数值分析上机习题6-23

合集下载

数值分析试题与答案

数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。

数值分析课后参考答案06

数值分析课后参考答案06

第六章习题解答1、设函数01(),(),,()n x x x φφφ 在[,]a b 上带权()x ρ正交,试证明{}()nj j x φ=是线性无关组。

证明:设0()nj jj l x φ==∑,两端与01()(,,,)kx k n φ= 作内积,由()jx φ的正交性可知,200(),()((),())((),())()()n n b k j j j k j k k k k k a j j x l x l x x l x x l x x dx φφφφφφρφ==⎛⎫==== ⎪⎝⎭∑∑⎰, 于是有001(,,,)k l k n == ,即{}()nj j x φ=是线性无关组。

2、试确定系数,a b 的值使22(()cos )ax b x dx π+-⎰达到最小。

解:定义02,[,]f g C π∈上的内积为20fgdx π⎰,取011(),()x x x ϕϕ==,()s x ax b =+,()cos f x x =,则法方程为0001010111(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中()2000112,dx ππϕϕ=⨯=⎰,()2201018,xdx ππϕϕ=⨯=⎰,()3211024,x xdx ππϕϕ=⨯=⎰,()2001,cos f xdx πϕ==⎰,()21012,cos f x xdx ππϕ==-⎰,于是方程组为22312812824a b πππππ⎛⎫⎛⎫ ⎪⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,解之得1158506644.,.a b ==-。

3、已知函数11()(,)f x x =∈-,试用二类Chebyshev 多项式()n U x 构造此函数的二次最佳平方逼近元。

解:法一、取20121(),(),(),x x x x x ϕϕϕ===()()()00112222235,,,,,ϕϕϕϕϕϕ===,()()()011202203,,,,ϕϕϕϕϕϕ===,同时由二类Chebyshev 多项式的性质知 ()()()11101211028,,,,,f f f x ππϕϕϕ---======⎰⎰⎰于是可得法方程为0122203220003220835c c c ππ⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭ ⎪⎝⎭,解之得0121.0308,0,0.7363c c c ===-, 于是()f x 的二次最佳逼近元是2001122() 1.03080.7363x c c c x ϕϕϕϕ=++=-法一、二类Chebyshev 多项式2012()1,()2,()41U x U x x U x x ===-,取内积权函数()()x f x ρ==,于是11200114(,)(1)3f U fU dx x dx ρ--==-=⎰⎰,1121111(,)2(1)0f U fU dx x x dx ρ--==-=⎰⎰,112222114(,)(41)(1)15f U fU dx x x dx ρ--==--=-⎰⎰ 由()n U x 正交性及(,)2n n U U π=可得0000(,)8(,)3f U c U U π==,1111(,)0(,)f U c U U ==,2222(,)8(,)15f U c U U π==-, 于是()f x 的二次最佳逼近元为001122()x c U c U c U ϕ=++=21632515x ππ- 4、设012{(),(),()}L x L x L x 是定义于[0,)+∞上关于权函数()xx eρ-=的首项系数为1的正交多项式组,若已知01()1,()1L x L x x ==-,试求出二次多项式2()L x 。

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

(完整word版)数值分析试题(word文档良心出品)

(完整word版)数值分析试题(word文档良心出品)

一、填空题(每空2分,共20分)1、解非线性方程阿西吧的f(x)=0的牛顿迭代法具有_______收敛2、迭代过程(k=1,2,…)收敛的充要条件是___3、已知数 e=2.718281828...,取阿西吧的近似值 x=2.7182,那麽x具有的有效数字是___4、高斯--塞尔德迭代法解阿西吧的线性方程组的迭代格式中求阿西吧的______________5、通过四个互异节点的插值多项式p(x),只要满足_______,则p(x)是不超过二次的多项式6、对于n+1个节点的插值求积公式至少具有___次代数精度.7、插值型求积公式的求积系数之和___8、 ,为使A可分解为A=LL T, 其中L为对角线元素为正的下三角形,a的取值范围_9、若则矩阵A的谱半径(A)=___10、解常微分方程初值问题的梯形格式是___阶方法二、计算题(每小题15分,共60分)1、用列主元消去法解线性方程组2、已知y=f(x)的数据如下x 0 2 3f(x) 1 3 2求二次插值多项式及f(2.5)3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过。

4、欧拉预报--校正公式求解初值问题取步长k=0.1,计算y(0.1),y(0.2)的近似值,小数点后保留5位.三、证明题(20分每题 10分)1、明定积分近似计算的抛物线公式具有三次代数精度2、若,证明用梯形公式计算积分所得结果比准确值大,并说明这个结论的几何意义。

参考答案:一、填空题1、局部平方收敛2、< 13、 44、5、三阶均差为06、n7、b-a8、9、 1 10、二阶方法二、计算题1、2、3、≈1.25992 (精确到,即保留小数点后5位)4、y(0.2)≈0.01903三、证明题1、证明:当=1时,公式左边:公式右边:左边==右边当=x时左边:右边:左边==右边当时左边:右边:左边==右边当时左边:右边:左边==右边当时左边:右边:故具有三次代数精度A卷一、填空题(本大题共8小题,每小题3分,共9×3=27分)1、要使11的近似值的相对误差不超过0.1%,应取______________有效数字。

(完整版)数值分析整理版试题及答案,推荐文档

(完整版)数值分析整理版试题及答案,推荐文档

9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x

xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4

a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5

数值分析课后部分习题答案

数值分析课后部分习题答案

习题一(P.14)1. 下列各近似值均有4个有效数字,300.2,521.13,001428.0***===z y x ,试指出它们的绝对误差和相对误差限.解*20.001428=0.142810x -=⨯有4个有效数,即4n =,2m =- 由有效数字与绝对误差的关系得绝对误差限为611101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *213.521=0.1352110y =⨯有4个有效数,即4n =,2m =由有效数字与绝对误差的关系得绝对误差限为211101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *12.300=0.230010z =⨯有4个有效数,即4n =,1m =由有效数字与绝对误差的关系得绝对误差限为311101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101024n a ---⨯=⨯.2.下列各近似值的绝对误差限都是31021-⨯,试指出它们各有几位有效数字.***2.00021,0.032,0.00052x y z ===解*12.000210.20002110x ==⨯,即1m =由有效数字与绝对误差的关系得311101022m n --⨯=⨯,即 3m n -=-,所以,2n =;*10.0320.3210y ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,4n =;*30.000520.5210z -==⨯,即3m =-由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,0n =.4.设有近似数35.2,84.1,41.2***===z y x 且都有3位有效数字,试计算***z y x S +=,问S 有几位有效数字.解 方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,211|(*)|101022m n e y --≤⨯=⨯,211|(*)|101022m n e z --≤⨯=⨯,|(**)||*(*)*(*)|*|(*)|*|(*)|e y z z e y y e z z e y y e z ≈+≤+222112.3510 1.8410 2.0951022---≤⨯⨯+⨯⨯=⨯,221|(***)||(*)(**)|10 2.095102e x y z e x e y z --+≈+≤⨯+⨯1110.259510102--=⨯≤⨯, 又1***=2.41 1.84 2.350.673410x y z ++⨯=⨯,此时1m =,1m n -=-,从而得2n =.方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,2110(*)2|(*)|=||* 2.41r e x e x x -⨯≤, 211|(*)|101022m n e y --≤⨯=⨯,2110(*)2|(*)|=||* 1.84r e y e y y -⨯≤,211|(*)|101022m n e z --≤⨯=⨯,2110(*)2|(*)|=||* 2.35r e z e z z -⨯≤|(**)||(*)(*)|r r r e y z e y e z ≈+,***|(***)||(*)(**)|******r r rx y z e x y z e x e y z x y z x y z +≈+++2.41 1.84 2.35|(*)||(*)+(*)|2.41 1.84 2.35 2.41 1.84 2.35r rr e x e y e z ⨯≤++⨯+⨯22211110 1.8410 2.35102222.41 1.84 2.35 2.41 1.84 2.35 2.41 1.84 2.35---⨯⨯⨯⨯⨯≤+++⨯+⨯+⨯20.385410-<⨯21102-<⨯,由有效数字与绝对误差的关系得2n =.5.序列{}n y 有递推公式),2,1(,1101 =-=-n y y n n若41.120≈=y (三位有效数字),问计算10y 的误差有多大,这个计算公式稳定吗?解 用0ε表示0y 的误差,由41.120≈=y ,得0=0.0042ε,由递推公式),2,1(,1101 =-=-n y y n n ,知计算10y 的误差为810=0.4210ε⨯,因为初始误差在计算的过程中被逐渐的放大,这个计算公式不稳定.习题2 ( P.84)3.证明()1nkk lx ==∑,对所有的x其中()k l x 为Lagrange 插值奇函数. 证明 令()1f x =,则()1i f x =, 从而 0()()()()nnn k k k k k L x l x f x l x ====∑∑,又(1)1()()()0(1)!n n n f R x x n ξω++==+,可得 ()()1n l x f x ==,从而()1nkk lx ==∑.4. 求出在=012x ,,和3处函数2()1f x x =+的插值多项式. 解方法一 因为给出的节点个数为4,而2()1f x x =+从而余项(4)34()()()04!f R x x ξω==,于是233()()()()=+1L x f x R x f x x =-=(n 次插值多项式对次数小于或等于的多项式精确成立).方法二 因为(0)1(1)2(2)5(3)10f f f f ====,,,, 而0(1)(2)(3)1()=-(1)(2)(3)(01)(02)(03)6x x x l x x x x ---=------,1(2)(3)1()=(2)(3)(10)(12)(13)2x x x l x x x x --=-----,2(1)(3)1()=-(1)(3)(20)(21)(23)2x x x l x x x x --=-----,3(1)(2)1()=(1)(2)(30)(31)(32)6x x x l x x x x --=-----,从而30123()()(0)()(1)()(2)()(3)L x l x f l x f l x f l x f =+++2=+1x .5. 设2()[,]f x C a b ∈且()()0f a f b ==,求证21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-.证明 因()()0f a f b ==,则1()0L x =, 从而1()()()()()2!f f x R x x a x b ξ''==--,由极值知识得 21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-6. 证明 (()())()()()(+)f x g x f x g x f x g x h ∆=⋅∆+∆⋅. 证明 由差分的定义(()())(+)()()()f xg x f xh g x h f x g x ∆=+-[(+)()()(+)][()()()()]f x h g x h f x g x h f x g x h f x g x =+-++-()()()(+)f x g x f x g x h =⋅∆+∆⋅或着 (()())(+)()()()f x g x f x h g x h f x g x ∆=+-[(+)()()()][()()()()]f x hg xh f x h g x f x h g x f x g x =+-+++-()()()()f x h g x f x g x =+⋅∆+∆⋅7. 证明 n 阶差商有下列性质(a ) 如果()()F x cf x =,则0101[,,,][,,,]n n F x x x cf x x x =. (b ) 如果()()()F x f x g x =+,则010101[,,,][,,,][,,,]n n n F x x x f x x x g x x x =+.证明 由差商的定义 (a ) 如果()()F x cf x =,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-120110[,,,]-[,,,]n n n cf x x x cf x x x x x -=-120110[,,,]-[,,,]n n n f x x x f x x x c x x -=⋅-01[,,,]n cf x x x =.(b ) 如果()()()F x f x g x =+,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-12120110110[[,,,][,,,]]-[[,,,][,,,]]n n n n n f x x x g x x x f x x x g x x x x x --++=-12011120110,,,]-[,,,][,,,][,,,]+n n n n n n f x x x f x x x g x x x g x x x x x x x ---=--[0101[,,,][,,,]n n f x x x g x x x =+8. 设74()3431f x x x x =+++,求0172,2,,2]f [,0182,2,,2]f [.解 由P.35定理7的结论(2),得7阶差商0172,2,,2]=3f [(()f x 的最高次方项的系数),8阶差商0182,2,,2]=0f [(8阶以上的差商均等与0).9. 求一个次数不超过4次的多项式()P x ,使它满足:(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =.解 方法一 先求满足插值条件(0)0P =,(1)=1P ,(2)1P =的二次插值多项式2()P x 213=22x -+(L-插值基函数或待定系数法), 设()P x 22=()(1)(2)(1)(2)P x Ax x x Bx x x +--+--213=22x x -+2+(1)(2)(1)(2)Ax x x Bx x x --+-- 从而()P x '323=4B +(39)(641)(2)2x A B x A B x A -+-+-++,再由插值条件(0)0P '=,(1)1P '=,得3=,4A -1=,4B所以 ()P x 213=22x x -+231(1)(2)(1)(2)44x x x x x x ---+--, 即 ()P x 41=4x 332x -29+4x .方法二 设()P x 23401234=a a x a x a x a x ++++, 则 ()P x '231234=234a a x a x a x +++由插值条件(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =,得010********0123400++++1+2+3+41+2+4+8+161a a a a a a a a a a a a a a a a =⎧⎪=⎪⎪=⎨⎪=⎪=⎪⎩ 解得 234931=,=-,=424a a a , 从而()P x 41=4x 332x -29+4x . 方法三 利用埃尔米特插值基函数方法构造. 10. 下述函数()S x 在[1,3]上是3次样条函数吗?3232321,12()=92217,23x x x x S x x x x x ⎧-++≤≤⎨-+-+≤≤⎩ 解因为22362,12()=31822,23x x x S x x x x ⎧-+≤≤'⎨-+-≤≤⎩, 66,12()=618,23x x S x x x -≤≤⎧''⎨-+≤≤⎩而12(2)=1=(2)S S ,12(2)=2=(2)S S '',12(2)=6=(2)S S '''', 又()S x 是三次函数,所以函数()S x 在[1,3]上是3次样条函数.补 设f (x )=x 4,试利用L-余项定理写出以-1,0,1,2为插值节点的三次插值多项式.解因为 (4)34()()()(+1)(1)(2)4!f R x x x x x x ξω==--,从而3233()()()22L x f x R x x x x =-=+-习题3 ( P.159)1.设n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组且)(x k ϕ为首项系数为1的k 次的多项式,则n k k x 0)}({=ϕ于],[b a 线性无关.解 方法一 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,采用反证法:若{}n ϕϕϕ,,,10 于],[b a 线性相关,于是,存在不全为零,,,,10n c c c 使0011()()()0,[,]n n c x c x c x x a b ϕϕϕ+++=∈上式两边与i ϕ作内积得到0011(,)(,)(,)0(0,1,,)i i n i n c c c i n ϕϕϕϕϕϕ+++==,由于{}i c 不全为零,说明以上的齐次方程组有非零解),,,,(10n c c c 故系数矩阵的行列式为零,即{}0,,,10=n G ϕϕϕ 与假设矛盾.方法二 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,由( P.95)定理2得n k k x 0)}({=ϕ于],[b a 线性无关.2.选择α,使下述积分取得最小值1221()[],a x x dx α--⎰120()()x b e x dx α-⎰解1221()[]a x x dx αα-∂-∂⎰1221=[]x x dx αα-∂-∂⎰1221=2[]()x x x dx α--⋅-⎰5112=5x α-4=5α,令1221[]=0x x dx αα-∂-∂⎰,得=0α. 12()()x b e x dx αα∂-∂⎰120=()xe x dx αα∂-∂⎰1=2()()x e x x dx α-⋅-⎰2=23α- 令120()=0x e x dx αα∂-∂⎰,得=3α.3.设],3,1[,1)(∈=x xx f 试用},1{1x H 求)(x f 一次最佳平方逼近多项式.解 取权函数为()x x ω=(为了计算简便),则32311(1,1)42x xdx ===⎰,33321126(1,)(,1)33x x x x dx ====⎰, 343311(,)204x x x x dx ===⎰,33111((),1)2f x xdx x x=⋅==⎰,3232111((),)42x f x x x dx x =⋅==⎰, 得法方程0126423264203a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦,解得011211311a a ⎧=⎪⎪⎨⎪=-⎪⎩, 所以)(x f 的一次最佳平方逼近多项式1123()1111P x x =-. 8.什么常数C 能使得以下表达式最小?∑=-ni x iiCex f 12))((解21(())i n x i i f x Ce C =∂-∂∑1=2(())()i i nx x i i f x Ce e =-⋅-∑, 令21(())=0i nx i i f x Ce C =∂-∂∑,得121()(),iinx x ii nx xx i f x ef x e C e e e=-=⋅==∑∑()(,). 14.用最小二乘法求解矛盾方程组2+314921x y x y x y =⎧⎪-=-⎨⎪-=-⎩. 解 方法一方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,原问题转化成在已知三组离散数据3142211()922t f t ----下求一次最小二乘逼近函数1()P x x yt =+(x 与y 为一次函数的系数,t 为自变量),取1H 基{}1,t ,求解法方程331133321113()()i i i i i i i i i i i x t f x t t t f x y =====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑∑∑, 即3-3-93737-32x y ⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得到矛盾方程组的解为37=-3156=31x y ⎧⎪⎪⎨⎪⎪⎩. 方法二方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,令(,)I x y 2223111=+-+4+9++2222x y x y x y --()()()(,)I x y x ∂∂3111=2+-+24+9+2+2222x y x y x y ⨯⨯-⨯-()()()=6618x y -+,(,)I x y y ∂∂331111=+44+9+222222x y x y x y ⨯--⨯--⨯-()()() 37=3372x y -+- 令(,)0(,)0I x y x I x y y∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩, 得3373372x y x y -=-⎧⎪⎨-+-⎪⎩, 解之得矛盾方程组的解为37315631x y ⎧=-⎪⎪⎨⎪=⎪⎩. 习题47. 对列表函数124810()152127x f x求(5)(5).f f ''',解 一阶微商用两点公式(中点公式),得(8)(2)10(5),63f f f -'≈= 二阶微商用三点公式(中点公式),首先用插值法求(5)f , 由(4)5,(8)21,f f ==得一次插值函数1()411,L x x =-从而1(5)(5)9f L ≈=,于是,2(2)2(5)(8)4(5).39f f f f -+''≈= 8. 导出数值数分公式)]23()2(3)2(3)23([1)(3)3(h x f h x f h x f h x f h x f ---++-+≈并给出余项级数展开的主部.解 由二阶微商的三点公式(中点公式),得213()[()2()()]2222h h h f x f x f x f x h h ''-≈+--+-,213()[()2()()]2222h h h hf x f x f x f x h ''+≈+-++-从而 (3)()()22()h h f x f x f x h''''+--≈3133=[()3()3()()]2222h h f x h f x f x f x h h +-++--- 将33()()()()2222h h f x h f x f x f x h ++--,,,分别在x 处展开,得2(3)3(4)4(5)55331313()=()()()()()()222!23!21313()()()()+()(1)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''++⋅+⋅+⋅+⋅+⋅2(3)3(4)4(5)5511()=()()()()()()222!23!211()()()()()(2)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''++⋅+⋅+⋅+⋅+⋅+2(3)3(4)4(5)5511()=()()()()()()()222!23!211()()()()()(3)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+2(3)3(4)4(5)55331313()=()()()()()()()222!23!21313()()()()()(4)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+(1)-(2)×3 +(3)×3-(4), 得(5)222131()[()2()()]()()22228h h h f x f x f x f x h f x h O h h ''--+--+-=-+,即余项主部为(5)21()8f x h -习 题 5 (P. 299)3. 设n n R A ⨯∈为对称矩阵,且011≠a ,经高斯消去法一步后,A约化为11120T a a A ⎡⎤⎢⎥⎣⎦,试证明2A 亦是对称矩阵. 证明设1111()=T ij aa A a A α⎛⎫= ⎪⎝⎭,其中 21311=n a a a α⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,121311=n a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,22232123=n n n nn a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭, 则经高斯消去法一步后,A 约化为111111110TT a a A a a α⎡⎤⎢⎥⎢⎥-⎢⎥⎣⎦, 因而211111T A A a a α=-,若n n R A ⨯∈为对称矩阵,则1A 为对称矩阵,且1=a α,易知211111T A A a a α=-为对称矩阵. 13. 设⎥⎦⎤⎢⎣⎡=989999100A(1)计算2||||,||||A A ∞;(2) 计算∞)(A Cond ,及2)(A Cond . 解(1)计算||||=199A ∞,⎥⎦⎤⎢⎣⎡=989999100A,其特征值为1,299λ=,又⎥⎦⎤⎢⎣⎡=989999100A 为对称矩阵,则2=T A A A 的特征值为221,2(99λ=±,因此2||||99A ===+;(2)1989999100A --⎡⎤=-⎢⎥-⎣⎦,1||||=199A -∞, 所以1()=||||||||=9801Cond A A A -∞∞∞⋅,1989999100A --⎡⎤=-⎢⎥-⎣⎦为对称矩阵,其特征值为1,299λ=-± 则1112()=()T A A A ---的特征值为221,2(99λ=,因此12||||99A -===+所以1222()=||||||||Cond A A A -⋅2(99=+15. 设,n n n A R x R ⨯∈∈,求证 (1)1x x n x ∞∞≤≤;(2)∞∞≤≤An A An11.证明 (2)由(1)1xx n x∞∞≤≤,得1AxAx n Ax∞∞≤≤,则 11Ax Ax n Ax n x xx∞∞∞∞≤≤,从而11max max max nnnx Rx Rx RAxAx n Ax n xxx∞∞∀∈∀∈∀∈∞∞≤≤,由算子范数的定义max nx RAx Ax∞∞∀∈∞=,111max nx RAx A x∀∈=,得∞∞≤≤An A A n11.17. 设n n R W ⨯∈为非奇异阵,又设x为n R 上一向量范数,定义WxWx=,求证:Wx是nR 上向量的一种范数(称为向量的W 一范数).证明 ①正定性,因Wx为一向量,0WxWx =≥,下证=0=0Wxx ⇔,⇒“”若=0Wx 即=0Wx ,由向量范数的正定性得=0Wx ,n n R W ⨯∈为非奇异阵,所以=0x ;⇐“”若=0x ,则=0Wx ,由向量范数的正定性得=0Wx 即=0Wx.②齐次性,任意实数α有=Wx W x Wxααα=,由向量范数的齐次性,得=WWxW x Wx Wx xααααα===;③三角不等式,任意实数,n n x R y R ∈∈,有+(+)=+Wx yW x y Wx Wy=,再由向量范数的三角不等式,得+(+)=+WWWx yW x y Wx Wy Wx Wy xy=≤+=+.习 题 6 (P.347)1.设有方程组(b )1231231232211221x x x x x x x x x +-=⎧⎪++=⎨⎪++=⎩,考查用Jacobi 迭代法,G-S 迭代法解此方程组的收敛性.解 系数矩阵分裂如下,122111221A -⎛⎫⎪= ⎪ ⎪⎝⎭D L U =--10022110112200-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ Jacobi迭代矩阵为1()J D L U -=+=02211220-⎛⎫⎪-- ⎪ ⎪--⎝⎭, J 的特征方程为2211022λλλ-=,展开得 30λ=,即01λ=<,所以用Jacobi 迭代法解此方程组是收敛的.G-S 迭代矩阵为1()G D L U -=-11022=11012210--⎛⎫⎛⎫⎪ ⎪⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭100022=110010210-⎛⎫⎛⎫ ⎪ ⎪-⋅- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭122=023002-⎛⎫ ⎪- ⎪ ⎪⎝⎭, G 的特征方程为12221002λλλ---=-, 展开得 (1)(2)(2)0λλλ---=,即1λ=或2λ=,由迭代基本定理得用G-S 迭代法解此方程组是不收敛的.4.设有方程组Ax b =,其中A 为对称正定阵,且有迭代公式(1)()()()k k k x x b Ax ω+=+- (0,1,k =),试证明当20ωβ<<时,上述迭代法收敛(其中A 的特征值满足0()A αλβ<≤≤).证明A 为对称正定阵,A 的特征值满足0()A αλβ<≤≤,且20ωβ<<,则0()2A ωλ<<又迭代公式可变形为(1)()()k k x I A x bωω+=-+ (0,1,k =),从而迭代矩阵B I A ω=-,迭代矩阵的特征值为1()A ωλ-,且满足11()1A ωλ-<-<,即 |()|1B λ<,由迭代基本定理得该迭代法是收敛的.5.设111a a A aa a a⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中a 为实数,试确定a 满足什么条件时,解Ax b =的Jacobi 迭代法收敛.解 系数矩阵分裂如下,111a a A aa a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭D L U =--1001100a a aa aa--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭Jacobi迭代矩阵为1()J D L U -=+=000a a aa a a--⎛⎫⎪-- ⎪ ⎪--⎝⎭,J 的特征方程为0a aa a aaλλλ=,展开得 323320a a λλ--=,即a λ=-或2a λ=-,()max{||,|2|}J a a ρ=--()1J ρ<当且仅当1122a -<<,所以当1122a -<<时,解Ax b=的Jacobi 迭代法收敛.。

东南大学出版社第二版《数值分析》上机作业答案(前三章)

东南大学出版社第二版《数值分析》上机作业答案(前三章)

for (i=k+1;i<N;i++) // { lik=a[i][k]/a[k][k]; //实施消去过程,得到上三角系数增广矩阵 for (j=k;j<M;j++) // { a[i][j]=a[i][j]‐lik*a[k][j]; // } } } cout<<"经列主元高斯消去法得到的数组为:"<<endl; // for (b=0;b<N;b++) // { cout<<endl; //输出经过列主元消去法处理过的系数增广矩阵 for (c=0;c<M;c++) { cout<<setw(7)<<a[b][c]; // } } cout<<endl; double x[N]; // double s; int f,g; x[N‐1]=a[N‐1][M‐1]/a[N‐1][N‐1]; // for (f=N‐2;f>=0;f‐‐) // { s=0; for (g=f+1;g<N;g++) //由上三角形的系数增广矩阵求出方程组的解 { s=s+a[f][g]*x[g]; // } x[f]=(a[f][N]‐s)/a[f][f]; // } cout<<"方程组的解为:"<<endl; for (b=0;b<N;b++) //输出方程组的解 {
1
当 n=10000 时,s3=0.7499 Press any key to continue (分析 S1 的 6 位数字中,有效位数为 4 位; S2 的所有数字都是有效数字。 ) 当 n=1000000 时,s1=‐14.2546 当 n=1000000 时,s2=‐14.2551 当 n=1000000 时,s3=0.749999 Press any key to continue (分析: S1 的 6 位数字中,没有有效数字; S2 的 6 位数字中,没有有效数字。 ) 由运行结果可知,当精度比较低时,按从大数开始累加到小数的计算结果的精度低于按从小数 累加到大数的计算结果的精度。 至于当 n=1000000 时,S1 和 S2 得出了负数结果,可能是由于循环次数过多,导致数据溢出, 从而得出错误结果。 习题 2 20.程序如下: //给定误差限为:0.5e‐6 //经过试算得当 delta 最大取道 0.7745966 时,迭代得到的根都收敛于 0 #include <iostream.h> #include <math.h> void main () { double x,u; int count=0; u=10.0; cout<<"请输入 x 的初值"<<endl; cin>>x; for (count=0;abs(u)>5;count++) { x=x‐(x*x*x‐3*x)/(3*(x*x‐1)); u=10000000*x; if(count>5000) { cout<<"迭代结果不收敛于 0!"<<endl; break; } } cout<<"x="<<x<<endl<<endl;

数值分析练习题及答案

数值分析练习题及答案

数值分析练习题及答案数值分析练习题及答案数值分析是应用数学的一个分支,它研究如何使用数值方法解决实际问题。

在数值分析的学习过程中,练习题是非常重要的一部分,通过练习题的完成,我们可以更好地理解和掌握数值分析的原理和方法。

本文将给出一些数值分析的练习题及其答案,希望对读者有所帮助。

一、插值与拟合1. 插值是指根据已知数据点的函数值,通过某种方法推导出在这些数据点之间的函数值。

请问插值的目的是什么?答案:插值的目的是通过已知数据点的函数值,推导出在这些数据点之间的函数值,以便于我们在这些数据点之间进行计算和分析。

2. 拟合是指根据已知数据点的函数值,通过某种方法找到一个函数,使得该函数与这些数据点尽可能接近。

请问拟合的目的是什么?答案:拟合的目的是通过已知数据点的函数值,找到一个函数,使得该函数与这些数据点尽可能接近,以便于我们对数据的趋势和规律进行分析和预测。

二、数值积分1. 数值积分是指通过数值方法计算一个函数在某个区间上的积分值。

请问数值积分的应用领域有哪些?答案:数值积分在科学计算、工程设计、金融分析等领域都有广泛的应用。

例如,在物理学中,数值积分可以用来计算物体的质心、重心等重要物理量;在金融分析中,数值积分可以用来计算期权的价格和风险价值等。

2. 辛普森法则是一种常用的数值积分方法,它通过将积分区间划分为若干个小区间,并在每个小区间上使用一个二次多项式来逼近被积函数。

请问辛普森法则的原理是什么?答案:辛普森法则的原理是通过将积分区间划分为若干个小区间,并在每个小区间上使用一个二次多项式来逼近被积函数。

然后,通过对这些小区间上的二次多项式进行积分,最后将这些积分值加起来,就可以得到整个积分区间上的积分值。

三、数值微分1. 数值微分是指通过数值方法计算一个函数在某个点处的导数值。

请问数值微分的作用是什么?答案:数值微分的作用是通过数值方法计算一个函数在某个点处的导数值,以便于我们对函数的变化趋势和规律进行分析和预测。

数值分析练习题附答案

数值分析练习题附答案

1
2-3 对矩阵 A 进行 LDLT 分解和 GGT 分解,求解方程组 Ax=b,其中
16 4 8
1
A=( 4 5 −4) , b=(2)
8 −4 22
3
解:(注:课本 P26 P27 根平方法)
设 L=(l i j ),D=diag(di),对 k=1,2,…,n,
其中������������=������������������-∑������������=−11 ���������2��������� ������������
������31=(������31 − ∑0������=1 ������3������������1������ ������������)/ ������1=186=12
������32=(������32

∑1������=1
������3������������2������
������������ )/
6.6667
,得 ������3 = 1.78570
−1 209
������4
0
������4
0.47847
(
56
−1
780 (������5) 209)
(200)
(������5) ( 53.718 )
1 −1
4
1 −4
15
������1
25
������2
6.6667再由1源自− 15561
− 56
209

x (k1) 1

1 5
(12

2 x2( k )

x (k) 3
)


2 5
x (k) 2

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。

数值分析试题及答案

数值分析试题及答案

数值分析试题一、 填空题(2 0×2′)1.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 ,f [20,21,22,23,24,25,26,27,28]= 0 。

3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代函数的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=ni i x a 0)( 1 ;所以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。

8. 要使20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。

10. 由下列数据所确定的插值多项式的次数最高是 5 。

11.牛顿下山法的下山条件为|f(xn+1)|<|f(xn)| 。

12.线性方程组的松弛迭代法是通过逐渐减少残差r i (i=0,1,…,n)来实现的,其中的残差r i=(b i-a i1x1-a i2x2-…-a in x n)/a ii,(i=0,1,…,n)。

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。

1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。

第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。

(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。

"(1)计算01)1(<-=f ,故有根区间为[1,2]。

(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。

(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。

(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。

数值分析上机题参考答案.docx

数值分析上机题参考答案.docx

如有帮助欢迎下载支持数值分析上机题姓名:陈作添学号: 040816习题 120.(上机题)舍入误差与有效数N11 3 1 1设S N,其精确值为 。

22 2 NN 1j 2j1(1)编制按从大到小的顺序111 ,计算 S 的通用程序。

S N1 321N 21 N22(2)编制按从小到大的顺序111,计算 S 的通用程序。

S N1(N 1)2 122 1NN 2(3)按两种顺序分别计算S 102 , S 104 , S 106 ,并指出有效位数。

(编制程序时用单精度)(4)通过本上机题,你明白了什么?按从大到小的顺序计算 S N 的通用程序为: 按从小到大的顺序计算 S N 的通用程序为:#include<iostream.h> #include<iostream.h> float sum(float N) float sum(float N) {{float j,s,sum=0; float j,s,sum=0; for(j=2;j<=N;j++) for(j=N;j>=2;j--) {{s=1/(j*j-1); s=1/(j*j-1); sum+=s;sum+=s;}}return sum;return sum;}}从大到小的顺序的值从小到大的顺序的值精确值有效位数从大到小从小到大0.7400490.740050.74004965 S 1020.7498520.74990.74994 4S 1040.7498520.7499990.74999936S 106通过本上机题, 看出按两种不同的顺序计算的结果是不相同的,按从大到小的顺序计算的值与精确值有较大的误差, 而按从小到大的顺序计算的值与精确值吻合。

从大到小的顺序计算得到的结果的有效位数少。

计算机在进行数值计算时会出现“大数吃小数”的现象,导致计算结果的精度有所降低,我们在计算机中进行同号数的加法时,采用绝对值较小者先加的算法,其结果的相对误差较小。

(完整版)数值分析部分课后答案第二版朱晓临

(完整版)数值分析部分课后答案第二版朱晓临

数值分析第二版 朱晓临第一章 习题3.324.045≈324.0 60.0876≈60.090.00035167≈0.0003517 2.00043≈2.000 6.①**x x x-≤51441111111010100.005%222a a -+--⨯=⨯⨯≤⨯=(1≤1a ≤9) 故它的相对误差限为0.005%②∵*12120....100....10n n n n x a a a a a a =±⨯=⨯<()10.110na +⨯相对误差限=0.03%***3311*n n n x x x x x x----=⨯⨯⨯⨯⨯⨯<0.03%0.(a +1)10=0.3(0.a +1)10<0.510 ∴至少有3位有效数字。

7.6*1), 1.4,0.004096A A =≈=则1.4≈时,⑴()610.005232781≈⑵(330.008-≈⑶()310.0051252613≈+⑷991-≈所以利用第三个得到的计算结果的绝对误差最小。

8.由函数的绝对误差公式:***(())'()()e f x f x e x ≈ ① 令2**2*(),()(),100f x x f x x x ===cm由题目得,*(())1e f x =,**'()2f x x = ②把②代入①,得: 1≈**2()x e x ⋅ 1≈*2100()e x ⨯⋅ *()e x 0.005cm ≈边长的测量误差不超过0.005cm 时,才能使其面积的误差不超过12cm 。

11.**()ln ,()ln f x x f x x ==令则由公式***(())'()()e f x f x e x ≈,得: ***1(())0.510e f x x x l x≈-<⨯- 又***()r x x x xε-≤, 由此可知,*()0.510l r x ε-=⨯所以*x 的相对误差限为0.510l -⨯,有l 位有效数字。

数值分析上机题目详解

数值分析上机题目详解

第一章一、题目设∑=-=NN j S 2j 211,其精确值为)11123(21+--N N 。

1) 编制按从大到小的顺序11131121222-+⋯⋯+-+-=N S N ,计算S N 的通用程序。

2) 编制按从小到大的顺序1211)1(111222-+⋯⋯+--+-=N N S N ,计算S N 的通用程序。

3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。

(编制程序时用单精度) 4) 通过本次上机题,你明白了什么?二、通用程序N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0);for a=2:N; Sn1=Sn1+1/(a^2-1); endSn2=single(0);for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); endfprintf('The value of Sn (N=%d)\n',N);fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2); disp('____________________________________________________')三、结果从结果可以看出有效位数是6位。

感想:可以得出,算法对误差的传播有一定的影响,在计算时选一种好的算法可以使结果更为精确。

从以上的结果可以看到从大到小的顺序导致大数吃小数的现象,容易产生较大的误差,求和运算从小数到大数所得到的结果才比较准确。

数值分析习题集及答案

数值分析习题集及答案

数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好?13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令 证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. ,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:7. 设[]2(),f x Ca b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2nn y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数). 11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使14. 设在[]1,1-上234511315165()128243843840x x x x x xϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005. 16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图.31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x 第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数值分析章节练习题

数值分析章节练习题

数值分析章节练习题数值分析是一门研究利用计算机和数学方法进行数值计算和数值模拟的学科。

在数值分析的学习过程中,解决各种练习题是非常重要的。

本文将使用合适的格式给出数值分析的章节练习题。

练习题1已知非线性方程f(x) = x^3 - 2x - 5 = 0,试用二分法求方程的根,并计算精确度ε要求小于等于10^-5。

解答:为了使用二分法求解,我们需要先找到一个方程f(x)在两个初始点a和b之间变号的区间[a, b]。

根据f(x) = x^3 - 2x - 5 = 0,我们可以尝试让a = 2和b = 3,计算f(2) = -1和f(3) = 16,结果符号相反,说明[a, b]内有方程的根。

接下来,我们将[a, b]等分为两个子区间。

我们选择其中一个子区间,并判断它内部是否还有方程的根。

继续等分的过程可以一直进行下去,直到满足我们的精确度要求。

具体的计算过程如下:1. 计算中点c = (a + b) / 2,并计算f(c)的值。

2. 判断f(c)和f(a)的符号是否相同。

2.1 如果符号相同,说明方程的根在[c, b]区间内,将a的值更新为c。

2.2 如果符号不同,说明方程的根在[a, c]区间内,将b的值更新为c。

3. 重复步骤1和步骤2,直到满足精确度的要求。

通过上述的计算过程,我们最终得到方程f(x) = x^3 - 2x - 5 = 0的根为x ≈ 2.09455,满足精确度要求。

练习题2已知函数f(x) = sin(x),使用拉格朗日插值多项式求解f(0.45)的近似值。

解答:拉格朗日插值多项式可以用于在给定的一些数据点上近似估计函数的值。

该多项式的表达式如下所示:P(x) = Σ[yj * Lj(x)], j = 0, 1, 2, ..., n其中yj为已知数据点的函数值,Lj(x)表示拉格朗日基函数,计算公式如下:Lj(x) = Π[(x - xi) / (xj - xi)], i = 0, 1, 2, ..., n, i ≠ j对于给定的函数f(x) = sin(x),我们可以选择一些数据点来近似估计f(x)在其他点的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题六
1 题目
23.(上机题)常微分方程初值问题数值解
(1)编制RK 4方法的通用程序;
(2)编制AB 4方法的通用程序(由RK 4提供初值);
(3)编制AB 4-AM 4预测校正方法的通用程序(由RK 4提供初值);
(4)编制带改进的AB 4-AM 4预测校正方法的通用程序(由RK 4提供初值);
(5)对于初值问题
22
'(0 1.5)(0)3y x y x y ⎧=-≤≤⎨=⎩
取步长0.1h =,应用(1)~(4)中的四种方法进行计算,并将计算结果和精确解3()3/(1)
y x x =+作比较;
(6)通过本上机题,你能得到哪些结论?
2 通用程序 #include <iostream>
#include <math.h>
using namespace std ;
float h =0.1;
const int n =15;
float x [n ],y [n ];
float f (float x ,float yy )
{
float temp =0;
temp =-1*x *x *yy *yy ;
return temp ;
}
void RK4(int j )
{
float k1,k2,k3,k4;
k1=f (x [j ],y [j ]);
k2=f(x[j]+0.5*h,y[j]+0.5*h*k1);
k3=f(x[j]+0.5*h,y[j]+0.5*h*k2);
k4=f(x[j]+h,y[j]+h*k3);
y[j+1]=y[j]+(float)(h/6)*(k1+2*k2+2*k3+k4);
}
void AB4(int j)
{
y[j+1]=y[j]+float(h/24)*(55*f(x[j],y[j])-59*f(x[j-1],y[j-1])+37*f(x[j-2 ],y[j-2])-9*f(x[j-3],y[j-3]));
}
void AM4(int j)
{
y[j+1]=y[j]+float(h/24)*(9*f(x[j+1],y[j+1])+19*f(x[j],y[j])-5*f(x[j-1], y[j-1])+f(x[j-2],y[j-2]));
}
float AY(int j) //acurate value
{
return(3/(1+x[j]*x[j]*x[j]));
}
void Outfit()
{
int i;
int k;
for(k=0;k<n;k++)
{
x[k]=k*h;
y[k]=0;
}
y[0]=3;
x[15]=1.5;
RK4(0);RK4(1);RK4(2);RK4(3);
//RK4
i=3;
while(x[i]<1.5)
{
RK4(i);
i++;
}
cout<<"RK4"<<'\t'<<"y1.5="<<y[14]<<'\t'<<"y(1.5)="<<AY(15)<<'\t'<<AY(15 )-y[14]<<endl;
//AB4
i=3;
while(x[i]<1.5)
{
AB4(i);
i++;
}
cout<<"AB4"<<'\t'<<"y1.5="<<y[14]<<'\t'<<"y(1.5)="<<AY(15)<<'\t'<<AY(15 )-y[14]<<endl;
//AM4
i=3;
while(x[i]<1.5)
{
AM4(i);
i++;
}
cout<<"AM4"<<'\t'<<"y1.5="<<y[14]<<'\t'<<"y(1.5)="<<AY(15)<<'\t'<<AY(15 )-y[14]<<endl;
//AB4-AM4
i=3;
while(x[i]<1.5)
{
AB4(i);
AM4(i);
i++;
}
cout<<"AB4-AM4"<<'\t'<<"y1.5="<<y[14]<<'\t'<<"y(1.5)="<<AY(15)<<'\t'<<A Y(15)-y[14]<<endl;
}
void main()
{
Outfit();
}
3运行结果
RK4 y1.5=0.63238 y(1.5)=0.685714 0.0533343
AB4 y1.5=0.632653 y(1.5)=0.685714 0.053061
AM4 y1.5=0.632276 y(1.5)=0.685714 0.0534386
AB4-AM4 y1.5=0.632333 y(1.5)=0.685714 0.0533814
图 1 运行结果
4结论
通过本上机题我明白了各种求微分方程的数值方法,经典的Runge-Kutta公式,AB4方法以及AB4-AM4预测校正方法求解公式的精度是不同的。

其中四阶Adams显式方法(AB4)具有4阶精度。

相关文档
最新文档