2012年秋季七年级第二次月考数学试卷(含答案)

合集下载

2012-2013学年七年级下第二次阶段考试数学试卷

2012-2013学年七年级下第二次阶段考试数学试卷

2012-2013学年下学期七年级第二次阶段考试数学试卷(时间:90分钟分值:120分)一、选择题(每题3分,共36分,将正确答案填入下面表格中)题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.下面四个图形中,∠1与∠2是对顶角的图形()2.在同一平面内,两条直线的位置关系是()A.平行 B.相交 C.平行或相交D.平行、相交或垂直3.若x轴上的点P到y轴的距离为3,则点P的坐标为()A、(0,3)B、(0,3)或(0,-3)C、(3,0)D、(3,0)或(-3,0)4.如图,点在的延长线上,则下列条件中,不能判定的是()....班级姓名考号第4题图5.在下列各数:0.05005000500005…,,0.2,,,,中,无理数的个数是()A. 2个B.3个C.4个D.5个6.下列各式中,正确的是( )A. B.C. D.7.下列命题中,是真命题的是( )A.同位角相等 B.邻补角一定互补C.相等的角是对顶角 D.有且只有一条直线与已知直线垂直8.根据下列表述,能确定具体位置的是()A.某电影院2排 B.北京市东直门大街C.北偏东 D.东经,北纬9.方程3x+y=7的正整数解的个数是()A.1个 B.2个 C.3个 D.4个10.买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢笔支,铅笔支,根据题意,可得方程组().A.B.C.D.11.下列不等关系中,正确的是()A、a不是负数表示为:a>0B、x不大于5可表示为:x>5C、x与1的和是非负数可表示为:x+1>0D、m与4的差是负数可表示为:m-4<012.不等式的解集在数轴上表示正确的是()二、填空题(每题3分,共18分,将正确答案填入下面表格中)13.已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为________.14.任意写出大于3小于4的两个无理数 .15.的平方根是;125的立方根是 .16.小亮准备用元钱买笔和练习本,已知每支笔元,每本练习本元.他买了本练习本,最多还可以买_________支笔.17.将点P先向左平移2个单位,再向上平移3个单位后,得到点Q (5, 3),则点p的坐标为 .18.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了*和,请你帮他找回这两个数: *= ,= .21H GABCE三、解答题19.完成推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD . (6分)理由如下: ∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _______), ∴∠2 =∠CGD (等量代换).∴CE ∥BF (_________________________). ∴∠ =∠C (______________________). 又∵∠B =∠C (已知)∴∠ =∠B (等量代换). ∴AB ∥CD (_________________________).20. (5分)小红和爸爸、妈妈到人民公园游玩,回家后,她利用平面直角坐标系画出了公园的景区地图,如图所示。

陕西省西安市碑林区第六中学2022-2023学年七年级数学上学期第二次月考测试题(含答案解析)

陕西省西安市碑林区第六中学2022-2023学年七年级数学上学期第二次月考测试题(含答案解析)

陕西省西安市碑林区第六中学2022-2023学年七年级数学上学期第二次月考测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是()A .()21-B .21-C .()31-D .1--2.12月1日晚,在阿根廷举行的G20峰会上传来好消息:中美两国停止升级关税等贸易限制措施,其中2000亿美元的清单维持原加税力度,这让所有热爱和平的人,都看到了希望.其中2000亿可以用科学记数法表示为()A .10210⨯B .102010⨯C .11210⨯D .112010⨯3.下列选项中不是数轴的是()A .B .C .D .4.拼尽全力挥动翅膀,才能在常仰望的天空中去拥抱梦想.如图中展翅欲飞的小鸟是利用直尺画出线段及其延长线构成的,就该图中出现的线段、直线、射线的条数而言()A .线段最多B .直线最多C .射线最多D .射线最少5.用a,b 分别表示两个一位正整数,在这两个数之间添上两个零就构成一个四位数,且a 在b 的左边,则该四位数可表示为()A .100a b++B .1000a b+C .100a b+D .10a b+6.将边长为5的正方形分成若干个长方形,如果这若干个长方形恰好能拼成三个宽为1.5,长为a 的长方形,则a 的值为()A .253B .503C .259D .5097.随着国力的提升,琳琅满目的消费品开始不断刷新着各阶层人民的满足感.每逢年末,促销手段层出不迭.某超市中,一种商品每件的标价是330元,按标价的八折销售A .833010%10x ⨯=B .8330-10%10x x ⨯=C .8330(110%)100x ⨯=+D .3308110%x ⨯=+8.计算20222028的结果的末位数字是()A .2B .4C .6D .89.正在发展中的西安地铁给百姓的出行带来了极大的便利,它也逐渐成为低碳环保的最佳出行选择,如下图,在正方体展开图的六个面上分别写了室内请乘地铁六个字,然后将其围成一个正方体,使得从前面看到的,从左边看到的,则从上面看到的形状应该是()A .B .C .D .10.2x =-是下列哪一个方程的解()A .32140x x x -++=B .2240x -=C .232x x -=D .21xx =-+二、填空题11.37的相反数是_______.12.多项式322465-7423x y xy x -+-为_________次四项式.13.在等式3-11x =+、0x =、142x x π+=-、122x y -=、21222x x -=中,一元一次方程的个数为______________.14.数轴上顺次有不重合的A ,B ,C 三点,若A ,B ,C 三点对应的数分别为a ,﹣1,b ,试比较大小:(a+1)(b+1)___0(填“>”或“<”或“=”)15.当1x =时,代数式319713ax bx --的值为13,则-1x =时,319713ax bx --的值为______.16.如图,第一幅图中有1个水平放置的长方形,第二幅图中沿水平方面和竖直方向分别裁剪一刀后可得到4个长方形,第三幅图中沿水平方向和竖直方向分别裁剪两刀可得到9个长方形…按此规律,第11幅图中能裁剪出_____个长方形.三、解答题17.计算.(1)()112 4.520%2-----(2)()461213412⎛⎫-⨯----+-- ⎪⎝⎭18.解方程(1)2-3132x x -+=(2)2321[1(1)]91320.32x x x +⎧⎫----=-⎨⎬⎩⎭19.已知-2n m a b 和2428m b a -是同类项,先化简11-52(32)(623)23mn n mn m mn n m --++-+,再求值.20.下图左是由11个小正方体搭成的几何体和从正面看看到的形状,请在右边补全从上面看和从左面看该几何体看到的形状.21.将一个三位数分成4个数,使得第一个数乘以2,第二个数除以2,第三个数减1,第四个数加2,得到的结果相等,若该三位数比这四个数中最大的数的2倍大59,求这三位数.22.得益于新的招生政策,今年,双胞胎小明和小朗分别通过摇号和面试双双进入心仪的中学.开学后,兄弟俩每天都步行去学校,一天早上,他们7:05同时从家出发,7:08时,弟弟小明发现没带数学手工作品,于是让哥哥继续往前走并告知哥哥,自己若迟到,请哥哥替他请假,以免让老师担心,自己跑步回家取了再跑步赶过来,7:29时,气喘吁吁的小明刚好在学校门口追上仍旧在行走的哥哥.若每分钟小明跑步的路程比走路的路程多20米,求小明家到学校的距离.23.问题探究;(1)数轴上有A ,B 两点,点A ,B 所对应的数分别为a ,b ,则AB 的长为.(2)将0到7这8个数任意排列,接着在每两个数字间添加“+”或“-”,然后再运算,能得到不同的结果,则这些结果中,最小的是.(3)建设在贵州的天眼是近些年的大手笔之一,他总能通过“捕捉”电磁波发现茫茫宇宙间或从未被发现的孤独天体,并分析该天体的组成、与别的天体之间的距离、年龄等各种信息.某一时刻,26颗恒星(1226,a a a )被监测到恰好都位于同一条直线上,用21a a -表示1a 与2a 之间的距离(两颗恒星之间的距离较小时可以视为重合),若测得:122334252611112325a a a a a a a a -=-=-==-= 光年,则261a a -是否存在最大值与最小值,若存在请简述理由并求出该最值,若不存在,请说明理由.(科普小词典:光年是一个非常大的长度单位,长度为光走一年的路程)参考答案:1.A【分析】分别计算各选项,根据计算的结果可得答案.【详解】解:()211-=,211-=-,()311-=-,11--=-,结果不同的选项为A .故选:A .【点睛】本题考查的是有理数的乘方运算,绝对值的化简,掌握“有理数的乘方运算法则”是解本题的关键.2.C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2000亿用科学记数法表示为2×1011,故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C【分析】根据数轴的定义要素,数轴是一种特定几何图形,原点,正方向,长度单位三要素,这三者缺一不可,根据这三要素找出答案.【详解】数轴的三要素有原点,正方向,长度单位,三者缺一不可,C 选项中没有原点,故选C .【点睛】本题考查了数轴的三要素,三者缺一不可,难度适中.4.C【分析】依据图形中线段有14条,直线有2条,射线有16条,即可得出结论.【详解】解:由图可得,线段有14条,直线有2条,射线有16条,故选:C .【点睛】本题主要考查了直线、射线和线段,射线是直线的一部分,用一个小写字母表示,如:射线l ;用两个大写字母表示,端点在前,如:射线OA .注意:用两个字母表示时,端点的字母放在前边.【分析】根据数的各个数位所表示的意义可知,a 在千位,b 在个位,十位和百位上的数字均是0,故可得解.【详解】根据题意得,a 在千位,b 在个位,十位和百位上的数字均是0,该四位数可表示为1000a b +,故选B.【点睛】掌握用字母表示数的方法.6.D【分析】根据长方形的面积和=正方形的面积列出方程并解答.【详解】解:由题意,得1.5355a ⨯=⨯,解得509a =.故选:D .【点睛】考查了一元一次方程的应用,读懂题意,找到等量关系,列出方程是解题的关键.7.B【分析】设这种商品每件的进价为x 元,根据按标价的八折销售时,仍可获利10%,列方程即可.【详解】设这种商品每件的进价为x 元,由题意得,8330-10%10x x ⨯=.故选B.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程.8.B【分析】先求出12028,22028,32028,42028,52028的末位数字,由此得到规律2028n 的结果的末位数字是8,4,2,6,四个一循环,据此求解即可.【详解】解:12028的结果的末位数字是8,22028的结果的末位数字是4,32028的结果的末位数字是2,42028的结果的末位数字是6,52028的结果的末位数字是8,可知2028n的结果的末位数字是8,4,2,6,四个一循环,∵202245052÷=……,故20222028的结果的末位数字是4.故选:B.【点睛】本题主要考查了数字类的规律探索,正确理解题意找到规律是解题的关键.9.D【分析】根据正方体的展开与折叠,折叠后,正方体的边与边重合情况,再根据方向判断结果即可.【详解】解:根据正方体的展开与折叠,“地”的上边,与“市”的上边折叠后重合在一起,当从前面看到的,从左边看到的,则从上面看到的形状应该故选:D.【点睛】考查正方体的展开与折叠,理解折叠后重合的顶点和边是正确判断的前提.10.A【分析】把x=-2分别代入各个方程的两边,根据方程的解的定义判断即可.【详解】A,当x=-2时,方程的左边=-8-4-2+14=0,右边=0,则左边=右边,故x=-2是A中方程的解;B,当x=-2时,方程的左边=2×(-2)2-4=4,右边=0,则左边≠右边,故x=-2不是B中方程的解;C,当x=-2时,方程的左边=221323---=,右边=0,则左边≠右边,故x=-2不是C中方程的解;D,当x=-2时,方程的左边=2221-=-+,右边=-2,则左边≠右边,故x=-2不是D中方程的解;故选A .【点睛】本题考查的是一元二次方程的解的定义,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键.11.37-【分析】根据相反数的定义:只有符号不同的两个数互为相反数,进行解答即可.【详解】解:37的相反数是37-,故答案为:37-.【点睛】本题考查了相反数的定义,熟记定义是解本题的关键.12.五【分析】根据多项式次数的定义求解.【详解】依题意得:322465-7423x y xy x -+-是五次四项式.故答案为五.【点睛】考查了多项式的定义13.2【分析】根据一元一次方程只含有一个未知数且未知数的幂为1可判断出正确的答案.【详解】3-11x =+,不是整式方程,故错误;0x =,符合一元一次方程的定义,正确;142xx π+=-,符合一元一次方程的定义,正确;122x y -=,含有两个未知数,是二元一次方程,故错误;21222x x -=,最高次数是2,不是一元一次方程,故错误.故答案为2.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.14.<【分析】根据A 、B 、C 三点在数轴上的位置,确定a 、b 与﹣1的大小关系,进而确定(a+1)、(b+1)的符号,再确定乘积的符号即可.【详解】解:数轴上顺次有不重合的A ,B ,C 三点,(1)数轴上从左到右依次为A 、B 、C ,则a <﹣1,b >﹣1,即:a+1<0,b+1>0,∴(a+1)(b+1)<0,(2)数轴上从右到左依次为A 、B 、C ,则a >﹣1,b <﹣1,即:a+1>0,b+1<0,∴(a+1)(b+1)<0,故答案为<.【点睛】此题主要考查数轴的应用,解题的关键是熟知数轴的性质.15.-39【分析】由于x=1时,代数式197a b -的值为26,然后把x=-1代入所求代数式,整理得到197a b -的形式,然后将197a b -的值整体代入.【详解】∵当x=1时,31971313ax bx --=,∴197a b -=26,当x=-1时,319713ax bx --=-19a+7b-13=-(19a-7b )-13=-26-13=-39.故答案为-39.【点睛】本题考查了求代数式的值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式197a b -的值,然后利用“整体代入法”求代数式的值.16.121【分析】分别求出第一幅图,第二幅图,第三幅图的长方形个数,即可得到规律第n 幅图中长方形个数为2n ,据此求解即可.【详解】解:∵第一幅图中长方形的个数为211=,第二幅图中长方形的个数为242=,第三幅图中长方形的个数为293=,……∴第n 幅图中长方形个数为2n ,∴第11幅图中长方形的个数为211121=,故答案为:121.【点睛】本题主要考查了图形类的规律探索,正确理解题意得到规律是解题的关键.17.(1)0.8(2)891-【分析】(1)原式利用减法法则变形,计算即可;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可求出值.【详解】(1)解:原式112 4.520%2=--+-3.7 4.5=-+0.8=;(2)解:原式1244116=-⨯---14418=----198=-.【点睛】此题考查了含乘方的有理数的混合运算、绝对值,解题的关键是熟练掌握运算法则.18.(1)x=11;(2)x=-2.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解【详解】(1)2-3132x x -+=2(2-x )+3(x-3)=64-2x+3x-9=6-2x+3x=6+9-4x=11;(2)23211191320.32x x x ⎧⎫⎡⎤+⎛⎫----=-⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭x-1-20103x ++1-6=1-2x,6x-6-2(20x+10)+6-36=6-3x 6x-6-40x-20+6-36=6-3x 6x-40x+3x=6+36-6+20+6-31x=62x=-2.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.-28【分析】利用同类项的定义求出m 与n 的值,原式去括号合并得到最简结果,代入计算即可求出值.【详解】∵-2n m a b 和2428m b a -是同类项,∴m=2,n=4m-2,∴n=6,∴()11-523262323mn n mn m mn n m ⎛⎫--++-+ ⎪⎝⎭,=-5mn-6n+4mn-m+2mn-23n+m =mn-203n =2×6-203×6=12-40=-28.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.20.作图见解析【分析】根据题意画出三视图即可.【详解】如图所示:【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.21.107【分析】设相等的数为x ,依次表示出4个数,再根据”该三位数比这四个数中最大的数的2倍大59”列方程求解即可.【详解】设当四个数相等时都为x ,2(1)(2)2592x x x x x ++++--=解得,x=24∴这三位数为:2(1)(2)12+48+25+22=1072x x x x ++++-=.【点睛】解答本题的关键是:设当四个数相等时都分别为x ,再用x 分别表示出四个数.22.小明家到学校的距离为1680米【分析】设小明每分钟走路x 米,每分钟跑步()20x +米,根据小明跑步的路程等于家到学校的距离加上小明走路的路程列出方程求解即可.【详解】解:设小明每分钟走路x 米,每分钟跑步()20x +米,根据题意得:()()()2982029585x x -+=-+-,∴()212027x x +=,解得:70x =,()7029570241680⨯-=⨯=(米)∴小明家到学校的距离为1680米.【点睛】本题主要考查了一元一次方程的应用,正确理解题意找到等量关系列出方程是解题的关键.23.(1)a b-(2)28-(3)存在,最大值为325,最小值为1【分析】(1)由数轴上两点间距离可求;(2)根据题意可得:都是负数时和最小;(3)根据题意可得:12233425261,2,3,,25a a a a a a a a ----==== ,从而得到261325a a ≤-,令10a =,则21a =±,从而得到1a 为偶数,23,a a 为奇数,45,a a 为偶数,67,a a 为奇数,…,26a 为奇数,进而得到261a a -的最小值为1,即可.【详解】(1)解:AB a b =-,故答案为a b -;(2)解:0123456728-------=-,此时0到7这8个数运算结果最小,故答案为28-;(3)解:∵122334252611112325a a a a a a a a -=-=-==-= ,∴12233425261,2,3,,25a a a a a a a a ----==== ,∴12233425262611232425a a a a a a a a a a +-+-+-++≥++++-=- ,∴261325a a ≤-,∴261a a -有最大值325;∵12233425261,2,3,,25a a a a a a a a ----==== ,令10a =,则21a =±,当21a =时,31a =-或3;当21a =-时,33a =-或1;当31a =-时,44a =-或2,当33a =时,46a =或0,当33a =-时,46a =-或0,当31a =时,42a =-或4;以此类推得,1a 为0,23,a a 为奇数,45,a a 为偶数,67,a a 为奇数,…,26a 为奇数,且26a 的其中一个值为1-或1,∴261101a a -≥±-=的最小值为1.【点睛】本题考查含有绝对值的不等式;理解数轴上两点间的距离,熟练掌握绝对值的几何意义是解题的关键.。

2012第二学期七年级第二次月考试卷

2012第二学期七年级第二次月考试卷

2012学年第二学期七年级数学第一次月考试卷时间:60分钟闭卷满分:100分班级_______ 姓名________ 学号_______得分_______一、选择题1、下列说法中正确的是()A 、1的任何次方根都是1 B、0的任何次方根都是0C、负数没有方根D、正数的方根互为相反数2、下列说法中不正确的是()A、4的平方根是2± B 、8的立方根是2±C、-27的立方根是-3D、9的平方根是33平方根是()A 3±BC 3 D4、下列计算正确的是()A、=-8B、2=64( C 25±D、1 3 45、下列语句中正确的是()A、300万有7个有效数字;B、0.0045用科学记数法表示为3-4.510⨯C、台风造成了近7000间房屋的倒塌,7000这个数是近似数;D、3.14159精确到0.001的近似数为3.141.6、下列语句中正确的是()A、数轴上的每一个点都有一个有理数与它对应;B、不带负号的数一定是有理数;C、负数没有方根;D、是17的一个平方根。

二、填空题1、在.10.3.___17π∙(圆周率)、、、六个数中,无理数有个,它们是______2、2581的平方根是_______.3、64__________.27-的立方根是4、15_________的两个平方根的积是5、在数轴上,实数应的点在原点的__________侧。

6、0.0180有_________个有效数字,31.2010-⨯有_______个有效数字。

7、我国的国土面积约为960万平方千米,960万有________个有效数字,8、地球上海洋面积大约是361000000平方千米,按要求取这个数的近似数,并用科学记数法表示(1)精确到百万位________________________(2)保留两个有效数字___________________________________.9、填空(1)1225=________,(2)1281=________.(2)138=________(4)1327()125=____________三、简答题1计算:(1)-+(2+2、计算:(1÷(2÷3、计算:(1)22+(2)221)1)--4÷5、求下列等式中的x(1)2x=-278x=(2)3425四、解答题1、已知数轴上的四点A、B、C、D所对应的数依次是13-、、、1.2-3 4.334(1)在数轴上描出点A、B、C、D;(2) 分别求出A与B、C与D、A与C两点的距离。

北师大版七年级数学(下)第二次月考试卷(含解析)

北师大版七年级数学(下)第二次月考试卷(含解析)

北师大版七年级数学(下)数学第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y62.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°(5题)(6题)(7题)6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS 7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.368.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()(8题)(10题)A.6B.5C.4D.39.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为米.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m =.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.14题15题16题15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为cm.16.(3分)如图,在△ABC中,AB=AC ,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF=.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y=.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD=;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC=8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y6【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.a10÷a5=a5,故本选项不合题意;D.(xy2)3=x3y6,正确.故选:D.【点评】本题主要考查了合并同类项、同底数幂的除法,幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.2.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油【分析】根据轴对称图形的概念求解.【解答】解:A、“中”可以看作是轴对称图形,故本选项符合题意;B、“国”不是轴对称图形,故本选项不合题意;C、“加”不是轴对称图形,故本选项不合题意;D、“油”不是轴对称图形,故本选项不合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、3+1<5,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+3<7,不能构成三角形,故C错误;D、2+3>4,能构成三角形,故D正确,故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等【分析】根据平行线的性质、有理数的乘方、对顶角相等、全等三角形的判定定理判断即可.【解答】解:A、两直线平行,同位角相等,∴同位角相等,是随机事件;B、如果a2=b2,那么a=b,是随机事件;C、对顶角相等,是必然事件;D、两边及其一角分别相等的两个三角形全等,是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选:B.【点评】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC =∠BAC.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.36【分析】易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.【解答】解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选:C.【点评】考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.8.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC =×4×2+AC×2=7,解得AC=3.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.9.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=9﹣8=1,则a﹣b=±1,故选:B.【点评】此题考查了平方根,以及完全平方公式,熟练掌握平方根定义及公式是解本题的关键.10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个【分析】由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,可判断①,由等腰直角三角形的性质可得∠CDE=∠CED=45°.CM⊥AE,可判断②,由全等三角形的性质可求∠AEB=∠CME=90°,可判断④,由线段和差关系可判断③,即可求解.【解答】解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,故①错误,∵△DCE为等腰直角三角形,CM平分∠DCE,∴∠CDE=∠CED=45°,CM⊥AE,故②正确,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°,∴∠AEB=∠CME=90°,∴CM∥BE,故④正确,∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故③正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△ACD≌△BCE是本题的关键.二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为1×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm可以表示为100×10﹣9=1×10﹣7米.故答案为:1×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.【分析】直接利用轴对称图形的性质结合概率公式得出答案.【解答】解:只有将②③④中的一个小正方形涂黑,图中的阴影部分才构成轴对称图形,故图中的阴影部分构成轴对称图形的概率为:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题关键.15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为34cm.【分析】根据线段垂直平分线的性质结合△ABD的周长可求AB+BC=24,进而可求解△ABC的周长.【解答】解:∵DE是边AC的垂直平分线,AE=5cm,∴AD=CD,AC=2AE=10,∵△ABD的周长为24cm,∴AB+BD+AD=AB+BD+CD=AB+BC=24(cm),∴C△ABC=AB+BC+AC=24+10=34(cm).故答案为34.【点评】本题主要考查线段垂直平分线的性质,灵活运用线段垂直平分线的性质是解题的关键.16.(3分)如图,在△ABC中,AB=AC,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF =104°.【分析】连接OB、OC,根据线段垂直平分线上的点到两端点的距离相等可得OA =OB,再由角平分线条件与等腰三角形的条件证明△OAB≌△OAC,得OA=OB =OC,得∠OBA=∠OAB=∠OAC=∠OCA,根据折叠性质得OF=CF,进而求得∠OCF,再由三角形内角和定理,求得∠OBC+∠OCB,进而由等腰三角形的性质求得∠OCB ,再由折叠性质求得结果.【解答】解:连接OB、OC,∵OD垂直平分AB,∴OA=OB,∴∠OAB=∠OBA,∵AO平分∠BAC,∴∠BAO=∠CAO,∵AB=AC,AO=AO,∴△OAB≌△OAC(SAS),∴OB=OC,∠ABO=∠ACO,∴OA=OB=OC,∴∠OBA=∠OAB=∠OAC=∠OCA,∵∠AFO=52°,∴∠OFC=180°﹣∠AFO=128°,由折叠知,OF=CF,∴∠OCF=∠COF=,∴∠OBA=∠OAB=∠OAC=∠OCA=26°,∴∠OBC+∠OCB=180°﹣4×26°=76°,∵OB=OC,∴∠OBC=∠OCB=38°,由折叠知,OE=CE,∠OEF=∠CEF,∴∠COE=∠OCE=38°,∴∠OEC=180°﹣2×38°=104°.故答案为:104°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,作辅助线,构造出等腰三角形是解题的关键.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y =.【分析】(1)先算积的乘方、再算乘法,最后算除法即可求解;(2)先根据负整数指数幂、零指数幂,平方差公式计算,再算加减法即可求解;(3)原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘多项式法则化简,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2)=4x4y2z2•3x2y÷(﹣15x2y2)=12x6y3z2÷(﹣15x2y2)=﹣x4yz2;(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202)=9+1﹣[(2020﹣1)×(2020+1)﹣20202]=9+1﹣(20202﹣1﹣20202)=9+1+1=11;(3)[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(10xy+8y2)÷2y=5x+4y,当x=﹣l,y =时,原式=﹣5+2=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).【分析】作线段AB的垂直平分线交AB于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.【分析】本题主要考查平行线的性质与判定,根据同旁内角互补两直线平行可判断DF∥AC,进而可得∠EDF=∠BFD,再利用平行线的判定可求解.【解答】解:DE∥BC.理由如下:∵∠EGF+∠BEC=180°,∴DF∥AC,∴∠BFD=∠C,∵∠EDF=∠C,∴∠EDF=∠BFD,∴DE∥BC.【点评】本题主要考查平行线的性质与判定,掌握平行线的性质与判定定理是解题的关键.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.【分析】用列表法列举出所有可能出现的结果,从中找出“两人抽取的牌面数字之和为3的倍数”的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中“两人抽取的牌面数字之和为3的倍数”的有5种,∴P(两人抽取的牌面数字之和为3的倍数)=,即小颖获胜的概率为.【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.【分析】(1)由剩余油量=55升﹣耗油量,可求解析式;(2)先求出55升油能行驶的路程,与往返的总路程比较,可求解.【解答】解:(1)由题意可得:y=55﹣0.6x;(2)当y=0时,0=55﹣0.6x,∴x =,∵<48×2,∴往返途中不加油,他们不能回到家.【点评】本题考查了一次函数关系式,根据数量关系列出函数关系式是解题的关键.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?【分析】(1)大正方形的面积减去4个小正方形的面积的差,即为无盖纸盒的表面展开图的面积S1;(2)利用矩形的面积公式即可计算该长方形的面积S2;(3)根据(1)(2)表示的面积相等即可得到结论.【解答】解:(1)无盖纸盒的表面展开图的面积S1=32﹣4n2=9﹣4n2;(2)长方形的长是:3+2n,宽是:3﹣2n,∴长方形的面积S2=(3+2n)(3﹣2n);(3)由题可得,9﹣4n2=(3+2n)(3﹣2n).【点评】本题主要考查了平方差公式的几何背景,表示出图形阴影部分面积是解题的关键.立体图形的侧面展开图体现了平面图形与立体图形的联系,立体图形问题可以转化为平面图形问题解决.23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD =63°;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC =8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.【分析】(1)依据三角形内角和定理以及折叠的性质,即可得到∠BAE的度数,进而得出∠DAE的度数;(2)依据平行线的性质以及折叠的性质,即可得到△CB'E≌△AD'F,依据全等三角形的性质即可得出D'F=B'E;(3)连接BB',依据折叠的性质以及三角形内角和定理,即可得到BB'⊥AC,N 是BC的中点,进而得出S四边形BMB'N=S△BCE,求得△BCE的面积,即可得出结论.【解答】解:(1)∵∠B=90°,∠ACB=36°,∴Rt△ABC中,∠BAC=54°,由折叠可得,∠BAE=∠BAC=27°,∵∠BAD=90°,∴∠DAE=90°﹣27°=63°,故答案为:63°;(2)证明:∵AD∥BC,∴∠ECB'=∠F AD',由折叠可得,∠B=∠AB'E=90°,∠D=∠CD'F=90°,AB=AB'=CD=CD',∴∠CB'E=∠AD'F=90°,CB'=AD',在△CB'E和△AD'F中,,∴△CB'E≌△AD'F(ASA),∴D'F=B'E;(3)如图3,连接BB',由折叠可得,BM=B'M,∴∠MBB'=∠MB'B,∵M是BE的中点,∴BM=ME,∴ME=MB',∴∠MEB'=∠MB'E,又∵∠MEB'+∠MB'E+∠MB'B+∠MBB'=180°,∴∠MB'E+∠MB'B=90°,即BB'⊥AC,∴∠BB'C=90°,∴∠BB'N+∠CB'N=90°,∠B'BN+∠B'CN=90°,由折叠可得,BN=B'N,∴∠BB'N=∠B'BN,∴∠CB'N=∠B'CN,∴NC=NB',∴BN=CN,即N是BC的中点,∴S△BB'N =S△BB'C,∵M是BE的中点,∴S△BB'M =S△BB'E,∴S四边形BMB'N =S△BCE,∵长方形ABCD中,AB=6,BC=8,对角线AC=10,∴AB×BC =AC×BB',即BB'===4.8,又∵CE=CB=8,BB'⊥AC,∴S△BCE =CE×BB'=×8×4.8=19.2,∴S四边形BMB'N =×19.2=9.6.【点评】本题主要考查了折叠问题,平行线的性质以及三角形内角和定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。

新人教版二年级数学下册第二次月考综合试题及答案(八套)

新人教版二年级数学下册第二次月考综合试题及答案(八套)

新人教版二年级数学下册第二次月考综合试题及答案说明:本套试卷精心编写了各考点和重要知识点,测试面广,难易兼备,仅供参考。

全套试卷共八卷。

目录:新人教版二年级数学下册第二次月考综合试题及答案(一)新人教版二年级数学下册第二次月考考点题及答案(二)新人教版二年级数学下册第二次月考考试卷及答案(三)新人教版二年级数学下册第二次月考考试及答案(四)新人教版二年级数学下册第二次月考考试及答案(五)新人教版二年级数学下册第二次月考考试及答案(六)新人教版二年级数学下册第二次月考考试及答案(七)新人教版二年级数学下册第二次月考考试及答案(八)新人教版二年级数学下册第二次月考综合试题及答案一班级:姓名:满分:100分考试时间:90分钟一、填空题。

(20分)1、1张可以换(____)张,或换(____)张,或换(____)张。

2、6个4相加的和是________。

3、同学们排队,小丽前面有14名同学,后面有16名同学,她所在的这队共有(____)名同学。

4、6个9相加的和是(____),7个5相加的和是(____)。

5、丽丽用4米长的竹竿量井深,竹竿露出井沿部分是1米.井深_______米.6、35里面有(____)个5,63是7的(______)倍。

从40里连续减去(______)个8,得0。

7、1米=(____)厘米200厘米=(____)米7厘米+6厘米=(____)厘米42米-20米=(____)米8、在一个乘法算式中,积是其中一个因数的12倍,另一个因数是(______)。

9、一根铁丝先用去一半,再用去剩下的一半,还剩9米。

这根铁丝原来长___米。

10、8050读作:(_________________);二千零二写作:(____________)二、我会选(把正确答案前面的序号填在()里)(10分)1、3个人每人做6朵花,共做了多少朵花?列式不正确的为()。

A.3+3+3 B.6+6+6 C.6×32、把一个长方形的框架拉成了一个平行四边形,这个平行四边形的周长与原长方形的周长相比()。

七年级数学月考试卷含解析试题(共25页)

七年级数学月考试卷含解析试题(共25页)

漳浦县2021-2021学年(xuénián)七年数学下学期月考试卷一、单项选择题〔一共14题;一共56分〕1.以下图案中,不是轴对称图形的是〔〕A. B.C.D.2.三角形两边的长分别是4和10,那么此三角形第三边的长可能是〔〕A. 5B. 6C. 11 D. 163小明不慎将一块三角形的玻璃碎成如下图的四块〔图中所标1、2、3、4〕,你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理〔〕A. 2;SAS B. 4;ASA C. 2;AAS D. 4;SAS4如图,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,GA⊥AC于A,那么△ABC 中,AC边上的高为〔〕A. ADB. GAC. BED. CF 5如图,有一池塘,要测池塘两端A,B的间隔,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的间隔.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么断定(duàndìng)△ABC和△DEC全等的根据是〔〕A. SSSB. SASC. ASAD. AAS6李教师用直尺和圆规作角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于 DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,那么OC就是∠AOB的平分线.李教师用尺规作角平分线时,用到的三角形全等的断定方法是〔〕A. SSSB. SASC. ASAD. AAS7如图,△ABC中,AB的垂直平分线DE交AB于E,交BC于D,假设AC=6,BC=10,那么(nà me)△ACD的周长为〔〕A. 16B. 14C. 12D. 108如图,△ABC和△A′B′C′关于直线对称,以下结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有〔〕A. 4个 B. 3个 C. 2个 D. 1个9如图,在△ABC中,∠ABC=50°,AD,CD分别(fēnbié)平分∠BAC,∠ACB,那么∠ADC等于〔〕A. 125°B. 105°C. 115°D. 100°10如图,∠CAB=∠DB A,添加一个条件使△CAB≌△DBA,以下错误的选项是〔〕A. ∠CBA=∠DABB. ∠C=∠DC. AC=BDD. C B=DA11有以下命题说法:其中正确的有〔〕①锐角三角形中任何两个角的和大于90°;②等腰三角形的高、中线、角平分线互相重合③角的对称轴是角平分线;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个(yī ɡè)三角形中至少有一个角不小于60度.6〕等腰三角形一定是锐角三角形;7〕三角形的内角平分线、中线、高都是线段;8〕三角形的三条高一定都在三角形的内部12如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,那么∠B的大小为〔〕A. 40°B. 36°C. 30°D. 25°13,如图,点P关于OA、OB的对称点分别是P1, P2,分别交OA、OB于C,D,P1P2=6cm,那么△PCD的周长为〔〕 1314A. 3cmB. 6cmC. 12cmD. 无法确定14.如图为6个边长相等的正方形的组合图形,那么∠1+∠2+∠3=〔〕A. 90°B. 120°C. 135°D. 150°二、填空题〔一共(yīgòng)6题;一共24分〕15一个等腰三角形的边长分别是和,那么它的周长是_______cm.16如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的________。

秋季第二次月考七年级数学试卷.doc

秋季第二次月考七年级数学试卷.doc

2012年秋季郊尾、枫江、蔡襄教研小片区第二次月考七年级数学试卷(满分:150分;考试时间:120分钟)一、精心选一选:本大题共8小题,每小题4分,共32分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得4分,答错、不答或答案超过一个的一律得O 分.1.下列各数中,最小的数是( )A .-lB .OC .1 D2. 在数轴上,原点及原点右边的点表示的数是( ) A.正数 B.负数 C.非正数 D.非负数3. 在数 -(-3), 0 ,(-3)2, |-9|, -14中,正数的有( )个 A .2 B .3 C .4 D .54. 在式子,3,,,8,,32y m n xa b xy n x -+-中,单项式的个数是( ).A 、4B 、5C 、6D 、7 5. 多项式22848x y xy xy -+-的二次项的系数是( ). A 、1 B 、8 C 、-8 D 、46. 下列方程中是一元一次方程的是( ).A 、23x y +=-B 、33x x +=-C 、12x = D 、21x o -=7. 实验中学七年级(2)班有学生42人,已知男生人数比女生人数的2倍少3人,求男生和女生各多少人?下面设未知数的方法,合适的是( ). A. 设总人数为x 人B. 设男生比女生多x 人C. 设男生人数是女生人数的x 倍D. 设女生人数为x 人8. 下列说法错误的是( )A. 若a=b 则a+1=b+1B. 若a=b 则a(x ²+1)=b( x ²+1 )C. 若a=b 则2a =2bD. 若a(x-1)=b(x-1) 则a=b二、细心填一填:本大题共8小题,每小题4分,共32分.9. -8的相反数是_________.10. 12177-÷⨯=___________.11. 用科学记数法表示13040000应记作_______________________. 12.单项式26a bc -的次数为_______.13.当k =________时多项式2174x xy kxy -+-中不含xy 项.14.已知()2130x x y ++-+=,那么2()x y +的值是________.15. 一件运动衣按原价的八折出售时,售价是40元,则原价为_____元.16. 依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2011年9月1日起,公民全月工薪不超过3500元的部分不必纳税,超过3500元的部分应缴纳个人所得税,此项税款按下表分段累进计算. 黄先生4月份缴纳个人所得税税金60元,那么林先生该月的工薪是__________元.三、耐心做一做:本大题共9小题,共86分. 17. (本小题满分6分) 计算:-542332-⨯++ 18. (本小题满分6分)计算: 22(23)2(41)a a a a -+--+19. (本小题满分12分)解方程: ①7(23)0x x +-= ②1413612=+--x x20. (本小题满分8分)解方程: 1231325453--=+--xx x21. (本小题满分8分)y 的3倍与2之和的二分之一等于y 与1之差的四分之一,求y .22. (本小题满分10分)已知22,51A a aB a=-=-+.当12a=-时,求31A B-+的值.23. (本小题满分10分) 雅丽服装厂童装车间有40名工人,缝制一种儿童套装(一件上衣和两条裤子配成一套)。

download七年级下册数学试卷-超难

download七年级下册数学试卷-超难

许乐编的初中数学组卷一.选择题(共3小题)1.(2015春•石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是()A.B.C.D.2.(2002•徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A.p>﹣1 B.p<1 C.p<﹣1 D.p>13.(2009•黑河)一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种二.填空题(共15小题)4.(2014•涪城区校级自主招生)小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行分钟遇到来接他的爸爸.5.(2013•重庆模拟)小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔分钟开出一辆公共汽车.6.(2013•沙坪坝区校级模拟)某班有若干人参加一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分.其中题a、题b、题c满分分别为20分、30分、40分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,只答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,则这个班参赛同学的平均成绩是分.7.(2011•重庆)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.8.(2009•江苏模拟)已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.9.(2007•舟山)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.10.(2007•余姚市校级模拟)一家小吃店原有三个品种的馄饨,其中菜馅馄饨售价为3元/碗,鸡蛋馅馄饨售价为4元/碗,肉馅馄饨售价为5元/碗,现该店新增了由上述三个品种搭配而成的混合馄饨,每碗都有10个馄饨.那么共有种搭配得到定价是3.8元的混合馄饨(每种馄饨至少有一个).11.(2003•汕头)8块相同的长方形地砖拼成面积为240cm2的矩形ABCD(如图),则矩形ABCD的周长为cm.12.(2012•谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围是.13.(2012•垫江县校级二模)如图,用铆枪把铆钉垂直压入设备时,每压一次,铆枪要短暂休息,铆枪每次压铆钉时的作用力是相同的.随着铆钉的深入,铆钉所受的阻力也越来越大.当铆钉进入设备部分长度足够时,每次进入设备的铆钉长度是前一次的,已知这个铆钉被铆枪作用3次后全部进入设备(设备足够厚),且第一次作用后,铆钉进入设备的长度是2cm,若铆钉总长度为acm,则a值范围是.14.(2012•宁波模拟)重庆兴华皮鞋厂的一批皮鞋,需要从西部鞋都(重庆璧山)运往相距300千米的四川成都.甲、乙两车分别以80千米/时和60千米/时的速度同时出发,甲车在距成都130千米的A处发现有部分皮鞋丢在B处,立即以原速返回到B处取回皮鞋,甲车为了还能比乙车提前到达成都,开始以100千米/小时的速度加速向成都前进,设A与B的距离为a千米,结果甲车比乙车提前到达成都(不考虑其它因素),则a的取值范围是.15.(2011•眉山)关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是.16.(2012•乐清市校级模拟)一堆有红、白两种颜色的球各若干个,已知白球的个数比红球少,但白球的个数的二倍比红球多,若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么白球有个.17.(2009•凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009= .18.(2004•呼和浩特)如果a、b、c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14与bc=a2﹣4a﹣5,那么a的取值范围是.三.解答题(共2小题)19.(2001•常州)在容器里有18℃的水6dm3,现在要把8dm3的水注入里面,使容器里混合的水的温度不低于30℃,且不高于36℃,求注入的8dm3的水的温度应该在什么范围?20.(2001•广州)在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?参考答案与试题解析一.选择题(共3小题)1.(2015春•石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是()A.B.C.D.考点:解一元一次不等式组.专题:计算题;压轴题.分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:A、不等式组的解集大于1,不等式组的解集不同,故本选项错误;B、∵m>0时,不等式组的解集是x<,∴此时不等式组的解集不同;但m<0时,不等式组的解集是<x<1,∴此时不等式组的解集相同,故本选项正确;C、不等式组的解集大于1,故本选项错误;D、∵m>0时,不等式组的解集是<x<1,m<0时,不等式组的解集是x<,∴此时不等式组的解集不同,故本选项错误;故选:B.点评:本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.2.(2002•徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A.p>﹣1 B.p<1 C.p<﹣1 D.p>1考点:解一元一次不等式组;解二元一次方程组.专题:压轴题.分析:把p看成已知数,求得x,y的解,根据所给的不等式即可求得实数p的取值范围.解答:解:①×3﹣②×2得:x=8﹣5p,把x=8﹣5p代入①得:y=10﹣7p,∵x>y,∴8﹣5p>10﹣7p,∴p>1.故选D.点评:主要考查了方程与不等式的综合运用.此类题目一般是给出两个含有字母的二元一次方程和一个关于方程中未知数的不等关系,求方程中所含字母的取值范围.方法是:先根据所给方程联立成方程组,用含字母的代数式表示方程的解,并把解代入不等关系中列成一个关于字目系数的不等式,解不等式可得所求字母的取值范围.3.(2009•黑河)一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种考点:一元一次不等式组的应用.专题:应用题;压轴题;方案型.分析:关键描述语:某旅行团20人准备同时租用这三种客房共7间,每个房间都住满,可先列出函数关系式,再根据已知条件确定所求未知量的范围,从而确定租房方案.解答:解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选C.点评:本题的关键是找出题中的隐藏条件,列出不等式进行求解.二.填空题(共15小题)4.(2014•涪城区校级自主招生)小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行50 分钟遇到来接他的爸爸.考点:二元一次方程组的应用.专题:压轴题.分析:设小林自己走的路程为S,根据:结果比平时早20分钟到家,可知提前放学的这一天,开车的距离少2S,得到车速==,小林走这段路程比车走这段路段多用时60﹣20=40分钟(早出发1小时,提前到达20分钟),依此列出式子求解.解答:解:设小林自己走的路程为S.根据题意得:=+40=+40=50(分钟).故填50.点评:此题涉及实际问题,考查学生的分析能力,难度偏难.注意:结果比平时早20分钟到家.5.(2013•重庆模拟)小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔8 分钟开出一辆公共汽车.考点:三元一次方程组的应用.专题:行程问题;压轴题.分析:设相邻汽车间距离为L,汽车速为V1,自行车为V2,公交车车站每间隔时间为t分钟开出一辆公共汽车,根据题意列出三元一次方程组、并解方程组即可.解答:解:设相邻汽车间距离为L,汽车速为V1,自行车为V2,公交车车站每间隔时间为t分钟开出一辆公共汽车.则5v1+5v2=L,5=,则根据题意,得,由,得V1=V2,④将①、④代入②,解得t=8.故答案是:8.点评:本题考查了三元一次方程组的应用.解答此题的关键是列出方程组,用代入消元法或加减消元法求出方程组的解.6.(2013•沙坪坝区校级模拟)某班有若干人参加一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分.其中题a、题b、题c满分分别为20分、30分、40分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,只答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,则这个班参赛同学的平均成绩是51 分.考点:三元一次方程组的应用.专题:压轴题.分析:设答对a的人数为x,答对b的人数为y,答对c的人数为z,根据题意可得三元一次方程组,解出可得出x、y、z的值,进而算出参加竞赛的总人数,让总分数除以总人数即为竞赛的平均成绩.解答:解:设答对a的人数为x,答对b的人数为y,答对c的人数为z,由题意得,,解得:,∵3题全答对的只有1人,答对两题的有15人,∴参加竞赛的人数为17+12+8﹣2﹣15=20人,平均得分为:[17×20+12×30+8×40]÷20=51分,故答案为:51.点评:本题考查三元一次方程组的应用;得到这次竞赛的总得分和参加竞赛的总人数是解决本题的难点.7.(2011•重庆)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了4380 朵.考点:三元一次方程组的应用.专题:应用题;压轴题.分析:题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=2900朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=3750朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.解答:解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580,即x+2y+2(x+z)=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280﹣x⑤,由④得z=150﹣x⑥.∴4x+2y+3z=4x+(280﹣x)+3(150﹣x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故答案为:4380.点评:本题考查了三元一次方程组在实际生活中的应用.解题的关键是发掘等量关系列出方程组,难点是由于24x+12y+18z=6(4x+2y+3z),所以千方百计“创造”(4x+2y+3z)这一整体.8.(2009•江苏模拟)已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.考点:解二元一次方程组.专题:压轴题;阅读型.分析:根据示例,运用换元思想,即可列出简易方程组,很容易求出方程组的解.解答:解:∵,,又∵的解是,∴,即.点评:本题给出了一些材料,考查了同学们的阅读分析能力,需要同学们有一定的逻辑分析能力.9.(2007•舟山)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.考点:二元一次方程组的解.专题:压轴题;阅读型.分析:把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.解答:解:两边同时除以5得,,和方程组的形式一样,所以,解得.故答案为:.点评:本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决有一定的难度.10.(2007•余姚市校级模拟)一家小吃店原有三个品种的馄饨,其中菜馅馄饨售价为3元/碗,鸡蛋馅馄饨售价为4元/碗,肉馅馄饨售价为5元/碗,现该店新增了由上述三个品种搭配而成的混合馄饨,每碗都有10个馄饨.那么共有 3 种搭配得到定价是3.8元的混合馄饨(每种馄饨至少有一个).考点:三元一次方程组的应用.专题:压轴题.分析:设菜馅馄饨x个,鸡蛋馅馄饨y个,鸡蛋馅馄饨z个,根据题意列出方程组,解方程组即可.解答:解:设菜馅馄饨x个,鸡蛋馅馄饨y个,肉馅馅馄饨z个,根据题意,得由(1),得3x+4y+5z=38 (3)①假设x=1,则由(2)(3),得解得(舍去);②假设x=2,则由(2)(3),得解得(舍去);③假设x=3,则由(2)(3),得解得(符合题意);同理,得④(符合题意);⑤(符合题意);⑥(舍去);⑦(舍去);⑧(舍去).综上所述,符合题意的有3种搭配得到定价是3.8元的混合馄饨.点评:本题是运用三元一次方程组来解决生活实际问题.11.(2003•汕头)8块相同的长方形地砖拼成面积为240cm2的矩形ABCD(如图),则矩形ABCD的周长为cm.考点:二元一次方程组的应用.专题:压轴题.分析:通过理解题意可知本题存在两个等量关系,即一块小长方形地砖的面积=,小长方形的长是宽的3倍,根据这两个等量关系可列出方程组.解答:解:设小长方形的长是xcm,宽是ycm,则,解得.则大矩形的长是6cm,宽是4cm,所以大矩形的周长是20cm.点评:此题要结合图形列出方程,求得小长方形的长和宽,再进一步求得大矩形的周长.12.(2012•谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围是<a≤1 .考点:一元一次不等式组的整数解.专题:压轴题.分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有两个整数解得出不等式组1<2a≤2,求出不等式组的解集即可.解答:解:,∵解不等式①得:x>﹣,解不等式②得:x<2a,∴不等式组的解集为﹣<x<2a,∵不等式组有两个整数解,∴1<2a≤2,∴<a≤1,故答案为:<a≤1.点评:本题考查了解一元一次不等式(组),不等式组的整数解,关键是能根据不等式组的解集得出关于a的不等式组,题目具有一定的代表性,是一道比较好的题目.13.(2012•垫江县校级二模)如图,用铆枪把铆钉垂直压入设备时,每压一次,铆枪要短暂休息,铆枪每次压铆钉时的作用力是相同的.随着铆钉的深入,铆钉所受的阻力也越来越大.当铆钉进入设备部分长度足够时,每次进入设备的铆钉长度是前一次的,已知这个铆钉被铆枪作用3次后全部进入设备(设备足够厚),且第一次作用后,铆钉进入设备的长度是2cm,若铆钉总长度为acm,则a值范围是.考点:一元一次不等式的应用.专题:压轴题.分析:第一次作用后,铆钉进入设备的长度是2cm,由题意可知,第二次铆钉进入设备的长度是1cm,第三次铆钉进入设备的长度是cm,则三次铆钉进入设备的长度应该是>3但不超过3.解答:解:∵第一次作用后,铆钉进入设备的长度是2cm,又每次进入设备的铆钉长度是前一次的,∴第二次铆钉进入设备的长度是1cm,第三次铆钉进入设备的长度是cm.∵这个铆钉被铆枪作用3次后全部进入设备,∴三次铆钉进入设备的长度应该是>3但不超过3.即铆枪总长度为>3但不超过3.故.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.14.(2012•宁波模拟)重庆兴华皮鞋厂的一批皮鞋,需要从西部鞋都(重庆璧山)运往相距300千米的四川成都.甲、乙两车分别以80千米/时和60千米/时的速度同时出发,甲车在距成都130千米的A处发现有部分皮鞋丢在B处,立即以原速返回到B处取回皮鞋,甲车为了还能比乙车提前到达成都,开始以100千米/小时的速度加速向成都前进,设A与B的距离为a千米,结果甲车比乙车提前到达成都(不考虑其它因素),则a的取值范围是0<a<70 .考点:一元一次不等式组的应用.专题:计算题;压轴题.分析:根据题意,知甲走的路程是2AB与300的和,根据时间=路程÷速度,分别表示出甲、乙共用的时间,再根据甲车所用的时间小于乙车所用的时间,列不等式进行求解即可解答.解答:解:,解得a<70.又∵a>0,所以,a的取值范围为0<a<70.故答案为0<a<70.点评:本题主要考查了一元一次不等式组的应用,此题能够结合图示正确理解甲所走的路程.正确表示甲用的时间是解决此题的难点.15.(2011•眉山)关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是6≤a<9 .考点:一元一次不等式的整数解.专题:计算题;压轴题.分析:解不等式得x≤,由于只有两个正整数解,即1,2,故可判断的取值范围,求出a的取值范围.解答:解:原不等式解得x≤,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤<3,解得6≤a<9.故答案为:6≤a<9.点评:本题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.16.(2012•乐清市校级模拟)一堆有红、白两种颜色的球各若干个,已知白球的个数比红球少,但白球的个数的二倍比红球多,若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么白球有9 个.考点:一元一次不等式组的应用.专题:应用题;压轴题.分析:假设白球数是x个,由“若给每个白球都写上数字“2”,给每个红球都写上数字“3”(每个小球只能写上一个数字),结果所有小球写的数字总和为60”,这句话可知红球用x表示为.根据白球的个数比红球少,可列不等式根据白球的个数的2倍比红球多,可列不等式,根据这两个不等式可解出白球x的取值范围,代入可知红球数,从而舍去不合题意的值求出白球数.解答:解:设白球数是x个,根据题意知红球数是.又因为白球的个数比红球少,但白球的个数的2倍比红球多,列方程组得解①得x<12 ③解②得④所以又因为x为白球的个数,所以x可能取8、9、10、11 (1)当x=8时,红球数,不合题意舍去;(2)当x=9时,红球数;(3)当x=10时,红球数,不合题意舍去;(4)当x=11时,红球数,不合题意舍去.故白球数是9个.故答案为:9.点评:本题考查了一元一次不等式组的应用.主要是将应用问题转化为不等式来解决,最后要注意找出能够符合条件的红白球个数,根据整数性验证.17.(2009•凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009= ﹣1 .考点:解一元一次不等式组;代数式求值.专题:计算题;压轴题.分析:解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.解答:解:由不等式得x>a+2,x<,∵﹣1<x<1,∴a+2=﹣1,=1∴a=﹣3,b=2,∴(a+b)2009=(﹣1)2009=﹣1.点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.18.(2004•呼和浩特)如果a、b、c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14与bc=a2﹣4a﹣5,那么a的取值范围是a>﹣1且a≠﹣且a≠..考点:一元一次不等式的应用.专题:压轴题.分析:根据b,c关系就可以得到含有a的不等式,b2+c2>0即2a2+16a+14>0;bc≤,则2a2+16a+14≥2(a2﹣4a﹣5),解这两个关于a的不等式组成的不等式组就可以求出a的范围.解答:解:∵b2+c2=2a2+16a+14,bc=a2﹣4a﹣5,∴(b+c)2=2a2+16a+14+2(a2﹣4a﹣5)=4a2+8a+4=4(a+1)2,即有b+c=±2(a+1).又bc=a2﹣4a﹣5,所以b,c可作为一元二次方程x2±2(a+1)x+a2﹣4a﹣5=0③的两个不相等实数根,故△=4(a+1)2﹣4(a2﹣4a﹣5)=24a+24>0,解得a>﹣1.若当a=b时,那么a也是方程③的解,∴a2±2(a+1)a+a2﹣4a﹣5=0,即4a2﹣2a﹣5=0或﹣6a﹣5=0,解得,a=或a=﹣.所以a的取值范围为a>﹣1且a≠﹣且a≠.点评:本题主要利用了不等式的性质:(b﹣c)2≥0,可得到b2+c2≥2bc.通过b,c的关系,转化为含a的不等式是解决本题的关键.三.解答题(共2小题)19.(2001•常州)在容器里有18℃的水6dm3,现在要把8dm3的水注入里面,使容器里混合的水的温度不低于30℃,且不高于36℃,求注入的8dm3的水的温度应该在什么范围?考点:一元一次不等式组的应用.专题:应用题;压轴题.分析:由冷水升温吸收的能量与热水放出的能量之间的关系,再根据题中关键描述语:使容器里混合的水的温度不低于30℃,且不高于36℃,列出不等式即可.解答:解:设1dm3的水高1℃或降低1℃吸收或放出的能量为q,注入水的温度为x℃,根据题意得解得39℃≤x≤49.5℃答:注入的8dm3的水的温度应该在39℃~49.5℃的范围.点评:在本题中应注意将实际问题转化为数学问题,从而使问题更为简单,便于解答.准确的解不等式是需要掌握的基本计算能力.注意本题的不等关系为:使容器里混合的水的温度不低于30℃,且不高于36℃,列出不等式即可.20.(2001•广州)在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?考点:一元一次不等式的应用.专题:压轴题.分析:先设一个窗口每分检出的人是c,每分来的人是b,至少要开放x个窗口;根据开放窗口与通过时间等列方程和不等式解答.解答:解:设一个窗口每分检出的人是c,每分来的人是b,至少要开放x个窗口;a+30b=30c ①,a+10b=2×10c ②,a+5b≤5×x×c,由①﹣②得:c=2b,a=30c﹣30b=30b,30b+5b≤5×x×2b,即35b≤10bx,∵b>0,∴在不等式两边都除以10b得:x≥3.5,答:至少要同时开放4个检票口.点评:解决本题的关键是读懂题意,找到符合题意的等量关系和不等关系式:30分的工作量=a+30分增加的人数;2×10分的工作量=a+10分增加的人数;开放窗口数×检票速度≥a+5分增加的人数.要设出未知数,难点是消去无关量.。

最新2022-2022年七年级下第二次月考数学试卷含答案

最新2022-2022年七年级下第二次月考数学试卷含答案

七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。

月考试题[下学期]-初中二年级数学试题练习、期中期末试卷-初中数学试卷

月考试题[下学期]-初中二年级数学试题练习、期中期末试卷-初中数学试卷

月考试题[下学期]-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载重庆一中初2007级月考数学试题时间120分钟满分150分一.选择题(本题共10小题,每小题4分,共40分。

每小题只有一个答案是正确的,请将正确答案填入括号里)1.下列说法正确的是()A.4是16的算术平方根B.10的平方根为±5C.绝对值是2的数一定为2D.8的立方根为±22.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个3.如图,□ABCD的周长为16cm,AC.BD相交于点O,OE⊥AC交AD于E,则⊥DCE的周长为()A.4cm B.6cmC.8cm D.10cm4.下列四对数中,是方程组的解的是()A.B.C.D.5.利用边长相等的正三角形和正六边形的地砖镶嵌地面时,在每个顶点周围有a块正三角形和b块正六边形的地砖(ab≠0),则a+b的值为()A.3或4B.4或5C.5或6D.46.已知,,,则a,b,c的大小关系是()A.a&gt;b&gt;c B.b&gt;a&gt;c C.a&gt;c&gt;b D.b&gt;c&gt;a7.给出下面四个命题:(1)一组对边平行的四边形是梯形;(2)一条对角线平分一个内角的平行四边形是菱形;(3)两条对角线互相垂直的矩形是正方形;(4)一组对边平行,另一组对边相等的四边形是平行四边形,其中正确的个数有()A.1个B.2个C.3个D.4个8.等腰梯形中,,高,则该梯形的下底角为()A.B.C.D.9.已知的解是方程的一个解,则=()A.1B.2C.3D.410.矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC 上从B向C移动而R不动时,下列结论成立的是()A.线段EF的长不断增大B.线段EF的长不断减小C.线段EF的长不变D.线段EF的长不能确定二.填空题(本题共10小题,每小题4分,共40分,请将正确答案填在相应的横线上)11.下列各数:、、、、0.…中是无理数的有个.12.如果一个多边形的内角和为1440o,那么这个多边形的边数为.13.如图,数轴上表示1、的对应点分别为A、B,点B关于点A的对应点为C,设点C所表示的数为,那么__________.14.若方程是二元一次方程,则= .15.已知菱形的一个内角为60o,且一条对角线的长度为3cm,则菱形的面积为.16.如图,正方形中,在对角线上,那么_______________17.已知方程组与的解相同,则的值为.18.如图,矩形ABCD两邻边分别为3、4, 点P是矩形一边上任意一点,则点P到两条对角线AC、BD的距离之和PE+PF为.19.如图,梯形ABCD中,AD⊥BC,AB=CD=AD=1,⊥B=60o,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PC+PD的最小值为.20.甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将其中1人解出的题叫做难题,3人解出的题叫做容易题,则难题比容易题多道.三.解答题(本大题共8小题,每小题10分,共80分)21.计算下列各题:(1)(2)22.解下列方程组:(1)(2)23.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒(如图1所示),利用边角废料裁出正方形和长方形两种硬纸片(如图2所示),长方形的宽和正方形的边长相等. 现将150张正方形硬纸片和300张长方形硬纸片全部用于制作两种小盒,可以各做多少个?乙甲24.已知方程组,由于小明看错了方程①中的a,得到方程组的解为,小芳看错了方程②中的b,得到方程组的解为,请问:原方程组的解应该是多少?25.观察下列图形的变化过程,解答以下问题:如图,在⊥ABC中,D为BC边上的一动点(D点不与B、C两点重合),DE//AC交AB于E点,DF//AB 交AC于F点.(1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;(2)在(1)的条件下,⊥ABC满足什么条件时,四边形AEDF为正方形,为什么?26.为了解决农民工子女入学难的问题,我市建立了一套进城农民工子女就学保障机制,其中一项就是免交“借读费”.据统计2004年秋季有5000名农民工子女进入主城区中小学学习,预测2005年秋季进入主城区中小学学习的农民工子女将比2004年有所增加,其中小学增加20%,中学增加30%,这样,2005年秋季将新增1160名农民工子女在主城区中小学学习.(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2005年新增的1160名中小学生共免收多少“借读费”?(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2005年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?27.已知菱形ABCD,=,把一个含有角的三角尺与这个菱形叠合,使三角尺的角的顶点与点A重合,三角尺的一边与AB重合. 现将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC、CD相交于点E、F时(如图①),通过观察或测量BE、CF的长度你能得出什么结论?并证明你的结论.(2)在(1)问的条件下,四边形AECF的面积有何变化?证明你发现的结论.(3)当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F时(如图②),你在(1)中得到的结论还成立吗?请简要说明理由.28.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,你选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案?友情提示:祝贺你,终于将考题做完了,请你再仔细的检查一遍,看看有没有错的、漏的,可要仔细点!欢迎下载使用,分享让人快乐。

2012年秋季期末测试七年级数学试卷

2012年秋季期末测试七年级数学试卷

老河口市2012年秋季期末水平测试七 年 级 数 学 试 卷1.如果a a =,那么a 一定是( )A .正数B .0C .负数D .非负数 2.下列各式中,错误..的是( ) A .-(-1)>-(+2)B .73218-<-C .31)3.0(-<--D .2332->-3.下列各组中的两个单项式的和是单项式的是( ) A .4和4xB .32323x y y x -和C .2m m 和D .c ab ab 221002和 4.已知a -b =3,c -d =2则(b -c )-(a -d )的值是( )A .1-B .1C .-5D .5 5.运用等式性质进行的变形,不正确...的是( ) A .如果a -c =b -c ,那么a =b B .如果a +c =b +c ,那么a =b C .如果a =b ,那么 ac =bc D .如果ac =bc ,那么a =b 6.若关于x 的方程3x -k =2与0.5x +1=3的解相同,则k 的值为( ) A .1 B .4 C .10 D .-127.把方程52121+-=--x x x 去分母,正确的是 ( ) A .10x -5 (x -1)=1-2(x +2) B .10x -5 (x -1)=10-2(x +2) C .10x -5 (x -1)=10-(x +2) D .10x - (x -1)=10-(x +2)8.由图1所示的平面图形绕所给的直线旋转一周得到的几何体是( )9.如图2是正方体的表面展开图,则原正方体标有数字1的面所对面上的数字是( )A .2B .3C .5D .6 10.同一平面内三条直线两两相交,交点个数是( )A .1个B .2个C .3个D .1个或3个 11.已知 ∠1=63°5′,∠2=63.5°,则∠1与∠2的大小关系为( )A .∠1 >∠2B .∠1 = ∠2C .∠1<∠2D .无法比较12.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,同向而行,出发前乙在甲的前面.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .10或12.5B .2或10C .2或2.5D .2或12.5二.细心填一填:(每小题2分,共20分) 13.填空:(-8)+ =-15. 14.近似数8.05×106精确到 位. 15.-23的倒数的相反数是 .16.关于x 、y 的单项式-7x 2y m 的次数是5,请写出这个单项式的一个同类项 . 17.若2x 3-2k+3k =7是关于x 的一元一次方程,则x = .18.某产品出厂价比成本价多20%,已知出厂价为元,则成本价为 元.19.如果一个两位数的十位数字是个位数字的2倍,两个数位上的数字之和为12,则这个两位数是__________.20.若AB =10,BC =4,且A 、B 、C 三点在同一条直线上,M 、N 分别为AB 、BC 的中点,则MN= .21.52°15′36″角的余角等于 .22.B 在A 的北偏东40°,C 在A 的南偏西60°,则∠BAC= . 三.认真解一解:(共56分)23.(本题5分) 23`计算:()()⎥⎦⎤⎢⎣⎡-+-÷⎪⎭⎫ ⎝⎛-⨯-32175.0215424.(本题5分)已知1)2(2+-=+b a ,求{})]24(3[2322222b a ab ab b a ab ----的值.图2图1一、选择二、填空 13、 14 15 16 1718 19 20 21 22 三.认真解一解:(共56分) 23.(本题5分)`计算:()()⎥⎦⎤⎢⎣⎡-+-÷⎪⎭⎫ ⎝⎛-⨯-32175.0215424.(本题5分)已知1)2(2+-=+b a ,求{})]24(3[2322222b a ab ab b a ab ----的值.25.(本题5分)解方程:3)3(322-=+-x x x26.(本题6分)小明在做“当x 等于什么数时,43321ax x +-+的值与3互为相反数?”这一题目时,将题目中的“互为相反数”看成了“互为倒数”,结果求得x =-3.请帮助小明求出正确的x 的值.27.(本题6分)如图3,已知线段a 、b ,根据下列语名画图: (1)画射线AM ,(2)在射线AM 上顺次截取AB =BC =a ; (3)在线段AC 上截取AD =b (4)在线段CD 上截取CE =b请结合所画图形填空:线段DE = (用含a 、b 的式子表示); 请比较线段BD 与BE 的大小:BD BE .28(本题6分)已知一个角的余角的3倍与这个角的补角相等,求这个角的度数.29.(本题6分)如图4,已知∠BOC 与∠AOD 互补,OD 平分∠AOB ,且∠AOC =30°,求∠AOB 的度数.30.(本题7分)一件工作由甲单独完成需要7.5小时,由乙单独完成需要5小时.如果先由甲、乙合作2小时,再由乙单独完成剩余部分,乙完成剩余部分还需要多少时间?(列方程解)31.(本题10分)春节临近,某景区为吸引团体游客,对团体购买门票实行分段收费:团体购票不超过50张的部分,每张50元;超过50张但不超过100张的部分,每张40元;超过100张的部分,每张30元.(例:某单位购买了70张门票,其中50张每张50元,另外20张每张40元.) (1)团体购买x 张该景区门票,若x ≤50,则购门票需 元;若50<x ≤100,则购门票需 元;若x >100,则购门票需 元.(友情提示:填最简结果哟!)(2)某公司职工准备合伙组团到该景区游玩,团体购买门票每人一张,平均每人应付门票款42.5元,该公司合伙组团的有多少人?题号 1 2 3 4 5 6 7 8 9 10 11 12 答案图3图4DBCA。

2022-2023学年人教版七年级数学上册第二次月考测试题(附答案)

2022-2023学年人教版七年级数学上册第二次月考测试题(附答案)

人教版2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(每小题3分,30分)1.实数1,﹣1,0,﹣四个数中,最大的数是()A.0B.1C.﹣1D.2.某市某日的气温是﹣2℃~6℃,则该日的温差是()A.8℃B.6℃C.4℃D.﹣2℃3.下列各式中,是一元一次方程的是()A.2x+5y=6B.3x﹣2C.x2=1D.3x+5=84.下列各式中运算错误的是()A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x25.下列说法正确的是()A.单项式的系数是﹣5B.单项式a的系数为1,次数是0C.次数是6D.xy+x﹣1是二次三项式6.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8B.0C.2D.87.下面说法中错误的是()A.368万精确到万位B.0.0450精确到千分位C.2.58精确到百分位D.10000保留到百位为1.00×1048.如果a=b,则下列式子不成立的是()A.a+c=b+c B.a2=b2C.ac=bc D.a﹣c=c﹣b 9.在某次活动中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A.30x﹣8=31x+26B.30x+8=31x+26C.30x﹣8=31x﹣26D.30x+8=31x﹣2610.观察图和所给表格回答.当图形的周长为80时,梯形的个数为()梯形个数12345….图形周长58111417….A.25B.26C.27D.28二、填空题(每小题3分,30分)11.﹣23=.12.已知多项式2mx m+2+4x﹣7是关于x的三次多项式,则m=.13.产量由m千克增长15%后,达到千克.14.若有理数a、b满足|a+6|+(b﹣4)2=0,则a﹣b的值为.15.与原点的距离为2个单位的点所表示的有理数是.16.白玉兰商店把某种服装成本价提高50%后标价,又以7折卖出,结果每一件仍然获利20元,这种服装每件的成本是元.17.如果a﹣b=3,ab=﹣1,则代数式3ab﹣a+b﹣2的值是.18.列等式表示:“x的2倍与8的和等于10”上述等式可列为:.19.若代数式2a+3与8﹣3a的值相等,则a2021=.20.一份试卷,一共20道选择题,每一题答对得5分,答错或不答扣3分,小红共得68分,那么小红答对了道题.三、解答题(60分)21.(1)计算﹣12021+18÷(﹣3)×|﹣|(2)化简3a2﹣[8a﹣(4a﹣7)﹣2a2](3)化简求值﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=﹣,b=1022.解方程:(1)5(x+2)=2(5x﹣1);(2);(3)23.若方程3x+2a=12和方程3x﹣4=2的解相同,求a的值.24.甲乙两车从相距240km的两站同时开出,相对而行,甲车每小时行50km,乙车每小时行30km,问出发几小时后两车相距80km?25.抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲、乙两处各多少人?26.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天?27.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?参考答案一、选择题(每小题3分,30分)1.解:﹣1<﹣<0<1,故选:B.2.解:该日的温差=6﹣(﹣2)=6+2=8(℃).故选:A.3.解:A、含有2个未知数,故选项错误;B、不是等式,故选项错误;C、是2次方程,故选项错误;D、正确.故选:D.4.解:A、5x﹣2x=(5﹣2)x=3x,正确;B、5ab﹣5ba=(5﹣5)ab=0,正确;C、4x2y与5xy2不是同类项,不能合并,故本选项错误;D、3x2+2x2=(3+2)x2=5x2,正确.故选:C.5.解:A、单项式的系数是﹣,错误;B、单项式a的系数为1,次数是1,错误;C、次数是4,错误;D、正确.故选:D.6.解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选:D.7.解:A、368万精确到万位,此选项不符合题意;B、0.0450精确到万分位,此选项符合题意;C、2.58精确到百分位,此选项不符合题意;D、10000保留到百位为1.00×104,此选项不符合题意.故选:B.8.解:A.根据等式性质1,在等式的两边同时加上c,结果成立,故正确;B.根据等式性质2,在等式的两边同时乘以一个相同的数或式子,结果成立,故正确;C.根据等式性质2,在等式的两边同时乘以c,结果成立,故正确;D.不符合等式的性质,故不成立.故选:D.9.解:由题意得:30x+8=31x﹣26,故选:D.10.解:周长分别是5,8,11,14…可以看出:首项a1=5,等差d=3,由公式a n=a1+(n﹣1)d,即a n=5+(n﹣1)×3=3n+2.∴3n+2=80,解得n=26.故选:B.二、填空题(每小题3分,30分)11.解:﹣23=﹣8.故答案为:﹣8.12.解:∵多项式2mx m+2+4x﹣7是关于x的三次多项式,∴m+2=3,解得:m=1,故答案为:1.13.解:根据题意得:m(1+15%)=1.15m(千克);故答案为:1.15m.14.解:∵|a+6|+(b﹣4)2=0,∴a+6=0,b﹣4=0,∴a=﹣6,b=4,∴a﹣b=﹣6﹣4=﹣10.故答案为:﹣10.15.解:设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得:x=±2.故答案为:±2.16.解:设这种服装每件的成本为x元,依题意,得:0.7×(1+50%)x﹣x=20,解得:x=400.故答案为:400.17.解:∵a﹣b=3,ab=﹣1,∴3ab﹣a+b﹣2,=3×(﹣1)﹣3﹣2,=﹣3﹣3﹣2,=﹣8.故答案为:﹣8.18.解:依题意得:2x+8=10.故答案是:2x+8=10.19.解:根据题意得:2a+3=8﹣3a,移项合并得:5a=5,解得:a=1,则原式=1,故答案为:120.解:设小红答对了x道题,则答错或不答(20﹣x)道题,依题意,得:5x﹣3(20﹣x)=68,解得:x=16.故答案为:16.三、解答题(60分)21.解:(1)原式=﹣1﹣6×=﹣1﹣3=﹣4;(2)原式=3a2﹣8a+4a﹣7+2a2=5a2﹣4a﹣7;(3)原式=a2﹣2ab﹣b2﹣a2﹣ab+b2=﹣3ab,当a=﹣,b=10时,原式=2.22.解:(1)去括号得:5x+10=10x﹣2,移项合并得:﹣5x=﹣12,解得:x=2.4;(2)去分母得:6(x﹣2)=2x﹣1,去括号得:6x﹣12=2x﹣1,移项合并得:4x=11,解得:x=;(3)方程整理得:x﹣=2﹣,去分母得:10x﹣5x+5=20﹣2x﹣4,移项合并得:7x=11,解得:x=.23.解:3x﹣4=2x=2,∵方程3x+2a=12和方程3x﹣4=2的解相同,把x=2代入3x+2a=12得6+2a=12,a=3.24.解:设出发x小时后两车相距80km,(50+30)x=240﹣80或(50+30)x=240+80解得,x=2或x=4答:出发2小时或4小时后两车相距80km.25.解:设应调往甲处x人,调往乙处(23﹣x)人.依题意,有31+x=2(21+23﹣x),解方程,得x=19,23﹣x=23﹣19=4.答:应调往甲处19人,调往乙处4人.26.解:设甲挖掘机挖了x天,则乙挖掘机挖了(x+6)天,依题意,得:+=1,解得:x=4.答:甲挖掘机挖了4天.27.解:(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票;(2)设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多.。

人教版七年级上册数学第二次月考测试卷 (4)

人教版七年级上册数学第二次月考测试卷 (4)

山东省滨州市惠民县2017-2018学年七年级上第二次月考试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣3 2.如图,下列四个几何体,从上面、正面、左侧三个不同方向看到的形状中只有两个相同的是()A.正方体B.球C.直三棱柱D.圆柱3.在三个数﹣0.5,,,﹣(﹣2)中,最大的数是()A.﹣0.5 B.C. D.﹣(﹣2)4.若a,b表示有理数,且a=﹣b,那么在数轴上表示a与数b的点到原点的距离()A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远C.相等D.无法比较5.科学记数法a×10n中a的取值范围为()A.0<|a|<10 B.1<|a|<10 C.1≤|a|<9 D.1≤|a|<106.某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品()A.(3m+2)kg B.(5m+2)kg C.(3m﹣2)kg D.(5m﹣2)kg7.将圆柱沿斜方向切去一截,剩下的一段如图所示,将它的侧面沿一条母线剪开,则得到的侧面展开图的形状不可能是()A.B.C.D.8.下列几何体不可以展开成一个平面图形的是()A.三棱柱B.圆柱C.球D.正方体二、填空题(本题满分24分,共有6道小题,每小题3分)9.单项式﹣的次数是,系数是.10.已知式子101﹣102=1,移动其中一位数字使等式成立,移动后的式子为.11.若与﹣9x b﹣3y2的和应是单项式,则的值是.12.如果3a=﹣3a,那么表示a的点在数轴上的位置.13.正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为.颜色红黄蓝白紫绿对应数字12345614.(1+)×(1+)×(1+)×(1+)×…×(1+)×(1+)=.15.若3x﹣2y=4,则5﹣y=.16.按相同的规律把下面最后一个方格画出.三、作图题(满分4分)17.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).四、解答题(满分68分,共7题)18.(5分)在数轴上把下列各数表示出来,并用“<”连接各数.﹣(+2),﹣|﹣1|,1,0,﹣(﹣3.5)19.(29分)计算:(1);(2)化简并求值:5xy﹣[(x2+6xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=,y=﹣6.20.(6分)某区中学学生足球比赛共赛10轮(即每队均需参赛10场),胜一场得3分,平一场得0分,负一场得﹣1分.在比赛中,某队胜了5场,负了3场,踢平了2场,问该队最后共得多少分?21.(8分)某糖果厂想要为儿童设计一种新型的装糖果的不倒翁,请你根据包装厂设计好的三视图(如图)的尺寸计算其容积.(球的体积公式:V=πr3)22.(6分)若﹣1<x<4,化简|x+1|+|4﹣x|.23.(8分)火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?24.(6分)计算:﹣(﹣)﹣(﹣)﹣…﹣(﹣).山东省滨州市惠民县2017-2018学年七年级上第二次月考试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣3【分析】根据多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正进行化简可得答案.【解答】解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.【点评】此题主要考查了相反数,关键是掌握多重符号的化简方法.2.(3分)如图,下列四个几何体,从上面、正面、左侧三个不同方向看到的形状中只有两个相同的是()A.正方体B.球C.直三棱柱D.圆柱【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【解答】解:A、正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项错误;B、球从上面、正面、左侧三个不同方向看到的形状圆,故此选项错误;C、直三棱柱从上面看是矩形中间有一条竖杠,从左边看是三角形,从正面看是矩形,故此选项错误;D、圆柱从上面和正面看都是矩形,从左边看是圆,故此选项正确;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)在三个数﹣0.5,,,﹣(﹣2)中,最大的数是()A.﹣0.5 B.C. D.﹣(﹣2)【分析】本题主要考查绝对值以及去正负号的方法,还要知道π的大小.【解答】解:正数比负数大,所以最大的数是其中的正数,<2,||=,﹣(﹣2)=2;故选D.【点评】解决此类问题首先将绝对值去掉,然后将数化简,最后再比较大小.4.(3分)若a,b表示有理数,且a=﹣b,那么在数轴上表示a与数b的点到原点的距离()A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远C.相等D.无法比较【分析】利用相反数的定义判断即可.【解答】解:若a、b表示有理数,且a=﹣b,那么在数轴上表示数a与数b的点到原点的距离一样远,故选:C.【点评】此题考查了数轴,以及相反数,熟练掌握相反数的定义是解本题的关键.5.(3分)科学记数法a×10n中a的取值范围为()A.0<|a|<10 B.1<|a|<10 C.1≤|a|<9 D.1≤|a|<10【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.【解答】解:科学记数法a×10n中a的取值范围为1≤|a|<10.故选D.【点评】本题考查科学记数法的定义,是需要熟记的内容.6.(3分)某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品()A.(3m+2)kg B.(5m+2)kg C.(3m﹣2)kg D.(5m﹣2)kg【分析】根据题意表示出第二天与第三天卖出的数量,相加即可得到结果.【解答】解:第一天是mkg,第二天是(m+2)kg,第三天是3mkg,则它们的和为m+2+3m+m=(5m+2)kg.故选B.【点评】此题考查了合并同类项,属于应用题,弄清题意是解本题的关键.7.(3分)将圆柱沿斜方向切去一截,剩下的一段如图所示,将它的侧面沿一条母线剪开,则得到的侧面展开图的形状不可能是()A.B.C.D.【分析】结合题目中的图形,可知得到的侧面展开图的形状不可能是角的形状.【解答】解:结合题目中的图形,可知得到的侧面展开图的形状不可能是角的形状,故选C.【点评】解决此类问题一定要注意结合实际考虑正确的结果.8.(3分)下列几何体不可以展开成一个平面图形的是()A.三棱柱B.圆柱C.球D.正方体【分析】首先想象三棱柱、圆柱、正方体的平面展开图,然后作出判断.【解答】解:A、三棱柱可以展开成3个矩形和2个三角形,故此选项错误;B、圆柱可以展开成两个圆和一个矩形,故此选项错误;C、球不能展开成平面图形,故此选项符合题意;D、正方体可以展开成一个矩形和两个小正方形,故此选项错误;故选:B.【点评】本题主要考查了图形展开的知识点,注意几何体的形状特点进而分析才行.二、填空题(本题满分24分,共有6道小题,每小题3分)9.(3分)单项式﹣的次数是4,系数是﹣.【分析】利用单项式的次数与系数的定义求解即可.【解答】解:单项式﹣的次数是4,系数是﹣.故答案为:4,﹣.【点评】本题主要考查了单项式,解题的关键是熟记单项式的次数与系数的定义.10.(3分)已知式子101﹣102=1,移动其中一位数字使等式成立,移动后的式子为102﹣101=1.【分析】根据有理数的减法运算法则解答即可.【解答】解:移动个位上的1和2,102﹣101=1.故答案为:102﹣101=1.【点评】本题考查了有理数的减法,是基础题,读懂题目信息并理解题意是解题的关键.11.(3分)若与﹣9x b﹣3y2的和应是单项式,则的值是﹣17.【分析】两个单项式的和为单项式,说明两个单项式是同类项,根据同类项的定义,列方程组求a、b即可.【解答】解:根据题意可知,两个单项式为同类项,∴b﹣3=6,a﹣3=2,解得a=5,b=9,∴=2×5﹣×92=﹣17.【点评】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.12.(3分)如果3a=﹣3a,那么表示a的点在数轴上的原点位置.【分析】根据a=﹣a,知2a=0,从而可作出判断.【解答】解:∵3a=﹣3a,∴a=﹣a,∴2a=0,∴表示a的点在数轴上的原点位置.故答案为:原点.【点评】本题考查了相反数与数轴的知识,属于基础题,注意如果一个数的相反数与其本身相等,则这个数为0.13.(3分)正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为17.颜色红黄蓝白紫绿对应数字123456【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由图可知和红相邻的有黄,蓝,白,紫,那么和红相对的就是绿,则绿红相对,同理可知黄紫相对,白蓝相对,∴长方体的下底面数字和为5+2+6+4=17.故答案为:17.【点评】本题考查生活中的立体图形与平面图形,同时考查了学生的空间思维能力.注意正方体的空间图形,从相对面入手,分析及解答问题.14.(3分)(1+)×(1+)×(1+)×(1+)×…×(1+)×(1+)=.【分析】根据题意得到1+=,原式利用此规律变形,约分即可得到结果.【解答】解:由题意得:1+==,则原式=×++…+×=2×=,故答案为:【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(3分)若3x﹣2y=4,则5﹣y=.【分析】把3x﹣2y=4,看作一个整体,进一步整理代数式整体代入求得答案即可.【解答】解:∵3x﹣2y=4,∴5﹣y=5﹣(3x﹣2y)=5﹣=.故答案为:.【点评】此题考查代数式求值,掌握整体代入的思想是解决问题的关键.16.(3分)按相同的规律把下面最后一个方格画出.【分析】根据题意在第一个图中,阴影部分为轴对称图形,第二个图中,两个一组,依次循环;可得答案.【解答】解:故答案为.【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.三、作图题(满分4分)17.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).【分析】由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,4;从左面看有2列,每列小正方形数目分别为2,4.据此可画出图形.【点评】此题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.四、解答题(满分68分,共7题)18.(5分)在数轴上把下列各数表示出来,并用“<”连接各数.﹣(+2),﹣|﹣1|,1,0,﹣(﹣3.5)【分析】直接将各数在数轴上表示,再用不等号连接即可.【解答】解:如图所示:,﹣(+2)<﹣|﹣1|<0<1<﹣(﹣3.5).【点评】此题主要考查了有理数比较大小,正确在数轴上表示各数是解题关键.19.(29分)计算:(1);(2)化简并求值:5xy﹣[(x2+6xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=,y=﹣6.【分析】(1)原式第一项表示1四次幂的相反数,第二项先计算括号中及绝对值里边式子的运算,计算即可得到结果;(2)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣1+××7=﹣1+=;(2)原式=5xy﹣x2﹣6xy+y2﹣x2﹣3xy+2y2=﹣2x2﹣4xy+3y2,当x=,y=﹣6时,原式=﹣+12+108=119.【点评】此题考查整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.20.(6分)某区中学学生足球比赛共赛10轮(即每队均需参赛10场),胜一场得3分,平一场得0分,负一场得﹣1分.在比赛中,某队胜了5场,负了3场,踢平了2场,问该队最后共得多少分?【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:因为5×3+(﹣1)×3=15﹣3=12(分),所以该队最后共得12分.【点评】注意正负数的运算法则是解题的关键.21.(8分)某糖果厂想要为儿童设计一种新型的装糖果的不倒翁,请你根据包装厂设计好的三视图(如图)的尺寸计算其容积.(球的体积公式:V=πr3)【分析】首先求出几何体上面部分的体积,进而求出下面部分的体积,进而得出答案.【解答】解:如图所示:此几何体是圆锥和半球的组合体,∵AC=AB=13cm,BC=10cm,∴DC=5cm,∴AD=12cm,∴上面圆锥的体积为:×π×52×12=100π(cm3),下面半球体积为:×π×53=π(cm3),∴该几何体的容积为:100π+π=π(cm3).【点评】此题主要考查了由三视图判断几何体,正确得出几何体的组成是解题关键.22.(6分)若﹣1<x<4,化简|x+1|+|4﹣x|.【分析】先去掉绝对值符号,再合并即可.【解答】解:∵﹣1<x<4,∴|x+1|+|4﹣x|=1+x+4﹣x=5.【点评】本题考查了整式的混合运算的应用,能正确去掉绝对值符号是解此题的关键.23.(8分)火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?【分析】(1)根据“车上的人数+上车的人数﹣下车的人数=车上剩余的人数”解答;(2)代入(1)中所列的代数式求值即可.【解答】解:(1)依题意得:(10a﹣3b)+(5a﹣2b)﹣(5a﹣2b)=a﹣2b;(2)把a=250,b=100代入(a﹣2b),得×250﹣2×100=1675(人).答:在武汉站上车的有1675人.【点评】本题考查了列代数式和代数式求值.解决问题的关键是读懂题意,找到所求的量的等量关系.24.(6分)计算:﹣(﹣)﹣(﹣)﹣…﹣(﹣).【分析】解本题可以先去括号,就可以变成与的和.【解答】解:原式=﹣(﹣)﹣(﹣)﹣…﹣(﹣)=﹣+﹣…+=.【点评】正确观察去括号以后各数的关系,变成两数的和,是解决本题的关键.学会舍弃——时间有限,你不可能在同一时间内做好所有事生活中,我们常常听到身边的人说:“做人,别指望所有人都会喜欢你。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22、 (本题 7 分)统计数据显示,在我国的 664 座城市中,按水资源情况可分为三类:暂不 缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的 3 倍多 52 座,一般缺水城市数是严重缺水城市数的 2 倍.求严重缺水城市有多少座?
23、 (本题 10 分)某班一次数学竞赛共出了 20 道题,现抽出了 4 份试卷进行分析如下表: (1)问答对一题得多少分,不答或答错一题扣多少分? (2)一位同学说他得了 65 分,请问可能吗?请说明理由。 不答或答 试卷 A B C D 答对题数 错题数 19 18 17 10 1 2 3 10 94 88 82 40 得分
2012-2013 学年度上学期七年级数学试卷
(满分:120 分 时间:120 分钟)
一、 选择题 (本大题共 12 小题, 每小题 3 分, 共 36 分, 在每小题给出的四个选项中, 只有一 项是符合题目要求的) 1、-3 的绝对值等于( A.-3 ) C. ± 3 ) C. ab D. 2 abc D. 小于 3
三、 解答题 (本大题共 9 小题,共 72 分) 17、 (本题 6 分)计算题(每小题 3 分) (1) 18 (14) (18) 13 (2)
7 1 3 ( ) 6 6 14
18、 (本题 6 分)解方程: 9 3 y 5 y 5 并对结果进行检验.
19、 (本题 8 分)解方程(每小题 4 分) x-1 x+2 (1)x- =2- 2 5 4x-1.5 5x-0.8 1.2-x (2) - = 0.5 0.2 0.1
B. 3
2、与 2 ab 是同类项的为( A. 2 ac B. 2ab2
3、下面运算正确的是( A.3ab+3ac=6abc
2

2
B.4a b-4b a=0 )
C. 2 x 7 x 9 x
2 2
4
D. 3 y 2 2 y2 y2
4、下列四个式子中,是方程的是( A.1+2+3+4=10 B. 2 x 3 )
10、整式 mx 2 n 的 值随 x 的取值不同而不同,下表是 当 x 取不同值时对应的整式的 值,则关于 x 的方程 mx 2n 4 的解为( A.-1 C.0 B.-2 D.为其它的值 ) x
mx 2 n
-2 4
-1 0
0 -4
1 -8
2 -12
11、某商品进价 a 元,商店将价格提高 30%作零 售价销售,在销售旺季过后,商店以 8 折(即售价的 80%)的价格开展促销活动,这时 一件商品的售价为( A.a 元; 12、下列 结论: ①若 a+b+c=0,且 abc≠0,则方程 a+bx+c=0 的解是 x=1; ②若 a(x-1)=b(x-1)有唯一的解,则 a≠b; ③若 b=2a, 则关于 x 的方程 ax+b=0(a≠0)的解为 x=- ) C.1.04a 元; D.0.92a 元
C. 2 x 1
D. 2 3 1
5、下列结论中正确的是(
A.在等式 3a-2=3b+5 的两边都除以 3,可得等式 a-2=b+5 B.如果 2=- x ,那么 x =-2 C.在等式 5=0.1 x 的两边都除以 0.1,可得等式 x =0.5 D.在等式 7 x =5 x +3 的两边都减去 x -3 ,可得等式 6 x -3=4 x +6 6、已知方程 x A.-1
24、 (本题满分 10 分)把 2005 个正整数 1,2,3,4,…,2005 按如图方式排列成一个表。
1 8 15 22
2 9
3 10
4 11 18
2 k 1
k 0 是关于 x 的一元一次方程,则方程的解等于(
B.1 ) C. C.

1 2
D.-
1 2
7、解为 x=-3 的方程3 = 6 2
x - 1 3 + 2x = 4 3
D.3(x-2)-2(x-3)=5x
8、下面是解方程的部分步骤:①由 7 x=4x-3,变形得 7x-4x=3;②由
x3 2x =1+ , 2 3
变形得 2(2-x)=1+3(x-3);③由 2(2x-1)-3(x-3)=1,变形得 4x-2-3x-9=1; ④由 2(x+1)=7+x,变形得 x=5.其中变形正确的个数是( A.0 个 B.1 个 C.2 个 ) D.3 个
9、 如图,用火柴棍拼成一排由三角形组 成的图形,如果图形中含有 16 个三 角形,则需要( A.30 根 )根火柴棍 B.31 根 C.32 根 D.33 根
B.0.8a 元
1 ; 2
④若 a+b+c=1 ,且 a≠0,则 x=1 一定是方程 ax+b+c=1 的解; 其中结论正确个数有( A.4 个 B. 3 个 ) C. 2 个; D. 1 个
二、填空题:(本大题共 4 小题, 每小题 3 分, 共 12 分, 请将你的答案写在“____”处) 13、写出满足下列条件的一个一元一次方程:①未知数的系数是-1;②方程的解是 3,这 样的方程可以是:____________ . . .
14、设某数为 x,它的 2 倍是它的 3 倍与 5 的差,则列出的方程为______________
2 15、若多项式 3x 4 x 6 的值为 9,则多项式 x
2
4 x 6 的值为______________ 3
16、某商场推出了一促销活动:一次购物少于 100 元的不优惠;超过 100 元(含 100 元)的 按 9 折付款。小明买 了一件衣服,付款 99 元,则这件衣服的原价是___________元。
20、(本题 6 分)关于 x 的方程 x 2m 3x 4 与 2 m x 的解互为相反数. (1)求 m 的值; (4 分) (2)求这两个方程的解. (2 分)
21、 (本题 7 分)把一些图书分给某班学生阅读,如果每人分 3 本,则剩余 20 本;如果每人分 4 本,则还缺 25 本. ⑴这个班有多少学生? (5 分) ⑵这批图书共有多少本? (2 分)
相关文档
最新文档