2006年考研试题答案

合集下载

2006年考研数学一真题及答案

2006年考研数学一真题及答案

2006年全国硕士研究生入学考试数学(一)一、填空题 (1)0ln(1)lim1cos x x x x→+=-.(2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面z =01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A B E =+,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}m a x {,}1P X Y ≤=.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则1400(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )0(,).xf x y dy ⎰⎰(B )00(,).f x y dy ⎰⎰(C )0(,).yf x y dx ⎰⎰(C )00(,).f x y dx ⎰⎰【 】(9)若级数1n n a ∞=∑收敛,则级数(A )1n n a ∞=∑收敛.(B )1(1)n n n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】 (12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则 (A )1.C P AP -= (B )1.C PAP -=(C ).TC P AP =(D ).TC PAP = 【 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy xy+=++⎰⎰ 。

2006年考研英语真题答案及解析

2006年考研英语真题答案及解析
1
公众号“考试狗的学习秘籍”提供
关注免费领取更多资料
的词只有 C,range 常与 from…to 搭配表示“从……到……范围”。故正确答案为 C。
7.[A] Now that 既然,由于
[B] Although 虽然,尽管
[C] Provided 倘若 [D] Except that 除……外
【答案】 B
2006 年全国硕士研究生招生考试英语(一)答案详解
Section I Use of English
一、文章结构分析
本文介绍了美国无家可归者日益增多这个社会问题。第一、二段分析问题的严重性,指出在美国无家可归者的数量
不断增长,已经到了联邦政府必须采取措施给他们提供帮助的地步。第三段指出帮助无家可归者的任务相当艰巨,
[B] Since 自从;因为,既然 [C] As 正如
[D] Thus 因而
【答案】 C
【考点】 逻辑搭配
【难度系数】 0.604
【解析】这个空要结合其后面的内容,上句谈到是 comprehensive program,后面一句谈到的是 a package deal,两者
显然是指差不多的内容,两者相当的内容,只能是并列结构,只有 C 是表示这种关系的连词,故答案为 C。如果考
9.[A] predicts 预测 [B] displays 陈列,展示
[C] proves 证明
[D] discovers 发现
【答案】 A
【考点】 词义辨析
【难度系数】 0.718
【解析】空后说无家可归的数字在这个 10 年的后半期会达到 10 million,显然这是表示将来的数据,对于将来的数
归者在美国人口中的比例越来越大”,空后“无家可归者达到如此高的比例,以至于到了当地政府无法……”。从

2006考研数学二真题及答案解析

2006考研数学二真题及答案解析

2006年数学(二)考研真题及解答一、填空题(1)曲线4sin 52cos x x yxx的水平渐近线方程为.(2)设函数231sin ,0,(),xt dt xf x xa x在0x 处连续,则a.(3)广义积分22(1)xdxx .(4)微分方程(1)y x y x的通解是.(5)设函数()yy x 由方程1y yxe 确定,则A dy dx= .(6)设矩阵2112A,E 为2阶单位矩阵,矩阵B 满足2B A B E,则B = .二、选择题(7)设函数()yf x 具有二阶导数,且()0,()0f x f x ,x 为自变量x 在0x 处的增量,y 与dy分别为()f x 在点0x 处对应的增量与微分,若0x ,则(A )0.dy y (B )0.y dy (C )0.ydy(D )0.dyy 【】(8)设()f x 是奇函数,除0x 外处处连续,0x 是其第一类间断点,则0()x f t dt 是(A )连续的奇函数. (B )连续的偶函数(C )在0x 间断的奇函数(D )在0x间断的偶函数.【】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x eh g ,则(1)g 等于(A )ln31.(B )ln3 1.(C )ln 2 1.(D )ln 2 1.【】(10)函数212xxxyC eC e xe 满足一个微分方程是(A )23.xy y y xe (B )23.xy y y e (C )23.xyyyxe (D )23.xyyye (11)设(,)f x y 为连续函数,则140(cos ,sin )df r r rdr 等于(A )22120(,).x xdxf x y dy (B )22120(,).x dxf x y dy (C )22120(,).y ydyf x y dx (D )22120(,).y dyf x y dx 【】(12)设(,)f x y 与(,)x y 均为可微函数,且1(,)0yx y . 已知00(,)x y 是(,)f x y 在约束条件(,)0x y 下的一个极值点,下列选项正确的是(A )若00(,)0x f x y ,则00(,)0y f x y . (B )若00(,)0x f x y ,则00(,)0y f x y . (C )若00(,)0x f x y ,则00(,)0y f x y . (D )若00(,)0x f x y ,则00(,)0y f x y .【】(13)设12,,,,a a a 均为n 维列向量,A 是m n 矩阵,下列选项正确的是(A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关. (C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关. (D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关.【】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记11001001P ,则(A )1.C P AP (B )1.C PAP (C ).TC P AP (D ).TCPAP 三解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe BxCx Ax o x ,其中3()o x 是当30x x 时比的高阶无穷小。

2006年考研数学一真题及参考答案

2006年考研数学一真题及参考答案

2006年全国硕士研究生入学考试数学(一)一、填空题(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =16 .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )2210(,).x xf x y dy -⎰⎰(B )2210(,).x f x y dy -⎰⎰(C )2210(,).y yf x y dx -⎰⎰(C )2210(,).y f x y dx -⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a L 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性相关. (B )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性无关.(C )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性相关.(D )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性无关. 【 A 】 (12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP = 【 B 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰。

2006年考研数学一真题及解析

2006年考研数学一真题及解析

2006 年全国硕士研究生入学统一考试数学一试题解析一、填空题(1)【答案】2.【详解】由等价无穷小替换,0x →时,21ln(1),1cos 2x x x x +-,2002ln(1)limlim 11cos 2x x x x x x x →→+=-=2(2)【答案】xCxe-.【详解】分离变量,(1)dy y x dx x -=⇒(1)dy x dx y x -=⇒1(1)dy dx y x =-⇒1dy dx dxy x =-⎰⎰⎰⇒ln ln y x x c =-+⇒ln ln yx x cee-+=⇒xy Cxe-=(3)【答案】2π【详解】补一个曲面221:1x y z ⎧+≤∑⎨=⎩1,取上侧,则1∑+∑组成的封闭立体Ω满足高斯公式,1()P Q R dv Pdydz Qdzdx Rdxdy I x y z Ω∑+∑∂∂∂++=++=∂∂∂⎰⎰⎰⎰⎰ 设,2,3(1)P x Q y R z ===-,则1236P Q Rx y z∂∂∂++=++=∂∂∂∴I =6dxdydz Ω⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)注:以下几种解法针对于不同的方法求圆锥体体积V 方法1:I 623ππ=⨯=(高中方法,圆锥的体积公式,这种方法最简便)而123(1)0xdydz ydzdx z dxdy ∑++-=⎰⎰( 在1∑上:1,0z dz ==)方法2:先二重积分,后定积分.因为1V Sdz =⎰,r =222r x y =+,22r z =,22S r z ππ==,所以1122001133V z dz z πππ===⎰.从而6623I V ππ==⨯=方法3:利用球面坐标.1z =在球坐标下为:1cos ρθ=,1224cos 0006sin I d d d ππϕθϕρϕρ=⎰⎰⎰243002sin cos d d ππϕθϕϕ=⎰⎰2430cos (2)cos d d ππϕθϕ=-⎰⎰422001(2)()cos 2d ππθϕ-=--⎰202d πθπ==⎰方法4:利用柱面坐标.21106rI d dr rdz πθ=⎰⎰⎰216(1)d r rdrπθ=-⎰⎰122300116()23d r r πθ=-⎰202d πθπ==⎰(4)【详解】代入点000(,,)P x y z 到平面0Ax By Cz D +++=的距离公式d ===(5)【答案】2【详解】由已知条件2BA B E =+变形得,2BA E B -=⇒()2B A E E -=,两边取行列式,得()244B A E E E -===其中,2110112120111A E ⎡⎤⎡⎤-=-==⎢⎥⎢⎥--⎣⎦⎣⎦,222E 4E ==因此,2422E B A E===-.(6)【答案】19【详解】根据独立性原理:若事件1,,n A A 独立,则{}{}{}{}1212n n P A A A P A P A P A =事件{}{}{}{}max{,}11,111X Y X Y X Y ≤=≤≤=≤≤ ,而随机变量X 与Y 均服从区间[0,3]上的均匀分布,有{}1011133P X dx ≤==⎰和{}1011133P Y dy ≤==⎰.又随机变量X 与Y 相互独立,所以,{}{}{}{}max(,)11,111P x y P x Y P x P Y ≤=≤≤=≤⋅≤1133=⨯19=二、选择题.(7)【答案】A 【详解】方法1:图示法.因为()0,f x '>则()f x 严格单调增加;因为()0,f x ''>则()f x 是凹函数,又0x > ,画2()f x x =的图形结合图形分析,就可以明显得出结论:0dy y << .方法2:用两次拉格朗日中值定理000()()()y dy f x x f x f x x '-=+-- (前两项用拉氏定理)0()()f x f x xξ''=- (再用一次拉氏定理)0()()f x x ηξ=-'' ,其中000,x x x x ξηξ<<+<< 由于()0f x ''>,从而0y dy -> .又由于0()0dy f x x '=> ,故选[]A 方法3:用拉格朗日余项一阶泰勒公式.泰勒公式:000()()()()f x f x f x x x '=+-()20000()()()()2!!n n n f x f x x x x x R n ''+-++-+ ,其中(1)00()()(1)!n nn fx R x x n +=-+.此时n 取1代入,可得20001()()()()()02y dy f x x f x f x x f x ξ'''∆-=+∆--∆=∆>又由0()0dy f x x '=∆>,选()A .O x 0x 0+Δx xyy=f (x )Δydy(8)【答案】()C 【详解】记140(cos ,sin )(,)Dd f r r rdr f x y dxdy πθθθ=⎰⎰⎰⎰,则区域D 的极坐标表示是:01r ≤≤,04πθ≤≤.题目考察极坐标和直角坐标的互化问题,画出积分区间,结合图形可以看出,直角坐标的积分范围(注意y x =与221x y +=在第一象限的交点是2222,)),于是2:02D y y x ≤≤≤≤所以,原式0(,)ydy f x y dx =.因此选()C (9)【答案】D 【详解】方法1:数列收敛的性质:收敛数列的四则运算后形成的新数列依然收敛因为1nn a ∞=∑收敛,所以11n n a ∞+=∑也收敛,所以11()n n n a a ∞+=+∑收敛,从而112n n n a a ∞+=+∑也收敛.选D.方法2:记n n a =,则1n n a ∞=∑收敛.但11n n n a ∞∞===∑(p 级数,12p =级数发散);111n n n n a a ∞∞+===∑∑p 级数,1p =级数发散)均发散。

2006年考研数学三真题及答案

2006年考研数学三真题及答案

2006年考研数学三真题一、填空题(1~6小题,每小题4分,共24分。

) (1) lim n→∞(n+1n)(−1)n= 。

【答案】1。

【解析】 【方法一】记x n =(n+1n )(−1)n , 因为lim k→∞x 2k =limk→∞2k+12k=1, 且lim k→∞x 2k+1=lim k→∞(2k+22k+1)−1=1, 故lim n→∞x n =1。

【方法二】lim n→∞(n+1n)(−1)n =lim n→∞e(−1)n lnn+1n, 而lim n→∞lnn+1n=lim n→∞ln (1+1n)=0(无穷小量),(−1)n 为有界变量,则原式=e 0=1。

综上所述,本题正确答案是1。

【考点】高等数学—函数、极限、连续—极限的四则运算 (2) 设函数f(x)在x =2的某领域内可导,且f ′(x )=e f (x ),f (2)=1, 则f ′′(2)= 。

【答案】2e 3。

【解析】本题主要考查复合函数求导。

由f ′(x )=e f (x )知f ′′(x )=e f (x )f ′(x )=e f (x )∙e f (x )=e 2f (x )f ′′′(x )=e 2f (x )∙2f ′(x )=2e 3f (x )f ′′′(2)=2e 3f (2)=2e 3。

综上所述,本题正确答案是2e 3。

【考点】高等数学—一元函数微分学—复合函数的导数(3)设函数f(u)可微,且f′(0)=12, 则z=f(4x2−y2)在点(1,2)处的全微分dz|(1,2)= 。

【答案】4dx−2dy。

【解析】因为ðzðx|(1,2)=f′(4x2−y2)∙8x|(1,2)=4,ðzðy|(1,2)=f′(4x2−y2)∙(−2y)|(1,2)=−2,所以dz|(1,2)=ðzðx |(1,2)dx+ðzðy|(1,2)dy=4dx−2dy。

2006年考研英语一真题答案(含解析)

2006年考研英语一真题答案(含解析)

2006 年全国硕士研究生入学考试英语试题Directions: Read the following text. Choose the best word(s)for each numbered blank and mark A,B,C or D on ANSWER SHEET 1(10 points)The homeless make up a growing percentage of America’s population. 1 , homelessness has reached such proportions that local government can’t possibly 2 . To help homeless people 3 independence, the federal government must support job training programs, 4 the minimum wage, and fund more low-cost housing.5 everyone agrees on the numbers of Americans who are homeless. Estimates6 anywhere from 600,000 to 3 million.7 the figure may vary, analysts do agree on another matter: that the number of the homeless is8 . One of the federal government’s s tudies9 that the number of the homeless will reach nearly 19 million by the end of this decade.Finding ways to 10 this growing homeless population has become increasingly difficult. 11 when homeless individuals manage to find a 12 that will give them three meals a day and a place to sleep at night, a good number still spend the bulk of each day 13 the street. Part of the problem is that many homeless adults are addicted to alcohol or drugs. And a significant number of the homeless have serious mental disorders. Many others, 14 not addicted or mentally ill, simply lack the everyday 15 skills needed to turn their lives 16 . Boston Globe reporter Chris Reidy notes that the situation will improve only when there are _17 programs that address the many needs of the homeless. 18 Edward Zlotkowski, director of community service at Bentley College in Massachusetts, _19 it, “There has to be _20 _of programs. What we need is a package deal.”1.[A]Indeed [B]Likewise [C]Therefore [D]Furthermore 2.[A]stand [B]cope [C]approve [D]retain3.[A]in [B]for [C]with [D]toward4.[A]raise [B]add [C]take [D]keep5.[A]generally [B]almost [C]hardly [D]not6.[A]cover [B]change [C]range [D]differ7.[A]Now that [B]Although [C]Provided [D]Except that8.[A]inflating [B]expanding [C]increasing [D]extending9.[A]predicts [B]displays [C]proves [D]discovers10.[A]assist [B]track [C]sustain [D]dismiss11.[A]Hence [B]But [C]Even [D]Only12.[A]lodging [B]shelter [C]dwelling [D]house13.[A]searching [B]strolling [C]crowding [D]wandering14.[A]when [B]once [C]while [D]whereas15.[A]life [B]existence [C]survival [D]maintenance16.[A]around [B]over [C]on [D]up17.[A]complex [B]comprehensive [C]complementary [D]compensating18.[A]So [B]Since [C]As [D]Thus19.[A]puts [B]interprets [C]assumes [D]makes20.[A]supervision [B]manipulation [C]regulation [D]coordination文章中心:完型填空的命题理论规定,文章的中心思想一般体现在文章首段的首句;有时首段首句其他段落的首句共同表达文章中心思想。

2006年考研英语真题及参考答案完整版

2006年考研英语真题及参考答案完整版

2006年全国硕士研究生入学统一考试英语真题及参考答案完整版Section IUse of EnglishDirections:Read the following text. Choose the best word(s) for each numbered blank and mark [A] [B] [C] or [D] on ANSWER SHEET 1. (10 points)The homeless make up a growing percentage of America’s population. __1__ homelessness has reached such proportions that local government can’t possibly __2__. To help homeless people__3__ independence the federal government must support job training programs __4__ the minimum wage and fund more low-cost housing.__5__ everyone agrees on the numbers of Americans who are homeless. Estimates __6__ anywhere from 600000 to 3 million. __7__ the figure may vary analysts do agree on another matter: that the number of the homeless is __8__. One of the federal governmen t’s studies __9__ that the number of the homeless will reach nearly 19 million by the end of this decade.Finding ways to __10__ this growing homeless population has become increasingly difficult.__11__ when homeless individuals manage to find a __12__ that will give them three meals a day and a place to sleep at night a good number still spend the bulk of each day __13__ the street. Part of the problem is that many homeless adults are addicted to alcohol or drugs. And a significant number of the homeless have serious mental disorders. Many others __14__ not addicted or mentally ill simply lack the everyday __15__ skills need to turn their lives __16__. Boston Globe reporter Chris Reidy notes that the situation will improve only when there are __17__ programs that address the many needs of the homeless. __18__ Edward Blotkowsk director of community service at Bentley College in Massachusetts __19__ it “There has to be __20__ of programs. What we need is a package deal.”1.[A] Indeed [B] Likewise [C] Therefore [D] Furthermore2.[A] stand [B] cope [C] approve [D] retain3.[A] in [B] for [C] with [D] toward4.[A] raise [B] add [C] take [D] keep5.[A] generally [B] almost [C] hardly [D] not6.[A] cover [B] change [C] range [D] differ7.[A] Now that [B] Although [C] Provided [D] Except that8.[A] inflating [B] expanding [C] increasing [D] extending9.[A] predicts [B] displays [C] proves [D] discovers10.[A] assist [B] track [C] sustain [D] dismiss11.[A] Hence [B] But [C] Even [D] Only12.[A] lodging [B] shelter [C] dwelling [D] house13.[A] searching [B] strolling [C] crowding [D] wandering14.[A] when [B] once [C] while [D] whereas15.[A] life [B] existence [C] survival [D] maintenance16.[A] around [B] over [C] on [D] up17.[A] complex [B] comprehensive [C] complementary [D] compensating18.[A] So [B] Since [C] As [D] Thus19.[A] puts [B] interprets [C] assumes [D] makes20.[A] supervision [B] manipulation [C] regulation [D] coordinationSection IIReading ComprehensionPart ADirections:Read the following four texts. Answer the questions below each text by choosing [A] [B] [C] or [D]. Mark your answers on ANSWER SHEET 1. (40 points)Text 1In spite of “endless talk of difference” American society is an amazing machine for homogenizing people. There is “the democ ratizing uniformity of dress and discourse and the casualness and absence of deference” characteristic of popular culture. People are absorbed into “a culture of consumption” launched by the 19th-century department stores that offered “vast arrays of goods in an elegant atmosphere. Instead of intimate shops catering to a knowledgeable elite” these were stores “anyone could enter regardless of class or background. This turned shopping into a public and democratic act.” The mass media advertising and sports a re other forces for homogenization. Immigrants are quickly fitting into this common culture which may not be altogether elevating but is hardly poisonous. Writing for the National Immigration Forum Gregory Rodriguez reports that today’s immigration is neit her at unprecedented levels nor resistant to assimilation. In 1998 immigrants were 9.8 percent of population; in 1900 13.6 percent. In the 10 years prior to 1990 3.1 immigrants arrived for every 1000 residents; in the 10 years prior to 1890 9.2 for every 1000. Now consider three indices of assimilation -- language home ownership and intermarriage.The 1990 Census revealed that “a majority of immigrants from each of the fifteen most common countries of origin spoke English ‘well’ or ‘very well’ after ten years of residence.” The children of immigrants tend to be bilingual and proficient in English. “By the third generation the original language is lost in the majority of immigrant families.” Hence the descxxxxription of America as a “graveyard” for languages. By 1996 foreign-born immigrants who had arrived before 1970 had a home ownership rate of 75.6 percent higher than the 69.8 percent rate among native-born Americans. Foreign-born Asians and Hispanics “have higher rates of intermarriage than do U.S.-born whites and blacks.” By the third generation one third of Hispanic women are married to non-Hispanics and 41 percent of Asian-American women are married to non-Asians.Rodriguez notes that children in remote villages around the world are fans of superstars like Arnold Schwarzenegger and Garth Brooks yet “some Americans fear that immigrants living within the United States remain somehow immune to the nation’s assimilative power.”Are there divisive issues and pockets of seething anger in America? Indeed. It is big enough to have a bit of everything. But particularly when viewed against America’s turbulent past today’s social indices hardly suggest a dark and deteriorating social environment.21.The word “homogenizing” (Line 2 Paragraph 1) most probably means ________.[A] identifying[B] associating[C] assimilating[D] monopolizing22.According to the author the department stores of the 19th century ________.[A] played a role in the spread of popular culture[B] became intimate shops for common consumers[C] satisfied the needs of a knowledgeable elite[D] owed its emergence to the culture of consumption23.The text suggests that immigrants now in the U.S. ________.[A] are resistant to homogenization[B] exert a great influence on American culture[C] are hardly a threat to the common culture[D] constitute the majority of the population24.Why are Arnold Schwarzenegger and Garth Brooks mentioned in Paragraph 5?[A] To prove their popularity around the world.[B] To reveal the public’s fear of immigrants.[C] To give examples of successful immigrants.[D] To show the powerful influence of American culture.25.In the author’s opinion the absorption of immigrants into American society is ________.[A] rewarding[B] successful[C] fruitless[D] harmfulText 2Stratford-on-Avon as we all know has only one industry -- William Shakespeare -- but there are two distinctly separate and increasingly hostile branches. There is the Royal Shakespeare Company (RSC) which presents superb productions of the plays at the Shakespeare Memorial Theatre on the Avon. And there are the townsfolk who largely live off the tourists who come not to see the plays but to look at Anne Hathaway’s Cottage Shakespeare’s birthplace and the other sights.The worthy residents of Stratford doubt that the theatre adds a penny to their revenue. They frankly dislike the RSC’s actors them with their long hair and beards and sandals and noisiness. It’s all deliciously ironic when you consider that Shakespeare who earns their living was himself an actor (with a beard) and did his share of noise-making.The tourist streams are not entirely separate. The sightseers who come by bus -- and often take in Warwick Castle and Blenheim Palace on the side -- don’t usually see the plays and some of them are even surprised to find a theatre in Stratford. However the playgoers do manage a little sight-seeing along with their playgoing. It is the playgoers the RSC contends who bring in much of the town’s revenue because they spend the night (some of them four or five nights) pouring cash into the hotels and restaurants. The sightseers can take in everything and get out of town by nightfall.The townsfolk don’t see it this way and local council does not contribute directly to the subsidy of the Royal Shakespeare Company. Stratford cries poor traditionally. Nevertheless every hotel in town seems to be adding a new wing or cocktail lounge. Hilton is building its own hotel there which you may be sure will be decorated with Hamlet Hamburger Bars the Lear Lounge the Banquo Banqueting Room and so forth and will be very expensive.Anyway the townsfolk can’t understand why the Royal Shakespeare Company needs a subsidy. (The theatre has broken attendance records for three years in a row. Last year its 1431 seats were 94 percent oc cupied all year long and this year they’ll do better.) The reason of course is that costs have rocketed and ticket prices have stayed low.It would be a shame to raise prices too much because it would drive away the young people who are Stratford’s most at tractive clientele. They come entirely for the plays not the sights. They all seem to look alike (though they come from all over) -- lean pointed dedicated faces wearing jeans and sandals eating their buns and bedding down for the night on the flagstones outside the theatre to buy the 20 seats and 80 standing-room tickets held for the sleepers and sold to them when the box office opens at 10:30 a.m.26.From the first two paragraphs we learn that ________.[A] the townsfolk deny the RSC’s contribution to the town’s revenue[B] the actors of the RSC imitate Shakespeare on and off stage[C] the two branches of the RSC are not on good terms[D] the townsfolk earn little from tourism27.It can be inferred from Paragraph 3 that ________.[A] the sightseers cannot visit the Castle and the Palace separately[B] the playgoers spend more money than the sightseers[C] the sightseers do more shopping than the playgoers[D] the playgoers go to no other places in town than the theater28.By saying “Stratford cries poor traditionally” (Line 2-3 Paragraph 4) the author implies that________.[A] Stratford cannot afford the expansion projects[B] Stratford has long been in financial difficulties[C] the town is not really short of money[D] the townsfolk used to be poorly paid29.According to the townsfolk the RSC deserves no subsidy because ________.[A] ticket prices can be raised to cover the spending[B] the company is financially ill-managed[C] the behavior of the actors is not socially acceptable[D] the theatre attendance is on the rise30.From the text we can conclude that the author ________.[A] is supportive of both sides[B] favors the townsfolk’s view[C] takes a detached attitude[D] is sympathetic to the RSCText 3When prehistoric man arrived in new parts of the world something strange happened to the large animals. They suddenly became extinct. Smaller species survived. The large slow-growing animals were easy game and were quickly hunted to extinction. Now something similar could be happening in the oceans.That the seas are being overfished has been known for years. What researchers such as Ransom Myers and Boris Worm have shown is just how fast things are changing. They have looked at half a century of data from fisheries around the world. Their methods do not attempt to estimate the actual biomass (the amount of living biological matter) of fish species in particular parts of the ocean but rather changes in that biomass over time. According to their latest paper published in Nature the biomass of large predators (animals that kill and eat other animals) in a new fishery is reduced on average by 80% within 15 years of the start of exploitation. In some long-fished areas it has halved again since then.Dr. Worm acknowledges that these figures are conservative. One reason for this is that fishing technology has improved. Today’s vessels can find their prey using satellites and sonar which were not available 50 years ago. That means a higher proportion of what is in the sea is being caught so the real difference between present and past is likely to be worse than the one recorded by changes in catch sizes. In the early days too longlines would have been more saturated with fish. Some individuals would therefore not have been caught since no baited hooks would have been available to trap them leading to an underestimate of fish stocks in the past. Furthermore in the early days of longline fishing a lot of fish were lost to sharks after they had been hooked. That is no longer a problem because there are fewer sharks around now.Dr. Myers and Dr. Worm argue that their work gives a correct baxxxxseline which future management efforts must take into account. They believe the data support an idea current among marine biologists that of the “shifting baxxxxseline.” The notion is that people have failed to detect the massive changes which have happened in the ocean because they have been looking back only a relatively short time into the past. That matters because theory suggests that the maximum sustainable yield that can be cropped from a fishery comes when the biomass of a target species is about 50% of its original levels. Most fisheries are well below that which is a bad way to do business.31.The extinction of large prehistoric animals is noted to suggest that ________.[A] large animal were vulnerable to the changing environment[B] small species survived as large animals disappeared[C] large sea animals may face the same threat today[D] slow-growing fish outlive fast-growing ones32.We can infer from Dr. Myers and Dr. W orm’s paper that ________.[A] the stock of large predators in some old fisheries has reduced by 90%[B] there are only half as many fisheries as there were 15 years ago[C] the catch sizes in new fisheries are only 20% of the original amount[D] the number of larger predators dropped faster in new fisheries than in the old33.By saying "these figures are conservative" (Line 1 paragraph 3) Dr. Worm means that ________.[A] fishing technology has improved rapidly[B] the catch-sizes are actually smaller than recorded[C] the marine biomass has suffered a greater loss[D] the data collected so far are out of date34.Dr. Myers and other researchers hold that ________.[A] people should look for a baxxxxseline that can work for a longer time[B] fisheries should keep their yields below 50% of the biomass[C] the ocean biomass should be restored to its original level[D] people should adjust the fishing baxxxxseline to the changing situation35.The author seems to be mainly concerned with most fisheries’ ________.[A] management efficiency[B] biomass level[C] catch-size limits[D] technological applicationText 4Many things make people think artists are weird. But the weirdest may be this: artists’ only job is to explore emotions and yet they choose to focus on the ones that feel bad.This wasn’t always so. The earliest forms of art like painting and music are those best suited for expressing joy. But somewhere from the 19th century onward more artists began seeing happiness as meaningless phony or worst of all b oring as we went from Wordsworth’s daffodils to Baudelaire’s flowers of evil.You could argue that art became more skeptical of happiness because modern times have seen so much misery. But it’s not as if earlier times didn’t know perpetual war disaster and the massacre of innocents. The reason in fact may be just the opposite: there is too much damn happiness in the world today.After all what is the one modern form of exxxxxpression almost completely dedicated to depicting happiness? Advertising. The rise of anti-happy art almost exactly tracks the emergence of mass media and with it a commercial culture in which happiness is not just an ideal but an ideology. People in earlier eras were surrounded by reminders of misery. They worked until exhausted lived with few protections and died young. In the West before mass communication and literacy the most powerful mass medium was the church which reminded worshippers that their souls were in danger and that they would someday be meat for worms. Given all this they did not exactly need their art to be a bummer too.Today the messages the average Westerner is surrounded with are not religious but commercial and forever happy. Fast-food eaters news anchors text messengers all smiling smiling smiling. Our magazines feature beaming celebrities and happy families in perfect homes. And since these messages have an agenda -- to lure us to open our wallets -- they make the very idea of happiness seem unreliable. “Celebrate!” commanded the ads for the arthritis drug Celebrex before we found out it could increase the risk of heart attacks.But what we forget -- what our economy depends on us forgetting -- is that happiness is more than pleasure without pain. The things that bring the greatest joy carry the greatest potential for loss and disappointment. Today surrounded by promises of easy happiness we need art to tell us as religion once did Memento mori: remember that you will die that everything ends and that happiness comes not in denying this but in living with it. It’s a message even more bitter than a clove cigarette yet somehow a breath of fresh air.36.By citing the examples of poets Wordsworth and Baudelaire the author intends to show that________.[A] poetry is not as expressive of joy as painting or music[B] art grows out of both positive and negative feelings[C] poets today are less skeptical of happiness[D] artists have changed their focus of interest37.The word “bummer” (Line 5 paragraph 5) most probably means something ________.[A] religious[B] unpleasant[C] entertaining[D] commercial38.In the author’s opinion advertising ________.[A] emerges in the wake of the anti-happy art[B] is a cause of disappointment for the general public[C] replaces the church as a major source of information[D] creates an illusion of happiness rather than happiness itself39.We can learn from the last paragraph that the author believes ________.[A] happiness more often than not ends in sadness[B] the anti-happy art is distasteful but refreshing[C] misery should be enjoyed rather than denied[D] the anti-happy art flourishes when economy booms40.Which of the following is true of the text?[A] Religion once functioned as a reminder of misery.[B] Art provides a balance between expectation and reality.[C] People feel disappointed at the realities of modern society.[D] Mass media are inclined to cover disasters and deathsPart BDirections:In the following article some sentences have been removed. For Questions 41-45 choose the most suitable one from the list A-G to fit into each of the numbered gaps. There are two extra choices which you do not need to use in any of the blanks. Mark your answers on ANSWER SHEET 1. (10 points)On the north bank of the Ohio river sits Evansville Ind. home of David Williams 52 and of a riverboat casino (a place where gambling games are played). During several years of gambling in that casino Williams a state auditor earning $35000 a year lost approximately $175000. He had never gambled before the casino sent him a coupon for $20 worth of gambling.He visited the casino lost the $20 and left. On his second visit he lost $800. The casino issued to him as a good customer a "Fun Card" which when used in the casino earns points for meals and drinks and enables the casino to track the user’s gambling activities. For Williams those activities become what he calls "electronic heroin".(41) ________. In 1997 he lost $21000 to one slot machine in two days. In March 1997 he lost $72186. He sometimes played two slot machines at a time all night until the boat docked at 5 a.m.then went back aboard when the casino opened at 9 a.m. Now he is suing the casino charging that it should have refused his patronage because it knew he was addicted. It did know he had a problem.In March 1998 a friend of Williams’s got him involuntarily confined to a treatment center for addictions and wrote to inform the casino of Williams’s gambling problem. The casino included a photo of Williams among those of banned gamblers and wrote to him a “cease admissions” letter. Noting the medical/psychological nature of problem gambling behavior the letter said that before being readmitted to the casino he would have to present medical/psychological information demonstrating that patronizing the casino would pose no threat to his safety or well-being.(42) ________.The Wall Street Journal reports that the casino has 24 signs warning: “Enjoy the fun... and always bet with your head not over it.” Every entrance ticket lists a toll-free number for counseling from the Indiana Department of Menta l Health. Nevertheless Williams’s suit charges that the casino knowing he was “helplessly addicted to gambling” intentionally worked to “lure” him to “engage in conduct against his will.” Well.(43) ________.The fourth edition of the Diagnostic and Statistical Manual of Mental Disorders says “pathological gambling” involves persistent recurring and uncontrollable pursuit less of money than of thrill of taking risks in quest of a windfall.(44) ________. Pushed by science or what claims to be science society is reclassifying what once were considered character flaws or moral failings as personality disorders akin to physical disabilities.(45) ________.Forty-four states have lotteries 29 have casinos and most of these states are to varying degrees dependent on -- you might say addicted to -- revenues from wagering. And since the first Internet gambling site was created in 1995 competition for gamblers’ dollars has become intense. The Oct. 28 issue of Newsweek reported that 2 million gamblers patronize 1800 virtual casinos every week. With $3.5 billion being lost on Internet wagers this year gambling has passed pornography as the Web’s most profitable business.[A]Although no such evidence was presented the casino’s marketing department continued to pepp er him with mailings. And he entered the casino and used his Fun Card without being detected.[B]It is unclear what luring was required given his compulsive behavior. And in what sense was his will operative?[C]By the time he had lost $5000 he said to himself that if he could get back to even he would quit. One night he won $5500 but he did not quit.[D]Gambling has been a common feature of American life forever but for a long time it was broadly considered a sin or a social disease. Now it is a social policy: the most important and aggressive promoter of gambling in America is the government.[E]David Williams’s suit should trouble this gambling nation. But don’t bet on it.[F]It is worrisome that society is medicalizing more and more behavioral problems often defining as addictions what earlier sterner generations explained as weakness of will.[G]The anonymous lonely undistracted nature of online gambling is especially conducive to compulsive behavior. But even if the government knew how to move against Internet gambling what would be its grounds for doing so?Part CDirections:Read the following text carefully and then translate the underlined segments into Chinese. Your translation should be written clearly on ANSWER SHEET 2. (10 points)Is it true that the American intellectual is rejected and considered of no account in his society? I am going to suggest that it is not true. Father Bruckberger told part of the story when he observed that it is the intellectuals who have rejected America. But they have done more than that. They have grown dissatisfied with the role of intellectual. It is they not America who have become anti-intellectual. First the obxxxxject of our study pleads for definition. What is an intellectual? 46)I shall define him as an individual who has elected as his primary duty and pleasure in life the activity of thinking in a Socratic (苏格拉底) way about moral problems. He explores such problems consciously articulately and frankly first by asking factual questions then by asking moral questions finally by suggesting action which seems appropriate in the light of the factual and moral information which he has obtained. 47))His function is analogous to that of a judge who must accept the obligation of revealing in as obvious a manner as possible the course of reasoning which led him to his decision. This definition excludes many individuals usually referred to as intellectuals -- the average scientist for one. 48)I have excluded him because while his accomplishments may contribute to the solution of moral problems he has not been charged with the task of approaching any but the factual aspects of those problems. Like other human beings he encounters moral issues even in the everyday performance of his routine duties -- he is not supposed to cook his experiments manufacture evidence or doctor his reports. 49)But his primary task is not to think about the moral code which governs his activity any more than a businessman is expected to dedicate his energies to an exploration of rules of conduct in business. During most of his waking life he will take his code for granted as the businessman takes his ethics.The definition also excludes the majority of teachers despite the fact that teaching has traditionally been the method whereby many intellectuals earn their living. 50) They may teach very well and more than earn their salaries but most of them make little or no independent reflections on human problems which involve moral judgment. This descxxxxription even fits the majority of eminent scholars. Being learned in some branch of human knowledge is one thing living in "public and illustrious thoughts” as Emerson would say is something else.Section IIIWritingPart A51.DirectionsYou want to contribute to Project Hope by offering financial aid to a child in a remote area. Write a letter to the department concerned asking them to help find a candidate. You should specify what kind of child you want to help and how you will carry out your plan.Write your letter in no less than 100 words. Write it neatly on ANSWER SHEET 2.Do not sign your own name at the end of the letter; use “Li Ming” instead.Do not write the address. (10 points)Part B52.Directions:Study the following photos carefully and write an essay in which you should1. describe the photos briefly2. interpret the social phenomenon reflected by them and3. give your point of view.You should write 160-200 words neatly on ANSWER SHEET 2. (20 points)有两幅图片,图1 把崇拜写在脸上;图2 花300元做“小贝头”注:Beckham是英国足球明星有两张照片,一张照片上有一位男士脸上写着足球明星的名字,另一张照片上有一个男子在理发,他要求理发师为他设计一个小贝克汉姆的发型。

2006年考研数学二真题答案解析

2006年考研数学二真题答案解析

2006年全国硕士研究生入学考试数学(二)解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim55x x xx y x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→== (3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y yy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )(,)xf x y dy ⎰(B )(,)f x y dy ⎰(C )(,)yf x y dx ⎰(D )(,)f x y dx ⎰(12)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs ↵∍◊σ⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令1arcsin arcsin ()t td t t =-=-+⎰2arcsin arcsin 1(2)2(1)t t udu t t u u -=-+=-+-⎰2arcsin 1t dut u =-+-⎰arcsin 11ln 21t u C t u -=-+++arcsin arcsin 12x x x x e e dx C e e ∴=-++⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫=⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算11lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型离散型不能直接用洛必达法则先考虑 2011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==33110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I)zzf f xy∂∂''==∂∂()()2223222222zx y f f x x y x y ∂'''=+∂++()()2223222222zy x f f yx y x y ∂'''=+∂++22220()()0z zf x y f u f u u∂∂''+=+=∂∂'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴=由(21)已知曲线L 的方程221(0)4x t t y t t ⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+ ⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+===+解出t 得由于(2,3)在L上,由(23221()y x x g y ===+=得可知(309(1)S y y dy ⎡⎤=----⎣⎦⎰33(102)4y dy =--⎰33332202(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 .0 0 0 0 0 得同解方程组x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T和AX =0的基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX =0的解. ① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q TAQ =Λ.解:① 条件说明A (1,1,1)T=(3,3,3)T,即 α0=(1,1,1)T是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T. 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T. 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 . 0 0 0。

2006年考研数学二真题答案解析

2006年考研数学二真题答案解析

2006年全国硕士研究生入学考试数学(二)解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim2cos 55x x xx y x x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→==(3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1y y xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y y y e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<< (D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23x y y y xe '''+-=(D )23x y y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )(,)xf x y dy ⎰(B )(,)f x y dy ⎰(C )(,)yf x y dx ⎰(D )(,)f x y dx ⎰(12)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P T AP . (D) C =PAP T . 解: (B)用初等矩阵在乘法中的作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1.0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令1arcsin arcsin ()t td t t =-=-+⎰2arcsin arcsin 1(2)2(1)t t udu t t u u -=-+=-+-⎰2arcsin 1t dut u =-+-⎰ arcsin 11ln 21t u C t u -=-+++arcsin arcsin 12x x x x e e dx C e e ∴=-++⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫= ⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥ 因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型 离散型不能直接用洛必达法则先考虑 22011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t t t te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==3330110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-<()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且Z f =满足等式22220z zx y∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I)zzf f xy∂∂''==∂∂()()2223222222zx y f f x x y x y ∂'''=+∂++()()2223222222zy x f f yx y x y ∂'''=+∂++22220()()0z zf x y f u f u u∂∂''+==∂∂'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴= 由(21)已知曲线L 的方程221(0)4x t t y t t⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+===±+解出t 得由于(2,3)在L上,由(23221()y x x g y ===+=得可知(309(1)S y y dy ⎡⎤=----⎣⎦⎰33(102)4y dy =--⎰333322002(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 .0 0 0 0 0 得同解方程组x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解: (2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX =0的解. ① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q TAQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T. 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T. 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0 Q T AQ =Q -1AQ = 0 0 0 . 0 0 0。

数学二2006年考研真题及答案解析

数学二2006年考研真题及答案解析

e,
F y
x0, y1
1 xey
x0, y1 1 ,
F
故 dy dx
x0


x F
x0, y1
e .
y x0, y1
(6)设矩阵
A


2 1
1 2


E
为2阶单位矩阵,矩阵
B
满足
BA

B

2E
,则
B 2.
【分析】将矩阵方程改写为 AX B或X或A B AXB C 的形式,再用方阵相
线 y f (x) 凹向,作函数 y f (x) 的图形如右图所
示,显然当 x 0 时,
y dy f (x0 )dx f (x0 )x 0 ,故应选(A).
x
(8)设 f (x) 是奇函数,除 x 0 外处处连续, x 0 是其第一类间断点,则 f (t)dt 0 是
(A)连续的奇函数.
(B)连续的偶函数
(C)在 x 0 间断的奇函数 B]
(D)在 x 0 间断的偶函数. [
【分析】
由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设
x
条件的特殊函数 f (x) 去计算 F (x) f (t)dt ,然后选择正确选项. 0 【详解】取
dy dx
x0

e.
【分析】本题为隐函数求导,可通过方程两边对 x 求导(注意 y 是 x 的函数)
,一阶微分形式不变性和隐函数存在定理求解.
【详解】方法一:方程两边对 x 求导,得
y ey 1 .代入上式得 dy dx
x0
乘的行列式性质进行计算即可.

2006年考研数学一真题及解析

2006年考研数学一真题及解析

x 2 + y 2 (0 ≤ z ≤ 1) 的下侧,则
∫∫ xdydz + 2 ydzdx + 3(z − 1)dx dy = 2π .
Σ
【分析】 本题 Σ 不是封闭曲面, 首先想到加一曲面 Σ1 : ⎨
⎧z =1 , 取上侧, 使 Σ + Σ1 2 2 ⎩x + y ≤1
构成封闭曲面,然后利用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计 算即可. 【详解】 设 Σ1 : z = 1( x + y ≤ 1) ,取上侧,则
未定式极限的求解利用等价无穷小代换即可本题为分析lim详解lim本方程为可分离变量型先分离变量然后两边积分即可分析原方程等价为详解两边积分得lnlndzdydydx构成封闭曲面然后利用高斯公式转化为三重积分再用球面或柱面坐标进行计
2006 年硕士研究生入学考试数学一试题及答案解析 一、填空题:1-6 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.
2 2
∫∫ xdydz + 2 ydzdx + 3(z − 1)dx dy
Σ
=

∫∫
Σ+ Σ1
xdydz + 2 ydzdx + 3( z − 1)dx dy − ∫∫ x dy dz + 2 y dz dx + 3(z − 1)dx dy .
Σ1 2π 1 1
∫∫
Σ+ Σ1 Σ1
xdydz + 2 ydzdx + 3( z −1)dx dy = ∫∫∫ 6dv = 6 ∫0 dθ ∫0 rdr ∫r dz = 2π ,
您所下载的资料来源于弘毅考研资料下载中心 获取更多考研资料,请访问

2006年考研数学一数学二试题与解析

2006年考研数学一数学二试题与解析

2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim 1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面z =(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性相关 (B)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性无关(C)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性相关 (D)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性无关.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP(B)1-=C PAP(C)T=C P AP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P AB P A > (B)()()P A B P B >(C)()()P A B P A = (D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ, 且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.(16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x =+-展开成x 的幂级数.(18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y ∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u 的表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意的0t >都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰.(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关的解,(1)证明方程组系数矩阵A 的秩()2r =A . (2)求,a b 的值及方程组的通解. (21)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A 的两个解.(1)求A 的特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x 的概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X 的概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=的通解是(0)xy cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤的下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q Rx y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又1000(8)(,)(cos ,sin )[C](A)(,)(B)(,)xf x y d f r r rdr f x y dy f x y dy πθθθ⎰⎰⎰⎰⎰⎰40设为连续函数,则等于(C)(,)(D)(,)yf x y dxf x y dx ⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a a C a a D a∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xy x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选(11)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中的作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎬⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdy x yxydxdy x y r I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数 ()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯= 10001111()(1)(1),132332n n n n n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y xy∂'''=+∂++()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+==∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty tf x y -=证明:对D 内任意分段光滑的有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0的充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y x f xy x∂'=--∂(,)(,)y Pf x y y f xy y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T和AX =0的基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组的通解:(2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(21) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX =0的解. ① 求A 的特征值和特征向量. ② 求作正交矩阵Q 和对角矩阵Λ,使得 Q TAQ =Λ.解:① 条件说明A (1,1,1)T=(3,3,3)T,即 α0=(1,1,1)T是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T. 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T. 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 . 0 0 0(22)随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,的分布函数. (Ⅰ)求Y 的概率密度;(Ⅱ))4,21(-F 解:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=y y y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式⎰⎰=+=≤≤-=-yyy dx dx y X y P 0434121)()1(式; ⎰⎰+=+=≤≤-=-yy dx dx y X y P 0141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y这个解法是从分布函数的最基本的概率定义入手,对y 进行适当的讨论即可,在新东方的辅导班里我也经常讲到,是基本题型. (Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X 的概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体的简单随机样本,记N 为样本值n x x x ,,21中小于1的个数.求θ的最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ,在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时,)1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以nN=最大θ.2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ] (12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ] (14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SX n (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Lyx xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cy x x y d ydx y ϕ;(II )求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解..(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov2006年数学(二)考研真题及解答一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰. (4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则0A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数.(B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln31-.(B )ln3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212x x xy C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--= (B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )(,).xf x y dy ⎰⎰(B )(,).f x y dy ⎰⎰(C )(,).yf x y dx ⎰⎰(D )(,).f x y dx ⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是(A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小。

(完整版)2006考研数学二真题及答案解析

(完整版)2006考研数学二真题及答案解析

2006年数学(二)考研真题及解答一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为 .(2)设函数231sin ,0,(),x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a = .(3)广义积分22(1)xdxx +∞=+⎰.(4)微分方程(1)y x y x-'=的通解是 . (5)设函数()y y x =由方程1yy xe =-确定,则0A dy dx== .(6)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则B =.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dy y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()x f t dt ⎰是(A )连续的奇函数. (B )连续的偶函数(C )在0x =间断的奇函数 (D )在0x =间断的偶函数. 【 】(9)设函数()g x 可微,1()(),(1)1,(1)2g x h x e h g +''===,则(1)g 等于(A )ln31-. (B )ln3 1.--(C )ln 2 1.--(D )ln 2 1.-【 】(10)函数212x x xy C e C e xe -=++满足一个微分方程是(A )23.xy y y xe '''--=(B )23.xy y y e '''--=(C )23.xy y y xe '''+-=(D )23.xy y y e '''+-=(11)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )(,).xf x y dy ⎰⎰(B )(,).f x y dy ⎰⎰(C )(,).yf x y dx ⎰⎰(D )(,).f x y dx ⎰⎰【 】(12)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(13)设12,,,,a a a L 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性相关. (B )若12,,,,a a a L 线性相关,则12,,,,Aa Aa Aa L 线性无关.(C )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性相关.(D )若12,,,,a a a L 线性无关,则12,,,,Aa Aa Aa L 线性无关. 【 】(14)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP =三 解答题15.试确定A ,B ,C 的常数值,使得23(1)1()xe Bx Cx Ax o x ++=++,其中3()o x 是当30x x →时比的高阶无穷小。

2006年考研数学二真题及答案

2006年考研数学二真题及答案

2006年考研数学二真题一、填空题(1~6小题,每小题4分,共24分。

) (1)曲线y =x+4sinx 5x−2cosx的水平渐近线方程为_________。

【答案】y =15。

【解析】limx→∞x+4sinx5x−2cosx=limx→∞1+4sinxx 5−2cosx x=15故曲线的水平渐近线方程为y =15。

综上所述,本题正确答案是y =15【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线 (2)设函数f (x )={1x 3∫sint 2dt,x ≠0,x 0a,x =0在x =0处连续,则a =_________。

【答案】13。

【解析】a =lim x→01x 3∫sint 2dt x 0=limx→0sinx 23x 2=13.综上所述,本题正确答案是13【考点】高等数学—函数、极限、连续—初等函数的连续性 (3)反常积分∫xdx (1+x 2)2+∞=_________。

【答案】12。

【解析】∫xdx (1+x 2)2+∞=lim b→+∞∫xdx(1+x 2)2b0=lim b→+∞12∫d (1+x 2)(1+x 2)2=12b 0lim b→+∞(−11+x 2)|0b=12lim b→+∞(1−11+b 2)=12综上所述,本题正确答案是12【考点】高等数学—一元函数积分学—反常积分(4)微分方程y′=y(1−x)x的通解为__________。

【答案】y=Cxe−x,C为任意常数。

【解析】dyy =1−xxdx⇒ln|y|=ln|x|−lne x+ln|C|即y=Cxe−x,C为任意常数综上所述,本题正确答案是y=Cxe−x。

【考点】高等数学—常微分方程—一阶线性微分方程(5)设函数y=y(x)由方程y=1−xe y确定,则dydx |x=0=__________。

【答案】−e。

【解析】等式两边对x求导得y′=−e y−xe y y′将x=0代入方程y=1−xe y可得y=1。

数学二2006年考研真题及答案解析

数学二2006年考研真题及答案解析

2006年硕士研究生入学考试(数学二)试题及答案解析一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)曲线4sin 52cos x x y x x +=- 的水平渐近线方程为 1.5y = 【分析】直接利用曲线的水平渐近线的定义求解即可. 【详解】4sin 14sin 1lim lim 2cos 52cos 55x x xx x x x x x x→∞→∞++==--. 故曲线的水平渐近线方程为 15y =. (2)设函数2301sin d ,0(),0x t t x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在0x =处连续,则a =13. 【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可.【详解】由题设知,函数()f x 在 0x =处连续,则lim ()(0)x f x f a →==, 又因为 22032000sin d sin 1lim ()lim lim 33x x x x t t x f x x x →→→===⎰. 所以 13a =. (3) 广义积分220d (1)x x x +∞=+⎰12. 【分析】利用凑微分法和牛顿-莱布尼兹公式求解.【详解】 2022222200d 1d(1+)111111lim lim lim (1)2(1)21+21+22b b b b b x x x x x x b +∞→∞→∞→∞==-=-+=++⎰⎰. (4) 微分方程(1)y x y x-'=的通解是e (0).x y Cx x -=≠ 【分析】本方程为可分离变量型,先分离变量,然后两边积分即可【详解】原方程等价为d 11d y x y x ⎛⎫=- ⎪⎝⎭, 两边积分得 1ln ln y x x C =-+,整理得。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档