【十年高考(理数)2010-2019】二 函数概念与基本初等函数 第四讲指数函数对数函数幂函数(附答案)
十年高考理科数学真题 专题二 函数概念与基本初等函数 四指数函数对数函数幂函数及答案
专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数2019年1.(2019浙江16)已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 2.(2019全国Ⅰ理3)已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<3.(2019天津理6)已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A.a c b <<B.a b c <<C.b c a <<D.c a b <<2010-2018年一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞2.(2018全国卷Ⅲ)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+3.(2018天津)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>4.(2017新课标Ⅰ)设,,x y z 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 5.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 A .a b c <<B .c b a <<C .b a c <<D .b c a <<6.(2017北京)已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 7.(2017北京)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)A .3310B .5310C .7310D .9310 8.(2016全国I) 若1a b >>,01c <<,则A .c c a b <B .c c ab ba <C .log log b a a c b c <D .log log a b c c < 9.(2016全国III) 已知432a =,254b =,1325c =,则A .b a c <<B .a b c <<C .b c a <<D .c a b <<10.(2015新课标Ⅱ)设函数211log (2),1()2,1x x x f x x -+-<⎧=⎨⎩≥,则2(2)(log 12)f f -+=A .3B .6C .9D .1211.(2015北京)如图,函数()f x 的图像为折线ACB ,则不等式()()2log 1f x x +≥的解集是A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤12.(2015天津)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记0.5log 3a =,()2log 5b f =,()2c f m =则,,a b c 的大小关系为A .a b c <<B .a c b <<C .c a b <<D .c b a <<13.(2015四川)设,a b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 14.(2015山东)设函数31,1()2,1xx x f x x -<⎧=⎨⎩≥,则满足()(())2f a f f a =的a 的取值范围是 A .2[,1]3B .[0,1]C .2[,)3+∞ D .[1,)+∞15.(2014山东)已知函数log ()a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图,则下列结论成立的是A .0,1a c >>B .1,01a c ><<C .01,1a c <<>D .01,01a c <<<<16.(2014安徽)设3log 7a =, 1.12b =, 3.10.8c =,则A .c a b <<B .b a c <<C .a b c <<D .b c a <<17.(2014浙江)在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是18.(2014天津)函数212()log(4)f x x=-的单调递增区间是A.(0,)+¥B.(,0)-?C.(2,)+¥D.(),2-?19.(2013新课标)设357log6,log10,log14a b c===,则A.c b a>>B.b c a>>C.a c b>>D.a b c>>20.(2013陕西)设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是A.·loglog loga c cb ab=B.·log lolog gaa ab a b=C.()log ogg lloa a ab cbc=g D.()logg ogo lla a ab b cc+=+21.(2013浙江)已知yx,为正实数,则A.yxyx lglglglg222+=+B.lg()lg lg222x y x y+=gC.yxyx lglglglg222+=•D.lg()lg lg222xy x y=g22.(2013天津)已知函数()f x是定义在R上的偶函数,且在区间[0,)+∞单调递增.若实数a满足212(log)(log)2(1)f a f fa≤+,则a的取值范围是A.[1,2]B.10,2⎛⎤⎥⎝⎦C.1,22⎡⎤⎢⎥⎣⎦D.(0,2]23.(2012安徽)23(log9)(log4)⋅=A.14B.12C. 2 D.424.(2012新课标)当12x<≤时,4logxax<,则a的取值范围是A.(0,2B.(2C.D.2)25.(2012天津)已知122a=,0.212b-⎛⎫= ⎪⎝⎭,52log2c=,则,,a b c的大小关系为A .c ba<< B .c a b << C .b a c << D .b c a << 26.(2011北京)如果,0log log 2121<<y x 那么A .1y x <<B .1x y <<C .1x y <<D .1y x <<27.(2011安徽)若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A .1(,)b a B .(10,1)a b - C .10(,1)b a+ D .2(,2)a b 28.(2011辽宁)设函数122,1()1log ,1x x f x x x -⎧=⎨->⎩≤,则满足()2f x ≤的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞)D .[0,+∞)29.(2010山东)函数22xy x =-的图像大致是30.(2010天津)设5log 4a =,5(log 3)b =2,4log 5c =,则A .a <c <bB .b <c <aC .a <b <cD .b <a <c 31.(2010浙江)已知函数2()log (1),f x x =+若()1,f α= α=A .0B .1C .2D .332.(2010辽宁)设25abm ==,且112a b+=,则m = A 10 B .10 C .20 D .10033.(2010陕西)下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是A .幂函数B .对数函数C .指数函数D .余弦函数34.(2010新课标)已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若a ,b ,c 均不相等,且()f a =()f b =()f c ,则abc 的取值范围是A .(1,10)B .(5,6)C .(10,12)D .(20,24)35.(2010天津)若函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,则实数a 的取值范围是A .(1,0)(0,1)-UB .(,1)(1,)-∞-+∞UC .(1,0)(1,)-+∞UD .(,1)(0,1)-∞-U 二、填空题36.(2018江苏)函数()f x =的定义域为 .37.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在(0,)+∞上递减,则α=_____.38.(2018上海)已知常数0a >,函数2()(2)x x f x ax =+的图像经过点6()5P p ,、1()5Q q -,,若236p qpq +=,则a =__________.39.(2016年浙江) 已知1a b >>,若5log log 2a b b a +=,b aa b =,则a = ,b = . 40.(2015江苏)不等式224x x-<的解集为_______.41.(2015浙江)若4log 3a =,则22aa-+=_______.42.(2014新课标)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__.43.(2014天津)函数2()lg f x x =的单调递减区间是________. 44.(2014重庆)函数2()log )f x x =的最小值为_________.45.(2013四川)的值是____________.46.(2012北京)已知函数()lg f x x =,若()1f ab =,则22()()f a f b += . 47.(2012山东)若函数()(0,1)x f x a a a =>≠在[1,2]-上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =____.48.(2011天津)已知22log log 1a b +≥,则39ab+的最小值为__________.49.(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________.专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数答案部分 2019年1.解析:存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为22|2(364)2|3a t t ++-≤, 可得2222(364)233a t t -++-剟, 即224(364)33a t t ++剟, 由223643(1)11t t t ++=++…, 可得403a 剟,可得a 的最大值为43. 2.解析:依题意22log 0.2log 10a ==<,0.20221b ==>, 因为0.3000.20.21=<<, 所以0.30.201c =∈(,),所以a c b <<.故选B .3.解析 由题意,可知5log 21a =<,115122221log 0.2log log 5log 5log 425b --====>=. 0.20.51c =<,所以b 最大,a ,c 都小于1.因为5log 2a ==150.210.52⎛⎫==== ⎪⎝⎭225log 42>=>12⎛< ⎝c <, 所以a c b <<.故选A .2010-2018年1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C . 2.B 【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a b ab+<<.又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .3.D 【解析】因为2log e >1a =,ln 2(0,1)b =∈,12221log log 3log 13c e ==>>. 所以c a b >>,故选D .4.D 【解析】设235xyzk ===,因为,,x y z 为正数,所以1k >,则2log x k =,3log y k =,5log z k =, 所以22lg lg 3lg 913lg 23lg lg8x k y k =⨯=>,则23x y >,排除A 、B ;只需比较2x 与5z , 22lg lg 5lg 2515lg 25lg lg 32x k z k =⨯=<,则25x z <,选D .5.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-=又2222log 4log 5.1log 83=<<=,0.8122<<, 所以0.822log 5.13<<,故b a c <<,选C .6.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .7.D 【解析】设36180310M x N ==,两边取对数得,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-≈,所以93.2810x =,即M N最接近9310,选D .8.C 【解析】选项A ,考虑幂函数cy x =,因为0c >,所以cy x =为增函数,又1a b >>,所以cca b >,A 错.对于选项B ,ccab ba <()cb b aa ⇔<,又()xb y a=是减函数,所以B 错.对于选项D ,由对数函数的性质可知D 错,故选C .9.A 【解析】因为4133216a ==,2155416b ==,1325c =,且幂函数13y x =在R 上单调递增,指数函数16xy =在R 上单调递增,所以b a c <<,故选A . 10.C 【解析】由于2(2)1log 43f -=+=,22log 121log 62(log 12)226f -===,所以2(2)(log 12)f f -+=9.11.C 【解析】如图,函数2log (1)y x =+的图象可知,2()log (1)f x x +≥的解集是{|11}x x -<≤.(x +1)12.C 【解析】因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 21213123a f f ⎛⎫===-=-=-= ⎪⎝⎭,()2log 5b f =2log 5214=-=, ()02(0)210c f m f ===-=,所以c a b <<,故选C .13.B 【解析】由指数函数的性质知,若333ab>>,则1a b >>,由对数函数的性质,得log 3log 3a b <;反之,取12a =,13b =,显然有log 3log 3a b <,此时01b a <<<,于是333ab>>,所以“333ab>>”是log 3log 3a b <的充分不必要条件,选B . 14.C 【解析】由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥. 15.D 【解析】由图象可知01a <<,当0x =时,log ()log 0a a x c c +=>,得01c <<. 16.B 【解析】∵32log 71a >=>, 1.122b =>, 3.10.81c =<,所以b a c <<.17.D 【解析】当1a >时,函数()(0)af x x x =>单调递增,函数()log a g x x =单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当01a <<时,函数()(0)af x x x =>单调递增,函数()log a g x x =单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知C 错,因此选D .18.D 【解析】240x ->,解得2x <-或2x >.由复合函数的单调性知()f x 的单调递增区间为(,2)-∞-.19.D 【解析】33log 61log 2,a ==+5577log 101log 2,log 141log 2b c ==+==+,由下图可知D 正确.解法二 3321log 61log 21log 3a ==+=+,5521log 101log 21log 5b ==+=+, 7721log 141log 21log 7c ==+=+,由222log 3log 5log 7<<,可得答案D 正确. 20.B 【解析】a ,b ,c ≠1. 考察对数2个公式:abb y x xyc c a a a a log log log ,log log log =+= 对选项A :bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假.对选项B :abb b a bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式一致,所以为真.对选项C :c b bc a a a log log log ⋅=)(,显然与第一个公式不符,所以为假.对选项D :c b c b a a alog log )log +=+(,同样与第一个公式不符,所以为假.所以选B .21.D 【解析】取特殊值即可,如取lg lg lg lg 10,1,22,223,x yx y x y +===+=()lg lg11lg lg 22,21x y x y +⋅==.22.C 【解析】因为函数()f x 是定义在R 上的偶函数,且122log log a a =-,所以222122(log )(log )(log )(log )2(log )2(1)f a f a f a f a f a f +=+-=≤,即2(log )(1)f a f ≤,因为函数在区间[0,)+∞单调递增,所以2(log )(1)f a f ≤, 即2log 1a ≤,所以21log 1a -≤≤,解得122a ≤≤,即a 的取值范围是1,22⎡⎤⎢⎥⎣⎦,选C .23.D 【解析】23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯=. 24.B 【解析】由指数函数与对数函数的图像知12011log 42a a <<⎧⎪⎨>⎪⎩1a <<,故选B. 25.A 【解析】因为122.02.022)21(<==-b ,所以a b <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A .26.D 【解析】根据对数函数的性质得1x y >>.27.D 【解析】当2x a =时,2lg 2lg 2y a a b ===,所以点2(,2)a b 在函数lg y x =图象上.28.D 【解析】当1x ≤时122x-≤,解得0x ≥,所以01x ≤≤;当1x >时,21log 2x -≤,解得12x ≥,所以1x >,综上可知0x ≥.29.A 【解析】因为当x =2或4时,220xx -=,所以排除B 、C ;当x =–2时,2124<04x x -=-,故排除D ,所以选A . 30.D 【解析】因为50log 41<<,所以b <a <c . 31.B 【解析】α+1=2,故α=1,选B . 32.A 【解析】211log 2log 5log 102,10,m m m m a b+=+==∴=又0,m m >∴Q 33.C 【解析】)()()(y x f a a a y f x f yx yx+===+.34.C 【解析】画出函数的图象,如图所示,不妨设a b c <<,因为()()()f a f b f c ==,所以1ab =,c 的取值范围是(10,12),所以abc 的取值范围是(10,12).35.C 【解析】由分段函数的表达式知,需要对a 的正负进行分类讨论。
高考数学大一轮复习 第二章 函数概念与基本初等函数I 第4讲 二次函数性质的再研究与幂函数试题 理
2018版高考数学大一轮复习第二章函数概念与基本初等函数I 第4讲二次函数性质的再研究与幂函数试题理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第二章函数概念与基本初等函数I 第4讲二次函数性质的再研究与幂函数试题理北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第二章函数概念与基本初等函数I 第4讲二次函数性质的再研究与幂函数试题理北师大版的全部内容。
第二章函数概念与基本初等函数I 第4讲二次函数性质的再研究与幂函数试题理北师大版(建议用时:40分钟)一、选择题1.(2017·郑州外国语学校期中)已知α∈{-1,1,2,3},则使函数y=xα的值域为R,且为奇函数的所有α的值为( )A.1,3B.-1,1C.-1,3D.-1,1,3解析因为函数y=xα为奇函数,故α的可能值为-1,1,3。
又y=x-1的值域为{y|y≠0},函数y=x,y=x3的值域都为R.所以符合要求的α的值为1,3.答案A2.已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a〉0,2a+b=0 D。
a<0,2a+b=0解析因为f(0)=f(4)>f(1),所以函数图像应开口向上,即a>0,且其对称轴为x=2,即-b2a=2,所以4a+b=0。
答案A3。
在同一坐标系内,函数y=x a(a≠0)和y=ax+错误!的图像可能是()解析若a<0,由y=x a的图像知排除C,D选项,由y=ax+错误!的图像知应选B;若a>0,y =x a的图像知排除A,B选项,但y=ax+错误!的图像均不适合,综上选B。
2019届高考数学大一轮复习讲义:第二章 函数概念与基本初等函数Ⅰ 第4讲 二次函数的再研究与幂函数.4
§2.4二次函数与幂函数1.二次函数(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图像和性质2.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常量. (2)常见的5种幂函数的图像(3)常见的5种幂函数的性质函数 特征 性质y =x y =x 2y =x 3y =12x y =x -1定义域 R R R [0,+∞) {x |x ∈R ,且x ≠0} 值域 R [0,+∞)R [0,+∞) {y |y ∈R ,且y ≠0}奇偶性奇偶奇非奇非偶奇知识拓展1.幂函数的图像和性质(1)幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图像过定点(1,1),如果幂函数的图像与坐标轴相交,则交点一定是原点. (3)当α>0时,y =x α在[0,+∞)上为增函数;当α<0时,y =x α在(0,+∞)上为减函数.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧ a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( × )(2)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( × )(3)在y =ax 2+bx +c (a ≠0)中,a 决定了图像的开口方向和在同一直角坐标系中的开口大小.( √ )(4)函数y =122x 是幂函数.( × )(5)如果幂函数的图像与坐标轴相交,则交点一定是原点.( √ ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( × ) 题组二 教材改编2.已知幂函数f (x )=k ·x α的图像过点⎝⎛⎭⎫12,22,则k +α等于( )A.12 B .1 C.32 D .2 答案 C解析 由幂函数的定义,知⎩⎪⎨⎪⎧k =1,22=k ·⎝⎛⎭⎫12α. ∴k =1,α=12.∴k +α=32.3.已知函数f (x )=x 2+4ax 在区间(-∞,6)内是减少的,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3答案 D解析 函数f (x )=x 2+4ax 的图像是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内是减少的可知,区间(-∞,6)应在直线x =-2a 的左侧, ∴-2a ≥6,解得a ≤-3,故选D. 题组三 易错自纠 4.幂函数f (x )=21023a a x-+(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( )A .3B .4C .5D .6 答案 C解析 因为a 2-10a +23=(a -5)2-2, f (x )=2(5)2a x--(a ∈Z )为偶函数,且在区间(0,+∞)上是减函数, 所以(a -5)2-2<0,从而a =4,5,6,又(a -5)2-2为偶数,所以只能是a =5,故选C.5.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图像可能是( )答案 D解析 由a +b +c =0和a >b >c 知,a >0,c <0, 由c <0,排除A ,B ,又a >0,排除C.6.已知函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是______. 答案 -1解析 函数y =2x 2-6x +3的图像的对称轴为x =32>1,∴函数y =2x 2-6x +3在[-1,1]上是减少的,∴y min =2-6+3=-1.题型一 求二次函数的解析式典例 (1)已知二次函数的图像过点(0,1),对称轴为x =2,最小值为-1,则它的解析式为__________________. 答案 f (x )=12x 2-2x +1解析 依题意可设f (x )=a (x -2)2-1, 又其图像过点(0,1),∴4a -1=1, ∴a =12,∴f (x )=12(x -2)2-1=12x 2-2x +1.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2), 所以f (x )=ax 2+2ax ,由4a ×0-4a 24a=-1,得a =1,所以f (x )=x 2+2x . 思维升华求二次函数解析式的方法跟踪训练 (1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R 且a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.(2)若函数f (x )=(x +a )(bx +2a )(a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.答案 (1)x 2+2x +1 (2)-2x 2+4解析 (1)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a , 由已知f (x )=ax 2+bx +1,∴a =1, 故f (x )=x 2+2x +1.(2)由f (x )是偶函数知f (x )图像关于y 轴对称, ∴-a =-⎝⎛⎭⎫-2ab ,即b =-2,∴f (x )=-2x 2+2a 2, 又f (x )的值域为(-∞,4], ∴2a 2=4,故f (x )=-2x 2+4.题型二 二次函数的图像和性质命题点1 二次函数的图像典例两个二次函数f (x )=ax 2+bx +c 与g (x )=bx 2+ax +c 的图像可能是( )答案 D解析 函数f (x )图像的对称轴为x =-b 2a ,函数g (x )图像的对称轴为x =-a 2b ,显然-b2a与-a2b同号,故两个函数图像的对称轴应该在y 轴的同侧.只有D 满足. 命题点2 二次函数的单调性典例函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是减少的,则实数a 的取值范围是( ) A .[-3,0) B .(-∞,-3] C .[-2,0]D .[-3,0]答案 D解析 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足题意. 当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上是减少的知⎩⎪⎨⎪⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的递减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知f (x )必为二次函数且a <0, 又3-a2a =-1,∴a =-3. 命题点3 二次函数的最值典例已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.引申探究将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图像是开口向上的抛物线,对称轴为x =-a . (1)当-a <12即a >-12时,f (x )max =f (2)=4a +5,(2)当-a ≥12即a ≤-12时,f (x )max =f (-1)=2-2a ,综上,f (x )max=⎩⎨⎧4a +5,a >-12,2-2a ,a ≤-12.命题点4 二次函数中的恒成立问题典例 (1)已知函数f (x )=x 2-x +1,在区间[-1,1]上,不等式f (x )>2x +m 恒成立,则实数m的取值范围是________________. 答案 (-∞,-1)解析 f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0, 令g (x )=x 2-3x +1-m ,要使g (x )=x 2-3x +1-m >0在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. ∵g (x )=x 2-3x +1-m 在[-1,1]上是减少的, ∴g (x )min =g (1)=-m -1. 由-m -1>0,得m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).(2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫-∞,12 解析 2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立;当x ≠0时,a <32⎝⎛⎭⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,∴a <12.综上,实数a 的取值范围是⎝⎛⎭⎫-∞,12. 思维升华解决二次函数图像与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)由不等式恒成立求参数取值范围的思路及关键解题思路:一是分离参数;二是不分离参数.两种思路都是将问题归结为求函数的最值或值域.跟踪训练 (1)设abc >0,二次函数f (x )=ax 2+bx +c 的图像可能是( )答案 D解析 由A ,C ,D 知,f (0)=c <0,从而由abc >0,所以ab <0,所以对称轴x =-b2a >0,知A ,C 错误,D 满足要求;由B知f (0)=c >0,所以ab >0,所以x =-b2a<0,B 错误.(2)已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________. 答案 -1或3解析 由于函数f (x )的值域为[1,+∞), 所以f (x )min =1.又f (x )=(x -a )2-a 2+2a +4, 当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1, 即a 2-2a -3=0,解得a =3或a =-1.(3)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫12,+∞ 解析 由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x <1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12.题型三 幂函数的图像和性质1.已知点⎝⎛⎭⎫33,3在幂函数f (x )的图像上,则f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数答案 A解析 设f (x )=x α,由已知得⎝⎛⎭⎫33α=3,解得α=-1,因此f (x )=x -1,易知该函数为奇函数.2.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图像如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c答案 B解析 由幂函数的图像可知,在(0,1)上幂函数的指数越大,函数图像越接近x 轴,由题图知a >b >c >d ,故选B. 3.若a <0,则0.5a ,5a ,5-a的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a答案 B解析 5-a =⎝⎛⎭⎫15a ,因为a <0时,函数y =x a 在(0,+∞)上是减少的,且15<0.5<5,所以5a <0.5a <5-a. 思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图像和性质是解题的关键.数形结合思想和分类讨论思想在二次函数中的应用典例 (12分)设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.思想方法指导研究二次函数的性质,可以结合图像进行;对于含参数的二次函数问题,要明确参数对图像的影响,进行分类讨论. 规范解答解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图像的对称轴为x =1.[2分] 当t +1<1,即t <0时,函数图像如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;[5分]当t ≤1≤t +1,即0≤t ≤1时,函数图像如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;[8分]当t >1时,函数图像如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.[11分]综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.[12分]1.若函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ) A .先减少后增加 B .先增加后减少 C .是减少的 D .是增加的答案 D2.(2018·江西九江七校联考)若幂函数f (x )=(m 2-4m +4)·268m m x -+在(0,+∞)上为增函数,则m 的值为( ) A .1或3 B .1 C .3 D .2答案 B解析 由题意得m 2-4m +4=1,m 2-6m +8>0, 解得m =1.3.已知函数f (x )=ax 2+x +5的图像在x 轴上方,则a 的取值范围是( ) A.⎝⎛⎭⎫0,120 B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞ D.⎝⎛⎭⎫-120,0 答案 C解析 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.4.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( ) A .[0,+∞) B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞)答案 C解析 由题意可知函数f (x )的图像开口向下,对称轴为x =2(如图),若f (a )≥f (0),从图像观察可知0≤a ≤4.5.已知二次函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与a 值有关 答案 C解析 该二次函数的图像开口向下,对称轴为直线x =14, 又依题意,得x 1<0,x 2>0,又x 1+x 2=0,∴当x 1,x 2在对称轴的两侧时,14-x 1>x 2-14,故f (x 1)<f (x 2). 当x 1,x 2都在对称轴的左侧时,由单调性知f (x 1)<f (x 2).综上,f (x 1)<f (x 2).6.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6) 答案 A解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令f (x )=x 2-4x -2,x ∈(1,4),所以f (x )<f (4)=-2,所以a <-2.7.已知P =322-,Q =⎝⎛⎭⎫253,R =⎝⎛⎭⎫123,则P ,Q ,R 的大小关系是________.(用“>”连接) 答案 P >R >Q解析 P =322-=⎝⎛⎭⎫223,根据函数y =x 3是R 上的增函数,且22>12>25,得⎝⎛⎭⎫223>⎝⎛⎭⎫123>⎝⎛⎭⎫253,即P >R >Q .8.已知幂函数f (x )=12x-,若f (a +1)<f (10-2a ),则a 的取值范围为________. 答案 (3,5) 解析 ∵幂函数f (x )=12x -是减少的,定义域为(0,+∞),∴由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧ a +1>0,10-2a >0,a +1>10-2a ,解得3<a <5. 9.对于任意实数x ,函数f (x )=(5-a )x 2-6x +a +5恒为正值,则a 的取值范围是__________. 答案 (-4,4)解析 由题意可得⎩⎪⎨⎪⎧5-a >0,Δ=36-4(5-a )(a +5)<0, 解得-4<a <4.10.若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是________. 答案 (0,1]解析 由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1.∵y =1x +1在(-1,+∞)上为减函数, ∴由g (x )=a x +1在[1,2]上是减函数可得a >0, 故0<a ≤1.11.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________. 答案 -1或2解析 f (x )=-(x -a )2+a 2-a +1,当a ≥1时,f (x )max =f (1)=a =2,即a =2;当0<a <1时,f (x )max =f (a )=a 2-a +1=2,此时无解;当a <0时,f (x )max =f (0)=1-a =2,∴a =-1.综上,a =-1或a =2.12.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.解 (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],对称轴x =-32∈[-2,3], ∴f (x )min =f ⎝⎛⎭⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴函数f (x )的值域为⎣⎡⎦⎤-214,15.(2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时, f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意.综上可知,a =-13或-1.13.已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 由题意知f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24, f (x )min =-b 24,令t =x 2+bx ≥-b 24, 则f (f (x ))=f (t )=t 2+bt =⎝⎛⎭⎫t +b 22-b 24, 当b <0时,f (f (x ))的最小值为-b 24,所以“b <0”能推出“f (f (x ))的最小值与f (x )的最小值相等”;当b =0时,f (f (x ))=x 4的最小值为0,f (x )的最小值也为0,所以“f (f (x ))的最小值与f (x )的最小值相等”不能推出“b <0”,选A.14.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.答案 (-∞,-5]解析 方法一 ∵不等式x 2+mx +4<0对x ∈(1,2)恒成立,∴mx <-x 2-4对x ∈(1,2)恒成立,即m <-⎝⎛⎭⎫x +4x 对x ∈(1,2)恒成立, 令y =x +4x ,则函数y =x +4x在x ∈(1,2)上是减函数.∴4<y <5,∴-5<-⎝⎛⎭⎫x +4x <-4,∴m ≤-5.方法二 设f (x )=x 2+mx +4,当x ∈(1,2)时,由f (x )<0恒成立,得⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0, 解得⎩⎪⎨⎪⎧m ≤-5,m ≤-4,即m ≤-5.15.若函数f (x )=x 2-a |x -1|在[0,+∞)上是增加的,则实数a 的取值范围是________. 答案 [0,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-ax +a ,x ∈[1,+∞),x 2+ax -a ,x ∈(-∞,1), 当x ∈[1,+∞)时,f (x )=x 2-ax +a=⎝⎛⎭⎫x -a 22+a -a 24, 当x ∈(-∞,1)时,f (x )=x 2+ax -a=⎝⎛⎭⎫x +a 22-a -a 24. ①当a 2>1,即a >2时,f (x )在⎣⎡⎭⎫1,a 2上是减少的,在⎝⎛⎭⎫a 2,+∞上是增加的,不合题意; ②当0≤a 2≤1,即0≤a ≤2时,符合题意; ③当a 2<0,即a <0时,不符合题意. 综上,a 的取值范围是[0,2].16.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解 (1)由已知c =1,a -b +c =0,且-b 2a=-1, 解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得,f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又当x ∈(0,1]时,1x -x 的最小值为0,-1x-x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].。
2022高考理数复习资料讲义:第2章 函数概念与基础初等函数 第4讲
第4讲二次函数与幂函数[考纲解读] 1理解并掌握二次函数的定义、图象及性质,能利用二次函数、二次方程与二次不等式之间的关系解决简单问题.重点、难点2掌握幂函数的图象和性质,结合函数y=,y=2,y=3,y =,y=的图象,了解它们的变化情况.重点[考向预测] 从近三年高考情况来看,本讲是高考中的一个热点内容.预测2022年高考对二次函数可能会直接考查,也可能会与其他知识相结合进行考查,考查三个二次之间的关系、函数最值的求解、图象的判断等.在解答题中也可能会涉及二次函数.幂函数的考查常与其他知识结合,比较大小、图象及性质的应用为重点命题方向1.二次函数1二次函数解析式的三种形式①一般式:f=2+na≠0.③两根式:f=0.5a5a0.2a0.2a5a0.5a5a0.5a0.2a0.5a0.2a5a5a0.2a0.5a0.2a0.5a5a5a0. 5a0.2a2c2m2+m-1的取值范围是C.-1,2答案D解析因为函数y=2m2+m-1解得≤m <21.求幂函数的解析式幂函数的形式是y=αα∈R,其中只有一个参数α,因此只需一个条件即可确定其解析式.2.幂函数的指数与图象特征的关系当α≠0,1时,幂函数y=α在第一象限内的图象特征:α取值α>10<α<1α<0图象特殊点过点0,0,1,1过点0,0,1,1过点1,1凹凸性下凸上凸下凸单调性递增递增递减举例y=2y=y=-1,y=-3.幂函数单调性的应用在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.1.当∈0,+∞时,幂函数y=m2+m-1·-5m-3为减函数,则实数m的值为A.-2 B.1C.1或-2 D.m≠答案B解析由题意得解得m=12.2022·全国卷Ⅲ已知a=22+n∵f2=f-1,∴抛物线的对称轴为==∴m=,又根据题意函数有最大值8,∴n=8,∴y=f=a2+8∵f2=-1,∴a2+8=-1,解得a=-4,∴f=-42+8=-42+4+7解法三:利用两根式由已知f+1=0的两根为1=2,2=-1,故可设f+1=a-2+1,即f=a2-a-2a-1又函数有最大值8,∴=8解得a=-4或a=0舍去,故所求函数解析式为f=-42+4+7条件探究1 将举例说明中的“f2=-1,f-1=-1”改为“与轴的两个交点坐标为0,0和-2,0”,其他条件不变,如何求解解设f=a+2.因为函数f的最大值为8,所以a<0,且f ma=f-1=-a=8,所以a=-8,所以f=-8+2=-82-16条件探究2 将举例说明中条件变为:二次函数f的图象经过点4,3,在轴上截得的线段长为2,且对∀∈R,都有f2+=f2-,试确定f的解析式.解因为f2-=f2+对∈R恒成立,所以f的对称轴为=2又因为f的图象在轴上截得的线段长为2,所以f=0的两根为1和3设f的解析式为f=a-1-3a≠0.又因为f的图象过点4,3,所以3a=3,a=1所以f的解析式为f=-1-3,即f=2-4+3求二次函数解析式的方法二次函数f=a2+b+ca≠0,满足①不等式f+2>0的解集为{|1<<3},②方程f+6a=0有两个相等的实数根,试确定f的解析式.解因为f+2>0的解集为1,3,设f+2=a-1-3,且a<0,所以f=a-1-3-2=a2-2+4a+3a由方程f+6a=0得a2-2+4a+9a=0因为方程有两个相等的实数根,所以Δ=[-2+4a]2-4a·9a=0,解得a=1或a=-由于a<0,舍去a=1所以f=-2--题型二次函数的图象与性质角度1 二次函数的图象1.2022·重庆五中模拟一次函数y=a+b与二次函数y=a2+b+c在同一坐标系中的图象大致是答案C解析若a>0,则一次函数y=a+b为增函数,二次函数y =a2+b+c的图象开口向上,故可排除A;若a<0,一次函数y =a+b为减函数,二次函数y=a2+b+c的图象开口向下,故可排除D;对于选项B,看直线可知a>0,b>0,从而-<0,而二次函数图象的对称轴在y轴的右侧,故排除B,选C角度2 二次函数的单调性2.2022·河南中原名校联考已知函数f=2a2+4a-3+5在区间-∞,3上是减函数,则a的取值范围是答案D解析因为函数f=2a2+4a-3+5在区间-∞,3上是减函数,当a≠0时,a须满足解得0<a≤;当a=0时,f=-12+5在-∞,3上是减函数.综上知,a的取值范围是角度3 二次函数的最值3.2022·浙江杭州模拟已知f=-42+4a-4a-a2在[0,1]内的最大值为-5,则a的值为B.1或C.-1或D.-5或答案D解析f=-42-4a,对称轴为直线=①当≥1,即a≥2时,f在[0,1]上递增,∴y ma=f1=-4-a2令-4-a2=-5,得a=±1舍去.②当0<<1,即0<a<2时,y ma=f=-4a令-4a=-5,得a =③当≤0,即a≤0时,f在[0,1]上递减,∴y ma=f0=-4a-a2令-4a-a2=-5,解得a=-5或a=1舍去.综上所述,a=或-角度4 与二次函数有关的恒成立问题4.12022·武邑调研已知定义在R上的奇函数f满足:当≥0时,f=3,若不等式f-4t>f2m+mt2对任意实数t恒成立,则实数m的取值范围是A.-∞,-B.-,0C.-∞,0∪,+∞D.-∞,-∪,+∞2当∈1,3时,若不等式2+m+4<0恒成立,则m的取值范围是________.答案1A 2-∞,-5]解析1当<0时,f=-f-=3,∴f=3∈R,易知f在R上是增函数,结合f-4t>f2m+mt2对任意实数t恒成立,知-4t>2m+mt2对任意实数t恒成立,即mt2+4t+2m<0对任意实数t恒成立,故有解得m∈-∞,-.2设f=2+m+4因为∈1,3时,不等式2+m+4<0恒成立,所以即解得m≤-5,所以m的取值范围是-∞,-5].1.识别二次函数图象应学会“三看”2.研究二次函数单调性的思路1二次函数的单调性在其图象对称轴的两侧不同,因此研究二次函数的单调性时要依据其图象的对称轴进行分类讨论.2若已知f=a2+b+ca>0在区间A上单调递减单调递增,则A⊆,即区间A一定在函数图象对称轴的左侧右侧.如举例说明23.二次函数最值问题的解法抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.如举例说明34.与二次函数有关的不等式恒成立的条件1a2+b+c>0a≠0恒成立的充要条件是2a2+b+c<0a≠0恒成立的充要条件是如举例说明41.3a≥f恒成立⇔a≥f ma,a≤f恒成立⇔a≤f min4f=a2+b+c<0a>0在m,n上恒成立⇔如举例说明42.5f=a2+b+c>0a<0在[m,n]上恒成立⇔1.2022·郑州模拟对数函数y=log a a>0且a≠1与二次函数y=a-12-在同一坐标系内的图象可能是答案A解析当0<a<1时,y=log a为减函数,y=a-12-开口向下,其对称轴为=<0,排除C,D;当a>1时,y=log a为增函数,y =a-12-开口向上,其对称轴为=>0,2.2022·四川成都七中模拟函数f=的单调递增区间是A.-∞,-2] B.-∞,1]C.[1,+∞D.[4,+∞答案D解析由2-2-8≥0得≥4或≤-2,令2-2-8=t,则y=为增函数,∴t=2-2-8在[4,+∞上的增区间是所求函数的单调递增区间,∴所求函数的单调递增区间为[4,+∞.3.2022·陕西西安模拟已知函数f=-2+4,∈[m,5]的值域是[-5,4],则实数m的取值范围是A.-∞,-1 B.-1,2]C.[-1,2] D.[2,5]答案C解析∵f=-2+4=--22+4,∴当=2时,f2=4,由f=-2+4=-5,解得=5或=-1,∴要使函数在[m,5]上的值域是[-5,4],则-1≤m≤24.已知a是实数,函数f=2a2+2-3在∈[-1,1]上恒小于零,则实数a的取值范围为________.答案解析2a2+2-3<0在[-1,1]上恒成立.当=0时,-3<0,成立;当≠0时,a<2-,因为∈-∞,-1]∪[1,+∞,当=1时,右边取最小值,∴a<综上,实数a的取值范围是。
(北京卷)十年真题(2010-2019)高考数学真题分类汇编 专题03 函数概念与基本初等函数 文(含解析)
专题03函数概念与基本初等函数历年考题细目表历年高考真题汇编1.【2019年北京文科03】下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=2﹣x C.y=log x D.y【解答】解:在(0,+∞)上单调递增,和在(0,+∞)上都是减函数.故选:A.2.【2018年北京文科05】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.3.【2017年北京文科05】已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:B.4.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.5.【2016年北京文科04】下列函数中,在区间(﹣1,1)上为减函数的是()A.y B.y=cos x C.y=ln(x+1)D.y=2﹣x【解答】解:A.x增大时,﹣x减小,1﹣x 减小,∴增大;∴函数在(﹣1,1)上为增函数,即该选项错误;B.y=cos x在(﹣1,1)上没有单调性,∴该选项错误;C.x增大时,x+1增大,ln(x+1)增大,∴y=ln(x+1)在(﹣1,1)上为增函数,即该选项错误;D.;∴根据指数函数单调性知,该函数在(﹣1,1)上为减函数,∴该选项正确.故选:D.6.【2016年北京文科08】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.1 2 3 4 5 6 7 8 9 10学生序号1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60立定跳远(单位:米)30秒63 a 75 60 63 72 70 a﹣1 b65跳绳(单位:次)在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛【解答】解:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a﹣1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B.7.【2015年北京文科03】下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos x C.y=|lnx| D.y=2﹣x【解答】解:对于A,(﹣x)2sin(﹣x)=﹣x2sin x;是奇函数;对于B,(﹣x)2cos(﹣x)=x2cos x;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣x)=2x≠2﹣x,2x≠﹣2﹣x;是非奇非偶的函数;故选:B.8.【2015年北京文科08】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12 350002015年5月15日48 35600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升【解答】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8;故选:B.9.【2014年北京文科02】下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x C.y=lnx D.y=|x|【解答】解:A.函数的定义域为R,但函数为减函数,不满足条件.B.函数的定义域为R,函数增函数,满足条件.C.函数的定义域为(0,+∞),函数为增函数,不满足条件.D.函数的定义域为R,在(0,+∞)上函数是增函数,在(﹣∞,0)上是减函数,不满足条件.故选:B.10.【2014年北京文科06】已知函数f(x)log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)【解答】解:∵f(x)log2x,∴f(2)=2>0,f(4)0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C.11.【2014年北京文科08】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【解答】解:将(3,0.7),(4,0.8),(5,0.5)分别代入p=at2+bt+c,可得,解得a=﹣0.2,b=1.5,c=﹣2,∴p=﹣0.2t2+1.5t﹣2,对称轴为t 3.75.故选:B.12.【2013年北京文科03】下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣x C.y=lg|x| D.y=﹣x2+1【解答】解:A中,y为奇函数,故排除A;B中,y=e﹣x为非奇非偶函数,故排除B;C中,y=lg|x|为偶函数,在x∈(0,1)时,单调递减,在x∈(1,+∞)时,单调递增,所以y=lg|x|在(0,+∞)上不单调,故排除C;D中,y=﹣x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选:D.13.【2012年北京文科05】函数f(x)()x的零点个数为()A.0 B.1 C.2 D.3【解答】解:函数f(x)的定义域为[0,+∞)∵y在定义域上为增函数,y在定义域上为增函数∴函数f(x)在定义域上为增函数而f(0)=﹣1<0,f(1)0故函数f(x)的零点个数为1个故选:B.14.【2012年北京文科08】某棵果树前n年的总产量S n与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,则m的值为()A.5 B.7 C.9 D.11【解答】解:若果树前n年的总产量S与n在图中对应P(S,n)点则前n年的年平均产量即为直线OP的斜率由图易得当n=9时,直线OP的斜率最大即前9年的年平均产量最高,故选:C.15.【2011年北京文科03】如果x y<0,那么()A.y<x<1 B.x<y<1 C.1<x<y D.1<y<x【解答】解:不等式可化为:又∵函数的底数0 1故函数为减函数∴x>y>1故选:D.16.【2010年北京文科06】给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④【解答】解:①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;②中的函数是由函数向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;③中的函数图象是由函数y=x﹣1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.故选:B.17.【2017年北京文科11】已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.【解答】解:x≥0,y≥0,且x+y=1,则x2+y2=x2+(1﹣x)2=2x2﹣2x+1,x∈[0,1],则令f(x)=2x2﹣2x+1,x∈[0,1],函数的对称轴为:x,开口向上,所以函数的最小值为:f().最大值为:f(1)=2﹣2+1=1.则x2+y2的取值范围是:[,1].故答案为:[,1].18.【2016年北京文科10】函数f(x)(x≥2)的最大值为.【解答】解:;∴f(x)在[2,+∞)上单调递减;∴x=2时,f(x)取最大值2.故答案为:2.19.【2016年北京文科14】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有种;②这三天售出的商品最少有种.【解答】解:①设第一天售出商品的种类集为A,第二天售出商品的种类集为B,第三天售出商品的种类集为C,如图,则第一天售出但第二天未售出的商品有19﹣3=16种;②由①知,前两天售出的商品种类为19+13﹣3=29种,第三天售出但第二天未售出的商品有18﹣4=14种,当这14种商品第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种. 故答案为:①16;②29.20.【2015年北京文科10】2﹣3,,log 25三个数中最大数的是. 【解答】解:由于0<2﹣3<1,12,log 25>log 24=2,则三个数中最大的数为log 25. 故答案为:log 25.21.【2014年北京文科14】顾客请一位工艺师把A ,B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序 时间 原料 粗加工精加工原料A 9 15 原料B621则最短交货期为 个工作日.【解答】解:由题意,徒弟利用6天完成原料B 的加工,由师傅利用21天完成精加工,与此同时,徒弟利用9天完成原料A 的加工,最后由师傅利用15天完成精加工,故最短交货期为6+21+15=42 个工作日. 故答案为:42.22.【2013年北京文科13】函数f (x )的值域为 .【解答】解:当x≥1时,f(x);当x<1时,0<f(x)=2x<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).23.【2012年北京文科12】已知函数f(x)=lgx,若f(ab)=1,则f(a2)+f(b2)=.【解答】解:∵函数f(x)=lgx,f(ab)=lg(ab)=1,f(a2)+f(b2)=lga2+lgb2=lg(ab)2=2lg(ab)=2.故答案为:2.24.【2012年北京文科14】已知f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2.若∀x∈R,f(x)<0或g (x)<0,则m的取值范围是.【解答】解:∵g(x)=2x﹣2,当x≥1时,g(x)≥0,又∵∀x∈R,f(x)<0或g(x)<0∴此时f(x)=m(x﹣2m)(x+m+3)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面则∴﹣4<m<0故答案为:(﹣4,0)25.【2011年北京文科13】已知函数若关于x的方程f(x)=k有两个不同的实根,则数k的取值范围是.【解答】解:函数的图象如下图所示:由函数图象可得当k∈(0,1)时方程f(x)=k有两个不同的实根,故答案为:(0,1)26.【2011年北京文科14】设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=,N(t)的所有可能取值为.【解答】解:当t=0时,平行四边形ABCD内部的整点有(1,1);(1,2);(2,1);(2,2);(3,1);(3,2)共6个点,所以N(0)=6作出平行四边形ABCD将边OD,BC变动起来,结合图象得到N(t)的所有可能取值为6,7,8故答案为:6;6,7,827.【2010年北京文科09】已知函数y,如图表示的是给定x的值,求其对应的函数值y 的程序框图,①处应填写;②处应填写.【解答】解:由题目可知:该程序的作用是计算分段函数y的值,由于分段函数的分类标准是x是否大于2,而满足条件时执行的语句为y=2﹣x,易得条件语句中的条件为x<2不满足条件时②中的语句为y=log2x故答案为:x<2,y=log2x.28.【2010年北京文科14】(北京卷理14)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为说明:“正方形PABC沿X轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.【解答】解:不难想象,从某一个顶点(比如A)落在x轴上的时候开始计算,到下一次A点落在x轴上,这个过程中四个顶点依次落在了x轴上,而每两个顶点间距离为正方形的边长1,因此该函数的周期为4.下面考察P点的运动轨迹,不妨考察正方形向右滚动,P点从x轴上开始运动的时候,首先是围绕A点运动个圆,该圆半径为1,然后以B点为中心,滚动到C点落地,其间是以BP为半径,旋转90°,然后以C为圆心,再旋转90°,这时候以CP为半径,因此最终构成图象如下:故其与x轴所围成的图形面积为.故答案为:4,π+1.考题分析与复习建议本专题考查的知识点为:函数,函数的单调性与最值,函数的奇偶性与周期性,幂函数与二次函数,指数函数,对数函数,分段函数,函数的图象,函数与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等.预测明年本考点题目会比较稳定,备考方向以知识点函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等为重点较佳. 最新高考模拟试题 1.已知是定义域为[a ,a +1]的偶函数,则2b a a -=( ) A .0B .34C .2D .4 【答案】B【解析】∵f (x )在[a ,a +1]上是偶函数,∴﹣a =a +1⇒a 12=-, 所以f (x )的定义域为[12-,12], 故:f (x )12=-x 2﹣bx +1, ∵f (x )在区间[12-,12]上是偶函数, 有f (12-)=f (12),代入解析式可解得:b =0; ∴2b a a -13144=-=. 故选:B .2.已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足.若(3)1f =,则不等式的解集为( ) A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .D .【答案】A【解析】因为对121x x ∀<≤,满足,所以()y f x =当1≤x 时,是单调递减函数,又因为)1(+x f 为偶函数,所以()y f x =关于1x =对称,所以函数()y f x =当1>x 时,是增函数,又因为(3)1f =,所以有1)1(=-f ,当2log 1x ≤时,即当02x <≤时,当2log 1x >时,即当2x >时,,综上所述:不等式的解集为1,82⎛⎫ ⎪⎝⎭,故本题选A. 3.函数的单调减区间为( ) A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞ 【答案】A【解析】函数,所以或1x <-,所以函数()f x 的定义域为4x >或1x <-,当3(,)2-∞时,函数是单调递减,而1x <-,所以函数的单调减区间为(),1-∞-,故本题选A 。
十年真题(2010-2019)高考数学(理)分类汇编专题03 函数概念与基本初等函数(新课标Ⅰ卷)(原卷版)
专题03函数概念与基本初等函数历年考题细目表历年高考真题汇编1.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a2.【2018年新课标1理科09】已知函数f(),g()=f()++a.若g()存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)3.【2017年新课标1理科05】函数f()在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(﹣2)≤1的的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]4.【2017年新课标1理科11】设、y、为正数,且2=3y=5,则()A.2<3y<5 B.5<2<3y C.3y<5<2 D.3y<2<55.【2016年新课标1理科08】若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.a log b c<b log a c D.log a c<log b c6.【2014年新课标1理科03】设函数f(),g()的定义域都为R,且f()是奇函数,g()是偶函数,则下列结论正确的是()A.f()•g()是偶函数B.|f()|•g()是奇函数C.f()•|g()|是奇函数D.|f()•g()|是奇函数7.【2014年新课标1理科06】如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为的函数f (),则y=f()在[0,π]的图象大致为()A.B.C.D.8.【2013年新课标1理科11】已知函数f(),若|f()|≥a,则a的取值范围是()A.(﹣∞,0] B.(﹣∞,1] C.[﹣2,1] D.[﹣2,0]9.【2011年新课标1理科02】下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=23B.y=||+1 C.y=﹣2+4 D.y=2﹣||10.【2011年新课标1理科12】函数y的图象与函数y=2sinπ,(﹣2≤≤4)的图象所有交点的横坐标之和等于()A.8 B.6 C.4 D.211.【2010年新课标1理科04】如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,),角速度为1,那么点P到轴距离d关于时间t的函数图象大致为()A.B.C.D.12.【2010年新课标1理科08】设偶函数f()满足f()=2﹣4(≥0),则{|f(﹣2)>0}=()A.{|<﹣2或>4} B.{|<0或>4} C.{|<0或>6} D.{|<﹣2或>2}13.【2010年新课标1理科11】已知函数,若a,b,c互不相等,且f(a)=f(b )=f (c ),则abc 的取值范围是( ) A .(1,10) B .(5,6) C .(10,12)D .(20,24)14.【2015年新课标1理科13】若函数f ()=ln ()为偶函数,则a = .考题分析与复习建议本专题考查的知识点为:函数,函数的单调性与最值,函数的奇偶性与周期性,幂函数与二次函数,指数函数,对数函数,分段函数,函数的图象,函数与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等.预测明年本考点题目会比较稳定,备考方向以知识点函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等为重点较佳.最新高考模拟试题1.已知()21f x ax bx =-+是定义域为[a ,a +1]的偶函数,则2b a a -=( )A .0B .34C 2D .42.已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为( )A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫⋃+∞ ⎪⎝⎭D .(,1)(8,)-∞⋃+∞3.函数22()log (34)f x x x =--的单调减区间为( )A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞4.已如定义在R 上的函数()f x 的周期为6.且()[]()()11,3,02,0,3xx x f x f x x ⎧⎛⎫-+∈-⎪ ⎪=⎨⎝⎭⎪-∈⎩,则()()78f f -+=( ) A .11B .134C .7D .1145.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .3y x =B .y x 1=-C .y x 1=-D .x y 2=6.设函数2,,()=,.x e x a f x x x a x a ⎧≤⎨-+>⎩则下列结论中正确的是( )A .对任意实数a ,函数()f x 的最小值为14a -B .对任意实数a ,函数()f x 的最小值都不是14a -C .当且仅当12a ≤时,函数()f x 的最小值为14a -D .当且仅当14a ≤时,函数()f x 的最小值为14a -7.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( ) A .2()(2)3-∞+∞,,U B .2(2)3, C .22()33-,D .22()()33-∞-+∞,,U 8.设函数1212,2()3log (2),2x x f x x x -⎧+≥=⎨+-<⎩,则((0))f f =( )A .5B .8C .9D .179.已知函数()ln ln()f x x a x =+-的图象关于直线1x =对称,则函数()f x 的值域为( ) A .(0,2)B .[0,)+∞C .(2]-∞D .(,0]-∞10.已知函数()f x 是R 上的偶函数,且对任意的x R ∈有(3)()f x f x +=-,当(3,0)x ∈- 时,()25f x x =-,则(8)f =( )A .11B .5C .-9D .-111.已知函数122,0()2,()()2,0x acosx x f x g x a R x a x -+≥⎧==∈⎨+<⎩,若对任意11)[x ∈+∞,,总存在2x R ∈,使12()()f x g x =,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭ C .1,[1,2]2⎛⎫-∞ ⎪⎝⎭U D .371,,224⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦U12.已知函数()22(1),0log ,0x x f x x x ⎧+⎪=⎨>⎪⎩…,若方程f ()=a 有四个不同的解1,2,3,4,且1<2<3<4,则()3122341x x x x x ++的取值范围为( ) A .(﹣1,+∞)B .(﹣1,1]C .(﹣∞,1)D .[﹣1,1)13.已知定义在实数集R 上的函数()f x 的图象经过点(1,2)--,且满足()()f x f x -=,当0≤<a b 时不等式()()0f b f a b a->-恒成立,则不等式(1)20f x -+<的解集为( )A .(0,2)B .(2,0)-C .(,0)(2,)-∞+∞UD .(,2)(0,)-∞-+∞U14.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数 D .奇函数,且在(0,10)是减函数15.已知()f x 与函数sin y a x =-关于点(12,0)对称,()g x 与函数xy e =关于直线y x =对称,若对任意(]10,1x ∈,存在2[,2]2x π∈使112()()g x x f x -≤成立,则实数a 的取值范围是( )A .1(,]sin1-∞ B .1[,)sin1+∞ C .1(,]cos1-∞D .1[,)cos1+∞16.函数()(),f x g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,设()()()11h x f x g x =+++,则下列结论中正确的是( ) A .()h x 的图象关于(1,0)对称 B .()h x 的图象关于(1,0)-对称 C .()h x 的图象关于1x =对称D .()h x 的图象关于1x =-对称17.偶函数()f x 在[]0,2上递增,且()1a f =,121log 4b f ⎛⎫= ⎪⎝⎭,2log c f ⎛= ⎝⎭大小为( )A .c a b >>B .a c b >>C .b a c >>D .a b c >>18.设函数2,1(),12x x f x x x -⎧≤⎪=⎨>⎪⎩,则满足()()2f f a f a =⎡⎤⎣⎦的a 的取值范围是( )A .(],0-∞B .[]0,2C .[)2,+∞D .(][),02,-∞⋃+∞19.设函数2()x x f x e e x -=++,则使()()21f x f x >+成立的x 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .1,13⎛⎫- ⎪⎝⎭D .1,(1,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭20.已知函数()f x 的定义域为(0,)+∞,对于定义域内任意x ,[]2()log 3f f x x -=,则函数()()7g x f x x =+-的零点所在的区间为( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)21.已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1100f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值为 ______ 22.设函数ln(2),1()24,1x x f x x x +≥-⎧=⎨--<-⎩,若()1f a =-,则a =_______.23.函数()32351f x x x x =-+-图象的对称中心为_____ 24.已知函数()()2log ,011,1x x f x f x x <≤⎧=⎨->⎩,则20192f ⎛⎫= ⎪⎝⎭__________.25.已知f()是定义在R 上的偶函数,且(4)(2)f x f x +=-.若当[3,0]x ∈- 时,()6x f x -=,则()919f =__________26.已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31iii x y =+=∑__________.27.已知实数a ,b R ∆(0,2),且满足2244242a b a b b --=--,则a +b 的值为_______.28.设函数2,,()1,.x e x x a f x ax x a ⎧-<=⎨-≥⎩ 若1a =,则()f x 的最小值为__________; 若()f x 有最小值,则实数a 的取值范围是_______.29.在平面直角坐标系xoy 中,对于点(),A a b ,若函数()y f x =满足:[]1,1x a a ∀∈-+,都有[]1,1y b b ∈-+,就称这个函数是点A 的“限定函数”.以下函数:①12y x =,②221y x =+,③sin y x =,④()ln 2y x =+,其中是原点O 的“限定函数”的序号是______.已知点(),A a b 在函数2xy =的图象上,若函数2xy =是点A 的“限定函数”,则a 的取值范围是______.30.函数()211log 1axf x x x+=+-为奇函数,则实数a =__________.。
第4讲 函数及其表示
第二章函数概念与基本初等函数I第4讲函数及其表示1.函数函数两集合A、B设A,B是两个非空数集对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应名称称f:A→B为从集合A到集合B的一个函数记法y=f(x)(x∈A)2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.常见函数定义域的求法类型x满足的条件2nf(x),n∈N*f(x)≥010f(x)≠0f(x)与[f(x)]log a f(x)(a>0,a≠1)f(x)>0log f(x)g(x)f(x)>0,且f(x)≠1,g(x)>0tan f(x)f(x)≠kπ+π2,k∈Z5.复合函数(抽象函数)1.下列函数中,不满足...f (2x )=2f (x )的是()A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x2.函数f (x )=1(log 2x )2-1的定义域为()B .(2,+∞)(2,+∞),12∪[2,+∞)A.-1 B.14 C.12 D.324.(教材改编)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是()5.给出下列四个命题:①函数是其定义域到值域的映射;②f(x)=x-2+2-x是函数;③函数y=2x(x∈N)的图象是一条直线;④函数的定义域和值域一定是无限集合.其中真命题的序号有________.题型一函数的概念例1有以下判断:①f(x)=|x|x与g(x)(x≥0)1(x<0)表示同一函数;②函数y=f(x)的图象与直线x=1的交点最多有1个;③f(x)=x2-2x+1与g(t)=t2-2t+1是同一函数;④若f(x)=|x-1|-|x|,则0.其中正确判断的序号是________.(1)下列四组函数中,表示同一函数的是()A.y=x-1与y=(x-1)2B.y=x-1与y=x-1x-1C.y=4lg x与y=2lg x2D.y=lg x-2与y=lg x100(2)下列所给图象是函数图象的个数为()A.1B.2C.3D.4题型二函数的定义域命题点1求给定函数解析式的定义域例2(1)函数f(x)=1-2x+1x+3的定义域为()A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1](2)函数f(x)=lg(x+1)x-1的定义域是()A.(-1,+∞)B.[-1,+∞)C.(-1,1)∪(1,+∞)D.[-1,1)∪(1,+∞)命题点2求抽象函数的定义域例3(1)若函数y=f(x)的定义域是[1,2016],则函数g(x)=f(x+1)x-1的定义域是()A.[0,2015]B.[0,1)∪(1,2015]C.(1,2016]D.[-1,1)∪(1,2015](2)若函数f(x)的定义域为(0,1],则函数f() A.[-5,4]B.[-5,-2)C.[-5,-2]∪[1,4]D.[-5,-2)或(1,4]命题点3已知定义域求参数范围例4若函数f(x)=的定义域为R,则a的取值范围为________.(1)已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是________.(2)函数y =ln (x +1)-x 2-3x +4的定义域_____________________________.题型三求函数解析式例5(1)已知f(2x+1)=lg x,则f(x)=________.(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,则f(x)=________.(3)已知函数f(x)的定义域为(0,+∞),且f(x)=2f(1x)·x-1,则f(x)=________.(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.(3)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),则f(x)=__________________.2.分类讨论思想在函数中的应用典例(1)(2014·课标全国Ⅰ)设函数f(x)=x-1,x<1,,x≥1,则使得f(x)≤2成立的x的取值范围是________.(2)(2015·山东)设函数f(x)x-1,x<1,x,x≥1,则满足f(f(a))=2f(a)的a的取值范围是()A.23,1B.[0,1]C.23,+∞D.[1,+∞)[方法与技巧]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法.4.分段函数问题要分段求解.[失误与防范]1.复合函数f[g(x)]的定义域也是解析式中x的范围,不要和f(x)的定义域相混.2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.。
十年真题(2010-2019)高考数学(理)分类汇编专题03 函数概念与基本初等函数(新课标Ⅰ卷)(原卷版)
专题03函数概念与基本初等函数历年考题细目表历年高考真题汇编1.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a2.【2018年新课标1理科09】已知函数f(),g()=f()++a.若g()存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)3.【2017年新课标1理科05】函数f()在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(﹣2)≤1的的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]4.【2017年新课标1理科11】设、y、为正数,且2=3y=5,则()A.2<3y<5 B.5<2<3y C.3y<5<2 D.3y<2<55.【2016年新课标1理科08】若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.a log b c<b log a c D.log a c<log b c6.【2014年新课标1理科03】设函数f(),g()的定义域都为R,且f()是奇函数,g()是偶函数,则下列结论正确的是()A.f()•g()是偶函数B.|f()|•g()是奇函数C.f()•|g()|是奇函数D.|f()•g()|是奇函数7.【2014年新课标1理科06】如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为的函数f (),则y=f()在[0,π]的图象大致为()A.B.C.D.8.【2013年新课标1理科11】已知函数f(),若|f()|≥a,则a的取值范围是()A.(﹣∞,0] B.(﹣∞,1] C.[﹣2,1] D.[﹣2,0]9.【2011年新课标1理科02】下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=23B.y=||+1 C.y=﹣2+4 D.y=2﹣||10.【2011年新课标1理科12】函数y的图象与函数y=2sinπ,(﹣2≤≤4)的图象所有交点的横坐标之和等于()A.8 B.6 C.4 D.211.【2010年新课标1理科04】如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,),角速度为1,那么点P到轴距离d关于时间t的函数图象大致为()A.B.C.D.12.【2010年新课标1理科08】设偶函数f()满足f()=2﹣4(≥0),则{|f(﹣2)>0}=()A.{|<﹣2或>4} B.{|<0或>4} C.{|<0或>6} D.{|<﹣2或>2}13.【2010年新课标1理科11】已知函数,若a,b,c互不相等,且f(a)=f(b )=f (c ),则abc 的取值范围是( ) A .(1,10) B .(5,6) C .(10,12)D .(20,24)14.【2015年新课标1理科13】若函数f ()=ln ()为偶函数,则a = .考题分析与复习建议本专题考查的知识点为:函数,函数的单调性与最值,函数的奇偶性与周期性,幂函数与二次函数,指数函数,对数函数,分段函数,函数的图象,函数与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等.预测明年本考点题目会比较稳定,备考方向以知识点函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等为重点较佳.最新高考模拟试题1.已知()21f x ax bx =-+是定义域为[a ,a +1]的偶函数,则2b a a -=( )A .0B .34C 2D .42.已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为( )A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫⋃+∞ ⎪⎝⎭D .(,1)(8,)-∞⋃+∞3.函数22()log (34)f x x x =--的单调减区间为( )A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞4.已如定义在R 上的函数()f x 的周期为6.且()[]()()11,3,02,0,3xx x f x f x x ⎧⎛⎫-+∈-⎪ ⎪=⎨⎝⎭⎪-∈⎩,则()()78f f -+=( ) A .11B .134C .7D .1145.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .3y x =B .y x 1=-C .y x 1=-D .x y 2=6.设函数2,,()=,.x e x a f x x x a x a ⎧≤⎨-+>⎩则下列结论中正确的是( )A .对任意实数a ,函数()f x 的最小值为14a -B .对任意实数a ,函数()f x 的最小值都不是14a -C .当且仅当12a ≤时,函数()f x 的最小值为14a -D .当且仅当14a ≤时,函数()f x 的最小值为14a -7.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( ) A .2()(2)3-∞+∞,,U B .2(2)3, C .22()33-,D .22()()33-∞-+∞,,U 8.设函数1212,2()3log (2),2x x f x x x -⎧+≥=⎨+-<⎩,则((0))f f =( )A .5B .8C .9D .179.已知函数()ln ln()f x x a x =+-的图象关于直线1x =对称,则函数()f x 的值域为( ) A .(0,2)B .[0,)+∞C .(2]-∞D .(,0]-∞10.已知函数()f x 是R 上的偶函数,且对任意的x R ∈有(3)()f x f x +=-,当(3,0)x ∈- 时,()25f x x =-,则(8)f =( )A .11B .5C .-9D .-111.已知函数122,0()2,()()2,0x acosx x f x g x a R x a x -+≥⎧==∈⎨+<⎩,若对任意11)[x ∈+∞,,总存在2x R ∈,使12()()f x g x =,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭ C .1,[1,2]2⎛⎫-∞ ⎪⎝⎭U D .371,,224⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦U12.已知函数()22(1),0log ,0x x f x x x ⎧+⎪=⎨>⎪⎩…,若方程f ()=a 有四个不同的解1,2,3,4,且1<2<3<4,则()3122341x x x x x ++的取值范围为( ) A .(﹣1,+∞)B .(﹣1,1]C .(﹣∞,1)D .[﹣1,1)13.已知定义在实数集R 上的函数()f x 的图象经过点(1,2)--,且满足()()f x f x -=,当0≤<a b 时不等式()()0f b f a b a->-恒成立,则不等式(1)20f x -+<的解集为( )A .(0,2)B .(2,0)-C .(,0)(2,)-∞+∞UD .(,2)(0,)-∞-+∞U14.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数 D .奇函数,且在(0,10)是减函数15.已知()f x 与函数sin y a x =-关于点(12,0)对称,()g x 与函数xy e =关于直线y x =对称,若对任意(]10,1x ∈,存在2[,2]2x π∈使112()()g x x f x -≤成立,则实数a 的取值范围是( )A .1(,]sin1-∞ B .1[,)sin1+∞ C .1(,]cos1-∞D .1[,)cos1+∞16.函数()(),f x g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,设()()()11h x f x g x =+++,则下列结论中正确的是( ) A .()h x 的图象关于(1,0)对称 B .()h x 的图象关于(1,0)-对称 C .()h x 的图象关于1x =对称D .()h x 的图象关于1x =-对称17.偶函数()f x 在[]0,2上递增,且()1a f =,121log 4b f ⎛⎫= ⎪⎝⎭,2log c f ⎛= ⎝⎭大小为( )A .c a b >>B .a c b >>C .b a c >>D .a b c >>18.设函数2,1(),12x x f x x x -⎧≤⎪=⎨>⎪⎩,则满足()()2f f a f a =⎡⎤⎣⎦的a 的取值范围是( )A .(],0-∞B .[]0,2C .[)2,+∞D .(][),02,-∞⋃+∞19.设函数2()x x f x e e x -=++,则使()()21f x f x >+成立的x 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .1,13⎛⎫- ⎪⎝⎭D .1,(1,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭20.已知函数()f x 的定义域为(0,)+∞,对于定义域内任意x ,[]2()log 3f f x x -=,则函数()()7g x f x x =+-的零点所在的区间为( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)21.已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1100f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值为 ______ 22.设函数ln(2),1()24,1x x f x x x +≥-⎧=⎨--<-⎩,若()1f a =-,则a =_______.23.函数()32351f x x x x =-+-图象的对称中心为_____ 24.已知函数()()2log ,011,1x x f x f x x <≤⎧=⎨->⎩,则20192f ⎛⎫= ⎪⎝⎭__________.25.已知f()是定义在R 上的偶函数,且(4)(2)f x f x +=-.若当[3,0]x ∈- 时,()6x f x -=,则()919f =__________26.已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31iii x y =+=∑__________.27.已知实数a ,b R ∆(0,2),且满足2244242a b a b b --=--,则a +b 的值为_______.28.设函数2,,()1,.x e x x a f x ax x a ⎧-<=⎨-≥⎩ 若1a =,则()f x 的最小值为__________; 若()f x 有最小值,则实数a 的取值范围是_______.29.在平面直角坐标系xoy 中,对于点(),A a b ,若函数()y f x =满足:[]1,1x a a ∀∈-+,都有[]1,1y b b ∈-+,就称这个函数是点A 的“限定函数”.以下函数:①12y x =,②221y x =+,③sin y x =,④()ln 2y x =+,其中是原点O 的“限定函数”的序号是______.已知点(),A a b 在函数2xy =的图象上,若函数2xy =是点A 的“限定函数”,则a 的取值范围是______.30.函数()211log 1axf x x x+=+-为奇函数,则实数a =__________.。
十年高考理科数学真题 专题二 函数概念与基本初等函数 三函数的概念和性质及答案
专题二 函数概念与基本初等函数Ⅰ 第三讲 函数的概念和性质 2019年 1.(2019江苏4)函数276y x x =+-的定义域是 .2.(2019全国Ⅱ理14)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.3.(2019全国Ⅲ理11)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 4.(2019北京理13)设函数()e x x f x e a -=+ (a 为常数),若()f x 为奇函数,则a =______; 若()f x 是R 上的增函数,则a 的取值范围是 ________.5.(2019全国Ⅰ理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③ 6.(2019全国Ⅰ理5)函数f (x )=2sin cos ++x x x x 在[,]-ππ的图像大致为 A .B .C.D.7.(2019全国Ⅲ理7)函数3222x xxy-=+在[]6,6-的图像大致为A.B.C.D.8.(2019浙江6)在同一直角坐标系中,函数y=1xa ,y=log a(x+12),(a>0且a≠1)的图像可能是A. B.C. D.2010-2018年一、选择题1.(2018全国卷Ⅱ)函数2()--=x xe ef x x 的图像大致为2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为3.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .4.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .505.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D . 6.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关7.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.(2017北京)已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数9.(2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时, ()()f x f x -=-;当12x >时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2 10.(2016全国I) 函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .11.(2016全国II) 已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x +=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1m i i i x y =+=∑ A .0 B .m C .2m D .4m12.(2015福建)下列函数为奇函数的是A.y = B .sin y x = C .cos y x = D .x x y e e -=-13.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 14.(2015湖南)设函数()ln(1)ln(1)f x x x =+--,则()f x 是A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数15.(2015湖北)已知符号函数1,0,sgn0,0,1,0.xx xx>⎧⎪==⎨⎪-<⎩()f x是R上的增函数,()()g x f x=-()f ax(1)a>,则A.sgn[()]sgng x x=B.sgn[()]sgng x x=-C.sgn[()]sgn[()]g x f x=D.sgn[()]sgn[()]g x f x=-16.(2015安徽)函数()()2ax bf xx c+=+的图象如图所示,则下列结论成立的是A.0a>,0b>,0c<B.0a<,0b>,0c>C.0a<,0b>,0c<D.0a<,0b<,0c<17.(2014新课标1)设函数()f x,()g x的定义域都为R,且()f x是奇函数,()g x是偶函数,则下列结论正确的是A.()f x()g x是偶函数B.()f x|()g x|是奇函数C.|()f x|()g x是奇函数D.|()f x()g x|是奇函数18.(2014山东)函数1)(log1)(22-=xxf的定义域为A.)210(,B.)2(∞+,C.),2()210(+∞Y,D.)2[]210(∞+,,Y19.(2014山东)对于函数()f x,若存在常数0a≠,使得x取定义域内的每一个值,都有()(2)f x f a x=-,则称()f x为准偶函数,下列函数中是准偶函数的是A.()f x x=B.2()f x x=C.()tanf x x=D.()cos(1)f x x=+ 20.(2014浙江)已知函数32()f x x ax bx c=+++,且0(1)(2)(3)3f f f-=-=-≤≤,则A .3≤cB .63≤<cC .96≤<cD .9>c21.(2015北京)下列函数中,定义域是R 且为增函数的是A .xy e -= B .3y x = C .ln y x = D .y x = 22.(2014湖南)已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且()()f x f x -=321x x ++,(1)(1)f g +则=A .-3B .-1C .1D .323.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=aA .1B .2C .3D .-124.(2014重庆)下列函数为偶函数的是A .()1f x x =-B .3()f x x x =+C .()22x x f x -=-D .()22x x f x -=+ 25.(2014福建)已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是A .()x f 是偶函数B .()x f 是增函数C .()x f 是周期函数D .()x f 的值域为[)+∞-,126.(2014辽宁)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为 A .1247[,][,]4334U B .3112[,][,]4343--U C .1347[,][,]3434U D .3113[,][,]4334--U 27.(2013辽宁)已知函数()3)1f x x =+,则1(lg 2)(lg )2f f +=A .1-B .0C .1D .2 28.(2013新课标Ⅰ)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]29.(2013广东)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .130.(2013广东)函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞U D .[1,1)(1,)-+∞U31.(2013山东)已知函数()f x 为奇函数,且当0x >时,()21f x x x=+ ,则()1f -= A .-2 B .0 C .1 D .232.(2013福建)函数)1ln()(2+=x x f 的图象大致是A .B .C .D .33.(2013北京)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 34.(2013湖南)已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于A .4B .3C .2D .135.(2013重庆)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A .5-B .1-C .3D .436.(2013湖北)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为A .奇函数B .偶函数C .增函数D . 周期函数37.(2013四川)函数133-=x x y 的图像大致是A B C D38.(2012天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R --=∈ D .31y x =+ 39.(2012福建)设1,0,()0,0,1,0,xf x x x >⎧⎪= =⎨⎪- <⎩⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则(())f g π的值为A .1B .0C .1-D .π40.(2012山东)函数21()4ln(1)f x x x =+-+的定义域为 A .[2,0)(0,2]-U B .(1,0)(0,2]-U C .[2,2]- D .(1,2]-41.(2012陕西)下列函数中,既是奇函数又是增函数的为A 1y x =+B 3y x =-C 1y x =D ||y x x = 42.(2011江西)若12()log (21)f x x =+,则)(x f 的定义域为 A .(21-,0) B .(21-,0] C .(21-,∞+) D .(0,∞+) 43.(2011新课标)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 A .3y x = B .1y x =+ C .21y x =-+ D .2x y -=44.(2011辽宁)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)45.(2011福建)已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩.若()(1)0f a f +=,则实数a 的值等于 A .-3 B .-1C .1D .346.(2011辽宁)若函数))(12()(a x x x x f -+=为奇函数,则a = (A)21 (B)32 (C)43 (D)1 47.(2011安徽)设)(x f 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A .-3B .-1C .1D .348.(2011陕西)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是49.(2010山东)函数()()2log 31x f x =+的值域为A .()0,+∞B .)0,+∞⎡⎣C .()1,+∞D .)1,+∞⎡⎣ 50.(2010年陕西)已知函数()f x =221,1,1x x x ax x ⎧+<⎨+≥⎩,若((0))f f =4a ,则实数a = A .12 B .45C .2D .9 51.(2010广东)若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为偶函数,()g x 为奇函数C .()f x 与()g x 均为奇函数D .()f x 为奇函数,()g x 为偶函数52.(2010安徽)若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=A .-1B .1C .-2D .2 二、填空题53.(2018江苏)函数2()log 1f x x =-的定义域为 .54.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 .55.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____ 56.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________. 57.(2017新课标Ⅲ)设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.58.(2017江苏)已知函数31()2xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .59.(2017山东)若函数e ()xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 ①()2xf x -=②()3xf x -=③3()=f x x④2()2=+f x x60.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .61.(2016天津)已知f (x )是定义在R 上的偶函数,且在区间(,0)-∞上单调递增.若实数a 满足1(2)(a f f ->,则a 的取值范围是______.62.(2016江苏)设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上,(),10,2,01,5x a x f x x x +-<⎧⎪=⎨-<⎪⎩≤≤其中a ∈R ,若59()()22f f -=,则()5f a 的值是 .63.(2015新课标Ⅰ)若函数()ln(f x x x =为偶函数,则a =64.(2015浙江)已知函数223,1()lg(1),1x x f x xx x ⎧+-⎪=⎨⎪+<⎩≥,则((3))f f -=_______,()f x 的最小值是______.65.(2015山东)已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[1,0]-,则a b += .66.(2015福建)若函数()6,2,3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a > 且1a ≠ )的值域是[)4,+∞,则实数a 的取值范围是 .67.(2014新课标Ⅱ)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=___. 67.(2014湖南)若()()ax ex f x++=1ln 3是偶函数,则=a ____________.68.(2014四川)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .70.(2014浙江)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是___.71.(2014湖北)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)72.(2013安徽)函数1ln(1)y x=+_____________.73.(2013北京)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 .74.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________. 75.(2012浙江)设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________.76.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = . 77.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________78.(2011福建)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量11(,)x y a =∈V ,22(,)x y b =∈V ,以及任意λ∈R ,均有((1))()(1)(),f f f λλλλ+-=+-a b a b则称映射f 具有性质P . 现给出如下映射:①12:,(),,(,);f V R f m x y m x y V →=-=∈②222:,(),(,);f V R f m x y m x y V →=+=∈③33:,()1,(,).f V R f m x y m x y V →=++=∈其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)79.(2010福建)已知定义域为0+∞(,)的函数()f x 满足:①对任意0x ∈+∞(,),恒有(2)=2()f x f x 成立;当(1,2]x ∈时,()=2f x x -.给出如下结论:①对任意Z m ∈,有(2)=0mf ;②函数()f x 的值域为[0+∞,);③存在Z n ∈,使得(2+1)=9n f ;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是 “存在Z k ∈,使得1(,)(2,2)kk a b +⊆”.其中所有正确结论的序号是 .80.(2010江苏)设函数()()xxf x x e ae -=+(x ∈R)是偶函数,则实数a =______.专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分1. C 【解析】 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =,因为33log 4log 31>=,2303202221--<<<=,所以23323022log 4--<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f -->>. 故选C .2. C 【解析】()sin sin |i |sin s n f x x x x x f x -=-+-=+=()(),则函数()f x 是偶函数,故①正确.当π,π2x ⎛⎫∈⎪⎝⎭时, sin sin sin sin x x x x ==,, 则sin sin 2sin f x x x x =+=()为减函数,故②错误. 当0πx ≤≤,sin sin sin sin 2sin f x x x x x x =+=+=(), 由0f x =()得2sin 0x =,得0x =或πx =, 由()f x 是偶函数,得在[π0-,)上还有一个零点πx =-,即函数()f x 在[]ππ-,上有3个零点,故③错误.当sin 1sin 1x x ==,时,()f x 取得最大值2,故④正确, 故正确的结论是①④. 故选C . 3.D 【解析】: 因为()2sin cos x xf x x x +=+,π[]πx ∈-,,所以()()()22sin sin cos cos x x x xf x f x x x x x --+-===--++,所以()f x 为[ππ]-,上的奇函数,因此排除A ; 又()22sin ππππ0cos ππ1πf +==>+-+,因此排除B ,C ;故选D .4. B 【解析】 因为332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是[]6,6-上的奇函数,因此排除C ,又1182(4)721f =>+,因此排除A ,D .故选B .5. D 【解析】由函数1x y a =,1log 2a y x ⎛⎫=+ ⎪⎝⎭,单调性相反,且函数1log 2a y x ⎛⎫=+ ⎪⎝⎭图像恒过1,02⎛⎫ ⎪⎝⎭可各满足要求的图象为D .故选D .6.B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 7.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .8.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .9.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 10.D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 11.B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .12.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .13.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .14.D 【解析】当11x -剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .15.D 【解析】当0x ?时,令函数2()2xf x x e =-,则()4xf x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .16.B 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B . 17.D【解析】∵函数y =[0,)+∞,不关于原点对称,所以函数y =非奇非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.18.D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.19.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.20.B 【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.21.C 【解析】∵2()()ax bf x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N的横坐标均为正,∴0b x a =->,20by c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.22.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .23.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或. 24.D 【解析】由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D . 25.C 【解析】由已知得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <-=-≤,所以69c <≤. 26.B 【解析】四个函数的图象如下显然B 成立.27.C 【解析】用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,故选C .28.A 【解析】因为[(1)]1f g =,且||()5x f x =,所以(1)0g =,即2110a ⋅-=,解得1a =.29.D 【解析】函数()1f x x =-和2()f x x x =+既不是偶函数也不是奇函数,排除选项A和选项B ;选项C 中()22x xf x -=-,则()22(22)()xx x x f x f x ---=-=--=-,所以()f x =22x x --为奇函数,排除选项C ;选项D 中()22xxf x -=+, 则()22()xx f x f x --=+=,所以()22x x f x -=+为偶函数,选D .30.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .31.A 【解析】当102x ≤≤时,令1()cos 2f x x π=≤,解得1132x ≤≤,当12x >时, 令1()212f x x =-≤,解得1324x <≤,故1334x ≤≤.∵()f x 为偶函数,∴1()2f x ≤的解集为3113[,][,]4334--⋃,故1(1)2f x -≤的解集为1247[,][,]4334⋃.32.D 【解析】11lg 2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x +-=-++--+3)3)2x x =++ln 33)2x x ⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=-+⎣⎦ln122=+=.33.D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,22x x x ax ≤⎧⎨-≥⎩且0ln(1)x x ax >⎧⎨+≥⎩,由202x x x ax≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B , 当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D . 34.C 【解析】是奇函数的为3y x =与2sin y x =,故选C .35.C 【解析】1010x x +>⎧⎨-≠⎩,∴11x x >-⎧⎨≠⎩.36.A 【解析】()()112f f ---=-.37.A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D . 38.C 【解析】1y x=是奇函数,xy e -=是非奇非偶函数,而D 在(0,)+∞单调递增.选C . 39.B 【解析】由已知两式相加得,()13g =. 40.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==-=,又因为 ()()8f x f x +-=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f -+=+=,所以(lg(lg 2))f =3,故选C .41.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D .42.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .43.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .44.B 【解析】∵π是无理数 ∴g (π)=0 则(())f g π=f (0)=0 ,故选B .45.B 【解析】210,11,100 2.40,x x x x x +>⎧⎪+≠∴-<<<≤⎨⎪-≥⎩Q 或故选B .46.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .47.A 【解析】12log (21)0x +>,所以0211x <+<,故102x -<<. 48.B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,2xy -=在(0,)+∞上为减函数.49.B 【解析】令函数()()24g x f x x =--,则()()20g x f x ''=->,所以()g x 在R 上为增函数,又(1)(1)240g f -=-+-=,所以不等式可转化为()(1)g x g >-,由()g x 的单调性可得1x >-.50.A 【解析】当0a >时,由()(1)0f a f +=得220a+=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =-,故选A .51.A 【解析】∵))(12()(a x x xx f -+=为奇函数,∴(1)(1)0f f -+=,得12a =.52.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =-,∴2(1)(1)2(1)(1)3f f =--=-⨯-+-=-,选A .53.B 【解】 由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B . 54.A 【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A .55.C 【解析】∵()21200=+=f ,∴()()()a a f f f 2422202+=+==.于是,由()()a f f 40=得2424=⇒=+a a a .故选C . 56.B 【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.57.A 【解析】∵()f x 是R 上周期为5的奇函数,∴(3)(4)(2)(1)(2)(1)211f f f f f f -=---=-+=-+=-. 58. [1,7]-【解析】 由2760x x +-…,得2670x x --…,解得17x-剟.所以函数y =[1,7]-.59. 3a =-【解析】解析:ln 2(ln 2)e (ln 2)8a f f --=-=-=-,得28a -=,3a =-.60. 0]-∞(,【解析】①根据题意,函数e e x x f x a -=+(), 若f x ()为奇函数,则f x f x -=-()(),即=e e e e x x x x a a --+-+() ,所以()()+1e e 0x x a -+=对x ∈R 恒成立.又e e 0x x -+>,所以10,1a a +==-.②函数e e x x f x a -=+(),导数e e x x f x a -'=-(). 若()f x 是R 上的增函数,则()f x 的导数e 0e x x f x a -'-≥=()在R 上恒成立,即2e x a ≤恒成立,而2e >0x ,所以a ≤0,即a 的取值范围为0]-∞(,.61.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞. 62.【解析】因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos242f f f f f π=-===. 63.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.64.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.65.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞. 66.1[1,]2-【解析】因为31()2e ()exx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-, 即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 67.①④【解析】①()2()2x x xx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质;②()3()3x x x x e e f x e -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质; ③3()xxe f x e x =⋅,令3()xg x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22x g x e x =+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.68.9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈ ①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <,综上可得,实数a 的取值范围是9(,]2-∞.69.13(,)22【解析】由()f x 是偶函数可知,()0-∞,单调递增;()0+∞,单调递减 又()(12a f f ->,(f f =可得,12a -112a -<∴1322a <<. 70.25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=,由59()()22f f -=可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 71.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.72.0、3【解析】∵(3)1f -=,(1)0f =,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.73.32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-.74.(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a <≤,所以实数a 的取值范围为(1,2].75.3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==.76.32-【解析】函数3()ln(1)xf x e ax =++为偶函数,故()()f x f x -=, 即33ln(1)ln(1)xxeax e ax -+-=++,化简得32361ln 2ln xax x x e ax e e e+==+,即32361x ax x xe e e e+=+,整理得32331(1)x ax x xe e e ++=+,所以230ax x +=, 即32a =-. 77.1【解析】2311()()4()21222f f =-=-⨯-+=.78.(-∞结合图形(图略),由()()2f f a ≤,可得()2f a -≥,可得a . 79.【答案】;(Ⅱ)x(或填(Ⅰ)k (Ⅱ)2k x ,其中12,k k 为正常数均可) 【解析】过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b+-=--,令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b ⇒+=+,可取()0)f x x =>.(Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可 取()(0)f x x x =>.80.(]0,1【解析】2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1. 81.(),2-∞【解析】由分段函数1x ≥,1122log log 10x ≤=;1x <,10222x <<=.82.6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩…可知()f x 的单调递增区间为[,)2a -+∞,故362aa -=⇔=-.83.32【解析】331113()(2)()()1222222f f f f =-=-==+=. 84.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.85.34-【解析】30,2212,2a a a a a a >-+=---=-, 30,1222,4a a a a a a <-+-=++=- .86.①③【解析】∵11(,)x y a =,22(,)x y b =,R λ∈,所以1212(1)((1),(1))x x y y λλλλλλ+-=+-+-a b对于①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-,具有性质P 的映射,同理可验证③符合,②不符合,答案应填.87.①②④【解析】①0)2(2)2(2)22()2(111====⋅=---f f f f m m m mΛ,正确;②取]2,2(1+∈m mx ,则]2,1(2∈m x ;mm xx f 22)2(-=,从而 x xf x f x f m m m -====+12)2(2)2(2)(Λ,其中,Λ,2,1,0=m ,从而),0[)(+∞∈x f ,正确;③122)12(1--=++n m nf ,假设存在n 使9)12(=+n f ,∵121[2,2)nnn ++∈,∴1(21)22121n n n n f ++=--=-,∴219,210n n +==,这与n Z ∈矛盾,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.88.-1【解析】设(),()xxg x x h x e ae -==+,∵()g x 为奇函数,由题意()h x 也为奇函数.所以(0)0h =,解得1a =-.。
十年高考理科数学真题 专题二 函数概念与基本初等函数 三函数的概念和性质及答案
专题二 函数概念与基本初等函数Ⅰ 第三讲 函数的概念和性质 2019年 1.(2019江苏4)函数276y x x =+-的定义域是 .2.(2019全国Ⅱ理14)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.3.(2019全国Ⅲ理11)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 4.(2019北京理13)设函数()e x x f x e a -=+ (a 为常数),若()f x 为奇函数,则a =______; 若()f x 是R 上的增函数,则a 的取值范围是 ________.5.(2019全国Ⅰ理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③ 6.(2019全国Ⅰ理5)函数f (x )=2sin cos ++x x x x 在[,]-ππ的图像大致为 A .B .C.D.7.(2019全国Ⅲ理7)函数3222x xxy-=+在[]6,6-的图像大致为A.B.C.D.8.(2019浙江6)在同一直角坐标系中,函数y=1xa ,y=log a(x+12),(a>0且a≠1)的图像可能是A. B.C. D.2010-2018年一、选择题1.(2018全国卷Ⅱ)函数2()--=x xe ef x x 的图像大致为2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为3.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .4.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .505.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D . 6.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关7.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.(2017北京)已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数9.(2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时, ()()f x f x -=-;当12x >时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2 10.(2016全国I) 函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .11.(2016全国II) 已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x +=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1m i i i x y =+=∑ A .0 B .m C .2m D .4m12.(2015福建)下列函数为奇函数的是A.y = B .sin y x = C .cos y x = D .x x y e e -=-13.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 14.(2015湖南)设函数()ln(1)ln(1)f x x x =+--,则()f x 是A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数15.(2015湖北)已知符号函数1,0,sgn0,0,1,0.xx xx>⎧⎪==⎨⎪-<⎩()f x是R上的增函数,()()g x f x=-()f ax(1)a>,则A.sgn[()]sgng x x=B.sgn[()]sgng x x=-C.sgn[()]sgn[()]g x f x=D.sgn[()]sgn[()]g x f x=-16.(2015安徽)函数()()2ax bf xx c+=+的图象如图所示,则下列结论成立的是A.0a>,0b>,0c<B.0a<,0b>,0c>C.0a<,0b>,0c<D.0a<,0b<,0c<17.(2014新课标1)设函数()f x,()g x的定义域都为R,且()f x是奇函数,()g x是偶函数,则下列结论正确的是A.()f x()g x是偶函数B.()f x|()g x|是奇函数C.|()f x|()g x是奇函数D.|()f x()g x|是奇函数18.(2014山东)函数1)(log1)(22-=xxf的定义域为A.)210(,B.)2(∞+,C.),2()210(+∞Y,D.)2[]210(∞+,,Y19.(2014山东)对于函数()f x,若存在常数0a≠,使得x取定义域内的每一个值,都有()(2)f x f a x=-,则称()f x为准偶函数,下列函数中是准偶函数的是A.()f x x=B.2()f x x=C.()tanf x x=D.()cos(1)f x x=+ 20.(2014浙江)已知函数32()f x x ax bx c=+++,且0(1)(2)(3)3f f f-=-=-≤≤,则A .3≤cB .63≤<cC .96≤<cD .9>c21.(2015北京)下列函数中,定义域是R 且为增函数的是A .xy e -= B .3y x = C .ln y x = D .y x = 22.(2014湖南)已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且()()f x f x -=321x x ++,(1)(1)f g +则=A .-3B .-1C .1D .323.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=aA .1B .2C .3D .-124.(2014重庆)下列函数为偶函数的是A .()1f x x =-B .3()f x x x =+C .()22x x f x -=-D .()22x x f x -=+ 25.(2014福建)已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是A .()x f 是偶函数B .()x f 是增函数C .()x f 是周期函数D .()x f 的值域为[)+∞-,126.(2014辽宁)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为 A .1247[,][,]4334U B .3112[,][,]4343--U C .1347[,][,]3434U D .3113[,][,]4334--U 27.(2013辽宁)已知函数()3)1f x x =+,则1(lg 2)(lg )2f f +=A .1-B .0C .1D .2 28.(2013新课标Ⅰ)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]29.(2013广东)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .130.(2013广东)函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞U D .[1,1)(1,)-+∞U31.(2013山东)已知函数()f x 为奇函数,且当0x >时,()21f x x x=+ ,则()1f -= A .-2 B .0 C .1 D .232.(2013福建)函数)1ln()(2+=x x f 的图象大致是A .B .C .D .33.(2013北京)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 34.(2013湖南)已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于A .4B .3C .2D .135.(2013重庆)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A .5-B .1-C .3D .436.(2013湖北)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为A .奇函数B .偶函数C .增函数D . 周期函数37.(2013四川)函数133-=x x y 的图像大致是A B C D38.(2012天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R --=∈ D .31y x =+ 39.(2012福建)设1,0,()0,0,1,0,xf x x x >⎧⎪= =⎨⎪- <⎩⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则(())f g π的值为A .1B .0C .1-D .π40.(2012山东)函数21()4ln(1)f x x x =+-+的定义域为 A .[2,0)(0,2]-U B .(1,0)(0,2]-U C .[2,2]- D .(1,2]-41.(2012陕西)下列函数中,既是奇函数又是增函数的为A 1y x =+B 3y x =-C 1y x =D ||y x x = 42.(2011江西)若12()log (21)f x x =+,则)(x f 的定义域为 A .(21-,0) B .(21-,0] C .(21-,∞+) D .(0,∞+) 43.(2011新课标)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 A .3y x = B .1y x =+ C .21y x =-+ D .2x y -=44.(2011辽宁)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)45.(2011福建)已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩.若()(1)0f a f +=,则实数a 的值等于 A .-3 B .-1C .1D .346.(2011辽宁)若函数))(12()(a x x x x f -+=为奇函数,则a = (A)21 (B)32 (C)43 (D)1 47.(2011安徽)设)(x f 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A .-3B .-1C .1D .348.(2011陕西)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是49.(2010山东)函数()()2log 31x f x =+的值域为A .()0,+∞B .)0,+∞⎡⎣C .()1,+∞D .)1,+∞⎡⎣ 50.(2010年陕西)已知函数()f x =221,1,1x x x ax x ⎧+<⎨+≥⎩,若((0))f f =4a ,则实数a = A .12 B .45C .2D .9 51.(2010广东)若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为偶函数,()g x 为奇函数C .()f x 与()g x 均为奇函数D .()f x 为奇函数,()g x 为偶函数52.(2010安徽)若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=A .-1B .1C .-2D .2 二、填空题53.(2018江苏)函数2()log 1f x x =-的定义域为 .54.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 .55.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____ 56.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________. 57.(2017新课标Ⅲ)设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.58.(2017江苏)已知函数31()2xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .59.(2017山东)若函数e ()xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 ①()2xf x -=②()3xf x -=③3()=f x x④2()2=+f x x60.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .61.(2016天津)已知f (x )是定义在R 上的偶函数,且在区间(,0)-∞上单调递增.若实数a 满足1(2)(a f f ->,则a 的取值范围是______.62.(2016江苏)设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上,(),10,2,01,5x a x f x x x +-<⎧⎪=⎨-<⎪⎩≤≤其中a ∈R ,若59()()22f f -=,则()5f a 的值是 .63.(2015新课标Ⅰ)若函数()ln(f x x x =为偶函数,则a =64.(2015浙江)已知函数223,1()lg(1),1x x f x xx x ⎧+-⎪=⎨⎪+<⎩≥,则((3))f f -=_______,()f x 的最小值是______.65.(2015山东)已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[1,0]-,则a b += .66.(2015福建)若函数()6,2,3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a > 且1a ≠ )的值域是[)4,+∞,则实数a 的取值范围是 .67.(2014新课标Ⅱ)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=___. 67.(2014湖南)若()()ax ex f x++=1ln 3是偶函数,则=a ____________.68.(2014四川)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .70.(2014浙江)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是___.71.(2014湖北)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)72.(2013安徽)函数1ln(1)y x=+_____________.73.(2013北京)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 .74.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________. 75.(2012浙江)设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________.76.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = . 77.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________78.(2011福建)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量11(,)x y a =∈V ,22(,)x y b =∈V ,以及任意λ∈R ,均有((1))()(1)(),f f f λλλλ+-=+-a b a b则称映射f 具有性质P . 现给出如下映射:①12:,(),,(,);f V R f m x y m x y V →=-=∈②222:,(),(,);f V R f m x y m x y V →=+=∈③33:,()1,(,).f V R f m x y m x y V →=++=∈其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)79.(2010福建)已知定义域为0+∞(,)的函数()f x 满足:①对任意0x ∈+∞(,),恒有(2)=2()f x f x 成立;当(1,2]x ∈时,()=2f x x -.给出如下结论:①对任意Z m ∈,有(2)=0mf ;②函数()f x 的值域为[0+∞,);③存在Z n ∈,使得(2+1)=9n f ;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是 “存在Z k ∈,使得1(,)(2,2)kk a b +⊆”.其中所有正确结论的序号是 .80.(2010江苏)设函数()()xxf x x e ae -=+(x ∈R)是偶函数,则实数a =______.专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分1. C 【解析】 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =,因为33log 4log 31>=,2303202221--<<<=,所以23323022log 4--<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f -->>. 故选C .2. C 【解析】()sin sin |i |sin s n f x x x x x f x -=-+-=+=()(),则函数()f x 是偶函数,故①正确.当π,π2x ⎛⎫∈⎪⎝⎭时, sin sin sin sin x x x x ==,, 则sin sin 2sin f x x x x =+=()为减函数,故②错误. 当0πx ≤≤,sin sin sin sin 2sin f x x x x x x =+=+=(), 由0f x =()得2sin 0x =,得0x =或πx =, 由()f x 是偶函数,得在[π0-,)上还有一个零点πx =-,即函数()f x 在[]ππ-,上有3个零点,故③错误.当sin 1sin 1x x ==,时,()f x 取得最大值2,故④正确, 故正确的结论是①④. 故选C . 3.D 【解析】: 因为()2sin cos x xf x x x +=+,π[]πx ∈-,,所以()()()22sin sin cos cos x x x xf x f x x x x x --+-===--++,所以()f x 为[ππ]-,上的奇函数,因此排除A ; 又()22sin ππππ0cos ππ1πf +==>+-+,因此排除B ,C ;故选D .4. B 【解析】 因为332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是[]6,6-上的奇函数,因此排除C ,又1182(4)721f =>+,因此排除A ,D .故选B .5. D 【解析】由函数1x y a =,1log 2a y x ⎛⎫=+ ⎪⎝⎭,单调性相反,且函数1log 2a y x ⎛⎫=+ ⎪⎝⎭图像恒过1,02⎛⎫ ⎪⎝⎭可各满足要求的图象为D .故选D .6.B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 7.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .8.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .9.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 10.D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 11.B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .12.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .13.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .14.D 【解析】当11x -剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .15.D 【解析】当0x ?时,令函数2()2xf x x e =-,则()4xf x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .16.B 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B . 17.D【解析】∵函数y =[0,)+∞,不关于原点对称,所以函数y =非奇非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.18.D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.19.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.20.B 【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.21.C 【解析】∵2()()ax bf x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N的横坐标均为正,∴0b x a =->,20by c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.22.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .23.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或. 24.D 【解析】由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D . 25.C 【解析】由已知得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <-=-≤,所以69c <≤. 26.B 【解析】四个函数的图象如下显然B 成立.27.C 【解析】用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,故选C .28.A 【解析】因为[(1)]1f g =,且||()5x f x =,所以(1)0g =,即2110a ⋅-=,解得1a =.29.D 【解析】函数()1f x x =-和2()f x x x =+既不是偶函数也不是奇函数,排除选项A和选项B ;选项C 中()22x xf x -=-,则()22(22)()xx x x f x f x ---=-=--=-,所以()f x =22x x --为奇函数,排除选项C ;选项D 中()22xxf x -=+, 则()22()xx f x f x --=+=,所以()22x x f x -=+为偶函数,选D .30.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .31.A 【解析】当102x ≤≤时,令1()cos 2f x x π=≤,解得1132x ≤≤,当12x >时, 令1()212f x x =-≤,解得1324x <≤,故1334x ≤≤.∵()f x 为偶函数,∴1()2f x ≤的解集为3113[,][,]4334--⋃,故1(1)2f x -≤的解集为1247[,][,]4334⋃.32.D 【解析】11lg 2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x +-=-++--+3)3)2x x =++ln 33)2x x ⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=-+⎣⎦ln122=+=.33.D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,22x x x ax ≤⎧⎨-≥⎩且0ln(1)x x ax >⎧⎨+≥⎩,由202x x x ax≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B , 当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D . 34.C 【解析】是奇函数的为3y x =与2sin y x =,故选C .35.C 【解析】1010x x +>⎧⎨-≠⎩,∴11x x >-⎧⎨≠⎩.36.A 【解析】()()112f f ---=-.37.A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D . 38.C 【解析】1y x=是奇函数,xy e -=是非奇非偶函数,而D 在(0,)+∞单调递增.选C . 39.B 【解析】由已知两式相加得,()13g =. 40.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==-=,又因为 ()()8f x f x +-=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f -+=+=,所以(lg(lg 2))f =3,故选C .41.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D .42.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .43.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .44.B 【解析】∵π是无理数 ∴g (π)=0 则(())f g π=f (0)=0 ,故选B .45.B 【解析】210,11,100 2.40,x x x x x +>⎧⎪+≠∴-<<<≤⎨⎪-≥⎩Q 或故选B .46.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .47.A 【解析】12log (21)0x +>,所以0211x <+<,故102x -<<. 48.B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,2xy -=在(0,)+∞上为减函数.49.B 【解析】令函数()()24g x f x x =--,则()()20g x f x ''=->,所以()g x 在R 上为增函数,又(1)(1)240g f -=-+-=,所以不等式可转化为()(1)g x g >-,由()g x 的单调性可得1x >-.50.A 【解析】当0a >时,由()(1)0f a f +=得220a+=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =-,故选A .51.A 【解析】∵))(12()(a x x xx f -+=为奇函数,∴(1)(1)0f f -+=,得12a =.52.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =-,∴2(1)(1)2(1)(1)3f f =--=-⨯-+-=-,选A .53.B 【解】 由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B . 54.A 【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A .55.C 【解析】∵()21200=+=f ,∴()()()a a f f f 2422202+=+==.于是,由()()a f f 40=得2424=⇒=+a a a .故选C . 56.B 【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.57.A 【解析】∵()f x 是R 上周期为5的奇函数,∴(3)(4)(2)(1)(2)(1)211f f f f f f -=---=-+=-+=-. 58. [1,7]-【解析】 由2760x x +-…,得2670x x --…,解得17x-剟.所以函数y =[1,7]-.59. 3a =-【解析】解析:ln 2(ln 2)e (ln 2)8a f f --=-=-=-,得28a -=,3a =-.60. 0]-∞(,【解析】①根据题意,函数e e x x f x a -=+(), 若f x ()为奇函数,则f x f x -=-()(),即=e e e e x x x x a a --+-+() ,所以()()+1e e 0x x a -+=对x ∈R 恒成立.又e e 0x x -+>,所以10,1a a +==-.②函数e e x x f x a -=+(),导数e e x x f x a -'=-(). 若()f x 是R 上的增函数,则()f x 的导数e 0e x x f x a -'-≥=()在R 上恒成立,即2e x a ≤恒成立,而2e >0x ,所以a ≤0,即a 的取值范围为0]-∞(,.61.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞. 62.【解析】因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos242f f f f f π=-===. 63.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.64.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.65.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞. 66.1[1,]2-【解析】因为31()2e ()exx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-, 即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 67.①④【解析】①()2()2x x xx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质;②()3()3x x x x e e f x e -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质; ③3()xxe f x e x =⋅,令3()xg x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22x g x e x =+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.68.9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈ ①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <,综上可得,实数a 的取值范围是9(,]2-∞.69.13(,)22【解析】由()f x 是偶函数可知,()0-∞,单调递增;()0+∞,单调递减 又()(12a f f ->,(f f =可得,12a -112a -<∴1322a <<. 70.25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=,由59()()22f f -=可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 71.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.72.0、3【解析】∵(3)1f -=,(1)0f =,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.73.32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-.74.(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a <≤,所以实数a 的取值范围为(1,2].75.3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==.76.32-【解析】函数3()ln(1)xf x e ax =++为偶函数,故()()f x f x -=, 即33ln(1)ln(1)xxeax e ax -+-=++,化简得32361ln 2ln xax x x e ax e e e+==+,即32361x ax x xe e e e+=+,整理得32331(1)x ax x xe e e ++=+,所以230ax x +=, 即32a =-. 77.1【解析】2311()()4()21222f f =-=-⨯-+=.78.(-∞结合图形(图略),由()()2f f a ≤,可得()2f a -≥,可得a . 79.【答案】;(Ⅱ)x(或填(Ⅰ)k (Ⅱ)2k x ,其中12,k k 为正常数均可) 【解析】过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b+-=--,令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b ⇒+=+,可取()0)f x x =>.(Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可 取()(0)f x x x =>.80.(]0,1【解析】2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1. 81.(),2-∞【解析】由分段函数1x ≥,1122log log 10x ≤=;1x <,10222x <<=.82.6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩…可知()f x 的单调递增区间为[,)2a -+∞,故362aa -=⇔=-.83.32【解析】331113()(2)()()1222222f f f f =-=-==+=. 84.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.85.34-【解析】30,2212,2a a a a a a >-+=---=-, 30,1222,4a a a a a a <-+-=++=- .86.①③【解析】∵11(,)x y a =,22(,)x y b =,R λ∈,所以1212(1)((1),(1))x x y y λλλλλλ+-=+-+-a b对于①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-,具有性质P 的映射,同理可验证③符合,②不符合,答案应填.87.①②④【解析】①0)2(2)2(2)22()2(111====⋅=---f f f f m m m mΛ,正确;②取]2,2(1+∈m mx ,则]2,1(2∈m x ;mm xx f 22)2(-=,从而 x xf x f x f m m m -====+12)2(2)2(2)(Λ,其中,Λ,2,1,0=m ,从而),0[)(+∞∈x f ,正确;③122)12(1--=++n m nf ,假设存在n 使9)12(=+n f ,∵121[2,2)nnn ++∈,∴1(21)22121n n n n f ++=--=-,∴219,210n n +==,这与n Z ∈矛盾,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.88.-1【解析】设(),()xxg x x h x e ae -==+,∵()g x 为奇函数,由题意()h x 也为奇函数.所以(0)0h =,解得1a =-.。
十年高考理科数学真题 专题二 函数概念与基本初等函数 三函数的概念和性质及答案【最新】
专题二 函数概念与基本初等函数Ⅰ 第三讲 函数的概念和性质 2019年 1.(2019江苏4)函数276y x x =+-的定义域是 .2.(2019全国Ⅱ理14)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.3.(2019全国Ⅲ理11)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 4.(2019北京理13)设函数()e x x f x e a -=+ (a 为常数),若()f x 为奇函数,则a =______; 若()f x 是R 上的增函数,则a 的取值范围是 ________.5.(2019全国Ⅰ理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③ 6.(2019全国Ⅰ理5)函数f (x )=2sin cos ++x x x x 在[,]-ππ的图像大致为 A .B .C.D.7.(2019全国Ⅲ理7)函数3222x xxy-=+在[]6,6-的图像大致为A.B.C.D.8.(2019浙江6)在同一直角坐标系中,函数y=1xa ,y=log a(x+12),(a>0且a≠1)的图像可能是A. B.C. D.2010-2018年一、选择题1.(2018全国卷Ⅱ)函数2()--=x xe ef x x 的图像大致为2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为3.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .4.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .505.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D . 6.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关7.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.(2017北京)已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数9.(2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时, ()()f x f x -=-;当12x >时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2 10.(2016全国I) 函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .11.(2016全国II) 已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x +=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1m i i i x y =+=∑ A .0 B .m C .2m D .4m12.(2015福建)下列函数为奇函数的是A.y = B .sin y x = C .cos y x = D .x x y e e -=-13.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 14.(2015湖南)设函数()ln(1)ln(1)f x x x =+--,则()f x 是A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数15.(2015湖北)已知符号函数1,0,sgn0,0,1,0.xx xx>⎧⎪==⎨⎪-<⎩()f x是R上的增函数,()()g x f x=-()f ax(1)a>,则A.sgn[()]sgng x x=B.sgn[()]sgng x x=-C.sgn[()]sgn[()]g x f x=D.sgn[()]sgn[()]g x f x=-16.(2015安徽)函数()()2ax bf xx c+=+的图象如图所示,则下列结论成立的是A.0a>,0b>,0c<B.0a<,0b>,0c>C.0a<,0b>,0c<D.0a<,0b<,0c<17.(2014新课标1)设函数()f x,()g x的定义域都为R,且()f x是奇函数,()g x是偶函数,则下列结论正确的是A.()f x()g x是偶函数B.()f x|()g x|是奇函数C.|()f x|()g x是奇函数D.|()f x()g x|是奇函数18.(2014山东)函数1)(log1)(22-=xxf的定义域为A.)210(,B.)2(∞+,C.),2()210(+∞Y,D.)2[]210(∞+,,Y19.(2014山东)对于函数()f x,若存在常数0a≠,使得x取定义域内的每一个值,都有()(2)f x f a x=-,则称()f x为准偶函数,下列函数中是准偶函数的是A.()f x x=B.2()f x x=C.()tanf x x=D.()cos(1)f x x=+ 20.(2014浙江)已知函数32()f x x ax bx c=+++,且0(1)(2)(3)3f f f-=-=-≤≤,则A .3≤cB .63≤<cC .96≤<cD .9>c21.(2015北京)下列函数中,定义域是R 且为增函数的是A .xy e -= B .3y x = C .ln y x = D .y x = 22.(2014湖南)已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且()()f x f x -=321x x ++,(1)(1)f g +则=A .-3B .-1C .1D .323.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=aA .1B .2C .3D .-124.(2014重庆)下列函数为偶函数的是A .()1f x x =-B .3()f x x x =+C .()22x x f x -=-D .()22x x f x -=+ 25.(2014福建)已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是A .()x f 是偶函数B .()x f 是增函数C .()x f 是周期函数D .()x f 的值域为[)+∞-,126.(2014辽宁)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为 A .1247[,][,]4334U B .3112[,][,]4343--U C .1347[,][,]3434U D .3113[,][,]4334--U 27.(2013辽宁)已知函数()3)1f x x =+,则1(lg 2)(lg )2f f +=A .1-B .0C .1D .2 28.(2013新课标Ⅰ)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]29.(2013广东)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .130.(2013广东)函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞U D .[1,1)(1,)-+∞U31.(2013山东)已知函数()f x 为奇函数,且当0x >时,()21f x x x=+ ,则()1f -= A .-2 B .0 C .1 D .232.(2013福建)函数)1ln()(2+=x x f 的图象大致是A .B .C .D .33.(2013北京)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 34.(2013湖南)已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于A .4B .3C .2D .135.(2013重庆)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A .5-B .1-C .3D .436.(2013湖北)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为A .奇函数B .偶函数C .增函数D . 周期函数37.(2013四川)函数133-=x x y 的图像大致是A B C D38.(2012天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R --=∈ D .31y x =+ 39.(2012福建)设1,0,()0,0,1,0,xf x x x >⎧⎪= =⎨⎪- <⎩⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则(())f g π的值为A .1B .0C .1-D .π40.(2012山东)函数21()4ln(1)f x x x =+-+的定义域为 A .[2,0)(0,2]-U B .(1,0)(0,2]-U C .[2,2]- D .(1,2]-41.(2012陕西)下列函数中,既是奇函数又是增函数的为A 1y x =+B 3y x =-C 1y x =D ||y x x = 42.(2011江西)若12()log (21)f x x =+,则)(x f 的定义域为 A .(21-,0) B .(21-,0] C .(21-,∞+) D .(0,∞+) 43.(2011新课标)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 A .3y x = B .1y x =+ C .21y x =-+ D .2x y -=44.(2011辽宁)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)45.(2011福建)已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩.若()(1)0f a f +=,则实数a 的值等于 A .-3 B .-1C .1D .346.(2011辽宁)若函数))(12()(a x x x x f -+=为奇函数,则a = (A)21 (B)32 (C)43 (D)1 47.(2011安徽)设)(x f 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A .-3B .-1C .1D .348.(2011陕西)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是49.(2010山东)函数()()2log 31x f x =+的值域为A .()0,+∞B .)0,+∞⎡⎣C .()1,+∞D .)1,+∞⎡⎣ 50.(2010年陕西)已知函数()f x =221,1,1x x x ax x ⎧+<⎨+≥⎩,若((0))f f =4a ,则实数a = A .12 B .45C .2D .9 51.(2010广东)若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为偶函数,()g x 为奇函数C .()f x 与()g x 均为奇函数D .()f x 为奇函数,()g x 为偶函数52.(2010安徽)若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=A .-1B .1C .-2D .2 二、填空题53.(2018江苏)函数2()log 1f x x =-的定义域为 .54.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 .55.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____ 56.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________. 57.(2017新课标Ⅲ)设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.58.(2017江苏)已知函数31()2xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .59.(2017山东)若函数e ()xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 ①()2xf x -=②()3xf x -=③3()=f x x④2()2=+f x x60.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .61.(2016天津)已知f (x )是定义在R 上的偶函数,且在区间(,0)-∞上单调递增.若实数a 满足1(2)(a f f ->,则a 的取值范围是______.62.(2016江苏)设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上,(),10,2,01,5x a x f x x x +-<⎧⎪=⎨-<⎪⎩≤≤其中a ∈R ,若59()()22f f -=,则()5f a 的值是 .63.(2015新课标Ⅰ)若函数()ln(f x x x =为偶函数,则a =64.(2015浙江)已知函数223,1()lg(1),1x x f x xx x ⎧+-⎪=⎨⎪+<⎩≥,则((3))f f -=_______,()f x 的最小值是______.65.(2015山东)已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[1,0]-,则a b += .66.(2015福建)若函数()6,2,3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a > 且1a ≠ )的值域是[)4,+∞,则实数a 的取值范围是 .67.(2014新课标Ⅱ)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=___. 67.(2014湖南)若()()ax ex f x++=1ln 3是偶函数,则=a ____________.68.(2014四川)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .70.(2014浙江)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是___.71.(2014湖北)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)72.(2013安徽)函数1ln(1)y x=+_____________.73.(2013北京)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 .74.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________. 75.(2012浙江)设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________.76.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = . 77.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________78.(2011福建)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量11(,)x y a =∈V ,22(,)x y b =∈V ,以及任意λ∈R ,均有((1))()(1)(),f f f λλλλ+-=+-a b a b则称映射f 具有性质P . 现给出如下映射:①12:,(),,(,);f V R f m x y m x y V →=-=∈②222:,(),(,);f V R f m x y m x y V →=+=∈③33:,()1,(,).f V R f m x y m x y V →=++=∈其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)79.(2010福建)已知定义域为0+∞(,)的函数()f x 满足:①对任意0x ∈+∞(,),恒有(2)=2()f x f x 成立;当(1,2]x ∈时,()=2f x x -.给出如下结论:①对任意Z m ∈,有(2)=0mf ;②函数()f x 的值域为[0+∞,);③存在Z n ∈,使得(2+1)=9n f ;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是 “存在Z k ∈,使得1(,)(2,2)kk a b +⊆”.其中所有正确结论的序号是 .80.(2010江苏)设函数()()xxf x x e ae -=+(x ∈R)是偶函数,则实数a =______.专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分1. C 【解析】 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =,因为33log 4log 31>=,2303202221--<<<=,所以23323022log 4--<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f -->>. 故选C .2. C 【解析】()sin sin |i |sin s n f x x x x x f x -=-+-=+=()(),则函数()f x 是偶函数,故①正确.当π,π2x ⎛⎫∈⎪⎝⎭时, sin sin sin sin x x x x ==,, 则sin sin 2sin f x x x x =+=()为减函数,故②错误. 当0πx ≤≤,sin sin sin sin 2sin f x x x x x x =+=+=(), 由0f x =()得2sin 0x =,得0x =或πx =, 由()f x 是偶函数,得在[π0-,)上还有一个零点πx =-,即函数()f x 在[]ππ-,上有3个零点,故③错误.当sin 1sin 1x x ==,时,()f x 取得最大值2,故④正确, 故正确的结论是①④. 故选C . 3.D 【解析】: 因为()2sin cos x xf x x x +=+,π[]πx ∈-,,所以()()()22sin sin cos cos x x x xf x f x x x x x --+-===--++,所以()f x 为[ππ]-,上的奇函数,因此排除A ; 又()22sin ππππ0cos ππ1πf +==>+-+,因此排除B ,C ;故选D .4. B 【解析】 因为332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是[]6,6-上的奇函数,因此排除C ,又1182(4)721f =>+,因此排除A ,D .故选B .5. D 【解析】由函数1x y a =,1log 2a y x ⎛⎫=+ ⎪⎝⎭,单调性相反,且函数1log 2a y x ⎛⎫=+ ⎪⎝⎭图像恒过1,02⎛⎫ ⎪⎝⎭可各满足要求的图象为D .故选D .6.B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 7.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .8.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .9.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 10.D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 11.B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .12.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .13.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .14.D 【解析】当11x -剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .15.D 【解析】当0x ?时,令函数2()2xf x x e =-,则()4xf x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .16.B 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B . 17.D【解析】∵函数y =[0,)+∞,不关于原点对称,所以函数y =非奇非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.18.D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.19.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.20.B 【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.21.C 【解析】∵2()()ax bf x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N的横坐标均为正,∴0b x a =->,20by c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.22.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .23.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或. 24.D 【解析】由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D . 25.C 【解析】由已知得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <-=-≤,所以69c <≤. 26.B 【解析】四个函数的图象如下显然B 成立.27.C 【解析】用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,故选C .28.A 【解析】因为[(1)]1f g =,且||()5x f x =,所以(1)0g =,即2110a ⋅-=,解得1a =.29.D 【解析】函数()1f x x =-和2()f x x x =+既不是偶函数也不是奇函数,排除选项A和选项B ;选项C 中()22x xf x -=-,则()22(22)()xx x x f x f x ---=-=--=-,所以()f x =22x x --为奇函数,排除选项C ;选项D 中()22xxf x -=+, 则()22()xx f x f x --=+=,所以()22x x f x -=+为偶函数,选D .30.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .31.A 【解析】当102x ≤≤时,令1()cos 2f x x π=≤,解得1132x ≤≤,当12x >时, 令1()212f x x =-≤,解得1324x <≤,故1334x ≤≤.∵()f x 为偶函数,∴1()2f x ≤的解集为3113[,][,]4334--⋃,故1(1)2f x -≤的解集为1247[,][,]4334⋃.32.D 【解析】11lg 2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x +-=-++--+3)3)2x x =++ln 33)2x x ⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=-+⎣⎦ln122=+=.33.D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,22x x x ax ≤⎧⎨-≥⎩且0ln(1)x x ax >⎧⎨+≥⎩,由202x x x ax≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B , 当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D . 34.C 【解析】是奇函数的为3y x =与2sin y x =,故选C .35.C 【解析】1010x x +>⎧⎨-≠⎩,∴11x x >-⎧⎨≠⎩.36.A 【解析】()()112f f ---=-.37.A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D . 38.C 【解析】1y x=是奇函数,xy e -=是非奇非偶函数,而D 在(0,)+∞单调递增.选C . 39.B 【解析】由已知两式相加得,()13g =. 40.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==-=,又因为 ()()8f x f x +-=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f -+=+=,所以(lg(lg 2))f =3,故选C .41.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D .42.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .43.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .44.B 【解析】∵π是无理数 ∴g (π)=0 则(())f g π=f (0)=0 ,故选B .45.B 【解析】210,11,100 2.40,x x x x x +>⎧⎪+≠∴-<<<≤⎨⎪-≥⎩Q 或故选B .46.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .47.A 【解析】12log (21)0x +>,所以0211x <+<,故102x -<<. 48.B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,2xy -=在(0,)+∞上为减函数.49.B 【解析】令函数()()24g x f x x =--,则()()20g x f x ''=->,所以()g x 在R 上为增函数,又(1)(1)240g f -=-+-=,所以不等式可转化为()(1)g x g >-,由()g x 的单调性可得1x >-.50.A 【解析】当0a >时,由()(1)0f a f +=得220a+=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =-,故选A .51.A 【解析】∵))(12()(a x x xx f -+=为奇函数,∴(1)(1)0f f -+=,得12a =.52.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =-,∴2(1)(1)2(1)(1)3f f =--=-⨯-+-=-,选A .53.B 【解】 由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B . 54.A 【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A .55.C 【解析】∵()21200=+=f ,∴()()()a a f f f 2422202+=+==.于是,由()()a f f 40=得2424=⇒=+a a a .故选C . 56.B 【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.57.A 【解析】∵()f x 是R 上周期为5的奇函数,∴(3)(4)(2)(1)(2)(1)211f f f f f f -=---=-+=-+=-. 58. [1,7]-【解析】 由2760x x +-…,得2670x x --…,解得17x-剟.所以函数y =[1,7]-.59. 3a =-【解析】解析:ln 2(ln 2)e (ln 2)8a f f --=-=-=-,得28a -=,3a =-.60. 0]-∞(,【解析】①根据题意,函数e e x x f x a -=+(), 若f x ()为奇函数,则f x f x -=-()(),即=e e e e x x x x a a --+-+() ,所以()()+1e e 0x x a -+=对x ∈R 恒成立.又e e 0x x -+>,所以10,1a a +==-.②函数e e x x f x a -=+(),导数e e x x f x a -'=-(). 若()f x 是R 上的增函数,则()f x 的导数e 0e x x f x a -'-≥=()在R 上恒成立,即2e x a ≤恒成立,而2e >0x ,所以a ≤0,即a 的取值范围为0]-∞(,.61.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞. 62.【解析】因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos242f f f f f π=-===. 63.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.64.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.65.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞. 66.1[1,]2-【解析】因为31()2e ()exx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-, 即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 67.①④【解析】①()2()2x x xx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质;②()3()3x x x x e e f x e -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质; ③3()xxe f x e x =⋅,令3()xg x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22x g x e x =+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.68.9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈ ①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <,综上可得,实数a 的取值范围是9(,]2-∞.69.13(,)22【解析】由()f x 是偶函数可知,()0-∞,单调递增;()0+∞,单调递减 又()(12a f f ->,(f f =可得,12a -112a -<∴1322a <<. 70.25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=,由59()()22f f -=可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 71.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.72.0、3【解析】∵(3)1f -=,(1)0f =,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.73.32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-.74.(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a <≤,所以实数a 的取值范围为(1,2].75.3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==.76.32-【解析】函数3()ln(1)xf x e ax =++为偶函数,故()()f x f x -=, 即33ln(1)ln(1)xxeax e ax -+-=++,化简得32361ln 2ln xax x x e ax e e e+==+,即32361x ax x xe e e e+=+,整理得32331(1)x ax x xe e e ++=+,所以230ax x +=, 即32a =-. 77.1【解析】2311()()4()21222f f =-=-⨯-+=.78.(-∞结合图形(图略),由()()2f f a ≤,可得()2f a -≥,可得a . 79.【答案】;(Ⅱ)x(或填(Ⅰ)k (Ⅱ)2k x ,其中12,k k 为正常数均可) 【解析】过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b+-=--,令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b ⇒+=+,可取()0)f x x =>.(Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可 取()(0)f x x x =>.80.(]0,1【解析】2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1. 81.(),2-∞【解析】由分段函数1x ≥,1122log log 10x ≤=;1x <,10222x <<=.82.6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩…可知()f x 的单调递增区间为[,)2a -+∞,故362aa -=⇔=-.83.32【解析】331113()(2)()()1222222f f f f =-=-==+=. 84.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.85.34-【解析】30,2212,2a a a a a a >-+=---=-, 30,1222,4a a a a a a <-+-=++=- .86.①③【解析】∵11(,)x y a =,22(,)x y b =,R λ∈,所以1212(1)((1),(1))x x y y λλλλλλ+-=+-+-a b对于①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-,具有性质P 的映射,同理可验证③符合,②不符合,答案应填.87.①②④【解析】①0)2(2)2(2)22()2(111====⋅=---f f f f m m m mΛ,正确;②取]2,2(1+∈m mx ,则]2,1(2∈m x ;mm xx f 22)2(-=,从而 x xf x f x f m m m -====+12)2(2)2(2)(Λ,其中,Λ,2,1,0=m ,从而),0[)(+∞∈x f ,正确;③122)12(1--=++n m nf ,假设存在n 使9)12(=+n f ,∵121[2,2)nnn ++∈,∴1(21)22121n n n n f ++=--=-,∴219,210n n +==,这与n Z ∈矛盾,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.88.-1【解析】设(),()xxg x x h x e ae -==+,∵()g x 为奇函数,由题意()h x 也为奇函数.所以(0)0h =,解得1a =-.。
2010高考数学考点预测4函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)
2010高考数学考点预测4函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)2010高考数学考点预测:函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)一、考点介绍本部分考试大纲要求如下:(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.④理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图像理解和研究函数的性质. (2)指数函数①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念,并理解指数函数的单调性掌握指数函数图像通过的特殊点.④知道指数函数是一类重要的函数模型. (3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.② 理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点.③ 知道对数函数是一类重要的函数模型;④ 了解指数函数x y a =与对数函数log a y x =互为反函数(0,1a a >≠).(4)幂函数① 了解幂函数的概念.② 结合函数12321,,,,y x y x y x y y x x =====的图像,了解它们的变化情况.(5)函数与方程① 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.② 根据具体函数的图像,能够用二分法求相应方程的近似解.(6)函数模型及其应用① 了解指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义.② 了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.二、高考真题1.(2008年安徽卷,数学文理科,13)函数221()x f x --=的定义域为 .当x=2时,[(2)](2)3,[(2)](3)1f g f g f g ====,满足条件, 当x=3时,[(3)](1)1,[(3)](1)3f g f g f g ====,不满足条件,∴ 只有x=2时,符合条件。
十年高考理科数学真题 专题二 函数概念与基本初等函数 三函数的概念和性质及答案-优质
专题二 函数概念与基本初等函数Ⅰ 第三讲 函数的概念和性质 2019年 1.(2019江苏4)函数276y x x =+-的定义域是 .2.(2019全国Ⅱ理14)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.3.(2019全国Ⅲ理11)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 4.(2019北京理13)设函数()e x x f x e a -=+ (a 为常数),若()f x 为奇函数,则a =______; 若()f x 是R 上的增函数,则a 的取值范围是 ________.5.(2019全国Ⅰ理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③ 6.(2019全国Ⅰ理5)函数f (x )=2sin cos ++x x x x 在[,]-ππ的图像大致为 A .B .C.D.7.(2019全国Ⅲ理7)函数3222x xxy-=+在[]6,6-的图像大致为A.B.C.D.8.(2019浙江6)在同一直角坐标系中,函数y=1xa ,y=log a(x+12),(a>0且a≠1)的图像可能是A. B.C. D.2010-2018年一、选择题1.(2018全国卷Ⅱ)函数2()--=x xe ef x x 的图像大致为2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为3.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .4.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .505.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D . 6.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关7.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.(2017北京)已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数9.(2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时, ()()f x f x -=-;当12x >时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2 10.(2016全国I) 函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .11.(2016全国II) 已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x +=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1m i i i x y =+=∑ A .0 B .m C .2m D .4m12.(2015福建)下列函数为奇函数的是A.y = B .sin y x = C .cos y x = D .x x y e e -=-13.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 14.(2015湖南)设函数()ln(1)ln(1)f x x x =+--,则()f x 是A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数15.(2015湖北)已知符号函数1,0,sgn0,0,1,0.xx xx>⎧⎪==⎨⎪-<⎩()f x是R上的增函数,()()g x f x=-()f ax(1)a>,则A.sgn[()]sgng x x=B.sgn[()]sgng x x=-C.sgn[()]sgn[()]g x f x=D.sgn[()]sgn[()]g x f x=-16.(2015安徽)函数()()2ax bf xx c+=+的图象如图所示,则下列结论成立的是A.0a>,0b>,0c<B.0a<,0b>,0c>C.0a<,0b>,0c<D.0a<,0b<,0c<17.(2014新课标1)设函数()f x,()g x的定义域都为R,且()f x是奇函数,()g x是偶函数,则下列结论正确的是A.()f x()g x是偶函数B.()f x|()g x|是奇函数C.|()f x|()g x是奇函数D.|()f x()g x|是奇函数18.(2014山东)函数1)(log1)(22-=xxf的定义域为A.)210(,B.)2(∞+,C.),2()210(+∞Y,D.)2[]210(∞+,,Y19.(2014山东)对于函数()f x,若存在常数0a≠,使得x取定义域内的每一个值,都有()(2)f x f a x=-,则称()f x为准偶函数,下列函数中是准偶函数的是A.()f x x=B.2()f x x=C.()tanf x x=D.()cos(1)f x x=+ 20.(2014浙江)已知函数32()f x x ax bx c=+++,且0(1)(2)(3)3f f f-=-=-≤≤,则A .3≤cB .63≤<cC .96≤<cD .9>c21.(2015北京)下列函数中,定义域是R 且为增函数的是A .xy e -= B .3y x = C .ln y x = D .y x = 22.(2014湖南)已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且()()f x f x -=321x x ++,(1)(1)f g +则=A .-3B .-1C .1D .323.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=aA .1B .2C .3D .-124.(2014重庆)下列函数为偶函数的是A .()1f x x =-B .3()f x x x =+C .()22x x f x -=-D .()22x x f x -=+ 25.(2014福建)已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是A .()x f 是偶函数B .()x f 是增函数C .()x f 是周期函数D .()x f 的值域为[)+∞-,126.(2014辽宁)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为 A .1247[,][,]4334U B .3112[,][,]4343--U C .1347[,][,]3434U D .3113[,][,]4334--U 27.(2013辽宁)已知函数()3)1f x x =+,则1(lg 2)(lg )2f f +=A .1-B .0C .1D .2 28.(2013新课标Ⅰ)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]29.(2013广东)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .130.(2013广东)函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞U D .[1,1)(1,)-+∞U31.(2013山东)已知函数()f x 为奇函数,且当0x >时,()21f x x x=+ ,则()1f -= A .-2 B .0 C .1 D .232.(2013福建)函数)1ln()(2+=x x f 的图象大致是A .B .C .D .33.(2013北京)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 34.(2013湖南)已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于A .4B .3C .2D .135.(2013重庆)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A .5-B .1-C .3D .436.(2013湖北)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为A .奇函数B .偶函数C .增函数D . 周期函数37.(2013四川)函数133-=x x y 的图像大致是A B C D38.(2012天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R --=∈ D .31y x =+ 39.(2012福建)设1,0,()0,0,1,0,xf x x x >⎧⎪= =⎨⎪- <⎩⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则(())f g π的值为A .1B .0C .1-D .π40.(2012山东)函数21()4ln(1)f x x x =+-+的定义域为 A .[2,0)(0,2]-U B .(1,0)(0,2]-U C .[2,2]- D .(1,2]-41.(2012陕西)下列函数中,既是奇函数又是增函数的为A 1y x =+B 3y x =-C 1y x =D ||y x x = 42.(2011江西)若12()log (21)f x x =+,则)(x f 的定义域为 A .(21-,0) B .(21-,0] C .(21-,∞+) D .(0,∞+) 43.(2011新课标)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 A .3y x = B .1y x =+ C .21y x =-+ D .2x y -=44.(2011辽宁)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)45.(2011福建)已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩.若()(1)0f a f +=,则实数a 的值等于 A .-3 B .-1C .1D .346.(2011辽宁)若函数))(12()(a x x x x f -+=为奇函数,则a = (A)21 (B)32 (C)43 (D)1 47.(2011安徽)设)(x f 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A .-3B .-1C .1D .348.(2011陕西)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是49.(2010山东)函数()()2log 31x f x =+的值域为A .()0,+∞B .)0,+∞⎡⎣C .()1,+∞D .)1,+∞⎡⎣ 50.(2010年陕西)已知函数()f x =221,1,1x x x ax x ⎧+<⎨+≥⎩,若((0))f f =4a ,则实数a = A .12 B .45C .2D .9 51.(2010广东)若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为偶函数,()g x 为奇函数C .()f x 与()g x 均为奇函数D .()f x 为奇函数,()g x 为偶函数52.(2010安徽)若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=A .-1B .1C .-2D .2 二、填空题53.(2018江苏)函数2()log 1f x x =-的定义域为 .54.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 .55.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____ 56.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________. 57.(2017新课标Ⅲ)设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.58.(2017江苏)已知函数31()2xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .59.(2017山东)若函数e ()xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 ①()2xf x -=②()3xf x -=③3()=f x x④2()2=+f x x60.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .61.(2016天津)已知f (x )是定义在R 上的偶函数,且在区间(,0)-∞上单调递增.若实数a 满足1(2)(a f f ->,则a 的取值范围是______.62.(2016江苏)设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上,(),10,2,01,5x a x f x x x +-<⎧⎪=⎨-<⎪⎩≤≤其中a ∈R ,若59()()22f f -=,则()5f a 的值是 .63.(2015新课标Ⅰ)若函数()ln(f x x x =为偶函数,则a =64.(2015浙江)已知函数223,1()lg(1),1x x f x xx x ⎧+-⎪=⎨⎪+<⎩≥,则((3))f f -=_______,()f x 的最小值是______.65.(2015山东)已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[1,0]-,则a b += .66.(2015福建)若函数()6,2,3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a > 且1a ≠ )的值域是[)4,+∞,则实数a 的取值范围是 .67.(2014新课标Ⅱ)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=___. 67.(2014湖南)若()()ax ex f x++=1ln 3是偶函数,则=a ____________.68.(2014四川)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .70.(2014浙江)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是___.71.(2014湖北)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)72.(2013安徽)函数1ln(1)y x=+_____________.73.(2013北京)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 .74.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________. 75.(2012浙江)设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________.76.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = . 77.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________78.(2011福建)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量11(,)x y a =∈V ,22(,)x y b =∈V ,以及任意λ∈R ,均有((1))()(1)(),f f f λλλλ+-=+-a b a b则称映射f 具有性质P . 现给出如下映射:①12:,(),,(,);f V R f m x y m x y V →=-=∈②222:,(),(,);f V R f m x y m x y V →=+=∈③33:,()1,(,).f V R f m x y m x y V →=++=∈其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)79.(2010福建)已知定义域为0+∞(,)的函数()f x 满足:①对任意0x ∈+∞(,),恒有(2)=2()f x f x 成立;当(1,2]x ∈时,()=2f x x -.给出如下结论:①对任意Z m ∈,有(2)=0mf ;②函数()f x 的值域为[0+∞,);③存在Z n ∈,使得(2+1)=9n f ;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是 “存在Z k ∈,使得1(,)(2,2)kk a b +⊆”.其中所有正确结论的序号是 .80.(2010江苏)设函数()()xxf x x e ae -=+(x ∈R)是偶函数,则实数a =______.专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分1. C 【解析】 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =,因为33log 4log 31>=,2303202221--<<<=,所以23323022log 4--<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f -->>. 故选C .2. C 【解析】()sin sin |i |sin s n f x x x x x f x -=-+-=+=()(),则函数()f x 是偶函数,故①正确.当π,π2x ⎛⎫∈⎪⎝⎭时, sin sin sin sin x x x x ==,, 则sin sin 2sin f x x x x =+=()为减函数,故②错误. 当0πx ≤≤,sin sin sin sin 2sin f x x x x x x =+=+=(), 由0f x =()得2sin 0x =,得0x =或πx =, 由()f x 是偶函数,得在[π0-,)上还有一个零点πx =-,即函数()f x 在[]ππ-,上有3个零点,故③错误.当sin 1sin 1x x ==,时,()f x 取得最大值2,故④正确, 故正确的结论是①④. 故选C . 3.D 【解析】: 因为()2sin cos x xf x x x +=+,π[]πx ∈-,,所以()()()22sin sin cos cos x x x xf x f x x x x x --+-===--++,所以()f x 为[ππ]-,上的奇函数,因此排除A ; 又()22sin ππππ0cos ππ1πf +==>+-+,因此排除B ,C ;故选D .4. B 【解析】 因为332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是[]6,6-上的奇函数,因此排除C ,又1182(4)721f =>+,因此排除A ,D .故选B .5. D 【解析】由函数1x y a =,1log 2a y x ⎛⎫=+ ⎪⎝⎭,单调性相反,且函数1log 2a y x ⎛⎫=+ ⎪⎝⎭图像恒过1,02⎛⎫ ⎪⎝⎭可各满足要求的图象为D .故选D .6.B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 7.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .8.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .9.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 10.D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 11.B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .12.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .13.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .14.D 【解析】当11x -剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .15.D 【解析】当0x ?时,令函数2()2xf x x e =-,则()4xf x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .16.B 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B . 17.D【解析】∵函数y =[0,)+∞,不关于原点对称,所以函数y =非奇非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.18.D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.19.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.20.B 【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.21.C 【解析】∵2()()ax bf x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N的横坐标均为正,∴0b x a =->,20by c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.22.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .23.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或. 24.D 【解析】由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D . 25.C 【解析】由已知得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <-=-≤,所以69c <≤. 26.B 【解析】四个函数的图象如下显然B 成立.27.C 【解析】用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,故选C .28.A 【解析】因为[(1)]1f g =,且||()5x f x =,所以(1)0g =,即2110a ⋅-=,解得1a =.29.D 【解析】函数()1f x x =-和2()f x x x =+既不是偶函数也不是奇函数,排除选项A和选项B ;选项C 中()22x xf x -=-,则()22(22)()xx x x f x f x ---=-=--=-,所以()f x =22x x --为奇函数,排除选项C ;选项D 中()22xxf x -=+, 则()22()xx f x f x --=+=,所以()22x x f x -=+为偶函数,选D .30.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .31.A 【解析】当102x ≤≤时,令1()cos 2f x x π=≤,解得1132x ≤≤,当12x >时, 令1()212f x x =-≤,解得1324x <≤,故1334x ≤≤.∵()f x 为偶函数,∴1()2f x ≤的解集为3113[,][,]4334--⋃,故1(1)2f x -≤的解集为1247[,][,]4334⋃.32.D 【解析】11lg 2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x +-=-++--+3)3)2x x =++ln 33)2x x ⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=-+⎣⎦ln122=+=.33.D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,22x x x ax ≤⎧⎨-≥⎩且0ln(1)x x ax >⎧⎨+≥⎩,由202x x x ax≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B , 当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D . 34.C 【解析】是奇函数的为3y x =与2sin y x =,故选C .35.C 【解析】1010x x +>⎧⎨-≠⎩,∴11x x >-⎧⎨≠⎩.36.A 【解析】()()112f f ---=-.37.A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D . 38.C 【解析】1y x=是奇函数,xy e -=是非奇非偶函数,而D 在(0,)+∞单调递增.选C . 39.B 【解析】由已知两式相加得,()13g =. 40.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==-=,又因为 ()()8f x f x +-=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f -+=+=,所以(lg(lg 2))f =3,故选C .41.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D .42.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .43.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .44.B 【解析】∵π是无理数 ∴g (π)=0 则(())f g π=f (0)=0 ,故选B .45.B 【解析】210,11,100 2.40,x x x x x +>⎧⎪+≠∴-<<<≤⎨⎪-≥⎩Q 或故选B .46.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .47.A 【解析】12log (21)0x +>,所以0211x <+<,故102x -<<. 48.B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,2xy -=在(0,)+∞上为减函数.49.B 【解析】令函数()()24g x f x x =--,则()()20g x f x ''=->,所以()g x 在R 上为增函数,又(1)(1)240g f -=-+-=,所以不等式可转化为()(1)g x g >-,由()g x 的单调性可得1x >-.50.A 【解析】当0a >时,由()(1)0f a f +=得220a+=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =-,故选A .51.A 【解析】∵))(12()(a x x xx f -+=为奇函数,∴(1)(1)0f f -+=,得12a =.52.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =-,∴2(1)(1)2(1)(1)3f f =--=-⨯-+-=-,选A .53.B 【解】 由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B . 54.A 【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A .55.C 【解析】∵()21200=+=f ,∴()()()a a f f f 2422202+=+==.于是,由()()a f f 40=得2424=⇒=+a a a .故选C . 56.B 【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.57.A 【解析】∵()f x 是R 上周期为5的奇函数,∴(3)(4)(2)(1)(2)(1)211f f f f f f -=---=-+=-+=-. 58. [1,7]-【解析】 由2760x x +-…,得2670x x --…,解得17x-剟.所以函数y =[1,7]-.59. 3a =-【解析】解析:ln 2(ln 2)e (ln 2)8a f f --=-=-=-,得28a -=,3a =-.60. 0]-∞(,【解析】①根据题意,函数e e x x f x a -=+(), 若f x ()为奇函数,则f x f x -=-()(),即=e e e e x x x x a a --+-+() ,所以()()+1e e 0x x a -+=对x ∈R 恒成立.又e e 0x x -+>,所以10,1a a +==-.②函数e e x x f x a -=+(),导数e e x x f x a -'=-(). 若()f x 是R 上的增函数,则()f x 的导数e 0e x x f x a -'-≥=()在R 上恒成立,即2e x a ≤恒成立,而2e >0x ,所以a ≤0,即a 的取值范围为0]-∞(,.61.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞. 62.【解析】因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos242f f f f f π=-===. 63.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.64.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.65.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞. 66.1[1,]2-【解析】因为31()2e ()exx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-, 即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 67.①④【解析】①()2()2x x xx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质;②()3()3x x x x e e f x e -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质; ③3()xxe f x e x =⋅,令3()xg x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22x g x e x =+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.68.9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈ ①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <,综上可得,实数a 的取值范围是9(,]2-∞.69.13(,)22【解析】由()f x 是偶函数可知,()0-∞,单调递增;()0+∞,单调递减 又()(12a f f ->,(f f =可得,12a -112a -<∴1322a <<. 70.25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=,由59()()22f f -=可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 71.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.72.0、3【解析】∵(3)1f -=,(1)0f =,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.73.32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-.74.(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a <≤,所以实数a 的取值范围为(1,2].75.3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==.76.32-【解析】函数3()ln(1)xf x e ax =++为偶函数,故()()f x f x -=, 即33ln(1)ln(1)xxeax e ax -+-=++,化简得32361ln 2ln xax x x e ax e e e+==+,即32361x ax x xe e e e+=+,整理得32331(1)x ax x xe e e ++=+,所以230ax x +=, 即32a =-. 77.1【解析】2311()()4()21222f f =-=-⨯-+=.78.(-∞结合图形(图略),由()()2f f a ≤,可得()2f a -≥,可得a . 79.【答案】;(Ⅱ)x(或填(Ⅰ)k (Ⅱ)2k x ,其中12,k k 为正常数均可) 【解析】过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b+-=--,令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b ⇒+=+,可取()0)f x x =>.(Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可 取()(0)f x x x =>.80.(]0,1【解析】2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1. 81.(),2-∞【解析】由分段函数1x ≥,1122log log 10x ≤=;1x <,10222x <<=.82.6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩…可知()f x 的单调递增区间为[,)2a -+∞,故362aa -=⇔=-.83.32【解析】331113()(2)()()1222222f f f f =-=-==+=. 84.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.85.34-【解析】30,2212,2a a a a a a >-+=---=-, 30,1222,4a a a a a a <-+-=++=- .86.①③【解析】∵11(,)x y a =,22(,)x y b =,R λ∈,所以1212(1)((1),(1))x x y y λλλλλλ+-=+-+-a b对于①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-,具有性质P 的映射,同理可验证③符合,②不符合,答案应填.87.①②④【解析】①0)2(2)2(2)22()2(111====⋅=---f f f f m m m mΛ,正确;②取]2,2(1+∈m mx ,则]2,1(2∈m x ;mm xx f 22)2(-=,从而 x xf x f x f m m m -====+12)2(2)2(2)(Λ,其中,Λ,2,1,0=m ,从而),0[)(+∞∈x f ,正确;③122)12(1--=++n m nf ,假设存在n 使9)12(=+n f ,∵121[2,2)nnn ++∈,∴1(21)22121n n n n f ++=--=-,∴219,210n n +==,这与n Z ∈矛盾,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.88.-1【解析】设(),()xxg x x h x e ae -==+,∵()g x 为奇函数,由题意()h x 也为奇函数.所以(0)0h =,解得1a =-.。
十年高考理科数学真题 专题二 函数概念与基本初等函数 三函数的概念和性质及答案
专题二 函数概念与基本初等函数Ⅰ 第三讲 函数的概念和性质 2019年 1.(2019江苏4)函数276y x x =+-的定义域是 .2.(2019全国Ⅱ理14)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.3.(2019全国Ⅲ理11)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 4.(2019北京理13)设函数()e x x f x e a -=+ (a 为常数),若()f x 为奇函数,则a =______; 若()f x 是R 上的增函数,则a 的取值范围是 ________.5.(2019全国Ⅰ理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③ 6.(2019全国Ⅰ理5)函数f (x )=2sin cos ++x x x x 在[,]-ππ的图像大致为 A .B .C.D.7.(2019全国Ⅲ理7)函数3222x xxy-=+在[]6,6-的图像大致为A.B.C.D.8.(2019浙江6)在同一直角坐标系中,函数y=1xa ,y=log a(x+12),(a>0且a≠1)的图像可能是A. B.C. D.2010-2018年一、选择题1.(2018全国卷Ⅱ)函数2()--=x xe ef x x 的图像大致为2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为3.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .4.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .505.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .B .C .D . 6.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关7.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<8.(2017北京)已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数9.(2016山东)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时, ()()f x f x -=-;当12x >时,11()()22f x f x +=-,则f (6)= A .−2 B .−1C .0D .2 10.(2016全国I) 函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .11.(2016全国II) 已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x +=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1m i i i x y =+=∑ A .0 B .m C .2m D .4m12.(2015福建)下列函数为奇函数的是A.y = B .sin y x = C .cos y x = D .x x y e e -=-13.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A.y = B .1y x x =+ C .122x x y =+ D .x y x e =+ 14.(2015湖南)设函数()ln(1)ln(1)f x x x =+--,则()f x 是A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数15.(2015湖北)已知符号函数1,0,sgn0,0,1,0.xx xx>⎧⎪==⎨⎪-<⎩()f x是R上的增函数,()()g x f x=-()f ax(1)a>,则A.sgn[()]sgng x x=B.sgn[()]sgng x x=-C.sgn[()]sgn[()]g x f x=D.sgn[()]sgn[()]g x f x=-16.(2015安徽)函数()()2ax bf xx c+=+的图象如图所示,则下列结论成立的是A.0a>,0b>,0c<B.0a<,0b>,0c>C.0a<,0b>,0c<D.0a<,0b<,0c<17.(2014新课标1)设函数()f x,()g x的定义域都为R,且()f x是奇函数,()g x是偶函数,则下列结论正确的是A.()f x()g x是偶函数B.()f x|()g x|是奇函数C.|()f x|()g x是奇函数D.|()f x()g x|是奇函数18.(2014山东)函数1)(log1)(22-=xxf的定义域为A.)210(,B.)2(∞+,C.),2()210(+∞Y,D.)2[]210(∞+,,Y19.(2014山东)对于函数()f x,若存在常数0a≠,使得x取定义域内的每一个值,都有()(2)f x f a x=-,则称()f x为准偶函数,下列函数中是准偶函数的是A.()f x x=B.2()f x x=C.()tanf x x=D.()cos(1)f x x=+ 20.(2014浙江)已知函数32()f x x ax bx c=+++,且0(1)(2)(3)3f f f-=-=-≤≤,则A .3≤cB .63≤<cC .96≤<cD .9>c21.(2015北京)下列函数中,定义域是R 且为增函数的是A .xy e -= B .3y x = C .ln y x = D .y x = 22.(2014湖南)已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且()()f x f x -=321x x ++,(1)(1)f g +则=A .-3B .-1C .1D .323.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=aA .1B .2C .3D .-124.(2014重庆)下列函数为偶函数的是A .()1f x x =-B .3()f x x x =+C .()22x x f x -=-D .()22x x f x -=+ 25.(2014福建)已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是A .()x f 是偶函数B .()x f 是增函数C .()x f 是周期函数D .()x f 的值域为[)+∞-,126.(2014辽宁)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为 A .1247[,][,]4334U B .3112[,][,]4343--U C .1347[,][,]3434U D .3113[,][,]4334--U 27.(2013辽宁)已知函数()3)1f x x =+,则1(lg 2)(lg )2f f +=A .1-B .0C .1D .2 28.(2013新课标Ⅰ)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]29.(2013广东)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .130.(2013广东)函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞U D .[1,1)(1,)-+∞U31.(2013山东)已知函数()f x 为奇函数,且当0x >时,()21f x x x=+ ,则()1f -= A .-2 B .0 C .1 D .232.(2013福建)函数)1ln()(2+=x x f 的图象大致是A .B .C .D .33.(2013北京)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 34.(2013湖南)已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于A .4B .3C .2D .135.(2013重庆)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A .5-B .1-C .3D .436.(2013湖北)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为A .奇函数B .偶函数C .增函数D . 周期函数37.(2013四川)函数133-=x x y 的图像大致是A B C D38.(2012天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R --=∈ D .31y x =+ 39.(2012福建)设1,0,()0,0,1,0,xf x x x >⎧⎪= =⎨⎪- <⎩⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则(())f g π的值为A .1B .0C .1-D .π40.(2012山东)函数21()4ln(1)f x x x =+-+的定义域为 A .[2,0)(0,2]-U B .(1,0)(0,2]-U C .[2,2]- D .(1,2]-41.(2012陕西)下列函数中,既是奇函数又是增函数的为A 1y x =+B 3y x =-C 1y x =D ||y x x = 42.(2011江西)若12()log (21)f x x =+,则)(x f 的定义域为 A .(21-,0) B .(21-,0] C .(21-,∞+) D .(0,∞+) 43.(2011新课标)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 A .3y x = B .1y x =+ C .21y x =-+ D .2x y -=44.(2011辽宁)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)45.(2011福建)已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩.若()(1)0f a f +=,则实数a 的值等于 A .-3 B .-1C .1D .346.(2011辽宁)若函数))(12()(a x x x x f -+=为奇函数,则a = (A)21 (B)32 (C)43 (D)1 47.(2011安徽)设)(x f 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A .-3B .-1C .1D .348.(2011陕西)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是49.(2010山东)函数()()2log 31x f x =+的值域为A .()0,+∞B .)0,+∞⎡⎣C .()1,+∞D .)1,+∞⎡⎣ 50.(2010年陕西)已知函数()f x =221,1,1x x x ax x ⎧+<⎨+≥⎩,若((0))f f =4a ,则实数a = A .12 B .45C .2D .9 51.(2010广东)若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为偶函数,()g x 为奇函数C .()f x 与()g x 均为奇函数D .()f x 为奇函数,()g x 为偶函数52.(2010安徽)若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=A .-1B .1C .-2D .2 二、填空题53.(2018江苏)函数2()log 1f x x =-的定义域为 .54.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 .55.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____ 56.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________. 57.(2017新课标Ⅲ)设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.58.(2017江苏)已知函数31()2xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .59.(2017山东)若函数e ()xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 ①()2xf x -=②()3xf x -=③3()=f x x④2()2=+f x x60.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .61.(2016天津)已知f (x )是定义在R 上的偶函数,且在区间(,0)-∞上单调递增.若实数a 满足1(2)(a f f ->,则a 的取值范围是______.62.(2016江苏)设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上,(),10,2,01,5x a x f x x x +-<⎧⎪=⎨-<⎪⎩≤≤其中a ∈R ,若59()()22f f -=,则()5f a 的值是 .63.(2015新课标Ⅰ)若函数()ln(f x x x =为偶函数,则a =64.(2015浙江)已知函数223,1()lg(1),1x x f x xx x ⎧+-⎪=⎨⎪+<⎩≥,则((3))f f -=_______,()f x 的最小值是______.65.(2015山东)已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[1,0]-,则a b += .66.(2015福建)若函数()6,2,3log ,2,a x x f x x x -+⎧=⎨+>⎩≤(0a > 且1a ≠ )的值域是[)4,+∞,则实数a 的取值范围是 .67.(2014新课标Ⅱ)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=___. 67.(2014湖南)若()()ax ex f x++=1ln 3是偶函数,则=a ____________.68.(2014四川)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .70.(2014浙江)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是___.71.(2014湖北)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)72.(2013安徽)函数1ln(1)y x=+_____________.73.(2013北京)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 .74.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________. 75.(2012浙江)设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________.76.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = . 77.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________78.(2011福建)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量11(,)x y a =∈V ,22(,)x y b =∈V ,以及任意λ∈R ,均有((1))()(1)(),f f f λλλλ+-=+-a b a b则称映射f 具有性质P . 现给出如下映射:①12:,(),,(,);f V R f m x y m x y V →=-=∈②222:,(),(,);f V R f m x y m x y V →=+=∈③33:,()1,(,).f V R f m x y m x y V →=++=∈其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)79.(2010福建)已知定义域为0+∞(,)的函数()f x 满足:①对任意0x ∈+∞(,),恒有(2)=2()f x f x 成立;当(1,2]x ∈时,()=2f x x -.给出如下结论:①对任意Z m ∈,有(2)=0mf ;②函数()f x 的值域为[0+∞,);③存在Z n ∈,使得(2+1)=9n f ;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是 “存在Z k ∈,使得1(,)(2,2)kk a b +⊆”.其中所有正确结论的序号是 .80.(2010江苏)设函数()()xxf x x e ae -=+(x ∈R)是偶函数,则实数a =______.专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分1. C 【解析】 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =,因为33log 4log 31>=,2303202221--<<<=,所以23323022log 4--<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f -->>. 故选C .2. C 【解析】()sin sin |i |sin s n f x x x x x f x -=-+-=+=()(),则函数()f x 是偶函数,故①正确.当π,π2x ⎛⎫∈⎪⎝⎭时, sin sin sin sin x x x x ==,, 则sin sin 2sin f x x x x =+=()为减函数,故②错误. 当0πx ≤≤,sin sin sin sin 2sin f x x x x x x =+=+=(), 由0f x =()得2sin 0x =,得0x =或πx =, 由()f x 是偶函数,得在[π0-,)上还有一个零点πx =-,即函数()f x 在[]ππ-,上有3个零点,故③错误.当sin 1sin 1x x ==,时,()f x 取得最大值2,故④正确, 故正确的结论是①④. 故选C . 3.D 【解析】: 因为()2sin cos x xf x x x +=+,π[]πx ∈-,,所以()()()22sin sin cos cos x x x xf x f x x x x x --+-===--++,所以()f x 为[ππ]-,上的奇函数,因此排除A ; 又()22sin ππππ0cos ππ1πf +==>+-+,因此排除B ,C ;故选D .4. B 【解析】 因为332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是[]6,6-上的奇函数,因此排除C ,又1182(4)721f =>+,因此排除A ,D .故选B .5. D 【解析】由函数1x y a =,1log 2a y x ⎛⎫=+ ⎪⎝⎭,单调性相反,且函数1log 2a y x ⎛⎫=+ ⎪⎝⎭图像恒过1,02⎛⎫ ⎪⎝⎭可各满足要求的图象为D .故选D .6.B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 7.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .8.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .9.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 10.D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 11.B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .12.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .13.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .14.D 【解析】当11x -剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .15.D 【解析】当0x ?时,令函数2()2xf x x e =-,则()4xf x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .16.B 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B . 17.D【解析】∵函数y =[0,)+∞,不关于原点对称,所以函数y =非奇非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.18.D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.19.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.20.B 【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.21.C 【解析】∵2()()ax bf x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N的横坐标均为正,∴0b x a =->,20by c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.22.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .23.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或. 24.D 【解析】由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D . 25.C 【解析】由已知得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <-=-≤,所以69c <≤. 26.B 【解析】四个函数的图象如下显然B 成立.27.C 【解析】用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,故选C .28.A 【解析】因为[(1)]1f g =,且||()5x f x =,所以(1)0g =,即2110a ⋅-=,解得1a =.29.D 【解析】函数()1f x x =-和2()f x x x =+既不是偶函数也不是奇函数,排除选项A和选项B ;选项C 中()22x xf x -=-,则()22(22)()xx x x f x f x ---=-=--=-,所以()f x =22x x --为奇函数,排除选项C ;选项D 中()22xxf x -=+, 则()22()xx f x f x --=+=,所以()22x x f x -=+为偶函数,选D .30.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .31.A 【解析】当102x ≤≤时,令1()cos 2f x x π=≤,解得1132x ≤≤,当12x >时, 令1()212f x x =-≤,解得1324x <≤,故1334x ≤≤.∵()f x 为偶函数,∴1()2f x ≤的解集为3113[,][,]4334--⋃,故1(1)2f x -≤的解集为1247[,][,]4334⋃.32.D 【解析】11lg 2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x +-=-++--+3)3)2x x =++ln 33)2x x ⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=-+⎣⎦ln122=+=.33.D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,22x x x ax ≤⎧⎨-≥⎩且0ln(1)x x ax >⎧⎨+≥⎩,由202x x x ax≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B , 当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D . 34.C 【解析】是奇函数的为3y x =与2sin y x =,故选C .35.C 【解析】1010x x +>⎧⎨-≠⎩,∴11x x >-⎧⎨≠⎩.36.A 【解析】()()112f f ---=-.37.A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D . 38.C 【解析】1y x=是奇函数,xy e -=是非奇非偶函数,而D 在(0,)+∞单调递增.选C . 39.B 【解析】由已知两式相加得,()13g =. 40.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==-=,又因为 ()()8f x f x +-=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f -+=+=,所以(lg(lg 2))f =3,故选C .41.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D .42.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .43.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .44.B 【解析】∵π是无理数 ∴g (π)=0 则(())f g π=f (0)=0 ,故选B .45.B 【解析】210,11,100 2.40,x x x x x +>⎧⎪+≠∴-<<<≤⎨⎪-≥⎩Q 或故选B .46.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .47.A 【解析】12log (21)0x +>,所以0211x <+<,故102x -<<. 48.B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,2xy -=在(0,)+∞上为减函数.49.B 【解析】令函数()()24g x f x x =--,则()()20g x f x ''=->,所以()g x 在R 上为增函数,又(1)(1)240g f -=-+-=,所以不等式可转化为()(1)g x g >-,由()g x 的单调性可得1x >-.50.A 【解析】当0a >时,由()(1)0f a f +=得220a+=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =-,故选A .51.A 【解析】∵))(12()(a x x xx f -+=为奇函数,∴(1)(1)0f f -+=,得12a =.52.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =-,∴2(1)(1)2(1)(1)3f f =--=-⨯-+-=-,选A .53.B 【解】 由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B . 54.A 【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A .55.C 【解析】∵()21200=+=f ,∴()()()a a f f f 2422202+=+==.于是,由()()a f f 40=得2424=⇒=+a a a .故选C . 56.B 【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.57.A 【解析】∵()f x 是R 上周期为5的奇函数,∴(3)(4)(2)(1)(2)(1)211f f f f f f -=---=-+=-+=-. 58. [1,7]-【解析】 由2760x x +-…,得2670x x --…,解得17x-剟.所以函数y =[1,7]-.59. 3a =-【解析】解析:ln 2(ln 2)e (ln 2)8a f f --=-=-=-,得28a -=,3a =-.60. 0]-∞(,【解析】①根据题意,函数e e x x f x a -=+(), 若f x ()为奇函数,则f x f x -=-()(),即=e e e e x x x x a a --+-+() ,所以()()+1e e 0x x a -+=对x ∈R 恒成立.又e e 0x x -+>,所以10,1a a +==-.②函数e e x x f x a -=+(),导数e e x x f x a -'=-(). 若()f x 是R 上的增函数,则()f x 的导数e 0e x x f x a -'-≥=()在R 上恒成立,即2e x a ≤恒成立,而2e >0x ,所以a ≤0,即a 的取值范围为0]-∞(,.61.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞. 62.【解析】因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos242f f f f f π=-===. 63.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.64.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.65.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞. 66.1[1,]2-【解析】因为31()2e ()exx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-, 即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 67.①④【解析】①()2()2x x xx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质;②()3()3x x x x e e f x e -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质; ③3()xxe f x e x =⋅,令3()xg x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22x g x e x =+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.68.9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈ ①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <,综上可得,实数a 的取值范围是9(,]2-∞.69.13(,)22【解析】由()f x 是偶函数可知,()0-∞,单调递增;()0+∞,单调递减 又()(12a f f ->,(f f =可得,12a -112a -<∴1322a <<. 70.25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=,由59()()22f f -=可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 71.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.72.0、3【解析】∵(3)1f -=,(1)0f =,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.73.32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-.74.(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a <≤,所以实数a 的取值范围为(1,2].75.3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==.76.32-【解析】函数3()ln(1)xf x e ax =++为偶函数,故()()f x f x -=, 即33ln(1)ln(1)xxeax e ax -+-=++,化简得32361ln 2ln xax x x e ax e e e+==+,即32361x ax x xe e e e+=+,整理得32331(1)x ax x xe e e ++=+,所以230ax x +=, 即32a =-. 77.1【解析】2311()()4()21222f f =-=-⨯-+=.78.(-∞结合图形(图略),由()()2f f a ≤,可得()2f a -≥,可得a . 79.【答案】;(Ⅱ)x(或填(Ⅰ)k (Ⅱ)2k x ,其中12,k k 为正常数均可) 【解析】过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b+-=--,令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b ⇒+=+,可取()0)f x x =>.(Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可 取()(0)f x x x =>.80.(]0,1【解析】2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1. 81.(),2-∞【解析】由分段函数1x ≥,1122log log 10x ≤=;1x <,10222x <<=.82.6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩…可知()f x 的单调递增区间为[,)2a -+∞,故362aa -=⇔=-.83.32【解析】331113()(2)()()1222222f f f f =-=-==+=. 84.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.85.34-【解析】30,2212,2a a a a a a >-+=---=-, 30,1222,4a a a a a a <-+-=++=- .86.①③【解析】∵11(,)x y a =,22(,)x y b =,R λ∈,所以1212(1)((1),(1))x x y y λλλλλλ+-=+-+-a b对于①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-,具有性质P 的映射,同理可验证③符合,②不符合,答案应填.87.①②④【解析】①0)2(2)2(2)22()2(111====⋅=---f f f f m m m mΛ,正确;②取]2,2(1+∈m mx ,则]2,1(2∈m x ;mm xx f 22)2(-=,从而 x xf x f x f m m m -====+12)2(2)2(2)(Λ,其中,Λ,2,1,0=m ,从而),0[)(+∞∈x f ,正确;③122)12(1--=++n m nf ,假设存在n 使9)12(=+n f ,∵121[2,2)nnn ++∈,∴1(21)22121n n n n f ++=--=-,∴219,210n n +==,这与n Z ∈矛盾,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.88.-1【解析】设(),()xxg x x h x e ae -==+,∵()g x 为奇函数,由题意()h x 也为奇函数.所以(0)0h =,解得1a =-.。
高考数学大一轮复习第二章函数概念与基本初等函数4第4讲二次函数与幂函数练习理含解析
高考数学大一轮复习第二章函数概念与基本初等函数4第4讲二次函数与幂函数练习理含解析[基础题组练]1.幂函数y=x m2-4m(m∈Z)的图象如图所示,则m的值为( )A.0 B.1C.2 D.3解析:选C.因为y=x m2-4m (m∈Z)的图象与坐标轴没有交点,所以m2-4m<0,即0<m<4.又因为函数的图象关于y轴对称,且m∈Z,所以m2-4m为偶数,因此m=2.2.已知幂函数f(x)=(n2+2n-2)·x n2-3n(n∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则n的值为( )A.-3 B.1C.2 D.1或2解析:选B.由于f(x)为幂函数,所以n2+2n-2=1,解得n=1或n=-3,当n=1时,函数f(x)=x-2为偶函数,其图象关于y轴对称,且f(x)在(0,+∞)上是减函数,所以n=1满足题意;当n=-3时,函数f(x)=x18为偶函数,其图象关于y轴对称,而f(x)在(0,+∞)上是增函数,所以n=-3不满足题意,舍去.故选B.3.对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是( )解析:选A.当0<a<1时,y=log a x为减函数,y=(a-1)x2-x开口向下,其对称轴为x=12(a -1)<0,排除C ,D ;当a >1时,y =log a x 为增函数,y =(a -1)x 2-x 开口向上,其对称轴为x =12(a -1)>0,排除B.故选A.4.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围为( )A .[2,+∞)B .(2,+∞)C .(-∞,0)D .(-∞,2)解析:选A.二次函数y =kx 2-4x +2的对称轴为x =2k,当k >0时,要使函数y =kx 2-4x+2在区间[1,2]上是增函数,只需2k≤1,解得k ≥2.当k <0时,2k<0,此时抛物线的对称轴在区间[1,2]的左侧,该函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).5.已知函数f (x )=ax 2+bx +c (a ≠0),且2是f (x )的一个零点,-1是f (x )的一个极小值点,那么不等式f (x )>0的解集是( )A .(-4,2)B .(-2,4)C .(-∞,-4)∪(2,+∞)D .(-∞,-2)∪(4,+∞)解析:选C.依题意,f (x )图象是开口向上的抛物线,对称轴为x =-1,方程ax 2+bx +c =0的一个根是2,另一个根是-4.因此f (x )=a (x +4)(x -2)(a >0),于是f (x )>0,解得x >2或x <-4.6.已知点(m ,8)在幂函数f (x )=(m -1)x n的图象上,设a =f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1312,b =f (ln π),c =f ⎝ ⎛⎭⎪⎫-12,则a ,b ,c 的大小关系为( )A .c <a <bB .a <b <cC .b <c <aD .b <a <c解析:选A.根据题意,m -1=1, 所以m =2,所以2n=8, 所以n =3,所以f (x )=x 3.因为f (x )=x 3是定义在R 上的增函数, 又-12<0<⎝ ⎛⎭⎪⎫1312<⎝ ⎛⎭⎪⎫130=1<ln π,所以c <a <b .7.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (1)=f (3)>f (4),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:选B.若a =0,f (x )不满足题意,所以a ≠0,f (x )为二次函数. 因为f (1)=f (3),则x =2为对称轴,故-b2a =2,则4a +b =0,又f (3)>f (4),在(2,+∞)上f (x )为减函数,所以开口向下,a <0. 故选B.8.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则实数a 的取值范围是________. 解析:因为f (x )=x -12=1x(x >0),易知x ∈(0,+∞)时f (x )为减函数,又f (a +1)<f (10-2a ),所以⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,所以3<a <5. 答案:(3,5)9.已知二次函数的图象与x 轴只有一个交点,对称轴为x =3,与y 轴交于点(0,3),则它的解析式为________.解析:由题意知,可设二次函数的解析式为y =a (x -3)2,又图象与y 轴交于点(0,3), 所以3=9a ,即a =13.所以y =13(x -3)2=13x 2-2x +3.答案:y =13x 2-2x +310.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则实数a 的取值范围是________.解析:因为f (x )=-x 2+2ax 在[1,2]上是减函数,所以a ≤1,又因为g (x )=ax +1在[1,2]上是减函数,所以a >0,所以0<a ≤1.答案:(0,1]11.已知函数f (x )=bx 2-2ax +a (a ,b ∈R )的图象过点⎝ ⎛⎭⎪⎫12,14.(1)当a =2时,求函数y =log 12f (x )的单调增区间;(2)当a <0时,求使函数f (x )的定义域为[-1,1],值域为[-2,2]的a 值.解:因为f (x )=bx 2-2ax +a 的图象过点⎝ ⎛⎭⎪⎫12,14,所以b =1,(1)当a =2时,f (x )=x 2-4x +2, 令f (x )>0可得,x >2+2或x <2-2,所以f (x )在(2+2,+∞)上单调递增,在(-∞,2-2)上单调递减,y =log 12t 在(0,+∞)上单调递减,根据复合函数的单调性可知函数y =log 12f (x )的单调增区间为(-∞,2-2).(2)当a <0时,函数f (x )=x 2-2ax +a 的对称轴x =a <0, ①a ≤-1时,函数f (x )在[-1,1]上单调递增, 当x =-1时,函数有最小值f (-1)=1+3a =-2, 当x =1时,函数有最大值f (1)=1-a =2, 解得a =-1,②0>a >-1时,函数在[-1,1]上先减后增,当x =a 时,函数有最小值f (a )=a -a 2=-2,解得,a =2(舍)或a =-1(舍), 综上可得,a =-1.12.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 解:(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],所以f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15,所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15.(2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,所以-2a -1=1,即a =-1满足题意. 综上可知,a =-13或-1.[综合题组练]1.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是 ( )A .[0,+∞)B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞)解析:选C.由f (2+x )=f (2-x )可知,函数f (x )图象的对称轴为x =2+x +2-x2=2,又函数f (x )在[0,2]上单调递增,所以由f (a )≥f (0)可得0≤a ≤4,故选C.2.(应用型)已知二次函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与a 值有关解析:选C.该二次函数的图象开口向下,对称轴为直线x =14,又依题意,得x 1<0,x 2>0,又x 1+x 2=0, 所以当x 1,x 2在对称轴的两侧时, 14-x 1>x 2-14,故f (x 1)<f (x 2). 当x 1,x 2都在对称轴的左侧时, 由单调性知f (x 1)<f (x 2). 综上,f (x 1)<f (x 2).3.(创新型)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝ ⎛⎦⎥⎤-94,-2 4.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0, 且-b2a =-1, 解得a =1,b =2, 所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. 所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x-x 的最小值为0,-1x-x 的最大值为-2.所以-2≤b ≤0.故b 的取值范围是[-2,0].。
《新高考全案》高考数学 第2章 函数与基本的初等函数 第4讲 函数的奇偶性及周期性课件 人教版
D.-3
• [解析] 因为f(x)为定义在R上的奇函数,所以f(0)=0,可 求得b=-1,f(-1)=-f(1)=-(21+2+b)=-3.故选D.
• [答案] D
(1)f(x)=lgx2+lgx12; (2)f(x)=(x-1)· 11-+xx; (3)f(x)=lg11+-xx; (4)f(x)=x-2+x2x+xx<0x> 0 ; (5)f(x)=x2-|x-a|+1.
[解] (1)函数的定义域(-∞,0)∪(0,+∞),关于原点 对称,且 f(x)=lg(x2·x12)=0.(x≠0).∴f(x)既是奇函数又是偶 函数.
(2)由11+ -xx≥0 得定义域为[-1,1),关于原点不对称,故 f(x)为非奇非偶函数.
(3)由11- +xx>0 得-1<x<1,故 f(x)的定义域为(-1,1). ∵f(-x)=lg11+ -xx=lg(11- +xx)-1=-lg11- +xx=-f(x). 所以 f(x)为奇函数.
2.函数 f(x)=1x-x 的图象关于( )
A.y 轴对称
B.直线 y=-x 对称
C.坐标原点对称
D.直线 y=x 对称
• [答案] C
• 3.(2010·山东)设f(x)为定义在R上的奇函数.当x≥0时, f(x)=2x+2x+b(b为常数),则f(-1)=( )
• A.3
B.1
• C.-1
• (4)当x<0时,-x>0,则f(-x)=-(-x)2-x • =-(x2+x)=-f(x); • 当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x • =-(-x2+x)=-f(x). • ∴对任意x∈(-∞,0)∪(0,+∞)都有f(-x)=-f(x). ∴f(x)为奇函数.
十年真题(-2019)高考数学真题分类汇编 专题03 函数概念与基本初等函数 理(含解析)
专题03函数概念与基本初等函数历年考题细目表题型年份考点试题位置单选题2019对数函数2019年新课标1理科03单选题2018分段函数2018年新课标1理科09单选题2017函数的奇偶性2017年新课标1理科05单选题2017指数函数2017年新课标1理科11单选题2016指数函数2016年新课标1理科08单选题2014函数的奇偶性2014年新课标1理科03单选题2014函数模型2014年新课标1理科06单选题2013分段函数2013年新课标1理科11单选题2011函数的奇偶性2011年新课标1理科02单选题2011函数的对称性2011年新课标1理科12单选题2010函数模型2010年新课标1理科04单选题2010函数的奇偶性2010年新课标1理科08单选题2010分段函数2010年新课标1理科11填空题2015函数的奇偶性2015年新课标1理科13历年高考真题汇编1.【2019年新课标1理科03】已知a=log20.2,b=20。
2,c=0.20。
3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20。
2<log21=0,b=20。
2>20=1,∵0<0.20。
3<0.20=1,∴c=0.20。
3∈(0,1),∴a<c<b,故选:B.2.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0) B.[0,+∞) C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.3.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2] B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.4.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.5.【2016年新课标1理科08】若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.a log b c<b log a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c>ba c;故B错误;log a c<0,且log b c<0,log a b<1,即1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣b log a c<﹣a log b c,即b log a c>a log b c,即a log b c<b log a c,故C正确;故选:C.6.【2014年新课标1理科03】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.7.【2014年新课标1理科06】如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( )A.B.C.D.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cos x|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sin x|=|cos x|•|sin x||sin2x|,其周期为T,最大值为,最小值为0,故选:C.8.【2013年新课标1理科11】已知函数f(x),若|f(x)|≥ax,则a的取值范围是( )A.(﹣∞,0] B.(﹣∞,1]C.[﹣2,1] D.[﹣2,0]【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.9.【2011年新课标1理科02】下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选:B.10.【2011年新课标1理科12】函数y的图象与函数y=2sinπx,(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.8 B.6 C.4 D.2【解答】解:函数y1,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象,如图,当1<x≤4时,y1<0而函数y2在(1,4)上出现1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 1 4
B. 1 2
C. 2
D. 4
24.(2012
新课标)当 0
<
x
≤
1 2
时,
4x
<
loga
x
,则
a
的取值范围是
A. (0, 2 ) 2
B. ( 2 ,1) 2
C. (1, 2)
D. ( 2, 2)
25.(2012
天津)已知
a
=
212
,
b
=
1 2
−0.2
,
c
=
2
log5
2
,则
A. a < b < c
B. a < c < b
C. c < a < b
D. b < c < a
3.(2019 天津理 6)已知 a = log5 2 , b = log0.5 0.2 , c = 0.50.2 ,则 a, b, c 的大小关系为
A. a < c < b
B. a < b < c
C. b < c < a
实用文档 用心整理
专题二 函数概念与基本初等函数Ⅰ
第四讲 指数函数、对数函数、幂函数
2019 年
1.(2019 浙江 16)已知 a ∈ R ,函数 f (x) = ax3 − x ,若存在 t ∈ R ,使得 | f (t + 2) − f (t) |≤ 2 ,则实数 a 的最大值是____.
3
2.(2019 全国Ⅰ理 3)已知 a = log2 0.2,b = 20.2,c = 0.20.3 ,则
20.(2013 陕西)设 a, b, c 均为不等于 1 的正实数, 则下列等式中恒成立的是
A. loga b·logc b = logc a
B. loga b·loga a = loga b
C. loga (bc) = loga bgloga c
D. loga (b + c) = loga b + loga c
a, b,
c
的大小关系为
A. c < b < a
B. c < a < b C. b < a < c D. b < c < a
26.(2011 北京)如果 log 1 x < log 1 y < 0, 那么
2
2
A. y < x < 1 B. x < y < 1
C.1 < x < y D.1 < y < x
A. b < a < c
B. c < a < b C. c < b < a D. a < c < b
17.(2014 浙江)在同意直角坐标系中,函数 f (x) = xa (x ≥ 0), g(x) = loga x 的图像可能是
y
y
y
1
1
1
x
x
O1
O1
O
-1
-1
-1
y 1
x
x
1
O1
-1
18.(2014 天津)函数 f (x) = log1 (x2 - 4) 的单调递增区间是
A. a < c < b
B. b < c < a C. a < b < c D. b < a < c
31.(2010 浙江)已知函数 f (x) = log2 (x +1), 若 f (α ) = 1, α =
A.0
B.1
C.2
D.3
32.(2010 辽宁)设 2a = 5b = m ,且 1 + 1 = 2 ,则 m = ab
2.(2018 全国卷Ⅲ)设 a = log0.2 0.3 , b = log2 0.3 ,则
A. a + b < ab < 0
B. ab < a + b < 0
C. a + b < 0 < ab
D. ab < 0 < a + b
3.(2018
天津)已知
a
=
log2
e,b
=
ln
2
,
c
=
log 1
2
1 3
21.(2013 浙江)已知 x, y 为正实数,则
A. 2lg x+lg y = 2lg x + 2lg y
B. 2lg(x+ y) = 2lg x g2lg y
C. 2lg x•lg y = 2lg x + 2lg y
D. 2lg(xy) = 2lg x g2lg y
22.(2013 天津)已知函数 f (x) 是定义在 R 上的偶函数, 且在区间[0, +∞) 单调递增.若实
5.(2017 天津)已知奇函数 f (x) 在 R 上是增函数, g(x) = xf (x) .若 a = g(− log2 5.1) , b = g(20.8 ) , c = g(3) ,则 a,b,c 的大小关系为
A. a < b < c
B. c < b < a
C. b < a < c
D. b < c < a
42.(2014
新课标)设函数
f
(
x)
=
ex−1, 1
x
< 1,
则使得
f
(
x)
≤
2
成立的
x
的取值范围是__.
x3 , x ≥ 1,
43.(2014 天津)函数 f (x) = lg x2 的单调递减区间是________.
44.(2014 重庆)函数 f (x) = log2
x ⋅ log (2x) 的最小值为_________. 2
是
2 千里之行始于足下
实用文档 用心整理
y 2C
A -1 O
B
2
x
A.{x | −1 < x ≤ 0}
B.{x | −1≤ x ≤1}
C.{x | −1 < x ≤1}
D.{x | −1 < x ≤ 2}
12.(2015 天津)已知定义在 R 上的函数 f (x) = 2 x−m −1 ( m 为实数)为偶函数,记
45.(2013 四川) lg 5 + lg 20 的值是____________.
46.(2012 北京)已知函数 f (x) = lg x ,若 f (ab) = 1 ,则 f (a2 ) + f (b2 ) =
数 a 满足 f (log2 a) + f (log1 a) ≤ 2 f (1) , 则 a 的取值范围是
2
4 千里之行始于足下
实用文档 用心整理
A.[1, 2]
B.
0,
1 2
C.
1 2
,
2
D. (0, 2]
23.(2012 安徽) (log2 9) ⋅ (log3 4) =
(−
x),
x x
> <
0 0 ,若 a
,b
,c
均不相等,且
f
(a)
=
f (b) = f (c) ,则 abc 的取值范围是
A.(1,10)
B.(5,6) C.(10,12)
D.(20,24)
35.(2010 天津)若函数
f
(
x)
=
lloogg
2
1 2
x, (−
x),
x x
> <
0 0
,若
A. b < a < c B. a < b < c C. b < c < a D. c < a < b
10.(2015
新课标Ⅱ)设函数
f
(x)
=
12+x−1lo, xg≥2 (21−
x), x
<1
,则
f
(−2) +
f
(log2 12)
=
A.3
B.6
C.9
D.12
11.(2015 北京)如图,函数 f ( x) 的图像为折线 ACB ,则不等式 f ( x)≥ log2 ( x +1) 的解集
D. c < a < b
2010-2018 年
一、选择题
1.(2018
全国卷Ⅰ)已知函数
f
(
x)
=
ex,x ≤ 0, ln x,x > 0,g
(
x)
=
f
(x) + x + a .若 g(x) 存在
2
个
零点,则 a 的取值范围是
A.[−1, 0)
B.[0, +∞)
C.[−1, +∞)
D.[1, +∞)
N
(参考数据: lg 3 ≈0.48)
A.1033
B.1053
C.1073
D.1093
8.(2016 全国 I) 若 a > b > 1 , 0 < c < 1,则
A. ac < bc
B. abc < bac
C. a logb c < b loga c
D. loga c < logb c
4
2
1
9.(2016 全国 III) 已知 a = 23 , b = 45 , c = 253 ,则