一次函数培优训练题
人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案
期末复习:《一次函数》培优训练一.选择题1.下列各曲线中表示y是x的函数的是()A.B.C.D.2.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠13.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<15.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=6.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h7.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<010.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二.填空题11.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.12.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.13.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.15.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示兔子所行的路程).有下列说法:表示乌龟所行的路程,y2①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)16.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.17.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.三.解答题19.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.20.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.21.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.23.某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?24.已知一次函数y =2x ﹣4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为d 1、d 2.(1)当P 为线段AB 的中点时,求d 1+d 2的值;(2)直接写出d 1+d 2的范围,并求当d 1+d 2=3时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使d 1+ad 2=4(a 为常数),求a 的值.25.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?26.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案一.选择题1.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D 正确.故选:D.2.解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.3.解:原式可以化为:y=(k﹣2)x+2,∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.4.解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.5.解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选:C.6.解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;B、B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=﹣=(km/h);故本选项正确;D、慢车的速度==(km/h);故本选项错误;故选:C.7.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x ≤2,s =,当2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .8.解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k =60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n ,把(1,0)和(4,300)代入可得,解得,∴y 乙=100t ﹣100,令y 甲=y 乙可得:60t =100t ﹣100,解得t =2.5,即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y 甲﹣y 乙|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50,当100﹣40t =50时,可解得t =,当100﹣40t =﹣50时,可解得t =,又当t =时,y 甲=50,此时乙还没出发,当t =时,乙到达B 城,y 甲=250;综上可知当t 的值为或或或t =时,两车相距50千米, ∴④不正确; 综上可知正确的有①②共两个,故选:B .9.解:∵一次函数y =kx ﹣m ﹣2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,∴k ﹣2<0,﹣m <0,∴k <2,m >0.故选:A .10.解:∵OB =,OC =1, ∴BC =2,∴∠OBC =30°,∠OCB =60°.而△AA 1B 1为等边三角形,∠A 1AB 1=60°,∴∠COA 1=30°,则∠CA 1O =90°.在Rt △CAA 1中,AA 1=OC =,同理得:B 1A 2=A 1B 1=,依此类推,第n 个等边三角形的边长等于.故选:A .二.填空题(共8小题)11.解:∵正比例函数y =x 也经过点A ,∴kx +b <x 的解集为x >3,故答案为:x >3. 12.解:y =(2﹣2k )x +k ﹣3经过第二、三、四象限,∴2﹣2k <0,k ﹣3<0,∴k >1,k <3,∴1<k <3;故答案为1<k <3;13.解:根据三个函数图象所在象限可得a <0,b >0,c >0,再根据直线越陡,|k |越大,则b >c .则b >c >a ,故答案为:a <c <b .14.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.15.解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y 1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.16.解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.17.解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.18.解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.三.解答题(共8小题)19.解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,解得.所以一次函数解析式为y=x+;(2)把x=0代入y=x+得y=,所以D点坐标为(0,),所以△AOB的面积=S△AOD +S△BOD=××2+××1=.20.解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.21.解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.22.解:(1)慢车的速度=180÷(﹣)=60千米/时,快车的速度=60×2=120千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.23.解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.24.解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,即无数个解,∴a﹣2=0,即a=2.25.解:(1)由图可知,甲乙两地相距420km,小轿车中途停留了2小时;(2)①y1=60x(0≤x≤7);②当x=5.75时,y1=60×5.75=345,x≥5时,设y2=kx+b,∵y2的图象经过(5.75,345),(6.5,420),∴,解得:,∴x≥5时,y2=100x﹣230;(3)x=5时,有y2=100×5﹣230=270,即小轿车在3≤x≤5停车休整,离甲地270km,当x=3时,y1=180;x=5时,y1=300,∴火车在3≤x≤5时,会与小轿车相遇,即270=60x,x=4.5;当0<x≤3时,小轿车的速度为270÷3=90km/h,而货车速度为60km/h,故,货车在0<x≤3时,不会与小轿车相遇,∴货车出发4.5小时后首次与小轿车相遇,距离甲地270km.26.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。
一次函数能力测试卷(培优题)
一次函数能力测试卷(培优题)一、选择题(共10小题,每小题3分,共30分)1.一本数学错题笔记本的售价为6元,若小青买x本共付y元,则x和6分别是()A.常量,变量B.变量,常量C.常量,常量D.变量,变量2.函数y的自变量x的取值范围是()A.0x且2x≠D.2x>x≠B.0x≡C.23.下列曲线中不能表示y是x的函数的是()A.B.C.D.4.已知函数y kx b=+的图象如图所示,则函数y bx k=-+的图象大致是()A.B.C.D.5.已知点(1,)=-的图象上,则点A的坐标为()y xA a在一次函数25A.(1,3)B.(1,3)--D.(1,3)--C.(1,3)6.下表是研究弹簧长度与所挂物体质量关系的实验表格:则弹簧不挂物体时的长度为()A.4cm B.6cm C.8cm D.10cm7.下列关于一次函数22=-+的图象的说法中,错误的是()y xA.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当0y<x>时,2D.y的值随着x值的增大而减小8.已知将一次函数21=+,则下y x=-的图象向上平移2个单位长度后得到y kx b列关于一次函数y kx b=+的图象说法正确的是()A.经过第一、二、四象限B.与x轴交于点(1,0)C.与y轴交于点(0,1)D.y随着x的增大而减小9.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B .轿车行驶1.3小时时进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等10.如图,直线22y x =-+与x 轴y 轴分别交于A ,B 两点,射线AP AB ⊥于点A ,若点C 是射线AP 上一动点,点D 是x 轴上的一动点,且以C ,D ,A 为定点的三角形与AOB ∆全等,则OD 的长为( )A .1+ 3 B .3 C 1 D 1-或3二、填空题(共5小题,每小题3分,共15分)11.若函数2y kx k =+-为正比例函数,则k 的值为 .12.请写出一个图象经过(0,2)的一次函数解析式 .13.已知1(1,)A y -,2(2,)B y 是一次函数3y x b =-的图象上的两点,则1y 2y (填“>”、“<”或“=”).14.请选择一个你喜欢的数值m ,使关于x 的一次函数(21)2y m x =-+的y 值随着x 值的增大而增大,m 的值可以是 .15.如图1,在平行四边形ABCD 中,动点P 从点B 出发,沿B C D A →→→运动至点A 停止,设运动的路程为x ,ABP ∆的面积为y ,且y 与x 之间的关系如图2所示,则平行四边形ABCD 的周长为 .三、解答题(共8小题,共75分)16.(8分)已知2y -与x 成正比例,且当2x =-时,4y =-.(1)写出y 与x 之间的函数关系式;(2)当4x =时,求y 的值;(3)求函数图象与x 轴的交点坐标.17.(8分)已知函数(21)3y m x m =++-,(1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.18.(8分)已知一次函数y kx b =+,当2x =时y 的值为1,当1x =-时y 的值为5-.(1)在所给的平面直角坐标系中画出一次函数y kx b =+的图象;(2)求k ,b 的值;(3)直接写出函数图象与x 轴,y 轴的交点坐标.19.(9分)在平面直角坐标系中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象向下平移2个单位长度得到.(1)求这个一次函数的解析式;(2)若一次函数与x 轴交于点A ,与y 轴交于点B ,求点A ,点B 的坐标;(3)当2x >-时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,请直接写出m的取值范围.20.(9分)为了积极助力脱贫攻坚工作,如期打赢脱贫攻坚战,某驻村干部带领村民种植草莓,在每年成熟期都会吸引很多人到果园去采摘.现有甲、乙两家果园可供采摘,这两家草莓的品质相同,售价均为每千克30元,这两家果园的采摘方案不同.甲果园:每人需购买20元的门票一张,采摘的草莓按6折优惠;乙果园:不需要购买门票,采摘的草莓按售价付款不优惠.设小明和爸爸妈妈三个人采摘的草莓数量为x千克,在甲、乙果园采摘所需总费用分别为y甲、y乙元,其函数图象如图所示.(1)请分别求出y甲、y乙与x之间的函数关系式;(2)请求出图中点A的坐标并说明点A表示的实际意义;(3)请根据函数图象,直接写出小明一家选择哪家果园采摘更合算.21.(9分)小美打算在“母亲节”买一束百合和康乃馨组合的鲜花送给妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且康乃馨不多于9支,设买康乃馨x支,买这束鲜花所需总费用为w元.①求w与x之间的函数关系式;②请你帮小美设计一种使费用最少的买花方案,并求出最少费用.22.(12分)在如图的平面直角坐标系中,直线n过点(0,2)A ,且与直线l交于点(3,2)B,直线l与y轴交于点C.(1)求直线n的函数表达式;(2)若ABC∆的面积为9,求点C的坐标;(3)若ABC∆是等腰三角形,求直线l的函数表达式.23.(12分)如图,在平面直角坐标系内,(3,4)A-,(3,2)B,点C在x轴上,AD x⊥轴,垂足为D,BE x=,⊥轴,垂足为E,线段AB交y轴于点F.若AC BC ACD CBE∠=∠.(1)求点C的坐标;(2)如果经过点C的直线y kx b=+与线段BF相交,求k的取值范围;(3)若点P是y轴上的一个动点,当||-取得最大值时,求BP的长.PA PC。
第五章:一次函数培优训练试题
第五章:一次函数培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.关于一次函数y=﹣3x+1,下列说法正确的是()A.图象过点(﹣1,3) B.y随x的增大而增大C.图象经过第一、二、三象限 D.与y轴的交点坐标为(0,1)2.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y23.若一次函数y=kx+b的图象经过点(4,2)、(2,﹣2),则该一次函数图象与两坐标轴围成的三角形的面积为()A.6 B.9 C.12 D.184.已知直线y=kx+b经过第一、二、三象限,且点(2,1)在该直线上,设m=2k﹣b,则m的取值范围是()A.0<m<1 B.﹣1<m<1 C.1<m<2 D.﹣1<m<25.已知正比例函数y=(k﹣1)x的图象上一点(x,y),且xy<0,那么k的取值范围是()A.k<0 B.k<1 C.k>1 D.k<1或k>16.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟.在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t(分)之间的关系如图所示.下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有320米,其中正确的结论有()A.1个B.2个C.3个D.4个7.如图所示,OA、BA分别表示甲、乙两名学生运动的路程与时间的关系图象,图中S和t分别表示运动路程和时间,根据图象判断快者比慢者每秒多跑()A.25m B.6.25m C.1.5m D.1.25m8.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A .0B .3C .﹣3D .﹣79.如图,在平面直角坐标系中,点A 的坐标为(4,0),点Q 是直线y 3 x 上的一个动点,以AQ 为边,在AQ 的右侧作等边△APQ ,使得点P 落在第一象限,连接OP ,则OP +AP 的最小值为( )A .6B .34C .8D .3610.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y 与x 之间的函数关系.根据图象提供的信息,下列说法正确的是( )①甲乙两地的距离为450千米;②轿车的速度为90千米/小时;③货车的速度为60千米/小时;④点C 的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A .①②B .①③C .①②③D .①②③④二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.已知等腰三角形的周长为24,底边y 关于腰长x 的函数解析式是______________12.在直线y =﹣2x +5上到x 轴的距离等于3的点的坐标是13.在平面直角坐标系中,点A (x ,4),B (0,8)和C (﹣4,0)在同一直线上,则x =14.一次函数y =(2a ﹣3)x +a +2(a 为常数)的图象,在﹣1≤x ≤1的一段都在x 轴上方,则a 的取值范围是15.如图,直线y =-43x +8与x 轴,y 轴分别交于点A ,B ,直线y =x +1与直线AB 交于点C ,与y 轴交于点D .则△BDC 的面积=____.若P 是y 轴正半轴上的一点,Q 是直线AB 上的一点,连接PQ .△BDC 与△BPQ 全等(点Q 不与点C 重合),写出所有满足要求的点Q 坐标______16.如图,一次函数y =x +2与坐标轴分别交于A ,B 两点,点P ,C 分别是AB ,OB 上的点,且∠OPC =45°,PC =PO ,则点P 的坐标为三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)已知y 与3x ﹣2成正比例,且当x =2时,y =8.(1)求y 与x 的函数关系式;(2)求当x =﹣2时的函数值;(3)如果y 与x 的函数图象与x 轴相交于点A ,图象与y 轴相交于点B ,求△AOB 的面积.18(本题8分)如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.19.(本题8分)在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值;(2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标.20(本题10分)如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2).(1)求直线AC 的表达式;(2)求△OAC 的面积;(3)动点M 在线段OA 和射线AC 上运动,是否存在点M ,使△OMC 的面积是△OAC 的面积的41?若存在,求出此时点M 的坐标;若不存在,请说明理由.21(本题10分)如图,直线l :221+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.22.(本题12分)由于疫情的影响,“地摊经济“成为了很多人经济来原的一种形式.李叔叔从市场得知如下信息:A商品B商品进价(元/件)35 5售价(元/件)45 8李叔叔计划购进A.B商品共100件进行销售,设购进A商品x件,A.B商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)若李叔叔用不超过2000元资金一次性购进A.B两种商品,则如何进货,才能使得获利最大?并求出最大利润.23.(本题12分)如图,在平面直角坐标系中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P点坐标,若不存在,请说明理由.。
八年级数学 一次函数 培优练习卷(含答案)
16、无论 m 取什么实数,点 A(m+1,2m-2)都在直线 l 上,若点 B(a,b)是直线 l 上的动点, 则(2a-b-6)3 的值等于
17、设直线 nx+(n+1)y= S1+S2+…+S2016 的值为__.
(n 为自然数)与两坐标轴围成的三角形面积为 Sn,则
18、如图,在平面直角坐标系中,直线 l:y=
x+4 与 x 轴、y 轴分别交于点 A 和点 B,点 C、D 分别为线段 AB、OB 的中
点,点 P 为直线 OA 上一动点,PC+PD 值最小时点 P 的坐标为( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣
,0)
D.(﹣
,0)
5、P1(x1,y1),P2(x2,y2)是一次函数 y=﹣2x+5 图象上的两点,且 x1<x2,则 y1 与 y2 的大小 关系是( ) A.y1<y2 B.y1=y2 C.y1>y2 D.y1>y2>0 6、如图,一直线与两坐标轴的正半轴分别交于 A,B 两点,P 是线段 AB 上任意一点(不包括端 点),过 P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为 10,则该直线的函数表达式是 ( )
13、已知 m 为整数,且一次函数
的图像不经过第二象限,则 m=
.
14、直线 y=3x﹣m﹣4 经过点 A(m,0),则关于 x 的方程 3x﹣m﹣4=0 的解是 . 15、如图,将含 45°角的直角三角尺放置在平面直角坐标系中,其中 A(﹣2,0),B(0,1),则 直线 BC 的函数表达式为 .
;(2)D 的坐标为(-2,5)或(-5,3).
(3)(3)当 OC 是腰,O 是顶角的顶点时,OP=OC,则 P 的坐标为(5,0)或(-5,0); 当 OC 是腰,C 是顶角的顶点时,CP=CP,则 P 与 O 关于 x=3 对称,则 P 的坐标是(6,0); 当 OC 是底边时,设 P 的坐标为(a,0),则 ,解得
一次函数培优训练题
初二一次函数培优训练题一,填空题1.直线y=3x+b 与y 轴交点(0 ,–2),则这条直线不经过第____象限.2.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a 、b 的大小关系是a____b.3.若点A(2 , 4)在直线y=kx –2上,则k= .4.已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是 .5.直线x y 2-=向上平移3个单位,再向左平移2个单位后的解析式为________.6. 函数y=kx+2,经过点(1 , 3),则y=0时,x= .7. 一次函数62-=x y 的图象与x 轴的交点坐标是____ __,与y 轴的交点坐标是 __8.(2007山东淄博)从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k ,b ,则一次函数y kx b =+的图象不经过第四象限的概率是________.9. 若一次函数的图象经过点(2,-1),且与直线y=2x+1平行,则其表达式为 . 二.选择题1.如果在一次函数中,当自变量x 的取值范围是-1<x <3时,函数y 的取值范围是-2<y <6,那么此函数解析式为( )A.x y 2= B.42+-=x y C.x y 2=或42+-=x y D.x y 2-=或42-=x y2.无论m 为何实数,直线m x y 2+=与直线4+-=x y 的交点不可能在( ) A .第三象限 B .第四象限 C .第一象限 D .第二象限3.已知一次函数k kx y -=,若y 随着x 的增大而减小,则该函数的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限4.已知一次函数4)2(2-++=k x k y 的图象经过原点,则( ) A 、k=±2 B 、k=2 C 、k= -2 D 、无法确定5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x > B .0x < C .2x > D .2x <6.(2007福建福州)已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( ) A .1a > B .1a <C .0a >D .0a <7.(2007上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )第5题图x图1A.0k >,0b >B.0k >,0b <C.0k <,0b >D.0k <,0b <8.(2007陕西)如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--9.(2007浙江湖州)将直线y =2x 向右平移2) A.y =2x +2B.y =2x -2C.y =2(x -2)D.y =2(x +2)10.(2007四川乐山)已知一次函数y kx b =+的图象如下图(6)所示,当1x <时,y 的取值范围是( )A.20y -<< B.40y -<< C.2y <- D.4y <-11.(2007浙江金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0B .1C .2D .312.〔2011•日照市〕在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A.(0,43)B.(0,34) C.(0,3) D.(0,4)13. (2011•苏州市)如图,已知A 点坐标为(5,0),直线(0)y x b b =+>与y 轴交于点B ,连接AB ,∠a =75°,则b 的值为( ) A .3 B C .4 D14. 1+=mx y 与12-=x y 的图象交于x 轴上一点,则m 为( )A .2B .2-C .21D .21-a b + 第11题 图(6)三.解答题1.已知一次函数图象经过点(3 , 5) , (–4,–9)两点. ① 求一次函数解析式.② 求图象和两坐标轴交点坐标.③ 求图象和坐标轴围成的三角形面积. ④ 若点(a , 2)在图象上,求a 的值.2.已知函数y=(2m –2)x+m+1① m 为何值时,图象过原点.② 已知y 随x 增大而增大,求m 的取值范围. ③ 函数图象与y 轴交点在x 轴上方,求m 取值范围. ④ 图象过二、一、四象限,求m 的取值范围.3. (2007福建晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。
《一次函数》培优题[含答案解析]
1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。
分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。
第四章一次函数培优训练试题北师大版2024—2025学年八年级上册
第四章一次函数培优训练试题北师大版2024—2025学年八年级上册一、选择题1.已知A点坐标为A()点B在直线y=﹣x上运动,当线段AB最短时,B点坐标()A.(0,0)B.(,﹣)C.(1,﹣1)D.(﹣,)2.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是()A.(﹣,﹣)B.(,)C.(﹣,)D.(,﹣)3.如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是()A.B.C.D.二、填空题4.在平面直角坐标系中,一次函数y=x+4的图象分别与x轴,y轴交于点A,B,点P在一次函数y=x的图象上,则当△ABP为直角三角形时,点P的坐标是.5.直线y=kx+1与两坐标轴围成的三角形周长为6,则k=.6.如图,正方形OA1B1C1,C1A2B2C2,C2A3B3C3,…的顶点A1,A2,A3,…在直线y=kx+b上,顶点C1,C2,C3,…在x轴上,已知B1(1,1),B2(3,2),那么点A4的坐标为,点A n的坐标为.7.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是.8.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于.9.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC 于点F,连接EF,若AF平分∠DFE,则k的值为.10.如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.11.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.12.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(﹣8,0).(1)k的值为;(2)点M为直线BC上一点,若∠MAB=∠ABO,则点M的坐标是.三、解答题13.如图,直线与x轴、y轴分别交于B、C两点.(1)求B、C两点的坐标.(2)若点A(x,y)是第一象限内的直线上的一个动点,则当点A运动到什么位置(求出点A的坐标)时,△AOB的面积是3.(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l交x轴于点A(﹣1,0)、交y轴于点B(0,3).(1)求直线l对应的函数表达式;(2)在x轴上是否存在点C,使得△ABC为等腰三角形,若存在,请求出点C的坐标,若不存在,请说明理由.15.如图,在平面直角坐标系中,一次函数的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(2,4).(1)求m的值及l2的解析式;(2)若点M是直线上的一个动点,连接OM,当△AOM的面积是△BOC面积的2倍时,请求出符合条件的点M的坐标;(3)一次函数y=kx+2的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.16.已知:如图1,直线AB:y=﹣x+2分别交x,y轴于点A,B.直线AC与直线AB关于x轴对称,点D为x轴上一点,E为直线AC上一点,BD=DE.(1)求直线AC的函数解析式;(2)若点D的坐标为(3,0),求点E的坐标;(3)如图2,将“直线AB:y=﹣x+2”改为“直线AB:y=kx+2”,∠E=∠ABO+∠ADB,x E=3,其他不变,求k的值.17.在平面直角坐标系中,点O为坐标原点,直线y=kx+3交x轴负半轴于点A,交y轴于点B,AB+OB=2OA.(1)如图1,求k值;(2)如图2,点C在y轴正半轴上,OC=2OA,过点C作AB的垂线交x轴于点D,点E为垂足,点P在BE的延长线上,点P的横坐标为t,连接PO,PD,△POD的面积为S,求S与t之间的函数关系式,不要求写出自变量t的取值范围;(3)在(2)的条件下,点F在OD上,连接FB,FP,若∠OBF+∠BPF=∠FPD=45°,求t值.18.在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是米,乙的步行速度是米/分;(2)图中a=,b=,c=;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?20.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?21.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?。
一次函数培优练习题(含答案)
一次函数培优练习题(含答案)一、选择题:1.y与x+3成正比例,即y=k(x+3),代入x=1,y=8,解得k=2,因此函数关系式为y=2(x+3)=2x+6,选项(C)。
2.直线y=kx+b经过一、二、四象限,说明k和b异号,因此直线y=bx+k经过三象限,选项(C)。
3.直线y=-2x+4与两坐标轴围成的三角形的底边分别为4和2,因此面积为1/2*4*2=4,选项(A)。
4.由于两弹簧的函数解析式分别为y=k1x+a1和y=k2x+a2,因此y1=k1*2+a1,y2=k2*2+a2,无法确定它们的大小关系,选项(D)。
5.两个函数的图象分别为斜率为b和a的直线,当b>a时,y=bx+a的图象在y=ax+b的图象上方,因此选项(D)。
6.同第二题,直线y=bx+k经过三象限,因此不经过第二象限,选项(B)。
7.当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;当k=0时,y=2,因此选项(B)。
8.直线y=x+2m与y=-x+4的交点为(-2m+2,2m+2),当m>0时在第一象限,当m<0时在第二象限,因此选项(B)。
9.直线y=-x/2平移下移4个单位得到y=-x/2-4,即y=-33x-4,因此选项(D)。
10.XXX与x成正比例,则k=m-5=0,解得m=5,选项(D)。
11.直线y=3x-1与y=x-k的交点为(1/2,3/2-k/2),当k>1时在第四象限,因此选项(C)。
12.直线可以作4条,分别为y=-5x-2,y=5x-8,x=3,x=-1,选项(A)。
13.由于a+b/c+b/a+c=p,将其化简得到(a+b+c)/bc=p,因此直线y=px+p经过点(1/a,1/b,1/c),选项(D)。
改写后的文章:一、选择题:1.已知y与x+3成正比例,且当x=1时,y=8,求y与x 之间的函数关系式。
答案:y=2x+6.2.若直线y=kx+b经过一、二、四象限,求直线y=bx+k不经过的象限。
第十九章 一次函数单元培优训练(解析版)
第十九章 一次函数单元培优训练班级___________ 姓名___________ 学号____________ 分数____________考试范围:第19章 一次函数,共23题; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2022春·上海·八年级专题练习)下列函数是一次函数的是( )A .11y x =+B .2y x =-C .22y x =+D .y kx b=+2.(2021春·河南周口·八年级统考期末)若函数y =kx +b 的图象过点A (﹣3,0),B (0,4),则不等式kx +b ≥0的解集是( )A .x ≥﹣3B .x ≤﹣3C .x ≥4D .x ≤4【答案】A【分析】结合函数图象即可求得.【详解】解:由函数y =kx +b 的图象过点A (﹣3,0),B (0,4)画出函数图象如图,由图象可知,不等式kx +b ≥0的解集是x ≥﹣3.故选:A .【点睛】本题主要考查了一次函数与一元一次不等式之间的关系,能够熟练运用一次函数图象解一元一次不等式是解题的关键.3.(2019秋·广西贺州·八年级统考期中)函数233y x =--自变量x 的取值范围是( ).A .0x ¹B .1x ¹C .1x >D .1x <【答案】B【分析】根据分式的分母不为零进行求解即可.【详解】根据题意,330x -¹,解得1x ¹,故选:B.【点睛】本题主要考查了反比例函数自变量的取值范围,熟练掌握分式的性质是解决本题的关键.4.(2022春·河北唐山·八年级统考期末)如图,直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +>-的解集在数轴上表示正确的是( )A .B .C .D .【答案】A 【分析】观察函数图象得到当x >-1时,函数y =x +b 的图象都在y =kx -1的图象上方,所以不等式x +b >kx -1的解集为x >-1,然后根据用数轴表示不等式解集的方法对各选项进行判断.【详解】解:当x >-1时,x +b >kx -1,即不等式x +b >kx -1的解集为x >-1.故选:A .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =ax +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.5.(2022春·广东韶关·八年级统考期末)如图OB 、AB 分别表示甲、乙两名同学运动的一次函数图象,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快.有以下说法:①乙让甲先跑12米;②甲的速度比乙快1.5米/秒;③ 8秒钟内,甲在乙后面;④ 8秒钟后,甲超过了乙,其中正确的说法是()A.①②④B.①②③C.①③④D.②③④【答案】D【分析】根据函数图象可以得出:乙比甲先跑了12米;根据速度=路程÷时间可求出甲的速度与乙的速度;8秒钟时甲乙相遇,可判断两人的位置关系.【详解】解:由图象知OA=12,即乙比甲先跑了12米,故①错误;甲的速度为:64÷8=8米/秒,乙的速度为:(64-12)÷8=6.5米/秒,即甲的速度比乙快1.5米/秒,故②正确;8秒时甲乙相遇,8秒钟内,甲在乙后面,8秒钟后,甲超过了乙,故③④正确;综上所述,正确的序号为:②③④,故选D.【点睛】本题考查了一次函数的实际运用,需结合图形解答.借助数形结合的思想,从函数图象中提取有用信息是解决此题的关键.6.(2015秋·江苏苏州·八年级统考期中)在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、A n B n B n-1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y kx b=+的图像上,点B1、B2、B3、…、B n均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点A n的坐标为()A.(,)B.(,)C.(,+1)D.(,)【答案】D【详解】试题分析:如图,∵点B1的坐标为(1,0),点B2的坐标为(3,0),∴OB 1=1,OB 2=3,则B 1B 2=2.∵△A 1B 1O 是等腰直角三角形,∠A 1OB 1=90°,∴OA 1=OB 1=1.∴点A 1的坐标是(0,1).同理,在等腰直角△A 2B 2B 1中,∠A 2B 1B 2=90°,A 2B 1=B 1B 2=3,则A 2(1,2).∵点A 1、A 2均在一次函数y=kx+b 的图象上,∴1{2b k b==+,解得,11k b =ìí=î,∴该直线方程是y=x+1∵点A 3,B 2的横坐标相同,都是3,∴当x=3时,y=4,即A 3(3,4),则A 3B 2=4,∴B 3(7,0).同理,B 4(15,0),…B n (2n -1,0),∴当x=2n-1-1时,y=2n-1-1+1=2n-1,即点A n 的坐标为(2n-1-1,2n-1).故选D考点:一次函数综合题二、填空题(本大题共6小题,每小题3分,共18分)7.(2022秋·湖南长沙·九年级校考阶段练习)一次函数31y x =-+图象不经过第_________象限.【答案】三【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵30,10-<>,∴一次函数31y x =-+图象经过第一、二、四象限,∴一次函数31y x =-+图象不经过第三象限.故答案为:三【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+¹,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.8.(2022秋·四川成都·八年级四川省成都市石室联合中学校考期末)若函数y =(k ﹣2)x |k |﹣1+1是关于x 的一次函数,则k =_____.9.(2021·广东深圳·深圳中学校考二模)在平面直角坐标系中,直线y kx =向右平移2个单位后,刚好经过点()0,4,则不等式24x kx >+的解集为________.【答案】1x >【分析】由题意直线y kx =向右平移2个单位后,刚好经过点(0,4),根据待定系数法求出直线的解析式,然后代入不等式中,从而求出不等式的解集.【详解】解:Q 直线y kx =向右平移2个单位得:(2)y k x =-,又其过点(0,4),42k \=-,解得:2k =-,\不等式24x kx >+可化为:224x x >-+解得1x >.故答案为:1x >.【点睛】此题考查平移的性质及待定系数法求直线的解析式,还考查求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10.(2022春·陕西渭南·八年级统考期末)将直线5y kx =+的图像向下平移3个单位后,经过点A (1,0),则平移后的直线解析式为______.【答案】22y x =-+【分析】根据一次函数的平移可得直线5y kx =+的图像向下平移3个单位后得2y kx =+,然后把(1,0)代入2y kx =+即可求出k 的值即可.【详解】解:直线5y kx =+的图像向下平移3个单位后得2y kx =+,Q 经过点(1,0),02k \=+,解得:2k =-,∴平移后的直线的解析式为22y x =-+,故答案为:22y x =-+.【点睛】本题主要考查了一次函数图像的平移变换和待定系数法求一次函数解析式,解题的关键是掌握平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016秋·八年级课时练习)直线y kx b =+与直线32y x =-+平行,且经过点(1,6),则该函数关系式为________【答案】39y x =-+【详解】试题解析:该直线与直线32y x =-+ 平行,所以3,k =-即:3,y x b =-+再把点()16,代入有631,b =-´+ 解得9,b = 所以一次函数的关系式为:39,y x =-+故答案为:39,y x =-+点睛:直线111y k x b =+ 与直线222y k xb =+平行时:1212,.k k b b =¹12.(2021·全国·八年级假期作业)已知直线11y k x b =+与直线22y k x b =+的交点坐标为()2,3-,则直线11y k x b =-与直线22y k x b =-的交点坐标为____________.三、(本大题共5小题,每小题6分,共30分)13.(2022秋·江苏盐城·八年级校考阶段练习)已知一次函数y=kx﹣3,当x=1时,y=7.(1)求这个一次函数的表达式;(2)试判断点P(2,15)是否在这个一次函数y=kx﹣3的图象上,并说明理由.【答案】(1)y=10x﹣3;(2)不在,理由见详解.【分析】(1)把x与y的值代入一次函数解析式求出k的值,即可确定出解析式;(2)把x=2的值代入解析式计算求出y的值即可判断.【详解】解:(1)把x=1,y=7代入y=kx﹣3得:7=k﹣3,解得:k=10,则y=10x﹣3;(2)把x=2代入y=10x﹣3得y=10×2﹣3=17≠15,所以点P(2,15)不在这个一次函数y=kx﹣3的图象上.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).14.(2022秋·八年级课时练习)金百超市经销某品牌童装,单价为每件50元时,每天销量为60件,当单价每件从50元降了20元时,一天销量为100件.设降x元时,一天的销量为y件.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?【答案】(1)y与x之间的关系式为y=2x+60(2)该天童装的单价是每件40元【分析】(1)根据题意先设出y与x的函数关系式y=kx+b,再根据题目中的数据,即可求出该函数的解析式;(2)将y= 80代入(1) 中函数关系式,求出相应的x的值即可.【详解】(1)因为y是x的一次函数.所以,设y与x的函数关系式为y=kx+b,由题意知,当x=0时,y=60 ;当x=20时,y= 100,所以,60 20100bk b=ìí+=î解之得:602 bk=ìí=î所以y与x之间的关系式为y=2x+60 ;(2)当y=80时,由80=2x+60,解得x=10,所以50- 10= 40(元),所以该天童装的单价是每件40元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数关系式.15.(2022秋·八年级课时练习)已知正比例函数图象经过点(1,2)-(1)求此正比例函数的解析式;(2)点(2,2)-是否在此函数图象上?请说明理由.【答案】(1)2y x =-;(2)否,理由见解析.【分析】(1)利用待定系数法求解析式即可;(2)将(2,2)-代入解析式,若等式成立则说明在函数图象上,否则不在.【详解】(1)解:设正比例函数解析式为y kx =,∵函数图象过(1,2)-,将其代入解析式可得:2k =-,∴2k =-,即解析式为:2y x =-,(2)解:否,理由如下:假设点(2,2)-在此函数图象上,则将其代入解析式应满足等式成立,但是222-¹-g ,∴(2,2)-不在此函数图象上.【点睛】本题考查正比例函数,比较简单,重点要掌握待定系数法求解析式,以及利用解析式判断点是否在函数图象上.16.(2022秋·安徽滁州·八年级统考期中)已知3y +与x 成正比例,当2x =时,7y =.(1)求y 与x 的函数表达式;(2)当12x =-时,求y 的值.17.(2020春·湖北黄冈·八年级统考期末)如图,直线 8y kx =+ 分别与 x 轴,y 轴相交于 A ,B 两点,O 为坐标原点,A 点的坐标为()4,0.(1)求 k 的值;(2)过线段 AB 上一点 P (不与端点重合)作 x 轴,y 轴的垂线,垂足分别为 M ,N .当长方形 PMON 的周长是 10 时,求点 P 的坐标.【答案】(1)2k =-;(2)()32,.【分析】(1)将点A 的坐标代入直线解析式即可;(2)设点P 的坐标为()28P t t -+,,由长方形的性质计算其周长即可解题.【详解】(1) Q 直线 8y kx =+ 经过 ()40A ,, 048k \=+,2k \=-.(2) Q 点 P 在直线 28y x =-+ 上,设 ()28P t t -+,,PN t \=,28PM t =-+,Q 四边形 PNOM 是长方形,\ 长方形 PNOM 的周长 ()28210C t t =-+´=,解得 3t =,\ 点 P 的坐标为 ()32,.【点睛】本题考查一次函数解析式求法、待定系数法、含参数点坐标、长方形的周长公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.四、(本大题共3小题,每小题8分,共24分)18.(2020春·甘肃庆阳·八年级统考期末)已知函数(21)13y m x m =-+-,m 为何值时:(1)这个函数的图像过原点(2)这个函数为一次函数(3)函数值y 随x 的增大而增大19.(2022秋·八年级课时练习)直线AB 与x 轴交于点A(2,0),与y 轴交于点B(0,-4).(1)求直线AB 的解析式.(2)若直线CD 与AB 平行,且直线CD 与y 轴的交点与B 点相距2个单位,则直线CD 的解析式为________.【答案】(1)y=2x-4;(2)y=2x-2或y=2x-6【详解】试题分析:(1)运用待定系数法求解即可;(2)由于两条直线平行知k 和值相同,再根据直线CD 与y 轴的交点与B 点相距2个单位可得b 的值.试题解析:(1)设y=kx+b(k≠0)由题意得b=-4,2k+b=0解得k=2,b=-4.∴y=2x-4.(2)y=2x-2或y=2x-6.20.(2021春·山东济宁·八年级统考期末)A城有肥料200t,B城有肥料300t.现要把这些肥料全部运往C、D两乡,C乡需要肥料240t,D乡需要肥料260t,其运往C、D两乡的运费如下表:C(元/t)D(元/t)A2030B1015设从A城运往C乡的肥料为xt,从A城运往两乡的总运费为y1元,从B城运往两乡的总运费为y2元.(1)分别写出y1、y2与x之间的函数关系式(不要求写自变量的取值范围);(2)试比较A、B两城总运费的大小;(3)若B城的总运费不得超过3800元,怎样调运使两城总费用的和最少?并求出最小值.【答案】(1)y1=−10x+6000,y2=5x+3300(2)x=180时,y1=y2;x>180时,y1<y2;x<180时,y1>y2;(3)当从A城调往C乡肥料100t,调往D乡肥料100t,从B城调往C乡肥料140t,调往D乡肥料160t,两城总费用的和最少,最小值为8800元.【分析】(1)根据题意即可得出y1、y2与x之间的函数关系式;(2)根据(1)的结论列方程或列不等式解答即可;(3)设两城总费用为y,根据(1)的结论得出y与x之间的函数关系式,根据题意得出x的取值范围,再根据一次函数的性质解答即可.【详解】(1)根据题意得:y1=20x+30(200−x)=−10x+6000,y2=10(240−x)+15(300−240+x)=5x+3300.(2)若y1=y2,则−10x+6000=5x+3300,解得x=180,A、B两城总费用一样;若y1<y2,则−10x+6000<5x+3300,解得x>180,A城总费用比B城总费用小;若y1>y2,则−10x+6000>5x+3300,解得0<x<180,B 城总费用比A 城总费用小.(3)依题意得:5x +3300≤3800,解得x ≤100,设两城总费用为W ,则W =y 1+y 2=−5x +9300,∵−5<0,∴W 随x 的增大而减小,∴当x =100时,W 有最小值8800.200−100=100(t ),240−100=140(t ),100+60=160(t ),答:当从A 城调往C 乡肥料100t ,调往D 乡肥料100t ,从B 城调往C 乡肥料140t ,调往D 乡肥料160t ,两城总费用的和最少,最小值为8800元.【点睛】本题考查了一次函数的应用.根据题意列出一次函数解析式是关键.注意到(2)需分类讨论.五、(本大题共2小题,每小题9分,共18分)21.(2021春·河北邯郸·八年级统考期末)某商场计划采购A ,B 两种不同型号的电视机共50台,已知A 型电视机进价1500元,售价2000元;B 型电视机进价为2400元,售价3000元.(1)设该商场购进A 型电视机x 台,请写出全部售出后该商店获利y 与x 之间函数表达式.(2)若该商场采购两种电视机的总费用不超过108300元,全部售出所获利润不低于28500元,请设计出所有采购方案,并求出使商场获得最大利润的采购方案及最大利润.【答案】(1)10030000y x =-+;(2)共有三种采购方案:①甲型13台,乙型37台,②甲型14台,乙型36台,③甲型15台,乙型35台,采购甲型电脑13台,乙型电脑37台时商店获得最大利润,最大利润是28700元【分析】(1)由题意,获得总利润等于A 、B 两种型号利润之和即可列出函数解析式;(2)由采购两种电视机的总费用不超过108300元,全部售出所获利润不低于28500元列出不等式组,求出x 的取值范围,再根据函数的性质求解即可.【详解】解:(1)(1)由题意得:y =(2000-1500)x +(3000-2400)×(50-x )=-100x +30000,∴全部售出后该商店获利y 与x 之间函数表达式为:10030000y x =-+;(2)由题意得:()1500240050108300x x +-£且1003000028500x -+³解得1315x ££,∵x 为正整数,∴13x =、14、15,共有三种采购方案:①甲型13台,乙型37台,②甲型14台,乙型36台,③甲型15台,乙型35台,∵1000-<,∴y 随x 的增大而减小,∴当x 取最小值时,y 有最大值,即13x =时,y 最大值100133000028700=-´+=,∴采购甲型电脑13台,乙型电脑37台时商店获得最大利润,最大利润是28700元.【点睛】本题考查一次函数和一元一次不等式组的应用,由题意正确列出函数关系式和不等式组是解题关键.22.(2018春·四川南充·八年级统考期末)黄岩岛是我国南沙群岛的一个小岛.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一艘外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.如图是渔政船及渔船与港口的距离s (海里)和渔船离开港口的时间t (时)之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离开港口的距离s 和渔船离开港口的时间t 之间的函数关系式;(2)已知两船相距不超过30海里时,可以用对讲机通话,在渔政船驶往黄岩岛的过程中,求两船可以用对讲机通话的时间长?所以10.4﹣9.6=0.8(小时)所以,两船可以用对讲机通话的时间长为0.8小时.【点睛】本题考查了一次函数的应用.关键是根据图象求出渔船的分段函数的解析式及渔政船行驶的函数关系式.六、(本大题共12分)23.(2020秋·浙江宁波·九年级统考期末)如图1,小明用一张边长为6cm 的正方形硬纸板设计一个无盖的长方体纸盒,从四个角各剪去一个边长为xcm 的正方形,再折成如图2所示的无盖纸盒,记它的容积为3ycm .(1)y 关于x 的函数表达式是__________,自变量x 的取值范围是___________.(2)为探究y 随x 的变化规律,小明类比二次函数进行了如下探究:①列表:请你补充表格中的数据:x 00.511.522.53y012.513.52.50②描点:把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;③连线:用光滑的曲线顺次连结各点.(3)利用函数图象解决:若该纸盒的容积超过312cm ,估计正方形边长x 的取值范围.(保留一位小数)【答案】(1)3242436y x x x =-+,03x <<;(2)①16,8;②见解析;③见解析;(3)0.5 1.6x <<(或0.4 1.7x <<)【分析】(1)先根据已知条件用含x 的式子表示出长方体底面边长,再乘以长方体的高即可;(2)①根据(1)得出的关系式求当x=1、2时对应的y 的值补充表格;②③根据描点法画出函数图像即可;(3)根据图像知y=12时,x 的值由两个,再估算x 的值,再根据图像由y >12,得出x 的取值范围即可.【详解】解:(1)由题意可得,无盖纸盒的底面是一个正方形,且边长为(6-2x )cm ,∴232(62)42436y x x x x x =-=-+,x 的取值范围为:0<6-2x <6,解得03x <<.故答案为:3242436y x x x =-+;03x <<;(2)①当x=1时,y=4-24+36=16;当x=2时,y=4×8-24×4+36×2=8;故答案为:16,8;②③如图所示:(3)由图像可知,当y=12时,0<x <1,或1<x <2,①当0<x <1时,当x=0.4时,y=10.816,当x=0.5时,y=12.5,∴当y=12时,x≈0.5(或0.4);②当1<x <2时,当x=1.6时,y=12.544,当x=1.7时,y=11.492,∴当y=12时,x≈1.6(或1.7),∴当y >12时,x 的取值范围是0.5 1.6x <<(或0.4 1.7x <<).【点睛】本题主要考查列函数关系式、函数图像的画法、根的估算以及函数的性质,解题的关键是掌握基本概念和性质.。
第四章 一次函数训练题(培 优)
《一次函数》测试题一、相信你一定能填对!1.下列函数中,自变量x的取值范围是x≥2的是( )A.y= B.y= C.y= D.y=·2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)3.下列函数中,y是x的正比例函数的是( )A.y=2x-1 B.y= C.y=2x2 D.y=-2x+14.一次函数y=-5x+3的图象经过的象限是()A一、二、三B.二、三、四C.一、二、四6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A.y=-x-2 B.y=-x-6C.y=-x+10 D.y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),那么这个一次函数的解析式为( ) A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=x-3二、你能填得又快又对吗?11.已知函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y轴的负半轴,且y的值随x的增大而减少,则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!21.根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).22.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?23.如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?24.已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?一次函数培优训练题一.选择题1.如果在一次函数中,当自变量的取值范围是-1<<3时,函数y的取值范围是-2<<6,那么此函数解析式为( )A. B. C.或 D.或2.无论为何实数,直线与直线的交点不可能在( )A.第三象限 B.第四象限 C.第一象限 D.第二象限3.已知一次函数,若随着的增大而减小,则该函数的图象经过( )23第5题图yxOA.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限4.已知一次函数的图象经过原点,则( )A、k=±2B、k=2C、k= -2D、无法确定5.一次函数的图象如图所示,当时,的取值范围是( )A.B.C.D.6.已知一次函数的图象如图1所示,那么的取值范围是( )图1A. B. C. D.7.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A.,B.,C.,D.,8.(2007陕西)如图2,一次函数图象经过点,且与正比例函数的OxyAB2图象交于点,则该一次函数的表达式为( )A. B.C. D.9.已知一次函数的图象如下图(6)所示,当时,的取值范围是( )A. B. C. D.10.一次函数与的图象如图,则下列结论①;②;③当时,中,正确的个数是( )A.0 B.1 C.2 D.311.在平面直角坐标系中,已知直线y=-x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴正半轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )A.(0,)B.(0,)C.(0,3)D.(0,4)12.如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,∠a=75°,则b的值为( )A.3 B. C.4 D.图(6)2-4xyxyO3第11题13. 与的图象交于轴上一点,则为( )A.2 B. C. D.二.填空题14.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a、b 的大小关系是a____b.15.已知直线y=(k–2)x+k不经过第三象限,则k的取值范围是 .16.直线向上平移3个单位,再向左平移2个单位后的解析式为________.17.从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数的系数,,则一次函数的图象不经过第四象限的概率是________.18. 若一次函数的图象经过点(2,-1),且与直线y=2x+1平行,则其表达式为 .三.解答题19.已知函数y=(2m–2)x+m+1① m为何值时,图象过原点.②已知y随x增大而增大,求m的取值范围.③ 函数图象与y轴交点在x轴上方,求m取值范围.④ 图象过二、一、四象限,求m的取值范围.20.已知点Q与P(2,3)关于x轴对称,一个一次函数的图象经过点Q,且与y轴的交点M与原点距离为5,求这个一次函数的解析式.21.如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.(1)求直线的解析表达式;(2)求的面积;(3)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.l1l2xyDO3BCA(4,0)22.某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg(每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元.设每天安排x名工人进行蔬菜精加工.(1)求每天蔬菜精加工后再出售所得利润y(元)与x(人)的函数关系式;(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w元,求w与x的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?23.如图1,在长方形ABCD中,点P从B点出发沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后又恢复为每秒m个单位匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图2所示.(1) 求长方形ABCD的长和宽; (2)求m、a、b的值.24.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.一元一次不等式及不等式组的知识总结一.不等式及其基本性质1.定义凡用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.2.性质性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质2 不等式两边都乘以(或除以)同一个正数,不等号的方向不变.性质3 不等式两边都乘以(或除以)同一个负数,不等号的方向改变.二.不等式的解集1.不等式的解集一般地说,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称为这个不等式的解集.2.解不等式求不等式的解集的过程,叫做解不等式.不等式的解集可在数轴上直观地表示出来,如5x≥15的解集为x≥3,即在数轴上(图1-1)用表示3的点及其右边部分来表示,这里的黑点表示包括3这一点.如果不等式的解集为-1≤x <4(图1-2),则用数轴上表示-1的点和点4的左边之间的部分来表示,这里的黑点表示包括-1这一点在内,而右边的圆圈表示不包括4这一点在内.三.一元一次不等式和它的解法1.一元一次不等式左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式.叫做一元一次不等式.2.一元一次不等式标准形式ax+b<0或ax+b≤0,ax+b>0或ax+b≥0(a≠0).3.同解不等式如果两个不等式的解集相同,那么这两个不等式叫做同解不等式.4.不等式的同解原理原理l 不等式的两边都加上(或减去)同一个数或同一个整式,所得的不等式与原不等式是同解不等式;原理2 不等式的两边都乘以(或除以)同一个正数,所得的不等式与原不等式是同解不等式;原理3 不等式的两边都乘以(或除以)同一个负数,并且把不等号改变方向后,所得的不等式与原不等式是同解不等式.5. 一元一次不等式的解法一元一次不等式的解法步骤和解的情况与一元一次方程对比如表1-1所示.表1-1解一元一次方程解一元一次不等式解法步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化成1。
一次函数培优(完美版)
一次函数培优(完美版)1、已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,),则不等式ax大于b的解集为()解:根据题意,该函数经过x轴交点为(-2,0),即-2a+b=0,解得b=2a。
由于图像经过一,二,三象限,即函数值同时为正、负、正,因此a的符号为正。
代入不等式ax>b 中,得到ax>2a,即x>2.因此,答案为A。
2、若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是________解:不等式左侧为两个绝对值的和,可以通过分段讨论的方法求解。
当x<1时,2|x-1|=-2x+2,3|x-3|=-3x+9,因此不等式化为-5x+11≤a。
当1≤x<3时,2|x-1|=2x-2,3|x-3|=-3x+9,因此不等式化为-x+7≤a。
当x≥3时,2|x-1|=2x-2,3|x-3|=3x-9,因此不等式化为5x-15≤a。
为了使不等式有解,必须满足-5x+11≤a和5x-15≤a都成立,即a≥11/2且a≥15/2,取最大值a=15/2,因此答案为15/2.3、已知实数a,b,c满足a+b+c≠0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?解:将a/b+c=b/c+a=c/a+b=k代入,得到a=k(b+c),b=k(c+a),c=k(a+b)。
将b+c=a/k代入第一个式子,得到a=k(a/k),即a=c+b。
因此,a,b,c三个数相等,且都不为0.将a=b=c代入直线方程y=kx-3中,得到y=kx-3a。
因为a不为0,所以直线不经过原点,因此必定经过第二、第三、第四象限。
答案为第二、第三、第四象限。
4、已知一次函数y=ax+b的图象过(,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为________ 解:由于图象过(,2)点,因此b=2.又因为图形是等腰直角三角形,所以另外两个交点的横坐标相等,即函数值为0时的横坐标相等。
一次函数培优试题
1.已知m是整数,且一次函数y=(m + 4)x+m + 2的图像不经过第二象限,则m=__ .2.—次函数y=(a—2)x+4a—3的图像与y轴的交点在x轴的下方,则a的取值范围是.3.已知直线y=kx+b与直线y=-3x+7关于x轴对称,则直线解析式为4.已知直线y=kx+b与直线y=-3x+7关于Y轴对称,则直线解析式为5.一次函数y=mx+n(m W0),当-2W x W5时,对应的y值为0W y W7,则一次函数的解析式为6.在平面直角坐标系中,线段AB的端点坐标为A (-2,4), B(4,2),直线y=kx-2与线段AB有交点,则k的取值范围是_______________ .7.如图所示,在同一直角坐标系中,一次函数y=kj、y=k2x、y=k3x、y=k4x的图象分别为(l2、l3、l4,则k1k2 k3, k4的大小关系是.8.已知一次函数y=kx+b与直线y=3x-2平行,与直线y=2x+3相交于y轴上一点,则k、b的值分别为9.直线l1向右平移3个单位,再向下平移2个单位,得到直线l2解析式为y=2x-1,则直线l1的解析式为10.把直线y=-3x向上平移后得到直线AB,直线AB经过点(m, n),且3m + n=8,则直线AB的解析式是11.在平面直角坐标系中,已知直线y=-3x+3与x,y轴分别交于A. B两点,点[0加)是y轴上一点,把坐标平面沿AC 4折叠,使点B刚好落在x轴上,则点C的坐标为―.12.已知关于x的一次函数y=mx+2m-7在-14^5上的函数值总是正数,则m的取值范围是.13.已知关于x的一次函数y=nx+2n-1,无论n为何值时图象恒过一定点,则此定点坐标为.14.已知一次函数y=3x+m的图像与x轴的焦点到y轴的距离为4,求其函数解析式为.15.在平面直角坐标系中。
过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点。
八年级数学《一次函数》培优训练题(一)
八年级数学《一次函数》培优训练题1. 无论k 为何值,一次函数(2k-1)x-(k-3)y-(k-11)=0的图像必经过定点( ); A .(0,0) B.(0,11) C.(2,3) D.无法确定2. 在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点,设k 为整数,当直线y=x-2与y= kx +k 的交点为整点时,k 的值可取( ); A . 4个 B. 5个 C. 6个 D. 7个3. 如图,设b>a ,将一次函数a bx y +=与b ax y +=的图像画在同一平面直角系内,则有一组a ,b 的取值,是下列4个图中的一个为正确的是( )A. B. C.D.4.当-1≤x ≤2时,函数6+=ax y 满足10<y ,则常数a 的取值范围是( )A 、04<<-aB 、20<<aC 、24<<-a 且0≠aD 、24<<-a 5. 一个一次函数的图象与直线59544y x =+平行,与x 轴、y 稠的交点分别为A,B 并且过点(-1,-25).则在线段AB 上(包含端点A,B),横、纵坐标都是整数的点有( )A.4个B.5个C.6个D.7个6. 在平面直角坐标系中,已知A (2,•-2),点P 是y 轴上一点,则使AOP 为等腰三角形的点P 有( ) (A )1个 (B )2个 (C )3个 (D )4个7.函数xx y --=2212的自变量x 的取值范围是_________________;8.一点A 为直线y=-2x+2上一点,点A 到两坐标轴距离相等,则点A 的坐标为_________; 9.一次函数y=kx+2图像与x 轴交点到原点的距离为4,那么k 的值为____;10.直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的不等式1x +≥mx n +的解集为 .11.如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线b x y +=31恰好将矩形OABC 分成面积相等的两部分,那么b = 12.一次函数111+++-=k x k k y (k 为正整数)的图像与x 轴、y 轴的交点是O B A ,,为原点.设Rt △ABO 的面积是k S ,则2009321S S S S ++++ = .13.已知A (-2,3),B (3,1),P 点在x 轴上,且│PA │+│PB │最小,求点P 的坐标。
一次函数培优及答案
Oy (微克/毫升) x (时)314 8 4 一次函数培优题一、填空题2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。
5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。
7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。
其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 83≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-2 第6题 第7题7、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( )A.23y x =--B.26y x =--C.23y x =-+D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23- O 1xy-2 y =k 2x +cy =k 1x +bxyO B A 2y x =-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?A .B .C .D .2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。
一次函数培优练习题(含答案)
稳固练习一、选择题:1.y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为〔〕〔A〕y=8x 〔B〕y=2x+6 〔C〕y=8x+6 〔D〕y=5x+32.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过〔〕〔A〕一象限〔B〕二象限〔C〕三象限〔D〕四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是〔〕〔A〕4 〔B〕6 〔C〕8 〔D〕164.假设甲、乙两弹簧的长度y〔cm〕与所挂物体质量x〔kg〕之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,那么y1与y2的大小关系为〔〕〔A〕y1>y2〔B〕y1=y2〔C〕y1<y2〔D〕不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•那么有一组a,b的取值,使得以下4个图中的一个为正确的选项是〔〕6.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过第〔〕象限.〔A〕一〔B〕二〔C〕三〔D〕四7.一次函数y=kx+2经过点〔1,1〕,那么这个一次函数〔〕〔A〕y随x的增大而增大〔B〕y随x的增大而减小〔C〕图像经过原点〔D〕图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在〔〕〔A〕第一象限〔B〕第二象限〔C〕第三象限〔D〕第四象限9.要得到y=-32x-4的图像,可把直线y=-32x〔〕.〔A〕向左平移4个单位〔B〕向右平移4个单位〔C〕向上平移4个单位〔D〕向下平移4个单位10.假设函数y=〔m-5〕x+〔4m+1〕x2〔m为常数〕中的y与x成正比例,那么m的值为〔〕〔A〕m>-14〔B〕m>5 〔C〕m=-14〔D〕m=511.假设直线y=3x-1与y=x-k的交点在第四象限,那么k的取值范围是〔〕.〔A〕k<13〔B〕13<k<1 〔C〕k>1 〔D〕k>1或k<1312.过点P〔-1,3〕直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作〔〕〔A〕4条〔B〕3条〔C〕2条〔D〕1条13.abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过〔〕〔A〕第一、二象限〔B〕第二、三象限〔C〕第三、四象限〔D〕第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,那么常数a的取值范围是〔〕〔A〕-4<a<0 〔B〕0<a<2〔C〕-4<a<2且a≠0 〔D〕-4<a<215.在直角坐标系中,A〔1,1〕,在x轴上确定点P,使△AOP为等腰三角形,那么符合条件的点P共有〔〕〔A〕1个〔B〕2个〔C〕3个〔D〕4个16.一次函数y=ax+b〔a为整数〕的图象过点〔98,19〕,交x轴于〔p,0〕,交y轴于〔•0,q〕,假设p为质数,q为正整数,那么满足条件的一次函数的个数为〔〕〔A〕0 〔B〕1 〔C〕2 〔D〕无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k 的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个18.〔2005年全国初中数学联赛初赛试题〕在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个19.甲、乙二人在如下图的斜坡AB上作往返跑训练.:甲上山的速度是a米/分,下山的速度是b米/分,〔a<b〕;乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t〔分〕,离开点A的路程为S〔米〕,•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t〔分〕与离开点A的路程S〔米〕•之间的函数关系的是〔〕20.假设k、b是一元二次方程x2+px-│q│=0的两个实根〔kb≠0〕,在一次函数y=kx+b 中,y随x的增大而减小,那么一次函数的图像一定经过〔〕〔A〕第1、2、4象限〔B〕第1、2、3象限〔C〕第2、3、4象限〔D〕第1、3、4象限二、填空题1.一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.一次函数y=〔m-2〕x+m-3的图像经过第一,第三,第四象限,那么m的取值范围是________.3.某一次函数的图像经过点〔-1,2〕,且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.直线y=-2x+m不经过第三象限,那么m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•那么点P•的坐标为__________.6.过点P〔8,2〕且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年〔b≠a〕,他的退休金比原来的多q元,那么他每年的退休金是〔以a、b、p、•q•〕表示______元.9.假设一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•那么一次函数的解析式为________.10.〔湖州市南浔区2005年初三数学竞赛试〕设直线kx+〔k+1〕y-1=0〔为正整数〕与两坐标所围成的图形的面积为S k 〔k=1,2,3,……,2021〕,那么S 1+S 2+…+S 2021=_______. 11.据有关资料统计,两个城市之间每天的 通话次数T•与这两个城市的人口数m 、n 〔单位:万人〕以及两个城市间的距离d 〔单位:km 〕有T=2kmnd 的关系〔k 为常数〕.•现测得A 、B 、C 三个城市的人口及它们之间的距离如下图,且A 、B 两个城市间每天的 通话次数为t ,那么B 、C 两个城市间每天的 次数为_______次〔用t 表示〕.三、解答题1.一次函数y=ax+b 的图象经过点A 〔2,0〕与B 〔0,4〕.〔1〕求一次函数的解析式,并在直角坐标系内画出这个函数的图象;〔2〕如果〔1〕中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.〔1〕写出y与x之间的函数关系式;〔2〕如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:〔1〕小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;〔不要求写出x的取值范围〕;〔2〕小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,以下图表示他离家的距离y〔千米〕与所用的时间x 〔小时〕之间关系的函数图象.〔1〕根据图象答复:小明到达离家最远的地方需几小时?此时离家多远?〔2〕求小明出发两个半小时离家多远?〔3〕•求小明出发多长时间距家12千米?5.一次函数的图象,交x轴于A〔-6,0〕,交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A〔0,1〕出发,经过x轴上点C反射后经过点B〔3,3〕,求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=232的图象与x轴,y轴,分别交于A、B两点,•点C坐标为〔1,0〕,点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C〔4,0〕作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P〔•0,-1〕,Q〔0,k〕,其中0<k<4,再以Q点为圆心,PQ长为半径作圆,那么当k取何值时,⊙Q•与直线AB相切?11.〔2005年宁波市蛟川杯初二数学竞赛〕某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:〔1〕设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y〔元〕,请用x表示y,并注明x的范围.〔2〕假设使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.写文章、出幅员书所获得稿费的纳税计算方法是f〔x〕=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f〔x〕表示稿费为x元应缴纳的税额.假设张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购置甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购置甲商品的个数比预定减少10个,总金额多用29元.•又假设甲商品每个只涨价1元,并且购置甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.〔1〕求x、y的关系式;〔2〕假设预计购置甲商品的个数的2倍与预计购置乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付根本费8元和定额损消耗c元(c≤5);假设用水量超过am3时,除了付同上的根本费和损消耗外,超过局部每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E市10.:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.〔1〕设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W〔元〕关于x〔台〕的函数关系式,并求W的最大值和最小值.〔2〕设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W〔元〕,并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为〔1,a+b〕,•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;应选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过〔1,1〕,∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=〔m-5〕x+〔4m+1〕x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①假设a+b+c≠0,那么p=()()()a b b c c aa b c+++++++=2;②假设a+b+c=0,那么p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限. 14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.〔13,3〕或〔53,-3〕.提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为〔13,3〕或〔53,-3〕.提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P 〔8,2〕代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为〔98,34〕,在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的 通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.〔1〕由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4〔•函数图象略〕.〔2〕∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.〔1〕∵z与x成正比例,∴设z=kx〔k≠0〕为常数,那么y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;〔2〕∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.〔1〕设一次函数为y=kx+b,将表中的数据任取两取,不防取〔37.0,70.0〕和〔42.0,78.0〕代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.〔1〕由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.〔2〕设直线CD的解析式为y=k1x+b1,由C〔2,15〕、D〔3,30〕,代入得:y=15x-15,〔2≤x≤3〕.当x=2.5时,y=22.5〔千米〕答:出发两个半小时,小明离家.〔3〕设过E、F两点的直线解析式为y=k2x+b2,由E〔4,30〕,F〔6,0〕,代入得y=-15x+90,〔4≤x≤6〕过A、B两点的直线解析式为y=k3x,∵B〔1,15〕,∴y=15x.〔0≤x≤1〕,•分别令y=12,得x=265〔小时〕,x=45〔小时〕.答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B〔-2,y B〕,其中y B<0,∵S△AOB=6,∴12AO·│y B│=6,∴y B=-2,把点B〔-2,-2〕代入正比例函数y=kx,•得k=1.把点A〔-6,0〕、B〔-2,-2〕代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴=.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.2.8.∵点A、B分别是直线y=3x轴和y轴交点,∴A〔-3,0〕,B〔0,∵点C坐标〔1,0〕由勾股定理得,设点D的坐标为〔x,0〕.〔1〕当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD==①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为〔52,0〕.设图象过B、D两点的一次函数解析式为y=kx+b,2225 522b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-225x+2.〔2〕假设点D在点C左侧那么x<1,可证△ABC∽△ADB,∴AD BDAB CB=22113x+=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D 点坐标为〔-14,0〕,∴图象过B、D〔-14,0〕两点的一次函数解析式为22,综上所述,满足题意的一次函数为222或22.9.直线y=12x-3与x轴交于点A〔6,0〕,与y轴交于点B〔0,-3〕,∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即OD OA OC OB=,∴OD=463OC OAOB⨯==8.∴点D的坐标为〔0,8〕,设过CD的直线解析式为y=kx+8,将C〔4,0〕代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为〔225,-45〕. 10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为〔-3,0〕,〔0,4〕•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′〔如图〕, 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt△BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78. ∴当k=78时,⊙Q 与直线AB 相切.11.〔1〕y=200x+74000,10≤x ≤30〔2〕三种方案,依次为x=28,29,30的情况. 12.设稿费为x 元,∵x>7104>400,∴x-f 〔x 〕=x-x 〔1-20%〕20%〔1-30%〕=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000〔元〕.答:这笔稿费是8000元. 13.〔1〕设预计购置甲、乙商品的单价分别为a 元和b 元,那么原方案是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:〔a+1.5〕〔x-10〕+〔b+1〕y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:〔a+1〕〔x-5〕+〔b+1〕y=1563.5, ③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.〔2〕依题意有:205<2x+y<210及x+2y=186,得54<y<5523.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.那么y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2〔9-a〕+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,那么一月份的付款方式应选①式,那么8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.〔1〕由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400〔18-2x〕+800〔10-x〕+700〔10-x〕+500〔2x-10〕=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200〔5≤x≤9,x是整数〕.由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.〔2〕由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800〔10-x〕+300y+700〔10-y〕+•400〔19-x-y〕+500〔x+y-10〕=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩〔x,y为整数〕.W=-200x-300〔x+y〕+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300〔x+y〕+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.本文档局部内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
八年级数学(一次函数)培优测试题
八年级数学(一次函数)培优辅导题1.以下关于x 的函数中,是一次函数的是( )A.222-=x yB.11+=x yC.2x y =D.221+-=x y 2.一次函数y=kx+6.y 随x 的增大而减小,那么此一次函数的图象只是 ( )A.第一象限B.第二象限C.第三象限D.第四象限3.以下函数,y 随x 增大而减小的是( )A .y=xB .y=x –1C .y=x+1D .y=–x+14.以下各点在直线13-=x y 上的是( )A.)0,1(-B. )0,1(C. )1,0(-D. )1,0(5. 以下各点在函数y =3x +1的图象上的是( ).A .(3,5)B .(-2,3)C .(2,7)D .(4,10)6.假设点A(2 , 4)在直线y=kx –2上,那么k=( )A .2B .3C .4D .07.在直角坐标系中,既是正比例函数kx y =,又是y 的值随x 值的增大而减小的图像是( )A B C D8.y =kx +b 图象如图那么( )A .k>0 , b>0B .k>0 , b<0C .k<0 , b<0D .k<0 , b>0 9.y=kx +k 的大致图象是( )A B C D10.已知直线y=(k –2)x+k 不通过第三象限,那么k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<211.以下函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 12.若是y=x -2a +1是正比例函数,那么a 的值是( )(A)21 (B)0 (C)-21 (D)-2 13.函数y=kx+2,通过点(1 , 3),那么y=0时,x=( )A .–2B .2C .0D .±24.已知长方形的周长为14.一个长方形的周长是25,设它的长为x ,宽为y ,那么y 与x 的函数关系为( )A.x y -=25B. x y +=25C. x y -=225D. x y +=225 15点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,那么1y 和2y 的大小关系是( )A. 1y 2yB. 1y 2yC. 1y =2yD.不能确信16.函数y=2x+1的图象通过( )A .(2 , 0)B .(0 , 1) C. (1 , 0) D .(12, 0) 17.如图,直线b kx y +=通过A(0,2)和B(3,0)两点,那么那个一次函数关系式是( )A.32+=x yB.232+-=x y C.23+=x y D.1-=x y18.已知油箱中有油25 L ,每小时耗油5 L ,那么剩油量P (L)与耗油时刻t (h)之间的函数关系式为( ).A .P =25+5tB .P =25-5tC .P =255t D .P =5t -25 19.函数y=3x -自变量x 取值范围是( ) A .x ≥3 B .x>3 C .x ≤3 D .x<320.直线63+=x y 与两坐标轴围成的三角形的面积是( )A.4B.5C.6D.721.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.那么1b 和2b 的关系是( )A. 1b 2bB. 1b 2bC. 1b =2bD.不能确信22.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时刻t(小时)的函数关系用图像表示为( )23.第二象限和第四象限角平分线所在的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -=24.函数值y 随x 的增大而减小的是( )(A)y=1+x (B)y=21x -1 (C)y=-x +1 (D)y=-2+3x 1..关于函数63-=x y ,当x =2-时,y =_______,当y =6时,x =_________.2.一次函数b kx y +=的图象与两坐标轴的交点坐标别离为)0,3(和)2,0(-,那么=k ____,=b ____.3..假设函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,那么b =_____________.4.已知正比例函数x k y )21(-=的函数值y 随x 增大而增大,那么k ____________________.5.某公司此刻年产值为150万元,打算尔后每一年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.6.直线2-=kx y 通过点),4(1y ,且平行于直线12+=x y ,那么1y =___________,k =______.7.函数y=x -2自变量x 的取值范围是_________. 8.直线y=3x+b 与y 轴交点(0 ,–2),那么这条直线不通过第____象限.9.直线y=x –1和y=x+3的位置关系是_________10.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,那么a 、b 的大小关系是a____b.11.已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,那么m 的取值范围是 .12.函数2+-=x y 中,y 的值随x 值的减小而 ,且函数图像与x 轴、y 轴的交点坐标别离是 , 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数培优训练题
1下面图象中,关于x 的一次函数y =-mx -(m -3)的图象不可能是( )
2一次函数b kx y +=与k bx y +=在同一坐标系中的图象大致是 ( )
)
4对于函数y =mx +1(m>0),当m
=
_______
时,图象与坐标轴围成的图形面积等于1.
5、如图3,直线y=x +2与
y 轴交于点B ,点A 为x 轴正半轴上一点,连接AB ,∠α=75°,求
AB 的长度
6. 已知点Q 与P(2,3)关于x 轴对称,一个一次函数的图象经过点Q ,且与y 轴的交点M 与原点距离为5,求这个一次函数的解析式.
图3
7已知直线y =-x +2与x 轴、y 轴分别交于点A 和点B ,另一直线y =kx +b(k ≠0)经过点C(1,0),且把△AOB 的面积分成面积相等的两部分, 求k 和b
8.已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B •在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,•求正比例函数和一次函数的解析式.
9.如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .
(1)求点D 的坐标;(2)求直线2l 的解析表达式;
(3)求A
D C △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC
△的面积相等,请直接
写出点P 的坐标.
10.如图,A 、B 两点坐标分别是(4,0),(0,3),M 是y 轴上一点,沿AM 折叠,AB
刚好落在x 轴上AB ′处,求点M 的坐标.
11平面直角坐标系中,点A 的坐标是(4,0),点P 在直线y =-x +m 上,且AP =OP =4.求m 的值.
12.
已知,直线1y x =+与x 轴,y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90º。
且点P (1,a )为坐标系中的一个动点。
(1)求三角形ABC 的面积S △ABC ;
(2)证明不论a 取任何实数,三角形BOP 的面积是一个常数; (3)要使得△ABC 和△ABP 的面积相等,求实数a 的值。
13、如图1,在直角坐标系中,直线AB 与x 、y 轴分别交于B 、A 两点,OA =4,点D 在直线AB 上,点C 的坐标为(-1,3).
(1)求直线AB的解析式;
(2)如图2,点D的坐标为(-1,0),作射线AD,点F为射线AO上一动点,点F自A点向O点方向以1单位/s的速度运动,设点F运动的时间为t,是否存在一个时刻,使得BF⊥AD于G点,若存在,求出t的值,若不存在,请说明理由;
(3)如图3,在(2)中,连接AG,GO,求∠AGO的度数.
14.无论k为何值,一次函数(2k-1)x-(k+3)y-(k-11)=0的图像必经过定点()
A.(0,0)B.(0,11)C.(2,3)D.无法确定。