解直角三角形应用试题
解直角三角形应用专题带答案
解直角三角形应用专题带答案解直角三角形应用专题练1.在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度。
用测角仪在A处测得雕塑顶端点C的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°。
求该雕塑的高度(测角仪高度忽略不计,结果不取近似值)。
2.一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处。
它沿XXX方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处。
求此时船距灯塔的距离(参考数据:√2≈1.414,√3≈1.732,结果取整数)。
3.2018年4月12日,菏泽国际牡丹花会拉开帷幕,XXX用直升机航拍技术全程直播。
在直升机的镜头下,观测曹州牡丹园A处的俯角为30°,B处的俯角为45°。
如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号)4.XXX在某桥附近试飞无人机。
为了测量无人机飞行的高度AD,XXX通过操控器指令无人机测得桥头B、C的俯角分别为∠EAB=60°,∠EAC=30°,且D、B、C在同一水平线上。
已知桥BC=30米,求无人机飞行的高度AD(精确到0.01米,参考数据:√2≈1.414,√3≈1.732)。
5.我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰。
其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米。
由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°。
若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据√3≈1.732)。
6.随着航母编队的成立,我国海军日益强大。
2018年4月12日,XXX在南海海域隆重举行海上阅兵。
在阅兵之前我军加强了海上巡逻。
巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离XXX为400海里。
解直角三角形的应用测试题带答案
解直角三角形的应用测试题一、选择题(本大题共10小题,共分)1.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度如图,旗杆PA的高度与拉绳PB的长度相等小明将PB拉到的位置,测得为水平线,测角仪的高度为1米,则旗杆PA的高度为A. B. C. D.2.如图,长4m的楼梯AB的倾斜角为,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为,则调整后的楼梯AC的长为A. B. C. D.2 3 43.楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为现要在楼梯上铺一条地毯,已知米,楼梯宽度1米,则地毯的面积至少需要A. 米B. 米C. 米D. 米4.上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时30分到达B处如图从A、B两处分别测得小岛M在北偏东和北偏东方向,那么在B处船与小岛M的距离为5. A. 20海里 B. 海里 C. 海里 D. 海里6.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为a,那么滑梯长m为A. B. C. D.7.如图所示,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为,再向电视塔方向前进120米达到F处,又测得电视塔顶端A 的仰角为,则这个电视塔的高度单位:米为A. B. 61 C. D. 1216 7 88.某校八年级生物兴趣小组租两艘快艇去微山湖生物考察,他们从同一码头出发,第一艘快艇沿北偏西方向航行50千米,第二艘快艇沿南偏西方向航行50千米,如果此时第一艘快艇不动,第二艘快艇向第一艘快艇靠拢,那么第二艘快艇航行的方向和距离分别是A. 南偏东,千米B. 北偏西,千米C. 南偏东,100千米D. 北偏西,100千米9.如图,一艘海轮位于灯塔P的南偏东方向,距离灯塔60nmile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,这时,B处与灯塔P的距离为10. A. nmile B. nmile C. nmile D. nmile11.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度:,则坝底AD的长度为A. 26米B. 28米C. 30米D. 46米9 10 1112.如图是某水库大坝的横截面示意图,已知,且AD、BC之间的距离为15米,背水坡CD的坡度:,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度:4,则大坝底端增加的长度CF是米.A. 7B. 11C. 13D. 20二、填空题(本大题共10小题,共分)13.为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形已知迎水坡面米,背水坡面米,,加固后拦水坝的横断面为梯形ABED,,则CE的长为______ 米14.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为,测得底部C的俯角为,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为______ 米精确到1米,参考数据:15.16.17.小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了______18.如图,长4m的楼梯AB的倾斜角为,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为,则调整后楼梯AC长为______ 米19.如图,一名滑雪运动员沿着倾斜角为的斜坡,从A滑行至B,已知米,则这名滑雪运动员的高度下降了______米参考数据:,,20.如图,为测量某栋楼房AB的高度,在C点测得A点的仰角为,朝楼房AB方向前进10米到达点D,再次测得A点的仰角为,则此楼房的高度为______ 米结果保留根号.16 17 18 21.如图,从热气球C处测得地面A、B两点的俯角分别为、,如果此时热气球C处的高度为200米,点A、B、C在同一直线上,则AB两点间的距离是______米结果保留根号.22.如图,水库堤坝的横断面是梯形,测得BC长为30m,CD长为,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,则坝底的宽AD为______23.如图,某堤坝的斜坡AB的斜角是,坡度是,则______.24.25.26.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为,B处的仰角为已知无人飞机的飞行速度为3米秒,则这架无人飞机的飞行高度为结果保留根号______ 米三、计算题(本大题共4小题,共分)27.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度该楼底层为车库,高米;上面五层居住,每层高度相等测角仪支架离地米,在A处测得五楼顶部点D的仰角为,在B处测得四楼顶部点E的仰角为,米求居民楼的高度精确到米,参考数据:28.某兴趣小组借助无人飞机航拍校园如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为,B处的仰角为已知无人飞机的飞行速度为4米秒,求这架无人飞机的飞行高度结果保留根号29.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为,教学楼底部B的俯角为,量得实验楼与教学楼之间的距离.30.求的度数.31.求教学楼的高结果精确到,参考数据:,32.如图,在大楼AB的正前方有一斜坡CD,米,坡角,小红在斜坡下的点C处测得楼顶B的仰角为,在斜坡上的点D处测得楼顶B的仰角为,其中点A、C、E在同一直线上.33.求斜坡CD的高度DE;34.求大楼AB的高度结果保留根号四、解答题(本大题共2小题,共分)35.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为,测得大楼顶端A的仰角为点B,C,E在同一水平直线上,已知,,求障碍物B,C两点间的距离结果精确到参考数据:,36.37.38.39.如图,某湖中有一孤立的小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PQ通往小岛,某同学在观光道AB上测得如下数据:米,,请求出小桥PQ的长,结果精确到米答案和解析【答案】1. A2. B3. D4. B5. A6. C7. B8. B9. D10. C11. 812. 20813. 2514.15. 28016.17.18. 13019.20.21. 解:设每层楼高为x米,由题意得:米,,,在中,,,在中,,,,,解得:,则居民楼高为米.22. 解:如图,作,水平线,由题意得:,,,,,,,,,则.23. 解:过点C作,则有,;由题意得:,在中,,在中,,教学楼的高,则教学楼的高约为.24. 解:在中,米,,,米;过D作,交AB于点F,,,,即为等腰直角三角形,设米,四边形DEAF为矩形,米,即米,在中,,米,米,米,,,,在中,根据勾股定理得:,解得:,则米.25. 解:如图,过点D作于点F,过点C作于点H.则,在直角中,,,.,.答:障碍物B,C两点间的距离约为.26. 解:设米,在直角中,,,在直角中,,,米,,解得:米.答:小桥PQ的长度约是米.【解析】1. 解:设,在中,,,,,.故选:A.设,在中,根据,列出方程即可解决问题.本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.2. 解:在中,,,在中,,.故选B.先在中利用正弦的定义计算出AD,然后在中利用正弦的定义计算AC即可.本题考查了解直角三角形的应用坡度坡角:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成:m的形式把坡面与水平面的夹角叫做坡角,坡度i与坡角之间的关系为:.3. 解:在中,米,米,地毯的面积至少需要米;故选:D.由三角函数表示出BC,得出的长度,由矩形的面积即可得出结果.本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.4. 解:如图,过点B作于点N.由题意得,海里,.作于点N.在直角三角形ABN中,.在直角中,,则,所以海里.故选B.过点B作于点根据三角函数求BN的长,从而求BM的长.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.5. 解:,.故选A.根据三角函数的定义即可求解.本题考查了三角函数的定义,理解定义是关键.6. 【分析】根据题意求出CE的长,根据三角形的外角的性质和等腰三角形的性质求出AE的长,根据正弦的定义计算即可.本题考查的是解直角三角形的应用仰角俯角问题,理解仰角的概念、熟记锐角三角函数的定义是解题的关键.【解答】解:由题意得,,,,,,.7. 解:第一艘快艇沿北偏西方向,第二艘快艇沿南偏西方向,,,,,第二艘快艇沿南偏西方向,,,第二艘快艇航行的方向和距离分别是:北偏西,千米.故选:B.根据题意得出以及,进而得出第二艘快艇航行的方向和距离.此题主要考查了方向角以及勾股定理,正确把握方向角的定义是解题关键.8. 解:如图作于E.在中,,,,在中,,,故选:B.如图作于在中,求出PE,在中,根据即可解决问题.本题考查方向角、直角三角形、锐角三角函数的有关知识解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.9. 解:坝高12米,斜坡AB的坡度:,米,米,米,故选:D.先根据坡比求得AE的长,已知,即可求得AD.此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.10. 解:过D作于G,于H,,,背水坡CD的坡度:米,故选C.过D作于G,于H,解直角三角形即可得到结论.本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.11. 解:分别过A、D作,,垂点分别为F、G,如图所示.在中,米,,,,.在中,,米,.在中,,,,.即CE的长为8米.故答案为8.分别过A、D作下底的垂线,设垂足为F、在中,已知坡面长和坡角的度数,可求得铅直高度AF的值,也就得到了DG的长;在中,由勾股定理求CG的长,在中,根据正切函数定义得到GE的长;根据即可求解.本题考查的是解直角三角形的应用坡度坡角问题,锐角三角函数的定义,勾股定理作辅助线构造直角三角形是解答此类题的一般思路.12. 解:由题意可得:,解得:,,解得:,故该建筑物的高度为:,故答案为:208.分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.13. 解:如图,过点B作于点E,坡度::,:,,,.他升高了25m.故答案为:25.首先根据题意画出图形,由坡度为1:,可求得坡角,又由小明沿着坡度为1:的山坡向上走了50m,根据直角三角形中,所对的直角边是斜边的一半,即可求得答案.此题考查了坡度坡角问题此题比较简单,注意能构造直角三角形并用解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.14. 解:在中,,,在中,,.故答案是:.先在中利用正弦的定义计算出AD,然后在中利用正弦的定义计算AC即可.本题考查了解直角三角形的实际应用中的坡度坡角问题,难度不大,注意细心运算即可.15. 解:如图在中,,这名滑雪运动员的高度下降了280m.故答案为280如图在中,,可知这名滑雪运动员的高度下降了280m.本题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型.16. 解:在直角三角形ADB中,,,,在直角三角形ABC中,,,,,解得:.故答案为:.首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及构造方程关系式,进而可解,即可求出答案.本题考查解直角三角形的应用仰角俯角问题,要求学生能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形.17. 解:从热气球C处测得地面A、B两点的俯角分别为、,,,,,是等腰直角三角形,,在中,,,,.故答案为:.先根据从热气球C处测得地面A、B两点的俯角分别为、可求出与的度数,再由直角三角形的性质求出AD与BD的长,根据即可得出结论.本题考查的是解直角三角形的应用仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.18. 解:作于E,于F,斜坡CD的坡比为1:2,即,,又,,,由题意得,四边形BEFC是矩形,,,斜坡AB的坡比为1:3,,即,,故答案为:130m.作于E,于F,根据坡度的概念分别求出AE、DF,结合图形计算即可.本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键,掌握矩形的判定和性质的应用.19. 解::,则.故答案是:.根据坡度就是坡角的正切值即可求解.本题主要考查了坡度的定义,理解坡度和坡角的关系是解题的关键.20. 解:如图,作,水平线,由题意得:,,,,,,,,,.故答案为:.作,水平线,根据题意确定出与的度数,利用锐角三角函数定义求出AD与BD的长,由求出BC的长,即可求出BH的长.此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21. 设每层楼高为x米,由求出的长,进而表示出与的长,在直角三角形中,利用锐角三角函数定义表示出,同理表示出,由求出AB的长即可.此题属于解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.22. 如图,作,水平线,根据题意确定出与的度数,利用锐角三角函数定义求出AD与BD的长,由求出BC的长,即可求出BH的长.此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.23. 过点C作CE与BD垂直,根据题意确定出所求角度数即可;在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由求出BD的长,即为教学楼的高.此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.24. 在直角三角形DCE中,利用锐角三角函数定义求出DE的长即可;过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设,表示出BC,BD,DC,由题意得到三角形BCD为直角三角形,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.此题考查了解直角三角形仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.25. 如图,过点D作于点F,过点C作于点通过解直角得到DF的长度;通过解直角得到CE的长度,则.本题考查了解直角三角形仰角俯角问题要求学生能借助仰角构造直角三角形并解直角三角形.26. 设米,在直角和直角中分别利用x表示出AQ和BQ的长,根据,即可列方程求得x的值.本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.。
第19讲中考数学总复习(练习题) 解直角三角形的应用
在Rt△ABD中,∵∠ADB=60°,
∴BD=
3
AB=10
3
3 m,
∴CD=BC-BD=(30-10 3)m.
导航
6.(2021·南通)如图,一艘轮船位于灯塔P的南偏东60°方向,距
离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位
于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离
为 25 6 海里(结果保留根号).
导航
解析:过P作PC⊥AB于C,如图所示:
由题意得:∠APC=30°,∠BPC=45°,PA=50海里,
PC
在 Rt△APC 中,cos∠APC=PA,
3
∴PC=PA·cos∠APC=50× =25
2
PC
在 Rt△PCB 中,cos∠BPC= ,
PB
PC
25 3
( D )
(参考数据:sin 50°≈0.77;
cos 50°≈0.64;tan 50°≈1.19)
A.69.2米
B.73.1米
C.80.0米
D.85.7米
导航
解析:∵斜坡CD的坡度(或坡比)为i=1:2.4,
∴DE∶CE=5∶12,
∵DE=50米,∴CE=120米,
∵BC=150米,
∴BE=150-120=30(米),
尝试利用所学知识测量河对岸大
树AB的高度,他在点C处测得大树
顶端A的仰角为45°,再从C点出发
沿斜坡走2 米到达斜坡上D点,在点D处测得树顶端A的仰
角为30°,若斜坡CF的坡比为i=1∶3(点E、C、B在同一水平
线上).
(1)求王刚同学从点C到点D的过程中上升的高度;
解直角三角形应用题
解直角三角形应用题1、开自驾车人士,将车开到城郊结合部的轨道车站附近停车,转乘轨道交通到市中心).市郊某地正在修建地铁站,拟同步修建地下停车库.如图,是停车库坡道入口的设计图,其中MN 是水平线,MN //AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D 、F ,坡道AB 的坡度3:1=i ,AD=9米,C 在DE 上,DC=0.5米,CD 是限高标志牌的高度(标志牌上写有:限高 米).如果进入该车库车辆的高度不能超过线段CF 的长,计算该停车库限高多少米.(结果精确到0.1米)(提供可选用的数据:1631073134112...≈≈≈,,)2、我国南水北调中线工程的起点是某水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的156米增加到173.2米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角∠BAE=69°,新坝体高为DE ,背水坡坡角∠DCE=60°,求工程完工后背水坡底端水平方向增加的宽度AC .(精确到1米)(参考数据:sin69°≈0.93 ,cos69°≈0.36 ,ta n69°≈2.60 1.732M N第2题图3、为了开发利用海洋资源,需要测量某岛屿两端A 、B 的距离.如图,勘测飞机在距海平面垂直高度为100米的点C 处测得点A 的俯角为60°,然后沿着平行于AB 的方向飞行了500米至D 处,在D 处测得点B 的俯角为45°.求岛屿两端A 、B 的距离.(结果精确到0.1米)说明:①A 、B 、C 、D 在与海平面垂直的同一平面上;②参考数据:414.12732.13≈≈,.4、在数学活动课上,九年级⑴班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35︒;(2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C的仰角恰好为45︒;(3)量出A 、B 两点间的距离为4.5米.请你根据以上数据求出大树CD 的高度.(结果精确到0.1米) (参考数据:sin 350.57︒≈,cos350.82︒≈,tan 350.70︒≈)CBA第3题图(第4题图)CDB A回家作业:5、如图是已建设封顶的16层楼房和它的塔吊示意图,吊臂AG 与地面EH 平行,测得A 点到楼顶D 点的距离为5米,每层楼高3.5米,在吊臂上有一点B ,AB =16米,在C 点测得A 点的俯角(∠MCA )为20°, B 点的俯角(∠MCB )为40°,AE 、CH 都垂直于地面,求塔吊的高CH 的长(结果精确到0.1米).(参考数据:34.020sin 0≈,94.020cos 0≈,36.020tan 0≈,64.040sin 0≈,77.040cos 0≈ 84.040tan 0≈)A 第5题DBCGM6、如图,在一笔直的海岸线上有A、B两个观测站,B在A的正东方向,AB=10千米,在某一时刻,从观测站A测得一艘集装箱货船位于北偏西62.6°的C处,同时观测站B测得该集装箱船位于北偏西69.2°方向.问此时该集装箱船与海岸之间距离CH约为多少千米?(最后结果保留整数)(参考数据:sin62.6°≈0.89,cos62.6°≈0.46,tan62.6°≈1.93,sin69.2°≈0.93,cos69.2°≈0.36,tan69.2°≈2.63.)东图。
解直角三角形及其应用题目
解直角三角形是数学中的一个重要概念,它涉及到利用三角函数来求解三角形的未知元素。
在解直角三角形的问题中,我们通常知道三角形的一个锐角及其对应的两边(直角边和斜边),或者知道两个锐角和一边。
通过使用正弦、余弦和正切等三角函数,我们可以找到三角形的其他元素。
下面解直角三角形的题目示例:1、【题目】在直角三角形ABC中,∠C = 90°,AB = 5cm,BC = 4cm。
求AC 的长度。
【解析】利用勾股定理求解。
在直角三角形中,AC2= AB2–BC2。
代入已知数值,AC2 = 52– 42 = 9,所以AC = 3cm。
2、【题目】在直角三角形中,∠A = 30°,∠C = 90°,BC = 3cm。
求AB 的长度。
【解析】利用正弦函数求解。
sin A = BC/AB,所以AB = BC/sin A = 3/sin 30° = 6cm。
3、【题目】在直角三角形中,∠B = 45°,∠C = 90°,AC = 2cm。
求AB 的长度。
【解析】利用正切函数求解。
tan B = AC/BC,所以BC = AC/tan B = 2/tan 45° = 2cm。
因为∠B = 45°,所以AB = sqrt(2) * BC = 2sqrt(2)cm。
4、【题目】在直角三角形中,∠A = 60°,∠C = 90°,AB = 4cm。
求BC 和AC的长度。
【解析】利用余弦函数和勾股定理求解。
cos A = AC/AB,所以AC = AB * cos A = 4 * cos 60° = 2cm。
然后利用勾股定理,BC2 = AB2– AC2 = 16 - 4 = 12,所以BC = 2sqrt(3)cm。
5、【题目】一艘船以15节(海里/小时)的速度向正北方向航行。
同时,一股水流以5节的速度从东向西流过。
求船的实际航向和速度。
(完整word版)解直角三角形的应用中考练习题
解直角三角形的应用练习题一.选择题(共5小题)1.(2012•襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为()A.(4+1.6)m B.(12+1.6)m C.(4+1.6)m D.4m2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D.50米A.100米B.50米C.米3.(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米4.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米5.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为A.20海里B.10海里C.20海里D.30海里()二.填空题6.(2009•仙桃)如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC为_________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)7.(2009•安徽)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了_________m.8.(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出_________个这样的停车位.(≈1.4)9.(2014•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是_________海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)10.(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为_________米.三.解答题(共5小题)11.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)12.(2014•铁岭)如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)13.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)14.(2014•宿迁)如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.15.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)解直角三角形的应用练习题参考答案与试题解析一.选择题(共5小题)1.(2012•襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为()A.(4+1.6)m B.(12+1.6)m C.(4+1.6)m D.4m考点:解直角三角形的应用.分析:根据已知得出AK=BD=12m,再利用tan30°==,进而得出CD的长.解答:解:∵BD=12米,李明的眼睛高AB=1.6米,∠AOE=60°,∴DB=AK,AB=KD=1.6米,∠CAK=30°,∴tan30°==,解得CK=4(米),即CD=CK+DK=4+1.6=(4+1.6)米.故选:A.点评:本题考查的是解直角三角形的应用,根据题意得出tan30°==解答是解答此题的关键.2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.D.50米米考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.点评:此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.3.(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:先根据坡比求得AE的长,已知CB=10m,即可求得AD.解答:解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选:D.点评:此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.4.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.解答:解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.故选:D.点评:本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.20海里B.10海里C.20海里D.30海里考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.解答:解:如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC===,∴BC=20海里.故选:C.点评:本题考查了解直角三角形的应用﹣方向角问题.解题的难点是推知△ABC是等腰直角三角形.二.填空题(共5小题)6.(2009•仙桃)如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC为 3.5米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)考点:解直角三角形的应用-仰角俯角问题.专题:应用题;压轴题.分析:图中有两个直角三角形△ABD、△ACD,可根据两个已知角度,利用正切函数定义,分别求出BD和CD,求差即可.解答:解:根据题意:在Rt△ABD中,有BD=AD•tan52°.在Rt△ADC中,有DC=AD•tan35°.则有BC=BD﹣CD=6(1.28﹣0.70)=3.5(米).点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.7.(2009•安徽)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了2()m.考点:解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:利用所给角的正弦函数求两次的高度,相减即可.解答:解:由题意知:平滑前梯高为4•sin45°=4•=.平滑后高为4•sin60°=4•=.∴升高了2()m.点评:本题重点考查了三角函数定义的应用.8.(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)考点:解直角三角形的应用.专题:调配问题.分析:如图,根据三角函数可求BC,CE,由BE=BC+CE可求BE,再根据三角函数可求EF,再根据停车位的个数=(56﹣BE)÷EF+1,列式计算即可求解.解答:解:如图,BC=2.2×sin45°=2.2×≈1.54米,CE=5×sin45°=5×≈3.5米,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈3.14米,(56﹣5.04)÷3.14+1=50.96÷3.14+1≈16+1=17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.点评:考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.9.(2014•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°.在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.10.(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为100米.考点:解直角三角形的应用.专题:几何图形问题.分析:过点P作PE⊥AB于点E,先求出∠APE及∠BPE、∠ABP的度数,由锐角三角函数的定义即可得出结论.解答:解:过点P作PE⊥AB于点E,∵∠APC=75°,∠BPD=30°,∴∠APB=75°,∵∠BAP=∠APC=75°,∴∠APB=∠BAP,∴AB=PB=200m,∵∠ABP=30°,∴PE=PB=100m.故答案为:100.点评:本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.三.解答题(共5小题)11.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用.分析:(1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系;(2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.解答:解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.12.(2014•铁岭)如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,作辅助线EF⊥AC,通过平角减去其他角从而得到∠AEF=45°即可求出AE的长度.解答:解:作EF⊥AC,根据题意,CE=18×15=270米,∵tan∠CED=1,∴∠CED=∠DCE=45°,∵∠ECF=90°﹣45°﹣15°=30°,∴EF=CE=135米,∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°﹣45°﹣60°﹣30°=45°,∴AE=135≈190.35米点评:本题考查了解直角三角形的应用,解答本题的关键是作辅助线EF⊥AC,以及坡度和坡角的关系.13.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)考点:解直角三角形的应用;菱形的性质.分析:(1)证明△CED是等边三角形,即可求解;(2)分别求得当∠CED是60°和120°,两种情况下AD的长,求差即可;(3)分别求得当∠CED是60°和120°,两种情况下DG的长度,即可求得x的范围.解答:解:(1)连接CD(图1).∵CE=DE,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm;(2)根据题意得:AB=BC=CD,当∠CED=60°时,AD=3CD=60cm,当∠CED=120°时,过点E作EH⊥CD于H(图2),则∠CEH=60°,CH=HD.在直角△CHE中,sin∠CEH=,∴CH=20•sin60°=20×=10(cm),∴CD=20cm,∴AD=3×20=60≈103.9(cm).∴103.9﹣60=43.9(cm).即点A向左移动了43.9cm;(3)当∠CED=120°时,∠DEG=60°,∵DE=EG,∴△DEG是等边三角形.∴DG=DE=20cm,当∠CED=60°时(图3),则有∠DEG=120°,过点E作EI⊥DG于点I.∴∠DEI=∠GEI=60°,DI=IG,在直角△DIE中,sin∠DEI=,∴DI=DE•sin∠DEI=20×sin60°=20×=10cm.∴DG=2DI=20≈34.6cm.则x的范围是:20cm≤x≤34.6cm.点评:本题考查了菱形的性质,当菱形的一个角是120°或60°时,连接菱形的较短的对角线,即可把菱形分成两个等边三角形.14.(2014•宿迁)如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:(1)分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长线于点H,根据AB∥CD∥EF,AM∥BC∥DE,分别解Rt△ABN、Rt△DCG、Rt△FEH,求出BN、DG、FH的长度,继而可求出FM的长度;(2)在Rt△FAM中,根据sin∠FAM=,求出AF的长度,然后利用勾股定理求出AM的长度.解答:解:(1)分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长在Rt△ABN中,∵AB=6m,∠BAM=30°,∴BN=ABsin∠BAN=6×=3m,∵AB∥CD∥EF,AM∥BC∥DE,同理可得:DG=FH=3m,∴FM=FH+DG+BN=9m;(2)在Rt△FAM中,∵FM=9m,sin∠FAM=,∴AF=27m,∴AM==18(m).即AM的长为18m.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数解直角三角形,注意勾股定理的应用.15.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.。
解直角三角形典型应用20例子
解直角三角形.典型应用题20例1.已知:如图,河旁有一座小山,从山顶 A 处测得河对岸点 C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽 CD 为50m .现需从山顶 A 到河对岸点C 拉一条笔直的缆 绳AC ,求山的高度及缆绳 AC 的长(答案可带根号)•2•已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔 M 在北偏西45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少 ?(精确到0.1海里,J 3止1.732)3.已知:如图,在两面墙之间有一个底端在端在B 点;当它靠在另一侧墙上时,梯子的顶端在45°.点D 到地面的垂直距离 DE =3J2m ,求点B 到地面的垂直距离 BC •4.已知:如图,小明准备测量学校旗杆 的影子恰好落在水平地面和斜坡的坡面上, 上的影长CD = 8m ,太阳光线AD 与水平地面成26°角,斜坡CD 与水平地面所成的锐 角为30°,求旗杆 AB 的高度(精确到1m ) •A 点的梯子,当它靠在一侧墙上时,梯子的顶D 点.已知/ BAC = 60°,/ DAE=AB 的高度,当他发现斜坡正对着太阳时,旗杆AB测得水平地面上的影长 BC = 20m ,斜坡坡面北A5.已知:如图,在某旅游地一名游客由山脚一个景点B ,再由B 地沿山坡BC 行走320米到达山顶C ,如果在山顶 C 处观测到景点 B 的俯角为60°.求山高CD (精确到0.01米).5.已知:如图,小明准备用如下方法测量路灯的高度:他走到路灯旁的一个地方,竖起一 根2m 长的竹竿,测得竹竿影长为 1m ,他沿着影子的方向,又向远处走出两根竹竿的 长度,他又竖起竹竿,测得影长正好为2m .问路灯高度为多少米 ?运动员从营地A 出发,沿北偏东60°方向走了 500 30°方向走了 500m ,到达目的地 C 点.求IIIA 沿坡角为30°的山坡AB 行走400m ,到达6.已知:如图,在一次越野比赛中,到达B 点,然后再沿北偏西北n(1)A 、C 两地之间的距离;⑵确定目的地C 在营地A 的什么方向?已知:如图,在1998年特大洪水时期,要加固全长为10000m 的河堤.大堤高5m ,坝顶宽4m ,迎水坡和背水坡都是坡度为1 : 1的等腰梯形.现要将大堤加高坡度改为1 : 1.5.已知坝顶宽不变,求大坝横截面面积增加了多少平方米, 多少立方米的土石?(1)BC 的长; ⑵△ ABC 的面积.(1)求AB 的长;a⑵求证:—一si n ot7. 1m ,背水坡完成工程需已知:如图,在△ ABC 中, 9. 已知:如图,在△ ABC 中, AC = b , BC = a ,锐角/ A = Ct ,/ B =P .__b sin P . A拓展、探究、思考AB = c , AC = b ,锐角/ A = Ct .RRt △ ADC 中,/ D = 90°,/ A=a ,/ CBD = P , AB = a.用含a 及P的三10.已知:如图,在角函数的式子表示CD的长.11.已知:△ ABC 中,/ A = 30°, AC = 10,12.已知:四边形 ABCD 的两条对角线 AC 、=a (0 °v a v 90° ),求此四边形的面积. BD 相交于 E 点,AC = a , BD = b , / BEC13 ..已知:如图, 长.(精确到 AB = 52m , / DAB = 430.01m),/ CAB = 40°,求大楼上的避雷针 CD 的□□□□□□□□□ □□口□□口口口口口□□口口□□口口14.已知:如图, 知测角仪AB 的高为在距旗杆 25m 的A 处,用测角仪测得旗杆顶点C 的仰角为30°,已BC =5J2,求 AB 的长.4 1如图,△ ABC 中,AC = 10, si nC=-,si nB=-,求 AB .3如图,在O O 中,/ A =/ C ,求证:AB = CD (利用三角函数证明).如图,P 是矩形ABCD 的CD 边上一点,PE 丄AC 于E , PF 丄BD 于F , AC18.已知:如图,一艘渔船正在港口 A 的正东方向40海里的B 处进行捕鱼作业,突然接到通知,要该船前往C 岛运送一批物资到 A 港,已知C 岛在A 港的北偏东60 ° 方向,且在B 的北偏西45°方向.问该船从B 处出发,以平均每小时20海里的速 度行驶,需要多少时间才能把这批物资送到A 港(精确到1小时)(该船在C 岛停留半个小时"(丁㊁止1.41, J 3 7.73, J 6 止 2.45)15 .已知:16.已知:17.已知:=15, BC = 8,求 PE + PF.C19.已知:如图,直线y = —x+ 12分别交X轴、y轴于A、B点,将△ AOB折叠,使A 点恰好落在0B的中点C处,折痕为DE .(1)求AE 的长及sin / BEC 的值; ⑵求△ CDE 的面积.20..已知:如图,斜坡 PQ 的坡度i = 1 : J 3,在坡面上点0处有一根1m 高且垂直于水平面的水管0A ,顶端A 处有一旋转式喷头向外喷水,水流在各个方向沿相同的 抛物线落下,水流最高点 M 比点A 高出1m ,且在点A 测得点M 的仰角为30°, 以0点为原点,OA 所在直线为 标系•设水喷到斜坡上的最低点为(1) 写出A 点的坐标及直线 PQ 的解析式; (2) 求此抛物线AMC 的解析式;⑶求 I X C — X B I ; ⑷求B 点与C 点间的距离.y 轴,过O 点垂直于OA 的直线为X 轴建立直角坐 B ,最高点为C.。
解直角三角形经典题型应用题
解直角三角形经典题型应用题1. 一个田径运动员越过一根高度为2米的木板,如果他离地面的水平距离是3米,那么他的起跳点距离木板底部的高度是多少?解:设起跳点距离木板底部的高度为x,则根据勾股定理,得到:$x^2 + 3^2 = 2^2$化简得:$x^2 = 2^2 - 3^2 = -5$由于x是高度,因此应该为正数。
但是由于方程无解,因此无法解出起跳点距离木板底部的高度。
这个结果告诉我们,如果要跨越一个木板,距离不能太远,否则就无法起跳!2. 一个人看到一个高楼,测得距离为50米,角度为30度,那么这个高楼的高度是多少?解:设高楼的高度为h,根据三角函数,得到:$tan(30) = \frac{h}{50}$化简得:$h = 50\times tan(30) = 50 \times \frac{1}{\sqrt{3}} \approx28.87$因此,这个高楼的高度约为28.87米。
3. 一个人站在一座桥上,看到一条河流在他的正下方流过,测得桥与河面的垂直距离为20米,角度为45度,那么河宽是多少?解:设河宽为w,根据三角函数,得到:$tan(45) = \frac{w}{20}$化简得:$w = 20\times tan(45) = 20$因此,河宽为20米。
4. 在一个矩形田地中,角A的顶点和角B的底点均在田地边界上,角A的角度为30度,角B的角度为60度,且田地的长宽比为3:2,那么田地的面积是多少?解:假设田地的长为3x,宽为2x,则田地的面积为6x²。
又根据三角函数,得到:$tan(30) = \frac{3x}{y}$$tan(60) = \frac{2x}{y}$化简得:$x = y\times tan(30) = y\cdot\frac{1}{\sqrt{3}}$ $x = y\times tan(60) = y\cdot\sqrt{3}$解得:$y = 6\sqrt{3}$因此,田地的面积为6x² = 1080平方米。
解直角三角形的应用-坡度坡角问题精选题
解直角三角形的应用-坡度坡角问题精选题一.选择题(共15小题)1.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6B.32.1C.37.9D.39.42.如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9m B.6m C.m D.m3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.4.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为()A.24m B.22m C.20m D.18m5.如图大坝的横断面,斜坡AB的坡比i=1:2,背水坡CD的坡比i=1:1,若坡面CD的长度为米,则斜坡AB的长度为()A.米B.米C.米D.24米6.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=4m,则坡面AB的长度是()A.m B.4m C.2m D.4m7.如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米8.如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37°,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)()A.7.5米B.8米C.9米D.10米9.如图,一个长方体木箱沿斜面滑至如图位置时,AB=2m,木箱高BE=1m,斜面坡角为α,则木箱端点E距地面AC的高度表示为()m.A.+2sinαB.2cosα+sinαC.cosα+2sinαD.tanα+2sinα10.一辆汽车沿坡角为α的斜坡前进500米,则它上升的最大高度为()A.500sinαB.C.500cosαD.11.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为()A.9米B.28米C.米D.(14+2)米12.如图,在坡角为30°的山坡FB上有一座信号塔AB,其右侧有一堵防护墙CD,测得BD的长度是30米,当光线AH与水平地面的夹角为53°时,测得信号塔落在防护墙上的影子DE的长为19米,则信号塔AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)A.35.5米B.37.6米C.38.6米D.40.3米13.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米B.米C.500•cosα米D.米14.如图,河坝横断面迎水坡AB的坡比为1:.坝高BC为4m,则AB的长度为()A.4m B.8m C.8m D.16m15.如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A.7B.11C.13D.20二.填空题(共18小题)16.如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为米(结果保留根号).17.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m时,才能确保山体不滑坡.(取tan50°≈1.2)18.如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为m(结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).19.已知一个斜坡的坡度i=1:,那么该斜坡的坡角的度数是度.20.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是cm.21.如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m,则斜坡上相邻两树间的坡面距离是m.22.如图,某河堤迎水坡AB的坡比i=1:,堤高BC=5m,则坡面AB的长是m.23.如图,AB是一垂直于水平面的建筑物,BC是建筑物底端的一个平台,斜坡CD的坡度(或坡比)为i=1:0.75,坡长为10米,DE为地平面(A,B,C,D,E均在同一平面内),则平台距地面的高度为.24.某人沿着坡度i=1:的山坡向上走了300m,则他上升的高度为m.25.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部宽为2m,坝高为6m,则坝底AB的长为.26.如图,斜坡AB长为100米,坡角∠ABC=30°,现因“改小坡度”工程的需要,将斜坡AB改造成坡度i=1:5的斜坡BD(A、D、C三点在地面的同一条垂线上),那么由点A到点D下降了米.(结果保留根号)27.如图,传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程AB为米.28.如图,河坝的横断面AB的坡比是1:2,坝高BC=3米,则坡面AB的长度是米.29.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=12米,BC=20米,CD的坡度为i=1:2;且此时测得1米杆在地面上的影长为2米,则电线杆的高度为米.30.如图,当小明沿坡度i=1:的坡面由A到B行走了6米时,他实际上升的高度BC =米.31.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为米.(结果保留根号)32.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的坡度i=1:2.5,那么该斜坡的水平距离AC的长为m.33.一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=m,斜面坡角为30°,则木箱端点E距地面AC的高度EF为m.三.解答题(共8小题)34.如图是某货站传送货物的平面示意图,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4m.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出5m的通道,试判断距离B点4m的货物MNQP是否需要挪走,并说明理由.35.如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)36.沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD,高DH=12米,斜坡CD 的坡度i=1:1.此处大堤的正上方有高压电线穿过,PD表示高压线上的点与堤面AD的最近距离(P、D、H在同一直线上),在点C处测得∠DCP=26°.(1)求斜坡CD的坡角α;(2)电力部门要求此处高压线离堤面AD的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin26°≈0.44,tan26°≈0.49,sin71°≈0.95,tan71°≈2.90)37.小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB与底板的边缘线OA 所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B、O、C在同一直线上,OA=OB=24cm,BC⊥AC,∠OAC=30°.(1)求OC的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120°,求点B′到AC的距离.(结果保留根号)38.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)39.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.73240.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高1米的影子CE,而当光线与地面的夹角是45°时,办公楼顶A在地面上的影子F与墙角C有35米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请求出A,E之间的距离.41.如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.解直角三角形的应用-坡度坡角问题精选题41道参考答案与试题解析一.选择题(共15小题)1.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6B.32.1C.37.9D.39.4【解答】解:延长AB交DC于H,作EG⊥AB于G,如图所示:则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:x2+(x)2=122,解得:x=6,∴BH=6米,CH=6米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=(6+20)(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=(6+20)(米),∴AB=AG+BG=6+20+9≈39.4(米);故选:D.2.如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9m B.6m C.m D.m【解答】解:在Rt△ABC中,BC=3米,tan A=1:;∴AC=BC÷tan A=3米,∴AB==6米.故选:B.3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5cosαB.C.5sinαD.【解答】解:如图,过点B作BC⊥AF于点C.∵BC=5米,∠CBA=∠α.∴AB==.故选:B.4.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为()A.24m B.22m C.20m D.18m【解答】解:过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.由题意得:.(2分)∴DF=DE×1.6÷2=14.4(m).(1分)∴GF=BD=CD=6m.(1分)又∵.(2分)∴AG=1.6×6=9.6(m).(1分)∴AB=14.4+9.6=24(m).(1分)答:铁塔的高度为24m.故选:A.5.如图大坝的横断面,斜坡AB的坡比i=1:2,背水坡CD的坡比i=1:1,若坡面CD的长度为米,则斜坡AB的长度为()A.米B.米C.米D.24米【解答】解:过B作BE⊥AD于E,过C作CF⊥AD于F,如图所示:则四边形BEFC是矩形,∴BE=CF,∵背水坡CD的坡比i=1:1,CD=米,∴CF=DF=CD=6(米),∴BE=CF=6米,又∵斜坡AB的坡比i=1:2=,∴AE=2BE=12(米),∴AB===6(米),故选:C.6.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=4m,则坡面AB的长度是()A.m B.4m C.2m D.4m【解答】解:∵迎水坡AB的坡比是1:,∴BC:AC=1:,BC=4m,∴AC=4m,则AB==4(m).故选:D.7.如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米【解答】解:过点A作AD⊥BC于点D,∵AB=AC=2米,AD⊥BC,∴BD=DC,∴cosα==,∴DC=2cosα(米),∴BC=2DC=2×2cosα=4cosα(米).故选:A.8.如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37°,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)()A.7.5米B.8米C.9米D.10米【解答】解:在Rt△ABC中,∠ACB=90°,BC=6米,∵sin∠BAC==sin37°≈0.6=,∴AB≈BC=×6=10(米),故选:D.9.如图,一个长方体木箱沿斜面滑至如图位置时,AB=2m,木箱高BE=1m,斜面坡角为α,则木箱端点E距地面AC的高度表示为()m.A.+2sinαB.2cosα+sinαC.cosα+2sinαD.tanα+2sinα【解答】解:过E作EN⊥AC于N,交AB于M,过B作BG⊥AC于G,BH⊥EN于H,如图所示:则四边形BHNG是矩形,∴HN=BG,在Rt△ABG中,∠BAG=α,sin∠BAG=,∴BG=AB•sin∠BAG=2sinα(m),∴HN=2sinα(m),∵∠EBM=∠ANM=90°,∠BME=∠AMN,∴∠BEM=∠MAN=α,在Rt△EHB中,∠BEM=α,BE=1m,∵oos∠BEM=,∴EH=BE•cos∠BEM=1×cosα=cosα(m),∴EN=EH+HN=(cosα+2sinα)m,即木箱端点E距地面AC的高度为(cosα+2sinα)m,故选:C.10.一辆汽车沿坡角为α的斜坡前进500米,则它上升的最大高度为()A.500sinαB.C.500cosαD.【解答】解:如图,∠A=α,AE=500.则EF=500sinα.故选:A.11.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为()A.9米B.28米C.米D.(14+2)米【解答】解:延长AD交BC的延长线于F点,作DE⊥CF于E点.DE=8sin30°=4;CE=8cos30°=4;∵测得1米杆的影长为2米.∴EF=2DE=8∴BF=BC+CE+EF=20+4+8=28+4∴电线杆AB的长度是(28+4)=14+2米.故选:D.12.如图,在坡角为30°的山坡FB上有一座信号塔AB,其右侧有一堵防护墙CD,测得BD的长度是30米,当光线AH与水平地面的夹角为53°时,测得信号塔落在防护墙上的影子DE的长为19米,则信号塔AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)A.35.5米B.37.6米C.38.6米D.40.3米【解答】解:如图,作EG′⊥AB于点G′,BP⊥DE于点P,则∠DBP=∠BFG′=30°,∵BD=30,∴DP=BD=15,BP=BD cos∠DBP=30×=15,∵DE=19,∴PE=BG′=DE﹣DP=4,∵∠AEG′=∠H=53°,∴∠EAG′=37°∴AG′==,则AB=AG′+BG′=+4≈38.6,故选:C.13.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米B.米C.500•cosα米D.米【解答】解:如图,∠A=α,AE=500.则EF=500sinα.故选:A.14.如图,河坝横断面迎水坡AB的坡比为1:.坝高BC为4m,则AB的长度为()A.4m B.8m C.8m D.16m【解答】解:∵迎水坡AB的坡比为1:,∴=,∵BC=4m,∴AC=4m,由勾股定理得:AB===8(m),故选:B.15.如图是某水库大坝的横截面示意图,已知AD∥BC,且AD、BC之间的距离为15米,背水坡CD的坡度i=1:0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3:4,则大坝底端增加的长度CF是()米.A.7B.11C.13D.20【解答】解:过D作DG⊥BC于G,EH⊥BC于H,∴GH=DE=2(米,∵DG=EH=15米,背水坡CD的坡度i=1:0.6,背水坡EF的坡度i=3:4,∴CG=9(米),HF=20(米),∴CF=GH+HF﹣CG=13(米),故选:C.二.填空题(共18小题)16.如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB.BC长6米,坡角β为45°,AD的坡角α为30°,则AD长为6米(结果保留根号).【解答】解:过点D作DE⊥AB于E,过点C作CF⊥AB于F.∵CD∥AB,DE⊥AB,CF⊥AB,∴DE=CF,在Rt△CFB中,CF=BC•sin45°=3(米),∴DE=CF=3(米),在Rt△ADE中,∵∠A=30°,∠AED=90°,∴AD=2DE=6(米),故答案为:6.17.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移10m时,才能确保山体不滑坡.(取tan50°≈1.2)【解答】解:在BC上取点F,使∠FAE=50°,过点F作FH⊥AD于H,∵BF∥EH,BE⊥AD,FH⊥AD,∴四边形BEHF为矩形,∴BF=EH,BE=FH,∵斜坡AB的坡比为12:5,∴=,设BE=12xm,则AE=5xm,由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,解得,x=2,∴AE=10m,BE=24m,∴FH=BE=24m,在Rt△F AH中,tan∠F AH=,∴AH=≈20(m),∴BF=EH=AH﹣AE=10(m),∴坡顶B沿BC至少向右移10m时,才能确保山体不滑坡,故答案为:10.18.如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为 4.7m(结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).【解答】解:过点A作水平面的平行线AH,作BH⊥AH于H,由题意得,∠BAH=α=20°,在Rt△BAH中,cos∠BAH=,∴AH=AB•cos∠BAH≈5×0.940≈4.7(m),故答案为:4.7.19.已知一个斜坡的坡度i=1:,那么该斜坡的坡角的度数是30度.【解答】解:∵tanα=1:=,∴坡角=30°.20.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是210cm.【解答】解:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD﹣AD=270﹣60=210(cm).∴AC的长度是210cm.故答案为:210.21.如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m,则斜坡上相邻两树间的坡面距离是3m.【解答】解:∵坡度为1:2,=,且株距为6米,∴株距:坡面距离=2:,∴坡面距离=株距×=3(米).另解:∵CB:AB=1:2,设CB=x,AB=2x,∴AC==x,∴=,∵AB=6m,∴AC=×6=3m.故答案为:3.22.如图,某河堤迎水坡AB的坡比i=1:,堤高BC=5m,则坡面AB的长是10m.【解答】解:∵坡比i=tan∠CAB===,∠ACB=90°,∴∠BAC=30°,∴AB=2BC,又∵BC=5m,∴AB=2BC=10m,故答案为:10.23.如图,AB是一垂直于水平面的建筑物,BC是建筑物底端的一个平台,斜坡CD的坡度(或坡比)为i=1:0.75,坡长为10米,DE为地平面(A,B,C,D,E均在同一平面内),则平台距地面的高度为8米.【解答】解:如图,延长AB交ED的延长线于F,过C作CG⊥EF于G,则BF=CG,在Rt△CDG中,i==1:0.75=,CD=10米,设CG=4x米,则DG=3x米,由勾股定理得:(4x)2+(3x)2=102,解得:x=2,∴CG=8(米),GD=6(米),∴BF=CG=8米,即平台距地面的高度为8米,故答案为:8米.24.某人沿着坡度i=1:的山坡向上走了300m,则他上升的高度为150m.【解答】解:如图所示.∵BC:AB=1:.∴∠A=30°.∵AC=300m,∴BC=300×sin30°=150(m).故答案为:150.25.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部宽为2m,坝高为6m,则坝底AB的长为(7+6)m.【解答】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,∵坝顶部宽为2m,坝高为6m,∴DC=EF=2m,EC=DF=6m,∵α=30°,∴BE==6(m),∵背水坡的坡比为1.2:1,∴==,解得:AF=5(m),则AB=AF+EF+BE=5+2+6=(7+6)m,故答案为:(7+6)m.26.如图,斜坡AB长为100米,坡角∠ABC=30°,现因“改小坡度”工程的需要,将斜坡AB改造成坡度i=1:5的斜坡BD(A、D、C三点在地面的同一条垂线上),那么由点A到点D下降了(50﹣10)米.(结果保留根号)【解答】解:在Rt△ABC中,∠ABC=30°,∴AC=AB=50,BC=AB•cos∠ABC=50,∵斜坡BD的坡度i=1:5,∴DC:BC=1:5,∴DC=10,则AD=50﹣10,故答案为:(50﹣10).27.如图,传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程AB为13米.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴=,即=,解得,AC=12,由勾股定理得,AB===13,故答案为:13.28.如图,河坝的横断面AB的坡比是1:2,坝高BC=3米,则坡面AB的长度是3米.【解答】解:∵河坝的横断面AB的坡比是1:2,∴=,∵BC=3米,∴AC=6米,由勾股定理得:AB===3(米),故答案为:3.29.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=12米,BC=20米,CD的坡度为i=1:2;且此时测得1米杆在地面上的影长为2米,则电线杆的高度为(14+4)米.【解答】解:过点D作DF⊥AB于F,DE⊥BC交BC的延长线于E,则四边形FBED为矩形,∴BF=DE,DF=BE,在Rt△DCE中,CD的坡度为i=1:2,设DE=x米,则CE=2x米,由勾股定理得:x2+(2x)2=122,解得:x1=4,x2=﹣4(舍去),∴BF=DE=4米,CE=8米,∴DF=BE=BC+CE=(20+8)米,由题意得:AF=DF=(10+4)米,∴AB=AF+BF=(14+4)米,故答案为:(14+4).30.如图,当小明沿坡度i=1:的坡面由A到B行走了6米时,他实际上升的高度BC =3米.【解答】解:∵i=1:,∴tan A==,∴∠A=30°,∴BC=AB=3(米),故答案为:3.31.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为10米.(结果保留根号)【解答】解:∵∠BDC=60°,∠A=30°,∴∠ABD=60°﹣30°=30°,∴∠ABD=∠A,∴BD=AD=20(米),在Rt△BDC中,sin∠BDC=,则BC=BD•sin∠BDC=10(米),故答案为:10.32.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的坡度i=1:2.5,那么该斜坡的水平距离AC的长为75m.【解答】解:∵斜坡的坡度i=1:2.5,∴BC:AC=1:2.5,∴AC=75(m),故答案为:75.33.一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=m,斜面坡角为30°,则木箱端点E距地面AC的高度EF为3m.【解答】解:连接AE,在Rt△ABE中,AB=3m,BE=m,则AE==2m,又∵tan∠EAB==,∴∠EAB=30°,在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE×sin∠EAF=2×=3m.答:木箱端点E距地面AC的高度为3m.故答案为:3.三.解答题(共8小题)34.如图是某货站传送货物的平面示意图,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4m.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出5m的通道,试判断距离B点4m的货物MNQP是否需要挪走,并说明理由.【解答】解:(1)在Rt△ABD中,∠ABD=45°,∴AD=AB=4(m),在Rt△ACD中,∠ACD=30°,∴AC=2AD=8(m),答:新传送带AC的长度为8m;(2)在Rt△ACD中,∠ACD=30°,∴CD=AC•cos∠ACD=4(m),在Rt△ABD中,∠ABD=45°,∴BD=AD=4(m),∴BC=CD﹣BD=(4﹣4)m,∴PC=BP﹣BC=4﹣(4﹣4)=4(m),∵4<5,∴货物MNQP需要挪走.35.如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)【解答】解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.36.沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD,高DH=12米,斜坡CD 的坡度i=1:1.此处大堤的正上方有高压电线穿过,PD表示高压线上的点与堤面AD的最近距离(P、D、H在同一直线上),在点C处测得∠DCP=26°.(1)求斜坡CD的坡角α;(2)电力部门要求此处高压线离堤面AD的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin26°≈0.44,tan26°≈0.49,sin71°≈0.95,tan71°≈2.90)【解答】解:(1)∵斜坡CD的坡度i=1:1,∴tanα=DH:CH=1:1=1,∴α=45°.答:斜坡CD的坡角α为45°;(2)由(1)可知:CH=DH=12米,α=45°.∴∠PCH=∠PCD+α=26°+45°=71°,在Rt△PCH中,∵tan∠PCH==≈2.90,∴PD=22.8(米).22.8>18,答:此次改造符合电力部门的安全要求.37.小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB与底板的边缘线OA 所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B、O、C在同一直线上,OA=OB=24cm,BC⊥AC,∠OAC=30°.(1)求OC的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120°,求点B′到AC的距离.(结果保留根号)【解答】解:(1)如图③,在Rt△AOC中,OA=24,∠OAC=30°.∴OC=OA=×24=12(cm);(2)如图④,过点B′作B′D⊥AC,垂足为D,过点O作OE⊥B′D,垂足为E,由题意得,OA=OB′=24(cm),当显示屏的边缘线OB'与水平线的夹角仍保持120°,可得,∠AOB′=150°∴∠B′OE=60°,∵∠ACO=∠B′EO=90°,∴在Rt△B′OE中,B′E=OB′×sin60°=12(cm),又∵OC=DE=12(cm),∴B′D=B′E+DE=12+12(cm),即:点B′到AC的距离为(12+12)cm.38.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)【解答】解:(1)过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),∴BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m;(2)该车大灯的设计不能满足最小安全距离的要求.理由如下:∵以60 km/h的速度驾驶,∴速度还可以化为:m/s,最小安全距离为:×0.2+=8(m),大灯能照到的最远距离是BD=7m,∴该车大灯的设计不能满足最小安全距离的要求.39.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.732【解答】解:在Rt△CDE中,∵sin∠C=,cos∠C=∴DE=sin30°×DC=×14=7(m),CE=cos30°×DC=×14=7≈12.124≈12.12,∵四边形AFED是矩形,∴EF=AD=6m,AF=DE=7m在Rt△ABF中,∵∠B=45°∴DE=AF=7m,∴BC=BF+EF+EC≈7+6+12.12=25.12≈25.1(m)答:该坝的坝高和坝底宽分别为7m和25.1m.40.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高1米的影子CE,而当光线与地面的夹角是45°时,办公楼顶A在地面上的影子F与墙角C有35米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请求出A,E之间的距离.【解答】解析(1)如图,过点E作EH⊥AB于点H.设AB=x米,则BF=AB=x米,∵FC=35米,∴BC=HE=(35+x)米,∵EC=1米,∴BH=EC=1米,∴AH=(x﹣1)米.在Rt△AHE中,tan22°=,即≈,解得x≈25.答:办公楼AB的高度约为25米.(2)由(1)得AH=x﹣1=24米,在Rt△AHE中,sin22°==,∴AE=≈24×=64(米).答:A,E之间的距离约为64米.41.如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.【解答】解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F,则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,∵坡角α=45°,β=30°,∴BE=AE=6,CF=DF=6,∴BC=BE+EF+CF=6+3+6=9+6,∴BC=(9+6)m,答:BC的长(9+6)m.。
解直角三角形的应用题(经典体例)
BS ABDC A 解直角三角形的应用题(经典体例)1、如图,在山顶上有一电视塔,为了测量山高,在地面上引一条基线EDC ,在M 处用测角仪测得塔顶的仰角为45º,在N 处测得山顶的仰角为30º,仪器高为1.5米,CD=50米,又已知电视塔高为250米,求山高BE (结果保留根号)2、如图,某国侦察机B飞抵我国近海搞侦察活动,我战斗机A奋起拦截,地面雷达C测得:当两机处在同一方向,且在同一高度时,它们的仰角分别为∠DCA=16°,∠DCB=15°,它们与雷达的距离分别为AC=80千米,BC=81千米,求此时两机距离是多少千米?(精确到0.01千米)sin150.26,cos150.97,tan150.27,sin160.28,cos160.96,tan160.29︒≈︒≈︒≈︒≈︒≈︒≈3、A城气象台测得台风中心在A城正西方向300千米的B处,以每小时千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)如果A城受到台风影响,那么受影响有多长时间?4、如图,已知灯塔S周围15海里范围内有暗礁,一艘轮船以每小时20海里速度向正北方向航行,在A处测得灯塔S在轮船北偏东30°的方向上,1小时后轮船航行到B处,在B处测得灯塔S在船北偏东75°的方向上.(1) 求灯塔S与B的距离;(2) 如果轮船不改变航向,继续向正北航行有无触礁危险?为什么?A B E D C MNF E D C B A 604530D E F C BA EF D C B A 5、浦东机场沿东海岸的拦水坝,拟将背水坡的坝顶加宽2米,坡度由原来的1∶2改成1∶2.5,已知坝高6米,坝长100米. (1) 求加宽部分横断AFEB的面积;(2) 完成这一工程需要多少方材料?6、如图,有一段防洪大堤,其横断面为梯形ABCD,AB∥DC,斜坡AD的坡度为1∶1.2,斜坡BC的坡度为1∶0.8,大堤顶宽DC为6米,为了增强抗洪能力,现将大堤加高,加高部分的横断面为梯形DCEF,EF∥DC,点E、F分别在AD、BC的延长线上.当新大堤顶宽EF为3.8米时,大堤加高了多少米?7、如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着坡角为30°的山坡前进1000米到达D处,在D处测得山顶B的仰角为60°,求山的高度.8、如图,公路L与正北方向的夹角为60°,甲乙两校分别位于公路边的A、B两点处,在甲校的正东方向千米的C处有一雕塑,乙校在该雕塑的北偏东α的方向上,已知tan α=,求甲乙两校的距离.。
解直角三角形应用题类型大全
P B A 图10北东N M 解直角三角形练习班级 姓名1.我国为了维护队钓鱼岛P 的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP ∥BD ),当轮船航行到距钓鱼岛20km 的A 处时,飞机在B 处测得轮船的俯角是45°;当轮船航行到C 处时,飞机在轮船正上方的E 处,此时EC=5km .轮船到达钓鱼岛P 时,测得D 处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留根号).2. (2013•湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A 处时,测得钓鱼岛C 在该船的北偏东30°方向上,航行半小时后,该船到达点B 处,发现此时钓鱼岛C 与该船距离最短.(1)请在图中作出该船在点B 处的位置;(2)求钓鱼岛C 到B 处距离(结果保留根号)3.(2013•红河)如图,某山顶上建有手机信号中转塔AB ,在地面D 处测得塔尖的仰角60ADC ∠=,塔底的仰角45BDC ∠=,点D 距塔AB 的距离DC 为100米,求手机信号中转塔AB 的高度(结果保留根号).4。
如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东60°方向,船P 在船B 的北偏西45°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0。
1海里); (2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.5.(2013•绥化)如图,在△ABC 中,AD ⊥BC 于点D ,AB=8,∠ABD=30°,∠CAD=45°,求BC 的长.BACD60456 如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60º,又从A点测得D点的俯角β为30º,若旗杆底G为BC的中点,求矮建筑物的高CD.7 (2013鞍山)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C 在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1。
题型十一 解直角三角形的实际应用
题型十一 解直角三角形的实际应用1.(2019·锦州)如图,某学校体育场看台的顶端C 到地面的垂直距离CD 为2 m ,看台所在斜坡CM 的坡比i =1∶3,在点C 处测得旗杆顶点A 的仰角为30°,在点M 处测得旗杆顶点A 的仰角为60°,且B ,M ,D 三点在同一水平线上,求旗杆AB 的高度.(结果精确到0.1 m ,参考数据:2≈1.41,3≈1.73)解:如图,延长AC 交BD 的延长线于点H ,则∠H =∠ACE =30°,则∠MAC =∠AMB-∠H =30°,∴AM =MH ,∵i =1∶3,则MD =3CD =6 m ,在Rt △CDH 中,DH =CD tan 30°=23,∴MH =6+2 3.在Rt △ABH 中,AB =AM·sin 60°=33+3≈8.2.答:旗杆AB 的高度约为8.2 m .2.如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为60°,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为45°.已知BC =60 m ,且B 、C 、E 在同一条直线上,山坡的坡比为1∶2.求此人所在位置点P 的铅直高度(即PE 的长,结果保留根号).解:如图,过点P 作PF ⊥AB 于点F ,又∵AB ⊥BC 于点B ,∴四边形BEPF 是矩形,∴PE =BF ,PF =BE ,∵在Rt △ABC 中,BC =60米,∠ACB =60°,∴AB =BC·tan 60°=603(米),设PE =x 米,则BF =PE =x 米,∵在Rt △PCE 中,tan ∠PCE =PE CE =12,∴CE =2x 米,∵在Rt △PAF 中,∠APF =45°,∴AF =AB -BF =603-x ,PF =BE =BC +CE =60+2x ,又∵AF =PF ,∴603-x =60+2x ,解得:x =203-20,答:此人所在的位置点P 的铅直高度为(203-20)米.3.(2019·甘肃)为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260 mm ~300 mm (含300 mm ),高度的范围是120 mm ~150 mm (含150 mm ).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB ,CD 分别垂直平分踏步EF ,GH ,各踏步互相平行,AB =CD ,AC =900 mm ,∠ACD =65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1 mm ,参考数据:sin 65°≈0.906,cos 65°≈0.423)解:如图,连接BD ,作DM ⊥AB 于点M ,∵AB =CD ,AB ,CD 分别垂直平分踏步EF ,GH ,∴AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形,∴∠C =∠ABD ,AC =BD ,∵∠C =65°,AC =900,∴∠ABD =65°,BD =900,∴BM =BD·cos 65°≈900×0.423≈381,DM =BD·sin 65°≈900×0.906≈815,∵381÷3=127,120<127<150,∴该中学楼梯踏步的高度符合规定,∵815÷3≈272,260<272<300,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.4.(2019·铁岭)如图,聪聪想在自己家的窗口A 处测量对面建筑物CD 的高度,他首先量出窗口A 到地面的距离(AB 长)为16米,又测得从A 处到建筑物底部C 的俯角α为30°,看建筑物顶部D 的仰角β为53°,且AB ,CD 都与地面垂直,点A ,B ,C ,D 在同一平面内.(1)求AB 与CD 之间的距离(结果保留根号);(2)求建筑物CD 的高度(精确到1 m ).(参考数据:sin 53°≈0.8,cos 53°≈0.6,tan 53°≈1.3,3≈1.7)解:(1)如图,过点A 作AM ⊥CD 于点M ,∵AB ⊥BC ,DC ⊥BC ,∴∠ABC =∠BCD =∠CMA =90°,∴四边形ABCM 为矩形,∴AM =BC ,CM =AB =16,在Rt △ACM 中,∵CM =16,α=30°,∴tan ∠CAM =CM AM ,∴AM =16tan 30°=163,答:AB 与CD 之间的距离为163米;(2)在Rt △ADM 中,∵tan ∠DAM =DM AM,∴DM =AM·tan ∠DAM ≈163×1.3≈35.4,∴DC =DM +CM ≈51(米),答:建筑物CD 的高度约为51米.5.(2019·连云港)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin 37°=cos 53°≈35,cos 37°=sin 53°≈45,tan 37°≈34,tan 76°≈4)解:(1)在△ABC 中,∠ACB =180°-∠B -∠BAC =180°-37°-53°=90°.在Rt △ABC 中,sin B =AC AB ,∴AC =AB·sin 37°=25×35=15(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里;(2)过点C 作CM ⊥AB 于点M ,由题意易知,D ,C ,M 在一条直线上.在Rt △AMC 中,CM =AC·sin ∠CAM ≈15×45=12,AM =AC ·cos ∠CAM ≈15×35=9. 在Rt △AMD 中,tan ∠DAM =DM AM,∴DM =AM·tan 76°≈9×4=36, ∴AD =AM 2+DM 2=92+362=917,CD =DM -CM =36-12=24.设缉私艇的速度为x 海里/小时,则有2416=917x ,解得x =617. 经检验,x =617是原方程的解.答:当缉私艇的速度为617 海里/小时时,恰好在D 处成功拦截.6.(2019·宿迁)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,车轮半径为32 cm ,∠BCD =64°,BC =60 cm ,坐垫E 与点B 的距离BE 为15 cm .(1)求坐垫E 到地面的距离;(2)根据经验,当坐垫E 到CD 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80 cm ,现将坐垫E 调整至坐骑舒适高度位置E′,求EE′的长.(结果精确到0.1 cm ,参考数据:sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)解:(1)如图,过点E作EM⊥CD于点M,由题意知∠BCM=64°,EC=BC+BE=60+15=75 cm,∴EM=EC sin∠BCM=75×sin64°≈67.5(cm),67.5+32≈99.5(cm).答:坐垫E到地面的高度约为99.5 cm;(2)如图所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C=E′Hsin∠ECH=64sin64°≈71.1,∴EE′=CE-CE′≈75-71.1=3.9(cm).∴EE′的长约为3.9 cm.。
解直角三角形的应用题目
解直角三角形的应用题目好的,我将根据您的要求,为解直角三角形的应用题目创作一个题库,包含至少50道题目。
题目将覆盖直角三角形的基本概念、计算以及实际应用,确保题目多样化、准确无误,并且相互独立。
1. 在直角三角形ABC中,∠C是直角,AB=6,BC=8,那么AC的长度是多少?2. 如果一个三角形的两个内角分别是45°和45°,那么这个三角形是直角三角形吗?3. 在直角三角形DEF中,∠E是直角,DE=10,EF=12,求DF的长度。
4. 已知直角三角形的两条边长分别是8和15,那么第三边的长度是多少?5. 如果一个直角三角形的两个内角分别是30°和60°,那么这个三角形的第三边长度是多少?6. 在直角三角形ABC中,∠C是直角,AB=12,BC=5,求AC的长度。
7. 已知直角三角形的两条边长分别是6和8,那么第三边的长度是多少?8. 如果一个直角三角形的两个内角分别是60°和30°,那么这个三角形的第三边长度是多少?9. 在直角三角形DEF中,∠E是直角,DE=15,DF=12,求EF的长度。
10. 已知直角三角形的两条边长分别是10和17,那么第三边的长度是多少?11. 如果一个直角三角形的两个内角分别是90°和45°,那么这个三角形的第三边长度是多少?12. 在直角三角形ABC中,∠C是直角,AB=10,AC=12,求BC的长度。
13. 已知直角三角形的两条边长分别是4和5,那么第三边的长度是多少?14. 如果一个直角三角形的两个内角分别是90°和30°,那么这个三角形的第三边长度是多少?15. 在直角三角形DEF中,∠E是直角,DE=8,DF=10,求EF的长度。
16. 已知直角三角形的两条边长分别是7和14,那么第三边的长度是多少?17. 如果一个直角三角形的两个内角分别是90°和60°,那么这个三角形的第三边长度是多少?18. 在直角三角形ABC中,∠C是直角,AB=15,AC=12,求BC的长度。
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)1.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】2.如图,在一次数学实践活动中,小明同学为了测量学校旗杆EF的高度,在观测点A处观测旗杆顶点E的仰角为45°,接着小明朝旗杆方向前进了7m到达C点,此时,在观测点D处观测旗杆顶点E的仰角为60°.假设小明的身高为1.68m,求旗杆EF的高度.(结果保留一位小数.参考数据:√2≈1.414,√3≈ 1.732)3.如图,在徐州云龙湖旅游景区,点A为“彭城风华”观演场地,点B为“水族展览馆”,点C为“徐州汉画像石艺术馆”.已知∠BAC=60°,∠BCA=45°,AC=1640m.求“彭城风华”观演场地与“水族展览馆”之间的距离AB(精确到1m).(参考数据:√2≈1.41,√3≈1.73)4.大连作为沿海城市,我们常常可以在海边看到有人海钓.小华陪爷爷周末去东港海钓,爷爷将鱼竿AB摆成如图所示.已知AB=2.4m,在有鱼上钩时,鱼竿与地面的夹角∠BAD=45°.此时鱼线被拉直,鱼线BO= 3m.点O恰好位于海面,鱼线BO与海面OH的夹角∠BOH=60°.求海面OH与地面AD之间的距离DH的长.(结果保留一位小数,参考数据:√2=1.414,√3=1.73)5.让运动挥洒汗水,让青春闪耀光芒.重庆某中学倡议全校师生“每天运动一小时,快乐学习每一天”,响应学校号召,小明决定早睡早起,每天步行上学.如图,小明家在A处,学校在C处,从家到学校有两条线路,他可以从点A经过点B到点C,也可以从点A经过点D到点C.经测量,点B在点A的正北方向,AB=300米.点C在点B的北偏东45°;点D在点A的正东方向,点C在点D的北偏东30°方向CD=2900米.(1)求BC的长度(精确到个位);(2)小明每天步行上学都要从点A到点C,路线一;从点A经过点B到点C,路线二;从点A经过点D到点C,请计算说明他走哪一条路线较近?(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)6.拉杆箱是外出旅行常用工具.某种拉杆箱示意图如图所示(滚轮忽略不计),箱体截面是矩形BCDE,BC 的长度为60cm,两节可调节的拉杆长度相等,且与BC在同一条直线上.如图1,当拉杆伸出一节(AB)时,AC与地面夹角∠ACG=53°;如图2,当拉杆伸出两节(AM、MB)时,AC与地面夹角∠ACG=37°,两种情况下拉杆把手A点距离地面高度相同.求每节拉杆的长度.(参考数据:sin53°≈45,sin37°≈35,tan53°≈4 3,tan37°≈34)7.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间,小刚站在雕像前,自C处测得雕像顶A的仰角为53°,小强站凤栖堂门前的台阶上,自D处测得雕像顶A的仰角为45°,此时,两人的水平距离EC为0.45m,已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.8.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75∘方向,在点A的东南方向.(参考数据:√2≈1.414,√3≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60∘方向,景区管理部门决定重新翻修CD之间的步道,求CD间的距离.9.小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)10.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动,同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长.(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33)11.【综合与实践】如图1,光线从空气射入水中会发生折射现象,其中α代表入射角,β代表折射角.学习小组查阅资料了解到,若n=sinαsinβ,则把n称为折射率.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【实践操作】如图2,为了进一步研究光的折射现象,学习小组设计了如下实验:将激光笔固定在MN处,光线可沿PD照射到空容器底部B处,将水加至D处,且BF=12cm时,光点移动到C处,此时测得DF=16cm,BC=7cm四边形ABFE是矩形,GH是法线.【问题解决】(1)求入射角∠PDG的度数;(2)请求出光线从空气射入水中的折射率n.12.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由AF、线段EF和ED构成的图形为杯盖部分,其中AF、与ED均在以AD为直径的⊙O上,且AF= ED,G为EF的中点,点G是吸管插孔处(忽略插孔直径和吸管直径),由点A,B,C,D构成的图形(杯身部分)为等腰梯形,已知杯壁AB=13.6cm,杯底直径BC=5.8cm,杯壁与直线l的夹角为84°.(1)求杯口半径OD的长;(2)若杯盖顶FE=3.2cm,吸管BH=22cm,当吸管斜插,即吸管的一端与杯底点B重合时,求吸管漏出杯盖部分GH的长.(参考数据:sin84∘≈0.995,cos84∘≈0.105,tan84∘≈9.514,√15.93≈3.99,17.5222≈307.02,√315.43≈17.76,结果精确到0.1cm).13.为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB为2cm,∠ABC=150°,支架BC为18cm,面板长DE为24cm,CD为6cm.(厚度忽略不计)(1)求支点C离桌面l的高度:(计算结果保留根号)(2)小吉通过查阅资料,当面板DE绕点C转动时,面板与桌面的夹角α满足30°≤α≤70°时,能保护视力.当α从30°变化到70°的过程中,问面板上端E离桌面l的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)14.如图,四边形ABCD是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C的正东方设置了休息区K,其中休息区K在景点A的南偏西30°方向800√2米处,景点A在景点B的北偏东75°方向,景点B和休息区K两地相距400√5米(∠ABK<90°),景点D分别在休息区K、景点A的正东方向和正南方向.(参考数据:√2≈1.41,√5≈2.24,√6≈2.45)(1)求步道AB的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C一起向正东出发,不久到达休息区K,他们发现有两条路线到达景点A,于是小宏想比赛看谁先到达景点A.他们分别租了一辆共享单车,两人同时在K点出发,小明选择①K−B−A路线,速度为每分钟320米;小宏选择②K−D−A路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A呢?15.某公园里有一座凉亭,亭盖呈圆锥状,如图所示,凉亭的顶点为O,点O在圆锥底面、地面上的正投影分别为点O1,O2,点P为圆锥底面的圆上一点,数据显示,该圆锥的底面半径为2米(即O1P=2米),圆锥底面离地面的高度为3米(即O1O2=3米).(1)若OO1=2米,求圆锥的侧面积;(2)现计划对亭盖的外部进行喷漆作业,需测算亭盖的外部面积(即圆锥的侧面积).因凉亭内堆积建筑材料,导致无法直接测量OO2的高度,工人先在水平地面上选取观测点A,B(A,B,O2在同一直线上),利用测角仪分别测得点O的仰角为α,β,其中tanα=12,tanβ=25,再测得A,B两点间的距离为m米(即AB=MN=m米),已知测角仪的高为1米(即MA=NB=QO2=1米),求亭盖的外部面积(用含m的代数式表示).16.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中∠DEC=∠AEB,∠DFC=∠GFB),具体操作如下:将平面镜水平放置于E处,小茜站在C处观测,俯角∠MDE=45°时,恰好通过平面镜看到“美”字顶端A处(CD为小茜眼睛到地面的高度),再将平面镜水平放置于F处观测,俯角∠MDF=36.9°时,恰好通过平面镜看到“美”字底端G处.测得BE=163.3m,CE=1.5m,点C,E,F,B在同一水平线上,点A,G,B在同一铅垂线上.(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75)(1)CD的高度为__________m,CF的长为__________m;(2)求“美”字AG的高度.17.风能是一种清洁无公害的可再生能源,利用风力发电非常环保.如图1所示,是一种风力发电装置;如图2为简化图,塔座OD建在山坡DF上(坡比i=3:4,DE垂直于水平地面EF,O,D,E三点共线),坡面DF长10m,三个相同长度的风轮叶片OA,OB,OC可绕点O转动,每两个叶片之间的夹角为120°;当叶片静止,OA与OD重合时,在坡底F处向前走25米至点M处,测得点O处的仰角为53°,又向前走23.5米至点N处,测得点A处的仰角为30°(点E,F,M,N在同一水平线上).(1)求叶片OA的长;(2)在图2状态下,当叶片绕点O顺时针转动90°时(如图3),求叶片OC顶端C离水平地面EF的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,√3≈1.7,结果保留整数)18.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A,B 两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27√2≈1.41)19.春天是踏青的好季节小明和小华决定去公园出游踏青.如图已知A为公园入口景点B位于A点东北方向400√2米处景点E位于A点南偏东30°方向景点B在景点E的正北方向景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.景点F既位于景点E的正东方向又位于景点D的正南方向.DF=400米.(参考数据:√2≈1.41,√3≈1.73,sin37.5°≈35,cos37.5°≈45,tan37.5°≈34)(1)求BE的长;(精确到个位)(2)小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/分小明在景点B、C处各停留了10分钟、5分钟.小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/分.小华在景点E、F处各停留了9分钟、8分钟.请通过计算说明:小明和小华谁先到达景点D处.20.如图是一种家用健身卷腹机由圆弧形滑轨⌒AB可伸缩支撑杆AC和手柄AD构成.图①是其侧面简化示意图.滑轨⌒AB支撑杆AC与手柄AD在点A处连接其中D A B三点在一条直线上.(1)如图① 固定∠DAC=120°,若BC=30√6cm,AC=60cm,求∠ABC的度数;(2)如图② 固定∠DAC=100°若AC=50cm,∠ABC=30°时圆弧形滑轨AB所在的圆恰好与直线BC 相切于点B求滑轨⌒AB的长度.(结果精确到0.1 参考数据:π取3.14 sin70°≈0.940)参考答案:1.解:由题意得BE⊥CD于EBE=AC=22米∠DBE=32°在Rt△DBE中DE=BE⋅tan∠DBE=22×0.62≈13.64(米)CD=CE+DE=1.5+13.64≈15.14(米)答:旗杆的高CD约为15.14米.2.解:延长AD交EF于点G设EG=x∵AD∥BF,EF⊥BF∵AG⊥EF∵∠B=∠F=∠AGF=90°∵四边形ABFG是矩形∠AGE=90°∵∠EAG=45°∵∠AEG=90°−∠EAG=45°∵AG=EG=x∵AD=7∵DG=x−7∵∠EDG=60°=√3∵tan∠EDG=EGDG=√3∵xx−7∵x=7(3+√3)2∵EG=7(3+√3)2∵GF=AB=1.68∵EF=EG+GF=7(3+√3)2+1.68≈7(3+1.732)2+1.68 =16.562+1.68=18.242≈18.2.故旗杆EF的高度约18.2m.3.解:过B作BH⊥AC于H设AH=xm∵∠BAC=60°∵∠ABH=90°−60°=30°∵AB=2AH=2xm∵tanA=tan60°=BHAH=√3∵BH=√3xm∵∠BCA=45°∠BHC=90°∵△BHC是等腰直角三角形∵CH=BH=√3xm∵AH+CH=√3x+x=AC=1640≈600.7∵x=√3+1∵AB=2x≈1201(m).答:“彭城风华”观演场地与“水族展览馆”之间的距离AB约是1201m.4.解:过点B作BC⊥OH交OH于点C延长AD交BC于点E∵四边形DECH是矩形∵DH=CE.根据题意可知∠BAD=45°,∠BOH=60°在Rt△ABE中AB=2.4m∵sin∠BAE=BEAB即sin45°=BE2.4=1.2×1.41=1.692.解得BE=2.4×√22在Rt△BOC中BO=3m∵sin∠BOC=BCBO即sin60°=BC3=1.5×1.73=2.595解得BC=3×√32∵DH=CE=BC−BE=0.903≈0.9(m).所以海面OH与地面AD之间得距离DH的长0.9m.5.(1)解:过点C作CM⊥AD交AD的延长线于点M过点B作BN⊥AM交AM于点N过点D作DH⊥BN 交BN于点H.由题可知:∠CBN=45°∠A=90°∠CDM=60°.∵四边形ABNM、四边形ABHD、四边形DMNH都是矩形△BCN是等腰直角三角形.在Rt△CMD中∵∠CDM=60°CD=2900米∵DM=12DC=1450米CM=√3DM=1450√3米∵AB=MN=300米∵CN=CM−MN=(1450√3−300)米在Rt△CBN中∠CBN=45°∵CB=√2CN=(1450√6−300√2)米≈3127米答:BC的长度为3127米.(2)解:路线一:AB+BC=(300+1450√6−300√2)米≈3427米∵AM=BN=CN=(1450√3−300)米∵AD=AM−DM=(1450√3−1750)米∵路线二:AD+CD=(1450√3+1150)米≈3361米∵3427<3361∵路线二较近.6.解:如图1 作AF⊥CG垂足为F设AB=xcm则AC=60+x∵sin53°=AFAC =AF60+x∴AF=(60+x)⋅sin53°如图2 作AH⊥CG垂足为H则AC=60+2x∴AH=(60+2x)⋅sin37°∵AF=AH∴(60+x)⋅sin53°=(60+2x)⋅sin37°∴4(60+x)5=3(60+2x)5解得:x=30.答:每节拉杆的长度为30cm.7.(1)解:∵凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∵DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∵由题意得四边形NFDE是矩形∵FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∵FD=MF=(x−0.15)m∵NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∵tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.8.(1)解:过点B作BP⊥AD于点P由题意知∠BAD=45∘∠CBD=75∘∴∠ADB=30∘∠ABP=45∘=∠A∴BD=2BP AP=BP在Rt△ABP中AB=240米∴AP=BP=AB=120√2(米)sin45∘∴BD=2BP=240√2≈339.4(米).答:B、D两地的距离约为339.4米;(2)解:过点B作BM⊥CD于点M由(1)得BD=2BP=240√2(米)∵∠CDB=180∘−60∘−75∘=45∘∠CBD=75∘∠DCB=60∘∴∠DBM=45∘=∠CDB∴BM=DM在Rt△BDM中BD=240√2sin45∘=BMBD∴BM=DM=BD⋅sin45∘=240√2×√2=240(米)2在Rt△BCM中∠CBM=75∘−45∘=30∘∴CM=BM⋅tan30∘=80√3(米)∴DC=DM+CM=240+80√3(米).9.解:(1)作BE⊥AD于点E由题意知AB=60∠A=45°∠ABD=90°+15°=105°∠CBA=90°+30°=120°在Rt△ABE中在Rt△BDE中ED=√3BE=30√6BD=2BE=60√2∴小山B与亭台D之间的距离60√2米(2)延长AB作DF⊥BA于点F作CG⊥BA于点G则∠CBG=180°−∠CBA=60°由题意知CD∥AB∵四边形CDFG是矩形∵CG=DF,CD=FG.∵AE=30√2ED=30√6∴AD=30√2+30√6在Rt△AFD中DF=AF=√2=30+30√3CG=DF=30+30√3米在Rt△BCG中BG=√3=10√3+30∴CD=FG=AB+BG−AF=60−20√3∴S玲=AD+CD=30√2+30√6+60−20√3≈141.2米S明=AB+BC=60+60+20√3≈154.6米∵141.2<154.6且两人速度一致∴小玲先到.答:小玲先到达寺庙C处.10.解:如图:延长CD交AB于点H则四边形CMBH为矩形∴CM=HB=20在Rt△ACH中∠AHC=90°∠ACH=18.4°∴tan∠ACH=AH CH∴CH=AHtan∠ACH=AHtan18.4°≈AH0.33在Rt△ECH中∠EHC=90°∠ECH=37°∴tan∠ECH=EH CH∴CH=EHtan∠ECH=EHtan37°≈EH0.75设AH=x.∵AE=9∴EH=x+9∴x0.33=x+90.75解得x≈7.1∴AB=AH+HB≈7.1+20=27.1≈27(米).答:点A到地面的距离AB的长约为27米.11.(1)解:如图1 ∵GH∥FB∴∠DBF=∠PDG,∵BF=12cm,DF=16cm,∴tan∠DBF=DFBF=1612=43,∵tan53°≈4 3∴入射角∠PDG约为53°.(2)解:如图2 作DM⊥AB于点T在Rt△BDF中BF=12cm,DF=16cm∴BD=√DF2+BF2=20cm,在Rt△DTC中TC=DF−BC=16−7=9cm,DT=BF=12cm∴CD=√DT2+TC2=√122+92=15cm,∴光线从空气射入水中的折射率∴光线从空气射入水中的折射率n=43.12.(1)解:过点B作BP⊥AD于点D过点C作CQ⊥AD于点Q延长BC到点R ∵四边形BCQP是矩形∵BC=QP BP=CQ∵AB=13.6cm杯底直径BC=5.8cm杯壁与直线l的夹角为84°点A B C D构成的图形(杯身部分)为等腰梯形∵AD∥BC CD=AB=13.6cm QP=BC=5.8cm∵∠A=∠D=∠DCR=84°∵BP=CQ CD=AB∵Rt△ABP≌Rt△DCQ(HL)∵AP=DQ∵AP=DQ=CDcosD=13.6×0.105=1.428(cm)CQ=CDsinD=13.6×0.995=13.532(cm)∵AD=2AP+PQ=DQ=2×1.428+5.8=8.656(cm)AD=4.328≈4.3(cm)∵OD=12故杯口半径OD的长为4.3cm.(2)解:连接GO并延长交BC于点N∵G为EF的中点EF=1.6(cm)∵GO⊥EF,EG=FG=12连接FD∵ AF=ED,∵∠EFD=∠ADF,∵AD∥EF∵GO⊥AD∵ AD∥BC∵GO⊥BC∵NO=13.532(cm)∵GO=√(4.3)2−(1.6)2≈4.0(cm)∵GN≈17.532(cm)∵GB=√(17.532)2+(2.9)2≈17.77(cm)∵GH=BH−GB=22−17.77≈4.2(cm)13.(1)解:过点C作CF⊥l于点F过点B作BM⊥CF于点M∴∠CFA=∠BMC=∠BMF=90°.由题意得:∠BAF=90°∴四边形ABMF为矩形∴MF=AB=2cm∠ABM=90°.∵∠ABC=150°∴∠MBC=60°.∵BC=18cm∴CM=BC⋅sin60°=18×√32=9√3(cm).∴CF=CM+MF=(9√3+2)cm.答:支点C离桌面l的高度为(9√3+2)cm;(2)解:过点C作CN∥l过点E作EH⊥CN于点H∴∠EHC=90°.∵DE=24cm CD=6cm∴CE=18cm.当∠ECH=30°时EH=CE⋅sin30°=18×12=9(cm);当∠ECH=70°时EH=CE⋅sin70°≈18×0.94=16.92(cm);∴16.92−9=7.92≈7.9(cm)∴当α从30°变化到70°的过程中面板上端E离桌面l的高度是增加了增加了约7.9cm.14.(1)解:由题意得∠DAK=30°∠BAD=75°∠D=90°AK=800√2米BK=400√5米∵∠BAK=∠BAD−∠DAK=75°−30°=45°过点K作KH⊥AB于H则∠AHK=∠BHK=90°∵△AHK为等腰直角三角形∵AH=KH=√22AK=√22×800√2=800米∵BH=√BK2−KH2=√(400√5)2−8002=400米∵AB=AH+BH=800+400=1200米;(2)解:∵AK=800√2∠DAK=30°∠D=90°∵DK=12AK=400√2米AD=AK·cos30°=800√2×√32=400√6米∵路线②K−D−A的路程为KD+AD=400√2+400√6≈1544米∵小宏到达景点A的时间为1544÷240≈6.43分钟∵路线①K−B−A的路程为KB+BA=400√5+1200≈2096米∵小明到达景点A的时间为2096÷320≈6.55分钟∵6.43<6.55∵小宏先到达景点A.15.(1)解:由题意得:∠OO1P=90°.∵OO1=2米O1P=2米∴OP=2√2(米).∴圆锥的侧面积=π×2√2×2=4√2π(米2).答:圆锥的侧面积为4√2π平方米;(2)解:由题意得:∠OQM=90°.设OQ长x米.∵tanα=1 2∴MQ=2x米.∵MN=m米∴NQ=(m+2x)米.∵tanβ=2 5∴xm+2x =25.解得:x=2m.∵O1O2=3米QO2=1米∴OO1=2m+1−3=(2m−2)米.∵O1P=2米∠OO1P=90°.∴OP=√22+(2m−2)2=√4m2−8m+8=2√m2−2m+2(米).∴圆锥的侧面积=π×2√m2−2m+2×2=4π√m2−2m+2(米2).答:亭盖的外部面积为4π√m2−2m+2平方米.16.(1)解:∵∠MDE=45°∴∠DEC=45°∵DC⊥BC∴△DCE是等腰直角三角形∴DC=CE=1.5m 在Rt△DCF中∠DFC=36.9°DC=1.5m∴DF=DCsin36.9°=1.50.60=2.5(m)∴CF=√DF2−DC2=√2⋅52−1⋅52=2(m);故答案为:1.52;(2)∵∠DEC=45°∴∠AEB=45°∴∠BAE=45°∴AB=BE=163.3m由题意可知∠MDF=36.9°∴∠GFB=∠DFC=∠MDF=36.9°∵EF=CF−CE=2−1.5=0.5(m)∴BF=163.3−0.5=162.8(m)在Rt△BFG中BG=tan∠GFB⋅BF≈0.75×162.8=122.1(m)∴AG=163.3−122.1=41.2(m)即“美”字的高度AG约为41.2m.17.(1)解:∵DE垂直于水平地面EF∵∠E=90°∵坡比i=3:4∵DE EF =34设DE=3xm则EF=4xm ∵坡面DF长10m∵(3x)2+(4x)2=102解得:x=2(负值舍去)∵DE=6m EF=8m∵MF=25m∵ME=MF+EF=33m由题意得:∠OME=53°=44m∵OE=ME⋅tan53°≈33×43∵MN=23.5m∵NE=ME+MN=56.5m.由题意得:∠N=30°≈32m∵AE=NE⋅tan30°=56.5×√33∵OA=OE−AE=44−32=12m.(2)如图过点C作CH⊥OE于点M CG⊥NE于G∵∠CHE=∠HEG=∠CGE=∠CHO=90°∵四边形HEGC是矩形∵EH=CG∵叶片绕点O顺时针转动90°∵∠AOE=90°∵∠AOC=120°∵∠COH=30°由题意得:OC=OA=12m=6√3m∵OH=OCcos∠COH=12×√32∵CG=HE=OE−OH=44−6√3≈34m.∵叶片OC顶端C离水平地面EF的距离为34m.18.(1)解:在Rt△ABE中∠AEB=90°∠A=15°AE=576m∴AB=AEcosA =576cos15°≈594(m).答:索道AB的长约为594m.(2)延长BC交DF于点G∵BC∥AF DF⊥AF∴DG⊥CG.∵四边形BEFG为矩形.∴EF=BG.∵CD=AB≈594m∠DCG=45°∴CG=CD·cos∠DCG≈594×cos45°=297√2(m).∴AF=AE+EF=AE+BG=AE+BC+CG≈576+50+297√2≈1045(m).答:水平距离AF的长约为1045m19.(1)解:如图所示过点A作AH⊥BE于点H∵∠BAH=45°,AB=400√2米∴AH=BH=√22AB=400米∵∠AEB=30°∴HE=√3AH=400√3米AE=2AH=800米∴BE=400+400√3≈1092(米).∴BE长约1092米.(2)解:小华先到达景点D处理由如下:如图过点C作CN⊥EF于点N过点D作DM⊥BE于点M交CN于点G则四边形BCNE和四边形DFNG都是矩形∴BC=EN BE=CN=(400+400√3)米GN=DF=400米DG=NF∴CG=CN−GN=400√3米∵景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.∴BC=310(米)∠DCN=37.5°在Rt△CGD中cos∠DCN=CGCD tan∠DCN=DGCG∴CD=CGcos37.5°=400√345≈865(米)DG=CG⋅tan37.5°=400√3×34≈519(米)∴EF=EN+NF=BC+DG≈829(米)∵小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/秒.小明在景点B、C处各停留了10分钟、5分钟∴小明的游览时间为400√2+310+86572+10+5≈39(分钟)在Rt△AEH中AH=400米∠EAH=60°∴AE=AHcos60°=40012=800(米)∵小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/秒.小华在景点E、F处各停留了9分钟、8分钟∴小华的游览时间为800+829+40096+9+8≈38(分钟)∴小华的游览时间更短先到达景点D处.20.(1)解:如图过点C作CE⊥AB垂足为E∵∠DAC=120°∴∠EAC=180°−∠DAC=60°在Rt△AEC中AC=60cm∴CE=AC⋅sin60°=60×√32=30√3(cm)在Rt△BEC中BC=30√6cm∴sin∠EBC=ECBC=√330√6=√22∴∠ABC=45°∴∠ABC的度数约为45°;(2)解:如图过点A作AF⊥BC垂足为F∵圆弧形滑轨⌒AB所在的圆恰好与直线BC相切于点B ∴过点B作HB⊥BC作AB的垂直平分线MG交HB于点O连接OA∴OB=OA∴圆弧形滑轨⌒AB所在的圆的圆心为O∵∠DAC=100°∠ABC=30°∴∠ACF=∠DAC−∠ABC=100°−30=70°在Rt△AFC中AC=50cm∴AF=AC⋅sin70°≈50×0.940=47(cm)在Rt△AFB中∠ABC=30°∴AB=2AF=2×47=94(cm)∵OB⊥BC∴∠OBC=90°∴∠OBA=∠OBC−∠ABC=60°∴△OBA为等边三角形∴OB=AB=94cm∠BOA=60°∴滑轨⌒AB的长度=60π×94180≈98.4(cm)∴滑轨AB⌒AB的长度约为98.4cm.。
《解直角三角形》典型例题
《解直角三角形》典型例题(一)例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形.分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解(1);(2)由a bB =tan ,知;(3)由c a B =cos ,知860cos 4cos =︒==B a c .说明 此题还可用其他方法求b 和c .例 2在Rt △ABC 中,∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴设 ,则由勾股定理,得∴.∴.解法二133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3设中,于D ,若,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5如图,在电线杆上离地面高度5m的C点处引两根拉线固定电线杆,一根拉线AC和地面成60°角,另一根拉线BC和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析分别在两个直角三角形ADC和BDC中,利用正弦函数的定义,求出AC和BC.解:在Rt△ADC中,331023560sin==︒=DCAC在Rt△BDC中,221022545sin==︒=DCBC说明本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.。
解直角三角形的应用经典题型
解直角三角形应用经典1.如图1,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)2.如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=60,坡长AB=m 320,为加强水坝强度,将坝底从A处向后水平延伸到F 处,使新的背水坡的坡角∠F= 45,求AF 的长度(结果精确到1米,参考数据:414.12≈,732.13≈).3.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17c m 的长方体台阶来铺,需要铺几级台阶?4. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A相距的C 处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.东l(第3题)E图1ABE F QP5. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)第5题6. 如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)7.图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 点的距离为5m,每层楼高3.5m,AE 、BF 、CH 都垂直于地面,EF=16m,求塔吊的高CH 的长.8.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C 处(如图).现已知风筝A 的引线(线段AC )长20m ,风筝B 的引线(线段BC )长24m ,在C 处测得风筝A 的仰角为60°,风筝B 的仰角为45°. (精确到0.01 m ;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)(1)试通过计算,比较风筝A 与风筝B 谁离地面更高?(2)求风筝A 与风筝B 的水平距离.9. 为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.10.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为______米(精确到0.1).(参考数据:414.12≈ 732.13≈)82.011. 2009年首届中国国际航空体育节在莱芜举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米) (参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)12. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒.求该兴趣小组测得的摩天轮的高度AB.1.732,结果保留整数).第9题图A45°60° 第(12)题AB(第8题图)C(第11题图)13.小明想知道西汉胜迹中心湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.14. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)15.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第15题图B37° 48°DCA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C b
a
A
c
D
B
3、 一艘渔船正以 30 海里/小时的速度由西向东追赶鱼群,在 A 处看见小岛 C 在船的北偏 东 60 ,40 分钟后,渔船行至 B 处,此时看见小岛 C 在船的北偏东 30 ,已知以小岛为中 心周围 10 海里以内为我军导弹部队军事演习的着弹危险区, 问这艘渔船继续向东追东鱼群, 是否有进入危险区域的可能?
M N P
A
O
7. 某城市规划期间,欲拆除一电线杆 AB,已知与电线杆 AB 水平距离 14 米的 D 处有一 大坝,背水坡 CD 的坡度 i 2 : 1 ,坝高 CF 为 2 米,在坡顶 C 处测得杆顶 A 的仰角为 30°,D、E 之间是宽 2 米的人行道。试问:在拆除电线杆 AB 时,为确保行人安全,是否 需要将此行人道封上?请说明理由。 (在地面上,以 B 为圆心,以 AB 长为半径的圆形区域 为危险地区) 3 1 . 732 ( ,
。
4. 如图,从地面上 C、D 两处望山顶 A,仰角分别是 30°,45°,若 C、D 两处相距 200 米,那么山高 AB 为 。
A
Cபைடு நூலகம்
D
B
5. 如图,AB 是斜靠在墙壁上的长梯,梯脚 B 距墙 1.6 米,梯上点 D 距墙 1.4 米,BD 长 0.55 米,则梯子的长为 。
A
D
B
6. 某校的教室 A 位于 I 地 O 的正西方向,OA=200 米,一部拖拉机从 O 出发,以 5 米/ 秒的速度沿北偏西 60°方向行驶,设拖拉机的噪声污染半径为 125 米,试问:教室 A 是否 在拖拉机的噪声污染范围内?若不在说明理由,若在,求教室 A 受污染的时间。
A
2 1 .414 )
H
30 °
C
i=2:1 B E F
D
解直角三角形试题
1、 在 ABC 中, C 90 , AC 2 5 , A 的平分线交 BC 于 D,且 AD 求 tan BAC 。
A
4 3
15 ,
C
D
B
2、 已知 ABC 的两边长 a 3 , c 5 ,且第三边长 b 为关于 x 的一元二次方程
x 4 x m 0 的两个正整数根之一,求 sin A 的值。
5、 货轮在海面上沿着南偏东 75°方向以每小时 18 海里的速度航行,为了确定船位,货轮 在 A 处测得灯塔 B 在北偏东 45°的方向上,若货轮按原来航向和航速继续航行 20 分钟后 到达 C 处,观测灯塔 B 恰好在正北方向上。求:货轮与灯塔的距离(精确到 0.1 海里)
B E M
A F
D C
北
C
30 ° 60 ° A B D
4、 已知甲船在 A 处,乙船在甲船正南方向距甲船 20 海里的 B 处,乙船以每小时 10 海里 的速度向正北方向航行,而甲船以每小时 8 海里的速度向北偏西 60°方向航行。求:几小 时后甲、乙两船的距离最近?
C E
A
B′ B
说明:设 t 小时后,甲、乙两船的距离最近以后,要设法将 C B 表示成关于 t 的函数关 系,从而求出当 C B 取最小值时 t 的值。
【模拟试题】
1. ABC 中, C 90 ,若 BC 4 , sin A ,则 AC 的长为 。 3 2. 如图,在 ABC 中, BC 10 , B 60 , C 45 ,则点 A 到边 BC 的距离为 。
A
2
B
D
C
3. 某人沿倾斜角为 的斜坡前进 100 米,则他上升的最大高度为
6、在甲建筑物上从 A 点到 E 点挂一长为 30m 的宣传条幅如图,在乙物的顶部 D 点测得条 幅顶点 A 的仰角为 45°,测得条幅底端 E 点的俯角为 30°求底部不能直接到达的甲、乙两 建筑物之间的水平距离 BC(答案可带根号)
A
D F
甲
Z E B C
7、如图,一条土埂的横断面是等腰梯形 ABCD,AB、DC 的坡度为 1 : 1 .4 ,上底 AD 的宽 为 29.3dm,现计划在土埂的中间挖出一条横断面 MGHN 仍为等腰梯形的渠道(图中三)并 把挖出来的土填在土埂两旁(图一、图二全等的两部分 EAMF 和 PNDQ)加高,加宽渠道, 且渠的坡度也是 1 : 1 .4 ,要求渠道下底面宽 GH 为 4dm,挖成后渠道的两侧上沿宽 EF 和 PQ 均为 3.35dm,渠道的总深度为 5dm,请你设计:在动工时,开始下挖的 M 点和 N 点应在土 埂上底 AD 的什么位置?从上底应向下挖的深度为多少分米?(可以用: 91809 303 )