM,∵CM=20cm,∴MN=20cm,即M到AB的距离是20cm.故选:C.5.(3分)下列美丽的车标中是轴对称图形的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:第1,2,3个图形是轴对称图形,共3个.故选:C.6.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.A.1 B.2 C.3 D.4【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC :S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选:D.二、填空题(每小题3分,共6题,共18分)7.(3分)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=240°.【解答】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.8.(3分)如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件是∠A=∠C,∠B=∠D,OD=OB,AB∥CD.【解答】解:∵OA=OC,∠A=∠C,∠AOB=∠COD,∴△OAB≌△OCD(ASA).∵OA=OC,∠B=∠D,∠AOB=∠COD,∴△OAB≌△OCD(AAS).∵OA=OC,OD=OB,∠AOB=∠COD,∴△OAB≌△OCD(SAS).∵AB∥CD,∴∠A=∠C,∠B=∠D(两直线平行,内错角相等),∵OA=OC,∴△OAB≌△OCD(AAS).故填∠A=∠C,∠B=∠D,OD=OB,AB∥CD.9.(3分)如图,在矩形ABCD中,点P在AB上,且PC平分∠ACB.若PB=3,AC=10,则△PAC的面积为15.【解答】解:过点P作PE⊥AC于E,∵PC平分∠ACB,PB=3,∴PE=PB=3,=AC•PE=×10×3=15.∴S△PAC故答案为:15.10.(3分)已知A(1,﹣2)与点B关于y轴对称.则点B的坐标是(﹣1,﹣2).【解答】解:∵A(1,﹣2)与点B关于y轴对称,∴点B的坐标是(﹣1,﹣2).故答案为:.11.(3分)三角形ABC中,AD是中线,且AB=4,AC=6,求AD的取值范围是1<AD<5.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,∵,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴6﹣4<2AD<6+4,∴1<AD<5,故答案为:1<AD<5.12.(3分)当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”中最小的内角为30°,那么其中“特征角”的度数为60°或100°.【解答】解:设“特征角”的度数为x°,由已知得:x=2×30或x++30=180,解得:x=60或x=100.故答案为:60°或100°.三、(每小题6分,共5题,共30分)13.(6分)一个零件的形状如图所示,按规定∠A等于90°,∠B、∠D应分别等于20°和30°,小李量得∠BCD=145°,他断定这个零件不合格,你能说出其中的道理吗?【解答】解:如图,延长BC与AD相交于点E,由三角形的外角性质得,∠1=∠B+∠A=20°+90°=110°,∠BCD=∠1+∠D=110°+30°=140°,∵小李量得∠BCD=145°,不是140°,∴这个零件不合格.14.(6分)如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.【解答】解:∵∠D+∠C+∠DAB+∠ABC=360°,∠D+∠C=220°,∴∠DAB+∠ABC=360°﹣220°=140°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=70°,∴∠AOB=180°﹣70°=110°.15.(6分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【解答】证明:∵∠ACD=∠BCE,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴∠A=∠D.16.(6分)如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)当∠B=40°时,求∠ADC的度数;(2)若AB=10cm,CD=4cm,求△ABD的面积.【解答】解:(1)∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD平分∠BAC,∴∠BAD=∠DAC=∠BAC=25°,∴∠ADC=∠B+∠BAD=65°;(2)过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S_△ABD=AB•DE=×10×4=20cm2.17.(6分)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.【解答】解:(1)如图所示,点C1的坐标(3,﹣2);(2)如图2所示,点C2的坐标(﹣3,2).四、(每小题8分,共4题,共32分)18.(8分)如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.【解答】(1)解:如图1,射线CP为所求作的图形.(2)证明:∵CP是∠ACB的平分线∴∠DCE=∠BCE.在△CDE和△CBE中,,∴△DCE≌△BCE(SAS),∴BE=DE.19.(8分)填写下列空格,完成证明.已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠3=∠F证明:因为AD是△ABC的角平分线(已知)所以∠1=∠2 (角平分线的定义)因为EF∥AD(已知)所以∠3=∠1(两直线平行,内错角相等)∠F=∠2(两直线平行,同位角相等)所以∠3=∠F(等量代换).【解答】证明:因为AD是△ABC的角平分线(已知),所以∠1=∠2(角平分线的定义).因为EF∥AD(已知),所以∠3=∠1(两直线平行,内错角相等),∠F=∠2(两直线平行,同位角相等),所以∠3=∠F(等量代换).故答案为:角平分线的定义;∠1;两直线平行,内错角相等;∠2;两直线平行,同位角相等;等量代换.20.(8分)如图,OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,连接DE,猜想DE与OC的位置关系?并说明理由.【解答】解:OC垂直平分DE,∵OC平分∠AOB,∴∠COD=∠COE,又∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°,在△COD和△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,OC=OE,∴OC垂直平分DE.21.(8分)如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE 于E,EF⊥AB于F,EG⊥AC交AC延长线于G.求证:BF=CG.【解答】解:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.五、(共1题,共10分)22.(10分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.【解答】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.六、(共1题,共12分)23.(12分)如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB 的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过24秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴v Q===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24=2×12,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
2016-2017学年第一学期期末考试八年级数学试题(含答案)
2016—2017学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分100分,考试用时90分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分30分. 1.下面有4个汽车标志图案,其中不是轴对称图形的是A. B. C. D.2.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为A.35° B.40° C.45°D.50°3.下列各图中,正确画出AC边上的高的是A. B. C. D.4.已知等腰三角形两边长为3和7,则周长为A.13 B.17 C.13或17 D.115.如图,△ABC 的两边AB 和AC 的垂直平分线分别交BC 于D 、E ,如果边BC 长为8cm ,则△ADE 的周长为 A .16cm B .8cm C .4cm D .不能确定6.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则下列结论:①AC =AF ,②EF =BC ,③∠F AB =∠EAB ,④∠EAB =∠F AC ,其中正确结论的个数是 A .1个B .2个C .3个D .4个7.无论a 取何值时,下列分式一定有意义的是A .221aa +B .21aa +C .112+-a aD .112+-a a 8.下列变形正确的是A .11+=--y x y x B .y x y x 11+-=-- C .y x y x -=--11 D .xyy x --=--11 9.已知03=-+y x ,则x2·y2的值是A .6B .﹣6C .D .8 10.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的 动点,△PMN 周长的最小值是5cm ,则 ∠AOB 的度数是 A .30° B .35°C .40°D .45°第Ⅱ卷(非选择题 共70分)二、填空题:本大题共8个小题,每小题3分,满分24分.11.已知点A (x ,﹣4)与点B (3,y )关于x 轴对称,那么x +y 的值为 .(第5题图)(第6题图)(第10题图)ABMPON12.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是 度. 13.如图,AB =AC =AD ,∠BAD =80°,则∠BCD = .14.如图,用圆规以直角顶点O 为圆心,以适当半径画一条弧交两直角边于A 、B 两点,再以A 为圆心,以OA 为半径画弧,与弧AB 交于点C ,则∠AOC 的度数是 .15.如图,在Rt △ABC 中,∠C =90°,直线BD 交AC 于D ,把直角三角形沿着直线BD翻折,使点C 落在斜边AB 上,如果△ABD 是等腰三角形,那么∠A = . 16.多项式62++mx x 因式分解得))(2(n x x +-,则m = . 17.已知6=+y x ,2-=xy ,则=+2211y x . 18.观察下列等式:1)1)(1(2-=+-x x x , 1)1)(1(32-=++-x x x x , 1)1)(1(423-=+++-x x x x x ,…据此规律,当0)1)(1(2345=+++++-x x x x x x 时,代数式12017-x的值为 .三、解答题:本大题共7个小题,满分46分. 解答时请写出必要的演推过程. 19.计算:()()22017311932-⎪⎭⎫⎝⎛------. 20.计算:()()()()22352123b a b a b a a a b b a -÷+-+-+.(第13题图)(第14题图)(第15题图)ABCO21.分解因式:()()ab b a b a +--4.22.先化简,再求值: 12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx ,其中2-=x . 23.解方程:42121-=+--x xx x . 24.已知△ABC 是等边三角形,点D 、E 分别在边BC 、CA 的延长线上,且DC =AE ,BE交DA 的延长线于点F ,求∠BFD 的度数.25. 过∠AOB 平分线上一点C 作CD ∥OB ,交OA 于点D ,E 是线段OC 的中点.(1)如图1,连接DE ,并延长DE 交OB 于点M ,若△OEM 的面积是6,则△ODC 的面积是 ;(2)如图2,过点E 的直线分别交射线OB 、线段CD 于点M 、N ,则线段OD 、DN 、OM 之间的数量关系是 ;(3)如图3,过点E 的直线分别交射线OB 、线段CD 的延长线于点M 、N ,探究线段OD 、DN 、OM 之间有怎样的数量关系?并证明你的结论.(第24题图)O (第25题图1)M(第25题图2)(第25题图3)2016—2017学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题3分,共24分)11.7; 12.1800; 13.140°; 14.60°; 15.30°; 16.-5; 17.10; 18.0或-2. 三、解答题:(共46分) 19.解:()()22017311932-⎪⎭⎫⎝⎛------ =9131-+- ………………………………………… 4分= -10. ………………………………………… 5分 20.解:()()()()22352123b a b a b a a a b b a -÷+-+-+=24352224123b a b a ab a a b ÷+-+- ………………………………… 3分 =ab ab a a b 33222+-+- ………………………………… 4分 =.2b ………………………………… 5分 21.解:()()ab b a b a +--4=ab b ab ab a ++--2244 ………………………………… 2分 =2244b ab a +- ………………………………… 3分=.)22b a -( ………………………………… 5分 22.解:12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx=)12()1()1()2()1)(1(2-+•+--+-x x x x x x x x x ………………………………… 3分=)12()1()1(122-+•+-x x x x x x ………………………………… 4分=.12xx + ………………………………… 5分 当2-=x 时,原式=.41212122-=-+-=+)(x x ……………………………… 6分 23.解:原方程可化为 )2(2121-=+---x xx x , ……………………………… 1分 方程两边同乘以2(x -2),得x x x =-+--)2(2)12(,……………………………… 3分 去括号,得x x x =-+-4222,移项,得2422-=-+-x x x , 合并同类项,得 2=-x ,系数化为1,得2-=x . ………………………………… 5分 检验:当x =-2时,2(x -2)≠0,所以原方程的解是x =-2. ………………………………… 7分 24.解:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ACB =60°, ………………………………… 2分 ∴∠EAB =∠ACD =120°, ………………………………… 3分 在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=DC AE ACD EAB AC AB ∴△ABE ≌△ACD , ………………………………… 5分 ∴∠E =∠D , ………………………………… 6分 ∵∠EAF =∠CAD ,∠CAD+∠D =∠ACB =60°, ……………………… 7分 ∴∠EAF +∠E =60°,∴∠BFD=60°.………………………………… 8分25.解:(1)12;………………………………… 2分(2)OD=DN+OM;………………………………… 4分(3)线段OD、DN、OM之间的数量关系是OD= OM-DN. ……… 5分证明:∵E是OC的中点,∴OE=CE,………………………………… 6分∵CD∥OB,∴∠COM=∠DCO,………………………………… 7分又∠OEM=∠CEN,∴△OEM≌△CEN,∴OM=CN. ………………………………… 8分∵OC平分∠AOB,∴∠COM=∠COD,又∠COM=∠DCO,∴∠COD=∠DCO,………………………………… 9分∴OD=CD,∵CD=CN-DN,∴OD= OM-DN. ……………………………… 10分。
2016—2017学年八年级上期末数学试题(含答案)
2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题(本大题共10个小题,每小题3分,共30分)1.若分式有意义,则x满足的条件是A.x≠0 B.x≠3 C.x≠-3 D.x≠±32.计算:(-x)3·(-2x) 的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2) B.(7,-2) C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cm B.9cm C.4cm D.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2 B.x=2 C.x=-3 D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5 B.7 C.9 D.11 10.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x= .A )B C D 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD = .14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为 cm . 15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________. 16.已知b a b a +=+111 ,则baa b +的值 。
2016~2017学年度第一学期期末考试八年级数学试卷参考答案及评分细则
2016~2017学年度第一学期期末考试八年级数学参考答案1.B2.B3.A4.D5.C6.C7.D8.B9.D 10.D11.2 12. 33x 13. 6± 14. ab 8 15. 9 16. 2317.解:两边同时乘以)1(2-x 得:3)1(2=+x ......4分解得: 21=x , ......6分检验:当21=x 时,0)1(2≠-x ......7分∴原分式方程的解为21=x .......8分18.解:原式x x x x x x 2)3)(3(333+-⨯+-++= ......4分32)3)(3(32-=+-⨯+=x x xx x x ......8分19. 证明:∵BE=CF , ∴BE+E C=CF+EC , 即BC=EF, …………2分∵AB ∥DE, ∴∠DEF=∠B , …………4分在△AB C 和△DE F 中,∵⎪⎩⎪⎨⎧=∠=∠=EFBC DEF B DEAB ∴△AB C ≌△DE F (SAS) …… 7分∴AC=DF. ………… 8分20.(1)解:原式)21)(21(22a a a a -+++= ......2分22)1()1(-+=a a ......4分(2) 原式)16(22-=x a ......6分)4)(4(2-+=x x a ......8分21. 解:(1)图略略 ......2分 2(1C ,)1 ......3分(2) 痕迹图略 ......5分 2(P ,)0 ......6分(3)3-=a ,21=b ......8分22.解(1)设单独完成此项工程,甲需x 天,则乙需x 2天, 由题意得:212155=+x x ,解得25=x ......3分检验:当25=x 时,02≠x ,∴原分式方程的解为25=x ,502=x ......5分答:甲需25天,乙需50天.(2)设乙每天的施工费用为y 万元,则甲每天的施工费用为)8.0(+y 万元,由题意得:2815)8.0(5=++y y , 2.1=y ,28.0=+y答:乙每天的施工费为2.1万元,甲每天的施工费用为2万元. ......7分(3) 20天或21天. ......10分23.(1) 证明:∵CA=CB ,∠CAB=900,点O 是AB 的中点,∴∠BCO=21∠CAB=450 , ∠A=∠B=450, ……2分∴∠BCO=∠B , ∴CO=OB. ……3分(2)连接CO,,在CB 上截取CQ=AM,连OQ, 可证△CQO ≌△AMO(SAS) ……4分 ∴OM=OQ,∠MOA =∠COD ,∵CO ⊥OA,∴MO ⊥OQ又∵△MON ≌△QON(SSS) ……5分∴∠MON=∠NOQ =21∠MOQ=450. ……6分(3)CQ=DQ, CQ ⊥DQ.证明:延长CQ 至H,,使QH=CQ,,连OH 、DH 、CD ,延长HQ 交AC 于I ,可证△OQH ≌△BQC(SAS) ∴OH =BC=AC, ∠QHO =∠BCQ, ……7分∴BC ∥HI, ∴∠AIO =∠ACB=900,∴在四边形ADOI 中,∠CAD+∠IOD=1800,又∠DOH+∠IDO=1800, ∴∠CAD =∠DOH, ……8分∴△CAD ≌△HOD(SAS) ∴DH =CD, ∠ADC =∠HDO,∵∠ADC+∠CDO=900, ∴∠HDO+∠CDO=900, ……9分∴CD ⊥DH,又点Q 是CH 的中点,∴DQ ⊥CQ ∴CQ=DQ. .....10分(另解:延长DO 交BC 于G ,连QD ,证△OGC ≌△QOD 亦可,参照给分.)24.解:(1)∵01)3(2=-++b a ,0)3(2≥+a ,01≥-b , 0)3(2=+∴a ,01=-b 3-=∴a ,1=b ,3(-∴A ,)0,1(B ,)0 ......2分 4==∴BC AB ,∵∠CBA=600 , ∴∠ODB=300 ∴BD=2OB=2, ∴CD=BC-BD=4-2=2. ......4分(2)延长EB 交y 轴于F ,连CE,△CEP 为等边三角形,可证△CDE ≌△CAP(SAS) ......6分∴∠CEB=∠CPA, ∴∠EBP=∠ECP=600, ∴∠FBO=∠DBO=600, ∴∠BFO=∠BDO=300,∴BD=BF, ∵BO ⊥DF,∴DO=OF ......7分 ∴点D 、F 关于x 轴对称,∴直线EB 必过点D 关于x 轴对称的对称点. ......8分(3)过D 作DI ∥AB 交AC 于I ,则△CDI 为等边三角形, ∴DI=CD =DB, ......9分 ∴∠MID =1200=∠DBN,∴△MDI ≌△NDB(AAS) ......10分 ∴NB =MI ,∴AN-AM=(AB+NB)-AM=AB+MI-AM=AB+AI=AB+BD=4+2=6. ......12分(另解:连AD ,在∠BDN 内作∠BDJ=300,DJ 交x 轴于J 亦可,参照给分.)。
2025届江西省上饶市余干二中学数学八年级第一学期期末统考模拟试题含解析
2025届江西省上饶市余干二中学数学八年级第一学期期末统考模拟试题模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a﹣b)22.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的高度是()A.10尺B.11尺C.12尺D.13尺3.若34yx=,则x yx+的值为()A.1 B.47C.54D.744.下列各式中,是最简二次根式的是( )A.0.2B18C 49D21x+5.下列说法不正确的是()A.调查一架“歼20”隐形战机各零部件的质量,应采用抽样调查B .一组数据2,2,3,3,3,4的众数是3C .如果x 1与x 2的平均数是4,那么x 1+1与x 2+5的平均数是7D .一组数据1,2,3,4,5的方差是2,那么数据11,12,13,14,15的方差也是26.如图,∠ACD=120°,∠B=20°,则∠A 的度数是( )A .120°B .90°C .100°D .30°7.如图所示,AC ①平分BAD ∠,AB AD =②,AB BC ⊥③,AD DC.⊥以此三个中的两个为条件,另一个为结论,可构成三个命题,即⇒①②③,⇒①③②,⇒②③①.其中正确的命题的个数是( )A .0B .1C .2D .38.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )A .2018B .2019C .2020D .20219.如图,在Rt △ACB 中,∠C=90°,BE 平分∠CBA 交AC 于点E ,过E 作ED ⊥AB 于D 点,当∠A 为( )时,ED 恰为AB 的中垂线.A .15°B .20°C .30°D .25° 10.已知112a b +=,那么232a ab b a ab b ++-+=( ) A .6 B .7 C .9 D .1011.如图,在Rt ABC ∆中, 90ACB ︒∠=,以AB ,AC ,BC 为边作等边ABD ∆,等边ACE ∆.等边CBF ∆.设AEH ∆的面积为1S ,ABC ∆的面积为2S ,BFG ∆的面积为3S ,四边形DHCG 的面积为4S ,则下列结论正确的是( )A .2143S S S S =++B .1234S S S S +=+C .1423S S S S +=+D .1324S S S S +=+12.由下列条件不能判断△ABC 是直角三角形的是( )A .∠A :∠B :∠C =3:4:5B .AB :BC :AC =3:4:5 C .∠A +∠B =∠CD .AB 2=BC 2+AC 2二、填空题(每题4分,共24分)13.已知()2350a b -+-=,那么以a b 、边边长的直角三角形的面积为__________.14.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE ,如果∠ADB =38°,则∠E 等于_____度.15.已知14a a -=,那么221+=a a______. 16.若2·8n ·16n =222,求n 的值等于_______.17.如图,在ABC ∆中,按以下步骤作图:第一步:分别以点A C 、为圆心,以大于12AC 的长为半径画弧,两弧相交于M N 、两点;第二步:作直线MN 交BC 于点D ,连接AD .(1)ADC ∆是______三角形;(填“等边”、“直角”、“等腰”)(2)若28,C AB BD ∠==,则B 的度数为___________.18.计算:12012(7)3π-⎛⎫-+-+-= ⎪⎝⎭___. 三、解答题(共78分)19.(8分)先阅读下列材料,再解答下列问题:材料:因式分解:(x +y )2+2(x +y )+1.解:将“x +y ”看成整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2.再将“A ”还原,得原式=(x +y +1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x -3y )+(2x -3y )2.(2)因式分解:(a +b )(a +b -4)+4;20.(8分)直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,连接AB .(1)如图1,已知AC ,BC 分别是BAP ∠和ABM ∠角的平分线,①点A ,B 在运动的过程中,ACB ∠的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出ACB ∠的大小.②如图2,将ABC ∆沿直线AB 折叠,若点C 落在直线PQ 上,记作点C ',则ABO ∠=_______︒;如图3,将ABC ∆沿直线AB 折叠,若点C 落在直线MN 上,记作点C '',则ABO ∠=________︒.(2)如图4,延长BA 至G ,已知BAO ∠,OAG ∠的角平分线与BOQ ∠的角平分线交其延长线交于E ,F ,在AEF ∆中,如果有一个角是另一个角的32倍,求ABO ∠的度数. 21.(8分)化简 ①()16215362-⨯- ②(2+3 )(23- )+ 21222.(10分)先化简再求值:4(m+1)2-(2m+5)(2m-5),其中m=-1.23.(10分)如图:在ABC ∆中(AC AB >),2AC BC =,BC 边上的中线AD 把ABC ∆的周长分成60cm 和40cm 两部分,求边AC 和AB 的长.24.(10分)解不等式组:215(1)2723x x x x +≥-⎧⎪-⎨<-⎪⎩,并把解集表示在数轴上. 25.(12分) “读经典古诗词,做儒雅美少年”是江赣中学收看CCTV 《中国诗词大会》之后的时尚倡议.学校图书馆购进《唐诗300首》和《宋词300首》彩绘读本各若干套,已知每套《唐诗》读本的价格比每套《宋词》读本的价格贵15元,用5400元购买《宋词》读本的套数恰好是用3600元购买《唐诗》读本套数的2倍;求每套《宋词》读本的价格.26.问题情境:如图①,在直角三角形ABC 中,∠BAC =90∘,AD ⊥BC 于点D ,可知:∠BAD =∠C (不需要证明);(1)特例探究:如图②,∠MAN =90∘,射线AE 在这个角的内部,点B .C 在∠MAN 的边AM 、AN 上,且AB =AC ,CF ⊥AE 于点F ,BD ⊥AE 于点D .证明:△ABD ≌△CAF ;(2)归纳证明:如图③,点B ,C 在∠MAN 的边AM 、AN 上,点E ,F 在∠MAN 内部的射线AD 上,∠1、∠2分别是△ABE 、△CAF 的外角.已知AB =AC ,∠1=∠2=∠BAC .求证:△ABE ≌△CAF ;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?参考答案一、选择题(每题4分,共48分)1、A【解析】分析:(1)中的面积=a2-b2,(2)中梯形的面积=(2a+2b)(a-b)÷2=(a+b)(a-b),两图形阴影面积相等,据此即可解答.解答:解:由题可得:a2-b2=(a+b)(a-b).故选A.2、D【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【详解】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:22210(1)2x x⎛⎫+=+⎪⎝⎭,解得:x=12,所以芦苇的长度=x+1=12+1=13(尺),故选:D.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.3、D【解析】∵34yx=,∴x yx+=434+=74,故选D4、D【分析】根据最简二次根式的概念对每个选项进行判断即可.【详解】A==B=C、23,不是最简二次根式,此选项不正确;D、,不能再进行化简,是最简二次根式,此选项正确;故选:D.【点睛】本题考查了最简二次根式,熟练掌握概念是解题的关键.5、A【分析】根据抽样调查和全面调查的区别、众数、平均数和方差的概念解答即可.【详解】A、调查一架隐形战机的各零部件的质量,要求精确度高的调查,适合普查,错误;B、一组数据2,2,3,3,3,4的众数是3,正确;C、如果x1与x2的平均数是4,那么x1+1与x2+5的平均数(x1+1+x2+5) ÷2=(4+1+4+5) ÷2=7,正确;D、一组数据1,2,3,4,5的方差是2,那么把每个数据都加同一个数后得到的新数据11,12,13,14,15的方差也是2,正确;故选A【点睛】本题考查了抽样调查和全面调查的区别、众数、平均数和方差的意义,熟练掌握各知识点是解答本题的关键.选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、C【详解】∠A=∠ACD﹣∠B=120°﹣20°=100°,故选C.7、C【解析】根据全等三角形的性质解答.①②③错误,两个全等三角形的对应角相等,但不一定是直角;【详解】解:⇒①③②正确,两个全等三角形的对应边相等;⇒∠;②③①正确,两个全等三角形的对应角相等,即AC平分BAD⇒故选:C.【点睛】.判断命题的真假考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题关键是要熟悉课本中的性质定理.8、D【分析】根据勾股定理和正方形的面积公式,知“生长”1次后,以直角三角形两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,即所有正方形的面积和是2×1=2;“生长”2次后,所有的正方形的面积和是3×1=3,推而广之即可求出“生长”2020次后形成图形中所有正方形的面积之和.【详解】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1.正方形D的面积+正方形E的面积+正方形F的面积+正方形G的面积=正方形A的面积+正方形B的面积=正方形C的面积=1.推而广之,即:每次“生长”的正方形面积和为1,“生长”了2020次后形成的图形中所有的正方形的面积和是2×1=2.故选D.此题考查了正方形的性质,以及勾股定理,其中能够根据勾股定理发现每一次得到的新的正方形的面积和与原正方形的面积之间的关系是解本题的关键.9、C【分析】当∠A=30°时,根据直角三角形的两个锐角互余,即可求出∠CBA,然后根据角平分线的定义即可求出∠ABE,再根据等角对等边可得EB=EA,最后根据三线合一即可得出结论.【详解】解:当∠A为30°时,ED恰为AB的中垂线,理由如下∵∠C=90°,∠A=30°∴∠CBA=90°-∠A=60°∵BE平分∠CBA∴∠ABE=12∠CBA=30°∴∠ABE=∠A∴EB=EA∵ED⊥AB∴ED恰为AB的中垂线故选C.【点睛】此题考查的是直角三角形的性质和等腰三角形的判定及性质,掌握直角三角形的两个锐角互余、等角对等边和三线合一是解决此题的关键.10、B【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理后代入原式计算即可求出值.【详解】解:∵112 a b+=,∴a bab+=2,即a+b=2ab,则原式=232a ab ba ab b++-+=432ab abab ab+-=7,故选:B.【点睛】本题考查了分式加法的运算法则,整体代换思想的应用,掌握整体代换思想是解题的关键.【分析】由 90ACB ︒∠=,得222AC BC AB +=,由ABD ∆,ACE ∆,CBF ∆是等边三角形,得21324ABD S AB DM AB ∆=⋅⋅=⋅,234ACE S AC ∆=⋅,234CBF S BC ∆=⋅,即+ACE CBF ABD S S S ∆∆=,从而可得1324S S S S +=+.【详解】∵在Rt ABC ∆中, 90ACB ︒∠=,∴222AC BC AB +=,过点D 作DM ⊥AB∵ABD ∆是等边三角形,∴∠ADM=12∠ADB=12×60°=30°,AM=12AB , ∴DM=3AM=32AB , ∴21324ABD S AB DM AB ∆=⋅⋅=⋅ 同理:234ACE S AC ∆=⋅,234CBF S BC ∆=⋅, ∴+ACE CBF ABD S S S ∆∆=∵13ACE CBF ACH BCG S S S S S S ∆∆∆∆+=+--,24ABD ACH BCG S S S S S ∆∆∆+=-- ∴1324S S S S +=+,故选D.【点睛】本题主要考查勾股定理的应用和等边三角形的性质,根据勾股定理和三角形面积公式得到 ,是解题的关键.12、A【分析】直角三角形的判定:有一个角是直角的三角形,两个锐角互余,满足勾股定理的逆定理。
江西省上饶市余干县2016-2017学年八年级(上)第三次大联考生物试卷(解析版)
2016-2017学年学年江西省上饶市余干县八年级(上)第三次大联考生物试卷一、选择题(每小题1分,共15分)1.(1分)动物界中分布最广泛、种类最多的一类动物是昆虫,主要原因是()A.体表有外骨骼B.身体分节并且分部C.有翅D.用气门呼吸2.(1分)下列各项中,属于腔肠动物和扁形动物的共同特征的是()A.两侧对称B.有口无肛门C.有刺细胞D.营寄生生活3.(1分)人之所以成为地球上“万物之灵”,从行为理论分析,是人类()行为能力最强所致.A.繁殖行为B.取食行为C.防御行为D.学习行为4.(1分)俗话说:“人有人言,兽有兽语”,蚂蚁通常用哪种“语言”进行交流?()A.表情B.声音C.气味D.舞蹈5.(1分)下面关于动物在生物圈中作用的叙述,错误的是()A.维持生态平衡B.促进物质循环C.帮助植物传播种子D.为人类提供丰富的食物6.(1分)近几年来,大棚农作物养殖业蓬勃发展,为提高大棚农作物的结果率,在棚内放养了一些蜜蜂,这体现了动物在自然界中的作用是()A.维持生态平衡B.促进生态系统的物质循环C.帮助植物传粉D.帮助植物传播种子7.(1分)食品在冰箱中能保持一段时间不腐败.主要是因为在低温的环境中()A.细菌很少B.没有细菌C.细菌都冻死了D.细菌繁殖很慢8.(1分)春天受潮的衣物、鞋子和食品上容易长出绒毛状的霉,请问这些霉属于下列哪类生物()A.细菌B.乳酸菌C.霉菌D.酵母菌9.(1分)将鱼的内脏埋入土中,过一段时间翻开土壤发现鱼内脏不见了.下列解释合理的是()A.被植物直接吸收了B.被环境中的分解者分解了C.通过内脏自身的呼吸作用消耗掉了D.被土壤吸收了10.(1分)在巴斯德曲颈瓶实验中,甲瓶的瓶口是竖直向上;乙瓶的瓶口是拉长呈S型的曲颈;将两个烧瓶内的肉汤同时煮沸放凉后,观察肉汤的变化.本实验的实验变量是()A.氧气的有无B.烧瓶放置时间的长短C.微生物的有无D.烧瓶容量的大小11.(1分)病毒这一类生物与其他生物的主要区别是病毒()A.不能独立生活B.十分微小,不具备细胞结构C.没有细胞壁D.没有叶绿体,不能制造有机物12.(1分)关于对下列三种生物的描述,正确的是()A.都是多细胞个体 B.①可以用来制面包和酒精C.②具有成形的细胞核D.③寄生在植物体内13.(1分)关于艾滋病病毒的叙述,最贴切的是()A.艾滋病病毒具有细胞结构,一般不会侵染人体B.艾滋病病毒没有遗传物质,需从寄主细胞中获得C.艾滋病病毒比其他病毒大,可用光学显微镜观察D.艾滋病病毒营寄生生活,属动物病毒14.(1分)噬菌体侵染细菌时,只有DNA进入细菌.一段时间后,细菌内出现一些新的噬菌体,这是因为DNA是()A.主要的遗传物质 B.控制性状的单位C.提供能量的物质 D.遗传物质的载体15.(1分)关于病毒的说法正确的是()A.病毒是由蛋白质外壳和内部的遗传物质构成的,所以它不是生物B.生物一旦被病毒感染,就会患病C.病毒在生态系统中是分解者D.病毒虽然没有细胞结构,但它也是生物,能遗传和变异二、综合题(共15分)16.(5分)下图是蝗虫的形态图,请回答([]中填写图中序号):(1)蝗虫身体可分为部、部、部三部分.(2)蝗虫的运动器官都着生在部.包括三对两对.(3)图中的[ ]是后足,它适于运动.(4)蝗虫有[3] 一对,是主要的视觉器官;有[1] 口器.(5)蝗虫的身体、足和触角都是分节的.体外有坚韧的,有柔软器官和的作用.17.(5分)今年秋冬交接时节,南方地区天气依旧潮湿闷热,食品、衣物、家具等易发霉,人易患急性上呼吸道感染.(1)食品等易发霉,主要是具备有利于细菌、真菌生存的条件,如、等.如图中表示细菌的是图;表示真菌的是图.(2)小红患病毒性感冒,她所感染的病原体可能与图的生物属于同一类群.这类生物结构简单,由外壳和内部遗传物质组成,没有结构,不能独立生活.18.(5分)小明同学的弟弟饭前总不爱洗手,为让他养成饭前洗手的卫生习惯,小明利用自己所学的知识,用随手可得的材料和弟弟做了如下的探究实验:找两个相同的馒头,一起放在蒸锅里蒸30分钟.待冷却后起盖,让弟弟尽快用手在甲馒头上按一下,再用肥皂把手认真洗干净后,在乙馒头上按一下.用无菌工具迅速将两个馒头分别装入相同的洁净塑料袋并密封好.一起放在温暖的地方,过一段时间,观察甲、乙两馒头的变化.(1)几天后形成较多、较大菌落的是馒头.(2)将“两个馒头放在蒸锅里蒸30分钟”的目的是.(3)用“两个馒头和两个的塑料袋”的目的是设置一组实验.(4)“用手在馒头上按一下”的过程相当于细菌培养方法中的步骤.(5)选用相同馒头和塑料袋,用同一手指的目的是.2016-2017学年学年江西省上饶市余干县八年级(上)第三次大联考生物试卷参考答案与试题解析一、选择题(每小题1分,共15分)1.(1分)动物界中分布最广泛、种类最多的一类动物是昆虫,主要原因是()A.体表有外骨骼B.身体分节并且分部C.有翅D.用气门呼吸【分析】昆虫一般具有两对翅,有三对足,昆虫的数量超过100万种,是动物界中种类最多,数量最大,分布最广的一个类群.【解答】解:全世界已知动物已超过150万种,其中昆虫就有100万种以上(即占2/3),昆虫纲不但是节肢动物门中最大的一纲,也是动物界中最大的一纲.昆虫的背部没有由脊椎骨组成的脊柱,属于无脊椎动物,一般具有两对翅,有三对足,能爬行或飞行,运动能力比较强,是无脊椎动物中惟一会飞的动物,扩大了昆虫的活动范围,对于昆虫寻找食物、求得配偶、逃避敌害等都十分有利.因此动物界中分布最广的一类动物是昆虫,原因是有翅.故选:C.【点评】解答此类题目的关键理解掌握昆虫有翅,扩大了昆虫的活动范围,对于昆虫寻找食物、求得配偶、逃避敌害等都十分有利.2.(1分)下列各项中,属于腔肠动物和扁形动物的共同特征的是()A.两侧对称B.有口无肛门C.有刺细胞D.营寄生生活【分析】腔肠动物是最低等的多细胞动物,腔肠动物的主要特征是:生活在水中,身体呈辐射对称,体表有刺细胞,体壁由内胚层、外胚层和中胶层构成,体内有消化腔.扁形动物的主要特征:身体背腹扁平、左右对称(两侧对称)、体壁具有三胚层、无体腔,有口无肛门【解答】解:A、腔肠动物身体呈辐射对称,扁形动物呈左右对称(两侧对称).故A错误.B、腔肠动物有口无肛门,扁形动物也有口无肛门.故B正确.C、腔肠动物体表有刺细胞,扁形动物没有.故C错误.D、扁形动物营寄生生活,故D错误.故选:B【点评】解题的关键是知道腔肠动物和扁形动物的特征,较为基础.3.(1分)人之所以成为地球上“万物之灵”,从行为理论分析,是人类()行为能力最强所致.A.繁殖行为B.取食行为C.防御行为D.学习行为【分析】学习行为是动物出生后通过学习得来的行为.动物建立学习行为的主要方式是条件反射.参与神经中枢是大脑皮层.动物通过后天的学习,大大地提高了适应复杂环境的能力,学习是指动物在成长过程中,通过经验的影响,发生行为的改变或形成新行为的过程.动物的种类越高等,学习能力越强,学习行为所占的比重越大,利用经验解决问题能力就越强.【解答】解:学习行为是在动物的成长过程中,通过生活经验和学习逐渐建立起来的新行为.动物的种类越高等,学习能力就越强,学习行为所占的比重就越大.人之所以成为地球上“万物之灵”,从行为理论分析,是人类学习行为能力最强所致.故选:D【点评】解答此类题目的关键是理解掌握动物的种类越高等,大脑越发达,学习能力就越强.4.(1分)俗话说:“人有人言,兽有兽语”,蚂蚁通常用哪种“语言”进行交流?()A.表情B.声音C.气味D.舞蹈【分析】动物信息交流的工具有动作、声音、气味等,这些叫做动物的语言.【解答】解:动物通讯,就是指个体通过释放一种或是几种刺激性信号,引起接受个体产生行为反应,动物通过动作、声音、气味等进行信息交流,因此把动作、声音、气味、分泌物(性外激素)叫做动物语言,蚂蚁传递信息的主要方式通是依靠气味.故选:C【点评】解答此类题目的关键是熟记动物通讯的方式,明确常见的几种动物交流的方式.5.(1分)下面关于动物在生物圈中作用的叙述,错误的是()A.维持生态平衡B.促进物质循环C.帮助植物传播种子D.为人类提供丰富的食物【分析】此题考查动物在生物圈中的作用.动物在维持生态平衡中起着重要的作用;促进生态系统的物质循环;帮助植物传粉、传播种子.【解答】解:A、食物链和食物网中的各种生物之间存在着相互依赖、相互制约的关系.在生态系统中各种生物的数量和所占的比例总是维持在相对稳定的状态,这种现象叫做生态平衡.如果食物链或食物网中的某一环节出了问题,就会影响到整个生态系统,动物是消费者,是食物链中主要环节之一,在维持生态平衡中起着重要的作用.该选项的叙述是正确的.B、动物作为消费者,直接或间接地以植物为食,通过消化和吸收,将摄取的有机物变成自身能够利用的物质.这些有机物在动物体内经过分解,释放能量,同时也产生二氧化碳、尿液等物质.这些物质可以被生产者利用,动物排出的粪便或遗体经过分解者的分解后,也能释放出二氧化碳、含氮的无机盐等物质.可见,动物能促进生态系统的物质循环.该选项的叙述是正确的.C、动物在维持生态平衡中起着重要的作用;促进生态系统的物质循环;帮助植物传粉、传播种子.该选项的叙述是正确的.D、动物在生物圈中作用为人类提供食品、药材,属于对人类的作用,但不属于对生物圈的作用.对生物圈的作用,是指促进物质循环,改善气候环境,维持生态平衡方面.该选项的叙述是错误的.故选:D.【点评】人类的生活和生产活动应从维护生物圈可持续发展的角度出发,按照生态系统发展的规律办事.各种动物在自然界中各自起着重要的作用,我们应用辨证的观点来看待动物对人类有利的一面和有害的一面,合理地保护和控制、开发和利用动物资源.6.(1分)近几年来,大棚农作物养殖业蓬勃发展,为提高大棚农作物的结果率,在棚内放养了一些蜜蜂,这体现了动物在自然界中的作用是()A.维持生态平衡B.促进生态系统的物质循环C.帮助植物传粉D.帮助植物传播种子【分析】此题考查动物在自然界中动物能够帮助植物传粉.蜂能够帮助植物传粉,使这些植物顺利地繁殖后代.【解答】解:A、食物链和食物网中的各种生物之间存在着相互依赖、相互制约的关系.在生态系统中各种生物的数量和所占的比例总是维持在相对稳定的状态,这种现象叫做生态平衡.如果食物链或食物网中的某一环节出了问题,就会影响到整个生态系统,而动物在生态平衡中起着重要的作用.该选项不符合题意.B、动物作为消费者,直接或间接地以植物为食,通过消化和吸收,将摄取的有机物变成自身能够利用的物质.这些物质在动物体内经过分解,释放能量,同时也产生二氧化碳、尿液等物质.这些物质可以被生产者利用,动物排出的粪便或遗体经过分解者的分解后,也能释放出二氧化碳、含氮的无机盐等物质.可见,动物能促进生态系统的物质循环.该选项不符合题意.C、自然界中的动物和植物在长期生存与发展的过程中,形成相互适应、相互依存的关系.动物能够帮助植物传粉,使这些植物顺利地繁殖后代,如蜜蜂采蜜.该选项符合题意.D、动物能够帮助植物传播果实和种子,有利于扩大植物的分布范围.如苍耳果实表面的钩刺挂在动物的皮毛上.该选项不符合题意.故选:C.【点评】人类的生活和生产活动应从维护生物圈可持续发展的角度出发,按照生态系统发展的规律办事.各种动物在自然界中各自起着重要的作用,我们应用辨证的观点来看待动物对人类有利的一面和有害的一面,合理地保护和控制、开发和利用动物资源.7.(1分)食品在冰箱中能保持一段时间不腐败.主要是因为在低温的环境中()A.细菌很少B.没有细菌C.细菌都冻死了D.细菌繁殖很慢【分析】低温能抑制细菌、真菌的生长和繁殖.【解答】解:防止食品腐败的原理都是杀死或抑制细菌、真菌的生长和繁殖,冰箱中温度低,能抑制细菌、真菌等微生物的生长和繁殖,使其繁殖速度慢,数量少,不能充分分解食物,达到保鲜的目的.故选:D.【点评】掌握食品防腐的原理,了解冰箱中保存食品的原理是低温抑制微生物的生长和繁殖.8.(1分)春天受潮的衣物、鞋子和食品上容易长出绒毛状的霉,请问这些霉属于下列哪类生物()A.细菌B.乳酸菌C.霉菌D.酵母菌【分析】微生物的生活需要适宜的温度、水分和营养物质.【解答】解:春天温度适宜,食品和衣服上有很多有机物,能满足微生物的生长和繁殖,使其数量大增,使衣物、食品发霉,形成菌落,细菌的菌落较小,而真菌的菌落一般较大,如“毛状“,酵母菌是单细胞的真菌,因此大多数酵母菌的菌落特征与细菌相似,但比细菌菌落稍大而厚,可见衣物的发霉长毛,应该是由霉菌等多细胞真菌引起的.故选:C【点评】了解微生物生活所需要的条件,掌握细菌菌落和真菌菌落的区别,结合题意,即可作出正确的选择.9.(1分)将鱼的内脏埋入土中,过一段时间翻开土壤发现鱼内脏不见了.下列解释合理的是()A.被植物直接吸收了B.被环境中的分解者分解了C.通过内脏自身的呼吸作用消耗掉了D.被土壤吸收了【分析】腐生的细菌和真菌把鱼的内脏中的有机物分解成了简单的无机物(二氧化碳和水)被蔬菜吸收,成为制造蔬菜体内的有机物原料,【解答】解:A、鱼的内脏埋入土中,植物吸收的是土壤中的水和无机盐,不能直接吸收有机物,A错误;B、环境中的分解者(腐生细菌、真菌)把鱼的内脏中的有机物分解成二氧化碳、水和无机盐后,才能被植物吸收,B正确;C、死亡的遗体自身不能进行呼吸作用,C错误;D、土壤也不能吸收遗体.D错误.故选:B【点评】分解者不仅促进了自然界的物质循环,而且还洁净了地球.10.(1分)在巴斯德曲颈瓶实验中,甲瓶的瓶口是竖直向上;乙瓶的瓶口是拉长呈S型的曲颈;将两个烧瓶内的肉汤同时煮沸放凉后,观察肉汤的变化.本实验的实验变量是()A.氧气的有无B.烧瓶放置时间的长短C.微生物的有无D.烧瓶容量的大小【分析】此题考查的是巴斯德曲颈瓶实验的相关内容,结合题意,分析图形作答.【解答】解:由题意可知,如图,将两个烧瓶内的肉汤同时煮沸放凉,即两瓶中都高温灭菌,甲瓶的瓶口是竖直向上的,因此空气中的微生物会通过竖直的瓶口进入甲瓶的肉汤中,使肉汤变质腐败.而乙瓶的瓶口是拉长呈S型的曲颈的,空气中的微生物就会被S型的曲颈阻挡住,微生物就不能进入乙瓶的肉汤中,肉汤保持新鲜.由上可知,甲乙两组的区别是甲组肉汤中有微生物,乙组的肉汤中无微生物,是一组对照实验,变量是有无微生物.可见C符合题意.故选:C【点评】掌握对照实验的相关知识,此题的关键点:变量是微生物的有无,不是瓶颈的曲直.11.(1分)病毒这一类生物与其他生物的主要区别是病毒()A.不能独立生活B.十分微小,不具备细胞结构C.没有细胞壁D.没有叶绿体,不能制造有机物【分析】病毒不具有细胞结构,只是由蛋白质外壳和遗传物质组成的内核构成.病毒的营养方式为寄生,通过自我复制的方式繁殖后代,病毒个体极其微小,一般只有几十到几百纳米(1纳米=10﹣9米),借助于电子显微镜才能看到.自然界中的生物一般都是由细胞构成的,病毒与它们的最主要的区别,就是没有细胞结构.【解答】解:病毒没有细胞结构,只是由蛋白质外壳和遗传物质组成的内核构成,个体极其微小,借助于电子显微镜才能看到.A、自然界中,除病毒外,还有很多种动物、植物、微生物也需要寄生生活,而不能独立生活,如植物中的菟丝子、动物中的猪肉绦虫等.不合题意.B、自然界中的生物一般都是由细胞构成的,病毒则没有细胞结构,个体也十分微小,符合题意.C、动物细胞也没有细胞壁,不合题意.D、只有植物才具有叶绿体,能制造有机物,动物和各种微生物都没有叶绿体,不合题意.故选:B【点评】对于我们学习过的一些生物,主要可以从形态、结构、生活环境、营养方式、繁殖方式等几个方面进行比较,抓住它们最突出的特点.这些特点,也是考题中出现较多的.12.(1分)关于对下列三种生物的描述,正确的是()A.都是多细胞个体 B.①可以用来制面包和酒精C.②具有成形的细胞核D.③寄生在植物体内【分析】微生物包括细菌、真菌和病毒以及一些小型的原生动物、显微藻类等在内的一大类生物群体,它个体微小,结构简单.图中①是酵母菌,②是细菌,③是病毒.【解答】解:A、②细菌是单细胞个体,③病毒无细胞结构,由蛋白质外壳和内部遗传物质构成,A错误;B、利用①酵母菌发酵可制面包和酒精,B正确;C、②细菌无成形的细胞核,属于原核生物,C错误;D、③病毒无细胞结构,只有蛋白质的外壳和内部的遗传物质,不能独立生活,只能寄生在其他生物的活细胞内,以复制方式进行繁殖,D错误.故选:B.【点评】掌握细菌、真菌和病毒的结构即可解答.13.(1分)关于艾滋病病毒的叙述,最贴切的是()A.艾滋病病毒具有细胞结构,一般不会侵染人体B.艾滋病病毒没有遗传物质,需从寄主细胞中获得C.艾滋病病毒比其他病毒大,可用光学显微镜观察D.艾滋病病毒营寄生生活,属动物病毒【分析】艾滋病是一种病毒性传染病,是人类感染人类免疫缺陷病毒(HIV)后导致免疫缺陷,使人体免疫功能缺损的疾病.病毒无细胞结构.【解答】解:A、艾滋病病毒的结构简单,无细胞结构,只由蛋白质外壳和内部的遗传物质构成,错误.B、艾滋病病毒有遗传物质,错误.C、艾滋病病毒是一类形体十分微小的生物,形体比细胞小得多,只能用纳米来表示,只有借助于电子显微镜才能看清楚它的形态,错误.D、艾滋病病毒营寄生生活,属动物病毒,正确.故选:D【点评】掌握病毒的结构特点是解题的关键.14.(1分)噬菌体侵染细菌时,只有DNA进入细菌.一段时间后,细菌内出现一些新的噬菌体,这是因为DNA是()A.主要的遗传物质 B.控制性状的单位C.提供能量的物质 D.遗传物质的载体【分析】噬菌体侵染细菌实验证明DNA是遗传物质的关键是:设法将DNA与其他物质分开,单独地、直接地观察他们的作用.【解答】解:噬菌体侵染细菌的过程:吸附→注入(注入噬菌体的DNA)→合成(控制者:噬菌体的DNA;原料:细菌的化学成分)→组装→释放.噬菌体侵染细菌的实验步骤:分别用35S或32P标记噬菌体→噬菌体与大肠杆菌混合培养→噬菌体侵染未被标记的细菌→在搅拌器中搅拌,然后离心,检测上清液和沉淀物中的放射性物质.结果证明了DNA是主要的遗传物质.【点评】本题知识点简单,考查噬菌体侵染细菌实验和实验的结论,只要考生识记噬菌体侵染细菌实验的操作步骤即可正确答题,属于考纲识记层次的考查.此类试题,需要考生正确牢固的基础知识.15.(1分)关于病毒的说法正确的是()A.病毒是由蛋白质外壳和内部的遗传物质构成的,所以它不是生物B.生物一旦被病毒感染,就会患病C.病毒在生态系统中是分解者D.病毒虽然没有细胞结构,但它也是生物,能遗传和变异【分析】病毒是一类结构十分简单的微生物,它由蛋白质的外壳和内部的遗传物质组成.根据病毒侵染细胞的不同分为三类:专门侵染动物的病毒叫动物病毒,如:SARS病毒、禽流感病毒等;专门侵染植物的病毒叫植物病毒,如:烟草花叶病毒;专门侵染细菌的病毒叫细菌病毒,又叫噬菌体.【解答】解:AD、病毒是没有细胞结构的微小生物,无细胞结构,只有蛋白质的外壳和内部的遗传物质构成.A错误,D正确;B、病毒侵入人体,人不一定会使人患病,如绿脓杆菌病毒侵入人体伤口有利于伤口康复,B 错误;C、病毒没有细胞结构,不能独立生活,必须寄生在生物的活细胞内,靠寄主活细胞内的营养物质维持生活,因此病毒在生态系统中属于消费者,C错误;故选:D【点评】解答此题的关键是明确病毒的特点和分类.二、综合题(共15分)16.(5分)下图是蝗虫的形态图,请回答([]中填写图中序号):(1)蝗虫身体可分为头部、胸部、腹部三部分.(2)蝗虫的运动器官都着生在胸部.包括足三对翅两对.(3)图中的[ 7]是后足,它适于跳跃运动.(4)蝗虫有[3] 复眼一对,是主要的视觉器官;有[1] 咀嚼式口器.(5)蝗虫的身体、足和触角都是分节的.体外有坚韧的外骨骼,有保护和支持柔软器官和防止体内水分蒸发的作用.【分析】蝗虫的身体分为I头部、II胸部、III腹部三部分,足和翅是其飞行器官,靠气管进行呼吸.图中1口器,2触角,3复眼,4翅,5前足,6中足,7后足.【解答】解:(1)蝗虫的身体分为I头部、II胸部、III腹部三部分;(2)、(3)蝗虫的胸部生有足三对,分别为前足、中足和后足,足分节,后足发达,适于跳跃,另外蝗虫还有两对翅,前翅革质、狭长,有保护作用,后翅柔软宽大,适于飞行.图中的[7]是后足,它适于跳跃运动.(4)蝗虫头部的感觉器官是2触角;主要的视觉器官是3复眼一对,单眼有感光作用;蝗虫口器为咀嚼式口器.主要由上颚、上唇、下唇、下颚和舌五个部分组成.蝗虫的上颚一对很坚硬,适于切断、咀嚼食物,许多农作物的茎、叶都被它取食,造成蝗灾.(5)蝗虫的身体、足和触角都是分节的.体外有坚韧的外骨骼,作用是保护柔软器官和防止体内水分蒸发的作用.故答案为:(1)头、胸、腹.(2)胸;足;翅.。
2023-2024学年江西省上饶市广信区、余干县八年级(上)期末数学试卷+答案解析
2023-2024学年江西省上饶市广信区、余干县八年级(上)期末数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形中,属于全等图形的一对是( )A. B. C. D.2.如图,的边BC上的高是( )A. 线段AFB. 线段DBC. 线段CFD. 线段BE3.下列“表情图”中,属于轴对称图形的是( )A. B. C. D.4.下列运算中,正确的是( )A. B.C. D.5.如果分式的值为负数,则x的取值范围是( )A. B. C. D.6.如图已知,把一张长方形纸片ABCD沿EF折叠后与BC的交点为G,D、C分别在M、N的位置上,有下列结论:①EF平分;②;③;④,其中一定正确的个数是( )A. 1B. 2C. 3D. 4二、填空题:本题共6小题,每小题3分,共18分。
7.三角形内角和定理:三角形内角和等于______.8.和全等,记作______.9.一个等腰三角形的一个底角为,则它的顶角的度数是______度.10.若分式的值等于0,则______.11.已知,,则______.12.整数m为______时,式子为整数.三、计算题:本大题共1小题,共6分。
13.以下是小明同学解方程的过程.【解析】方程两边同时乘,得…第一步解得…第二步检验:当时,…第三步所以,原分式方程的解为…第四步小明的解法从第______步开始出现错误;写出解方程的正确过程.四、解答题:本题共10小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
14.本小题8分计算:;15.本小题8分如图,在中,AF是中线,AD是角平分线,AE是高.请完成以下填空:____________;____________;______;______.16.本小题8分分解因式:17.本小题8分计算:18.本小题8分如图1,已知BE,CD是的角平分线,请你仅用无刻度的直尺作出的平分线;如图2,已知,且BD,CA分别平分与,AC与BD相交于O,请你仅用无刻度的直尺作出的平分线.19.本小题8分如图,已知AC平分,于E,于F,且求证:≌;求证:20.本小题8分阅读材料:解方程,我们可以按下面的方法解答:分解因式①竖分二次项与常数项:,②交叉相乘,验中项:③横向写出两因式:根据乘法原理,若,则或,则方程可以这样求解:方程左边因式分解得或,试用上述这种十字相乘法解下列方程:;21.本小题8分某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg 产品,甲型机器人搬运800kg 产品所用时间与乙型机器人搬运600kg 产品所用时间相等.根据以上信息,解答下列问题.小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______.小惠同学设甲型机器人搬运800kg 产品所用时间为y 小时,可列方程为______.求乙型机器人每小时搬运多少千克产品.22.本小题8分先阅读下列材料,再解答下列问题:材料:因式分解:解:将“”看成整体,令,则原式再将“A ”还原,得:原式上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:因式分解:______.因式分解:证明:若n 为正整数,则式子的值一定是某一个整数的平方.23.本小题8分如图1,,,,AD、BE相交于点M,连接求证:;用含的式子表示的度数直接写出结果;当时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断的形状,并加以证明.答案和解析1.【答案】B【解析】解:选项B中的两个图形的形状一样,大小相等,该选项中的两个图形是全等形,故选项B符合题意;选项C中的两个图形形状一样,但大小不相等,选项A,D中的两个图形不是全等形,故选项A,C,D不符合题意.故选:根据图形全等的定义对题目中给出的四个选项注意进行判断即可得出答案.此题主要考查了图形全等的定义,正确理解图形全等的定义是解决问题的关键.2.【答案】A【解析】解:由图可得:的边BC上的高是故选:根据三角形的高的定义进行分析即可得出结果.本题主要考查三角形的角平分线、中线、高,解答的关键是对三角形的高的定义的掌握.3.【答案】D【解析】解:A不属于轴对称图形,故错误;B不属于轴对称图形,故错误;C不属于轴对称图形,故错误;D属于轴对称图形,故正确;故选:根据轴对称图形的概念进行判断即可.本题考查的是轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4.【答案】C【解析】解:A、,不符合题意;B、,不符合题意;C、,符合题意;D、,不符合题意.故选:分别根据幂的乘方与积的乘方法则,合并同类项法则,平方差公式,单项式除以单项式法则计算即可得出答案.本题主要考查了幂的乘方与积的乘方法则,合并同类项法则,平方差公式,单项式除以单项式法则,属于基础题.5.【答案】D【解析】【分析】本题考查了分式的值,解题的关键是得到关于x的不等式.由于分式的值为负数,而分子为正数,则分母小于0,然后解不等式即可.【解答】解:分式的值为负数,,故选6.【答案】C【解析】解:如图:四边形ABCD是长方形,,,,由折叠得:,平分,,是的一个外角,,,,,,所以,上列结论,其中一定正确的是①②④,有3个,故选:先利用长方形的性质可得:,从而利用平行线的性质可得,,再利用折叠的性质可得:,从而可得EF平分,,然后利用三角形的外角性质可得:,从而可得,再利用平角定义可得,最后利用等式的性质以及等量代换可得:,即可解答.本题考查了翻折变换折叠问题,平行线的性质,根据题目的已知条件并结合图形进行分析是解题的关键.7.【答案】【解析】解:三角形内角和等于故答案为:根据三角形内角和定理即可得答案.本题考查三角形内角和定理,掌握三角形内角和定理是解题关键.8.【答案】≌【解析】解:和全等,记作≌,故答案为:≌根据全等三角形的表示符号求解即可.此题考查了全等三角形,熟记全等三角形的表示方法是解题的关键.9.【答案】100【解析】解:因为其底角为,所以其顶角故答案为已知给出了一个底角为,利用三角形的内角和定理:三角形的内角和为即可解本题.此题主要考查了学生的三角形的内角和定理:三角形的内角和为利用三角形的内角和求角度是一种很重要的方法,要熟练掌握.10.【答案】【解析】【分析】本题主要考查分式的值为0的条件和绝对值的知识点.分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.根据分式的值为0的条件解题即可.【解答】解:若分式的值等于0,则,又,,若分式的值等于0,则故答案为11.【答案】5【解析】解:,,故答案为:根据完全平方公式解决此题.本题主要考查完全平方公式,熟练掌握完全平方公式是解决本题的关键.12.【答案】2,0,4,【解析】解:,或或或解得:或或或故答案为:2,0,4,由式子为整数可知或或或,从而可解得m的值.本题主要考查的是求代数式的值,根据式子为整数确定出的值是解题的关键.13.【答案】一【解析】解:小明的解法从第一步开始出现错误.故答案为:一.方程两边同时乘,得解得检验:当时,所以,原分式方程的解为第一步去分母时整数漏乘.根据解分式方程的步骤,先确定最简公分母,然后去分母,解整式方程,检验,得出解.本题考查解分式方程的问题,确定最简公分母,然后去分母是解分式方程的首要步骤,在去分母时不要漏乘,注意对分式方程要检验.14.【答案】解:;【解析】先把原式变形为,然后根据平方差公式计算即可;先把原式变形为,然后根据完全平方公式计算即可.本题考查了平方差公式、完全平方公式,熟记这两个公式是解题的关键.15.【答案】【解析】解:是中线,,故答案为:CF,BC;是的角平分线,,故答案为:,;是的高,,故答案为:;是的高,,故答案为:由三角形的中线、高线、角平分线的定义,即可得到答案.本题考查三角形的中线、高线、角平分线,关键是掌握三角形的中线、高线、角平分线的定义.16.【答案】解:原式【解析】先提公因式y,再利用平方差公式即可.本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确解答的关键.17.【答案】解:原式【解析】先把除法变成乘法,再根据分式的乘法法则进行计算即可.本题考查了分式的乘除法则的应用,注意:把除法变成乘法后进行约分即可.18.【答案】解:如图1,AF为所作;如图2,OQ为所作.【解析】连接A点和BE与CD的交点,并延长交BC于F,则AF满足条件;、CD的延长线相交于P点,可证明和都为等腰三角形,同时可判断O点为的角平分线的交点,则延长PO交BC于Q,所以OQ满足条件.本题考查了作图-基本作图:熟练掌握5种基本作图.也考查了三角形三条角平分线相交于点.19.【答案】证明:平分,于E,于F,,在和中,,,,,于E,于F,在和中,,,,【解析】本题考查了全等三角形的判定和性质及角平分线性质.根据角平分线性质推出,又由根据HL证出两直角三角形全等即可.根据全等三角形性质推出,由于E,于F,证出,得出,因为,可证20.【答案】解:,,或,,,,或,,【解析】根据题中所给的十字相乘法,将方程的二次项和常数项进行竖分,确保交叉相乘再相加等于一次项即可.本题考查因式分解法解一元二次方程,将二次项和常数项进行正确的竖分是解题的关键.21.【答案】【解析】解:设乙型机器人每小时搬运xkg产品,则甲型机器人每小时搬运产品,依题意得:;设甲型机器人搬运800kg所用时间为y小时,依题意得:故答案为:;选择小华同学的思路:,化简得:,解得:,经检验,是原方程的解,且符合题意.选择小惠同学的思路:,变形得:,解得:,经检验,是原方程的解,且符合题意,所以乙型机器人每小时搬运30kg产品.设乙型机器人每小时搬运xkg产品,则甲型机器人每小时搬运产品,根据甲型机器人搬运800kg所用时间与乙型机器人搬运600kg所用时间相等,即可得出关于x的分式方程;设甲型机器人搬运800kg所用时间为y小时,根据甲型机器人比乙型机器人每小时多搬运10kg,即可得出关于y的分式方程;任选一位同学的思路,解分式方程即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【答案】【解析】解:;令,则原式变为,故;,为正整数,也为正整数,代数式的值一定是某一个整数的平方.把看作一个整体,直接利用完全平方公式因式分解即可;令,代入后因式分解后代入即可将原式因式分解;将原式转化为,进一步整理为,根据n为正整数得到也为正整数,从而说明原式是整数的平方.本题考查了因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.23.【答案】解:,,,在和中,≌,;;为等腰直角三角形.证明:如图2,由可得,,,BE的中点分别为点P、Q,,≌,,在和中,,≌,,且,又,,,为等腰直角三角形.【解析】本题主要考查了全等三角形的判定与性质,等腰直角三角形的判定以及三角形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.由,,,利用SAS即可判定≌,可得;根据≌,得出,再根据三角形内角和即可得到;先根据SAS判定≌,再根据全等三角形的性质,得出,,最后根据即可得到,进而得到为等腰直角三角形.解:见答案;≌,,中,,,中,;见答案.。
上饶市八年级上学期数学期末考试试卷
上饶市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列图形中,既是轴对称图形,又是中心对称图形的是()A . 等边三角形B . 平行四边形C . 矩形D . 正五边形2. (2分)如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC 最好选用()A . L1B . L2C . L3D . L43. (2分)生态园位于县城东北方向5公里处,如图表示准确的是()A .B .C .D .4. (2分) (2019八下·松北期末) 将直线平移后,得到直线,则原直线()A . 沿y轴向上平移了8个单位B . 沿y轴向下平移了8个单位C . 沿x轴向左平移了8个单位D . 沿x轴向右平移了8个单位5. (2分)如图,在△ABC中,AB=AC,∠B=50°,P边AB上的一个动点(不与顶点A重合),则∠BPC的值可能是()A . 135°B . 85°C . 50°D . 40°6. (2分)一汽车在某一直线道路上行驶,该车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE),根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在行驶过程中的平均速度为千米/小时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.其中正确的说法共有()A . 4个B . 3个C . 2个D . 1个7. (2分)如图所示,AB∥CD,AD∥BC,BE=DF,则图中全等三角形共有()对.A . 2B . 3C . 4D . 58. (2分)如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A . 30°B . 40°C . 50°D . 60°二、填空题 (共10题;共12分)9. (1分)据统计,到2015年末我国现有人口约为1375000000人,把1375000000用科学记数法表示为________.10. (1分) 25的平方根等于________ .11. (1分)等腰三角形ABC的底边BC=6,△ABC的外接圆⊙O的半径为5,则S△ABC=________.12. (2分)已知一次函数y=ax+b(a<0)的图象与x的交点坐标是(3,0),那么关于x的方程ax+b=0的解是 ________,关于x的不等式ax+b>0的解集是________ .13. (1分) (2017·邵阳模拟) 一次函数y=kx+2(k为常数,且k≠0)的图象如图所示,则k的可能值为________(写一个即可)14. (2分)方程组的解为________,则一次函数y=2-2x,y=5-2x的图象之间________.15. (1分)(2012·绵阳) 如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为________.(答案不唯一,只需填一个).16. (1分)(2017·保康模拟) 如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为________m(结果保留根号).17. (1分)(2020·和平模拟) 如图,是等边三角形,,点在上,,是延长线上一点,将线段绕点逆时针旋转90°得到线段,当时,线段的长为________.18. (1分) (2018八下·柳州期末) 在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN⊥AE 于N,若AC=6,BC=8,则MN=________.三、解答题 (共8题;共81分)19. (10分) (2019七上·慈溪期中) 已知的平方等于a,b立方等于,的算术平方根为3.(1)写出a,b,c的值;(2)求的平方根.20. (10分)(2017·东莞模拟) 如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE 为菱形.21. (11分) (2016八上·罗田期中) 已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N 分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM 的面积.22. (5分)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.23. (10分) (2020九下·霍林郭勒月考) 工厂准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)工厂准备购进这两种型号的节能灯共50只,且A型节能灯的数量不多于B型节能灯数量的4倍,如何购买A、B型节能灯,可以使总费用最少,且总费用最少是多少.24. (15分) (2019八上·椒江期中) 规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,请写出图中两对“等角三角形”.(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°。
八年级上册上饶数学全册全套试卷(培优篇)(Word版 含解析)
八年级上册上饶数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学三角形填空题(难)1.如图,△AEF是直角三角形,∠AEF=900,B为AE上一点,BG⊥AE于点B,GF∥BE,且AD=BD=BF,∠BFG=600,则∠AFG的度数是___________。
【答案】20°【解析】根据平行线的性质,可知∠A=∠AFG,∠EBF=∠BFG=600,然后根据等腰三角形的性质,可知∠BDF=2∠A,∠A+∠AFB=3∠A=∠EBF,因此可得∠AFG=20°.故答案为:20°.2.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.3.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.4.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.【答案】5<a<11【解析】【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a<8+3,解得:5<a <11,故答案为:5<a<11.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.5.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB= .【答案】85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB 是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.6.如图,小新从A点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A点时,一共走了__米.【答案】600【解析】【分析】【详解】解:根据题意可知:小新从A点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,故答案为:600.二、八年级数学三角形选择题(难)7.如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B .【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.8.已知,如图,AB ∥CD ,则图中α、β、γ三个角之间的数量关系为( )A .α-β+γ=180°B .α+β-γ=180°C .α+β+γ=360°D .α-β-γ=90°【答案】B【解析】【分析】延长CD 交AE 于点F ,利用平行证得β=∠AFD ;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD 交AE 于点F∵AB ∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α ∵γ+∠FDE=∠ADF∴γ+180°-α=β ∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.9.已知:如图,D 、E 、 F 分别是△ABC 的三边的延长线上一点,且AB =BF ,BC =CD ,AC =AE ,ABC S ∆=5cm 2,则DEF S ∆的值是( )A.15 cm2B.20 cm2C.30 cm2D.35 cm2【答案】D【解析】【分析】连接AD,BE,CF.根据等底同高的两个三角形面积相等,得到所有小三角形面积都等于△ABC的面积,故△DEF的面积等于7倍的△ABC面积,即可得出结果.【详解】连接AD,BE,CF.∵BC=CD,∴S△ACD=S△ABC=5,S△FCD=S△BCF.同理S△AEB=S△ABC=5,S△AED=S△ACD=5;S△AEB=S△BEF=5,S△BFC=S△ABC=5;∴S△FCD=S△BCF=5,∴S△EFD=7S△ABC=35(cm2).故选D.【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,本题有一定难度,需要通过作辅助线,运用三角形中线等分三角形的面积才能得出结果.10.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°【答案】B【解析】分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23(∠ABC+∠ACB)=23×120°=80°.在△BMC中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°.∴∠BMN=12×100°=50°;故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.11.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3的度数等于()A.50°B.30°C.20°D.15°【答案】C【解析】【分析】根据平行和三角形外角性质可得∠2=∠4=∠1+∠3,代入数据即可求∠3.【详解】如图所示,∵AB∥CD∴∠2=∠4=∠1+∠3=50°,∴∠3=∠4-30°=20°,故选C.12.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A.75°B.135°C.120°D.105°【答案】D【解析】如图,根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.故选三、八年级数学全等三角形填空题(难)13.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,则∠ACE=_____°;若AB=1,则OE的最小值=_____.【答案】301 4【解析】【分析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据"SAS"可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE 的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=12OC=14AB=14故答案为:30,1 4【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.14.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是________.【答案】8【解析】【分析】作FG⊥BC于点G,DE’⊥AB于点E’,易证E点和E’点重合,则∠FGD=∠DEP=90°;由∠EDB+∠PDF=90°可知∠EDP+∠GFD=90°,则易得∠EPD=∠GDF,再由PD=DF易证△EPD≌△GDF,则可得FG=DE,故F点的运动轨迹为平行于BC的线段,据此可进行求解.【详解】解:作FG⊥BC于点G,DE’⊥AB于点E’,由BD=4、BE=2与∠B=60°可知DE⊥AB,即∠∵DE’⊥AB,∠B=60°,∴BE’=BD×1=2,2∴E点和E’点重合,∴∠EDB=30°,∴∠EDB+∠PDF=90°,∴∠EDP+∠GFD=90°=∠EDP+∠DPE,∴∠DPE=∠GFD∵∠DEP=∠FGD=90°,FD=GP,∴△EPD≌△GDF,∴FG=DE,DG=PE,∴F点运动的路径与G点运动的路径平行,即与BC平行,由图可知,当P点在E点时,G点与D点重合,∵DG=PE,∴F点运动的距离与P点运动的距离相同,∴F点运动的路径长为:AB-BE=10-2=8,故答案为8.【点睛】通过构造垂直线段构造三角形全等,从而确定F点运动的路径,本题有一些难度.15.在△ABC中,∠ABC=60°,∠ACB=70°,若点O到三边的距离相等,则∠BOC=_____°.【答案】115或65或22.5【解析】【分析】先画出符合的图形,再根据角平分线的性质和三角形的内角和定理逐个求出即可.【详解】解:①如图,∵点O到三边的距离相等,∴点O是△ABC的三角的平分线的交点,∵∠ABC=60°,∠ACB=70°,∴∠OBC=12∠ABC=30°,1OCB2∠=∠ACB=35°,∴∠BOC=180°﹣∠OBC﹣∠OCB=115°;②如图,∵∠ABC=60°,∠ACB=70°,∴∠EBC=180°﹣∠ABC=120°,∠FCB=180°﹣∠ACB=110°,∵点O到三边的距离相等,∴O是∠EBC和∠FCB的角平分线的交点,∴∠OBC=12∠EBC=60°,1OCB2∠=∠FCB=55°,∴∠BOC=180°﹣∠OBC﹣∠OCB=65°;③如图,∵∠ABC=60°,∠ACB=75°,∴∠A=180°﹣∠ABC﹣∠ACB=45°,∵点O到三边的距离相等,∴O是∠EBA和∠ACB的角平分线的交点,∴∠OBA=12∠EBA=12×(180°﹣60°)=60°,1OCB2∠=∠ACB=37.5°,∴∠BOC=180°﹣(∠OBA+∠ABC+∠OCB)=180°﹣(60°﹣60°﹣37.5°)=22.5°;如图,此时∠BOC=22.5°,故答案为:115或65或22.5.【点睛】此题主要考查三角形的内角和,解题的关键是根据题意分情况讨论.16.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB.若AB=9,AC=5,则AM的长为______.【答案】7【解析】【分析】过点E作EN⊥AC的延长线于点N,连接BE、EC,利用角平分线的性质、垂直平分线的性质得到EM=EN,EB=EC,证明Rt△BME≌Rt△CNE(HL),得到BM=CN,证明Rt△AME≌Rt△ANE(HL),得到AM=AN,由AM=AB-BM=AB-CN=AB-(AN-AC)=AB-AN+AC=AB-AM+AC,即AM=9-AM+5,即可解答.【详解】解:如图,过点E作EN⊥AC的延长线于点N,连接BE、EC,∵BD=DC,DE⊥BC∵BE=EC.∵AE平分∠BAC,EM⊥AB,EN⊥AC,∴EM=EN ,∠EMB=∠ENC=90°. 在Rt △BME 和Rt △CNE 中,BE EC EM EN =⎧⎨=⎩, ∴Rt △BME ≌Rt △CNE (HL )∴BM=CN ,在RtAME 和Rt △ANE 中,AE AE EM EN =⎧⎨=⎩, ∴Rt △AME ≌Rt △ANE (HL )∴AM=AN ,∴AM=AB-BM=AB-CN=AB-(AN-AC )=AB-AN+AC=AB-AM+AC ,即AM=9-AM+52AM=9+52AM=14AM=7.故答案为:7.【点睛】考查了全等三角形的性质与判定,解决本题的关键是证明Rt △BME ≌Rt △CNE (HL ),得到BM=CN ,证明Rt △AME ≌Rt △ANE (HL ),得到AM=AN .17.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________【答案】33【解析】【分析】过点D 作DF 1∥BE ,求出四边形BEDF 1是菱形,根据菱形的对边相等可得BE=DF 1,然后根据等底等高的三角形的面积相等可知点F 1为所求的点,过点D 作DF 2⊥BD ,求出∠F 1DF 2=60°,从而得到△DF 1F 2是等边三角形,然后求出DF 1=DF 2,再求出∠CDF 1=∠CDF 2,利用“边角边”证明△CDF 1和△CDF 2全等,根据全等三角形的面积相等可得点F 2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【详解】如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=12∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,1212DF DFCDF CDFCD CD⎧⎪∠∠⎨⎪⎩===,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=12×60°=30°,又∵BD=6,∴BE=12×6÷cos30°33∴BF1=BF2=BF1+F1F2=23+23=43,故BF的长为23或43.故答案为:23或43.【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.18.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PC=4,点D是射线OA上的一个动点,则PD的最小值为_____.【答案】2【解析】【分析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】当PD⊥OA时,PD有最小值,作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=12PC=12×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=2,故答案是:2.【点睛】此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.四、八年级数学全等三角形选择题(难)19.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=12BF;④AE=BG.其中正确的是A.①②B.①③C.①②③D.①②③④【答案】C【解析】【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中.∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12AC. 又由(1),知BF=AC ,∴CE=12AC=12BF ;故③正确; 连接CG.∵△BCD 是等腰直角三角形,∴BD=CD.又DH ⊥BC ,∴DH 垂直平分BC.∴BG=CG.在Rt △CEG 中,∵CG 是斜边,CE 是直角边,∴CE<CG.∵CE=AE ,∴AE<BG.故④错误.故选C.【点睛】本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.20.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634AOC AOB S S +=+△△.其中正确的结论是( )A .①②③④B .①②③⑤C .①②④⑤D .①②③④⑤【答案】D【解析】【分析】证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO ′是等边三角形,可知结论②正确;在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;6AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.【详解】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB =O ′B ,AB =BC ,∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;如图①,连接OO ′,∵OB =O ′B ,且∠OBO ′=60°,∴△OBO ′是等边三角形,∴OO ′=OB =4.故结论②正确;∵△BO ′A ≌△BOC ,∴O ′A =5.在△AOO ′中,三边长为3,4,5,这是一组勾股数,∴△AOO ′是直角三角形,∠AOO ′=90°,∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,故结论③正确;2134462AOO OBO AOBO S S S '∆'∆'=+=⨯⨯=+四边形 故结论④正确;如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,则2134362AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+=四边形, 故结论⑤正确.综上所述,正确的结论为:①②③④⑤.故选:D .【点睛】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.21.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF【答案】A【解析】【分析】通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.【详解】解:∵∠BAC=45°,BD⊥AC,∴∠CAB=∠ABD=45°,∴AD=BD,∵AB=AC,AE平分∠BAC,∴CE=BE=12BC,∠CAE=∠BAE=22.5°,AE⊥BC,∴∠C+∠CAE=90°,且∠C+∠DBC=90°,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,∴△ADF≌△BDC(AAS)∴AF=BC=2CE,故选项C不符合题意,∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°∴∠AHG=67.5°,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意,连接BH,∵AG=BG,DG⊥AB,∴AH=BH,∴∠HAB=∠HBA=22.5°,∴∠EHB=45°,且AE⊥BC,∴∠EHB=∠EBH=45°,∴HE=BE,故选项B不符合题意,故选:A.【点睛】本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.22.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,∠EAF=12∠BAD,若DF=1,BE=5,则线段EF的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.【详解】在BE上截取BG=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,在△ADF与△ABG中AB ADB ADFBG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△ABG(SAS),∴AG=AF,∠FAD=∠GAB,∵∠EAF=12∠BAD,∴∠FAE=∠GAE,在△AEG与△AEF中AG AFFAE GAEAE AE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△AEF(SAS)∴EF=EG=BE﹣BG=BE﹣DF=4.故选:B.【点睛】考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.23.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23AEAB=,则313DHCEDHSS=.其中结论正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】分析:①根据题意可知∠ACD=45°,则GF=FC,则EG=EF-GF=CD-FC=DF;②由SAS证明△EHF≌△DHC即可;③根据△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;④若AEAB=23,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2.详解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF−GF,DF=CD−FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=12∠GFC=45°=∠HCD,在△EHF和△DHC中,EF=CD;∠EFH=∠DCH;FH=CH,∴△EHF≌△DHC(SAS),故②正确;③∵△EHF≌△DHC(已证),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;④∵AEAB=23,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,EG=DF;∠EGH=∠HFD;GH=FH,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,如图,过H点作HM⊥CD于M,设HM=x,则DM=5x,DH=26x,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故选D.点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.24.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()A.五对B.四对C.三对D.二对【答案】A【解析】如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;④△ABO≌△ACO;⑤△ADO≌△AEO;∴图中共有5对全等三角形.故选A.五、八年级数学轴对称三角形填空题(难)25.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】 【分析】过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M′作M′N′⊥BC 于N′,则CE 即为CM+MN 的最小值,再根据BC=32,∠ABC=45°,BD 平分∠ABC 可知△BCE 是等腰直角三角形,由锐角三角函数的定义即可求出CE 的长.【详解】解:过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M ′作M′N′⊥BC 于N′,则CE 即为CM+MN 的最小值,∵BC=32,∠ABC=45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形,∴CE=BC•cos45°=32×2=4. ∴CM+MN 的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.26.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.27.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③EF=AB ;④12ABC AEPF S S ∆=四边形,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故③不成立.故始终正确的是①②④.故选D.考点:1.全等三角形的判定与性质;2.等腰直角三角形.28.如图,BD是ABC的角平分线,AE BD⊥,垂足为F,且交线段BC于点E,连结DE,若50C∠=︒,设ABC x CDE y∠=︒∠=︒,,则y关于x的函数表达式为_____________.【答案】80y x=-【解析】【分析】根据题意,由等腰三角形的性质可得BD是AE的垂直平分线,进而得到AD=ED,求出BED∠的度数即可得到y关于x的函数表达式.【详解】∵BD是ABC∆的角平分线,AE BD⊥∴1122ABD EBD ABC x∠=∠=∠=︒,90AFB EFB∠=∠=︒∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠ ∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.29.已知如图,每个小正方形的边长都是1231,,, ....A A A 都在格点上,123345567,, ....A A A A A A A A A 都是斜边在x 轴上,且斜边长分别为2,4,6,.的等腰直角三角形.若123A A A △的三个顶点坐标为()()()1232,0,1,1,0,0A A A -,则依图中规律,则19A 的坐标为 ___________【答案】()8,0-【解析】【分析】根据相邻的两个三角形有一个公共点,列出与三角形的个数与顶点的个数的关系式,再求出A 19所在的三角形,并求出斜边长.然后根据第奇数个三角形,关于直线x=1对称,第偶数个三角形关于直线x=2对称,求出OA 19,写出坐标即可.【详解】解:设到第n 个三角形顶点的个数为y则y=2n+1,当2n+1=19时,n=9,∴A 19是第9个三角形的最后一个顶点,∵等腰直角三角形的斜边长分别为2,4,6....∴第9个等腰直角三角形的斜边长为2×9=18,由图可知,第奇数个三角形在x 轴下方,关于直线x=1对称,∴OA 19=9-1=8,∴19A 的坐标为()8,0-故答案是()8,0-【点睛】本题考查点的坐标变化规律,根据顶点个数与三角形的关系,判断出点A 19所在的三角形是解题关键30.如图,在四边形ABCD 中,∠A +∠C =180°,E 、F 分别在BC 、CD 上,且AB =BE ,AD =DF ,M 为EF 的中点,DM =3,BM =4,则五边形ABEFD 的面积是_____.【答案】12【解析】【分析】延长BM 至G ,使MG =BM ,连接FG 、DG ,证明△BME ≌△GMF (SAS ),得出FG =BE ,∠MBE =∠MGF ,证出AB =FG ,证明△DAB ≌△DFG (SAS ),得出DB =DG ,由等腰三角形的性质即可得DM ⊥BM ,由五边形ABEFD 的面积=△DBG 的面积,可求解.【详解】延长BM 至G ,使MG =BM =4,连接FG 、DG ,如图所示:∵M 为EF 中点,∴ME =MF ,在△BME 和△GMF 中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩,∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.六、八年级数学轴对称三角形选择题(难)31.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D【解析】【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB=⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.32.平面直角坐标系中,已知A (2,0),B (0,2)若在坐标轴上取C 点,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A .4B .6C .7D .8【答案】C【解析】【分析】【详解】解:如图,①以A 为圆心,AB 为半径画圆,交坐标轴于点B ,C 1,C 2,C 5,得到以A 为顶点的等腰△ABC 1,△ABC 2,△ABC 5;②以B 为圆心,AB 为半径画圆,交坐标轴于点A ,C 3,C 6,C 7,得到以B 为顶点的等腰△BAC 3,△BAC 6,△BAC 7;③作AB 的垂直平分线,交x 轴于点C 4,得到以C 为顶点的等腰△C 4AB∴符合条件的点C 共7个故选C33.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】A【解析】【分析】 根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.【详解】∵CE 垂直平分AD∴AC=CD =6cm ,ACE ECD ∠=∠∵CD 平分BCE ∠∴BCD ECD ∠=∠∴30ACE ECD DCB ︒∠=∠=∠=∴60A ︒∠=∴30B BCD ︒∠==∠∴6CD BD AC cm ===故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.34.如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】根据周角的定义先求出∠BPC 的度数,再根据对称性得到△BPC 为等腰三角形,∠PBC 即可求出;根据题意:有△APD 是等腰直角三角形;△PBC 是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD 是轴对称图形,进而可得②③④正确.【详解】根据题意,BPC 36060290150∠=-⨯-= , BP PC =,()PBC 180150215∠∴=-÷=,①正确;根据题意可得四边形ABCD 是轴对称图形,④正确;∵∠DAB+∠ABC=45°+60°+60°+15°=180°,∴AD//BC ,②正确;∵∠ABC+∠BCP=60°+15°+15°=90°,∴PC ⊥AB ,③正确,所以四个命题都正确,故选D .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.35.如图,在△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,则△BCD 的周长为( )A.13B.15C.18D.21【答案】A【解析】根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB的垂直平分线交AC于D,得到AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.点睛:此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.36.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P″的坐标是(8,4);假设0P=PD,则由P点向0D边作垂线,交点为Q则有PQ2十QD2=PD2,∵0P=PD=5=0D,∴此时的△0PD为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.下列四个多项式,可能是2x2+mx-3 (m是整数)的因式的是A.x-2 B.2x+3 C.x+4 D.2x2-1【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m是整数,∴将2x2+mx-3分解因式:2x2+mx-3=(x-1)(2x+3)或2x2+mx-3=(x+1)(2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江西省上饶市余干县八年级(上)期末数学试卷一、选择题(每小题3分,共18分)1.(3分)一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.92.(3分)如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.④3.(3分)如果等腰三角形两边长是9cm和4cm,那么它的周长是()A.17cm B.22cm C.17或22cm D.无法确定4.(3分)下列运算中正确的是()A.2x+3y=5xy B.a3﹣a2=aC.(a﹣1)(a﹣2)=a2+a﹣2 D.(a﹣ab)÷a=1﹣b5.(3分)若分式有意义,则x应满足()A.x=0 B.x≠0 C.x=1 D.x≠16.(3分)甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共6题,共18分)7.(3分)一个正多边形的每个内角度数均为135°,则它的边数为.8.(3分)已知图中的两个三角形全等,则∠α的度数是.9.(3分)已知等腰三角形的一边长等于4,一边长等于9,则这个三角形的周长为.10.(3分)多项式x2+mx+25恰好是另一个多项式的平方,则m=.11.(3分)分解因式:x3﹣4x=.12.(3分)分式方程﹣=1的解是.三、(每小题6分,共5题,共30分)13.(6分)计算:(1)﹣(﹣1)2012﹣(π﹣3.14)0+3(2)+.14.(6分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.15.(6分)已知,如图AB=CD,E、F在AC上,∠AFB=∠CED=90°,AE=CF,求证:AB∥DC.16.(6分)先化简,再求值:,其中a=﹣1.17.(6分)先化简,再求值:(+)÷,x在1,2,﹣3中选取合适的数代入求值.四、(每小题8分,共4题,共32分)18.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.19.(8分)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.20.(8分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位、再沿y轴向下平移1个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.21.(8分)学习“分式”一章后,老师写出下面的一道题让同学们解答.计算:﹣其中小明的解答过程如下:解:原式=﹣( A )=x﹣3﹣2(x﹣1)(B )=x﹣3﹣2x+2 (C )=﹣x﹣1 (D )(1)上述计算过程中,是从哪一步开始出现错误的?请写出该步代号:;(2)写出错误原因是;(3)写出本题正确的解答过程.22.(10分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.23.(12分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)2016-2017学年江西省上饶市余干县八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.9【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.2.(3分)如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带()去.A.①B.②C.③D.④【解答】解:第①块只保留了原三角形的一个角和部分边,根据这块不能配一块与原来完全一样的;第②、③只保留了原三角形的部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第④块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带④去,故选:D.3.(3分)如果等腰三角形两边长是9cm和4cm,那么它的周长是()A.17cm B.22cm C.17或22cm D.无法确定【解答】解:当腰长为9cm时,则三角形的三边分别为9cm、9cm、4cm,满足三角形的三边关系,此时周长为22cm,当腰长为4cm时,则三角形的三边分别为4cm、4cm、9cm,而4+4<9,不满足三角形的三边关系,不符合题意;所以该三角形的周长为22cm,故选B.4.(3分)下列运算中正确的是()A.2x+3y=5xy B.a3﹣a2=aC.(a﹣1)(a﹣2)=a2+a﹣2 D.(a﹣ab)÷a=1﹣b【解答】解:A、2x与3y不能合并,错误;B、a3与a2不能合并,错误;C、(a﹣1)(a﹣2)=a2﹣3a+2,错误;D、(a﹣ab)÷a=1﹣b,正确;故选D5.(3分)若分式有意义,则x应满足()A.x=0 B.x≠0 C.x=1 D.x≠1【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选D.6.(3分)甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A.=B.=C.=D.=【解答】解:设甲每天完成x个零件,则乙每天完成(x﹣4)个,由题意得,=,故选:A.二、填空题(每小题3分,共6题,共18分)7.(3分)一个正多边形的每个内角度数均为135°,则它的边数为8.【解答】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数n==8,∴该正多边形为正八边形,故答案为8.8.(3分)已知图中的两个三角形全等,则∠α的度数是50°.【解答】解:∵两个三角形全等,∴α=50°.故答案为:50°.9.(3分)已知等腰三角形的一边长等于4,一边长等于9,则这个三角形的周长为22.【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9﹣9<4,所以能构成三角形,周长是:9+9+4=22.故答案为:22.10.(3分)多项式x2+mx+25恰好是另一个多项式的平方,则m=±10.【解答】解:∵x2+mx+25恰好是另一个多项式的平方,∴m=±2×5=±10.故答案为:±10.11.(3分)分解因式:x3﹣4x=x(x+2)(x﹣2).【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).12.(3分)分式方程﹣=1的解是无解.【解答】解:方程的两边同乘(x﹣2),得1+1﹣x=x﹣2,解得x=2,检验:把x=2代入(x﹣2)=0,故原方程无解.故答案为:无解.三、(每小题6分,共5题,共30分)13.(6分)计算:(1)﹣(﹣1)2012﹣(π﹣3.14)0+3(2)+.【解答】解:(1)原式=﹣1﹣1+6=﹣2+6;(2)原式=+=.14.(6分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.【解答】解:∵AD是BC边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD﹣∠DAE=30°,∵AE是∠BAC的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=78°.15.(6分)已知,如图AB=CD,E、F在AC上,∠AFB=∠CED=90°,AE=CF,求证:AB∥DC.【解答】证明:∵∠AFB=∠CED=90°,∵AE=CF,∴AF=CE,在Rt△CED和Rt△AFB中,,∴Rt△CED≌Rt△AFB(HL),∴∠C=∠A,∴AB∥CD.16.(6分)先化简,再求值:,其中a=﹣1.【解答】解:原式=a﹣a2+a2﹣3=a﹣3,当a=﹣1时,原式=﹣1﹣3=﹣4.17.(6分)先化简,再求值:(+)÷,x在1,2,﹣3中选取合适的数代入求值.【解答】解:(+)÷===x﹣3,∵当x=1和x=﹣3时原分式无意义,∴当x=2时,原式=2﹣3=﹣1.四、(每小题8分,共4题,共32分)18.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.【解答】证明:(1)∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,∴CD⊥AB.19.(8分)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【解答】证明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.20.(8分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位、再沿y轴向下平移1个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5).21.(8分)学习“分式”一章后,老师写出下面的一道题让同学们解答.计算:﹣其中小明的解答过程如下:解:原式=﹣( A )=x﹣3﹣2(x﹣1)(B )=x﹣3﹣2x+2 (C )=﹣x﹣1 (D )(1)上述计算过程中,是从哪一步开始出现错误的?请写出该步代号:B;(2)写出错误原因是分式运算不能去分母;(3)写出本题正确的解答过程.【解答】解:(1)分式加减的过程中丢掉了分母,所以B步出现了错误.故答案为:B(2)出现错误的原式是:混淆了解分式方程与异分母分式加减法法则.,分式加减的过程中去掉了分母.故答案为:分式运算不能去分母(3)﹣=﹣===﹣22.(10分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.【解答】解:(1)由折叠的性质得出△ADE≌△A′DE,∠ADE=∠A′DE,∠AED=∠A′ED,∠A=∠A′,(2)∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠1=180°﹣2∠AED,∠2=180°﹣2∠ADE,∵∠AED=x,∠ADE=y,∴∠1=180°﹣2∠AED=180°﹣2x,∠2=180°﹣2∠ADE=180°﹣2y,(3)∵∠A′+∠A′DE+∠A′ED=180°,∴∠A′DE+∠A′ED=180°﹣∠A′,∵∠A=∠A′,∴∠A′D E+∠A′ED=180°﹣∠A,∵∠A′DE=∠ADE,∠A′ED=∠AED∴∠ADE+∠AED=180°﹣∠A,∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴2(∠AED+∠ADE)=360°﹣∠1﹣∠2,∴∠AED+∠ADE=180°﹣(∠1+∠2),∴∠A=(∠1+∠2),∴2∠A=∠1+∠2.23.(12分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)【解答】解:(1)设第一批T恤衫每件进价是x元,由题意,得=,解得x=90,经检验x=90是分式方程的解,符合题意.答:第一批T恤衫每件的进价是90元;(2)设剩余的T恤衫每件售价y元.由(1)知,第二批购进=50(件).由题意,得120×50×+y×50×﹣4950≥650,解得y≥80.答:剩余的T恤衫每件售价至少要80元.。