圆锥曲线专题——定值问题解析版

合集下载

圆锥曲线中的定值问题-(解析版)

圆锥曲线中的定值问题-(解析版)

专题3 圆锥曲线中的定值问题在解析几何中,有些几何量,如斜率、距离、面积、比值、角度等基本量与参变量无关,这类问题统称为定值问题.对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关; ② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解答的关键是认真审题,理清问题与题设的关系,建立合理的方程或函数,利用等量关系统一变量,最后消元得出定值。

题型1、与面积有关的定值问题 经典例题:1.(2021·四川成都市·高三三模(理))已知椭圆()2222:10x y C a b a b+=>>的长轴长为,其离心率与双曲线221x y -=的离心率互为倒数.(1)求椭圆C 的方程;(2)将椭圆C 上每一点的横坐标扩大为原来倍,纵坐标不变,得到曲线1C ,若直线:l y kx t =+与曲线1C 交于P 、Q 两个不同的点,O 为坐标原点,M 是曲线1C 上的一点,且四边形OPMQ 是平行四边形,求四边形OPMQ 的面积.【答案】(1)2212x y +=;(2 【分析】(1)根据已知条件求出a 、b 、c 的值,由此可得出椭圆C 的方程;(2)求出曲线1C 的方程,设()11,P x y 、()22,Q x y 、()00,M x y ,将直线l 的方程与曲线1C 的方程联立,列出韦达定理,求出点M 的坐标,代入曲线1C 的方程,可得出22414t k =+,求得PQ 以及点O 到直线PQ 的距离,利用三角形的面积公式可求得结果.【详解】(1)由已知,2a =,所以a =221x y -=,可知,椭圆C 的离心率为c a =即a =,故1c =,进而1b ==,所以椭圆C 的方程为2212x y +=;(2)将椭圆C倍,纵坐标不变,得到曲线1C 的方程为2214x y +=,设()11,P x y 、()22,Q x y 、()00,M x y ,由()2222214844044y kx tk x ktx t x y =+⎧⇒+++-=⎨+=⎩, 由韦达定理可得122814kt x x k -+=+,21224414t x x k-=+, 且()()()2228414440∆=-+->kt kt,即2214<+t k ,由四边形OPMQ 是平行四边形,所以OM OP OQ =+, 则0122814kt x x x k -=+=+,()0121222214t y y y k x x t k =+=++=+, 因为点M 在椭圆上,所以222282141414-⎛⎫⎪+⎛⎫⎝⎭+= ⎪+⎝⎭kt t k k ,整理可得22414t k =+, 所以21222441114-==-+t x x k t , 则PQ ===,O 到直线l 的距离d =OPMQ 的面积为PQ d ⋅=.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.(2021·安徽高三其他模拟(理))已知椭圆()2222:10x y C a b a b +=>>过点P ⎛ ⎝⎭. (1)求椭圆C 的标准方程;(2)设点A 、B 分别是椭圆C 的左顶点和上顶点,M 、N 为椭圆C 上异于A 、B 的两点,满足//AM BN ,求证:OMN 面积为定值.【答案】(1)2214x y +=;(2)证明见解析.【分析】(1)根据已知条件可得出关于a 、b 、c 的方程组,结合这三个量的值,由此可得出椭圆C 的标准方程;(2)设直线AM 的方程为()2y k x =+,设直线BN 的方程为1y kx =+,将这两条直线分别与椭圆C 的方程联立,求出点M 、N 的坐标,求出OM 以及点N 到直线OM 的距离,利用三角形的面积公式可求得结果.【详解】(1)由已知条件可得2222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,即椭圆C 的标准方程为2214x y +=; (2)设()11,M x y 、()22,N x y ,由题意直线AM 、BN 的斜率存在,设直线AM 的方程为()2y k x =+①,设直线BN 的方程为1y kx =+②,由(1)椭圆22:14x C y +=③,联立①③得()222241161640k x k x k +++-=,解得2122841k x k -=+,即222284,4141k k M k k ⎛⎫- ⎪++⎝⎭, 联立②③,得()224180k x kx ++=,所以,22841kx k =-+,即222148,4141k k N k k ⎛⎫- ⎪++⎝⎭-,易知OM =直线OM 的方程为110y x x y -=,点N 到直线OM的距离为d =所以211222222211841222414121411844OMNx y x y k k S OM d k k k k k k --=⋅==⋅-⋅=++++--△, 故OMN 面积为定值1.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3.(2021年北京高考模拟)已知椭圆C :22221(0)x y a b a b +=>>,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:四边形ABNM 的面积为定值.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .因为AN ⊥BM ,所以12ABNM S AN BM =⋅⋅ 1°当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M.直线PB 的方程为1100+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以0000211212212ABNM x y S AN BM y x =⋅⋅=⋅+⋅+-- 2200000000000000000044484448811222222x y x y x y x y x y x y x y x y x y ++--+--+==--+--+2=. 2°当00=x 时,10-=y ,,2,2==AN BM 所以四边形ABNM 的面积为定值。

圆锥曲线中的定点、定值和定直线问题(解析)

圆锥曲线中的定点、定值和定直线问题(解析)

圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,由y =x -2x 2-4y 2=4解得x =2或x =103,因此点E ,F 的横坐标x E ,x F 有x E =x F =103,即直线EF 过定点M 103,0 ,综上得直线EF 过定点M 103,0 ,由于DG ⊥EF ,即点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.【点睛】思路点睛:与圆锥曲线相交的直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.【答案】(1)x 2-y 23=1;(2)证明见解析;(3)存在λ=2,理由见解析.【分析】(1)根据离心率,以及a ,结合b 2=c 2-a 2,即可求得曲线C 方程;(2)设出直线PQ 的方程,联立双曲线方程,得到关于点P ,Q 坐标的韦达定理;再分别求得AP ,AQ 的方程,以及点M ,N 的坐标,利用数量积的坐标运算,即可证明;(3)求得直线PQ 不存在斜率时满足的λ,当斜率存在时,将所求问题,转化为直线PA ,PF 2斜率之间的关系,结合点P 的坐标满足曲线C 方程,求解即可.【详解】(1)由题可得a =1,ca =2,故可得c =2,则b 2=c 2-a 2=4-1=3,故C 的标准方程为x 2-y23=1.(2)由(1)中所求可得点A ,F 2的坐标分别为-1,0 ,(2,0),又双曲线渐近线为y =±3x ,显然直线PQ 的斜率不为零,故设其方程为x =my +2,m ≠±33,联立双曲线方程x 2-y 23=1可得:3m 2-1 y 2+12my +9=0,设点P ,Q 的坐标分别为x 1,y 1 ,(x 2,y 2),则y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,x 1+x 2=m y 1+y 2 +4=-43m 2-1,x 1x 2=m 2y 1y 2+2m y 1+y 2 +4=-3m 2-43m 2-1;又直线AP 方程为:y =y 1x 1+1(x +1),令x =12,则y =32⋅y 1x 1+1,故点M 的坐标为12,32⋅y 1x 1+1;直线AQ 方程为:y =y 2x 2+1(x +1),令x =12,则y =32⋅y 2x 2+1,故点N 的坐标为12,32⋅y 2x 2+1;则MF 2 ⋅NF 2 =32,-32⋅y 1x 1+1 ⋅32,-32⋅y 2x 2+1=94+94⋅y 1y 2x 1x 2+x 1+x 2+1=94+94⋅93m 2-1-3m 2-43m 2-1-43m 2-1+1=94+94⋅9-9=0故MF 2 ⋅NF 2为定值0.(3)当直线PQ 斜率不存在时,对曲线C :x 2-y 23=1,令x =2,解得y =±3,故点P 的坐标为(2,3),此时∠PF 2A =90°,在三角形PF 2A 中,AF 2 =3,PF 2 =3,故可得∠PAF 2=45°,则存在常数λ=2,使得∠PF 2A =2∠PAF 2成立;当直线PQ 斜率存在时,不妨设点P 的坐标为(x ,y ),x ≠2,直线PF 2的倾斜角为α,直线PA 的倾斜角为β,则∠PF 2A =π-α,∠PAF 2=β,假设存在常数λ=2,使得∠PF 2A =2∠PAF 2成立,即π-α=2β,则一定有:tan π-α =-tan α=tan2β=2tan β1-tan 2β,也即-k PF2=2k PA 1-k 2PA;又-k PF 2=-yx -2;2k PA 1-k 2PA=2yx +11-y 2x +12=2y (x +1)x +1 2-y2;又点P 的坐标满足x 2-y 23=1,则y 2=3x 2-3,故2k PA1-k 2PA=2y x +1 x +1 2-y 2=2y x +1 x +1 2-3x 2+3=2y (x +1)-2x 2+2x +4=2y (x +1)-2(x -2)(x +1)=-y x -2=-k PF 2;故假设成立,存在实数常数λ=2,使得∠PF 2A =2∠PAF 2成立;综上所述,存在常数λ=2,使得∠PF 2A =2∠PAF 2恒成立.【点睛】关键点点睛:本题考察双曲线中定值以及存在常数满足条件的问题;其中第二问证明的关键是能够快速,准确的进行计算;第三问处理的关键是要投石问路,找到特殊情况下的参数值,再验证非特殊情况下依旧成立,同时还要注意本小题中把角度关系,转化为斜率关系;属综合困难题.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.【答案】(1)x 2=12y(2)证明见详解【分析】(1)设M x ,y ,由题意可得y +14=x 2+y -18 2+18,化简整理即可;(2)设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,结合导数的几何意义分析可得x 1,x 2为方程2x 2-4tx +t -1=0的两根,结合韦达定理求直线AB 的方程,即可得结果.【详解】(1)设M x ,y ,则MF =x 2+y -18 2,d =y +14 ,因为d =MF +18,即y +14 =x 2+y -18 2+18,当y +14≥0,即y ≥-14时,则y +14=x 2+y -18 2+18,整理得x 2=12y ;当y +14<0,即y <-14时,则-y -14=x 2+y -18 2+18,整理得x 2=y +18<0,不成立;综上所述:M 点的轨迹C 的方程x 2=12y .(2)由(1)可知:曲线C :x 2=12y ,即y =2x 2,则y =4x ,设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,可知切线QA 的斜率为4x 1,所以切线QA :y -2x 21=4x 1x -x 1 ,则t -1-2x 21=4x 1t -x 1 ,整理得2x 21-4tx 1+t -1=0,同理由切线QB 可得:2x 22-4tx 2+t -1=0,可知:x 1,x 2为方程2x 2-4tx +t -1=0的两根,则x 1+x 2=2t ,x 1x 2=t -12,可得直线AB 的斜率k AB =2x 21-2x 22x 1-x 2=2x 1+x 2 =4t ,设AB 的中点为N x 0,y 0 ,则x 0=x 1+x 22=t ,y 0=2x 21+2x 222=x 1+x 2 2-2x 1x 2=4t 2-t +1,即N t ,4t 2-t +1 ,所以直线AB :y -4t 2-t +1 =4t x -t ,整理得y -1=4t x -14,所以直线AB 恒过定点P 14,1 .【点睛】方法点睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk +n ,得y =k x +m +n ,故动直线过定点-m ,n ;(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB,证明点N 在定直线上,并求该定直线的方程.【答案】(1)x 2=12y ;(2)证明见解析,y =3.【分析】(1)设直线l 1的方程为y =x +p2,再根据直线和圆相切求出p 的值得解;(2)依题意设M (m ,-3),求出切线l 2的方程和B 点坐标,求出MN =x 1-2m ,6 ,ON=x 1-m ,3 即可求解作答.【详解】(1)依题意得,物线C 1:x 2=2py 的焦点坐标为0,p 2 ,设直线l 1的方程为y =x +p2,而圆C 2:x +1 2+y 2=2的圆心C 2(-1,0),半径r =2,由直线l 1与圆C 2相切,得d =-1+p212+-12=2,又p >0,解得p =6,所以抛物线C 1的方程为x 2=12y .(2)由(1)知抛物线C 1:x 2=12y 的准线为y =-3,设M (m ,-3),由y =x 212,求导得y =x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,于是切线l 2的方程为y =16x 1x -x 1 +y 1,令x =0,得y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即l 2交y 轴于点B (0,-y 1),因此MA =(x 1-m ,y 1+3),MB =-m ,-y 1+3 ,MN =MA +MB =x 1-2m ,6 ,则ON =OM +MN=x 1-m ,3 ,设N 点坐标为(x ,y ),从而y =3,所以点N 在定直线y =3上.3已知直线l 1:x -y +1=0过椭圆C :x 24+y 2b2=1(b >0)的左焦点,且与抛物线M :y 2=2px (p >0)相切.(1)求椭圆C 及抛物线M 的标准方程;(2)直线l 2过抛物线M 的焦点且与抛物线M 交于A ,B 两点,直线OA ,OB 与椭圆的过右顶点的切线交于M ,N 两点.判断以MN 为直径的圆与椭圆C 是否恒交于定点P ,若存在,求出定点P 的坐标;若不存在,请说明理由.【答案】(1)x 24+y 23=1,y 2=4x(2)存在,-2,0【分析】(1)由直线l 1过椭圆C 的左焦点,求出c 得出椭圆方程,利用直线l 1与抛物线M 相切,联立两个方程,通过判别式为零进行求解;(2)分成直线l 2斜率存在与不存在两种情况进行讨论,斜率存在时可设直线方程y =k x -1 ,与椭圆方程联立得出韦达定理,表示M ,N 两点坐标,利用PM ⋅PN=0进行求解.【详解】(1)由y 2=2px x -y +1=0 ,得x 2+2-2p x +1=0,因为直线x -y +1=0与抛物线M 只有1个公共点,所以Δ=2-2p 2-4=0,解得p =2,故抛物线C 的方程为y 2=4x .由直线x -y +1=0过椭圆C 的左焦点得得c =1,所以,4-b 2=1,b 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)如图1,设A x 1,y 1 ,B x 2,y 2 ,当直线l 2斜率存在时,可设直线方程:y =k x -1由y 2=4x y =k x -1 得k 2x 2-2k 2+4 x +k 2=0,所以Δ=2k 2+4 2-4k 4=16k 2+16>0,x 1+x 2=2k 2+4k2,x 1x 2=1. 所以y 1y 2=k 2x 1-1 x 2-1 =k 2x 1x 2-x 1+x 2 +1 =-4,x 2y 1+x 1y 2=kx 2x 1-1 +kx 1x 2-1 =k 2x 1x 2-x 1+x 2 =-4k,直线OA 的方程为y =y 1x 1x ,同理可得,直线OB 的方程为y =y 2x 2x ,令x =2得,M 2,2y 1x 1 ,N 2,2y 2x 2,假设椭圆C 上存在点P x 0,y 0 ,恒有PM ⊥PN .则PM ⋅PN =2-x 0,2y 1x 1-y 0 ⋅2-x 0,2y 2x 2-y 0=0即2-x 0 2+2y 1x 1-y 0 2y 2x 2-y 0=0,即2-x 0 2+y 20-2x 2y 1+2x 1y 2x 1x 2y 0+4y 1y 2x 1x 2=0,即2-x 0 2+y 20+8ky 0-16=0,令y 0=0,可得x 0=6或x 0=-2.由于点6,0 不在椭圆C 上,点-2,0 在椭圆D 上,所以椭圆C 上存在点P -2,0 ,使PM ⊥PN 恒成立如图2,当直线斜率不存在时,直线过抛物线的右焦点,则直线方程为x =1,与抛物线交于A 1,2 ,B 1,-2 ,则直线OA 方程为:y =2x ,直线OB 方程为:y =-2x ,椭圆的过右顶点的切线方程为x =2,切线方程x =2与直线OA 交于M 2,4 ,与直线OB 交于N 2,-4 ,由上面斜率存在可知恒过P -2,0 ,经验证满足PM ⋅PN=0,所以当斜率不存在时候也满足以MN 为直径的圆恒过定点-2,0 .4在平面直角坐标系中,已知圆心为点Q 的动圆恒过点F (0,1),且与直线y =-1相切,设动圆的圆心Q 的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P 为直线l :y =y 0y 0<0 上一个动点,过点P 作曲线Γ的切线,切点分别为A ,B ,过点P 作AB 的垂线,垂足为H ,是否存在实数y 0,使点P 在直线l 上移动时,垂足H 恒为定点?若不存在,说明理由;若存在,求出y 0的值,并求定点H 的坐标.【答案】(1)x 2=4y(2)存在这样的y 0,当y 0=-1时,H 坐标为(0,1).【分析】(1)依题意,由几何法即可得出圆心的轨迹Γ是以F (0,1)为焦点,l :y =-1为准线的抛物线.(2)设直线AP 的方程y -y 1=k x -x 1 ,对抛物线方程求导化简也可得直线AP 的方程,由恒等思想可得y 0+y 1=x 1x 02,y 0+y 2=x 2x 02,构造直线方程为y +y 0=x 0x2,故AB 两点代入化简可得恒过点0,-y 0 ,再由PH ⊥AB 得x =-x02y -y 0-2 ,PH 恒过点0,y 0+2 ,从而可得结论.。

圆锥曲线专题——定值定点问题(附解析)

圆锥曲线专题——定值定点问题(附解析)

第1页(共15页)圆锥曲线专题——定值定点问题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点O 为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A 、B 两点,且22OA OBb k k a=-,判断AOB ∆的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.【解答】解:(1)椭圆的短半轴长为半径的圆与直线0x y -=相切,∴b ==又222a b c =+,12c e a ==, 解得24a =,23b =,故椭圆的方程为22143x y +=.()II 设1(A x ,1)y ,2(B x ,2)y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩化为222(34)84(3)0k x mkx m +++-=, △22226416(34)(3)0m k k m =-+->,化为22340k m +->.∴122834mkx x k +=-+,21224(3)34m x x k -=+.22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 34OA OB k k =-,第2页(共15页)∴121234y y x x =-,121234y y x x =-, 222223(4)34(3)34434m k m k k --=-++,化为22243m k -=,||AB==又11)4d==-=,1||2S AB d ===22342k +=== (1)求椭圆E 的标准方程;(2)过F 作直线l 与椭圆交于A 、B 两点,问:在x 轴上是否存在点P ,使PA PB 为定值,若存在,请求出P 点坐标,若不存在,请说明理由.【解答】解:(1)由题意知1c =,过F 且与x 轴垂直的弦长为3,则223b a =,即222()3a c a -=,则2a =,b∴椭圆E 的标准方程为22143x y +=;(2)假设存在点P 满足条件,设其坐标为(,0)t ,设1(A x ,1)y ,2(B x ,2)y ,当l 斜率存在时,设l 方程为(1)y k x =-,联立22(1)3412y k x x y =-⎧⎨+=⎩,整理得:2222(43)84120k x k x k +-+-=,△0>恒成立.第3页(共15页)2122843k x x k ∴+=+,212241243k x x k -=+. ∴1(PA x t =-,1)y ,2(PB x t =-,2)y .∴222212121212()()(1)()()PA PB x t x t y y k x x k t x x k t =--+=+-++++22222222(1)(412)()8()(43)43k k k t k k t k k +--++++=+, 2222(485)3(12)43t t k t k --+-=+, 当PA PB 为定值时,2248531243t t t ---=,118t ∴=, 此时223121354364t PA PB t -==-=-. 当l 斜率不存在时,11(8P ,0),3(1,)2A ,3(1,)2B -.3(8PA =-,3)2,3(8PB =-,3)2-,∴13564PA PB =-, ∴存在满足条件的点P ,其坐标为11(8,0). 此时PA PB 的值为13564-. 3.已知点(2,1)M 在抛物线2:C y ax =上,A ,B 是抛物线上异于M 的两点,以AB 为直径的圆过点M .(1)证明:直线AB 过定点;(2)过点M 作直线AB 的垂线,求垂足N 的轨迹方程. 【解答】证明:(Ⅰ)点(2,1)M 在抛物线2:C y ax =上,14a ∴=,解得14a =,第4页(共15页)∴抛物线的方程为24x y =,由题意知,故直线AB 的斜率存在,设直线AB 的方程为y kx m =+,设1(A x ,1)y ,2(B x ,2)y ,联立得24x yy kx m⎧=⎨=+⎩,消y 可得2440x kx m --=,得124x x k +=,124x x m =,由于MA MB ⊥,∴0MA MB =,即1212(2)(2)(2)(2)0x x y y --+--=,即121212122()()50x x x x y y y y -++-++=,(*)1212()2y y k x x m +=++,22121212()y y k x x km x x m =+++,代入(*)式得224865k k m m +=-+,即22(22)(3)k m +=-, 223k m ∴+=-,或223k m +=-,即25m k =+,或21m k =-+,当25m k =+时,直线AB 方程为(2)5y k x =++,恒过定点(2,5), 经验证,此时△0>,符合题意,当21m k =-+时,直线AB 方程为(2)5y k x =++,恒过定点(2,1),不合题意,∴直线AB 恒过点(2,5)-,(Ⅱ)由(Ⅰ)设直线AB 恒过定点(2,5)R -,则点N 的轨迹是以MR 为直径的圆且去掉(2,1)±,方程为22(3)8x y +-=,1y ≠.第5页(共15页)4.如图已知椭圆22221(0)x y a b a b+=>>的离心率为32,且过点(0,1)A .(1)求椭圆的方程;(2)过点A 作两条互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 恒过定点P .并求点P 的坐标.【解答】解:(1)因为椭圆22221(0)x y a b a b+=>>3,且过点(0,1)A .所以1b =,3c a =, 所以2a =,1b =所以椭圆C 的方程为:2214x y +=⋯(3分)(2)直线MN 恒过定点3(0,)5P -,下面给予证明:设直线1l 的方程为1y kx =+,联立椭圆方程,消去y 得;22(41)80k x kx ++=,解得222814,4141M M k k x y k k -=-=++ 同理可得:22284,(844N N k k x y k k -==⋯++则直线MN 的斜率22222221441414885414k k k k k k k k k k k ----++'==--++,第6页(共15页)则直线MN 的方程为22221418()41541k k ky x k k k ---=+++,即22222141813()4154155k k k k y x x k k k k ---=++=-++,则直MN 过定点3(0,)5-.故直线MN 恒过定点P 3(0,)5-.⋯(12分)B .(1)证明:直线AB 过定点;面积.【解答】解:(1)证明:22x y =的导数为y x '=,设切点1(A x ,1)y ,2(B x ,2)y ,即有2112x y =,2222x y =,切线DA 的方程为111()y y x x x -=-,即为2112x y x x =-,切线DB 的方程为2222x y x x =-,联立两切线方程可得121()2x x x =+,可得121122y x x ==-,即121x x =-, 直线AB 的方程为2112112()2x y y y x x x x --=--, 即为211211()()22x y x x x x -=+-,第7页(共15页)可化为1211()22y x x x =++,可得AB 恒过定点1(0,)2;(2)法一:设直线AB 的方程为12y kx =+, 由(1)可得122x x k +=,121x x =-, AB 中点21(,)2H k k +,由H 为切点可得E 到直线AB 的距离即为||EH ,15||-= 解得0k =或1k =±, 即有直线AB 的方程为12y =或12y x =±+, 由12y =可得||2AB =,四边形ADBE 的面积为12(12)32ABE ABD S S ∆∆+=⨯⨯+=; 由12y x =±+,可得||1444AB =+=,此时1(1,)2D ±-到直线AB11|1|++= 5(0,)2E到直线AB15||-= 则四边形ADBE的面积为142ABE ABD S S ∆∆+=⨯⨯=;法二:(2)由(1)得直线AB 的方程为12y tx =+.第8页(共15页)由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是122x x t +=,121x x =-,21212()121y y t x x t +=++=+,212|||2(1)AB x x t =-=+.设1d ,2d 分别为点D ,E 到直线AB的距离,则1d =2d =因此,四边形ADBE的面积2121||()(2S AB d d t =+=+. 设M 为线段AB 的中点,则21(,)2M t t +.由于EM AB ⊥,而2(,2)EM t t =-,AB 与向量(1,)t 平行,所以2(2)0t t t +-=.解得0t =或1t =±.当0t =时,3S =;当1t =±时,S =综上,四边形ADBE 的面积为3或(1)求椭圆方程;(2)过直线2y =上的点P 作椭圆的两条切线,切点分别为B ,C ①求证:直线BC 过定点; ②求OBC ∆面积的最大值;【解答】(1)解:椭圆22221(0)x y a b a b+=>>过点(2,1)A ,离心率e =,第9页(共15页)∴22411a b +=,c a = 28a ∴=,22b =,∴椭圆方程为22182x y +=;(2)①证明:设0(P x ,2),1(B x ,1)y ,2(C x ,2)y ,则切线11:182x x y y PB +=,22:182x x y y PC +=, 0(P x ,2)代入,可得直线BC 的方程为018x xy +=, ∴直线BC 过定点(0,1);②018x xy +=代入椭圆方程可得2200(1)4016x x x x +--=, 0122116x x x x∴+=+,12204116x x x -=+,1201||2OBCS x x ∆∴=-=, 令2016u x =+,则1216OBC S ∆=,OBC ∴∆面积的最大值为2.(1)求抛物线C 的方程;(2)动直线:1()l x my m R =+∈与抛物线C 相交于A ,B 两点,问:在x 轴上是否存在定点||||DA DBDA DB +与向量OD 共线(其中存在,求出点D 的坐标;若不存在,请说明理由.第10页(共15页)【解答】解:(1)抛物线2:2(0)C y px p =>的焦点为(2p,0), 准线方程为2px =-, 即有05||22p pPF x =+=,即02x p =, 则2164p =,解得2p =,则抛物线的方程为24y x =;(2)在x 轴上假设存在定点(,0)D t (其中0)t ≠,使得||||DA DB DA DB +与向量OD 共线, 由||DA DA ,||DBDB 均为单位向量,且它们的和向量与OD 共线, 可得x 轴平分ADB ∠, 设1(A x ,1)y ,2(B x ,2)y ,联立1x my =+和24y x =,得2440y my --=,△216(1)0m =+>恒成立.124y y m +=,124y y =-.①设直线DA 、DB 的斜率分别为1k ,2k , 则由ODA ODB ∠=∠得,第11页(共15页) 121221121212()()()()y y y x t y x t k k x t x t x t x t -+-+=+=---- 122112121212(1)(1)2(1)()()()()()y my t y my t my y t y y x t x t x t x t +-++-+-+==----, 12122(1)()0my y t y y ∴+-+=,②联立①②,得4(1)0m t -+=,故存在1t =-满足题意,综上,在x 轴上存在一点(1,0)D -,使得x 轴平分ADB ∠, 即||||DA DB DA DB +与向量OD 共线. 8.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;率均存在且斜率之和为2-,证明:直线l 过定点.【解答】解:(1)由圆22:(2)1M x y ++=,可知圆心(2,0)M -,半径1;圆22:(2)49N x y -+=,圆心(2,0)N ,半径7.设动圆的半径为R ,动圆P 与圆M 外切并与圆N 内切,||||1(7)8PM PN R R ∴+=++-=, 而||4NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为半长轴长的椭圆, 4a ∴=,2c =,22212b a c =-=.∴曲线C 的方程为2211612x y +=.第12页(共15页)(2)证明:直线l 的斜率不存在时,设直线l 的方程为:x t =,(44)t -. 1(,)A t y ,2(,)B t y ,120y y +=.2AQ BQ k k +====-.解得t =此时直线l的方程为:x =.直线l 的斜率存在时,设直线l 的方程为:y kx m =+,.设1(A x ,1)y ,2(B x ,2)y . 联立2211612y kx m x y =+⎧⎪⎨+=⎪⎩,化为:222(34)84480k x kmx m +++-=. 则122834km x x k +=-+,212244834m x x k -=+,12122AQ BQ y y k k x x --+=+=-,11y kx m =+,22y kx m =+.化为:1212(22)()0k x x m x x ++-+=,代入化为:k =∴直线l的方程为:y m =+.第13页(共15页)令23x =,可得23y =-.可得直线l 过定点(23,23)-.9.如图,椭圆222:1(02)4x y E b b+=<<,点(0,1)P 在短轴CD 上,且2PC PD =- (Ⅰ)求椭圆E 的方程及离心率;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.第14页(共15页)【解答】解:(Ⅰ)由已知,点C ,D 的坐标分别为(0,)b -,(0,)b . 又点P 的坐标为(0,1),且2PC PD =-,即212b -=-, 解得23b =.∴椭圆E 方程为22143x y +=. 221c a b =-,∴离心率12e =; (Ⅱ)当直线AB 的斜率存在时,设直线AB 的方程为1y kx =+,A ,B 的坐标分别为1(x ,1)y ,2(x ,2)y .联立221431x y y kx ⎧+=⎪⎨⎪=+⎩,得22(43)880k x kx ++-=. 其判别式△0>,122843k x x k -+=+,122843x x k -=+. 从而,12121212[(1)(1)]OA OB PA PB x x y y x x y y λλ+=+++-- 21212(1)(1)()1k x x k x x λ=+++++22228(1)(1)4342234343k k k k λλλ-++-+-==--++,第15页(共15页)当2λ=时,24223743k λλ---=-+, 即7OA OB PA PB λ+=-为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时2347OA OB PA PB OC OD PC PD λ+=+=--=-, 故存在常数2λ=,使得OA OB PA PB λ+为定值7-.。

圆锥曲线中的定值问题(解析版)

圆锥曲线中的定值问题(解析版)

圆锥曲线中的定值问题一、考情分析求定值是圆锥曲线中颇有难度的一类问题,也是备受高考关注的一类问题,由于它在解题之前不知道定值的结果,因而更增添了题目的神秘色彩.解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索.二、解题秘籍(一)定值问题解题思路与策略1.定值问题肯定含有参数, 若要证明一个式子是定值, 则意味着参数是不影响结果的, 也就是说参数在解式子的过程中都可以消掉, 因此解决定值问题的关键是设参数:(1)在解析几何中参数可能是点(注意如果设点是两个参数时, 注意横坐标要满足圆锥曲线方程)(2)可能是角(这里的角常常是将圆锥曲线上的点设为三角函数角的形式),(3)也可能是斜率(这个是最常用的, 但是既然设斜率了, 就要考虑斜率是否存在的情况)常用的参数就是以上三种, 但是注意我们设参数时要遵循一个原则:参数越少越好.因此定值问题的解题思路是:(1)设参数;(2)用参数来表示要求定值的式子;(3)消参数.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【例1】(2023届湖湘名校教育联合体高三上学期9月大联考)已知椭圆C:x22+y2=1,F1为右焦点,直线l:y=t(x-1)与椭圆C相交于A,B两点,取A点关于x轴的对称点S,设线段AS与线段BS的中垂线交于点Q.(1)当t=2时,求QF1;(2)当t≠0时,求QF1|AB|是否为定值?若为定值,则求出定值;若不为定值,则说明理由.【解析】(1)设A x1,y1,B x2,y2,线段AB的中点M坐标为x M,y M,联立得x2+2y2-2=0,y=2(x-1),消去y可得:9x2-16x+6=0,所以x1+x2=169, x1x2=69,所以x M=89,代入直线AB方程,求得y M=-29,因为Q为△ABS三条中垂线的交点,所以MQ⊥AB,有k MQ k AB=-1,直线MQ方程为y+29=-12×x-89.令y=0,x Q=49,所以Q49,0.由椭圆C :x 22+y 2=1可得右焦点F 11,0 ,故QF 1 =59.(2)设A x 1,y 1 ,B x 2,y 2 ,中点M 坐标为x M ,y M .x 212+y 21=1,x 222+y 22=1, 相减得y 2-y 1x 2-x 1=-12×x 1+x 2y 1+y 2=-x M 2y M ,k AB k OM =-12.又Q 为△ABS 的外心,故MQ ⊥AB ,k MQ k AB =-1,所以k MQ =2k OM =2y M x M ,直线MQ 方程为y -y M =2y Mx Mx -x M ,令y =0,x Q =x M 2=x 1+x 24,所以Q x 1+x 24,0 而F 11,0 ,所以QF 1 =1-14x 1+x 2 ,AF 1 =x 1-1 2+y 21=x 1-1 2+1-x 212=x 212-2x 1+2=2-12x 1,同理BF 1 =2-12x 2,|AB |=AF 1 +BF 1 =22-12x 1+x 2 ,QF 1 |AB |=1-14x 1+x 2 22-12x 1+x 2 =24,所以当t 变化时,QF 1 |AB |为定值24.【例2】(2023届河南省濮阳市高三上学期测试)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,圆O :x 2+y 2=a 2,过F 且垂直于x 轴的直线被椭圆C 和圆O 所截得的弦长分别为433和2 2.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线l 1,l 2,记l 1,l 2的斜率分别为k 1,k 2,直线OP 的斜率为k 3,证明:k 1+k 2 k 3为定值.【解析】(1)设椭圆C 的半焦距为c c >0 ,过F 且垂直于x 轴的直线被椭圆C 所截得的弦长分别为433,则2b 2a =433;过F 且垂直于x 轴的直线被圆O 所截得的弦长分别为22,则2a 2-c 2=22,又a 2-b 2=c 2,解得a =3b =2 ,所以C 的方程为x 23+y 22=1.(2)设P x 0,y 0 x 0y 0≠0 ,则x 20+y 20=3.①设过点P 与椭圆C 相切的直线方程为y -y 0=k x -x 0 ,联立2x 2+3y 2=6y -y 0=k x -x 0 得3k 2+2 x 2+6k y 0-kx 0 x +3y 0-kx 0 2-2 =0,则Δ=6k y 0-kx 0 2-4×3k 2+2 ×3y 0-kx 0 2-2 =0,整理得x 20-3 k 2-2x 0y 0k +y 20-2=0.②由题意知k 1,k 2为方程②的两根,由根与系数的关系及①可得k 1+k 2=2x 0y 0x 20-3=2x 0y 0-y 20=-2x 0y 0.又因为k 3=k OP =y 0x 0,所以k 1+k 2 k 3=-2x 0y 0⋅y 0x 0=-2,所以k 1+k 2 k 3为定值-2.(二)与线段长度有关的定值问题与线段长度有关的定值问题通常是先引入参数,利用距离公式或弦长公式得到长度解析式,再对解析式化简,得出结果为定值【例3】(2023届辽宁省朝阳市高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,点P 3,-1 在双曲线C 上.(1)求双曲线C 的方程;(2)点A ,B 在双曲线C 上,直线PA ,PB 与y 轴分别相交于M ,N 两点,点Q 在直线AB 上,若坐标原点O 为线段MN 的中点,PQ ⊥AB ,证明:存在定点R ,使得QR 为定值.【解析】(1)由题意,双曲线C :x 2a 2-y 2b2=1的离心率为2,且P 3,-1 在双曲线C 上,可得9a 2-1b 2=1e =c a =2c 2=a 2+b 2,解得a 2=8,b 2=8,所以双曲线的方程为x 28-y 28=1.(2)由题意知,直线的AB 的斜率存在,设直线AB 的方程为y =kx +m ,联立方程组y =kx +mx 2-y 2=8,整理得(1-k 2)x 2-2km x -m 2-8=0,则Δ=(-2km )2-4(1-k 2)(-m 2-8)=4(m 2-8k 2+8)>0且1-k 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2km 1-k 2,x 1x 2=-m 2-81-k 2,直线PA 的方程为y +1=y 1+1x 1-3(x -3),令x =0,可得y =-1-3y 1+3x 1-3,即M 0,-1-3y 1+3x 1-3 ,同理可得N 0,-1-3y 2+3x 2-3,因为O 为MN 的中点,所以-1-3y 1+3x 1-3 +-1-3y 2+3x 2-3=0,即-1-3(kx 1+m )+3x 1-3-1+3(kx 2+m )+3x 2-3)=0,可得(6k +2)x 1x 2-(3+9k -3m )(x 1+x 2)-18m =0,即(m +8)(m +3k +1)=0,所以m =-8或m +3k +1=0,若m +3k +1=0,则直线方程为y =kx -3k -1,即y +1=k (x -3),此时直线AB 过点P 3,-1 ,不合题意;若m =-8时,则直线方程为y =kx -8,恒过定点D (0,-8),所以PD =32+(-1-8)2=58为定值,又由△PQD 为直角三角形,且PD 为斜边,所以当R 为PD 的中点32,-92时,RQ =PD =582.(三)与面积有关的定值问题与面积有关的定值问题通常是利用面积公式把面积表示成某些变量的表达式,再利用题中条件化简.【例4】(2023届河南省部分学校高三上学期9月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1-1,0 ,上、下顶点分别为A ,B ,∠AF 1B =90°.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM =OP +OQ ,证明:四边形OPMQ 的面积为定值.【解析】(1)依题意c =1,又∠AF 1B =90°,所以b =c =1,所以a =b 2+c 2=2,所以椭圆方程为x 22+y 2=1.(2)证明:设M x ,y ,P x 1,y 1 ,Q x 2,y 2 ,因为OM =OP +OQ,所以四边形OPMQ 为平行四边形,且x =x 1+x 2y =y 1+y 2 ,所以x 1+x 2 22+y 1+y 2 2=1,即x 122+y 12+x 222+y 22+x 1x 2+2y 1y 2=1,又x 122+y 12=1,x 222+y 22=1,所以x 1x 2+2y 1y 2=-1,若直线PQ 的斜率不存在,M 与左顶点或右顶点重合,则x P =x Q =22,所以y P =y Q =32,所以S OPMQ =12×2x P ×2y P =62,若直线PQ 的斜率存在,设直线PQ 的方程为y =kx +t ,代入椭圆方程整理得1+2k 2 x 2+4ktx +2t 2-2=0,所以Δ=82k 2+1-t 2 >0,x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2,所以y 1y 2=kx 1+t kx 2+t =k 2x 1x 2+kt x 1+x 2 +t 2=k 2⋅2t 2-21+2k 2+kt ⋅-4kt 1+2k2 +t 2所以2k 2+1 ⋅2t 2-21+2k 2+2kt ⋅-4kt 1+2k2 +2t 2=-1,整理得4t 2=1+2k 2,又PQ =k 2+1x 1-x 2 =k 2+1⋅81+2k 2-t 21+2k 2,又原点O 到PQ 的距离d =tk 2+1,所以S △POQ =12PQ d =2⋅1+2k 2-t 2⋅t 1+2k 2,将4t 2=1+2k 2代入得S △POQ =2⋅3t 2⋅t 4t2=64,所以S OPMQ =2S △POQ =62,综上可得,四边形OPMQ 的面积为定值62.(四)与斜率有关的定值问题与斜率有关的定值问题常见类型是斜率之积商或斜率之和差为定值,求解时一般先利用斜率公式写出表达式,再利用题中条件或韦达定理化简.【例5】(2023届江苏省南通市高三上学期第一次质量监测)已知A,A 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点,B ,F 分别是C 的上顶点和左焦点.点P 在C 上,满足PF ⊥A A ,AB ∥OP ,FA =2- 2.(1)求C 的方程;(2)过点F 作直线l (与x 轴不重合)交C 于M ,N 两点,设直线AM ,AN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)因为PF ⊥A A ,故可设P -c ,y 0 ,因为AB ∥OP ,故k AB ∥k OP ,即-b a =-y 0c ,解得y 0=bca.又P -c ,bc a 在椭圆C 上,故c 2a 2+b 2c 2a 2b2=1,解得a 2=2c 2=2a 2-2b 2,故a =2b =2c .又FA =2-2,故FA =a -c =2-1 c =2-2,故c =2,a =2,b =2.故C 的方程为x 24+y 22=1.(2)因为椭圆方程为x 24+y 22=1,故F -2,0 ,A 2,0 ,当l 斜率为0时A ,M 或A ,N 重合,不满足题意,故可设l :x =ty -2.联立x 24+y 22=1x =ty -2可得t 2+2 y 2-22ty -2=0,设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=22t t 2+2,y 1y 2=-2t 2+2.故k 1k 2=y 1x 1-2⋅y 2x 2-2=y 1y 2ty 1-2-2 ty 2-2-2=y 1y 2t 2y 1y 2-2+2 t y 1+y 2 +2+2 2=1t 2-2+2 t y 1+y 2y 1y 2 +2+2 2y 1y 2=1t 2+22+2 t 2-2+2 2×t 2+2 2=1-23+22 =2-32故定值为2-32(五)与向量有关的定值问题与向量有关的定值问题常见类型一是求数量积有关的定值问题,二是根据向量共线,写出向量系数的表达式,再通过计算得出与向量系数有关的定值结论.【例6】(2023届湖南省部分校高三上学期9月月考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为62,点A 6,4 在C 上.(1)求双曲线C 的方程.(2)设过点B 1,0 的直线l 与双曲线C 交于D ,E 两点,问在x 轴上是否存在定点P ,使得PD ⋅PE为常数?若存在,求出点P 的坐标以及该常数的值;若不存在,请说明理由.【解析】(1)因为双曲线C 的离心率为62,所以62 2=1+b 2a2,化简得a 2=2b 2.将点A 6,4 的坐标代入x 22b 2-y 2b 2=1,可得18b 2-16b2=1,解得b 2=2,所以C 的方程为x 24-y 22=1.(2)设D x 1,y 1 ,E x 2,y 2 ,直线l 的方程为y =k (x -1),联立方程组y =k x -1 ,x 24-y 22=1,消去y 得(1-2k 2)x 2+4k 2x -2k 2-4=0,由题可知1-2k 2≠0且Δ>0,即k 2<23且k 2≠12,所以x 1+x 2=-4k 21-2k 2,x 1x 2=-2k 2+41-2k 2.设存在符合条件的定点P t ,0 ,则PD =x 1-t ,y 1 ,PE=x 2-t ,y 2 ,所以PD ⋅PE=x 2-t x 1-t +y 1y 2=k 2+1 x 1x 2-t +k 2 x 1+x 2 +t 2+k 2.所以PD ⋅PE =k 2+1 -2k 2-4 +4k 2t +k 2 +t 2+k 2 1-2k 2 1-2k 2,化简得PD ⋅PE =k 2-2t 2+4t -5 +t 2-4-2k 2+1.因为PD ⋅PE 为常数,所以-2t 2+4t -5-2=t 2-41,解得t =134.此时该常数的值为t 2-4=10516,所以,在x 轴上存在点P 134,0 ,使得PD ⋅PE 为常数,该常数为10516.【例7】(2022届上海市金山区高三上学期一模)已知P 0,1 为椭圆C :x 24+y 23=1内一定点,Q 为直线l :y =3上一动点,直线PQ 与椭圆C 交于A 、B 两点(点B 位于P 、Q 两点之间),O 为坐标原点.(1)当直线PQ 的倾斜角为π4时,求直线OQ 的斜率;(2)当△AOB 的面积为32时,求点Q 的横坐标;(3)设AP =λPB ,AB=μBQ ,试问λ-μ是否为定值?若是,请求出该定值;若不是,请说明理由.【解析】(1)因为直线PQ 的倾斜角为π4,且P 0,1 ,所以直线PQ 的方程为:y =x +1,由y =x +1y =3,得Q 2,3 ,所以直线OQ 的斜率是k OQ =32;(2)易知直线PQ 的斜率存在,设直线PQ 的方程为y =kx +1,由x 24+y 23=1y =kx +1,得3+4k 2 x 2+8kx -8=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-8k 3+4k 2,x 1⋅x 2=-83+4k 2,所以x1-x 2 =x 1+x 2 2-4x 1⋅x 2=96+192k 23+4k 2,所以S △AOB =12OP ⋅x 1-x 2 =26+12k 23+4k 2=32,解得k 2=14,即k =±12,所以直线PQ 的方程为y =12x +1或y =-12x +1,由y =12x +1y =3,得Q 4,3 ;由y =-12x +1y =3,得Q -4,3 ;(3)易知直线PQ 的斜率存在,设直线PQ 的方程为x =m y -1 ,由x 24+y 23=1x =m y -1,得4+3m 2 y -1 2+8y -1 -8=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1-1+y 2-1=-84+3m 2,y 1-1 ⋅y 2-1 =-84+3m 2,所以y 1-1+y 2-1=y 1-1 ⋅y 2-1 ,因为AP =λPB ,AB=μBQ ,所以λ=1-y 1y 2-1,μ=y 2-y 13-y 2=y 2-3+3-y 13-y 2=-1+3-y 13-y 2,所以λ-μ=1-y 1y 2-1+y 1-33-y 2+1,=21-y 1 +1-y 1 +21-y 1 1-y 1 y 2-1 3-y 2 +1=1.(六)与代数式有关的定值问题与代数式有关的定值问题.一般是依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值【例8】在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的右准线为直线l ,动直线y =kx +m (k <0,m >0)交椭圆于A ,B 两点,线段AB 的中点为M ,射线OM 分别交椭圆及直线l 于点P 、Q ,如图,当A 、B 两点分别是椭圆E 的右顶点及上顶点时,点Q 的纵坐标为1e(其中e 为椭圆的离心率),且OQ =5OM .(1)求椭圆E 的标准方程;(2)如果OP 是OM 、OQ 的等比中项,那么mk是否为常数?若是,求出该常数;若不是,请说明理由.【解析】(1)椭圆E :x 2a 2+y 2b2=1的右准线为直线l ,动直线y =kx +m 交椭圆于A ,B 两点,当A ,B 零点分别是椭圆E 的有顶点和上顶点时,则A (a ,0),B (0,,b ),M a 2,b2,因为线段AB 的中点为M ,射线OM 分别角椭圆及直线l 与P ,Q 两点,所以Q a 2c ,1e,由O ,M ,Q 三点共线,可得b a =1ea2c,解得b =1,因为OQ =5OM ,所以a 2c a 2=5,可得2a =5c ,又由a 2=b 2+c 2b =12a =5c,解得a 2=5,c 2=4,所以椭圆E 的标准方程为x 25+y 2=1.(2)解:把y =kx +m 代入椭圆E :x 25+y 2=1,可得(5k 2+1)x 2+10mkx +5m 2-5=0,可得x 1+x 2=10km 5k 2+1,x 1x 2=5m 2-55k 2+1,则y 1+y =k (x 1+x 1)+2m =2m 5k 2+1,所以x M =5km 5k 2+1,y M =m5k 2+1,即M 5km 5k 2+1,m 5k 2+1 ,所以直线OM 的方程为y =-15k x ,由y =-15k x x 25+y 2=1,可得x 2P =25k 25k 2+1,因为OP 是OM ,OQ 的等比中项,所以OP 2=OM ⋅OQ ,可得x 2P =x M ⋅x Q =25mk 2(5k 2+1),又由25k 25k 2+1=25mk 2(5k 2+1),解得m =-2k ,所以m k =-2,此时满足Δ>0,所以mk为常数-2.(六)与定值有关的结论1.若点A ,B 是椭圆C :x 2a 2+y 2b2=1a >b >0 上关于原点对称的两点,点P 是椭圆C 上与A ,B 不重合的点,则k PA ⋅k PB =-b 2a2;2.若点A ,B 是双曲线C :x 2a 2-y 2b 2=1a >0,b >0 上关于原点对称的两点,点P 是双曲线C 上与A ,B 不重合的点,则k PA ⋅k PB =b2a 2.3.设点P m ,n 是椭圆C :x 2a 2+y 2b2=1a >b >0 上一定点,点A ,B 是椭圆C 上不同于P 的两点,若k PA +k PB =0,则直线AB 斜率为定值bm 2an 2n ≠0 ;4.设点P m ,n 是双曲线C :x 2a 2-y 2b2=1a >0,b >0 一定点,点A ,B 是双曲线C 上不同于P 的两点,若k PA +k PB =0,直线AB 斜率为定值-bm 2an 2n ≠0 ;5.设点P m ,n 是抛物线C :y 2=2px p >0 一定点,点A ,B 是抛物线C 上不同于P 的两点,若k PA +k PB=0,直线AB 斜率为定值-pn n ≠0 .6.设A ,B ,C 是椭圆x 2a 2+y 2b2=1a >b >0 上不同3点,B ,C 关于x 轴对称,直线AC ,BC 与x 轴分别交于点M ,N ,则OM ON =a 2.7.点A ,B 是椭圆C :x 2a 2+y 2b 2=1a >b >0 上动点,O 为坐标原点,若OA ⊥OB ,则1OA 2+1OB2=1a 2+1b 2(即点O 到直线AB 为定值)8.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|PA 1|⋅|PA 2|=b 2.9.过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 作直线交该椭圆右支于M ,N 两点,弦MN 的垂直平分线交x轴于P ,则|PF ||MN |=e2.10.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-bax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.【例9】(2022届上海市黄浦区高三一模)设常数m >0且m ≠1,椭圆Γ:x 2m2+y 2=1,点P 是Γ上的动点.(1)若点P 的坐标为2,0 ,求Γ的焦点坐标;(2)设m =3,若定点A 的坐标为2,0 ,求PA 的最大值与最小值;(3)设m =12,若Γ上的另一动点Q 满足OP ⊥OQ (O 为坐标原点),求证:O 到直线PQ 的距离是定值.【解析】(1)∵椭圆Γ:x 2m2+y 2=1,点P 的坐标为2,0 ,∴m =2,c =3,∴Γ的焦点坐标为-3,0 ,3,0 ;(2)设P x ,y ,又A 2,0 ,由题知x 29+y 2=1,即y 2=1-x 29,∴PA 2=x -2 2+y 2=x -2 2+1-x 29=8x 29-4x +5=89x -94 2+12,又-3≤x ≤3,∴当x =-3时,PA 2取得最大值为25;当x =94时,PA 2取得最小值为12;∴PA 的最大值为5,最小值为22.(3)当m =12时,椭圆Γ:4x 2+y 2=1,设P x 1,y 1 ,Q x 2,y 2 ,当直线PQ 斜率存在时设其方程为y =kx +t ,则由y =kx +t 4x 2+y 2=1,得4+k 2 x 2+2ktx +t 2-1=0,∴x 1+x 2=-2kt 4+k 2,x 1x 2=t 2-14+k2,Δ=2kt 2-44+k 2 t 2-1 >0,由OP ⊥OQ 可知OP ⋅OQ=0,即x 1x 2+y 1y 2=0,∴x 1x 2+kx 1+t kx 2+t =0,即1+k 2 x 1x 2+kt x 1+x 2 +t 2=0,∴1+k 2 ⋅t 2-14+k 2+kt ⋅-2kt 4+k2+t 2=0,可得1+k 2=5t 2,满足Δ>0,∴O 到直线PQ 的距离为d =t 1+k2=55为定值;当直线PQ 斜率不存在时,OP ⊥OQ ,可得直线方程为x =±55,O 到直线PQ 的距离为55.综上,O 到直线PQ 的距离是定值.三、跟踪检测1.(2023届江苏省南通市海安市高三上学期质量监测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,短轴长为2.(1)求E 的方程;(2)过点M -4,0 且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MBMC=NBNC,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【解析】(1)由椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,短轴长为2,可知c a =32,2b =2 ,则1-b 2a2=34,∴a 2=4 ,故E 的方程为x 24+y 2=1;(2)证明:由题意可知直线l 的斜率一定存在,故设直线l 的方程为y =k (x +4),设B (x 1,y 1),C (x 2,y 2),N (x 3,y 3),P (x 0,y 0),联立x 24+y 2=1y =k (x +4),可得(4k 2+1)x 2+32k 2x +64k 2-4=0,Δ=16(1-12k 2)>0,∴0<k 2<112,则x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-44k 2+1,所以x 0=-16k 24k 2+1,y 0=k (x 0+4)=4k 4k 2+1,∴P -16k 24k 2+1,4k4k 2+1 ,又MB MC =NB NC,所以x 1+4x 2+4=x 3-x 1x 2-x 3,解得x 3=2x 1x 2+4(x 1+x 2)x 1+x 2+8=2×64k 2-44k 2+1+4×-3k 24k 2+1-32k 24k 2+1+8=-1,y 3=3k ,从而N (-1,3k ) ,故k 1⋅k 2=y 0x 0⋅y 3x 3=-14k×(-3k )=34,即k 1k 2为定值.2.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ⋅DF=0,DG ⊥EF 于G ,证明:存在定点H ,使|GH |为定值.【解析】(1)因为双曲线C 与已知双曲线有相同的渐近线,设双曲线C 的标准方程为x 2-4y 2=λ代入点A 坐标,解得λ=4所以双曲线C 的标准方程为x 24-y 2=1(2)(i )当直线EF 斜率存在时,设EF :y =kx +m ,设E x 1,y 1 F x 2,y 2 ,联立y =kx +m 与双曲线x 24-y 2=1,化简得4k 2-1 x 2+8km x +4m 2+1 =0,Δ=(8km )2-44m 2+4 4k 2-1 >0,即4k 2-m 2-1<0,则有x 1+x 2=-8km4k 2-1x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,因为DE ⋅DF=x 1-2 x 2-2 +y 1y 2=0,所以k 2+1 ⋅x 1x 2+km -2 ⋅x 1+x 2 +m 2+4=0,所以k 2+1 ⋅4m 2+44k 2-1+km -2 ⋅-8km 4k 2-1+m 2+4=0,化简,得3m 2+16km +20k 2=0,即3m +10k m +2k =0,所以m 1=-2k ,m 2=-103k ,且均满足4k 2-m 2-1<0,当m 1=-2k 时,直线l 的方程为y =k x -2 ,直线过定点2,0 ,与已知矛盾,当m 2=-103k 时,直线l 的方程为y =k x -103 ,过定点103,0 (ii )当直线EF 斜率不存在时,由对称性不妨设直线DE :y =x -2,与双曲线C 方程联立解得x E =x F =103,此时EF 也过点M 103,0 ,综上,直线EF 过定点M 103,0.由于DG ⊥EF ,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.3.(2023届江苏省南京市高三上学期9月学情调研)已知抛物线C :y 2=2px p >0 的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点.(1)求p 的值;(2)是否存在定点T ,使得TA ⋅TB为常数?若存在,求出点T 的坐标及该常数;若不存在,说明理由.【解析】(1)因为F p 2,0 ,P 0,2 ,且点A 恰好为线段PF 中点,所以A p4,1 ,又因为A 在抛物线上,所以12=2p ⋅p4,即p 2=2,解得P =2(2)设T m ,n ,可知直线l 斜率存在;设l :y =kx +2,A x 1,y 1 ,B x 2,y 2 联立方程得:y 2=22xy =kx +2 ,所以k 2y 2-22y +42=0,所以y 1+y 2=22k ,y 1y 2=42k,又:TA ⋅TB =x 1-m x 2-m )+(y 1-n y 2-n=24y 21-m 24y 22-m +y 1-n y 2-n=18y 21y 22-24m y 21+y 22 +m 2-n y 1+y 2 +n 2=4k 2-24m 8k2-82k +m 2+42k -22n k +n 2=4-22m k2+4m +42-22n k +m 2+n 2,令4m +42-22n =04-22m =0,解之得:m =2n =4 ,即T 2,4 ,此时TA ⋅TB =m 2+n 2=184.(2023届重庆市2023届高三上学期质量检测)已知抛物线C :x 2=2py p >0 的焦点为F ,斜率不为0的直线l 与抛物线C 相切,切点为A ,当l 的斜率为2时,AF =10.(1)求p 的值;(2)平行于l 的直线交抛物线C 于B ,D 两点,且∠BAD =90°,点F 到直线BD 与到直线l 的距离之比是否为定值?若是,求出此定值;否则,请说明理由.【解析】(1)由x 2=2py ,得y =x 22p,则y =xp ,令xp=2,则x =2p ,即点A 的横坐标为2p ,所以其纵坐标也为2p ,故AF =2p +p2=10,所以p =4;(2)由(1)得x 2=8y ,设直线BD 的方程为y =kx +m k ≠0 ,B x 1,x 218 ,D x 2,x 228 ,A x 0,x 208,由∠BAD =90°得x 218-x 208x 1-x 0·x 228-x 208x 2-x 0=-1,即x 1+x 0 x 2+x 0 =-64,即x 1x 2+x 0x 1+x 2 +x 20=-64,由(1)知y =k =x04,x 0=4k ,联立y =kx +m x 2=8y,消y 得x 2-8kx -8m =0,则x 1+x 2=8k ,x 1x 2=-8m ,所以-8m +32k 2+16k 2=-64,所以m =6k 2+8,l :y =x 04x -x 0 +x 28=kx -2k 2,设F 到直线l 和直线BD 的距离分别为d 1,d 2,则由l ∥BD 得,d 1d 2=m -2 2+2k 2=6k 2+62k 2+2=3,所以点F 到直线BD 与到直线l 的距离之比是定值,为定值3.5.(2023届江苏省百校联考高三上学期考试)设F 为椭圆C :x 22+y 2=1的右焦点,过点F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点.(1)当BF=2FA 时,求FA ;(2)在x 轴上是否存在异于F 的定点Q ,使k QAk QB为定值(其中k QA ,k QB 分别为直线QA ,QB 的斜率)?若存在,求出Q 的坐标;若不存在,请说明理由.【解析】(1)设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,联立x =my +1x 2+2y 2=2,得m 2+2 y 2+2my -1=0,又因为BF=2FA ,所以y 1+y 2=-2m m 2+2y 1y 2=-1m 2+2y 2=-2y 1,解得m 2=27,y 1 =2m m 2+2=148,所以FA =1+m 2y 1 =328,即FA =328.(2)假设在x 轴上存在异于点F 的定点Q t ,0 t ≠1 ,使得k QAk QB为定值.设直线AB 的方程为x =my +1,联立x 22+y 2=1x =my +1,得m 2+2 y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,所以y 1+y 2=2my 1y 2.所以k QA k QB =y 1x 1-t y 2x 2-t=y 1⋅x 2-t y 2⋅x 1-t =y 1my 2+1-t y 2my 1+1-t =my 1y 2+(1-t )y 1my 1y 2+(1-t )y 2=2my 1y 2+2(1-t )y 12my 1y 2+2(1-t )y 2=(3-2t )y 1+y 2y 1+(3-2t )y 2.要使k QA k QB为定值,则3-2t 1=13-2t ,解得t =2或t =1(舍去),此时k QAk QB=-1.故在x 轴上存在异于F 的定点Q 2,0 ,使得k QAk QB为定值.6.(2022届湖南省长沙市宁乡市高三下学期5月模拟)已知抛物线G :y 2=4x 的焦点与椭圆E :x 2a 2+y 2b2=1a >b >0 的右焦点F 重合,椭圆E 的长轴长为4.(1)求椭圆E 的方程;(2)过点F 且斜率为k 的直线l 交椭圆E 于A ,B 两点,交抛物线G 于M ,N 两点,请问是否存在实常数t ,使2AB +tMN 为定值?若存在,求出t 的值;若不存在,说明理由.【解析】(1)因为抛物线G :y 2=4x 的焦点为(1,0),所以c =1,又a =2,则b 2=a 2-c 2=3,故椭圆E 的方程为:x 24+y 23=1;(2)设A x 1,y 1 、B x 2,y 2 、M x 3,y 3 、N x 4,y 4 ,设直线l 的方程为y =k x -1 ,与椭圆E 的方程联立x 24+y 23=1y =k x -1,得3+4k 2 x 2-8k 2x +4k 2-12=0,∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,∴AB =1+k 2⋅x 1+x 2 2-4x 1x 2=12(k 2+1)3+4k 2,设直线l 的方程y =k x -1 ,与抛物线G 的方程联立y 2=4xy =k x -1 ,得k 2x 2-2k 2+4 x +k 2=0,∴x 3+x 4=2k 2+4k 2,x 3x 4=1,∴MN =x 3+x 4+2=4k 2+1k 2,∴2AB +t MN=3+4k 26k 2+1 +tk 24k 2+1 =8+3t k 2+612k 2+1 ,要使2AB +1MN为常数,则8+3t =6,解得t =-23,故存在t =-23,使得2AB +1MN为定值12.7.(2023届江苏省南京市高三上学期数学大练)已知点B 是圆C :x -1 2+y 2=16上的任意一点,点F (-1,0),线段BF 的垂直平分线交BC 于点P .(1)求动点Р的轨迹E 的方程;(2)设曲线E 与x 轴的两个交点分别为A 1,A 2,Q 为直线x =4上的动点,且Q 不在x 轴上,QA 1与E 的另一个交点为M ,QA 2与E 的另一个交点为N ,证明:△FMN 的周长为定值.【解析】(1)因为点P 在BF 垂直平分线上,所以有PF =PB ,所以:PF +PC =PB +PC =BC =r =4,即PF +PC 为定值4>2,所以轨迹E 为椭圆,且a =2,c =1,所以b 2=3,所以轨迹E 的方程为:x 24+y 23=1.(2)由题知:A 1-2,0 ,A 22,0 ,设Q 4,t ,M x 1,y 1 ,N x 2,y 2则k QA 1=t 6,k QA 2=t2,所以QA 1方程为:y =t 6x +2 ,QA 2方程为:y =t2x -2 ,联立方程:y =t 6x +2x 24+y 23=1,可以得出M :54-2t 227+t 2,18t27+t 2 同理可以计算出点N 坐标:2t 2-63+t 2,-6t3+t 2 ,当k MN 存在,即t 2≠9,即t ≠±3时,k MN =-6t(t 2-9)所以直线MN 的方程为:y +6t 3+t 2=-6t t 2-9x -2t 2-63+t 2即:y =-6t t 2-9x +6t t 2-9=-6tt 2-9x -1 ,所以直线过定点1,0 ,即过椭圆的右焦点F 2,所以△FMN 的周长为4a =8.当k MN 不存在,即t 2=9,即t =±3时,可以计算出x 1=x 2=1,周长也等于8.所以△FMN 的周长为定值8.8.(2023届安徽省皖南八校高三上学期考试)已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,且左焦点坐标为-2,0 ,P 为椭圆上的一个动点,∠F 1PF 2的最大值为π2.(1)求椭圆M 的标准方程;(2)若过点-2,-4 的直线l 与椭圆M 交于A ,B 两点,点N 2,0 ,记直线NA 的斜率为k 1,直线NB 的斜率为k 2,证明:1k 1+1k 2=1.【解析】(1)因为左焦点坐标为-2,0 ,所以c =2,当点P 在上、下顶点时,∠F 1PF 2最大,又∠F 1PF 2的最大值为π2.所以b =c =2,由a 2=b 2+c 2得a 2=4,所以椭圆M 的标准方程为x 24+y 22=1;(2)当直线l 的斜率为0时,直线l 的方程为y =-4,直线y =-4与椭圆x 24+y 22=1没有交点,与条件矛盾,故可设直线l 的方程为x =my +t ,联立直线l 的方程与椭圆方程可得,x =my +tx 24+y 22=1,化简可得my +t 2+2y 2=4,所以m 2+2 y 2+2mtx +t 2-4=0,由已知方程m 2+2 y 2+2mtx +t 2-4=0的判别式Δ=4m 2t 2-4m 2+2 t 2-4 =16m 2-8t 2+32>0,又直线x =my +t 过点-2,-4 ,所以-2=-4m +t ,所以7m 2-8m <0,所以0<m <87,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,因为N 2,0所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=my 1+t -2y 1+my 2+t -2y 2=2m +t -2 y 1+y 2y 1y 2,所以1k 1+1k 2=2m +t -2 -2mt t 2-4=2m -2mt t +2=2m -2mt 4m =2m -t 2=1方法二:设直线l 的方程为m x -2 +ny =1,A x 1,y 1 ,B x 2,y 2 ,由椭圆M 的方程x 2+2y 2=4,得(x -2)2+2y 2=-4x -2 .联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4x -2 m x -2 +ny ,即1+4m (x -2)2+4n x -2 y +2y 2=0,1+4m x -2y 2+4n x -2y +2=0,所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n1+4m .因为直线l 过定点-2,-4 ,所以m +n =-14,代入1k 1+1k 2,得1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n 1+4m =1+4m1+4m =1.9.(2023届北京市房山区高三上学期考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴的两个端点分别为A -2,0 ,B 2,0 离心率为32.(1)求椭圆C 的标准方程;(2)M 为椭圆C 上除A ,B 外任意一点,直线AM 交直线x =4于点N ,点O 为坐标原点,过点O 且与直线BN 垂直的直线记为l ,直线BM 交y 轴于点P ,交直线l 于点Q ,求证:|BP ||PQ |为定值.【解析】(1)由已知a =2,又e =c a =c 2=32,c =3,所以b =a 2-c 2=1,椭圆标准方程为x 24+y 2=1;(2)设M (x 1,y 1),y 1≠0,则x 214+y 21=1,x 21+4y 21=4,直线AM 的方程为y =y 1x 1+2(x +2),令x =4得y =6y 1x 1+2,即N 4,6y 1x 1+2,k BN =6y 1x 1+24-2=3y 1x 1+2,l⊥BN,k l=-x1+23y1,直线l的方程是y=-x1+23y1x,直线BM的方程为y=y1x1-2(x-2),令x=0得y=-2y1x1-2,即P0,-2y1x1-2,由y=-x1+23y1xy=y1x1-2(x-2),因为x21+4y21=4,故解得x=-6y=2(x1+2)y1,即Q-6,2x1+2y1,所以BPPQ=x P-x Bx Q-x P=0-2-6-0=1310.(2023届湖南师范大学附属中学高三上学期月考)已知A(-22,0),B(22,0),直线PA,PB的斜率之积为-34,记动点P的轨迹为曲线C.(1)求C的方程;(2)直线l与曲线C交于M,N两点,O为坐标原点,若直线OM,ON的斜率之积为-34,证明:△MON的面积为定值.【解析】(1)设P(x,y),则直线PA的斜率k PA=yx+22(x≠-22),直线PB的斜率 k PB=yx-22(x≠22),由题意k PA⋅k PB=yx+22⋅yx-22=y2x2-8=-34,化简得 x28+y26=1(x≠±22);(2)直线l的斜率存在时,可设其方程为y=kx+m,联立y=kx+m,x28+y26=1,化简得3+4k2x2+8km x+4m2-24=0,设M x1,y1,N x2,y2,则Δ=(8km)2-43+4k24m2-24=488k2+6-m2>0,x1+x2=-8km3+4k2,x1x2=4m2-243+4k2,所以 k OM⋅k ON=y1y2x1x2=kx1+mkx2+mx1x2=k2x1x2+km x1+x2+m2x1x2=4m2k2-24k2-8k2m2+3m2+4k2m23+4k24m2-243+4k2=-24k2+3m24m2-24=-34化简得m2=4k2+3则|MN|=1+k2x1-x2=1+k2488k2+6-m23+4k2==431+k24k2+34k2+3=431+k23+4k2,又O到MN的距离d=|m|1+k2=4k2+31+k2,所以S△OMN=12|MN|⋅d=12⋅431+k23+4k2⋅3+4k21+k2=23,为定值.当直线l的斜率不存在时,可设 M x0,y0,N x0,-y0,则k CM⋅k ON=-y20x20=-34,且x208+y206=1,解得x20=4,y20=3,此时S△OMN=2×12×x0y0=23,综上,△OMN 的面积为定值23.11.(2023届贵州省遵义市新高考协作体高三上学期质量监测)已知点F 1是椭圆C :x 24+y 23=1的左焦点,Q是椭圆C 上的任意一点,A 12,1 .(1)求QF 1 +QA 的最大值;(2)过点F 1的直线l 与椭圆C 相交于两点M ,N ,与y 轴相交于点P .若PM =λMF 1 ,PN =μNF 1,试问λ+μ是否为定值?若是,求出该定值;若不是,请说明理由.【解析】(1)由椭圆方程知:a =2,b =3,∴c =a 2-b 2=1,则F 1-1,0 ,F 21,0 ,由椭圆定义知:QF 1 =2a -QF 2 =4-QF 2 ,∴QF 1 +QA =QA -QF 2 +4,∵QA -QF 2 ≤F 2A (当且仅当A ,F 2,Q 三点共线,即与图中T 点重合时取等号),又F 2A =12-1 2+1-0 2=52,∴QF 1 +QA 的最大值为4+52=8+52.(2)由题意知:直线l 斜率存在,设l :y =k x +1 ,M x 1,y 1 ,N x 2,y 2 ,则P 0,k ,由y =k x +1x 24+y 23=1得:3+4k 2 x 2+8k 2x +4k 2-12=0,∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2;∵PM =λMF 1 ,即x 1,y 1-k =λ-1-x 1,-y 1 ,则λ=-x 11+x1;同理可得:μ=-x 21+x 2,∴λ+μ=-x 11+x 1-x 21+x 2=-x 11+x 2 +x 21+x 1 1+x 1 1+x 2=-2x 1x 2+x 1+x 2 x 1x 2+x 1+x 2 +1=-8k 2-243+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k2+1=-8k 2-24-8k 24k 2-12-8k 2+3+4k2=-83,∴λ+μ是定值-83.12.(2023届江苏省盐城市响水中学高三上学期测试)已知椭圆C :x 24+y 22=1,A 0,1 ,过点A 的动直线l与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得λAP ⋅AQ +OP ⋅OQ为定值?若存在,求出λ的值;若不存在,说明理由.【解析】(1)①当直线l 存在斜率时,设P x 1,y 1 、Q x 2,y 2 、M x 0,y 0 ,x 0≠0,则应用点差法:x 214+y 212=1x 224+y 222=1,两式联立作差得:(x 1-x 2)(x 1+x 2)4+(y 1-y 2)(y 1+y 2)2=0,∴y 1-y 2 y 1+y 2 x 1-x 2 x 1+x 2=y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=k PQ ⋅2y 02x 0=k PQ ⋅y 0x 0=k PQ ⋅k OM =-12,又∵k PQ =k MA =y 0-1x 0,∴y 0-1x 0⋅y 0x 0=-12,化简得x 20+2y 20-2y 0=0(x 0≠0),②当直线l 不存在斜率时,M 0,0 ,综上,无论直线是否有斜率,M 的轨迹方程为x 2+2y -12 2=12;(2)①当直线l 存在斜率时,设直线l 的方程为:y =kx +1,联立y =kx +1x 24+y 22=1并化简得:(2k 2+1)x 2+4kx -2=0,∴Δ>0恒成立,∴x 1+x 2=-4k 2k 2+1,x 1⋅x 2=-22k 2+1,又AP =x 1,k ⋅x 1 ,AQ =x 2,k ⋅x 2 ,OP =x 1,k ⋅x 1+1 ,OQ =x 2,k ⋅x 2+1 ,∴λAP ⋅AQ +OP ⋅OQ=λ1+k 2 ⋅x 1⋅x 2+1+k 2 ⋅x 1⋅x 2+k x 1+x 2 +1,=-2λ+1 1+k 2 2k 2+1-4k 22k 2+1+1=-2λ+2 k 2+2λ+12k 2+1,若使λAP ⋅AQ +OP ⋅OQ为定值,只需2λ+2 2=2λ+11,即λ=1,其定值为-3,②当直线l 不存在斜率时,直线l 的方程为:x =0,则有P 0,2 、Q 0,-2 ,又AP =0,2-1 ,AQ =0,-2-1 ,OP =0,2 ,OQ =0,-2 ,∴λAP ⋅AQ +OP ⋅OQ =-λ-2,当λ=1时,λAP ⋅AQ +OP ⋅OQ 也为定值-3,综上,无论直线是否有斜率,一定存在一个常数λ=1,使λAP ⋅AQ +OP ⋅OQ为定值-3.13.(2023届云南省下关第一中学高三上学期考试)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点(0,3),离心率为22,直线y =kx (k ≠0)与椭圆E 交于A ,B 两点,过点B 作BC ⊥x ,垂足为C 点,直线AC 与椭圆E的另一个交点为D .(1)求椭圆E 的方程;(2)试问∠ABD 是否为定值?若为定值,求出定值;若不为定值,说明理由.【解析】(1)由已知得b =3c a =22,解得a =6b =3c =3,所以E :x 26+y 23=1.(2)由已知,不妨设B x 0,y 0 ,则A -x 0,-y 0 ,C x 0,0 ,所以k =y 0x 0,k AC =y 02x 0=k 2,所以l AD :y =k2x -x 0 ,代入椭圆E :x 26+y 23=1的方程得:2+k 2 x 2-2x 0k 2x +k 2x 20-12=0,设D x D ,y D ,则-x 0+x D =2x 0k 22+k 2,即x D =2x 0k 22+k 2+x 0,所以y D =k 22x 0k22+k 2+x 0-x 0 =x 0k 32+k 2,即D 2x 0k 22+k 2+x 0,x 0k 32+k 2,所以k BD =x 0k 32+k 2-kx 02x 0k 22+k 2+x 0-x 0=-1k ,即k BD k =-1,即BD ⊥AB ,也即∠ABD 为定值π2.14.如图,点M 是圆A :x 2+(y +1)2=16上任意点,点B (0,1),线段MB 的垂直平分线交半径AM 于点P ,当点M 在圆A 上运动时,(1)求点P 的轨迹E 的方程;(2)BQ ⎳x 轴,交轨迹E 于Q 点(Q 点在y 轴的右侧),直线l :x =my +n 与E 交于C ,D (l 不过Q 点)两点,且直线CQ 与直线DQ 关于直线BQ 对称,则直线l 具备以下哪个性质?证明你的结论?①直线l 恒过定点;②m 为定值;③n 为定值.【解析】(1)如图,由⊙A 方程,得A (0,-1),半径r =4,∵P 在BM 的垂直平分线上,∴PM =PB ,所以|PA |+|PB |=|PA |+|PM |=|AM |=4>|AB |=2,∴P 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,由2a =4,则a =2,c =1,b 2=3,∴点P 的轨迹E 的方程为y 24+x 23=1.(2)解:∵直线l 与轨迹E 交于C ,D 两点,设C (x 1,y 1),D (x 2,y 2),如图x =my +n ,y 24+x 23=1消x ,得y 24+(my +n )23=1,整理,得(3+4m 2)y 2+8mny +4n 2-12=0,y 1+y 2=-8mn 3+4m 2,y 1y 2=4n 2-123+4m 2,因为CQ 与DQ 关于BQ 对称,BQ ⎳x 轴,所以k CQ +k DQ =0,Q 32,1 ,x 1≠32,x 2≠32,y 1-1x1-32+y 2-1x 2-32=0,即(y 1-1)x 2-32 +(y 2-1)x 1-32 =0,∵x 1=my 1+n ,x 2=my 2+n ,∴整理:2my 1y 2+n -m -32(y 1+y 2)-2n +3=0,2m 4n 2-123+4m 2+n -m -32 -8mn 3+4m 2 -2n +3=0,即4m 2+(4n -8)m -2n +3=0,即(2m -1)(2m +2n -3)=0,若2m +2n -3=0,点Q 32,1满足l :x =my +n ,即C ,D ,Q 三点共线,不合题意,∴2m -1=0,即m =12,∴直线l 中m 为定值12.15.(2022届云南省红河州高三检测)在平面直角坐标系Oxy 中,点M 是以原点O 为圆心,半径为a 的圆上的一个动点.以原点O 为圆心,半径为b a >b >0 的圆与线段OM 交于点N ,作MD ⊥x 轴于点D ,作NQ ⊥MD 于点Q .(1)令∠MOD =α,若a =4,b =1,α=π3,求点Q 的坐标;(2)若点Q 的轨迹为曲线C ,求曲线C 的方程;(3)设(2)中的曲线C 与x 轴的正半轴交于点A ,与y 轴的正负半轴分别交于点B 1,B 2,若点E 、F 分别满足AE =-3OE ,4AF =3OB 2 ,设直线B 1E 和B 2F 的交点为K ,设直线l :x =a 2c 及点H c ,0 ,(其中c =a 2-b 2),证明:点K 到点H 的距离与点K 到直线l 的距离之比为定值ca.【解析】(1)设Q x ,y ,则由题知x =4cos π3=2y =sin π3=32,因此Q 2,32 (2)(2)设∠MOD =α及Q x ,y ,则由题知x=acos αy =b sin α ,则点Q 的轨迹C 为椭圆,方程为:x 2a 2+y 2b 2=1a >b >0 .(3)设K x ,y ,由题知,B 10,b ,E a 4,0 ,B 20,-b ,F a ,-34b ,l B 1E :xa 4+y b =1,即4bx +ay =ab ,l B 2F :y +b -34b +b=xa ,即bx -4ay =4ab ,联列上述直线方程,解得x =817ay =-1517b.KH =817a -c 2+-1517b 2=817a -c 2+-1517 2a 2-c 2=a 2+817c 2-2×817ac =a -817c令点K 到直线l 的距离为PM ,则c a ⋅PM =c a ⋅a 2c -817a =a -817c .因此有KH PM=ca .。

专题14 圆锥曲线中的定值定点问题(解析版)

专题14 圆锥曲线中的定值定点问题(解析版)

专题14 圆锥曲线中的定值定点问题1.(2022·全国·高考真题(文))已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)- 【解析】 【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. (1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T ,由MT TH =得到(5,H -.求得HN 方程:(22y x =+-,过点(0,2)-. ①若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=, 可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++- 可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=, 将(*)代入,得222241296482448482436480,k k k k k k k +++---+--= 显然成立,综上,可得直线HN 过定点(0,2).-2.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【解析】 【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方程结合弦长公=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +=⋅=,所以MN所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN =3.(2022·青海·海东市第一中学模拟预测(理))已知椭圆M :22221x y a b +=(a >b>0AB为过椭圆右焦点的一条弦,且AB 长度的最小值为2. (1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点()2,0P ,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,当12111k k +=时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.【答案】(1)22142x y += (2)存在,()2,4-- 【解析】 【分析】(1)由题意求出,,a b c ,即可求出椭圆M 的方程.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y ,联立直线l 的方程与椭圆方程()()222242x y x -+=--,得()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭,则12114114n k k m +=-=+,化简得14m n +=-,即可求出直线l 恒过的定点. (1)因为22221x y a b +=(a >b >0222b a =, 所以a =2,c =b M 的方程为22142x y +=.(2)设直线l 的方程为m (x -2)+ny =1,()11,C x y ,()22,D x y , 由椭圆的方程2224x y +=,得()()222242x y x -+=--.联立直线l 的方程与椭圆方程,得()()()2222422x y x m x ny ⎡⎤⎣⎦-+=---+,即()()()221424220m x n x y y +-+-+=,()22214420x x m n y y ⎛⎫--+++= ⎪⎝⎭, 所以12121222114114x x nk k y y m--+=+=-=+, 化简得14m n +=-,代入直线l 的方程得()1214m x m y ⎛⎫-+--= ⎪⎝⎭, 即()1214m x y y ---=,解得x =-2,y =-4,即直线l 恒过定点()2,4--. 4.(2022·上海松江·二模)已知椭圆2222:1(0)x y a b a bΓ+=>>的右顶点坐标为(2,0)A ,左、右焦点分别为1F 、2F ,且122F F =,直线l 交椭圆Γ于不同的两点M 和N . (1)求椭圆Γ的方程;(2)若直线l 的斜率为1,且以MN 为直径的圆经过点A ,求直线l 的方程; (3)若直线l 与椭圆Γ相切,求证:点1F 、2F 到直线l 的距离之积为定值.【答案】(1)22143x y +=;(2)2y x =-或27y x =-; (3)证明见解析. 【解析】 【分析】(1)根据焦距及椭圆的顶点求出,a b 即可得出;(2)设直线l 的方程为 y x b =+,联立方程,由根与系数的关系及0AM AN ⋅=求解即可;(3)分直线斜率存在与不存在讨论,当斜率不存在时直接计算可得,当斜率存在时,设直线l 的方程为y kx b =+,根据相切求出,b k 关系,再由点到直线的距离直接计算即可得解.(1)①1222F F c == ①1c =,①2a =,由222a b c =+ 得241=+b ,①22=34=b a ,所以椭圆Γ的方程:22143x y +=;(2)①直线l 的斜率为1,故可设直线l 的方程为 y x b =+, 设1(M x ,1)y ,2(N x ,2)y由22143y x bx y =+⎧⎪⎨+=⎪⎩ 可得22784120x bx b ++-=, 则1287b x x +=-,2124127b x x -=,①以MN 为直径的圆过右顶点A ,①0AM AN ⋅=,①1212(2)(2)0x x y y --+= ①21212122211))2()4((2(2)()4b b x x x x x x x x b x x b -+++=+-+++++2241282(2)4077b bb b -=⋅--⋅++=,整理可得271640b b ++=,①2b =-或27b =-,①2226447(412)16(213)b b b ∆=-⋅⋅-=⋅-, 当2b =-或27b =-时,均有0∆>所以直线l 的方程为2y x =-或27y x =-. (3)椭圆Γ左、右焦点分别为1(1,0)F -、2(1,0)F①当直线l 平行于y 轴时,①直线l 与椭圆Γ相切,①直线l 的方程为2x =±, 此时点1F 、2F 到直线l 的到距离分别为121,3d d ==,①123d d ⋅=. ①直线l 不平行于y 轴时,设直线l 的方程为 y kx b =+,联立2234120y kx b x y =+⎧⎨+-=⎩,整理得222(34)84120k x kbx b +++-=, 222222644(34)(412)16(9123)k b k b k b ∆=-+-=⋅+-,①直线l 与椭圆Γ相切,①0∆=,①2234b k =+ ①1(1,0)F -到直线l的距离为1d ,2(1,0)F -到直线l的距离为2=d①2222212222(34)33111k bk k k d d k k k --++⋅=====+++, ①点1F 、2F 到直线l 的距离之积为定值由3.5.(2022·上海浦东新·二模)已知12F F 、分别为椭圆E :22143x y+=的左、右焦点, 过1F 的直线l 交椭圆E于,A B 两点.(1)当直线l 垂直于x 轴时,求弦长AB ; (2)当2OA OB ⋅=-时,求直线l 的方程;(3)记椭圆的右顶点为T ,直线AT 、BT 分别交直线6x =于C 、D 两点,求证:以CD 为直径的圆恒过定点,并求出定点坐标. 【答案】(1)3(2))1y x =+(3)证明见解析;定点()()4080,,,【解析】 【分析】(1)将1x =-代入椭圆方程求解即可;(2)由(1)知当直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立直线与椭圆的方程,得出()22223484120k xk x k +++-=,设()()1122A x y B x y ,,,可得韦达定理,代入2OA OB ⋅=-计算可得斜率;(3)分析当直线l 的斜率不存在时,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,再以CD 为直径的圆的方程,令0y =,代入韦达定理化简可得定点 (1)由题知()110F -,,将1x =-代入椭圆方程得332y AB =±∴=, (2)由(1)知当直线l 的斜率不存在时,331122A B ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,此时14OA OB =,不符合题意,舍去∴直线l 的斜率存在,设直线l 的方程为:()1y k x =+,联立()221431x y y k x ⎧+=⎪⎨⎪=+⎩得()22223484120k x k x k +++-=,设()()1122A x y B x y ,,,,则2122212283441234k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩, 由()()()()2222222221212121212122224128512111()1343434k k k OA OB x x y y x x k x k x k x xk x x k kk k k k k ----=+=+++=++++=+++=+++,解得22k k ==,∴直线l 的方程为)1y x =+..(3)①当直线l 的斜率不存在时,()33112022A B T ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,,,,,直线AT 的方程为112y x =-+,C 点坐标为()62-,, 直线BT 的方程为112y x =-,D 点坐标为()62,,以CD 为直径的圆方程为()2264x y -+=,由椭圆的对称性知若以CD 为直径的圆恒过定点则定点在x 轴上,令0y =,得48x x ==,.即圆过点()()4080,,,. ①当直线l 的斜率存在时,同(2)联立,直线AT 的方程为()1122y y x x =--, C 点坐标为11462y x ⎛⎫ ⎪-⎝⎭,,同理D 点坐标为22462y x ⎛⎫⎪-⎝⎭,,以CD 为直径的圆的方程为()()12124466022y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪--⎝⎭⎝⎭,令0y =,得()2121212161236024y y x x x x x x -++=-++,由()()()()22222121222121212122241281611611343416441282424243434k k k k x k x k k y y k k x x x x x x x x k k ⎛⎫--++ ⎪++++⎝⎭===----++-++-+++, 得212320x x -+=,解得48x x ==,,即圆过点()()4080,,,. 综上可得,以CD 为直径的圆恒过定点()()4080,,,. 6.(2022·上海长宁·二模)已知,A B 分别为椭圆222Γ:1(1)x y a a+=>的上、下顶点,F 是椭圆Γ的右焦点,M 是椭圆Γ上异于,A B 的点.(1)若π3AFB ∠=,求椭圆Γ的标准方程 (2)设直线:2l y =与y 轴交于点P ,与直线MA 交于点Q ,与直线MB 交于点R ,求证:PQ PR ⋅的值仅与a 有关(3)如图,在四边形MADB 中,MA AD ⊥,MB BD ⊥,若四边形MADB 面积S 的最大值为52,求a 的值.【答案】(1)2214x y +=(2)证明见解析 (3)2a = 【解析】 【分析】(1)根据已知判断AFB △形状,然后可得;(2)设()11,M x y ,表示出直线AM 、BM 的方程,然后求Q 、R 的坐标,直接表示出所求可证; (3)设()11,M x y ,()44,D x y ,根据已知列方程求解可得14,x x 之间关系,表示出面积,结合已知可得. (1)因为AF BF =,π3AFB ∠=,所以AFB △是等边三角形, 因为2AB =,AF a =,所以2a =,得椭圆的标准方程为2214x y +=.(2)设()11,M x y ,()2,2R x ,()3,2Q x , 因为()0,1A ,()0,1B -所以直线AM 、BM 的方程分别为 111:1AM y l y x x -=+, 111:1BM y l y x x +=-, 所以12131x x y =+,1311x x y =-, 又221121x y a-=所以2211221331x PQ PR x x a y ⋅===-,所以PQ PR ⋅的值仅与a 有关. (3)设()11,M x y ,()44,D x y , 因为MA DA ⊥,MB DB ⊥,所以()()1414110x x y y +--=,()()1414110x x y y +++= 两式相减得41y y =-,带回原式得214110x x y +-=,因为221121x y a+=,所以142x x a =-, 1412111MAB DABS SSx x x a a a ⎛⎫=+=+=+≤+ ⎪⎝⎭因为S 的最大值为52 ,所以152a a += ,得2a =.7.(2022·福建省福州格致中学模拟预测)圆O :224x y +=与x 轴的两个交点分别为()12,0A -,()22,0A ,点M 为圆O 上一动点,过M 作x 轴的垂线,垂足为N ,点R 满足12NR NM = (1)求点R 的轨迹方程;(2)设点R 的轨迹为曲线C ,直线1x my =+交C 于P ,Q 两点,直线1A P 与2A Q 交于点S ,试问:是否存在一个定点T ,当m 变化时,2A TS 为等腰三角形【答案】(1)2214x y +=(2)存在,证明见解析 【解析】 【分析】(1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,根据题意得0x x =,012y y =,再代入圆224x y +=即可求解;(2)先判断斜率不存在的情况;再在斜率存在时,设直线l 的方程为1x my =+,与椭圆联立得:()224230m y my ++-=,12224m y y m -+=+,12234y y m -=+,再根据题意求解判断即可. (1)设点()00,M x y 在圆224x y +=上,故有22004x y +=,设(),R x y ,又12NR NM =,可得0x x =,012y y =, 即0x x =,02y y =代入22004x y +=可得()2224x y +=,化简得:2214x y +=,故点R 的轨迹方程为:2214x y +=.(2)根据题意,可设直线l 的方程为1x my =+, 取0m =,可得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭, 可得直线1A P的方程为y x =+,直线2A Q的方程为y x =-联立方程组,可得交点为(1S ;若1,P ⎛ ⎝⎭,Q ⎛ ⎝⎭,由对称性可知交点(24,S , 若点S 在同一直线上,则直线只能为l :4x =上,以下证明:对任意的m ,直线1A P 与直线2A Q 的交点S 均在直线l :4x =上. 由22114x my x y =+⎧⎪⎨+=⎪⎩,整理得()224230m y my ++-= 设()11,P x y ,()22,Q x y ,则12224m y y m -+=+,12234y y m -=+ 设1A P 与l 交于点()004,S y ,由011422y y x =++,可得10162y y x =+ 设2A Q 与l 交于点()004,S y ',由022422y y x '=--,可得20222y y x '=-,因为()()()()122112102126123622222y my y my y y y y x x x x --+'-=-=+-+- ()()()()()22121211121212464402222m mmy y y y m m x x x x ----+++===+-+-, 因为00y y '=,即0S 与0S '重合, 所以当m 变化时,点S 均在直线l :4x =上,因为()22,0A ,()4,S y ,所以要使2A TS 恒为等腰三角形,只需要4x =为线段2A T 的垂直平分线即可,根据对称性知,点()6,0T . 故存在定点()6,0T 满足条件.8.(2022·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,椭圆C 的左、右顶点分别为A ,B ,上顶点为D ,1AD BD ⋅=-. (1)求椭圆C 的方程;(2)斜率为12的动直线l 与椭圆C 相交于M ,N 两点,是否存在定点P (直线l 不经过点P ),使得直线PM 与直线PN 的倾斜角互补,若存在这样的点P ,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭【解析】 【分析】(1)利用数量积公式及离心率可得a ,b ,c 从而得到椭圆方程; (2)设直线l 的方程为12y x m =+,与椭圆方程联立,写出韦达定理,由题意可得直线PM 与直线PN 的斜率之和为零,利用韦达定理化简可得结果. (1)设椭圆C 的焦距为2c ,由题意知(),0A a -,(),0B a ,()0,D b ,所以(),AD a b =,(),BD a b =-,所以2221AD BD a b c ⋅=-+=-=-,解得1c =. 又椭圆C 的离心率为12,所以22a c ==,b故椭圆C 的方程为22143x y +=.(2)假设存在这样的点P ,设点P 的坐标为()00,x y ,点M ,N 的坐标分别为()11,x y ,()22,x y ,设直线l 的方程为12y x m =+. 联立方程221,4312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 后整理得2230x mx m ++-=.()222431230m m m ∆=--=->,得22m -<<, 有12212,3.x x m x x m +=-⎧⎨=-⎩ 若直线PM 与直线PN 的倾斜角互补,则直线PM 与直线PN 的斜率之和为零,所以01020102010201021122y x m y x m y y y y x x x x x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪--⎝⎭⎝⎭+=+---- ()()()()()()()()()()010*********0102010222222222222y m x x x y m x x x y m x y m x x x x x x x x x ---+---⎡⎤⎡⎤----⎣⎦⎣⎦=+=----()()()()()()()()()()20000012121200102010222223222222y m x m m mx y m x x x x x x x x x x x x x x x x -++-+--++-+⎡⎤⎣⎦==----()()()()()()()()0000000001020102462322323022x y y x m x y y x mx x x x x x x x -+--+-===----.所以0000230,230,x y y x -=⎧⎨-=⎩解得001,32x y =⎧⎪⎨=⎪⎩或001,3.2x y =-⎧⎪⎨=-⎪⎩故存在点P 符合条件,点P 的坐标为31,2⎛⎫ ⎪⎝⎭或31,2⎛⎫-- ⎪⎝⎭.9.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知椭圆()2222:10x y C a b a b +=>>的两个焦点分别为1F 和2F ,椭圆C 上一点到1F 和2F 的距离之和为4,且椭圆C(1)求椭圆C 的方程;(2)过左焦点1F 的直线l 交椭圆于A 、B 两点,线段AB 的中垂线交x 轴于点D (不与1F 重合),是否存在实数λ,使1AB DF λ=恒成立?若存在,求出λ的值;若不存在,请说出理由.【答案】(1)2214x y +=(2)存在,λ=【解析】 【分析】(1)由椭圆的定义可求得a 的值,根据椭圆的离心率求得c 的值,再求出b 的值,即可得出椭圆C 的方程; (2)分析可知,直线l 不与x 轴垂直,分两种情况讨论,一是直线l 与x 轴重合,二是直线l 的斜率存在且不为零,设出直线l 的方程,与椭圆方程联立,求出AB 、1DF ,即可求得λ的值. (1)解:由椭圆的定义可得24a =,则2a =,因为c ea ==c∴=1b ==, 因此,椭圆C 的方程为2214x y +=.(2)解:若直线l 与x 轴垂直,此时,线段AB 的垂直平分线为x 轴,不合乎题意; 若直线l 与x 轴重合,此时,线段AB 的垂直平分线为y 轴,则点D 与坐标原点重合,此时,143AB DF λ==若直线l 的斜率存在且不为零时,设直线l 的方程为)0x my m =≠,设点()11,A x y 、()22,B x y , 联立2244x my x y ⎧=⎪⎨+=⎪⎩()22410m y +--=,()()22212441610m m m ∆=++=+>,由韦达定理可得12y y +=,12214y y m =-+, 则()121222m y y x x ++= 所以,线段AB的中点为M ⎛ ⎝⎭, 所以,线段AB的垂直平分线所在直线的方程为y m x ⎛=- ⎝⎭,在直线方程y m x ⎛=- ⎝⎭中,令0y =可得x =,故点D ⎛⎫ ⎪ ⎪⎝⎭,所以,)21214m DF m +==+,由弦长公式可得()22414m AB m +==+,因此,()2221414m ABDF m λ+===+综上所述,存在λ=1AB DF λ=恒成立. 10.(2022·河南安阳·模拟预测(文))已知椭圆2222:1(0)C b b x a a y +>>=上一个动点N 到椭圆焦点(0,)F c 的距离的最小值是2,且长轴的两个端点12,A A 与短轴的一个端点B 构成的12A A B △的面积为2.(1)求椭圆C 的标准方程;(2)如图,过点4(0,)M -且斜率为k 的直线l 与椭圆C 交于P ,Q 两点.证明:直线1A P 与直线2A Q 的交点T 在定直线上.【答案】(1)2214y x +=(2)证明见解析 【解析】 【分析】(1)根据题意得到22221222a c ab a b c ⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,再解方程组即可.(2)首先设直线:4l y kx =-,()11,P x y ,()22,Q x y ,与椭圆联立,利用韦达定理得到12284kx x k +=+,122124x x k =+.1112:2PA y l y x x ++=,2222:2QA y l y xx --=,根据2123y y +=--,即可得到1y =-,从而得到直线1A P 与直线2A Q 的交点T 在定直线1y =-上. (1)由题知:22221222a c ab a b c⎧-=⎪⎪⨯=⎨⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪⎩,即:椭圆22:14+=y C x(2)设直线:4l y kx =-,()11,P x y ,()22,Q x y ,()10,2A -,()20,2A ,()222214812044y x k x kx y kx ⎧+=⎪⇒+-+=⎨⎪=-⎩. 12284k x x k +=+,122124x x k =+. 则1112:2PA y l y x x ++=,2222:2QA y l y x x --=, 则()()()()1212122212112122222266y x kx x kx x x y y y x kx x kx x x +--+===----, 因为()1212212342k kx x x x k ==++, 所以()()12212121213232123293362x x x x x y y x x x x x +--+===---++-,解得1y =-. 所以直线1A P 与直线2A Q 的交点T 在定直线1y =-上.11.(2022·安徽省舒城中学三模(理))已知椭圆22:184x y Γ+=,过原点O 的直线交该椭圆Γ于A ,B 两点(点A 在x 轴上方),点()4,0E ,直线AE 与椭圆的另一交点为C ,直线BE 与椭圆的另一交点为D .(1)若AB 是Γ短轴,求点C 坐标;(2)是否存在定点T ,使得直线CD 恒过点T ?若存在,求出T 的坐标;若不存在,请说明理由.【答案】(1)82(,)33;(2)存在,8(,0)3T .【解析】 【分析】(1)两点式写出直线AE ,联立椭圆方程并结合韦达定理求出C 坐标; (2)设00(,)A x y 有00:(4)4=--y AE y x x ,联立椭圆求C 坐标,同理求D 坐标,讨论00x ≠、00x =,判断直线CD 恒过定点即可. (1)由题设,(0,2)A ,而()4,0E ,故直线AE 为240x y +-=,联立22:184x y Γ+=并整理得:23840y y -+=,故83A C y y +=,而2A y =,所以23C y =,代入直线AE 可得284233C x =-⨯=,故C 坐标为82(,)33.(2)设00(,)A x y ,则00:(4)4=--y AE y x x , 由()00224428y y x x x y ⎧=-⎪-⎨⎪+=⎩,故2220202(4)8(4)+-=-y x x x , 由韦达定理有20222222000000002220000020328(4)328(4)16(8)8(4)64242(4)22482481(4)C y x y x x x x x x x y x y x x x --------====-+--+-, 所以00833C x x x -=-,故003C y y x =-,同理得:00833D x x x +=+,003D y y x -=+,当00x ≠时,取8(,0)3T ,则0000003383833TCy x yk x x x -==----,同理003TD y k x =-, 故,,T C D 共线,此时CD 过定点8(,0)3T .当00x =时,83C D x x ==,此时CD 过定点8(,0)3T .综上,CD 过定点8(,0)3T .12.(2022·广东茂名·二模)已知圆O :x 2+y 2=4与x 轴交于点(2,0)A -,过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C . (1)求曲线C 的方程;(2)过6(,0)5-作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)2212x y +=;(2)证明见解析. 【解析】 【分析】(1)运用相关点法即可求曲线C 的方程;( 2)首先对直线l 的斜率是否存在进行讨论,再根据几何关系分别求出P 、Q 、S 三点的坐标,进而表示出直线AP , AS 的斜率12,k k ,再根据斜率的表达式进行化简运算,得出结论. (1)设N (x 0,y 0),则H (x 0,0), ①N 是MH 的中点,①M (x 0,2y 0),又①M 在圆O 上,2200(2)4y x +=∴,即220014x y +=; ①曲线C 的方程为:2214x y +=;(2)①当直线l 的斜率不存在时,直线l 的方程为:65x =-,若点P 在轴上方,则点Q 在x 轴下方,则6464(,),(,)5555P Q ---,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,①64(,)55S ,1244001551,,6642255APAS k k k k --======-++124k k ∴=;若点P 在x 轴下方,则点Q 在x 轴上方, 同理得:646464(,),(,),(,)555555P Q S ----,1244001551,6642255APAS k k k k ----===-∴===--++,①k 1=4k 2;①当直线l 的斜率存在时,设直线l 的方程为:6,5x my =-,由6,5x my =-与2214x y +=联立可得221264(4)0525m m y y +--=, 其中22144644(4)02525m m ∆=+⨯+⨯>,设1122(,),(,)P x y Q x y ,则22(,)S x y --,则1212221264525,44m y y y y m m -+==++,①112212112200,,2222AP AS k y y y y k k k x x x x ---======++-+- 则121122121216()2542()5y my k y x k x y my y --=⋅=++121112212121112226464161616252554545444641216()4445525525454545my y y y y m m my y y y y m m y y m m m -----++====++---+⋅--+++,①k 1=4k 2. 13.(2022·安徽·合肥市第八中学模拟预测(文))生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在y 轴上,中心在坐标原点,从下焦点1F 射出的光线经过椭圆镜面反射到上焦点2F ,这束光线的总长度为4,且反射点与焦点构成的三角e < (1)求椭圆C 的标准方程;(2)若从椭圆C 中心O 出发的两束光线OM 、ON ,分别穿过椭圆上的A 、B 点后射到直线4y =上的M 、N两点,若AB 连线过椭圆的上焦点2F ,试问,直线BM 与直线AN 能交于一定点吗?若能,求出此定点:若不能,请说明理由.【答案】(1)22143y x +=(2)能,定点为(0,85)【解析】 【分析】(1)由条件列方程求,,a b c 可得椭圆方程; (2)联立方程组,利用设而不求法结论完成证明. (1)由已知可设椭圆方程为22221(0)y x a b a b+=>>,则24a =,122c b ⨯⨯222a b c =+又e <所以21a b c ===,,故椭圆C 的标准方程为22143y x +=(2)设AB 方程为1y kx =+,由221431y x y kx ⎧+=⎪⎨⎪=+⎩,得22(34)690k x kx ++-=, 222(6)36(34)1441440k k k ∆=++=+>设()()1122A x y B x y ,,,,则121222693434k x x x x k k --+==++,.. 由对称性知,若定点存在,则直线BM 与直线AN 交于y 轴上的定点,由114y y x x y ⎧=⎪⎨⎪=⎩得1144x M y ⎛⎫ ⎪⎝⎭,,则直线BM 方程为211121444()4y x y x x y x y --=--, 令0x =,则 122114(4)44x y y x y x -=+-()()112211414114x x kx x kx x ⎡⎤-+=+⎢⎥+-⎢⎥⎣⎦112211234(1)4x kx x x x kx x -=+-+2121124()4x x x x kx x -=-+又12123()2x x kx x +=, 则21212112214()4()83554()()22x x x x y x x x x x x --===-++-,所以,直线BM 过定点(0,85),同理直线AN 也过定点8(0,)5.则点(0,85)即为所求点.14.(2022·全国·模拟预测)设椭圆()222:10416x y C b b+=<<的右焦点为F ,左顶点为A .M 是C 上异于A的动点,过F 且与直线AM 平行的直线与C 交于P ,Q 两点(Q 在x 轴下方),且当M 为椭圆的下顶点时,2AM FQ =.(1)求椭圆C 的标准方程;(2)设点S ,T 满足PS SQ =,FS ST =,证明:平面上存在两个定点,使得T 到这两定点距离之和为定值. 【答案】(1)22116x = (2)证明见解析 【解析】 【分析】(1)由向量的坐标运算用,b c 表示出Q 点坐标,代入椭圆方程求得参数b ,得椭圆方程; (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .直线方程代入椭圆方程应用韦达定理得12y y +,利用向量相等的坐标表示求得T 点坐标,得出T 点坐标满足一个椭圆方程,然后再由椭圆定义得两定点坐标. (1)当M 为椭圆的下顶点时,(4,)AM b =-,则12,22b FQ AM ⎛⎫==- ⎪⎝⎭. 设C 的焦距为2c ,则2,2b Q c ⎛⎫+- ⎪⎝⎭,即2,2b Q ⎫-⎪⎭.因为Q 在C上,故)2211164+=,解得()22162b =-=则椭圆C的标准方程为22116x =. (2)设(), 0F c ,直线PQ 的斜率不为0,设其方程为 x m y c =+,设1122(,),(,)P x y Q x y .联立直线PQ 和C 的方程,消x得()22220y +-.12y y +=1212()2x x m y y c +=++= 由PS SQ =得S 为弦PQ的中点,故S ⎛.由FS ST =得S 是线段FT的中点,故T .设T 的坐标为(), x y,则x c =,y c =,故2211x y c c ⎛⎫⎫=== ⎪⎪⎝⎭⎝⎭,即2221x c =, 这表明T 在中心为原点,(,0)c ±为长轴端点,0,⎛⎫ ⎪ ⎪⎝⎭为短轴端点的椭圆上运动,故T到两焦点,0⎛⎫ ⎪ ⎪⎝⎭的距离之和为定值.代入得两焦点坐标为(()4,0±-.综上所述,平面上存在两定点()4-,()4-+,使得T 到这两定点距离之和为定值.15.(2022·上海交大附中模拟预测)已知椭圆221214x y F F Γ+=:,,是左、右焦点.设M 是直线()2l x t t =>:上的一个动点,连结1MF ,交椭圆Γ于()0N N y ≥.直线l 与x 轴的交点为P ,且M 不与P 重合.(1)若M 的坐标为58⎫⎪⎪⎝⎭,,求四边形2PMNF 的面积; (2)若PN 与椭圆Γ相切于N 且1214NF NF ⋅=,求2tan PNF ∠的值; (3)作N 关于原点的对称点N ',是否存在直线2F N ,使得1F N '上的任一点到2F N求出直线2F N 的方程和N 的坐标,若不存在,请说明理由. 【答案】(3)存在;y x =;126N ⎫⎪⎪⎝⎭【解析】 【分析】(1)根据点斜式方程可得1:MF l y x =,再联立椭圆方程得到12N ⎫⎪⎭,再根据2112PMNF PF M NF F S S S =-△△求解即可;(2)设:()PN l y k x t =-,根据相切可知,直线与椭圆方程联立后判别式为0,得到2214k t =-,再根据1214NF NF ⋅=,化简可得t =12N ⎫⎪⎭,再根据直角三角形中的关系求解2tan PNF ∠的值即可;(3)设()00,N x y ,表达出2NF l,再根据22O NF d -=列式化简可得2148k =,结合k =程即可求得N 和直线2F N 的方程 (1)由题意,()1F,故15MF k ==,所以1:MF l y x =与椭圆方程联立2214x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,可得:213450x +-=,即(130x x +=,又由题意N x >,故解得x =12N ⎫⎪⎭,故121122NF F S =⋅=△且11528PF M S ==△则2112PMNF PF M NF F S S S =-=△△(2)由于直线PN 的斜率必存在,则设:()PN l y k x t =-与椭圆方程联立2214()x y y k x t ⎧+=⎪⎨⎪=-⎩,可得:()22222148440k x k tx k t +-+-=由相切,()22216140k k t∆=+-=,则2214kt =-同时有韦达定理21228214N k t x x x k +==+,代入2214k t =-有2244414Nt t x t -=+-,化简得4N x t =,故2222414N Nx t y t-=-=而222122122134N Nt NF NF x y t -⋅=+-==,解得2t =>则12N ⎫⎪⎭,所以2NF x ⊥轴,故在直角三角形2PNF中,2223tan 12PF PNF NF ∠===(3)由于N 与N ',1F 与2F 是两组关于原点的对称点,由对称性知 四边形12F NF N '是平行四边形,则2NF 与1N F '是平行的, 故1F N '上的任一点到2F N 的距离均为两条平行线间的距离d .设()00,N x y,其中0(x ∈,易验证,当0x 时,2NF 与1N F '之间的距离为k =2(:NF y l k x =,即0kx y -=,发现当0x22O NF d d -==221914k k =+,整理得2148k =代入k =(220048y x =,代入220014x y =-整理得20013450x --=,即(00130x x -=由于0(x ∈,所以0x =126N ⎫⎪⎪⎝⎭,故1k =, 则2F N l的直线方程为y x =16.(2022·全国·模拟预测(理))已知椭圆C :()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,直线AB的斜率为O 到直线AB(1)求C 的方程;(2)直线l 交C 于M ,N 两点,90MBN ∠=︒,证明:l 恒过定点.【答案】(1)22143x y +=(2)证明见解析【解析】 【分析】(1)题意得(,0),(0,)A a B b ,根据AB斜率,可得b a =AB 的方程,根据点到直线距离公式,可求得a 值,进而可得b 值,即可得答案.(2)分析得直线l 的斜率存在,设1122,(,),(,)y kx m M x y N x y =+,与椭圆联立,可得关于x 的一元二次方程,根据韦达定理,可得1212,x x x x +表达式,进而可得12y y 、12y y +的表达式,根据90MBN ∠=︒,可得0MB NB ⋅=,根据数量积公式,化简计算,可得m 值,分析即可得证(1)由题意得(,0),(0,)A a B b , 所以直线AB的斜率为b a =-b a = 又直线AB的方程为)y x a =-20y +=, 所以原点O 到直线AB的距离d ==,解得2a =,所以b =22143x y +=.(2)由椭圆的对称性可得,直线l 的斜率一定存在,设直线l 的方程为1122,(,),(,)y kx m M x y N x y =+,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得222(34)84120k x kmx m +++-=, 所以21212228412,3434km m x x x x k k --+==++, 所以22221212122312()34m k y y k x x km x x m k -=+++=+,121226()234m y y k x x m k +=++=+, 因为90MBN ∠=︒,所以MB BN ⊥,因为B,所以1122(,3),()MB x yNB x y =--=-,所以22212121222241263123)30343434m m m k MB NB x x y y y y k k k --⋅=+++=++=+++, 整理得2730m --=,解得m =或7m =-,因为B ,所以m舍去, 所以直线l 的方程为y kx =0,⎛ ⎝⎭,得证17.(2022·全国·模拟预测(理))已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,1A ,2A 分别为左、右顶点,1B ,2B 分别为上、下顶点.若四边形1122B F B F212F F ,212B B ,212A A 成等差数列.(1)求椭圆C 的标准方程;(2)过椭圆外一点P (P 不在坐标轴上)连接1PA ,2PA ,分别与椭圆C 交于M ,N 两点,直线MN 交x 轴于点Q .试问:P ,Q 两点横坐标之积是否为定值?若为定值,求出定值;若不是,说明理由. 【答案】(1)22132x y +=;(2)32P Q x x =为定值,理由见解析. 【解析】 【分析】(1)应用菱形面积公式、等差中项的性质及椭圆参数关系求椭圆参数,写出椭圆标准方程.(2)由题意分析知1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设直线1PA ,2PA 联立椭圆求M ,N 的坐标及P 点横坐标,应用点斜式写出直线MN ,令0y =求Q 横坐标,即可得结论. (1)由题设知:2222222844bc b a c a b c ⎧=⎪⎪=+⎨⎪=+⎪⎩,可得22321a b ⎧=⎪⎨⎪=⎩, 所以椭圆标准方程为22132x y +=. (2)由题意,1PA ,2PA 所在直线斜率均存在且不为0、斜率和差均不为0,设1PA为(y k x =,联立椭圆方程整理得:22229(23)302k k x x +++-=,所以1M A x x +=1A x =M x == 设2PA为(y m x =,联立椭圆方程整理得:22229(23)302m m x x +-+-=,所以2N A x x +=2A x =N x ==所以M y k =⋅=Ny m =⋅=, 联立直线1PA 、2PA可得:P x =,直线MN为2()[23m k y x km +=⋅-,令0y =,则Q x =,所以32P Q x x ==为定值.18.(2022·山西·太原五中二模(文))已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于A B 、和C D 、,记得到的平行四边形ACBD 的面积为S .(1)设()()1122,,,A x y C x y ,用A C 、的坐标表示点C 到直线1l 的距离,并证明12212S x y x y =-; (2)请从①①两个问题中任选一个作答 ①设1l 与2l 的斜率之积12-,求面积S 的值.①设1l 与2l 的斜率之积为m .求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变. 【答案】(1)(2)见解析 【解析】 【分析】(1)讨论10x ≠和10x =,分别写出直线1l 的方程,由距离公式即可求得点C 到直线1l 的距离,由面积公式即可证明12212S x y x y =-;(2)若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式求解即可;若选①,设出直线1l 和2l 的方程,联立椭圆求出A C 、的坐标,结合(1)中面积公式得到S 的表达式,平方整理,由含42,k k 的项系数为0即可求解. (1)当10x ≠时,直线1l 的方程为:11y y x x =,则点C 到直线1l的距离为d ==当10x =时,直线1l 的方程为:0x =,则点C 到直线1l 的距离为2d x =,也满足d则点C 到直线1l2AB AO ==则1212112222S AB d x y x x x y y y =⋅==--=;(2)若选①,设1122121:,:,2l y k x l y k x k k ===-,设()()1122,,,A x y C x y ,直线1l 与椭圆联立12221y k x x y =⎧⎨+=⎩可得()221121k x+=,同理直线2l 与椭圆联立可得()222121k x +=,不妨令120,0x x >>,则11x y =,22x y ===,则12212S x y x y ==-== 若选①,设12:,:m l y kx l y x k ==,设()()1122,,,A x y C x y ,直线1l 与椭圆联立2221y kx x y =⎧⎨+=⎩可得()22121k x +=,则212112x k =+,同理可得2222221212k x k m m k ==+⎛⎫+ ⎪⎝⎭,则1221121221222m m x x x kx k x k S y x x k x y =-=-=-⋅⋅⋅1222m m k x x k k k ==-=-⋅,两边平方整理得()24222222224(48)240Sk S S m m k m S m -++++-=,由面积S 与k 无关,可得2222240480S S S m m ⎧-=⎨++=⎩,解得12S m ⎧=⎪⎨=-⎪⎩,故12m =-时,无论1l 与2l 如何变动,面积S 保持不变.19.(2022·福建·厦门一中模拟预测)已知A ,B 分别是椭圆2222:1(0)x y C a b a b +=>>的右顶点和上顶点,||AB =AB 的斜率为12-.(1)求椭圆的方程;(2)直线//l AB ,与x ,y 轴分别交于点M ,N ,与椭圆相交于点C ,D .证明: (i )OCM 的面积等于ODN △的面积;(ii )22||||CM MD +为定值.【答案】(1)2214x y +=(2)(i )证明见解析;(ii )证明见解析 【解析】【分析】(1)根据(,0)A a ,(0,)B b,由||AB =AB 的斜率为12-求解;(2)设直线l 的方程为12y x m =-+,得到(2,0)M m ,(0,)N m ,与椭圆方程联立,根据11|2|||2=OCM S m y ,21||||2=ODN S m x ,2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+利用韦达定理求解. (1) 解:A 、B 是椭圆22221(0)x y a b a b+=>>的两个顶点,且||AB =AB 的斜率为12-,由(,0)A a ,(0,)B b,得||AB == 又0102b b k a a -==-=--,解得2a =,1b =, ∴椭圆的方程为2214x y +=; (2)设直线l 的方程为12y x m =-+,则(2,0)M m ,(0,)N m ,联立方程221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y ,整理得222220x mx m -+-=.22248(4)3240m m m ∆=--=->, 得28m <设1(C x ,1)y ,2(D x ,2)y . 122x x m ∴+=,21222x x m =-.所以11|2|||2=OCM S m y ,21||||2=ODN S m x 则有112222|2||2|||1||||||-====OCMODNS y m x x Sx x x OCM ∴的面积等于ODN 的面积;2222221122||||(2)(2)CM MD x m y x m y ∴+=-++-+,2222221112221144()44()22x mx m x m x mx m x m =-++-++-++-+,()()221212125551042x x x x m x x m =+--++, ()2222552210102m m m m =---+5=. 20.(2022·北京市第十二中学三模)已知椭圆2222:1(0)x y M a b a b +=>>过点(2,0)A(1)求椭圆M 的方程;(2)已知直线(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A )两个不同的点,直线AB ,AC 分别与y 轴交于点P 、Q ,O 为坐标原点,求()k OP OQ +的值.【答案】(1)22142x y +=(2)45【解析】 【分析】(1)直接由A 点坐标及离心率求得椭圆方程即可;(2)联立直线与椭圆求得2212122212184,2121k k x x x x k k --+==++,再表示出直线AB ,AC 的方程,求得P 、Q 坐标,再计算()k OP OQ +即可. (1)由题意知:2,c a a ==c =2222b a c =-=,则椭圆M 的方程为22142x y +=;(2)联立直线与椭圆22(3)142y k x x y =+⎧⎪⎨+=⎪⎩,整理得()222221121840k x k x k +++-=,()()422214442118440160k k k k ∆=-+-=-+>,即k <<(3)y k x =+在x 轴上方交椭圆M 于B ,C (异于点A)两点,则0k << 设1122(,),(,)B x y C x y ,则1222,22x x -<<-<<,2212122212184,2121k k x x x x k k --+==++,1122(3),(3)y k x y k x =+=+, 易得直线AB ,AC 斜率必然存在,则11:(2)2y AB y x x =--,令0x =,得11202y y x =>-,则112(0,)2y P x -,同理可得222(0,)2y Q x -,且22202y x >-, 则()()()()()112121212223222222()(32)22k x x y y x x x k x k x OP x OQ k k -++⎛⎫+==⋅ ⎪⎝⎭+-+----222212122212122218412422442()242121184122()4242121k k k k k kx x k x x k k k k k k k x x x x k k ---⋅-⋅+--++++=⋅=⋅---++-⋅+++45=.。

圆锥曲线的定点、定值问题(解析版)

圆锥曲线的定点、定值问题(解析版)

2020上学期期末复习专题1 圆锥曲线的定点、定值问题(教师版)一.知识梳理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则: Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |= 1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·|y 1-y 2|= 1+1k2·(y 1+y 2)2-4y 1y 2. 3.定点问题(1)参数法:参数法解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k );②利用条件找到k 与过定点的曲线F (x ,y )=0之间的关系,得到关于k 与x ,y 的等式,再研究变化量与参数何时没有关系,找到定点.(2)由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.4.定值问题(1)直接消参求定值:常见定值问题的处理方法:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.(2)从特殊到一般求定值:常用处理技巧:①在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;②巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.二.题型归纳题型1 “设参→用参→消参”三步解决圆锥曲线中的定点问题【例1-1】已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线2y =2px (p >0)的焦点坐标为F (1,0),所以p2=1,所以p =2.所以抛物线C 的方程为2y =4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎪⎪⎭⎫ ⎝⎛t t ,42,B ⎪⎪⎭⎫⎝⎛-t t ,42. 因为直线OA ,OB 的斜率之积为-12,所以214422-=-⋅t t t t ,化简得2t =32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A ()A A ,y x ,B ()B B ,y x ,联立⎩⎨⎧+==bkx y x y 42,消去x ,化简得ky 2-4y +4b =0.所以B A y y =4bk ,因为直线OA ,OB 的斜率之积为-12,所以21-=⋅B B A A x y x y ,整理得B A x x +2B A y y =0.即024422=+⋅B A B A y y yy ,解得B A y y =0(舍去)或B A y y =-32.所以B A y y =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0).【跟踪训练1-1】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明:直线l 过定点,并求出该定点的坐标.【解】(1)由题意得,c =3,a b=2,a 2=b 2+c 2,∴a =2,b =1, ∴椭圆C 的标准方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立⎩⎨⎧y =kx +m ,x 2+4y 2=4,消去y ,可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1) =(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m =-35或m =1(舍去).∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为⎪⎭⎫ ⎝⎛-530,.【总结归纳】定点问题实质及求解步骤解析几何中的定点问题实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步:题型2 “设参→用参→消参”三步解决圆锥曲线中的定值问题【例2-1】设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NM 2=(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与 点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.[解] (1)设P(x ,y),M(x 0,y 0),则N(x 0,0).∵NP ―→= 2 NM ―→,∴(x -x 0,y)=2(0,y 0),∴x 0=x ,y 0=y 2.又点M 在椭圆上,∴142922=⎪⎭⎫ ⎝⎛+y x ,即x 29+y 28=1.∴点P 的轨迹E 的方程为x 29+y 28=1.(2)证明:由(1)知F 为椭圆x 29+y 28=1的右焦点,当直线l 1与x 轴重合时,|AB|=6,|CD|=2b 2a =163,∴1|AB|+1|CD|=1748.当直线l 1与x 轴垂直时,|AB|=163,|CD|=6,∴1|AB|+1|CD|=1748. 当直线l 1与x 轴不垂直也不重合时,可设直线l 1的方程为y =k(x -1)(k ≠0), 则直线l 2的方程为y =-1k(x -1),设A(x 1,y 1),B(x 2,y 2),联立⎩⎨⎧y =k x -1,x 29+y28=1消去y ,得(8+9k 2)x 2-18k 2x +9k 2-72=0,则Δ=(-18k 2)2-4(8+9k 2)(9k 2-72)=2 304(k 2+1)>0, x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2,∴|AB|= 1+k 2·x 1+x 22-4x 1x 2=481+k 28+9k 2.同理可得|CD|=481+k 29+8k 2.∴1|AB|+1|CD|=8+9k 248k 2+1+9+8k 248k 2+1=1748.综上可得1|AB|+1|CD|为定值. 【跟踪训练2-1】已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)如图所示,点D 为x 轴上一点,过点D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过点D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为定值,并求出该定值.【解】(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,b 2+c 2=a 2,解得⎩⎨⎧b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(2)法一:设D (x 0,0),M (x 0,y 0),N (x 0,-y 0),-2<x 0<2,所以k AM =y 0x 0+2,因为AM ⊥DE ,所以k DE =-2+x 0y 0,所以直线DE 的方程为y =-2+x 0y 0(x -x 0). 因为k BN =-y 0x 0-2,所以直线BN 的方程为y =-y 0x 0-2(x -2).由⎩⎨⎧y =-2+x0y(x -x 0),y =-y0x 0-2(x -2),解得E ⎝⎛⎭⎫45x 0+25,-45y 0, 所以S △BDE S △BDN =12|BD |·|y E |12|BD |·|y N |=⎪⎪⎪⎪-45y 0|-y 0|=45.故△BDE 与△BDN 的面积之比为定值45.法二:设M (2cos θ,sin θ)(θ≠k π,k ∈Z ),则D (2cos θ,0),N (2cos θ,-sin θ), 设BE ―→=λBN ―→,则DE ―→=DB ―→+BE ―→=DB ―→+λBN ―→=(2-2cos θ,0)+λ(2cos θ-2,-sin θ) =(2-2cos θ+2λcos θ-2λ,-λsin θ).又AM ―→=(2cos θ+2,sin θ),由AM ―→⊥DE ―→,得AM ―→·DE ―→=0,从而[(2-2cos θ)+λ(2cos θ-2)](2cos θ+2)-λsin 2θ=0,整理得4sin 2θ-4λsin 2θ-λsin 2θ=0, 即5λsin 2θ=4sin 2θ.,所以λ=45,所以S △BDE S △BDN =|BE ||BN |=45.故△BDE 与△BDN 的面积之比为定值45.【总结归纳】定值问题实质及求解步骤定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题.其求解步骤一般为:题型三 探索性问题例3.已知圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1). (1) 求圆M 的方程;(2) 设P 为圆M 上任一点,过点P 向圆O :x 2+y 2=1引切线,切点为Q .试探究:平面内是否存在一定点R ,使得PQPR 为定值.若存在,求出点R 的坐标;若不存在,请说明理由. 解析:(1) 因为圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1), 所以设圆心坐标为(m,2m -6),半径为r , 则圆的标准方程为(x -m )2+(y -2m +6)2=r 2.则(1-m )2+(2-2m +6)2=r 2且(4-m )2+(-1-2m +6)2=r 2, 即(m -1)2+(8-2m )2=r 2且(m -4)2+(5-2m )2=r 2, 解得m =4,r =3.所以圆M :(x -4)2+(y -2)2=9.(2) 设P (x ,y ),R (a ,b ),则(x -4)2+(y -2)2=9,即x 2+y 2=8x +4y -11. 又PQ 2=x 2+y 2-1,PR 2=(x -a )2+(y -b )2=x 2+y 2-2ax -2by +a 2+b 2, 故PQ 2=8x +4y -12,PR 2=(8-2a )x +(4-2b )y +a 2+b 2-11.又设PQPR =t 为定值,故8x +4y -12=t 2[(8-2a )x +(4-2b )y +a 2+b 2-11]. 因为上式对圆M 上任意点P (x ,y )都成立,可得⎩⎪⎨⎪⎧8=(8-2a )t 2,4=(4-2b )t 2,-12=(a 2+b 2-11)t 2,解得⎩⎪⎨⎪⎧a 1=2,b 1=1,t 1=2或⎩⎪⎪⎪⎨⎪⎪⎪⎧a 2=25,b 2=15,t 2=103.综上,存在点R (2,1)或R ⎝ ⎛⎭⎪⎫25,15满足题意.跟踪训练3:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎫1,32,离心率为32. (1) 求椭圆C 的方程;(2) 直线y =k (x -1)(k ≠0)与椭圆C 交于A ,B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点P ,Q ,试问:以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,请说明理由.解析:(1) 由题意得⎩⎪⎨⎪⎧ca =32,1a 2+34b 2=1,解得a =2,b =1.所以椭圆C 的方程是x 24+y 2=1.(2) 以线段PQ 为直径的圆过x 轴上的定点. 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1得(1+4k 2)x 2-8k 2x +4k 2-4=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.又因为点M 是椭圆C 的右顶点,所以点M (2,0).由题意可知直线AM 的方程为y =y 1x 1-2(x -2),故点P ⎝ ⎛⎭⎪⎪⎫0,-2y 1x 1-2. 直线BM 的方程为y =y 2x 2-2(x -2),故点Q ⎝ ⎛⎭⎪⎪⎫0,-2y 2x 2-2. 若以线段PQ 为直径的圆过x 轴上的定点N (x 0,0),则等价于PN →·QN →=0恒成立.又因为PN →=⎝⎛⎭⎪⎪⎫x 0,2y 1x 1-2,QN →=⎝⎛⎭⎪⎪⎫x 0,2y 2x 2-2,所以PN →·QN →=x 20+2y 1x 1-2·2y 2x 2-2=x 20+4y 1y 2(x 1-2)(x 2-2)=0恒成立. 又因为(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=4k 2-41+4k 2-28k 21+4k 2+4=4k 21+4k 2,y 1y 2=k (x 1-1)k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2⎝ ⎛⎭⎪⎪⎫4k2-41+4k 2-8k 21+4k 2+1=-3k 21+4k2,所以x 20+4y 1y 2(x 1-2)(x 2-2)=x 20+-12k 21+4k 24k 21+4k 2=x 20-3=0,解得x 0=±3. 故以线段PQ 为直径的圆过x 轴上的定点(±3,0).圆锥曲线定点定值问题作业1. 如图,平行四边形AMBN 的周长为8,点M ,N 的坐标分别为(-3,0),(3,0). (1) 求点A ,B 所在的曲线L 的方程;(2) 过L 上点C (-2,0)的直线l 与L 交于另一点D ,与y 轴交于点E ,且l ∥OA .求证:CD ·CEOA 2为定值.解析:(1) 因为四边形AMBN 是平行四边形,周长为8,所以A ,B 两点到M ,N 的距离之和均为4>23,可知所求曲线为椭圆. 由椭圆定义可知,a =2,c =3,b =1.曲线L 的方程为x24+y 2=1(y ≠0).(2) 由已知可知直线l 的斜率存在.因为直线l 过点C (-2,0),设直线l 的方程为y =k (x +2),代入曲线方程x 24+y 2=1(y ≠0),并整理得(1+4k 2)x 2+16k 2x +16k 2-4=0. 因为点C (-2,0)在曲线L 上,则D ⎝ ⎛⎭⎪⎪⎫-8k 2+21+4k2,4k 1+4k 2,E (0,2k ), 所以CD =41+k 21+4k2,CE =21+k 2. 因为OA ∥l ,所以设OA 的方程为y =kx ,代入曲线L 的方程,并整理得(1+4k 2)x 2=4. 所以x 2A =41+4k 2,y 2A =4k 21+4k 2,所以OA 2=4+4k 21+4k2,化简得CD ·CE OA 2=2,所以CD ·CE OA 2为定值.说明:本题考查用定义法求椭圆方程知识及直线与椭圆相交的有关线段的计算与证明.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴是短轴的两倍,点A ⎝ ⎛⎭⎪⎫3,12在椭圆C 上.不过原点的直线l 与椭圆C 相交于A ,B 两点,设直线OA ,l ,OB 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2恰好构成等比数列. (1) 求椭圆C 的方程;(2) 试判断OA 2+OB 2是否为定值.若是,求出这个值;若不是,请说明理由.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1. (2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.此时Δ=16(2-m 2)>0,即m ∈(-2,2),所以⎩⎪⎨⎪⎧x 1+x 2=±2m ,x 1x 2=2m 2-2.又OA 2+OB 2=x 21+y 21+x 22+y 22=34(x 21+x 22)+2=34[(x 1+x 2)2-2x 1x 2]+2=5, 所以OA 2+OB 2是定值,且为5.3.过椭圆x 2a 2+y 2b 2=1的右焦点F 作斜率k =-1的直线交椭圆于A ,B 两点,且OA →+OB →与a =⎝ ⎛⎭⎪⎫1,13共线.(1)求椭圆的离心率;(2)设P 为椭圆上任意一点,且OP →=mOA →+nOB →(m ,n ∈R ),证明:m 2+n 2为定值. 解 (1)设AB :y =-x +c ,直线AB 交椭圆于两点,A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧b 2x 2+a 2y 2=a 2b2y =-x +c⇒b 2x 2+a 2(-x +c )2=a 2b 2,(b 2+a 2)x 2-2a 2cx +a 2c 2-a 2b 2=0x 1+x 2=2a 2c a 2+b 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2, OA →+OB →=(x 1+x 2,y 1+y 2)与a =⎝ ⎛⎭⎪⎫1,13共线,3(y 1+y 2)-(x 1+x 2)=0,3(-x 1+c -x 2+c )-(x 1+x 2)=0,即 x 1+x 2=3c 2,a 2=3b 2,c =a 2-b 2=6a 3,e =c a =63.(2)证明:a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,设M (x ,y )为椭圆上任意一点,OM →=(x ,y ),OM →=mOA →+nOB →,(x ,y )=(mx 1+nx 2,my 1+ny 2),点M (x ,y )在椭圆上,(mx 1+nx 2)2+3(my 1+ny 2)2=3b 2,即m 2(x 21+3y 21)+n 2(x 22+3y 22)+2mn (x 1x 2+3y 1y 2)=3b 2. ∴x 1+x 2=3c 2,a 2=32c 2,b 2=12c 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2=38c 2,∴x 1x 2+3y 1y 2=x 1x 2+3(-x 1+c )(-x 2+c )=4x 1x 2-3c (x 1+x 2)+3c 2=32c 2-92c 2+3c 2=0,将x 21+3y 21=3b 2,x 22+3y 22=3b 2代入得 3b 2m 2+3b 2n 2=3b 2,即m 2+n 2=1.3.在直角坐标系xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点M (1,3)的直线与椭圆E 交于不同的A ,B 两点,交直线y =-14x 于点N ,若NA →=mAM →,NB →=nBM →,求证:m +n 为定值,并求出此定值. 解 (1)因为长轴长为8,所以2a =8,a =4, 又因为两个焦点与短轴的一个顶点构成等边三角形, 所以b =32a =23,由于椭圆焦点在x 轴上, 所以椭圆的标准方程为x 216+y 212=1. (2)设A (x 1,y 1),B (x 2,y 2),N ⎝⎛⎭⎫x 0,-14x 0, 由NA →=mAM →,得⎝⎛⎭⎫x 1-x 0,y 1+14x 0=m (1-x 1,3-y 1),所以x 1=m +x 0m +1,y 1=3m -14x 0m +1,所以A ⎝ ⎛⎭⎪⎪⎫m +x 0m +1,3m -14x 0m +1, 因为点A 在椭圆x 216+y 212=1上,所以得到⎝ ⎛⎭⎪⎫m +x 0m +1216+⎝ ⎛⎭⎪⎪⎫3m -14x 0m +1212=1,得到9m 2+96m +48-134x 20=0;同理,由NB →=nBM →,可得9n 2+96n +48-134x 20=0, 所以m ,n 可看作是关于x 的方程9x 2+96x +48-134x 20=0的两个根, 所以m +n =-969=-323,为定值.4. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,-3),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1) 求椭圆C 的标准方程;(2) 若直线l 上存在点P 满足PM ·PN =PF 2,且点P 在椭圆外,证明:点P 在定直线上.解析:(1) 设椭圆的焦距为2c .由椭圆经过点(0,-3)得b = 3. ①由点F 到左顶点的距离和到右准线的距离相等,得a +c =a 2c -c . ② 又a 2=b 2+c 2, ③由①②③可得a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2) 法一:当直线l 的斜率为0时,则M (2,0),N (-2,0),设P (x 0,y 0),则PM ·PN =|(x 0-2)(x 0+2)|.因为点P 在椭圆外,所以x 0-2,x 0+2同号,又PF 2=(x 0-1)2,所以|(x 0-2)(x 0+2)|=(x 0-1)2,解得x 0=52. 当直线l 的斜率不为0时,因为y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,PM =1+m 2|y 1-y 0|,PN =1+m 2|y 2-y 0|,PF =1+m 2|y 0|.因为点P 在椭圆外,所以y 1-y 0,y 2-y 0同号,所以PM ·PN =(1+m 2)(y 1-y 0)(y 2-y 0)=(1+m 2)[y 1y 2-y 0(y 1+y 2)+y 20]=(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4, 代入PM ·PN =PF 2得(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4=(1+m 2)y 20,整理得y 0=32m ,代入直线方程得x 0=52.所以点P 在定直线x =52上.法二:当直线l ⊥x 轴,则M ⎝ ⎛⎭⎪⎫1,32,N ⎝ ⎛⎭⎪⎫1,-32,则PM ·PN =⎪⎪⎪⎪⎪⎪y 0-32⎪⎪⎪⎪⎪⎪y 0+32.又PF 2=y 20,所以PM ·PN =PF 2不成立,不合题意. 当直线l 与x 轴不垂直时,设P (x 0,y 0),M (x 1,y 1),N (x 2,y 2).设直线l 的方程为y =k (x -1),与椭圆x 24+y 23=1联立并消去y 得 (3+4k 2)x 2-8k 2x +4k 2-12=0.因为Δ=64k 4-4(3+4k 2)(4k 2-12)=16k 4+108k 2+108>0, 所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,所以PM =1+k 2|x 1-x 0|,PN =1+k 2|x 2-x 0|,PF =1+k 2|x 0-1|. 因为点P 在椭圆外,所以x 1-x 0,x 2-x 0同号,所以PM ·PN =(1+k 2)(x 1-x 0)(x 2-x 0)=(1+k 2)[x 1x 2-x 0(x 1+x 2)+x 20] =(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2.代入PM ·PN =PF 2得(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2=(1+k 2)(x 20)(x 20-2x 0+1), 整理得x 0=52,所以点P 在定直线x =52上.。

圆锥曲线定点问题含详解

圆锥曲线定点问题含详解

圆锥曲线定点问题一、求解圆锥曲线中定点问题的两种求法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关. (2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 变成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0,g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.二、[典例] (2020·高考全国卷Ⅰ)已知A ,B 分别为椭圆E :x 2a2 +y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG → ·GB →=8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)由题设得A (-a ,0),B (a ,0),G (0,1).则AG → =(a ,1),GB → =(a ,-1).由AG → ·GB → =8,得a 2-1=8,即a =3.所以E 的方程为x 29+y 2=1.(2)证明:设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3. 由于直线PA 的方程为y =t 9 (x +3),所以y 1=t9 (x 1+3).直线PB 的方程为y =t 3 (x -3),所以y 2=t3 (x 2-3). 可得3y 1(x 2-3)=y 2(x 1+3).由于x 22 9+y 22 =1,故y 22 =-(x 2+3)(x 2-3)9,可得27y 1y 2=-(x 1+3)(x 2+3),即(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.①将x =my +n 代入x 29+y 2=1得(m 2+9)y 2+2mny +n 2-9=0.所以y 1+y 2=-2mn m 2+9 ,y 1y 2=n 2-9m 2+9.2222解得n =-3(舍去)或n =32 .故直线CD 的方程为x =my +32,即直线CD 过定点⎝ ⎛⎭⎪⎫32,0 . 若t =0,则直线CD 的方程为y =0,过点⎝ ⎛⎭⎪⎫32,0 . 综上,直线CD 过定点⎝ ⎛⎭⎪⎫32,0 . 三、好题对点训练1.设椭圆2222:1(0)x y E a b a b+=>>过M N ,两点,O 为坐标原点(1)求椭圆E 的方程;(2)设E 的右顶点为D ,若直线:l y kx m =+与椭圆E 交于A ,B 两点(A ,B 不是左右顶点)且满足DA DB DA DB +=-,证明:直线l 过定点,并求该定点坐标.2.已知抛物线2:2(0)C y px p =>的焦点F 到双曲线2213x y -=的渐近线的距离为1.(1)求抛物线C 的方程;(2)若抛物线C 上一点P 到F 的距离是4,求P 的坐标;(3)若不过原点O 的直线l 与抛物线C 交于A 、B 两点,且OA OB ⊥,求证:直线l 过定点.3.如图,已知抛物线()220y px p =>上一点()2,M m 到焦点F 的距离为3,直线l 与抛物线交于()11,A x y ,()22,B x y 两点,且10y >,20y <,12OA OB ⋅=(O 为坐标原点).(1)求抛物线的方程; (2)求证直线l 过定点;4.已知椭圆()222210x y a b a b+=>>的离心率e =,上顶点是P ,左、右焦点分别是1F ,2F ,若椭圆经过点⎭.(1)求椭圆的方程;(2)点A 和B 是椭圆上的两个动点,点A ,B ,P 不共线,直线PA 和PB 的斜率分别是1k 和2k ,若1223k k =,求证直线AB 经过定点,并求出该定点的坐标. 5.已知点P 到直线y =-3的距离比点P 到点A (0,1)的距离多2. (1)求点P 的轨迹方程;(2)经过点Q (0,2)的动直线l 与点P 的轨迹交于M ,N 两点,是否存在定点R 使得∠MRQ =∠NRQ ?若存在,求出点R 的坐标;若不存在,请说明理由.6.已知焦点在x 轴上的椭圆C :222210)x y a b a b+=>>(,短轴长为左焦点的距离为1.(1)求椭圆C 的标准方程;(2)如图,已知点2(,0)3P ,点A 是椭圆的右顶点,直线l 与椭圆C 交于不同的两点 ,E F ,,E F 两点都在x 轴上方,且APE OPF ∠=∠.证明直线l 过定点,并求出该定点坐标.7.已知经过圆2221:C x y r +=上点00(,)x y 的切线方程是200x x y y r +=.(1)类比上述性质,直接写出经过椭圆22222:1(0)x y C a b a b+=>>上一点00(,)x y 的切线方程;(2)已知椭圆22:16x E y +=,P 为直线3x =上的动点,过P 作椭圆E 的两条切线,切点分别为A 、B ,求证:直线AB 过定点.8.已知抛物线C :()220y px p =>的焦点F 是椭圆22143x y +=的一个焦点. (1)求抛物线C 的方程;(2)设P ,M ,N 为抛物线C 上的不同三点,点()1,2P ,且PM PN ⊥.求证:直线MN 过定点.9.已知椭圆E :22221(0)x y a b a b +=>>E 的长轴长为.(1)求椭圆E 的标准方程;(2)设()0,1A -,()0,2B ,过A 且斜率为1k 的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交☉C :()2211x y +-=于异于点B 的点P ,Q ,设直线PQ 的斜率为2k ,直线BM ,BN 的斜率分别为34,k k . ①求证:34k k ⋅为定值; ②求证:直线PQ 过定点.10.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点()0,1M -是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆的方程;(2)过点M 分别作直线,MA MB 交椭圆于,A B 两点,设两直线的斜率分别为12,k k ,且124k k +=,求证:直线AB 过定点1,12⎛⎫⎪⎝⎭.11.已知抛物线2:4C y x =上有一动点()()000,0P x y y >,过点P 作抛物线C 的切线l 交x 轴于点M .(1)判断线段MP 的中垂线是否过定点?若过,求出定点坐标;若不过,请说明理由; (2)过点P 作l 的垂线交抛物线C 于另一点N ,求PMN 的面积的最小值. 12.已知动点M 到点()1,0的距离比它到y 轴的距离大1. (1)求动点M 的轨迹W 的方程;(2)若点()()001,0P y y >、M 、N 在抛物线上,且12PM PN k k =-⋅,求证:直线MN 过定点.13.已知抛物线22(0)y px p =>的焦点为F ,点(1,)M m 为抛物线上一点,且2MF =. (1)求抛物线的标准方程;(2)直线l 交抛物线于不同的,A B 两点,O 为坐标原点,且4OA OB ⋅=-求证:直线l 恒过定点,并求出这个定点.14.过点(0,2)D 的任一直线l 与抛物线220C :x py(p )=>交于两点,A B ,且4OA OB =-. (1)求p 的值.(2)已知,M N 为抛物线C 上的两点,分别过,M N 作抛物线C 的切线12l l 和,且12l l ⊥,求证:直线MN 过定点.15.已知点P 与定点F 的距离和它到定直线x = (1)求点P 的轨迹方程C ;(2)点M ,N 在C 上,(2,1)A 且,AM AN AD MN ⊥⊥,D 为垂足.证明:存在定点Q ,使得||DQ 为定值.16.已知点(0,2)A -,(0,2)B ,动点P 满足直线PA 与PB 的斜率之积为23-.记点P 的轨迹为曲线C . (1)求C 的方程;(2)过x 轴上一点Q 且不与坐标轴平行的直线与C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于点R ,若|||MN QR =,求点Q 的坐标. 17.已知双曲线2214x y -=.(1)过(1,0)P -的直线1l 与双曲线有且只有一个公共点,求直线1l 的斜率;(2)若直线2:l y kx m =+与双曲线相交于,A B 两点(,A B 均异于左、右顶点),且以线段AB 为直径的圆过双曲线的左顶点C ,求证:直线2l 过定点.18.已知点P 是曲线C 上任意一点,点P 到点()1,0F 的距离与到直线y 轴的距离之差为1.(1)求曲线C 的方程;(2)设直线1l ,2l 为曲线C 的两条互相垂直切线,切点为A ,B ,交点为点M . (i )求点M 的轨迹方程;(ii )求证:直线AB 过定点,并求出定点坐标.19.1.双线曲2222:1x y C a b-=经过点(2,3),一条渐近线的倾斜角为3π,直线l 交双曲线于A 、B .(1)求双曲线C 的方程;(2)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎样转动,都有0MA MB →→⋅=成立?若存在,求出M 的坐标,若不存在,请说明理由. 20.如图:已知抛物线C :2y x =与()1,2P ,Q 为不在抛物线上的一点,若过点Q 的直线的l 与抛物线C 相交于AB 两点,直线PA 与抛物线C 交于另一点M ,直线PB 与抛物线C 交于另一点N ,直线MB 与NA 交于点R .(1)已知点A 的坐标为(9,3),求点M 的坐标;(2)是否存在点Q ,使得对动直线l ,点R 是定点?若存在,求出所有点Q 组成的集合;若不存在,请说明理由.21.已知动点P 到点(的距离与到直线x =(1)求动点的轨迹C 的标准方程;(2)过点(4,0)A -的直线l 交C 于M ,N 两点,已知点(2,1)B --,直线BM ,BN 分别交x 轴于点E ,F .试问在轴上是否存在一点G ,使得0BE GF GE BF ⋅+⋅=?若存在,求出点G 的坐标;若不存在,请说明理由.参考答案1.(1)22184x y += (2)证明见解析, 【分析】(1)将椭圆上的两点代入椭圆方程中,再解方程即可;(2)先将DA DB DA DB +=-转化为DA DB ⊥,再直线与椭圆联立,建立方程后进一步化简直线方程即可获得解决. (1)因为椭圆E : 22221x y a b+=(a ,b >0)过M N ,两点,所以2222421611a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得22118114a b⎧=⎪⎪⎨⎪=⎪⎩,得2284a b ⎧=⎨=⎩,所以椭圆E 的方程为22184x y +=. (2)由(1)知D ,设1122(,),(,)A x y B x y由DA DB DA DB +=-可知,DA DB ⊥,所以,0DA DB ⋅=即:1212(0x x y y --+=所以221212(1)()80k x x km x x m ++-+++= (※) 联立直线和椭圆方程,消去y ,得:222(12)4280k x kmx m +++-= 由22Δ0,84m k ><+得所以2121222428,1212km m x x x x k k -+=-=++0=,即得22380m k ++=所以,()(3)0m m ++=所以,m m =-=或 所以,直线l的方程为y kx y kx =-=或 所以,过定点0)或,根据题意,舍去0)所以,直线过定点 2.(1)28y x = (2)(2,)4± (3)证明见解析 【分析】(1)利用点到直线距离得到参数即可; (2)利用抛物线定义即可得到P 的坐标;(3)联立方程,利用韦达定理表示垂直关系,即可得到直线l 过定点. (1)抛物线的焦点F 为,02p ⎛⎫ ⎪⎝⎭,双曲线的渐近线方程为:y x =,即:0x =1=,解得4p =故抛物线C 的方程为:28y x =; (2)设()00,P x y ,由抛物线的定义可知:042p x +=,即0442x +=,解得:02x =将02x =代入方程28y x =得:04y =±,即P 的坐标为(2,)4±; (3)由题意可知直线l 不能与x 轴平行,故方程可设为(0)x my n n =+≠与抛物线方程联立得28x my ny x =+⎧⎨=⎩,消去x 得:2880y my n --=设()()1122,,A x y B x y ,则12128,8y y m y y n +==- 由OA OB ⊥可得:12120x x y y +=,即()21212064y y y y +=即:12121064y y y y ⎛⎫+= ⎪⎝⎭亦即:881064n n -⎛⎫-+= ⎪⎝⎭,又0n ≠,解得:8n =所以直线l 的方程为8x my =+,易得直线l 过定点(8,0).3.(1)24y x =;(2)证明见解析.【分析】(1)根据抛物线的焦半径公式,求p ,得到抛物线的方程;(2)首先设直线方程x my t =+,()0t >,与抛物线方程联立,利用韦达定理表示OA OB ⋅的坐标表示,求得t ,即可说明直线过定点. 【详解】(1)由题意可得232p+=,2p = 抛物线方程为24y x =(2)设直线l 方程为x my t =+,()0t >,代入抛物线方程24y x =中,消去x 得,2440y my t --= 124y y t ,()221212116x x y y t ==. 22212121212·41244y y OA OB x x y y y y t t ⋅=+=+=-=解得6t =或2t =-(舍去)直线l 方程为6x my =+,直线过定点()6,0Q . 4.(1)2213x y +=;(2)直线AB 过定点(0,3)-【分析】(1)因为椭圆的离心率e,椭圆经过点,列方程组,解得2a ,2b ,2c ,即可得出答案.(2)设直线AB 的方程为y kx b =+,1(A x ,1)y ,2(B x ,2)y ,联立直线AB 与椭圆的方程,结合韦达定理可得12x x +,12x x ,再计算1223k k ⋅=,解得b ,即可得出答案. 【详解】解:(1)因为椭圆的离心率e,椭圆经过点⎭,所以222231c e a a b ⎧==⎪⎪⎨⎪⎪+=⎩,又222a b c =+, 解得23a =,21b =,22c =, 所以椭圆的方程为2213x y +=.(2)证明:设直线AB 的方程为y kx b =+,1(A x ,1)y ,2(B x ,2)y ,联立2213x y y kx b ⎧+=⎪⎨⎪=+⎩,得222(13)6330k x kbx b +++-=,所以122613kb x x k +=-+,21223313b x x k -=+,所以1111y k x -=,2221y k x -=,所以222121212122121211(1)()(1)(1)23(1)3kx b kx b k x x k b x x b b k k x x x x b +-+-+-++--⋅=⋅===-, 解得3b =-,所以直线AB 过定点(0,3)-.5.(1)x 2=4y ;(2)存在,定点R (0,-2). 【分析】(1)由|PA |等于点P 到直线y =-1的距离,结合抛物线的定义得出点P 的轨迹方程; (2)由对称性确定点R 必在y 轴上,再由∠MRQ =∠NRQ 可得k MR +k NR =0,联立直线l 与抛物线方程,结合韦达定理求出定点R (0,-2). 【详解】(1)由题知,|PA |等于点P 到直线y =-1的距离,故P 点的轨迹是以A 为焦点,y =-1为准线的抛物线,所以其方程为x 2=4y .(2)根据图形的对称性知,若存在满足条件的定点R ,则点R 必在y 轴上,可设其坐标为(0,r )此时由∠MRQ =∠NRQ 可得k MR +k NR =0.设M (x 1,y 1),N (x 2,y 2),则11y rx -+22y r x -=0由题知直线l 的斜率存在,设其方程为y =kx +2,与x 2=4y 联立得x 2-4kx -8=0, 则x 1+x 2=4k ,x 1x 2=-811y r x -+22y r x -=112kx r x +-+222kx r x +-=2k +1212(2)()r x x x x -+=2k -(2)2k r -=0故r =-2,即存在满足条件的定点R (0,-2). 【点睛】关键点睛:解决问题一时,关键是由抛物线的定义得出轨迹方程;解决问题二时,关键是由对称性得出点R 必在y 轴上,进而设出其坐标. 6.(1)22143x y +=;(2)证明见解析,(6,0).【分析】(1)利用已知和,,a b c 的关系,列方程组可得椭圆C 的标准方程;(2)直线l 斜率存在时,设出直线方程与椭圆方程联立, APE OPF ∠=∠可得0PE PF k k +=,利用根与系数的关系代入化简,可得直线l 所过定点. 【详解】(1)由22221b a c a c b ⎧=⎪-=⎨⎪-=⎩得21b a c ⎧⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22143x y +=. (2)当直线l 斜率不存在时,直线l 与椭圆C 交于不同的两点分布在x 轴两侧,不合题意. 所以直线l 斜率存在,设直线l 的方程为y kx m =+. 设11(,)E x y 、22(,)F x y ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩得222(34)84120k x kmx m +++-=, 所以122834km x x k -+=+,212241234m x x k -=+.因为APE OPF ∠=∠, 所以0PE PF k k +=,即121202233y y x x +=--,整理得1212242()()033mkx x m k x x +-+-= 化简得6m k =-,所以直线l 的方程为6(6)y kx k k x =-=-, 所以直线l 过定点(6,0). 7.(1)00221x x y ya b+=;(2)证明见解析. 【分析】(1)根据已知直接类比求解即可;(2)根据(1),根据题意,得到方程组,根据方程组的特征求出A 、B 两点坐标特征,最后可以求出直线AB 过定点. 【详解】(1)类比上述性质知:切线方程为00221x x y ya b+=.(2)设切点为1222(,),(,)A x y B x y ,点(3,)P t , 由(1)的结论的AP 直线方程:1116x x y y +=,BP 直线方程:2216x xy y +=, 通过点(3,)P t ,∴有1122316316x y t x y t ⋅⎧+⋅=⎪⎪⎨⋅⎪+⋅=⎪⎩,∴A ,B 满足方程:12xty +=,∴直线AB 恒过点:1020xy ⎧-=⎪⎨⎪=⎩,即直线AB 恒过点(2,0).8.(1)24y x =;(2)证明见解析. 【分析】(1)椭圆22143x y +=的焦点为()1,0±,由题意可知12p =,由此即可求出抛物线的方程;(2)设直线MN 的方程为x my n =+,与抛物线联立得,可得211244y y y y m n ==-+,,再根据PM PN ⊥,可得0PM PN ⋅=,列出方程代入211244y y y y m n ==-+,,化简可得2264850n n m m ---+=,再因式分解可得25n m =+或21n m =-+,再代入方程进行检验,即可求出结果. 【详解】(1)因为椭圆22143x y +=的焦点为()1,0±, 依题意,12p=,2p =,所以C :24y x =(2)设直线MN 的方程为x my n =+,与抛物线联立得2440y my n --=, 设()11,M x y ,()22,N x y , 则211244y y y y m n ==-+,,由PM PN ⊥,则0PM PN ⋅=,即()()11221,21,20x y x y --⋅--=, 所以()()()()121211+220x x y y ----=即()()()()121211+220my n my n y y +-+---=,整理得到()()()()22121212+140m y y mn m y y n ++--+-+=,所以()()()224142+140n m m mn m n -++---+=,化简得2264850n n m m ---+=即()()22341n m -=-, 解得25n m =+或21n m =-+.当25n m =+时,直线MN 的方程为25x my m =++,即为()52x m y -=+,即直线过定点()5,2-;当21n m =-+时,直线MN 的方程为21xmy m ,即为()12x m y -=-,即直线过定点()1,2,此时与点P 重合,故应舍去,所以直线MN 过定点()5,2-. 【点睛】本题考查抛物线的方程,考查直线与抛物线的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题. 9.(1)22164x y += (2)①证明见解析;②证明见解析 【分析】(1)由已知条件列出关于,,a b c 的方程组,解之可得;(2)设MN 的方程为11y k x =-,设11(,)M x y ,22(,)N x y ,直线方程代入椭圆方程,整理后由韦达定理得1212,x x x x +,然后计算34k k ⋅可得结论;②设PQ 的方程为2y k x t =+ ,设33(,)P x y ,44()Q x y ,,直线方程代入圆方程,整理后应用韦达定理得3434,x x x x +,由点的坐标求得BP BQ k k ⋅,利用它等于34k k ⋅可求得t 值,从而由直线方程得定点. (1)由题意2222a ca b c a⎧=⎪⎪=⎨⎪+=⎪⎩解得2b a c =⎧⎪=⎨⎪=⎩所以椭圆的标准方程为:22164x y +=;(2)① 设MN 的方程为11y k x =-,与22164x y +=联立得:2211(32)690k x k x +--=, 设11(,)M x y ,22(,)N x y ,则112212222111632932Δ72(21)0k x x k x x k k ⎧+=⎪+⎪⎪=-⎨+⎪⎪=+>⎪⎩,12111234121222(3)(3)y y k x k x k k x x x x ----⋅=⋅==2112112123()92k x x k x x x x -++=- ②设PQ 的方程为2,2y k x t t =+≠ ,与22(1)1y x +-=联立2222(1)2(1)(2)0k x k t x t t ++-+-=,设33(,)P x y ,44()Q x y ,,则23422342222222(1)1(2)1Δ4(2)0k t x x k t t x x k k t t =-⎧+-⎪+⎪-⎪=⎨+⎪⎪=-+>⎪⎩222232324422234342(2)(2)2(2)2(2)(1)(1)(2)(2)BP BQ y k x t k x t y k t t k t t k t k k x x x x t t -+-+------++-⋅=⋅==-2222222(1)(1)(2)2k t k t k t t t t--++--==由34BP BQ k k k k ⋅=⋅,即222,,3t t t -=-∴=此时22284()09k ∆=+>, 所以PQ 的方程为223y k x =+,故直线PQ 恒过定点2(0,)3.10.(1)2212x y +=(2)证明见解析 【分析】(1)根据题意列方程组求得,a b ,即可得到椭圆的标准方程;(2)设()()1122,,,A x y B x y ,分直线AB 斜率存在与不存在两种情况证明.当直线AB 的斜率存在时,设AB :y kx m =+,联立椭圆方程消元后利用韦达定理及判别式求得22212122242221,,2121km m k m x x x x k k -+>+=-⋅=++,由124k k +=求得12k m =-,代入直线方程可证得直线过定点1,12⎛⎫⎪⎝⎭,再考虑直线AB 的斜率不存在时情况,易证得结果.(1)由题意可得2221b c b a b c =⎧⎪=⎨⎪=+⎩,解得1,a b ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)设()()1122,,,A x y B x y .①当直线AB 斜率存在时,设直线AB 方程为y kx m =+, 联立2212y kx m x y =+⎧⎪⎨+=⎪⎩得()222214220k x kmx m +++-=. 由()()()222222Δ16421228210k m k m k m =-+-=-+>,得2221k m +>.所以2121222422,2121km m x x x x k k -+=-⋅=++.所以12121212121111y y kx m kx m k k x x x x +++++++=+=+()1212214x x k m x x +=++=, 即2241km k m -=-,所以21km k m =--,即()()2122km k m km k m =--=--+, 所以12k m =-,所以11122k y kx m kx k x ⎛⎫=+=+-=-+ ⎪⎝⎭,所以直线AB 过定点1,12⎛⎫⎪⎝⎭.②当直线AB 斜率不存在时,()()1111,,,A x y B x y -,则11121111124y y k k x x x +-++=+==,所以112x =,则直线AB 也过定点1,12⎛⎫⎪⎝⎭.综合①②,可得直线AB 过定点1,12⎛⎫⎪⎝⎭.11.(1)存在,过定点()1,0F (2【分析】(1)设直线MP 的方程为y kx b =+与抛物线方程联立方程组,消元后由判别式为0,得1kb =,这样可用k 表示出P 点坐标,从而也可得M 点坐标,然后求出MP 中垂线方程后可得定点;(2)由(1),求出PN 方程,与抛物线方程联立求得N 点坐标后,计算出PM ,PN ,从而得PMN 面积S 为k 的函数,其中0k >,利用导数可求得其最小值. (1)解:设直线MP 的方程为y kx b =+,和抛物线方程24y x =联立得:2440ky y b -+=, 由0k ≠,0∆=得1kb =,则2440ky y b -+=的解为2y k=, 由020y k =>得0k >,21y b x k k -==,得212,P k k ⎛⎫⎪⎝⎭, 在y kx b =+中,令0y =得21b x k k =-=-,所以21,0M k ⎛⎫- ⎪⎝⎭,MP 中点为1(0,)k ,所以线段MP 的中垂线方程为()11y x k=--,所以线段MP 的中垂线过定点()1,0F . (2)解:由(1)可知,直线NP 的方程为23112112y x x k k k k k k⎛⎫=--+=-++ ⎪⎝⎭将其与抛物线方程24y x =联立得:2311204y y k k k ⎛⎫+-+= ⎪⎝⎭,24,4N P N y y k y k k ⎛⎫∴+=-∴=-+ ⎪⎝⎭,22P M PM x k =-=,44N P PN y k k=-=-. 所以PMN 的面积为()()223410k S k k+=>,所以()()224413k k S k+-'=,当0k <<0S '<,S 单调递减,当k >0S '>,S 单调递增,所以k =min S =. 12.(1)24,00,0x x y x ≥⎧=⎨<⎩;(2)证明见解析. 【分析】(1)令(,)M x y ||1x =+,讨论0x ≥、0x <化简整理求轨迹方程.(2)由(1)得()1,2P ,设MN 为x my n =+,2111,4M y y ⎛⎫ ⎪⎝⎭,2221,4N y y ⎛⎫⎪⎝⎭,联立抛物线方程应用韦达定理得124y y m +=,124y y n =-,根据题设条件有()12122360y y y y +++=,进而可得,n m 的数量关系,即可证明结论. (1)由题设,(,)M x y 到点()1,0的距离比它到y 轴的距离大1,||1x =+,当0x ≥时,222(1)(1)x y x -+=+,整理得24y x =; 当0x <时,222(1)(1)x y x -+=-,整理得0y =;∴动点M 的轨迹W 的方程为24,00,0x x y x ≥⎧=⎨<⎩.(2)证明:()()001,0P y y >,由(1)知:()1,2P ,设MN 的方程为x my n =+,2111,4M y y ⎛⎫ ⎪⎝⎭,2221,4N y y ⎛⎫⎪⎝⎭,联立24x my n y x =+⎧⎨=⎩,得2440y my n --=,∴124y y m +=,124y y n =-,由1211241214PM y k y y -==+-,同理242PN k y =+,又12PM PN k k =-⋅, ∴()()12161222y y =-++, ∴()12122360y y y y +++=,则290n m -++=,即29n m =+(满足Δ0>), 直线MN 的方程为()2929x my m m y =++=++, ∴直线MN 过定点()9,2-,得证. 13.(1)24y x =(2)直线过定点(2,0)【分析】(1)利用焦半径的定义可得P 的值,即可得到答案;(2)设()()1122,,,A x y B x y ,直线:l x my n =+,根据4OA OB ⋅=-可求得n 的值,即可得到答案; (1)2MF =,∴1222pp +=⇒=, ∴抛物线的标准方程为24y x =.(2)设()()1122,,,A x y B x y ,直线:l x my n =+代入抛物线24y x =得: 2440y my n --=,∴121244y y my y n +=⎧⎨⋅=-⎩,12124OA OB x x y y ⋅=+=-,①又22112244y x y x ==,,()2212121616x x y y n ∴==,∴212x x n =,∴①等价于22440(2)02n n n n -+=⇒-=⇒=, ∴直线l 恒过定点(2,0).14. (1)2p = (2)证明见解析 【分析】(1) 设1122(,),(,)A x y B x y ,直线l 的方程为2y kx =+,与抛物线方程联立, 可求1212,x x x x +⋅,由4OA OB =-列方程求p 的值;(2) 设3344(,),(,)M x y N x y 利用导数的几何意义求切线12l l 和的方程,根据12l l ⊥可得344x x =-,化简直线MN 的方程,证明直线MN 过定点.(1)设1122(,),(,)A x y B x y ,直线l 的方程为2y kx =+,与抛物线方程联立, 整理可得2240.x pkx p --= 所以,12122,4x x pk x x p +=⋅=-,所以,221212122444 4.4x x OA OB x x y y p p p ⋅=+=-=-=- 所以, 2.p = (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设3344(,),(,)M x y N x y ,则抛物线在点M 处的切线方程为333()2xy y x x -=-,从而312x k =,同理422x k =, 因为12l l ⊥,所以121k k =-,即344x x =-, 又34343434223434()()4MN y y y y x x x x k x x x x --++===--, 从而直线MN 的方程为:3433()4x x y y x x +-=-, 将2334x y =,344x x =-带入化简得:3414x x y x +=+, 所以,直线MN 恒过定点(0,1). 15.(1)22163x y +=;(2)证明见解析. 【分析】(1)设(,)P x y ,利用两点距离公式及点线距,结合已知条件可得2226x y +=,即可写出P 的轨迹方程C .(2)由(1)易知A 在椭圆C 上,设1122(,),(,)M x y N x y ,讨论MN 斜率:存在时令MN 为y kx m =+,联立椭圆方程结合韦达定理及0AM AN ⋅=可得2310k m ++=,可知MN 过定点;斜率不存在时由0AM AN ⋅=求M 、N 的横坐标,判断是否过同一定点,最后根据AD MN ⊥确定D 的轨迹为圆,进而确定圆心即可证结论. (1)设(,)P x y ,由题设2222[(](x y x +=-,整理得:2226x y +=,∴P 的轨迹方程C 为22163x y +=.(2)由(1)知:A 在椭圆C 上,设1122(,),(,)M x y N x y ,当直线MN 斜率存在时,令MN 为y kx m =+,联立椭圆C 并整理得:222(21)4260k x kmx m +++-=,∴222222168(3)(21)488240k m m k k m ∆=--+=-+>,则122421km x x k +=-+,21222(3)21m x x k -=+,故121222()221m y y k x x m k +=++=+,222212121226()21m k y y k x x km x x m k -=+++=+, ∵AM AN ⊥,而11(2,1)AM x y =--,22(2,1)AN x y =--,∴121212121212(2)(2)(1)(1)2()()5AM AN x x y y x x x x y y y y ⋅=--+--=-++-++=0; ∴由上整理得:2234821(231)(21)0m k km m k m k m ++--=+++-=.由题设知:A 不在MN 上,即210k m +-≠,故2310k m ++=,则2133k m +=-,∴MN 过定点21(,)33E -,当直线MN 斜率不存在时,则11(,)N x y -,由2211(2)10AM AN x y ⋅=-+-=,又221126x y +=,可得2113840x x -+=,解得123x =或12x =(舍),∴此时MN 也过定点21(,)33E -,又AD MN ⊥,即90ADE ∠=︒,故D 在以AE 为直径的圆上且圆心为41(,)33.∴定点Q 41(,)33,使得||DQ 为定值,得证.【点睛】关键点点睛:第二问,讨论MN 斜率,联立椭圆方程及线段的垂直关系,利用向量垂直的坐标表示判断MN 所过的定点坐标,再由AD MN ⊥判断D 的轨迹为圆,找到圆心坐标,即为所要证的定点Q . 16.(1)221(2)64x y y +=≠±;(2)(Q . 【分析】(1)设(,)P x y ,应用斜率的两点式及已知条件可得222(2)3y y y x x +-⋅=-≠±,化简整理即可得C 的方程;(2)设(,0)Q n ,:MN l x my n =+(0)m ≠,11(,)M x y ,22(,)N x y ,联立曲线C ,结合韦达定理求MN 的中点坐标,进而写出MN 垂直平分线方程即可得R 的坐标,根据弦长公式及|||MN QR =可得22(42)(23)0n m -+=,即可求Q 的坐标.(1)设(,)P x y ,则直线PA ,PB 的斜率之积为222(2)3y y y x x +-⋅=-≠±, ∴整理得222312+=x y ,即221(2)64x y y +=≠±,因此,点P 的轨迹曲线C 的方程为221(2)64x y y +=≠±.(2)设(,0)Q n ,:MN l x my n =+(0)m ≠,11(,)M x y ,22(,)N x y .由2223120x my nx y =+⎧⎨+-=⎩,得222(23)42120m y mny n +++-=, 当2224(46)0m n ∆=-+>时,122423mn y y m -+=+,212221223n y y m -=+,∴||MN =又线段MN 的中点为22222,2323m n mn n m m ⎛⎫--+ ⎪++⎝⎭,即2232,2323nmn m m -⎛⎫ ⎪++⎝⎭, ∴线段MN 的垂直平分线为22232323mn n y m x m m -⎛⎫-=-- ⎪++⎝⎭,令0y =,得223R n x m =+,故2,023n m R ⎛+⎫⎪⎝⎭.由|||MN QR =223nm -+,整理得|2n =∴22(42)(23)0n m -+=,则有n =(Q . 17.(1)11,22-(2)证明见解析 【分析】(1)设出直线方程,与双曲线联立,利用判别式可求;(2)联立直线2l 与双曲线方程,利用韦达定理结合0AC BC ⋅=求出m 和k 关系即可证明. (1)由题意得直线1l 的斜率必存在,设()1:1l y k x =+,联立()22114y k x x y ⎧=+⎪⎨-=⎪⎩,得()2222148440k x k x k ----= 若2140k -=,即12k =±时,满足题意; 若2140k -≠,即12k ≠±时,令()()()22228414440k k k ∆=-----=,解之得k = 综上,1l的斜率为11,22-(2)证明:设()11,A x y ,()22,B x y ,联立2214y kx mx y =+⎧⎪⎨-=⎪⎩,得()()222148410k x kmx m ---+=,则:()()221222122164108144114m k mk x x k m x x k ⎧⎪∆=-+>⎪⎪+=⎨-⎪⎪-+⎪=-⎩以线段AB 为直径的圆过双曲线的左顶点C ()2,0-,∴0AC BC ⋅=,即()121212240x x x x y y ++++=,由韦达定理知,()()()2222121212122414m k y y kx m kx m k x x mk x x m k -=++=+++=-.则()2222224141640141414m m k mk k k k -+-+++=---, 整理得22316200m mk k -+=, 解得2m k =或103km =(均满足0∆>). 当2m k =时,直线l :()+2+2y kx m kx k k x =+==,此时,直线过点()2,0-,不满足题意,故舍去; 当103k m =时,直线l :1010++33y kx m kx k k x ⎛⎫=+== ⎪⎝⎭,此时,直线恒过点10,03⎛⎫- ⎪⎝⎭,满足题意.所以原题得证,即直线2l 过定点10,03⎛⎫- ⎪⎝⎭.18.(1)24y x =或0(0)y x =<(2)(i)1x =-;(ii)证明见解析,定点为(1,0) 【分析】(1)设出P 点坐标,根据题意列式化简即可.(2) (i)设出切点,表示出切线方程,再联立两切线方程即可求出交点坐标;(ii)根据A 、B 两点坐标表示出直线AB 的点斜式方程,化简求出定点. (1)设(,)P x y ,则当0x ≥时,1PF x -=,1x =+,当x>0时化简得24y x =;当0x <时,由题意得0(0)y x =<,所以曲线C 的方程为:24y x =或0(0)y x =<.(2)(i)当0(0)y x =<时,不合题意,故设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,则过点A 的切线为:1122y y x y =+,同理可得过点B 的切线为:2222yy x y =+.根据12l l ⊥可得124y y =-. 所以联立两条切线方程11222222y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩可得1M x =-,所以M 的轨迹为1x =-(ii)由题意可得AB l 的直线方程为:()211211122221211444444y y y y y y y x x y y y y -⎛⎫--=-=+ ⎪---⎝⎭, 所以必过()1,0 【点睛】求曲线方程的题通常有两种做法,一种是直接根据题意列式化简即可,一种需要结合图像,先根据定义分析出曲线为何种曲线,再进行计算.证明直线过定点常用方法为设而不求,得出参数之间的关系即可求得定点. 19.(1)2213y x -=(2)存在;定点M 的坐标为(1,0)- 【分析】(1)根据倾斜角得出渐近线的倾斜角,求出渐近线方程,进而得到a ,b 的关系,再将点的坐标代入双曲线方程,最后解出a ,b 即可;(2)考虑直线的斜率存在和不存在两种情况,当直线斜率存在时,设出直线的点斜式方程并代入双曲线方程并化简,进而根据根与系数的关系与0MA MB →→⋅=得到答案. (1)双曲线的渐近线方程为by x a =±,因为两条渐近线的夹角为3π,故渐近线b y x a=的倾斜角为6π或3π,所以b a =b a =又22491a b -=,故22491b a b ⎧=⎪⎨-=⎪⎩或22491a a b ⎧⎪⎨-=⎪⎩(无解),故1a b =⎧⎪⎨=⎪⎩所以双曲线2213y x -=.(2)双曲线的右焦点为2(2,0)F ,当直线l 的斜率存在时,设直线l 的方程为:(2)y k x =-,设()11,A x y ,()22,B x y ,因为0MA MB →→⋅=,所以()()12120x m x m y y --+=,整理得到()()()222212121240k x x m k x x m k +-++++=…①,由22(2)33y k x x y =-⎧⎨-=⎩可以得到()222234430k x k x k -+--=, 因为直线l 与双由线有两个不同的交点,故()()422216434336450k k k k ∆=+-+=+>且230k -≠,所以k ≠由题设有①对任意的k ≠ 因22121222443,33k k x x x x k k ++=-=---, 所以①可转化为()()22222222434124033k k k m k m k k k+-+++++=--,整理得到()()22231540m m m k -++-=对任意的k ≠故2210540m m m ⎧-=⎨+-=⎩,故1m =-即所求的定点M 的坐标为(1,0)-. 当直线l 的斜率不存在时,则:2l x =,此时(2,3),(2,3)A B -或(2,3),(2,3)-B A , 此时330MA MB →→=-+=⋅. 综上,定点M 的坐标为(1,0)-. 【点睛】本题第(2)问是一道常规压轴题,根据向量数量积为0得到两点的坐标关系,然后结合根与系数的关系将式子化简,最后求出答案.20.(1)M (25,5);(2)存在,7221(,),22k k x y x y k k --⎧⎫==⎨⎬--⎩⎭∣(k ∈R 且k ≠2).【分析】(1)设M (m 2,m ),因为A ,P ,M 三点共线,则斜率相等,代入计算可得m =5,从而求出点M 坐标;(2)设A (a 2,a ),B (b 2,b ),M (m 2,m ),N (n 2,n ),利用两点可求直线AM 的方程,代入P 点坐标,可解出212a m a -=-,同理解出212b n b -=-,联立直线AN 和BM ,解出R 的纵坐标,代入,m n ,得到(21)2(2)27R a b a y a b a --+=--+,直线AB 的方程过点Q (s ,t ),可通过代入Q 点建立,s t的关系,若R y 为定值,则得出比例关系为定值k ,从而找到,s t 的解的集合. 【详解】解:(1)设A (a 2,a ),B (b 2,b ),M (m 2,m ),N (n 2,n ), 因为A ,P ,M 三点共线, 所以2332991m m --=--,解得m =5, 所以点M (25,5).(2)直线AM 的方程为(a +m )y =x +am , 将点P 代入可得2(a +m )=1+am , 解得212a m a -=-,直线BM 的方程为:()b m y x bm +=+ 同理可得212b n b -=-,直线AN 的方程为:()a n y x an +=+ 再将直线AN 和BM 联立,得()()a n y x anb m y x bm+=+⎧⎨+=+⎩,解得n R a bmy a b n m-=-+-,代入得2121(2)(21)(2)(21)222121()(2)(2)(21)(2)(21)(2)22R b a a b a a b b n a b a y b a a b a b b a a b a b b a --⨯-⨯-------==-----+------+---2()2(21)2227(2)27ab a b a b a ab a b a b a -++--+==--+--+因为直线AB 的方程为(a +b )y =x +ab 过点Q (s ,t ), 则(a +b )t =s +ab , 解得at sb a t-=-, 代入上式得,22(21)2(21)(22)2(2)(7)27(2)27R at sa a t a s a s t a t y at s t a s a s t a a a t --⨯-+-+-+--==--+-+--⨯-+-为常数, 只需要212222727t s s tk t s s t---===---,即722212k s k k t k -⎧=⎪⎪-⎨-⎪=⎪-⎩(k ∈R 且k ≠2),所以存在点Q 满足的集合为7221(,),22k k x y x y k k --⎧⎫==⎨⎬--⎩⎭∣(k ∈R 且k ≠2).【点睛】知识点点睛:定点定值问题若出现ax by cx d +=+为定值,则会有a b c d=为定值,即系数比为定值.21.(1)22182x y +=;(2)存在,点(4,0)G -. 【分析】(1)由直译法列出方程化简即可;(2)设出直线l 方程4x ty =-,以及11(,)M x y ,()()223,,,0N x y E x ,4(,0)F x ,0(,0)G x ,通过代换用t 表示0x ,化简得到一个常数即可. 【详解】(1)设点(,)P x y化简得22182x y += 故动点P 的轨迹C 的标准方程为22182x y += (2)设直线l 的方程为4x ty =-联立方程组224182x ty x y =-⎧⎪⎨+=⎪⎩,得22(4)880t y ty +-+=,22226432(4)3212832(4)0,t t t t ∆=-+=-=-> 得: 2t >或2t <-12284ty y t +=+,12284y y t =+. 设 34(,0),(,0)E x F x ,定点G 存在,其坐标为0(,0)x()2,1B --,1112BM y k ty +∴=-,2212BN y k ty +=- 则121211:(2)1,:(2)121y y BM y x BN y x ty ty ++=+-=+--- 令0y =,求出与x 轴的交点,E F()()1122334411221212210,2,210,22121y ty y ty x x x x ty y ty y +-+-+-=+=+-=+=-+-+ ()32,1BE x =+, ()42,1BF x =+, ()40,0GF x x =-, ()30,0GE x x =- 0BE GF GE BF ⋅+⋅= 即有: 340430(2)()(2)()0,x x x x x x +-++-=即343434022()(4)0x x x x x x x ++-++= 343403422()4x x x x x x x ++=++3434340343422(4)828244x x x x x x x x x x x +++--==+++++∴343434342(224)441624x x x x x x x x +++---=+++3434342(2)(2)4(4)24x x x x x x ++-++=+++34342(2)(2)2(2)(2)x x x x ++=-+++()()()()()()12121221221121222222112222212111y t ty ty ty y y y t ty ty y ty y y y --⋅⋅--++=-=----++-++++ 21212121222()422(2)()4t y y t y y ty y t y y ⎡⎤-++⎣⎦=-+-+-()2222222228816248844428288424444t t t t t t t t t t t t t t -⋅-⋅+++++=-=--⋅+-+++222222168(4)83222484(4)416t t t t t t -++-+=-=-=--+- 即04x =-当直线l 与x轴重合时,00()(2)0,BE GF GE BF x x ⋅+⋅=-+-= 解得 0 4.x =-所以存在定点G ,G 的坐标为(4,0)-. 【点睛】 关键点点睛: 本题中3434343403434282(224)44162244x x x x x x x x x x x x x -+++---=+=+++++3434342(2)(2)4(4)24x x x x x x ++-++=+++这一步是为了凑出34(2),(2)x x ++,然后作整体替换.。

圆锥曲线中定值问题解题思路(共15张PPT)

圆锥曲线中定值问题解题思路(共15张PPT)

x0
y0 1
| AN | 2 x0 y0 1
所以四边形 ABNM 的面积为 S 1 AN BM 1 (2 x0 ) (1 2 y0 )
2
2 y0 1
x0 2
结合 x02 4 y02 4 ,可求得 S 2 为定值。
(2)解决定值问题的方法
题型 3:和向量有关系或者跟向量的系数有关的定值 注意若跟向量的系数有关系,我们一般是根据系数的形式来考虑如何设参数,如果
一个常用的结论:椭圆和双曲线中斜率乘积为定值,即:
过原点的直线交椭圆或双曲线于两点 A, B ,则在椭圆或双曲线上任取一点 P(异于 A, B )则直线 PA, PB 的斜率乘积为定值。
x2 y2 1 a2 b2
x2 y2 1 a2 b2
b2 kPA kPB a2
b2 kPA kPB a2
例 4:已知椭圆方程为 x2 y2 1, A(2, 0), B(0,1) ,设点 P 是椭圆上的一点,直线 PA 与 y 4
轴交于点 M,直线 PB 与 x 轴交于点 N,求证| AN | | BM | 为定值。
解析:设椭圆上一点
P(x0 ,
y0 ) ,则
x02 4

y02
1
直线 PA :
解析:题目中 A, B 为任意点,故不妨设 A, B 分别为长轴的端点和短轴的端点,此时
OA

a,
OB

b

|
1 OA
|2

|
1 OB
|2

1 a2

1 b2
(2)解决定值问题的方法
方法二:把相关几何量用圆锥曲线中的参变量表示出来,再证明结论与参数无关。(常 用在大题证明里面,其实就是设参数,常见的参数在一开始就提到),依据所 设参数的不同,题型又分为以下几类:

圆锥曲线之定值定点问题 经典例题+题型归纳+解析

圆锥曲线之定值定点问题 经典例题+题型归纳+解析


y1

y2
=
k(x1
+
x2

4)
=−
8k 1 + 4k2

所以直线
PQ
பைடு நூலகம்的斜率
kPQ
=
y1−y2 x1 − x2
=
1 2
,所以直线
PQ
的斜率为定值
,该值为
21 .
方法二 设直线 PQ 的方程为 y = kx + b,

P(x1,y1),Q(x2,y2)

y1
=
kx1
+
b,y2
=
kx2
+
b,所以
kPA
二、例题精讲
题型一: 斜率为定值
例1.
已知椭圆
C
: xa22
+
y2 b2
=
1(a
>
b
>
0)
的离心率为
3 2
,且过点
A(2,1).若
P
,Q
是椭圆
C
上的两个动
点,且使 ∠PAQ 的角平分线总垂直于 x 轴,试判断直线 PQ 的斜率是否为定值?若是,求出该值;若
不是,请说明理由.
【解析】方法一 :因为椭圆

y = kx +
x2 8
+
y2 2
b =
1
得(1
+
4k2)x2
+
8kbx
+
4b2

8
=
0
②则
x1
+
x2
=−
8kb 1 + 4k2

2023年高考数学热点专题解析几何模型通关圆追曲线中的定值问题(解析版)

2023年高考数学热点专题解析几何模型通关圆追曲线中的定值问题(解析版)

圆锥曲线中的定值问题思路引导处理圆锥曲线中定值问题的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.母题呈现考法1证明某些几何量为定值【例2】(2022·湖北省天门中学模拟预测)在平面直角坐标系xOy 中,已知椭圆C :x 4+y 2=1,点P (x 1,y 1),Q (x 2,y 2)是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为k 1,k 2,若m =11(,)2x y ,n =22(,)2x y ,m·n =0.(1)求证:k 1·k 2=-14;(2)试探求△OPQ 的面积S 是否为定值,并说明理由.【解题指导】【解析】(1)证明:∵k 1,k 2均存在,∴x 1x 2≠0.又m·n =0,∴x 1x 24+y 1y 2=0,即x 1x24=-y 1y 2,∴k 1·k 2=y 1y 2x 1x 2=-14.(2)①当直线PQ 的斜率不存在,即x 1=x 2,y 1=-y 2时,由y 1y 2x 1x 2=-14,得x 214-y 21=0.又∵点P (x 1,y 1)在椭圆上,∴x 214+y 21=1,∴|x 1|=2,|y 1|=22.∴S △POQ =12|x 1||y 1-y 2|=1.②当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +b .kx +b ,y 2=1,消去y 并整理得(4k 2+1)x 2+8kbx +4b 2-4=0,其中Δ=(8kb )2-4(4k 2+1)(4b 2-4)=16(1+4k 2-b 2)>0,即b 2<1+4k 2.∴x 1+x 2=-8kb4k 2+1,x 1x 2+1∵x 1x 24+y 1y 2=0,∴x 1x 24+(kx 1+b )(kx 2+b )=0,得2b 2-4k 2=1(满足Δ>0).∴S △POQ =12·|b |1+k 2·|PQ |=12|b |x 1+x 22-4x 1x 2=2|b |4k 2+1-b 24k 2+1=1.综合①②知△POQ 的面积S 为定值1.【解题技法】参数法解决圆锥曲线中最值问题的一般步骤【跟踪训练】(2020·北京卷)已知椭圆C :x 2a 2+y 2b 2=1过点A (-2,-1),且a =2b .(1)求椭圆C 的方程;(2)过点B (-4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =-4于点P ,Q ,求|PB ||BQ |的值.解(1)由椭圆过点A (-2,-1),得4a 2+1b 2=1.又a =2b ,∴44b 2+1b2=1,解得b 2=2,∴a 2=4b 2=8,∴椭圆C 的方程为x 28+y 22=1.(2)当直线l 的斜率不存在时,显然不合题意.设直线l :y =k (x +4),=k (x +4),2+4y 2=8得(4k 2+1)x 2+32k 2x +64k 2-8=0.由Δ>0,得-12<k <12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-32k 24k 2+1,x 1x 2=64k 2-84k 2+1.又∵直线AM :y +1=y 1+1x 1+2(x +2),令x =-4,得y P =-2(y 1+1)x 1+2-1.将y 1=k (x 1+4)代入,得y P =-(2k +1)(x 1+4)x 1+2.同理y Q =-(2k +1)(x 2+4)x 2+2.∴y P +y Q =-(2k +1)121244(,)22x x x x ++++=-(2k +1)·2x 1x 2+6(x 1+x 2)+16(x 1+2)(x 2+2)=-(2k +1)·2(64k 2-8)4k 2+1+6×(-32k 2)4k 2+1+16(x 1+2)(x 2+2)=-(2k +1)×128k 2-16-192k 2+64k 2+16(4k 2+1)(x 1+2)(x 2+2)=0.∴|PB |=|BQ |,∴|PB ||BQ |=1.考法2证明某些代数式为定值【例3】(2022·山东泰安·三模)已知椭圆2222:1x y E a b +=(a >b >0)的离心率2e =,四个顶点组成的菱形面积为O 为坐标原点.(1)求椭圆E 的方程;(2)过228:3O x y +=上任意点P 做O 的切线l 与椭圆E 交于点M ,N ,求证PM PN ⋅ 为定值.【解题指导】【解析】(1)由题意得2ab =,2c e a ==,222a b c =+可得a =b =2,所以椭圆的标准方程为22184x y +=.(2)当切线l的斜率不存在时,其方程为x =【提醒】求直线方程时忽略直线斜率不存在的情况.当3x =时,将3x =代入椭圆方程22184x y +=得3y =±,∴33M ⎛ ⎝⎭,,33N ⎛⎫- ⎪ ⎪⎝⎭,,03P ⎛⎫⎪ ⎪⎝⎭,,0,PM PN ⎛⎛== ⎝⎭⎝⎭ ∴83PM PN ⋅=-当x =83PM PN ⋅=- ,当切线l 的斜率存在时,设l 的方程为y kx m =+,()11,M x y ,()22,N x y ,因为l 与O3=,所以22388m k =+【技巧】圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.由22184y kx m x y =+⎧⎪⎨+=⎪⎩,得()222124280k x kmx m +++-=,∴122412km x x k +=-+,21222812m x x k -=+∴()()()2PM PN OM OP ON OP OP OP OM OP ON OM ON⋅=-⋅-=-⋅-⋅+⋅()()()22283OPOPOPOM ON OM ON=--+⋅=-+⋅()()12121212OM ON x x y y x x kx m kx m ⋅=+=+++()()2212121k x x km x x m =++++()2222222228438810121212m kmm k k km m k kk ---⎛⎫=++-+== ⎪+++⎝⎭∴8·3PM PN =-综上,PM PN 为定值83-.【解后反思】常见处理技巧:(1)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;(2)巧妙利用变量间的关系,例如点的坐标符号曲线方程等,尽量做到整体代入,简化运算.【例4】(2022·湖南怀化·一模)如图.矩形ABCD 的长AB =12BC =,以A 、B 为左右焦点的椭圆2222:1x y M a b+=恰好过C 、D 两点,点P 为椭圆M 上的动点.(1)求椭圆M 的方程,并求PA PB ⋅的取值范围;(2)若过点B 且斜率为k 的直线交椭圆于M 、N 两点(点C 与M 、N 两点不重合),且直线CM 、CN 的斜率分别为12k k 、,试证明122k k k +-为定值.【解题指导】【解析】(1)由题意得c =又点)12C 在椭圆2222:1x y M a b+=上,所以223114a b +=,且223a b -=,所以2a =,1b =,故椭圆M 的方程为2214x y +=.(3分)设点(,)P x y ,由A ,(B 得222223331244x x PA PB x y x ⋅=-+=-+-=- .又[2,2]x ∈-,所以PA PB ⋅[]2,1∈-.(5分)【技巧】利用隐含的不等关系,即点P 在圆上转化为[2,2]x ∈-,从而确定PA PB ⋅的取值范围(2)设过点B 且斜率为k 的直线方程为(y k x =-,联立椭圆M 方程得2222(14)1240k x x k +-+-=.设两点M 11(,)x y 、N 22(,)x y ,故21228314x x k+=+,212212414k x x k -=+.(7分)因为())()121212121212111222y y y x x y y y x x k k --++-++==,其中()1212121228214k y x x y kx x x x k -+=+=+,12y y +=(9分)故221222228614141421242414143k k k k k k k k k k k k -+++++==---+++所以122k k k +-=(12分)【解题技法】圆锥曲线中的定值问题的常见类型及解题策略(1)证明代数式为定值:依题意设条件,得出与代数式中参数有关的等式,代入代数式并化简,即可得出定值;(2)证明点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、证明。

圆锥曲线解答题中的定点和定值问题的解题策略(解析版)

圆锥曲线解答题中的定点和定值问题的解题策略(解析版)

圆锥曲线解答题中的定点和定值问题的解题策略在圆锥曲线中有一类曲线,当参数取不同值时,曲线本身性质不变或形态发生变化时,其某些共同的性质始终保持不变,我们把这类问题成为圆锥曲线的定值问题.圆锥曲线中的定值问题是近几年高考的热点题型,解题过程中应注重解题策略,善于在动点的“变”中寻求定值的“不变”性.题型一:定值问题解答圆锥曲线定值问题的策略:1、把相关几何量用曲线系的参变量表示,再证明结论与参数无关.求解这类问题的基本方法是“方程铺路、参数搭桥”,解题的关键是对问题进行综合分析,挖掘题目中的隐含条件,恰当引参,巧妙化归.2、把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无关,即特殊到一般的思想.1、两点间的距离为定值例1:(2021·广东中山市高三期末)已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x y a b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点2A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.【答案】(1)2212x y +=;(2.【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫- ⎪--⎝⎭,所以PQ =====为定值. 解题思路:设动点()00,P x y ,由题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可.2、求某一代数式为定值例2:(2021·全国高三模拟)已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,右焦点为F ,离心率2e =,焦距为4. (1)求双曲线C 的方程;(2)设M 是双曲线C 上任意一点,且M 在第一象限,直线MA 与MF 的倾斜角分别为1α,2α,求122αα+的值.【答案】(1)2213y x -=;(2)π. 【详解】(1)由242c c a=⎧⎪⎨=⎪⎩,得12a c =⎧⎨=⎩,所以2223b c a =-=,所以双曲线C 的方程为2213y x -=.(2)由(1)知双曲线C 的方程为2213y x -=,所以左顶点()1,0A -,右焦点()2,0F .设()()0000,0,0M x y x y >>,则22013y x -=.当02x =时,03y =,此时1MA k =,1π4α=,2π2α=, 所以122παα+=;当02x ≠,010tan 1MA y k x α==+,020tan 2MF yk x α==-.因为()220031y x =-,所以()()()()()00000001222220000000221211tan 22113111y x y x y x y x x y x x y x α+++-====-+-+--⎛⎫- ⎪+⎝⎭,又由点M 在第一象限,易知1π0,3α⎛⎫∈ ⎪⎝⎭,()20,πα∈,所以122παα+=. 综上,122αα+的值为π.解题思路:利用点在双曲线上,满足22013y x -=,利用整体代换思想求出1tan 2α和2tan α相反.例3:(2021·安徽安庆市高三一模(理))已知椭圆2222:1(0)x y C a b a b+=>>,过椭圆左焦点F 的直线0x -+=与椭圆C 在第一象限交于点M ,三角形MFO(1)求椭圆C 的标准方程;(2)过点M 作直线l 垂直于x 轴,直线MA 、MB 交椭圆分别于A 、B 两点,且两直线关于直线l 对称,求证∶直线AB 的斜率为定值.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)直线0x -+=过左焦点F ,所以()F ,c =又由124OMF M S y ∆==可知1=2M y从而椭圆经过点12M ⎫⎪⎭由椭圆定义知1242a =+=,即2a = 故椭圆的方程为22:14x C y +=.(2)由条件知,直线MA MB 、斜率存在,且两直线斜率互为相反数,设直线(12MA y k x -=:交椭圆于点()11,A x y ,直线(12MB y k x -=--:交椭圆于点()22,B x y ,由(221244y k x x y ⎧-=⎪⎨⎪+=⎩得()()22224141230k x k x k +-++--=1=1x =,112y =+故1)2A +,同理可得221)2B +,k ===即证直线AB. 解题思路:将直线(12MA y k x -=:与椭圆方程联立求出交点221)2A +的坐标,再将A 中的k 用k -替换,即可求出B 点坐标,,再利用斜率公式,化简,即可.例4.(2021·河南高三月考(理))已知点()2,0A -,()2,0B ,动点(),S x y 满足直线AS 与BS 的斜率之积为34-,记动点S 的轨迹为曲线C .(1)求曲线C 的方程,并说明曲线C 是什么样的曲线;(2)设M ,N 是曲线C 上的两个动点,直线AM 与NB 交于点P ,90MAN ∠=︒. ①求证:点P 在定直线上;②求证:直线NB 与直线MB 的斜率之积为定值.【答案】(1)()221243x y x +=≠±,曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点;(2)①证明见解析;②证明见解析. 【详解】(1)解:由题意,得()32224y y x x x ⋅=-≠±+-, 化简,得()221243x y x +=≠±,所以曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点. (2)证明:①由题设知,直线MA ,NB 的斜率存在且均不为0. 设直线AM 的方程为()20x ty t =-≠,由AM AN ⊥,可知直线NA 的斜率为NA k t =-,方程为12x y t=--.由2212,{3412,x y t x y =--+=得()2243120t y ty ++=, 解得21243N ty t =-+,则2221126824343N t t x t t t -⎛⎫=-⋅--= ⎪++⎝⎭,即2226812,4343t t N t t ⎛⎫-- ⎪++⎝⎭. 直线NB 的斜率为222120343684243NBtt k t tt --+==--+, 则直线BN 的方程为()324y x t =-,将()324y x t=-代入2x ty =-,解得14x =-, 故点P 在直线14x =-上.②由(1),得34NA NB k k ⋅=-,34MA MB k k ⋅=-,所以3394416NA NB MA MB k k k k ⎛⎫⎛⎫⋅⋅⋅=-⨯-= ⎪ ⎪⎝⎭⎝⎭.结合1NA MA k k ⋅=-,得916MB NB k k ⋅=-为定值.即直线NB 与直线MB 的斜率之积为定值.解题思路:①设直线AM 的方程,由AM AN ⊥,可得直线AN 方程,与椭圆联立可求点N 坐标,进而可求得直线BN 方程,与AM 联立即可得证点P 在定直线上;②由(1)得34NA NB k k ⋅=-,34MA MB k k ⋅=-,又AM AN ⊥,进而可得直线NB与直线MB 的斜率之积.例5、(2021·江苏南通市高三期末)已知椭圆C :()222210x y a b a b+=>>的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的方程;(2)已知A ,B 是椭圆C 上的两点,且直线OA ,OB 的斜率之积为34-,点M为线段OA 的中点,连接BM 并延长交椭圆C 于点N ,求证:OMBAMNS S △△为定值.【答案】(1)22143x y +=;(2)53. 【详解】(1)因为椭圆的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭, 所以22911,214c a a b +==,又222a b c =+,解得224,3a b ==,所以椭圆C 的方程为22143x y +=; (2)设()()()112233,,,,,A x y B x y N x y ,因为点M 为线段OA 的中点,所以11,22x y M ⎛⎫⎪⎝⎭,因为B ,M ,N 三点共线,所以BN BM λ=, 所以()()3123121,122x x x y y y λλλλ=+-=+-,又因为A ,B 点在椭圆上,所以22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 又因为直线OA ,OB 的斜率之积为34-,所以1212340x x y y +=, 因为点N 在椭圆上,所以2233143x y +=,即()()()()()12122222221122341341482261x y x y x x y y λλλλ++-+-+=+,所以()22114λλ+-=,解得85λ=,所以85BN BM =,则53BM MN =,所以152132BOMB B AMNN N OM d BM Sd Sd MN AM d ⋅⋅====⋅⋅为定值.解题思路:设()()()112233,,,,,A x y B x y N x y ,根据M 为线段OA 的中点和B ,M ,N 三点共线,由BN BM λ=,表示点N 的坐标,再根据A ,B ,N 在椭圆上,结合直线OA ,OB 的斜率之积为34-,求得λ,从而得到BM 与MN 的比值,然后由1212BOMB B AMNN N OM d BM S dSd MN AM d ⋅⋅===⋅⋅求解. 例6、(2021·山东泰安市高三期末)已知椭圆)(2222:10x y C a b a b+=>>的左顶点为)(2,0A -,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上.(1)求椭圆C 的方程;(2)过橢圆C 的右焦点F 作斜率为)(0k k ≠的直线l ,交椭圆C 于M ,N 两点,直线AM ,AN 分别与直线2b x c=交于点P ,Q ,则FP FQ ⋅是否为定值?请说明理由.【答案】(1)22143x y +=;(2)是定值,94-. 【详解】(1)∵2a =,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上,∵219144b +=,∵23b =,∵椭圆C 的方程为:22143x y +=.(2)是定值94-,理由如下:设)(11,M x y ,)(22,N x y ,直线l 的方程为)()(10y k x k =-≠,由)(221143y k x x y ⎧=-⎪⎨+=⎪⎩,整理得)(22224384120k x k x k +-+-=,∵2122843k x x k +=+,212241243k x x k -=+,设)(3,P P y ,)(3,Q Q y ,则11322P y y x =++,∵)(111151522P k x y y x x -==++, 同理可得)(22512Q k x y x -=+,∵)(11512,2k x FP x ⎛⎫- =⎪⎪ +⎭⎝,)(22512,2k x FQ x ⎛⎫- =⎪⎪ +⎭⎝, ∵)()()()()()(212121221212122511144252224k x x x x x x FP FQ kx x x x x x ---++⋅=+=++++++222222222412819434342541216444343k k k k k k k k k --+++=+=--++++,∵FP FQ ⋅为定值94-.解题思路:设直线l 的方程,与椭圆方程联立,设)(3,P P y ,)(3,Q Q y ,由三点共线可得P y ,Q y ,结合韦达定理坐标表示FP FQ ⋅可得.3、求某一个量为定值例7、(2021·江苏盐城市伍佑中学高三期末)已知椭圆2222:1(0)x y C a b a b +=>>离心率为23,点A ,B ,D ,E 分别是C 的左,右,上,下顶点,且四边形ADBE 的面积为(1)求椭圆C 的标准方程;(2)已知F 是C 的右焦点,过F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ的交点为T ,求证:点T 横坐标为定值.【答案】(1)22195x y +=;(2)T 横坐标为定值92,证明见解析. 【详解】(1)设椭圆C 的半焦距长为c,根据题意222231222c a a b c a b⎧=⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩ 故C 的标准方程为22195x y +=. (2)由(1)知()30A -,,()3,0B ,()2,0F , 设00,,()T x y ,11(,)P x y ,()22,Q x y ,由010133TA PA y yk k x x =⇒=++'①, 020233TB QB y y k k x x =⇒=--,② ①②两式相除得0120123333x y x x x y --=⋅++, 又2211195x y +=,故2211195x y -=-,所以2111(3)(3)95x x y -+=-,故11113539y x x y -=-⋅+.所以0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---③ 由题意知直线PQ 不平行于x 轴,由于直线PQ 经过F 点, 所以设直线PQ 的方程为2x my =+,(直线PQ 的方程为2x my =+,可避免讨论直线PQ 的斜率是否存在,简化计算,提高正确率)代入22195x y +=整理,得22(902)5250m y my ++-=, 把12212220592559m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩代入③,所以0120123(3)(3)539x x x x y y ---=-⋅+1212(1)(1)59my my y y --=-⋅2121212()159m y y m y y y y -++=-⋅所以0033x x -+22222520()()15595925959mm m m m m ---+++=-⋅-+15=解得092x =. 所以点T 横坐标为定值92. 解题思路:设00,,()T x y ,11(,)P x y ,()22,Q x y ,根据TA PA k k =,TB QB k k =可得0126123333x y x x x y --=⋅++,根据11(,)P x y 在椭圆C 上,代入方程化简整理可得0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---,设直线PQ 的方程为2x my =+,与椭圆C 联立,得到关于y 的一元二次方程,根据韦达定理,可得1212,y y y y +⋅的表达式,代入上式即可.例8、(2021·湖北武汉市高三月考)已知椭圆C :()222210x y a b a b +=>>的左右顶点分别为A ,B ,过椭圆内点2,03D ⎛⎫⎪⎝⎭且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,43PD BD ==. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线AP ,AQ 和直线l :x t =分别交于点M ,N ,若MD ND ⊥恒成立,求t 的值.【答案】(Ⅰ)22142x y +=;(Ⅱ)29t =-或103t =.【详解】(Ⅰ)由43BD =,得24233a =+=,故C 的方程为22214x y b+=,此时24,33P ⎛⎫ ⎪⎝⎭.代入方程2116199b +=,解得22b =,故C 的标准方程为22142x y +=. (Ⅱ)设直线PQ 方程为:23x my =+,与椭圆方程联立.得()224322039m m y y ++-=.设()11,P x y 、()22,Q x y ,则()()1221224323292m y y m y y m -⎧+=⎪+⎪⎨-⎪=⎪+⎩.①此时直线AP 方程为11(2)2y yxx ,与x t =联立.得点11(2),2t y M t x ⎛⎫+ ⎪+⎝⎭,同理,点22(2),2t y N t x ⎛⎫+ ⎪+⎝⎭.由MD ND ⊥,1MD ND k k ⋅=-.即()()1212(2)(2)1222233t y t y t x t x ++⋅=-⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭. 所以221212288(2)0333t y y t my my ⎛⎫⎛⎫⎛⎫++-++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.即()2221212122864(2)0339m t y y t m y y y y ⎛⎫⎡⎤++-+++= ⎪⎢⎥⎝⎭⎣⎦. 将①代入得:()()()222222232(2)2323264039929292t m m t m m m ⎡⎤-+-⎛⎫⎢⎥+--+= ⎪+++⎝⎭⎢⎥⎣⎦. 化简得:()22222232(2)323264203t t m m m ⎛⎫⎡⎤-++---++= ⎪⎣⎦⎝⎭. 即222(2)403t t ⎛⎫+--= ⎪⎝⎭.2223t t ⎛⎫+=±- ⎪⎝⎭.解得29t =-或103t =.解题思路:设直线PQ 方程为:23x my =+,与椭圆方程联立,结合韦达定理得1212,y y y y +,再联立AP 方程得M 同理得N 坐标,结合MD ND ⊥恒成立得1MD ND k k ⋅=-,化简计算可得参数t 值.例9、(2021·陕西榆林市高三一模(理))已知椭圆222:1(1)Γ+=>y x a a与抛物线2:2(0)C x py p =>有相同的焦点F ,抛物线C 的准线交椭圆Γ于A ,B 两点,且1AB =.(1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,若P 为椭圆Γ上任意一点,以P 为圆心,OP 为半径的圆P 与椭圆Γ的焦点F 为圆心,F 交于M ,N 两点,求证:MN 为定值.【答案】(1)椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)证明见解析. 【详解】(1)椭圆222:1(1)Γ+=>y x a a可得焦点(,抛物线2:2(0)C x py p =>的焦点为0,2p ⎛⎫ ⎪⎝⎭2p =①,由22221p y y x a ⎧=-⎪⎪⎨⎪+=⎪⎩可得22214p x a +=,解得x =,所以1AB ==②,由①②可得:24a =,p =所以椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)设(,)P m n ,则2214+=n m ,圆P 的方程为:2222()()-+-=+x m y n m n ,圆F的方程为:22(5+-=x y ,所以直线MN的方程为:(10+--=mx n y , 设点F 到直线MN 的距离为d ,则2d ====.||2MN ==. 所以MN 为定值.解题思路:设(,)P m n ,则2214+=n m ,写出圆P 和圆F 的方程,两个圆的方程相减可得直线MN 的方程,计算点F 到直线MN 的距离为d ,再利用||MN =.题型二、证明动直线过定点或动点在定直线上的问题解答圆锥曲线的定点问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.1、直线过定点问题例10、(2020·江西吉安市高三其他模拟(理))已知椭圆()2222:10x y C a b a b +=>>经过点12P ⎫⎪⎭,且离心率e =(1)求椭圆C 的方程;(2)已知斜率存在的直线l 与椭圆相交于A ,B 两点,点Q ⎫⎪⎪⎝⎭总满足AQO BQO ∠=∠,证明:直线l 过定点.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)因为椭圆()2222:10x y C a b a b +=>>的离心率e =所以22221b e a =-=⎝⎭,即224a b =, 又椭圆()2222:10x y C a b a b+=>>经过点12P ⎫⎪⎭,代入椭圆方程可得223114a b +=, 联立方程组可得222231144a b a b⎧+=⎪⎨⎪=⎩,解得24a =,21b =. 所以椭圆C 的方程为2214x y +=.(2)设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222148440k x kmx m +++-=,()2216410k m ∆=-+>,即2241m k <+, 122814km x x k -+=+,21224414m x x k -=+,因为AQO BQO ∠=∠,所以0AQ BQ k k +=,AQ BQ k k +===,即()()1221kx m x kx m x ⎛⎛+++ ⎝⎭⎝⎭()121220kx x m x x ⎛⎫=+-+= ⎪ ⎪⎝⎭得()()22244814033k m km m m k ⎛⎫----+= ⎪ ⎪⎝⎭,化简得m =,直线l 的方程为(y k x =-,所以,直线l 恒过定点).解题思路: 设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,将直线方程与椭圆方程联立,写出韦达定理,又因为AQO BQO ∠=∠,所以0AQ BQ k k +=,将韦达定理代入得出答案.例11、(2021·湖北襄阳市高三期末)已知A ,B 分别为椭圆()222:11x C y a a+=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=. (1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.【答案】(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a =所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫⎪⎝⎭.解题思路:设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y yx x +=--,通过计算化简即可求得定点.例12、(2021·山东德州市高三期末)已知点1F 、2F 分别是椭圆C 的左、右焦点,离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=. (1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.【答案】(1)22121x y +=;(2)证明见解析,(-2,0). 【详解】(1)设椭圆的标准方程为()22221,,x y P x y a b+=由题意可得2222221(,)(,)0c a x y x c y x c y b c a ⎧=⎪⎪⎪+=⎨⎪-⋅+=⎪+=⎪⎩解得:222211a b c ⎧=⎪=⎨⎪=⎩即椭圆C 的标准方程:22121x y +=.(2)设直线l :1122,(,),(,)y kx m M x y N x y =+则1111221122,1111MF NF y kx m y kx mk k x x x x ++====++++ 有22121x y y kx m ⎧+=⎪⎨⎪=+⎩,消去 y 得:222(12)4220k x mkx m +++-=,所以2221222122168(1)(12)04122212k m m k mk x x k m x x k ⎧⎪∆=--+>⎪-⎪+=⎨+⎪⎪-=⎪+⎩因为x 轴上任意一点到直线1MF 与1NF 的距离均相等, 所以x 轴为直线1MF 与1NF 的角平分线,所以111212011MF NF kx m kx mk k x x +++=+=++,即 12122()()20kx x m k x x m ++++= 所以2222242()201212m mk km k m k k --+++=++ 整理化简得:2m k =即直线l :2(2)y kx m kx k k x =+=+=+ 故直线恒过定点(-2,0).解题思路:先用设而不求法表示出1212,x x x x +,然后分析得到110MF NF k k +=,代入,求出2m k =,即可证明直线过定点(-2,0)."设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.2、动点在定直线上的问题例13、(2021·山东威海市高三期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F 是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ ∆的面积为92.(1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.【答案】(1)22143x y +=;(2)证明见解析. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅= 解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为1x my =+,与椭圆22143x y +=联立,得()2234690m y my ++-=. 显然0∆>恒成立. 设1122(,),(,)P x y Q x y ,所以有12122269,3434m y y y y m m +=-=-++ ()* 直线AP 的方程为()112+2y y x x =+,直线BO 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+, 代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x =故点M 在定直线4x =上.解题思路:设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线BO 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果.例14、(2021·福建高三模拟)椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,12P ⎛ ⎝⎭在C 上.(1)求椭圆C 的标准方程;(2),E F 设为短轴端点,过()0M ,1作直线l 交椭圆C 于AB 、两点(异于,E F ),直线AE BF 、交于点T .求证:点T 恒在一定直线上.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)因为点1,24P ⎛⎫ ⎪ ⎪⎝⎭在C 上,所以222141a b ⎝⎭+=, 又12c e a ==,222a b c =+,所以24a =,23b =, 故所求椭圆C 的方程为22143x y +=. (2)由题意知直线l 的斜率存在,设其方程为1y kx =+. 设()11,A x y ,()22,B x y ,(10x ≠,20x ≠).()222214388034120y kx k x kx x y =+⎧⇒++-=⎨+-=⎩, 122843kx x k -+=+,122843x x k -=+,且有1212x x kx x +=. 1122::AEBFy l y x x y l y x x ⎧=⎪⎪⎨+⎪+=⎪⎩(10x ≠,20x ≠) 11111y kx x x +====,故1y ⎤=⎥⎦2kx x xx x x +++-=3x x x x +-=3=故点T 恒在一定直线3y =上.解题思路:设出直线1y kx =+,联立直线与椭圆的方程结合韦达定理求出,AE BF 的直线方程,联立求出交点纵坐标为3,进而可得结果.3、圆过定点问题例14、(2021·湖北武汉市高三月考)设P 是椭圆C :22221(0)x y a b a b+=>>上异于长轴顶点A 1,A 2的任意一点,过P 作C 的切线与分别过A 1,A 2的切线交于B 1,B 2两点,已知|A 1A 2|=4,椭圆C 的离心率为12. (1)求椭圆C 的方程;(2)以B 1B 2为直径的圆是否过x 轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由.【答案】(1)22143x y +=;(2)过定点,证明见解析,定点为(1,0),(1,0)-. 【详解】解:(1)由题可知122412A A a c e a ⎧==⎪⎨==⎪⎩,解得2,1a c ==,由222a b c =+得23b =, 椭圆C 的方程为22143x y +=.(2)设00(,)P x y ,由于P 是异于长轴顶点12,A A 的任意一点,故切线斜率存在.设过P 的椭圆的切线为y kx b =+,联立方程22143y kx b x y =+⎧⎪⎨+=⎪⎩,得222(34)84120k x kbx b +++-=,222(8)4(34)(412)0kb k b ∆=-+-=,得2234b k =+,由002200143y kx bx y =+⎧⎪⎨+=⎪⎩ 所以()220034y kx k -=+,则()22200004230x k y x k y --+-=,即222000016290y k y x k x ++=所以()200430y k x +=,则034x k y =-解得过P 点的切线方程为()000034x y y x x y -=--,即000334x x y y y =-+ 由于分别过12,A A 的切线分别为2,2x x =-=,解得12,B B 的坐标为0012006363(2,),(2,)22x x B B y y +--. 在x 轴上取点(),0M t ,则010632,2x MB t y ⎛⎫+=-- ⎪⎝⎭,020632,2x MB t y ⎛⎫-=-+ ⎪⎝⎭, 所以2220122369414x MB MB t t y -⋅=-+=-. 当1t =±时,120MB MB ⋅=.所以,以12B B 为直径的圆过x 轴上的定点为12(1,0),(1,0)F F -.解题思路: 设00(,)P x y ,设过P 的椭圆的切线为y kx b =+,与椭圆方程联立由0∆=,求出切线的斜率0034x k y =-,得出切线方程000334x x y y y =-+,由条件求出12,B B 坐标,在x 轴上取点(),0M t ,由120MB MB ⋅=得出答案.【巩固训练】1、(2020·广东高三一模)已知点()2,1P --为椭圆2222:1x y C a b+=(0)a b >>上一点,且椭圆C的一个焦点与抛物线2y =的焦点重合,过点P 作直线PA ,PB ,与椭圆C 分别交于点A ,B .(1)求椭圆C 的标准方程与离心率;(2)若直线PA ,PB 的斜率之和为0,证明:直线AB 的斜率为定值.【答案】(1)22163x y +=,离心率为2;(2)证明见解析. 【详解】(1)由题设,得22411a b+== 由①②解得26a =,23b =,所以椭圆C 的标准方程为22163x y +=,椭圆C 的离心率为2c e a ===. (2)直线AB 的斜率为定值1.证明:设直线PA 的斜率为k ,则直线PB 的斜率为k -, 记11(,)A x y ,22(,)B x y .设直线PA 的方程为1(2)y k x +=+,与椭圆C 的方程联立,并消去y 得()()222212848840k x k k x k k ++-+--=,则2-,1x 是该方程的两根,则212884212k k x k ---=+,即21244212k k x k-++=+. 设直线PB 的方程为1(2)y k x +=-+,同理得22244212k k x k --+=+.因为()1112y k x +=+,()2212y k x +=-+,所以()()()212121212121228224121812ABkk x k x k x x y y k k k x x x x x x k +++++-+=====---+,因此直线AB 的斜率为定值.2、(2021·山西阳泉市高三期末(理))已知圆22:4C x y +=,点P 为圆C 上的动点,过点P 作x 轴的垂线,垂足为Q ,设D 为PQ 的中点,且D 的轨迹为曲线E (PQD 三点可重合). (1)求曲线E 的方程;(2)不过原点的直线l 与曲线E 交于M 、N 两点,已知OM ,直线l ,ON 的斜率1k 、k 、2k 成等比数列,记以OM ,ON 为直径的圆的面积分别为S 1,S 2,试探究12S S +是否为定值,若是,求出此值;若不是,说明理由.【答案】(1)2214x y +=;(2)12S S +是否为定值,为54π.证明过程见解析.【详解】(1)设(,)D x y ,则有(,2)P x y ,又P 在已知不上,∴2244x y +=,所以曲线E 的方程为2214x y +=;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,由2214y kx t x y =+⎧⎪⎨+=⎪⎩得222(14)8440k x ktx t +++-=,2222644(14)(44)0k t k t ∆=-+->, ∴122814kt x x k +=-+,21224414t x x k-=+, 111y k x =,222y k x =,∵1k 、k 、2k 成等比数列,∴2121212y y k k k x x ==,∴2221212121212()()()kx t kx t k x x kt x x t k x x x x +++++==,212()0kt x x t ++=,又0t ≠,∴12()0k x x t ++=,228014k tt k -+=+,解得12k =±.1228414kt x x kt k +=-=-+,22122442214t x x t k-==-+, 22222222121212()2162(22)4444x x x x x x k t t t t +=+-=--=-+=,22222222121122()()2244OM ON S S OM ON x y x y ππππ⎛⎫⎛⎫+=⨯+⨯=+=+++ ⎪ ⎪⎝⎭⎝⎭, 222222222211221212124()()4()2()2x y x y kx t kx t k x x kt x x t +++=++++=+++++222244825k k t t =+-+=,∴1254S S π+=为定值. 3、(2021·湖北宜昌市高三期末)已知点A 、B坐标分别是(-,0),直线AP 、BP 相交于点P ,且它们斜率之积是12-.(1)试求点P 的轨迹Γ的方程;(2)已知直线:4l x =-,过点()2,0F -的直线(不与x 轴重合)与轨迹Γ相交于M .N 两点,过点M 作MD l ⊥于点D .求证:直线ND 过定点,并求出定点的坐标.【答案】(1)221(84x y x +=≠±;(2)证明见解析,()3,0-. 【详解】(1)设(),P x y ,由题意得:12PA PB k k ⋅=-12=-,化简得22184x y +=.又x ≠±,∴点P 的轨迹方程为221(84x y x +=≠±.(2)方法一:由椭圆的对称性知,直线ND 过的定点必在x 轴上, 由题意得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,∴()1212my y y y =-+,2112:(4)4y y ND y x y x -=+++,令0y =, ∴()()12122121424y x y my x y y y y +++=-=---()1211212121221y y y my y y y y y y -+++=-=-=--,3x =-,∴直线ND 过定点()3,0-.方法二:由题意可得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,()12422m y m -=+,()22422m y m +=+, ()2112121122(4)2:(4)42y y x my y y y y ND y x y x my -+++-=++=++2244)2222m x m m m my -+++++=+2222(4)3)2222x x m m my my +-+++==++ ∴3x =-时0y =, ∴直线ND 过定点()3,0-.4、(2021·安徽池州市高三期末(理))已知椭圆C :()222210x y a b a b+=>>的左顶点、右焦点分别为A ,F ,点31,2M ⎛⎫⎪⎝⎭在椭圆C 上,且椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过点F 且斜率为()0k k ≠的直线l 与椭圆C 交于D ,E 两点,直线AD ,AE 斜率分别为1k ,2k ,证明:12kk kk +为定值.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)由题意可得2222222312112a b c a a b c ⎧⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎪⎪=⎨⎪-=⎪⎪⎪⎪⎩,解得2a =,b =所以椭圆C 的方程为22143x y +=. (2)证明:由(1)可知()1,0F ,则直线l 的方程为()1y k x =-.联立22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+,所以()()1212121212112222k x k x y yk k x x x x --+=+=+++++12331122k x x ⎛⎫=-+- ⎪++⎝⎭()()()()()12121212123434222224x x x x k k x x x x x x ⎡⎤⎡⎤++++=-=-⎢⎥⎢⎥+++++⎣⎦⎣⎦2222228344324128244343k k k k k k k ⎡⎤⎛⎫+⎢⎥ ⎪+⎝⎭⎢⎥=-⎢⎥-+⨯+⎢⎥++⎣⎦()222223816122412161612k k k k k k ⎡⎤++⎢⎥=--+++⎢⎥⎣⎦ 222112k k k k ⎛⎫+=-=- ⎪⎝⎭, 所以1211kk kk k k ⎛⎫+=-=- ⎪⎝⎭(定值).5、(2021·安徽蚌埠市高三二模(理))已知圆()22:224E x y ++=,动圆N 过点()2,0F 且与圆E 相切,记动圆圆心N 的轨迹为曲线C . (1)求曲线C 的方程;(2)P ,Q 是曲线C 上的两个动点,且OP OQ ⊥,记PQ 中点为M ,OP OQ t OM ⋅=,证明:t 为定值.【答案】(1)22162x y +=;(2)证明见解析.【详解】解:(1)点()2,0F 在圆()22:224E x y ++=内,∴圆N 内切于圆E,∴NE NF EF +=>,所以N 点轨迹是以E ,F为焦点的椭圆,且a =2c =,从而b =故点N 的轨迹C 的方程为:22162x y +=.(2)设()11,P x y ,()22,Q x y ,若直线PQ 斜率存在,设直线PQ 方程为y kx m =+,联立22162y kx mx y =+⎧⎪⎨+=⎪⎩,整理得:()222136360k x kmx m +++-=,122613km x x k -+=+,21223613m x x k-=+ 因为OP OQ ⊥,所以0OP OQ ⋅=,即12220x x y y +=.化简得:()()22121210k x x km x x m ++++=,即()22222366101313m km k km m k k--+⋅+⋅+=++, 从而,222330m k --=,①因为OP OQ ⊥,且M 为PQ 中点,所以2PQ OM =, 在直角ABC 中,记原点O 到直线PQ 的距离为d ,则2OP OQ d PQ d OM ⋅==,由①知,原点O 到直线l的距离为d ===所以t.若直线PQ 斜率不存在,设直线PQ 方程为x n =,联立22162x n x y =⎧⎪⎨+=⎪⎩,解得p n ⎛ ⎝,,n ⎛ ⎝ 由OP OQ ⊥得n =t = 综上,t.6、(2021·江苏无锡市高三月考)已知椭圆()2222:10,0x y C a b a b+=>>过点(2,1)-,216y x =-的准线l 交x 轴于点A ,过点A 作直线交椭圆C 于M ,N .(1)求椭圆C 的标准方程和点A 的坐标; (2)若M 是线段AN 的中点,求直线MN 的方程;(3)设P ,Q 是直线l 上关于x 轴对称的两点,问:直线PM 于QN 的交点是否在一条定直线上?请说明你的理由.【答案】(1)22182x y +=,()4,0A ;(2)(4)6y x =±-;(3)PM 与QN 的交点恒在直线2x =上,理由见解析.【详解】(1)由题意,椭圆()2222:10,0x y C a b a b +=>>过点(2,1)-可得22411a b +=且2c e a ==,又由222c a b =-, 解得228,2a b ==,即椭圆C 的方程为22182x y +=,又由抛物线216y x =-,可得准线方程为:4l x =,所以()4,0A .(2)设()00,N x y ,则004,22x y M +⎛⎫⎪⎝⎭, 联立方程组()2200220018241328x y x y ⎧+=⎪⎪⎨+⎪+=⎪⎩,解得001,x y ==当5,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-;当5,,(1,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-; 所以直线MN的方程为4)y x =-. (3)设()()4,,4,P t Q t -,可得:4MN x ky =+, 设()()1122,,,M x y N x y联立方程组224480x ky x y =+⎧⎨+-=⎩,整理得()224880k y ky +++=,所以12122288,44k y y y y k k +=-=++,则1212y y ky y +=-, 又由直线111114:44y t tx y PM y x x x --=+--,222224:44y t y tx QN y x x x ++=---, 交点横坐标为()121212242ky y y y x y y ++==+,所以PM 与QN 的交点恒在直线2x =上.7、(2021·全国高三专题练习)已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程;(2)若直线l 的方程为1y x =-+,求1211λλ+的值; (3)若123,试证明直线l 恒过定点,并求此定点的坐标.【答案】(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,, 设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,, 可得(0,)(,0)P km Q m -,, 由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111xm x λ=-,同理222xm x λ=-,又123,∴212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=,则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③③代入①得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∴2m =,(满足②) 故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 8、(2020·湖北高三月考)已知抛物线2:2(0)C y px p =>的焦点F ,若平面上一点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7. (1)求抛物线C 的方程;(2)又已知点P 为抛物线C 上任一点,直线PA 交抛物线C 于另一点M ,过M 作斜率为43k =的直线MN 交抛物线C 于另一点N ,连接.PN 问直线PN 是否过定点,如果经过定点,则求出该定点,否则说明理由.【答案】(1)28y x =;(2)过定点,1,34⎛⎫⎪⎝⎭.【详解】(1)由已知,定点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7.272p ⎛⎫+= ⎪⎝⎭,则4p =,即抛物线的方程28y x =(2)设11(,)P x y ,22(,)M x y ,33(,)N x y ,则121211212222888PM y y y y k y y x x y y ++=-=+=-,同理:238MNk y y =+,138PN k y y =+, 由23843MN k y y ==+知:236y y +=,即236y y =- ① 直线11128:()PM y y x x y y -=-+,即1212()8y y y y y x +-=过(2,3)A 求得1211633y y y -=- ② 同理求直线PN 方程1313()8y y y y y x +-= ③ 由①②得13133()2y y y y =+- 代入③得1313()3()28y y y y y x +-++=13()(3)280y y y x +-+-=故3y =且280x -=时,直线PN 恒过点1,34⎛⎫⎪⎝⎭. 9、(2021·北京高三期末)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上. 【答案】(1)22143x y +=;(2)证明见解析.【详解】解:(1)因为AB 4=,椭圆C 离心率为12, 所以2222412a c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+, 直线BN 的方程是()322y x =-. 所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上. ②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得()2223484120kx k x k+-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834kx x k +=+,212241234k x x k-⋅=+. 所以直线AM 的方程是()1122y y x x =++. 令4x =,得1162=+y y x . 直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-. 所以()()121212126121622222k x k x y y x x x x ---=-+-+- ()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦. ()12122258k x x x x =-++⎡⎤⎣⎦ ()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭. 所以点Q 在直线4x =上.10、(2021·安徽高三月考(理))已知圆22:5O x y +=,椭圆2222:1(0)x y a b a bΓ+=>>的左右焦点为12,F F ,过1F 且垂直于x 轴的直线被椭圆和圆所截得弦长分别为1和.(1)求椭圆的标准方程;(2)如图P 为圆上任意一点,过P 分别作椭圆两条切线切椭圆于A ,B 两点. (ⅰ)若直线PA 的斜率为2,求直线PB 的斜率; (ⅱ)作PQ AB ⊥于点Q ,求证:12QF QF +是定值.【答案】(1)2214x y +=;(2)(i )12-;(ii )证明见解析.【详解】解:(1)由题意得:222221a b c ba ⎧=+⎪⎪=⎨⎪=⎪⎩2,1,a b c ===得椭圆的标准方程为:2214x y +=(2)(ⅰ)设()00,P x y ,切线()00y y k x x -=-,则22005x y +=。

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法(解析版)

圆锥曲线专题:定值问题的7种常见考法一、定值问题处理方法1、解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题方法有两种:法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。

2、直接法解题步骤第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:b kx y +=或n my x +=、点的坐标;第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。

二、常见定值问题的处理方法1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算。

三、常见条件转化1、对边平行:斜率相等,或向量平行;2、两边垂直:斜率乘积为-1,或向量数量积为0;3、两角相等:斜率成相反数或相等或利用角平分线性质;4、直角三角形中线性质:两点的距离公式5、点与圆的位置关系:(·1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数。

四、常用的弦长公式:(1)若直线AB 的方程设为b kx y +=,()11y x A ,,()22y x B ,,则()a k x x x x k x x k AB ∆⋅+=-+⋅+=-⋅+=22122122121411(2)若直线AB 的方程设为n my x +=,()11y x A ,,()22y x B ,,则()am y y y y m y y m AB ∆⋅+=-+⋅+=-⋅+=22122122121411【注】上式中a 代表的是将直线方程带入圆锥曲线方程后,化简得出的关于x 或y 的一元二次方程的二次项系数。

2024高考数学常考题型 圆锥曲线中定点定值定直线问题(解析版)

2024高考数学常考题型  圆锥曲线中定点定值定直线问题(解析版)

第23讲圆锥曲线中定点定值定直线问题【考点分析】考点一:直线过定点问题①设直线为m kx y +=,根据题目给出的条件找出m 与k 之间的关系即可②求出两点的坐标(一般含参数),再求出直线的斜率,利用点斜式写出直线的方程,再化为()()n m x k f y +-=的形式,即可求出定点。

考点二:定值问题探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.③求斜率,面积等定值问题,把斜率之和,之积,面积化为坐标之间的关系,再用韦达定理带入化简一般即可得到定值考点三:定直线问题①一般设出点的坐标,写出两条直线的方程,两直线的交点及两个直线中的y x ,相同,然后再用韦达定理带入化简即可得y x ,的关系即为定直线【题型目录】题型一:直线圆过定点问题题型二:斜率面积等定值问题题型三:定直线问题【典型例题】题型一:直线过定点问题【例1】已知点()1,1P 在椭圆()2222:10x y C a b a b+=>>上,椭圆C 的左右焦点分别为1F ,2F ,12PF F △的面(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线PA ,PB 均与圆()222:01O x y r r +=<<相切,记直线PA ,PB 的斜率分别为1k ,2k .(i )证明:121k k =;(ii )证明:直线AB 过定点.若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点P ,舍去.若330m k ++=,则直线():3333AB ykx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【例2】已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.【例3】已知椭圆22:1(0)C a b a b+=>>的上顶点为P ,右顶点为Q ,其中POQ △的面积为1(O 为原点),椭圆C(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=,求证:直线l 过定点.【例4】已知椭圆C :221(0)x y a b a b+=>>过点()2,0A -.右焦点为F ,纵坐标为2的点M 在C 上,且AF ⊥MF .(1)求C 的方程;(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.【点睛】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.【例5】已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【题型专练】1.已知椭圆()2222:10x y C a b a b+=>>的短轴长为A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.2.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.3.已知椭圆22:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的两个端点恰好为正方形的四个顶点,点2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.4.焦距为2c 的椭圆2222:1x y a bΓ+=(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆2222:1x y a b Γ+=(a >b >0)是“等差椭圆”,求b a的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.题型二:斜率面积等定值问题【例1】动点M 与定点(1,0)A 的距离和M 到定直线4x =的距离之比是常数12.(1)求动点M 的轨迹G 的方程;(2)经过定点(2,1)M -的直线l 交曲线G 于A ,B 两点,设(2,0)P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +恒为定值.【例2】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点()0,1Q x 在椭圆上且位于第一象限,12QF F 121QFQF ⋅=-.(1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于点Q 的两动点,记QM ,QN 的倾斜角分别为α,β,当αβπ+=时,试问直线MN 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】已知点()2,1P -在椭圆2222:1(0)x yC a b a b +=>>上,C的长轴长为:l y kx m =+与C 交于,A B 两点,直线,PA PB 的斜率之积为14.(1)求证:k 为定值;(2)若直线l 与x 轴交于点Q ,求22||QA QB +的值.【例4】已知椭圆()22:10x y C a b a b+=>>的离心率23e =,且椭圆C 的右顶点与抛物线212y x =的焦点重合.(1)求椭圆C 的方程.(2)若椭圆C 的左、右顶点分别为12,A A ,直线():1l y k x =-与椭圆C 交于E ,D 两点,且点E 的纵坐标大于0,直线12,A E A D 与y 轴分别交于()()0,,0,P Q P y Q y 两点,问:P Qy y 的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例5】已知椭圆()22:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.【例6】已知P 为圆22:4M x y +=上一动点,过点P 作x 轴的垂线段,PD D 为垂足,若点Q 满足DQ =.(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点()1,0N -作曲线C 的两条互相垂直的弦,两条弦的中点分别为E F 、,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,请说明理由..【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.【例7】已知椭圆C :()222210x y a b a b+=>>的右焦点为,F P 在椭圆C 上,PF 的最大值与最小值分别是6和2.(1)求椭圆C 的标准方程.(2)若椭圆C 的左顶点为A ,过点F 的直线l 与椭圆C 交于,B D (异于点A )两点,直线,AB AD 分别与直线8x =交于,M N 两点,试问MFN ∠是否为定值?若是,求出该定值;若不是,请说明理由.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.【点睛】方法点睛:探究性问题求解的思路及策略:(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.2.已知椭圆C :()222210x y a b a b+=>>过点()2,1D ,且该椭圆长轴长是短轴长的二倍.(1)求椭圆C 的方程;(2)设点D 关于原点对称的点为A ,过点()4,0B -且斜率存在的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q ,求证PBBQ为定值.3.如下图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于11(,)A x y ,22(,)B x y .(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12+y y y 的值,并证明直线AB 的斜率是非零常数.4.如图,椭圆214x y +=的左右焦点分别为1F ,2F ,点()00,P x y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点()10,A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011y y =.(2)试问:x 轴上是否存在不同于点B 的定点M ,满足当直线MP ,MQ 的斜率存在时,两斜率之积为定值?若存在定点M ,求出点M 的坐标及该定值;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在点4,03M ⎛⎫⎪⎝⎭,可使得直线MP 与MQ 的斜率之积为定值,该定值为920-.【分析】(1)设()00,P x y 、圆的方程222()(0)x y b r r +-=>,代入()3,0-、()00,x y 及()10,A y 可解得101y y =,即可证;(2)设(,0)(3)M m m ≠,由A ,P ,Q 三点共线AP AQ k k =得Q y ,即可表示出MP MQ k k ⋅讨论定值是否存在.【详解】(1)由2214x y +=可得()13,0F -,()23,0F 设()00,P x y ,则220044x y +=,设圆的方程为2220()(0)+-=>x y b r r ,代入()13,0F -及()00,x y ,得()2202220003b rx y b r⎧+=⎪⎨+-=⎪⎩,两式相减,得22220000000003443113222⎛⎫+--+-===- ⎪⎝⎭x y y y b y y y y ,所以圆的方程为022230+--=x y b y 即22001330x y y y y ⎛⎫++--= ⎪⎝⎭,令0x =,得2001330y y y y ⎛⎫+--= ⎪⎝⎭,由10y >,可得101y y =,即011y y =.5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.6.已知椭圆22Γ:1a b+=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.7.已知平面上一动点P 到()2,0F 的距离与到直线6x =的距离之比为3.(1)求动点P 的轨迹方程C ;(2)曲线C 上的两点()11,A x y ,()22,B x y ,平面上点()2,0E -,连结PE ,PF 并延长,分别交曲线C 于点A ,B ,若1PE EA λ= ,2PF FB λ=,问,12λλ+是否为定值,若是,请求出该定值,若不是,请说明理由.8.已知椭圆2:14x C y +=,过点0,2M ⎛⎫- ⎪⎝⎭直线1l ,2l 的斜率为1k ,2k ,1l 与椭圆交于()11,A x y ,()22,B x y 两点,2l 与椭圆交于()33,C x y ,()44,D x y 两点,且A ,B ,C ,D 任意两点的连线都不与坐标轴平行,直线12y =-交直线AC ,BD 于P ,Q .(1)求证:1122341234k x x k x x x x x x =++;(2)PM QM的值是否是定值,若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析9.已知椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F 且离心率为12,椭圆C 的长轴长为4.(1)求椭圆C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,过点B 作x 轴的垂线1l ,D 为1l 上异于点B 的一点,以线段BD 为直径作圆E ,若过点2F 的直线2l (异于x 轴)与圆E 相切于点H ,且2l 与直线AD 相交于点,P 试判断1PF PH +是否为定值,并说明理由.))可知()()()222,0,2,0,1,0A B F F H -=,112212PF PH PF PF F H PF PF +=+-=+()()2,0,E m m ≠则()2,2,D m 圆E 的半径为则直线AD 直线方程为(2)2my x =+,的方程为1,x ty =+10.已知椭圆()22:10x y C a b a b+=>>的左顶点和上顶点分别为A 、B ,直线AB 与圆22:3O x y +=相切,切点为M ,且2AM MB =.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于E 、F 两点,试判断:PE PF ⋅是否为定值?若是,求出该值,并证明;若不是,请说明理由.11.已知椭圆22:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.题型三:定直线问题【例1】已知如图,长为宽为12的矩形ABCD,以为,A B焦点的椭圆2222:1x yMa b+=恰好过,C D两点,(1)求椭圆M的标准方程;(2)根据(1)所得椭圆M的标准方程,若AB是椭圆M的左右顶点,过点(1,0)的动直线l交椭圆M与CD两点,试探究直线AC与BD的交点是否在一定直线上,若在,请求出该直线方程,若不在,请说明理由.【例2】已知椭圆:C22221x ya b+=(0a b>>)的离心率为23,且⎭为C上一点.(1)求C的标准方程;(2)点A,B分别为C的左、右顶点,M,N为C上异于A,B的两点,直线MN不与坐标轴平行且不过坐标原点O,点M关于原点O的对称点为M',若直线AM'与直线BN相交于点P,直线OP与直线MN相交于点Q,证明:点Q位于定直线上.【例3】已知1F 为椭圆2222:1(0)x y C a b a b+=>>的左焦点,直线y =与C 交于A ,B 两点,且1ABF 的周长为4+ 2.(1)求C 的标准方程;(2)若(2,1)P 关于原点的对称点为Q ,不经过点P 且斜率为12的直线l 与C 交于点D ,E ,直线PD 与QE 交于点M ,证明:点M 在定直线上.【答案】(1)22182x y +=(2)证明见解析【分析】(1)将22y b =代入曲线C 的方程中求得||2AB a =,继而由三角形的面积公式得4ab =.再由椭圆的对称性和椭圆的定义得()22442a +=+,由此可求得C 的标准方程;(2)设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,得出直线PD 的方程,直线QE 的方程,联立直线PD 与直线QE 的方程,求得点M 的坐标,继而求得12M M y x =-,可得证.(1)解:将22y b =代入2222:1(0)x y C a b a b +=>>中,解得22x a =±,则||2AB a =,所以1ABF 的面积为1222222ab a b ⨯⨯==,所以4ab =.①设C 的右焦点为2F ,连接2AF ,由椭圆的对称性可知12BF AF =,所以1ABF 的周长为()1112||||22AB AF BF AB AF AF a ++=++=+,所以()22442a +=+,②由①②解得22a =,2b =,所以C 的标准方程为22182x y +=.(2)解:设()11,D x y ,()22,E x y ,直线l 的方程为12y x m =+,0m ≠,联立直线l 与椭圆C 的方程,并消去y 得222240x mx m ++-=,【题型专练】1.已知椭圆C :()222210x y a b a b +=>>2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①1k k 为定值;②点M 在定直线上.2.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.3.已知椭圆C :()222210x y a b a b +=>>的离心率为2,左顶点为1A ,左焦点为1F ,上顶点为1B ,下顶点为2B ,M 为C 上一动点,11M AF △1.(1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q ,证明:点Q 在一条平行于x 轴的直线上.。

2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)

2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)

圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。

专题——圆锥曲线定值问题(最新整理)

专题——圆锥曲线定值问题(最新整理)
e

y x2
a2
ex a
y2
, 1
b2

x y
c b2
a
M
c,
b2 a
,
AM
AB, c
a e
b2 ,
a
a e
,
a
,即
a e
c b2 a a
a e
,而
c a 2 b2 , 1 e2且1 e2 0,故 AM 1 e2 为定值。 ▲利用辅助元 AB
解析几何中的定值问题是数学中的重要问题,求解这类问题需要综合应用解析几何和代数的
若是定值,求出该定值。
3、已知椭圆 C 的中心在原点,焦点在 x 轴上,它的一个顶点恰好是抛物线 y 1 x2 的焦点, 4
25
离心率等于 。
5
(1) 求椭圆 C 的标准方程 ( 2) 过 椭 圆 的 右 焦 点 作 直 线 l 交 椭 圆 C 于 A、 B 两 点 , 交 y 轴 于 M 点 , 若
相关知识与方法。以上几种思维策率是高中数学中常用到的。要注意体会。
二.证明动直线过定点或动点在定直线上问题
x2 4、如图,椭圆 a2
y2 b2
1的两焦点 F1 , F2 与短轴两端点 B1 , B2 构成 B2F1B1 为120 ,面
积为 2 3 的菱形。 (1)求椭圆的方;程 (2)若直线 l : y kx m 与椭 圆相交于 M 、N 两点( M 、 N 不是左右顶点),且以 MN 为直径的圆过 椭圆右顶点 A .求证:直线 l 过定点,并求出该定点的坐标.
易错点
1,设参时不够大胆,或者不够准确;
2,化简时存在厌烦的心态或者利用条件关系不充分
4
y2 x2

专题11 圆锥曲线中的定点定值问题(解析版)

专题11 圆锥曲线中的定点定值问题(解析版)

专题11 圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法:(1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点·(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。

例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1). 则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++,即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219x y +=得222(9)290.m y mny n +++-= 所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)28y x =(2)存在唯一的点()2,0P -,使直线PM ,PN 关于x 轴对称 【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭,l ∴的方程为2p y x =-.由2,22,p y x y px ⎧=-⎪⎨⎪=⎩得22304p x px -+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =-(0k ≠),由()22,8,y k x y x ⎧=-⎨=⎩得()22224840k x k x k -++=,()22222484464640k k k k ∆=+-⋅⋅=+>,212248k x x k++=,124x x =.∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a -=-,()222PN k x k x a-=-. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+--+--=-+++=-=⎡⎤⎣⎦, ∴2a =-时,此时()2,0P -.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P -,使直线PM ,PN 关于x 轴对称.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. 【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析. 【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =. 所以抛物线C 的方程为24x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠. 由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-.设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ 21216(1)n x x =++ 24(1)n =-++.令0DA DB ⋅=,即24(1)0n -++=,则1n =或3n =-. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值. 【解析】(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=,可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++. 整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠. 于是MN 的方程为21()(1)33y k x k =--≠.所以直线MN 过点21(,)33P -.若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=.又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =.此时直线MN 过点21(,)33P -.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e -+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.【答案】(1)2212x y +=(2)证明见解析【解析】(1)由2220e -+=解得2e =e =,∴a =,又222a b c =+,a ∴=,又()020AC k a --==-a ∴=,1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =-, 设()()1122,,,P x y Q x y ,由22212y kx x y =-⎧⎪⎨+=⎪⎩得()2221860k x kx +-+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k --⨯⨯+=216240k -> 232k ∴>, ∴()121224421y y k x x k -+=+-=+,()()121222y y kx kx =--()21212=24k x x k x x -++=224221k k -+,直线BP 的方程为1111y y x x -=+,令0y =解得111x x y =-,则11,01x M y ⎛⎫⎪-⎝⎭,同理可得22,01x N y ⎛⎫⎪-⎝⎭,12123411BOMBCNx x SSy y ∴=--=()()()12121212123341141x x x x y y y y y y =---++=22226321444212121k k k k +-++++=12, BOM BON S S∆∴为定值12. 例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值..思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)Ⅰ对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB 的表达式,化简整理得到定值.②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.(1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)Ⅰ1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分) 2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.(6分)所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PA PB =|x P -x A ||x P -x B |=|x P -x A ||x P +x A |=2-12+1=3-2 2.所以PAPB =3-22为定值.(8分)②设P(x 0,y 0),所以直线l 1的方程为y -y 0=k 1(x -x 0),即y =k 1x -k 1x 0+y 0, 记t =-k 1x 0+y 0,则l 1的方程为y =k 1x +t ,代入椭圆C 1的方程,消去y ,得(4k 21+1)x 2+8k 1tx +4t 2-4=0, 因为直线l 1与椭圆C 1有且只有一个公共点,所以Δ=(8k 1t)2-4(4k 21+1)(4t 2-4)=0,即4k 21-t 2+1=0,将t =-k 1x 0+y 0代入上式,整理得,(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,(12分) 同理可得,(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,所以k 1,k 2为关于k 的方程(x 20-4)k 2-2x 0y 0k +y 20-1=0的两根,从而k 1·k 2=y 20-1x 20-4.(14又点在P(x 0,y 0)椭圆C 2:x 28+y 22=1上,所以y 20=2-14x 20,所以k 1·k 2=2-14x 20-1x 20-4=-14为定值.(16分)二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值. 【答案】(I) 1||2FP x =;(II )证明见解析 【解析】(I ) 椭圆22:14x C y +=,故)F,1||22FP x ===-.(II )设()33,A x y ,()44,B x y ,则将y kx m =+代入2214xy +=得到:()222418440k x kmx m +++-=,故2121222844,4141km mx x x x k k --+==++,21241x x k -=+,OA OB =,故()3434343421k x x m y y x x x x k+++==-++,得到34221kmx x k -+=+,PA PF=1312x x -=4222x x -=,由已知得:3124x x x x <<<或3124 x x x x >>>,)()123421x x x x x +-+=-,2282411km km k k -+=++,化简得到221m k =+. 故原点O 到直线l的距离为1d ==为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.【答案】(1)(-∞,-3)∪(-3,0)∪(0,1);(2)见解析. 【解析】(1)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k <0或0<k <1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知12224k x x k -+=-,1221x x k =. 直线P A 的方程为1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λ,=QN QO μ得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------.所以11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33. (1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.规范解答 (1)设椭圆的半焦距为c ,由已知得,c a =32,则a 2c -c =33,c 2=a 2-b 2,(3分)解得a =2,b =1,c =3,(5分)所以椭圆E 的标准方程是x 24+y 2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx+4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分)所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2|=(1+k 21)|t 2-8k 21t 21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分) 所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t),设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21),PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分)因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD→=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t2x 3x 4-t (x 3+x 4)+t 2.代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分)因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解后反思 本题着重考查了计算能力,而在运算过程中借助了两条直线的地位一致性,只需算出一份数据即可,另外对应换掉相应位置的参数就好,需要考生仔细观察,不能盲目地硬算.定值问题,要恰当去转化,能很好的降低计算量,用向量的坐标来计算,结构对称、优美,代入根与系数关系可以很容易得出结果4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求ⅠFBM 的面积;(2) Ⅰ记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0),当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为x 3+y -1=1,即y =33x -1,联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍),即M ⎝⎛⎭⎫837,17.(2分) 连结BF ,则直线BF :x 3+y 1=1,即x +3y -3=0,而BF =a =2,点M 到直线BF 的距离为d =⎪⎪⎪⎪837+3×17-312+(3)2=2372=37. 故S △MBF =12·BF ·d =12×2×37=37.(4分)(2) 解法1(点P 为主动点) ①设P(m ,-2),且m≠0,则直线PM 的斜率为k =-1-(-2)0-m=-1m , 则直线PM 的方程为y =-1m x -1, 联立⎩⎨⎧y =-1m x -1,x 24+y 2=1化简得⎝⎛⎭⎫1+4m 2x 2+8m x =0,解得M ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4,(6分) 所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,(8分)所以k 1·k 2=-3m ·14m =-34为定值.(10分)5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .思路分析 (1) 直接设出B (x 0,y 0),C (-x 0,-y 0),求出k 1,k 2,并运用椭圆方程消去y 0即可;(2) 设出直线AP 为y =k 1(x -2),与圆联立得出点P 坐标,与椭圆联立得出点B 坐标,通过斜率公式求出k PQ 和k BC 即得λ的值;(3) 通过直线PQ 与x 轴垂直时特殊的位置,猜想直线AC 过点Q ,再证明当直线PQ 与x 轴不垂直时,直线AC 也过点Q ,先通过直线PQ 方程与圆方程联立,求出点Q 坐标,再通过证明斜率相等来证明三点共线,从而证得直线AC 必过点Q .规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(4分)(2) 设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧ y =k 1x -2,x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21,联立⎩⎪⎨⎪⎧y =k 1x -2,x 24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,(8分)所以k BC =y B x B =-2k 14k 21-1,k PQ =y P x P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(10分)(3) 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝⎛⎭⎫-65,-85,则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎫x +65, 联立⎩⎪⎨⎪⎧ y =-5k 14k 21-1⎝⎛⎭⎫x +65,x 2+y 2=4解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q .(16分)(不考虑直线与x 轴垂直的情形扣1分)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线中的定值问题1.平面内动点P(x ,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于14-,若点P 的轨迹为曲线E ,过点 6(,0)5Q -直线 l 交曲线E 于M ,N 两点.(Ⅰ)求曲线E 的方程,并证明:∠MAN 是一定值; (Ⅰ)若四边形AMBN 的面积为S ,求S 的最大值【答案】(Ⅰ)221(2)4x y x =≠±+(Ⅰ)16试题解析:(Ⅰ)设动点P 坐标为(,)x y ,当2x ≠±时,由条件得:22y y x x ⋅=-+1-4,化简得221(2)4x y x =≠±+曲线E 的方程为,221(2)4x y x =≠±+, 4分(说明:不写2x ≠±的扣1分) 由题可设直线的方程为,联立方程组可得,化简得:设,则, (6分)又,则,所以090MAN ∠=,所以的大小为定值 (8分)2. 在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⅠBC 的情况?说明理由;MAN ∠(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【解析】(1)令()1,0A x ,()2,0B x ,C(0,1),x ,为220x mx +-=的根12122x x m x x ∆>⎧⎪+=-⎨⎪=-⎩,假设AC BC ⊥成立,所以0AC BC ⋅=u u u r u u u r,()1,1AC x =-u u u r ,()2,1BC x =-u u u r , 所以1110AC BC x x ⋅=+≠u u u r u u u r,所以不能出现AC BC ⊥的情况.3.已知椭圆()2222:10x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴长为半径的120-+=相切. (1)求椭圆C 的方程;(2)设()4,0A -,过点()3,0R 作与x 轴不重合的直线l 交椭圆C 于,P Q 两点,连接,AP AQ 分别交直线163x =于,M N 两点,若直线,MR NR 的斜率分别为12,k k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由.【解析】(1)由题意得2221242c a a b b c a b c ⎧=⎪=⎧⎪⎪=∴=⎨⎪=⎩⎪=+⎪⎩C 的方程为2211612x y +=. (2)设()()1122,,,P x y Q x y ,直线PQ 的方程为3x my =+,由()2222341821016123x y m y my x my ⎧+⎪∴++-=⎨⎪=+⎩1212221821,3434m y y y y m m --∴+==++,由,,A P M 三点共线可知()1111281643443M M y y y y x x =∴=+++ 同理可得()222834N y y x =+,所以()()121212916161649443333N M N M y y y y y y k k x x =⨯==++--()()()()()2121212124477749x x my my m y y m y y ++=++=+++Q()12122121216127497y y k k m y y m y y ∴==-+++. 4.已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.【解析】(1)由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=.又c ==c e a ==.令0y =,得001x x y N =--,从而00221xx y N AN =-=+-. 所以四边形ABNM 的面积12S =AN ⋅BM 00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x y x y x y ++--+=--+00000000224422x y x y x y x y --+=--+2=. 从而四边形ABNM 的面积为定值.5.已知椭圆C :22221+=x y a b(0a b >>)的离心率为2 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x . 当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y xx AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM所以4=⋅BM AN . 综上,BM AN ⋅为定值.6. 已知抛物线E :x 2=2py (p >0),直线y =kx +2与E 交于A ,B 两点,且OA →·OB →=2,其中O为原点.(1)求抛物线E 的方程;(2)点C 坐标为(0,-2),记直线CA ,CB 的斜率分别为k 1,k 2,证明:k 21+k 22-2k 2为定值.(2)证明:由(1)知,x 1+x 2=k ,x 1x 2=-2.k 1=y 1+2x 1=x 21+2x 1=x 21-x 1x 2x 1=x 1-x 2,同理k 2=x 2-x 1,所以k 21+k 22-2k 2=2(x 1-x 2)2-2(x 1+x 2)2=-8x 1x 2=16.7.已知抛物线2:2(0)E y px p =>,直线3x my =+与E 交于A ,B 两点,且6OA OB =u u u r u u u rg,其中O 为坐标原点.(1)求抛物线E 的方程;(2)已知点C 的坐标为(-3,0),记直线CA 、CB 的斜率分别为1k ,2k ,证明:22212112m k k +-为定值.(2)因为1111136y y k x my ==++,2222236y y k x my ==++,所以1116m k y =+,2216m k y =+,因此222222121211662()()2m m m m k k y y +-=+++- 222212121111212()36()2m m m y y y y =++++- 222121212221212()2212362y y y y y y m m m y y y y ++-=++-g g 又122y y pm m +==,1263y y p =-=-,所以2222221211622123622439m m m m m m k k -++-==+⨯+⨯-=.即22212112m k k +-为定值. 8.如图,设点,A B的坐标分别为()),,直线,AP BP 相交于点P ,且它们的斜率之积为23-.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M N 、是轨迹为C 上不同于,A B 的两点,且满足//,//AP OM BP ON ,求证:MON ∆的面积为定值.【解析】(1)由已知设点P的坐标为(),x y,由题意知(23AP BPk k x==-≠g,化简得P的轨迹方程为(22132x yx+=≠.(2)证明:由题意M N、是椭圆C上非顶点的两点,且//,//ONAP OM BP,则直线,AP BP斜率必存在且不为0,又由已知23AP BPk k=-g.因为//,//AP OM BP ON,所以23OM ONk k=-g.设直线MN的方程为x my t=+,代入椭圆方程2232x y+,得()222324260m y mty t+++-=....Ⅰ设,M N的坐标分别为()()1122,,,x y x y,则2121222426,3232mt ty y y ym m-+=-=++,又()2121222221212122636OM ONy y y y tk kx x m y y mt y y t t m-===+++-g,所以222262363tt m-=--,得22223t m=+,又1212MONS t y y∆=-=所以MONS∆==MON∆的面积为定值29.椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=32,a+b=3.(1)求椭圆C的方程;(2)如图所示,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值.[自主解答] (1)因为e =32=c a ,所以a =23c ,b =13c .代入a +b =3,得c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)证明:法一:因为B (2,0),P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)⎝ ⎛⎭⎪⎫k ≠0,k ≠±12,①把①代入x24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为:y =12x +1.② ①与②联立解得M ⎝⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知 -4k 4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).法二:设P (x 0,y 0)(x 0≠0,x 0≠±2),则k =y 0x 0-2,直线AD 的方程为:y =12(x +2),直线BP 的方程为:y =y 0x 0-2(x -2),直线DP 的方程为:y -1=y 0-1x 0x ,令y =0,由于y 0≠1,可得N ⎝⎛⎭⎪⎫-x 0y 0-1,0联立⎩⎪⎨⎪⎧y =12(x +2),y =y 0x 0-2(x -2),解得M ⎝⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2, 因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).。

相关文档
最新文档