电磁场与电磁波实验讲义 (1)
电磁场与电磁波实验讲义(1).
电磁场与电磁波实验讲义信息学院电子系目录一、概述二、系统成套性三、机械结构的安装与调整四、使用方法1.反射实验2.极化波的产生/检测3.圆极化波左旋/右旋五、附录一、概述DH926AD型数据采集仪是专为配合DH926B型微波分光仪使用的计算机采集测试仪器。
数据采集仪根据微波、电磁场检波原理,采用微电流放大系统,检波信号经过全波整流电路后输出直流信号送A/D。
A/D为通用型8通道12位,A/D接收检波后的直流信号,经过多通道选择电路送内置采样保持放大器,使信号在转换期间内保持不变。
由光电传感器提供的场地址定位计数脉冲,同样送A/D由软件控制计数,按照工业标准完成12位模/数转换。
二、系统成套性DH926U型微波分光仪自动测试系统主要包含DH926B型微波分光仪、DH926AD型数据采集仪及DH1121B型三厘米固态信号源三部分。
下面分述每部分仪器的成套性:其中,DH1121B型三厘米固态信号源的三厘米固态振荡器发出的信号具有单一的波长(出厂时信号调在λ=32.02mm上),这种微波信号就相当于光学实验中要求的单色光束。
DH926B型微波分光仪的喇叭天线的增益大约是20分贝,波瓣的理论半功率点宽度大约为:H面是20°,E面是16°。
当发射喇叭口面的宽边与水平面平行时,发射信号电矢量的偏损方向是垂直于水平面的;可变衰减器用来改变微波信号幅度的大小,衰减器的度盘指示越大,对微波信号的衰减也越大;晶体检波器可将微波信号变成直流信号或低频信号(当微波信号幅度用低频信号调制时)。
当以上这些元件连接时,各波导端应对齐。
如果连接不正确,则信号传输可能受破坏。
三、机械结构的安装与调整1.DH926B型微波分光仪分度转台的安装与调整:本仪器为了便于运输、包装,出厂包装时将分度转台做了必要的拆卸,用户在使用前需做如下安装与调整。
(l)基座(即喷漆的大圆盘)的安装:(参看图A)。
将Φ40.5的孔向上,将四个支脚按图安置在基座上。
《电磁场与电磁波》第一章 矢量分析
ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。
S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。
㊀
㊉
二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey
Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos
电磁场与电磁波实验指导书(参考)
电磁场与电磁波实验指导书目录实验一电磁波感应器的设计与制作实验二电磁波传播特性实验实验三电磁波的极化实验实验四天线方向图测量实验实验一电磁波感应器的设计与制作一、预习要求1、什么是法拉第电磁感应定律?2、什么是电偶极子?3、了解线天线基本结构及其特性。
二、实验目的1、认识时变电磁场,理解电磁感应的原理和作用。
2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。
3、理解电磁波辐射原理。
三、实验原理随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。
电场和磁场构成了统一的电磁场的两个不可分割的部分。
能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。
图1 电磁感应装置如果将另一付天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。
如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。
接收天线和白炽灯构成一个完整的电磁感应装置,如图1所示。
电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。
电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等,如图2所示。
图2 接收天线本实验重点介绍其中的一种─—半波天线。
半波天线又称半波振子,是对称天线的一种最简单的模式。
对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。
这种天线是最通用的天线型式之一,又称为偶极子天线。
而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。
半波振子因其一臂长度为/4λ,全长为半波长而得名。
其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(/L λ=4)的远区场强有以下关系式:()cos(cos )sin I I E f r rθπθθ==60602 式中,()f θ为方向性函数,对称振子归一化方向性函数为:()()maxcos(cos )sin f F f θθπθθ==2 其中max f 是()f θ的最大值。
电磁场与电磁波实验讲义
电磁场与电磁波实验讲义(试用)实验一、电磁波的反射特性研究一、实验目的1、研究电磁波在良导体表面的反射;2、熟悉微波分光仪DH962B的使用方法。
二、实验原理如上图所示,,我们用一块金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角(如上图所示,θr =θi)。
三、实验装置(1)四、实验内容和步骤1、熟悉微波分光仪的结构、仪器的连接和系统调整:在微波分光仪的底座上有两个支臂,其中一个为固定支臂,另一个支臂则可绕中心轴旋转(带固定螺钉),发射喇叭天线和信号源安装在固定支臂上,接收喇叭天线和微安表安装在旋转支臂上。
微波分光仪底座中央有一带角度刻度线的园形工作平台。
仪器连接时,两喇叭天线的口面应正对,它们各自的轴线应在同一条直线上,两个臂的位置指针应分别指向工作平台的900刻度处。
按信号源的操作规程打开电源,调节衰减器使微安表有一适当的读数(满量程的三分之二及以上,这样可以减小读数误差对测试结果的影响)。
将带支座的金属反射板放在园形工作平台上(注意:金属反射板的平面应与支座下面的小园盘上的某一对刻度线一致),在将带支座的金属反射板放在园形工(2)作平台上时,应注意两点:(1)使小园盘的刻度线(与金属板平面一致的一对刻度线)与工作平台上相应900刻度的一对刻度线一致,这时工作平台上的00刻度线就与金属反射板的法线方向一致;(2)利用工作平台上的固定螺钉将金属反射板的支座固定。
2、测量入射角和反射角:转动工作平台,使固定臂的指针指在某一角度处,该角度数就是入射角,然后转动旋转臂使微安表的读数达到最大,此时旋转臂上的指针所指的刻度就是反射角。
如果此时微安表的指示太大或太小,可调节信号源的衰减器,使微安表的指示有一适当值。
做此项实验时,入射角最好取300至650之间,因为入射角太大接收喇叭天线有可能直接接收到入射波。
电磁场与电磁波第一章矢量分析
(Cf ) C f
有关散度的公式:
(kF ) k F (k为常量)
( f F ) f F F f
(F G) F G
电磁场与电磁波
第1章 矢量分析
26
4. 散度定理(高斯公式)
矢量场对于空间任意 闭合曲面的通量,等于矢 量场的散度在该闭合曲面 所包围体积中的体积分。
4. 各坐标系单位矢量之间的关系
直角坐标与 圆柱坐标系
eeez
ex
cos sin
0
ey
sin cos
0
ez 0 0
1
直角坐标与 球坐标系
er
ex
sin cos
e cosθ cos
e sin
ey
ez
sin sin cos
cos sin sin
cos
0
15
zy e
eeyz
eer
度规系数 hr 1, h r, h r sin
电磁场与电磁波
第1章 矢量分析
14
面元矢量
dSr
er dl dl
er r 2sin dd
dS
e dlrdl
ez
rsin
drd
dS
e dlr dl
e rdrd
球坐标系中的线元、面元和体积元
体积元
dV r2sindrdd
电磁场与电磁波
第1章 矢量分析
如果表示“场”的物理量是标量,则称为标量场。
例如:温度场、电位场、高度场等。 如果表示“场”的物理量是矢量,则称为矢量场。
例如:流速场、重力场、电场、磁场等。 如果场与时间无关,称为静态场,反之为时变场。
从数学上看,“场”是定义在空间区域上的函数:
电磁波与电磁场第一章
矢量,标量与矢量相乘。
A (BC) 标量,标量三重积。
A (B C) 矢量,矢量三重积。
A (B C) B (C A) C ( A B)
注意:先后轮换次序。
A (B C) B( A C) C( A B)
电磁场与电磁波
第1章 矢量分析
+ 2q
q
电磁场与电磁波
第1章 矢量分析
2、矢量场的通量
通过矢量场中某一曲面的矢量线数称为通过该面的 通量。用表示。 n 从图可以看出,通过面元 dS的通量和通过投影面dS⊥的 通量是一样的。因此通过dS的 F ds 通量为 ds d =F dS⊥= F ds cos 上式可以写为
•结论: 两矢量点积等于对应分量的乘积之和。
电磁场与电磁波
第1章 矢量分析
b.矢量积(叉积):
A B ec | A || B | sin
ec
B
A 两矢量叉积,结果得一新矢量,其大小为这两个矢量 组成的平行四边形的面积,方向为该面的法线方向,且三 者符合右手螺旋法则。
推论1:不服从交换律:A B B A,
电磁场与电磁波
第1章 矢量分析
同理:在 y方向上,穿过 S 3 和
S 4 面的总通量:
Ay y xyz
S3
A dS3 A dS4
S4
在 z 方向上,穿过 S 5 和
S 6 面的总通量:
S6
S5
A dS5 A dS6
AZ xyz z
整个封闭曲面的总通量:
Ax Ay Az xyz S A dS y z x
1、矢量线 概念:矢量线是这样的曲线,其上每一 点的切线方向代表了该点矢量场 的方向。
电磁场与电磁波实验
电磁场与电磁波实验LT实验一 电磁波参量的测量一、实验目的1.在学习均匀平面电磁场特性的基础上,观察电磁波传播特性。
2.熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定相位常数和波速。
二、实验原理两束等幅,同频率的均匀平面电磁波,在自由空间以相同或相反方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。
本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ值,再由β=2πλ⁄,ν=λf =ωβ⁄得到电磁波的主要参数:β,ν等。
图1-1其中λ的测量方法如下:设入射波为:E i=E0i e−jϕ。
当入射波以入射角θ1向介质板斜投射时,则在分界面上产生反射波E r和折射波E t。
设介质板的反射系数为R,由空气进入介质板的折射系数为T0,由介质板进入空气的折射系数为T c,另外,可动板P r2固定板P r1都是金属板,其电场反射系数为-1。
在一次近似的条件下,接收喇叭P r3处的相干波分别为E r1=−RT0T c E0i e−jϕ1,E r2=−RT0T c E0i e−jϕ2。
在P r3处相干波合成为E r=E r1+E r2=−RT0T c E0i(e−jϕ1+e−jϕ2)式中Δϕ=ϕ1−ϕ2=2β∗ΔL为了准确测量,一般采用P r3零指示法,⁄)=0或Δϕ=(2n+1)π即cos(Δϕ2n=0,1,2…这里n表示相干波合成驻波场的波节点(E r=0)数。
同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。
故把n=0时E r=0的驻波节点为参考节点的位置L0,又因Δϕ=2∗(2πλ⁄)∗ΔL⁄)∗ΔL或4ΔL=故(2n+1)π=2∗(2πλ(2n+1)λ(n为半波长数,一般n=4可得λ=2(L n−L0)n已足够)图2-2 相干波E r1和E r2分布图三、实验内容1.了解电磁波综合测试仪的工作特点,使用方法,特别要熟悉和掌握利用相干波原理测试电磁波波长的方法。
电磁波与电磁场——第一章
• 令
为矢量G的三个坐标分量,即
• 矢量l的单位矢量 • 标量场 在 P 点沿 l 方向上的方向导数 定义为
• 矢量G称为标量场Φ的梯度
• • • •
标量场Φ的梯度是一个矢量场 由 可知,当 的方向与梯度方向 一致时,方向导数 取最大值。 标量场在某点梯度的大小等于该点的最大 方向导数,梯度的方向为该点具有最大方 向导数的方向。
1-2 矢量的代数运算
• • • • 矢量A=B:矢量A、B的大小及方向均相同时 矢量加法:平行四边形法则 矢量减法:三角形法则 在直角坐标系中两矢量的加法和减法:
• 矢量的加法运算,结合律和交换率 • 结合律:(A+B)+C=A+(B+C) • 交换律:A+B=B+A
1-3 矢量的标积和矢积
• 标积(点积或内积),以点号“•”表示
直角坐标系下散度表达式的推导
• 不失一般性,令包围P点的微体积V 为一 直平行六面体,如图所示。则
由此可知,穿出前、后两侧面
的净通量值为
• 同理,分析穿出另两组侧面的净通量,并 合成之,即得由点P 穿出该六面体的净通量 为
• 根据定义,则得到直角坐标系中的散 度 表式为
• 散度运算规则
例: 已知点电荷q所产生的电场强度
• 标量场的等值线(面)
• 等值面的特点: • 常数C 取一系列不同的值,就得到一系列 不同的等值面,形成等值面族; • 标量场的等值面充满场所在的整个空间; • 标量场的等值面互不相交。
• 方向导数:标量场在某点的方向导数表示标 量场自该点沿某一方向上的变化率
• 例如标量场 在 P 点沿 l 方向上的方向导 数 定义为
——拉普拉斯算符
电磁场与电磁波 课件
国际非电离辐射防护委员会( ICNIRP)制定了电磁辐射的安全标 准,限制了公众暴露在特定频率和强 度的电磁场中的最大容许暴露量。
各国标准
不同国家和地区根据自身情况制定了 相应的电磁辐射安全标准,以确保公 众的健康安全。
电磁波的防护措施
远离高强度电磁场
尽量减少在高压线、变电站、雷 达站等高强度电磁场区域的停留
射电望远镜是射电天文学的主要观测设备,可以接收来自宇宙的微弱射电信号。
射电天文学的发展对于人类认识宇宙、探索宇宙奥秘具有重要意义。
电磁波探测与成像
电磁波探测与成像技术利用电磁波的 特性,实现对物体内部结构的探测和 成像。
电磁波探测与成像技术对于医学诊断 、无损检测等领域具有重要意义。
医学上常用的超声波、核磁共振等技 术都是基于电磁波的探测与成像原理 。
这些物理量在电磁场与物质相互作用中起着重要作用,例如在光子与物 质的相互作用中,光子的能量和动量会与物质的能量和动量发生交换。
06
电磁场与电磁波的计算机模 拟
时域有限差分法(FDTD)
总结词
一种用于模拟电磁波传播的数值方法,通过在时域上逐步推进电磁场的变化来求解波动 方程。
详细描述
时域有限差分法(FDTD)是一种基于麦克斯韦方程组的数值计算方法,通过将电磁场 分量在空间和时间上交替离散化,将波动方程转化为差分方程,从而在计算机上实现电 磁波传播过程的模拟。这种方法在计算电磁波传播、散射、吸收等过程中具有广泛的应
磁场
磁Hale Waihona Puke 和电流周围存在的一种特殊 物质,对其中运动的磁体和电流 施加力。
电磁场与电磁波的产生
1 2
3
变化的电场产生磁场
根据麦克斯韦的电磁场理论,变化的电场在其周围产生磁场 。
北邮电磁场与电磁波演示实验讲解学习
北邮电磁场与电磁波演示实验频谱特性测量演示实验1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz2.ESPI 测试接收机的RF输入端口最大射频信号: +30dbm,最大直流:50v3.是否直观的观测到电磁波的存在?(回答是/否)否4.演示实验可以测到的空间信号有哪些,频段分别为:广播:531K~1602KHzGSM900:上行:890~915 MHz 下行:935~960 MHzGSM1800:上行:1710~1755 MHz 下行:1805~1850 MHzWCDMA:上行:1920~1980MHz 下行:2110~2170MHzCDMA2000:上行:1920~1980MHz 下行:2110~2170MHzTD-SCDMA:2010~2025MHz5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视?模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。
模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。
数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。
6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图:GSM900上行:GSM900下行:CDMA下行:3G下行:7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率)可以该频谱仪能检测的频谱范围为9KHz—3GHz所以,能够观察到:WIFI:2.4G电磁炉:20KHz—30KHz蓝牙:2.4G网络参量测量演示实验1矢量网络分析仪所测频段:300KHz—3GHz2端口最大射频信号: 10DBM3矢量网络分析仪为何要校准:首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。
《电磁场与电磁波》 讲义
《电磁场与电磁波》讲义在我们的日常生活中,电磁场与电磁波无处不在,从手机通信到广播电视,从微波炉加热食物到 X 射线的医疗应用,它们都在默默地发挥着重要作用。
那么,什么是电磁场与电磁波呢?这就是我们接下来要深入探讨的内容。
首先,让我们来了解一下电磁场。
电磁场是由带电物体产生的一种物理场。
电荷的存在会导致周围空间产生电场,而当电荷运动时,就会产生磁场。
电场和磁场相互关联、相互作用,形成了电磁场。
想象一下,一个静止的电荷会在其周围产生一个静电场,就像一颗石子投入平静的湖面,引起的涟漪向外扩散一样。
而当电荷开始移动,比如电流在导线中流动时,就会产生磁场,这个磁场就像是围绕着导线的一圈圈“磁力线”。
电磁波则是电磁场的一种运动形式。
当电场和磁场以一定的规律变化时,就会产生电磁波,并以光速向周围空间传播。
电磁波具有很宽的频谱,包括无线电波、微波、红外线、可见光、紫外线、X 射线和伽马射线等。
不同频率的电磁波具有不同的性质和应用。
例如,无线电波常用于通信,像我们熟悉的广播、电视和手机信号都是通过无线电波来传输的。
微波则在雷达、微波炉等设备中得到应用。
红外线具有热效应,常用于遥控器和热成像仪。
可见光让我们能够看到周围的世界。
紫外线可以用于杀菌消毒。
X 射线在医学成像和工业检测中发挥着重要作用。
伽马射线则具有很强的穿透力,常用于医疗放疗和放射性检测。
那么,电磁波是如何产生的呢?一种常见的方式是通过电荷的加速运动。
比如,在天线中,电流的快速变化会产生电磁波。
另外,原子和分子内部的电子跃迁也会产生电磁波。
例如,当一个原子中的电子从高能级跃迁到低能级时,就会释放出光子,也就是电磁波。
接下来,我们来看看电磁波的传播特性。
电磁波在真空中以光速传播,速度约为 3×10^8 米/秒。
在介质中传播时,电磁波的速度会变慢,并且会发生折射、反射和衍射等现象。
折射就像是光线从空气进入水中时发生的弯曲;反射则类似于光线照在镜子上被反弹回来;衍射则是指电磁波在遇到障碍物时,会绕过障碍物继续传播。
《电磁场与电磁波》 讲义
《电磁场与电磁波》讲义一、什么是电磁场与电磁波在我们的日常生活中,电和磁的现象无处不在。
从电动机的转动到手机的通信,从微波炉的加热到卫星的导航,都离不开电磁场与电磁波的作用。
电磁场,简单来说,就是由带电物体产生的一种物理场。
电荷的运动或者静止都会产生电场,而电流的流动则会产生磁场。
当电场和磁场相互作用、相互影响时,就形成了电磁场。
电磁波呢,则是电磁场的一种运动形态。
它是由同相且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面。
二、电磁场的基本原理要理解电磁场,首先得了解库仑定律和安培定律。
库仑定律描述了两个静止点电荷之间的电场力的大小和方向,它表明电场力与两个电荷的电荷量成正比,与它们之间的距离的平方成反比。
安培定律则阐述了电流元之间的磁场相互作用规律。
通过这两个定律,我们可以初步认识到电场和磁场的产生和作用方式。
麦克斯韦方程组是电磁场理论的核心。
这组方程由四个方程组成,分别描述了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培麦克斯韦定律。
电场的高斯定律表明,通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷量除以真空介电常数。
磁场的高斯定律指出,通过任何一个闭合曲面的磁通量恒为零,这意味着不存在磁单极子。
法拉第电磁感应定律说明,当穿过一个闭合回路的磁通量发生变化时,会在回路中产生感应电动势。
安培麦克斯韦定律则将安培定律进行了扩展,引入了位移电流的概念,使得在时变电磁场中,磁场的旋度不仅与传导电流有关,还与位移电流有关。
三、电磁波的特性电磁波具有很多独特的特性。
首先是波动性,它以正弦波的形式传播,具有波长、频率和波速等特征。
波长是指相邻两个波峰或波谷之间的距离,频率则是单位时间内电磁波振动的次数,而波速等于波长乘以频率。
电磁波在真空中的传播速度是恒定的,约为 3×10^8 米/秒。
不同频率的电磁波在介质中的传播速度会有所不同。
电磁波还具有偏振性。
电磁场与电磁波讲课讲稿
Zc=vi =1 22iv=1 2RL
1.4.3 用传输线变压器构成的 魔 T 混合网络
一、功率合成
如图 1-4-8 所示, Tr1 为魔 T 混合网络, Tr2 为对称 – 不对称变 换器。
输入信号接在 A 端和 B 端,根据节点 方程
i = ia - id,i = id - ib
求出
i = ia - id,
Rd 4
-Rc
RdRc
ia
=va
Rd 4
Rc
RdRc
-vb
Rd 4
-Rc
RdRc
ib
=vb
Rd 4
Rc
RdRc
-va
Rd 4
-Rc
RdRc
若取
Rc
=
1 4
Rd
ia 仅与 va 有关,ib 仅与 vb 有关。实现了 A 端和 B 端的隔 离,称为 A、B 间的隔离条件。
二、功率分配 1.同相功率分配
设上限频率 fH 对应的
波长为 min ,取
l =18 ~110min
可以认为: v1 = v2 = v,
i1 = i2 = i
图 1-4-3 传输线变压器
二、传输线变压器的工作原理
传输线变压 器原理图如图 1– 4–4(a)所示。
将传输线绕 于磁环上便构成 传输线变压器。 传输线可以是同 轴电缆、双绞线、 或带状线,磁环 一般是镍锌高磁 导率的铁氧体。
(a) 对称 – 不对称
(b) 不对称 – 对称
2.阻抗变换器
传输线变压器可以构成阻抗变换器,由于结构的限制,
通常只能实现特定的阻抗比的变换。
4 : 1 阻抗变换器如图 1–4–7(a)所示,图中阻抗关系为
电磁场与电磁波实验讲义(必做)
邵小桃 李一玫 张 波 郭 勇
北京交通大学国家电工电子教学基地
1
实验教学的基本要求
一、实验教学的目标
电磁场与电磁波实验是培养电子信息类工程技术人员实验技能的重要 环节,是理论联系实际的重要手段。通过电磁场与电磁波实验教学应该达到 以下目标:
培养学生严谨的科学态度和实事求是的科学作风。 训练学生基本的实验技能。 培养学生通过实验来观察和研究基本电磁现象及规律的能力,以加
4
实验一 静电场模拟
一、实验目标
1. 学习用恒定电场模拟静电场的实验方法。 2. 了解电路原理图与测量仪器的对应关系。 3. 研究和描绘五种给定模拟电极的电场分布。 4. 掌握找到各种形状电极等位点的分布规律的方法。 5. 提高实验数据的处理方法及能力,强化等位线和场矢量线的空间关系。
二、实验原理
深对理论知识的理解。 培养学生独立设计实验的初步能力。 培养学生相关仪器的使用能力。
二、实验课前的准备工作
实验效果与实验预习的好坏密切相关。预习时一定要认真阅读实验 教材中的有关内容和附录,对实验目标、要求、实验原理和可能采取的方法 等有所了解,对被测量以及可能出现的现象和结果有一个事先的分析和估 计,对要完成的每个实验做到心中有数。
图 3.1 四个导体部分电容电网络图
其中 C10、C20、C30 分别是 1、2、3 导体的自部分电容,C12、C23、C13 是导 体间的互部分电容(C12=C21,C23=C32,C13=C31)。 2.部分电容的测定
根据静电网络图,可以测得在某种状态下(将一些导体用导线相联)两
9
个导体之间的等效电容值,由该电容值与各部分电容的关系,可得出各部分 电容。
8
电磁场与电磁波课件
电磁波的散射与衍射
散射
当电磁波遇到尺寸远小于其波长 的障碍物时,会产生散射现象, 散射波向各个方向传播。
衍射
当电磁波遇到尺寸接近或大于其 波长的障碍物时,会产生衍射现 象,衍射波在障碍物后形成复杂 的干涉图样。
03
电磁波的辐射与接收
天线的基本概念与分类
天线的基本概念
天线是用于发射和接收电磁波的设备,在通信、雷达、无线电等系统中广泛应 用。
再经过信号处理得到目标的图像。
02
系统组成
红外成像系统主要由光学系统、红外探测器和信号处理系统组成。
03
电磁场与电磁波在红外成像中的应用
电磁场与电磁波在红外成像中用于接收目标的辐射信息,经过处理得到
目标的图像。
05
电磁场与电磁波实验
电容与电感测量实验
总结词
掌握电容和电感的基本测量方法
详细描述
通过实验学习如何使用电桥、交流电桥等基本测量工具,了解不同类型电容和电感的工作原理和测量方法,掌握 电容和电感的基本特性。
折射率与波长有关
不同媒质对不同波长的电磁波有不 同的折射率。
电磁波的反射与折射
反射定律
当电磁波遇到不同媒质的分界面时, 一部分能量返回原媒质,一部分能量 进入新媒质。反射波和入射波的振幅 和相位关系遵守反射定律。
折射定律
当电磁波从一种媒质进入另一种媒质 时,其传播方向发生改变,这种现象 称为折射。折射定律描述了折射角与 入射角、折射率之间的关系。
电磁场与电磁波课件
目录
• 电磁场的基本概念 • 电磁波的传播特性 • 电磁波的辐射与接收 • 电磁场与电磁波的应用 • 电磁场与电磁波实验 • 总结与展望
01
电磁场的基本概念
电磁场实验讲义-书
《电磁场》实验指导书电子信息工程实验室目录实验1 电磁波参量的研究 (1)实验2 电磁波极化的研究 (11)实验3 电磁波反射与折射的研究 (5)实验4 均匀无耗媒质参量的研究 (18)实验1 电磁波参量的研究1. 实验目的:(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如、和互相垂直。
(2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β和波速ν。
(3)了解电磁波的其他参量,如波阻抗η等。
2.实验仪器:(1) AT1123型3cm 固态源1台 (2) DH926B 型电磁 波综合测试仪1套 (3) XF-01选频放大器1台 (4) PX-16型频率计 3.实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内以相同(或相反)方向传播时,由于初始相位不同,它们相互干涉的结果,在传播路径上,形成驻波分布。
我们正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间电磁波波长λ的值,再由λπβ2=(1-1)βπλυ2f == (1-2)得到电磁波的主要参数:β、ν等我们用图1.1来说明自由空间内电磁波波长λ值的测试原理。
设入射波为:βγj 0i i e E E -=。
当入射波以入射角θ1向介质板斜投射时,在分界面上产生反射波E γ和折射波E i 。
设入射波为垂直极化波,用R ┴表示介质板的反射系数,用0T ⊥和ε⊥T 表示由空气进入介质板和由介质板进入空气的折射系数。
另外,可动板r2P 和固定板r1P 都是金属板,其电场反射系数为-1,在一次近似的条件下,接受喇叭r3P 处的相干波分别为:1j i 0r1e E T T R E φε-⊥⊥⊥-= ()1r3r11L L L ββφ=+= 2j i 0r2e E T T R E φε-⊥⊥⊥-= ()()r1r3r3r22L L L L L ++=+=∆ββφ其中,12L L L -=∆又因L 1是固定值,L 2则随可动板位移L ∆而变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波实验讲义信息学院电子系目录一、概述二、系统成套性三、机械结构的安装与调整四、使用方法1.反射实验2.极化波的产生/检测3.圆极化波左旋/右旋五、附录一、概述DH926AD型数据采集仪是专为配合DH926B型微波分光仪使用的计算机采集测试仪器。
数据采集仪根据微波、电磁场检波原理,采用微电流放大系统,检波信号经过全波整流电路后输出直流信号送A/D。
A/D为通用型8通道12位,A/D接收检波后的直流信号,经过多通道选择电路送内置采样保持放大器,使信号在转换期间内保持不变。
由光电传感器提供的场地址定位计数脉冲,同样送A/D由软件控制计数,按照工业标准完成12位模/数转换。
二、系统成套性DH926U型微波分光仪自动测试系统主要包含DH926B型微波分光仪、DH926AD型数据采集仪及DH1121B型三厘米固态信号源三部分。
下面分述每部分仪器的成套性:其中,DH1121B型三厘米固态信号源的三厘米固态振荡器发出的信号具有单一的波长(出厂时信号调在λ=32.02mm上),这种微波信号就相当于光学实验中要求的单色光束。
DH926B型微波分光仪的喇叭天线的增益大约是20分贝,波瓣的理论半功率点宽度大约为:H面是20°,E面是16°。
当发射喇叭口面的宽边与水平面平行时,发射信号电矢量的偏损方向是垂直于水平面的;可变衰减器用来改变微波信号幅度的大小,衰减器的度盘指示越大,对微波信号的衰减也越大;晶体检波器可将微波信号变成直流信号或低频信号(当微波信号幅度用低频信号调制时)。
当以上这些元件连接时,各波导端应对齐。
如果连接不正确,则信号传输可能受破坏。
三、机械结构的安装与调整1.DH926B型微波分光仪分度转台的安装与调整:本仪器为了便于运输、包装,出厂包装时将分度转台做了必要的拆卸,用户在使用前需做如下安装与调整。
(l)基座(即喷漆的大圆盘)的安装:(参看图A)。
将Φ40.5的孔向上,将四个支脚按图安置在基座上。
(2)固定臂的安装:在包装箱中将固定臂取出,将固定臂头部的4个M5螺钉通过基座(即喷漆的大圆盘)四个沉孔拧入固定臂,并将指针摆正。
(3)活动臂的安装:将喷漆的大圆盘上的两个M3螺钉(参看图B)松开后,将活动臂上的三个M4螺钉拧紧,再把两个M3螺钉拧紧,使活动臂能自由旋转。
拧紧塑料头螺钉即可使活动臂固紧,松开塑料头螺钉即可使活动臂自由旋转。
(4)铝制支柱的安装:包装箱内有四根不同长度的铝制支柱,将其中最长的一根旋入固定臂螺孔中;次长的一根旋入活动臂(即可水平摆动的臂)螺孔中;次短的一根在做迈克尔逊干涉实验时再旋入基座的螺孔中,实验完成后随时取下;最短的一根旋入读数机构滑行螺母的螺孔中。
(5)发射和接收喇叭天线的安装:将发射喇叭天线(即带有一段与波导法兰相同的短波导喇叭天线)通过上面的Φ10钢柱插入旋在固定臂上的铝制支柱的Φ10孔中。
可变衰减器直接安装在发射喇叭天线和DH1121B型三厘米固态信号源振荡器之间,并大致使喇叭天线口对正工作平台中心(即刻有0~180~0的圆盘),然后将铝制支柱上的拨棍螺钉拧紧。
接收喇叭天线用4个M4×8的螺钉将检波器固定在一个可旋绕天线轴线旋转的波导段上。
连接好后,通过波导段上的Φ10钢柱插入活动臂上铝制支柱的Φ10孔中,并大致使喇叭口对正工作平台中心,拧紧拨棍螺钉。
(6)整机机械调整:首先旋转工作平台使0刻线与固定臂上指针对正,再转动活动臂使活动臂上的指针对正在工作平台180刻线,然后将安装在基座上的滚花螺钉拧紧,使活动臂不易自动摆动(即锁紧)。
用一根细线绳,拉紧在发射、接收两个喇叭天线之间,先使喇叭天线上刻的短刻线(每个喇叭上和法兰上都有刻线)成一直线。
以细绳为准绳,通过水平转动两个天线的角度来实现。
然后,用一块反射板(本仪器所带的成套件)或一块大三角板垂直放在工作平台上,并使垂足通过工作平台中心。
此时,看细线是否正与反射板或三角板垂直平台平面的一边正好靠上(允许误差2mm)。
如不符合规定要求,可重新调整固定臂的安装角度和指针,也可稍微摆动活动臂,使细线正与垂边靠上,然后调整活动臂上的指针位置,使其指向180刻线。
(7)成套件的安装:1)模拟晶体的调整:出厂前初步做过调整,但由于运输振动铝制球会串动,用户在使用前需对其进行调整。
晶格常数设计为4mm,成套件中备有一叉形(梳形)模片,利用模片分别上下一层层拨动铝球,使球进入叉槽中,即可调好。
2)其它成套件的安装调整工作可在做各项实验时,用户根据后面所述的使用方法进行。
2.DH1121B型三厘米固态信号源的安装与调整:将固态信号源的振荡器用M4×14的螺钉固定在DH926B型微波分光仪喇叭天线的可变衰减器上。
3.DH926AD型数据采集仪的安装与调整:首先将DH926AD型数据采集仪配套的三个光栅分别安装在DH926B型微波分光仪的预留的相应位置上。
然后将视频电缆的两端分别接在DH926AD型数据采集仪的检波输入和DH926B型微波分光仪的接收喇叭天线连接的检波器插座上。
最后根据每个实验的不同内容,将通道电缆线的两端分别连接到光栅和数据采集仪的相应通道输入口上。
四、使用方法应用软件以七个典型的波动实验来说明本套教学仪器的使用方法,用户可根据情况或再增加适当的附件做更多的实验。
例如选用DH30003型栅网组件与本系统组合使用时,满足相应的条件就可得到线极化、圆极化和椭圆极化的电磁波,通过三种极化波的产生、检测,帮助学生了解电波极化的概念;选用DH30002型极化天线组件与本系统组合使用时,可用于多种电磁波实验,产生圆极化波,实现圆极化波反射和折射特性的实验……1.反射实验:电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
1)系统构建指南:系统构建时,如图1,开启DH1121B型三厘米固态信号源。
DH926B型微波分光仪的两喇叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作平台的0-180刻度处。
将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。
反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。
将DH926AD型数据采集仪提供的USB电缆线的两端根据具体尺寸分别连接图1 反射实验到数据采集仪的USB口和计算机的USB口,此时,DH926AD型数据采集仪的USB指示灯亮(蓝色),表示已连接好。
然后打开DH926AD型数据采集仪的电源开关,电源指示灯亮(红色),将数据采集仪的通道电缆线两端分别连接到DH926B型微波分光仪分度转台底部的光栅通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。
最后,察看DH1121B型三厘米固态信号源的“等幅”和“方波”档的设置,将DH926AD型数据采集仪的“等幅/方波”设置按钮等同于DH1121B型三厘米固态信号源的设置。
转动微波分光仪的小平台,使固定臂指针指在某一刻度处,这刻度数就是入射角度数,然后转动活动臂在DH926AD型数据采集仪的表头上找到一最大指示,此时微波分光仪的活动臂上的指针所指的刻度就是反射角度数。
如果此时表头指示太大或太小,应调整微波分光仪微波系统中的可变衰减器或晶体检波器,使表头指示接近满量程做此项实验。
入射角最好取30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。
做这项实验时应注意系统的调整和周围环境的影响。
2)软件指南:运行应用软件,出现如下启动界面(如图2)。
图2 启动界面在启动界面上点击“进入”按钮,进入系统“主菜单”,选择菜单项“微波物理实验”(如图3),您可看到十个子菜单项。
单击第一个子菜单项“反射实验”,屏幕上会出现“建图3 系统主菜单议”提示框(如图4),这是应用软件根据实验内容建议您选择的“采集点数”和“脉冲通图4 “建议”提示框道”,单击“OK”按钮,进入“输入采集参数”界面(见图5),建议采用我们推荐的“采集点数和通道号”,这样有利于更好观察采集过程及处理数据。
如果您未做选择直接点击了“试采集”或“正式采集”按钮,“采集点数和通道号”则按照我们建议的默认值“采集点数为120,通道号为1”选择。
在您选择好“采集点数和通道号”后,DH926AD型数据采集仪相应通道指示灯亮(绿色),软件进入采集过程界面。
图5 输入采集参数如果您想预览一下采集过程,您可点击“试采集”按钮,屏幕上便会出现“试采集界面”(如图6)。
“试采集”的采集过程界面比“正式采集”过程界面简单,功能键很少,不对图6 试采集界面采集数据进行处理,相应的功能键与“正式采集”采集过程界面中的功能按钮功能相同,此处不再赘述,仅讲解“正式采集”采集过程界面的功能按钮使用及实验结果处理。
注:如果您先点击了“试采集”按钮进行了试采集,退出“试采集”采集过程界面后,您要开始“正式采集”之前,务必要把实验装置恢复到本实验的初始状态,方可继续进行“正式采集”工作!否则会对实验结果引入很大的误差!当点击“正式采集”按钮,屏幕上便会出现正式采集过程界面(如图7)。
“采集过程”图7 正式采集界面界面中,“绘图框”内显示以采集点数为横坐标、电压值为纵坐标的坐标轴。
此时,察看小平台,固定臂指针指在某一角度处,这角度数就是入射角,将入射角度的值填入绘图框下方的“需要您输入的参数”中“入射角”一栏中,以便采集结束后计算“反射角”的值。
如果您此时点击“开始采集”按钮,屏幕上会出现“是否保存?”界面(如图8),如果您是首次采集,请单击“开始新的采集按钮”。
如果您刚刚已进行了采集工作,您就要考虑是否对图8 “是否保存”界面刚刚的采集过程进行保存,若保存,请单击“保存”按钮;若不保存,请单击“开始新的采集”按钮。
如果您刚刚选择了“开始新的采集”,屏幕上便会出现一个提示框(如图9),提示您当前要进行的操作。
单击“OK”按钮,开始实时采集信号变化并图9 提示框绘图。
采集过程中,DH926AD型数据采集仪的USB指示灯连续闪动(蓝色),表示采集过程正在继续。
应用软件屏幕上的信号灯颜色也随着实验的继续进行红色、绿色切换。
您需要顺时针匀速转动DH926B型微波分光仪的活动臂,随着活动臂的移动,采集点数依次增加,当您停止移动活动臂,绘图框会保持原来的状态直到您再次开始移动活动臂。
这个过程中,您便可在绘图框中实时观察到信号变化(如图10)。