阴影面积专题训练

合集下载

阴影部分面积(阴影部分面积专题练习)

阴影部分面积(阴影部分面积专题练习)

阴影部分的面积1.求阴影部分的面积(单位;厘米)2. 如右图,正方形的面积是20平方厘米那么圆的面积是多少平方厘米?3. 如左图,阴影①的面积比阴影②的面积大28平方厘米。

AB的长是40厘米,求BC的长。

4.右图中,长方形的面积和圆的面积相等,已知圆的半径是3厘米,阴影部分的面积是多少?(单位:厘米)5.下图由两个正方形组成,求阴影部分的面积。

单位:厘米6.把一张长方形纸折成如图形状,求阴影部分的面积(单位:厘米)7. 图中圆的周长是31.4厘米,圆的面积与长方形的面积相等。

求阴影部分的面积。

8.四个完全相同的直角三角形,它们的两条直角边分别是8厘米和5厘米,把它们拼成如图那样的正方形,图中两个大小两个正方形的面积各是多少平方厘米?9.如下图,两圆的半径都为4厘米,且图中的两块阴影部分面积相等。

那么长方形的长OQ 长多少厘米?10.计算下列阴影部分的面积。

11.下面的平行四边形中,空白部分的面积是10平方分米,求涂色部分的面积。

(单位:分米)(5分)12.如右图大小相等的甲乙两个长方形,阴影部分的面积相等。

()甲乙13.如下图,两圆的半径都为4厘米,且图中的两块阴影部分面积相等。

那么长方形的长OQ 长多少厘米?阴影部分面积专题练习三、求下列各图中阴影部分的面积。

(单位:厘米)、2、右图中,O为圆心,OC垂直于AB,三角形ABC的面积是36平方厘米,求阴影部分的面积。

3、上右图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。

4、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。

15、如图,两个大小不等的正方形拼成一个图形,已知小正方形的边长是4厘米,阴影部分的面积是30平方厘米,求空白部分的面积是多少?6、将直角三角形ABC向右平移6厘米,再向下平移1.5厘米,得到一个图形如图,已知三角形的底边BC长16厘米,求阴影部分的面积。

7、如图,半圆的直径为20厘米,已知阴影A比阴影B的面积少27平方厘米,求MN的长是多少?四、看图计算。

小学六年级阴影部分面积专题复习经典例题 (含答案)

小学六年级阴影部分面积专题复习经典例题 (含答案)

小升初阴影部分面积专题姓名:.................... 1.求如图阴影部分的面积.(单位:厘米)2.如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点:组合图形的面积;梯形的面积;圆、圆环的面积.分析:阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答:解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评:组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答:解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评:解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.考点:组合图形的面积.分析:分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答:解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评:这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点:组合图形的面积.专题:平面图形的认识与计算.分析:由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答:解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评:解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.考点:圆、圆环的面积.分析:由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答:解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评:解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点:长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析:图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答:解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评:此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.考点:组合图形的面积.分析:由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答:解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评:此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点:组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析:(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答:解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评:此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点:组合图形的面积;圆、圆环的面积.专题:平面图形的认识与计算.分析:观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答:解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评:此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点:圆、圆环的面积.分析:先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答:解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评:此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答:解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评:考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点:组合图形的面积.分析:求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答:解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评:解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答:解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评:解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点:梯形的面积.分析:如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答:解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评:此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点:组合图形的面积.分析:根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答:解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评:考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点:组合图形的面积.分析:由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答:解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评:解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答:解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评:考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

阴影部分面积-专题复习-经典例题(含答案)

阴影部分面积-专题复习-经典例题(含答案)

解答小升初阴影部分面积专题☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆ 试题解析1 •求如图阴影部分的面积•(单位:厘米)考点 组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为 4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解:( 4+6)X 4-2-2-3.14 X '十 2,=10-3.14 X 4-2,=10-6.28 ,=3.72 (平方厘米);答:阴影部分的面积是3.72平方厘米.点评 组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考 查了梯形和圆的面积公式的灵活应用.2•如图,求阴影部分的面积•(单位:厘米)考点组合图形的面积.分析 根据图形可以看出:阴影部分的面积等于正方形的面积减去 4个扇形的面积•正方形的面积等于(10X 10) 100平方厘米,4个扇形的面积等于半径 为(10-2) 5厘米的圆的面积,即:3.14 X 5X 5=78.5 (平方厘米).解答解:扇形的半径是:10-2,厘米.=5 (厘米);10X 10 - 3.14 X 5X 5,100-78.5 ,=21.5 (平方厘米);答:阴影部分的面积为21.5平方厘米.点评 解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3•计算如图阴影部分的面积•(单位:厘米)考点组合图形的面积.分析 分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等 于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形 和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10-2=5 (厘米),长方形的面积=fex 宽=10X5=50 (平方厘米),半圆的面积=nr 2十2=3.14 X52-2=39.25 (平方厘米),阴影部分的面积=长方形的面积-半圆的面积, =50 - 39.25,=10.75 (平方厘米);答:阴影部分的面积是10.75 .点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼 凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首 先要看属于哪一种类型的组合图形,再根据条件去进一步解答.考点组合图形的面积.专题 平面图形的认识与计算.分析 由题意可知:阴影部分的面积=长方形的面积-以4厘米为半径的半圆的面积,代入数据即可求解.2解答解:8X4-3.14 X4 -2,=32 - 25.12 ,=6.88 (平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出. 5•求如图阴影部分的面积•(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2X圆的面积”算出答案.解答解:S=nr2=3.14 X(4-2)2=12.56 (平方厘米);阴影部分的面积=2个圆的面积,=2X 12.56,=25.12 (平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算. 6•求如图阴影部分面积•(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积. 分析图一中阴影部分的面积=大正方形面积的一半-与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积-平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6X6-2-4X6-2=6(平方厘米);图二中阴影部分的面积=(8+15)X(48-8)十2- 48=21 (平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积丄圆的面积,又因圆的半径为斜边上的高,4利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15X20-2X2-25,=300- 25,=12 (厘米);阴影部分的面积:1X 3.14 X 122,1丄X 3.14 X 144,4=0.785 X 144,=113.04 (平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积-三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:2 23.14 X 煜)-3.14 X (#),=28.26 - 3.14,=25.12 (平方厘米);(2)阴影部分的面积:3.14 X32-丄X(3+3)X 3,1=28.26 - 9,=19.26 (平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米. 点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9•如图是三个半圆,求阴影部分的周长和面积•(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积-以10-2=5厘米为半径的半圆的面积-以3-2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14 X(10+3),10•求阴影部分的面积. (单位:厘米)解答 解:r=3,R=3+3=6 n=120,=3.14 X 13,=40.82 (厘米); 面积:_X 3.14 X[ (10+3)十2]2- --X 3.14 X (10 十 2) 2- —_L X 3.14 X 2 2 22 二丄X 3.14 X ( 42.25 - 25 - 2.25 ),2—X 3.14 X 15,2=23.55 (平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长 =n r ,得出 图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.考点圆、圆环的面积.分析先用“3+3=6'求出大扇形的半径,然后根据“扇形的面积”分别计360算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积-小扇形的 面积=阴影部分的面积”解答即可.+ - …一—,=37.68 - 9.42,=28.26 (平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11 •求下图阴影部分的面积•(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14 X(10十2)2-2=39.25平方厘米,再求出空白三角形的面积10X(10-2)十2=25平方厘米,相减即可求解.解答解:3. 14X(10-2)-2- 10X(10-2)-2=39.25 - 25=14.25 (平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积-空白三角形的面积. 12.求阴影部分图形的面积.(单位:厘米)10考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的丄,列式计算即可.4解答解:(4+10)X 4-2-3.14 X4 2-4,=28- 12.56,=15.44 (平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米)殳—6—25考点组合图形的面积.专题 平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积-三角形①的面积, 平行四 边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米 和(15-7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10X 15- 10X ( 15- 7)十 2,=150- 40,=110 (平方厘米); 答:阴影部分的面积是110平方厘米.点评 解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边 形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)— 6 — 76110 计考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求 梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的 面积公式即可求解.K. 一1Q 习解答解:(6+10)X 6-2,=16X 6-2,=96- 2,=48 (平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积. 15•求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解. 解答解:2X3-2=6-2=3 (平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积--圆的面积,梯形的上底和高4都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)X 4-2-3.14 X42X丄,=13X 4-2-3.14 X 4,解答解: -X( 6+8)X( 6-2) X 3.14 X( 6-2)丄X 14X 3 2护3.14 X 9,=26- 12.56 ,=13.44 (平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积-丄圆的面积.4考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积-半圆的面积•梯形的面积=(a+b)h,半圆的面积nr,将数值代入从而求得阴影部分的面积.=21 - 14.13 ,=6.87 (平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.(单位:厘米)。

小学五年级数学求阴影部分面积习题

小学五年级数学求阴影部分面积习题

小学五年级数学求阴影部分面积习题1、三角形ABC的面积是24平方厘米,AE=BC=8厘米,CD=4厘米,求阴影部分面积。

2、正方形ABCD的周长是48厘米,已知AE的长度是EB的3倍,求阴影部分面积。

3、如图,一个直角梯形的上底是10厘米,下底是6厘米,面积是40平方厘米,把它分成一个平行四边形和直角三角形后,三角形的面积是多少平方厘米。

4、下面直角梯形的面积是49平方分米,求阴影部分的面积。

5、求整个图形的面积。

(单位:厘米)6、下图所示梯形,如果它的上底增加4厘米,面积就增加18平方厘米,这梯形原来的面积是多少平方厘米?7、求下面图形中阴影部分的面积。

(单位:厘米)8、下图由大小不等的两个正方形拼成,小正方形的边长是6厘米,阴影部分面积是60 厘米,求图中空白部分的面积。

9、求正方形中阴影部分的面积。

10、在下图中,已知平行四边形ABED的面积是30平方厘米,BE长6厘米,EC长4厘米。

求梯形ABCD的面积。

11、图中空白部分是一个面积为30平方厘米的平行四边形,求阴影部分面积。

12、如图:在直角梯形ABCD中,AB=4分米。

CD=9分米,空白部分面积为10平方分米,求阴影部分面积。

13、求阴影部分的面积(单位:厘米):14、图中三角形DEC的面积是2.7平方米,AD=4.4米,AB=2米。

求平行四边形CDFG中阴影部分的面积。

15、如图,在梯形ABCD中,CD=4厘米,AB=2DC,AECD为平行四边形,已知梯形面积为66平方厘米,求阴影部分面积。

16、图中三角形ABC的面积是24平方厘米,AE=BC=8厘米,CD=4厘米,求阴影部分的面积。

17、图中空白部分是一个面积为30平方厘米的平行四边形,求阴影部分面积。

18、图中,阴影部分的面积是56平方厘米,BD=14厘米,求梯形ABCD 的面积。

19、梯形ABCD面积是96平方厘米,AB=6厘米,中位线EF=12厘米,求阴影部分面积。

20、求这个组合图形的面积。

阴影部分面积专题复习经典例题(含答案)

阴影部分面积专题复习经典例题(含答案)

小升初阴影部分面积专题姓名:1.求如图阴影部分的面积.(单位:厘米)2.如图,求阴影部分的面积.()3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:cm)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

不规则或组合平面图形阴影部分面积计算-2024年小升初数学复习热点题型专项训练(通用版)(含解析)

不规则或组合平面图形阴影部分面积计算-2024年小升初数学复习热点题型专项训练(通用版)(含解析)

2024年小升初复习热点题型专项训练热点11不规则或组合平面图形阴影部分面积计算姓名:_________ 班级:_________ 学号:_________1.计算下列图形的周长。

(单位:米)2.求阴影部分的面积。

3.计算如图阴影部分的面积。

(单位:cm)4.梯形的面积是18.6dm2,求阴影部分的面积。

5.已知如图,正方形的面积是2dm2,求阴影部分的面积。

6.求阴影部分的周长。

7.求下列组合图形的面积。

(单位:cm)8.计算如图中阴影部分的面积。

9.计算下边阴影图形的周长。

10.求组合图形的面积。

(单位:米)11.求组合图形的面积。

(单位:cm)12.求图中阴影部分的面积(单位:厘米)13.如图中阴影部分的面积是多少?14.求如图阴影部分的周长和面积。

15.求阴影部分的面积(单位:厘米)。

16.求下面图形中阴影部分的面积。

17.求图中涂色部分的面积。

(单位:厘米)18.如图中,大圆的半径等于小圆的直径。

请计算阴影部分的周长。

19.计算如图阴影部分的面积。

20.求图形中阴影部分的面积。

(单位:分米)21.求下面图形阴影部分的周长和面积。

22.求下图中阴影部分的周长和面积。

23.求图中阴影部分的面积。

(单位:厘米)( 取3.14)24.求阴影部分的面积。

(单位:厘米)25.求下面图中阴影部分的面积(单位:厘米)。

26.计算如图所示图形阴影部分的面积。

(单位:厘米;圆周率取3.14)27.求下面图形中阴影部分的周长和面积。

28.计算如图所示图形阴影部分的面积。

(单位:厘米;圆周率取3.14)29.求出下图中阴影部分的面积。

(单位:米)30.求出前两个图形的面积和第三个图形中涂色部分的面积。

参考答案1.122米;12米【分析】(1)长方形的周长=(长+宽)×2,代入数据即可解答;(2)把这个图形上方的小线段分别向上、向左及向右平移,则这个图形的周长就是边长为3米的正方形的周长,据此利用正方形的周长公式即可解答。

(完整版)小学六年级数学_阴影部分面积例题(含答案)

(完整版)小学六年级数学_阴影部分面积例题(含答案)

阴影部分面积专题求如图阴影部分的面积.(单位:厘米)如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

小学六年级数学-阴影部分面积例题(含标准答案)

小学六年级数学-阴影部分面积例题(含标准答案)

阴影部分面积专题求如图阴影部分的面积.(单位:厘M)如图,求阴影部分的面积.(单位:厘M)3.计算如图阴影部分的面积.(单位:厘M)4.求出如图阴影部分的面积:单位:厘M.5.求如图阴影部分的面积.(单位:厘M)6.求如图阴影部分面积.(单位:厘M)7.计算如图中阴影部分的面积.单位:厘M.8.求阴影部分的面积.单位:厘M.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘M)10.求阴影部分的面积.(单位:厘M)11.求下图阴影部分的面积.(单位:厘M)12.求阴影部分图形的面积.(单位:厘M)13.计算阴影部分面积(单位:厘M).14.求阴影部分的面积.(单位:厘M)15.求下图阴影部分的面积:(单位:厘M)16.求阴影部分面积(单位:厘M).17.(2012•长泰县)求阴影部分的面积.(单位:厘形和半圆的面积公式代入数据即可解答.)×4÷2÷2﹣3.14×÷23.计算如图阴影部分的面积.(单位:厘考点组合图形的面积.考点组合图形的面积.=圆的面积,又因圆的半径为斜边上的高,×3.14×12=×3.14×144解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,﹣×面积:×3.14×[﹣×3.14×﹣×3.14×=×3.14×=×3.14×15扇形的面积”大扇形的面积﹣小扇形,=,求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.梯形的面积﹣圆的面积,梯形的上底和高×,梯形的面积﹣圆的面积.=(=πr解:×)﹣×3.14×=×14×3﹣×3.14×9。

46道求阴影面积经典例题

46道求阴影面积经典例题

求阴影面积例题长方形面积:3*2=6平方厘米四分之一小圆面积:2*2*3.14÷4=3.14平方厘米右上面大空白面积:长方形面积-四分之一小圆面积=6-3.14=2.86平方厘米四分之一大圆面积:3*3*3.14÷4=7.065平方厘米阴影面积=四分之一大圆面积-右上面大空白面积=7.065-2.86=4.205平方厘米如有帮助,请采纳。

谢谢方法1:圆心角45度的扇形面积:4*4*3.14*45/360=6.28空白面积=四分之一小扇形面积+三角形面积=2*2*3.14÷4+2*2÷2=5.14左上面积的小阴影面积=圆心角45度的扇形面积-空白面积=6.28-5.14=1.14 右边阴影面积=四分之一小扇形面积-三角形面积=2*2*3.14÷4-2*2÷2=1.14阴影面积=左上面积的小阴影面积+右边阴影面积=1.14+1.14=2.28方法2:用割补法,将右边阴影割下补到左边,阴影面积=大扇形面积-三角形面积=4*4*3.14*45/360 – 4*2÷2=6.28-4=2.28小朋友,如有帮助,请采纳。

谢谢!设圆半径为r阴影部分的面积=4*半圆的面积(即2*圆形的面积)-正方形的面积;=2*π*r²-2r*2r*=2*r²(π-2)=8π-16解法:连接大扇形的两个半径作为辅助线,用大扇形的面积减去扇形内部的空白部分6×6×3.14×1/4-(6-4)×4-〔4×4-4×4×3.14×1/4〕=28.26-8-3.44=16.82小学六年级数学求阴影面积与周长例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:1/4 圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

人教版六年级上册数学期末求阴影部分面积及周长专题训练

人教版六年级上册数学期末求阴影部分面积及周长专题训练

人教版六年级上册数学期末求阴影部分面积及周长专题训练1.求下面图形中阴影部分的面积。

(1)(2)2.正方形的边长是10 cm,求图中阴影部分的周长。

3.求下图中阴影部分的面积。

(单位:cm)(1)(2)4.请用直尺和圆规画一个与下图一模一样的图形(保留作图痕迹,不用涂色),并计算出这个图形阴影部分的面积。

5.求出下面图形中的阴影部分的面积。

6.求阴影部分面积(单位cm)7.求下面图形的周长和面积。

8.求下图阴影部分的周长。

(单位:厘米)9.求下图中阴影部分的面积(单位:cm)(1)(2)10.求下面各图形中阴影部分的面积。

(单位:cm)(1)(2)11.求下面各图中阴影部分的面积(1)(2)12.求阴影部分的面积。

13.计算图中阴影部分的面积。

(单位:cm)14.计算阴影部分的周长和面积。

15.求下图阴影部分的面积是多少平方分米.(结果用小数表示)16.计算下面阴影部分的周长和面积。

(1)(2)17.求下图中阴影部分的面积。

18.求下面图形中阴影部分的周长和面积。

(1)19.求阴影部分的面积。

20.如图中圆的半径为4分米,求图中阴影部分的面积。

答案解析部分1.【答案】(1)解:3.14×82÷2=200.96÷2=100.48(cm2)(2)解:3.14×(102-52)÷2=3.14×75÷2=235.5÷2=117.75(cm2)【解析】【分析】(1)可以将阴影部分的下面小半圆移到上面空白部分,这样阴影部分面积就是外面大圆面积的一半,圆的面积=圆周率×半径的平方。

(2)阴影部分是圆环面积的一半,圆环的面积=圆周率×(大圆半径的平方-小圆半径的平方)。

2.【答案】解:正方形的边长就是圆的直径,图中阴影部分的周长就是2个圆的周长;3.14×10 ×2 =62.8(cm)答:图中阴影部分的周长是62.8厘米。

小学六年级阴影部分面积典型例题附答案

小学六年级阴影部分面积典型例题附答案

小学六年级阴影部分面积典型例题附答案阴影部分面积专题例1.求阴影部分的面积。

单位:厘米解:这是最基本的方法: 圆面积减去等腰直角三角形的面积,×-2×11.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

单位:厘米解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为 r,因为正方形的面积为7平方厘米,所以 7,所以阴影部分的面积为:7-7-×71.505平方厘米例3.求图中阴影部分的面积。

单位:厘米解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

单位:厘米解:同上,正方形面积减去圆面积,16-π16-4π3.44平方厘米例5.求阴影部分的面积。

单位:厘米解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π×2-168π-169.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分) π-π100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

单位:厘米解:正方形面积可用对角线长×对角线长÷2,求正方形面积为:5×5÷212.5所以阴影面积为:π÷4-12.57.125平方厘米注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形例8.求阴影部分的面积。

单位:厘米解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π3.14平方厘米例9.求阴影部分的面积。

单位:厘米解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形, 所以阴影部分面积为:2×36平方厘米例10.求阴影部分的面积。

小学六年级数学-阴影部分面积例题(含答案)

小学六年级数学-阴影部分面积例题(含答案)

阴影部分面积专题求如图阴影部分的面积.(单位:厘米)如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012?长泰县)求阴影部分的面积.(单位:厘米)☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012?长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

小学六年级数学_阴影部分面积例题(含答案)

小学六年级数学_阴影部分面积例题(含答案)

荿阴影部分面积专题膀薇求如图阴影部分的面积.(单位:厘米)膂螁虿莇膃如图,求阴影部分的面积.(单位:厘米)袀聿肈芅3.计算如图阴影部分的面积.(单位:厘米)节蒈螈肂4.求出如图阴影部分的面积:单位:厘米.莁羇芄肄5.求如图阴影部分的面积.(单位:厘米)葿莇肅膅6.求如图阴影部分面积.(单位:厘米)袁肀螅羂羀7.计算如图中阴影部分的面积.单位:厘米.葿蒅肄莂衿8.求阴影部分的面积.单位:厘米.芆肅蒀9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)莈羆袂袃螈10.求阴影部分的面积.(单位:厘米)螇羄羁膇蒇11.求下图阴影部分的面积.(单位:厘米)羅肀袀芇螃12.求阴影部分图形的面积.(单位:厘米)蒂芀羈袄薀13.计算阴影部分面积(单位:厘米).蝿蒄袅羃膈14.求阴影部分的面积.(单位:厘米)膄蚃肁薈羅15.求下图阴影部分的面积:(单位:厘米)螄腿羇蚅袅16.求阴影部分面积(单位:厘米).薂蒇蒆蚃蚀膀膆17.( 2012?长泰县)求阴影部分的面积.(单位:厘米)蚄肃蕿羆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆蒁参考答案与试题解析膁1.求如图阴影部分的面积.(单位:厘米)罿蚇薃考艿组合图形的面积;梯形的面积;圆、圆环的面积.点莈分莇阴影部分的面积等于梯形的面积减去直径为 4厘米的半圆的面积,利用梯析形和半圆的面积公式代入数据即可解答.薄解蚂解:( 4+6)× 4÷2÷2﹣3.14 ×÷2,答袇 =10﹣3.14 ×4÷2,膇 =10﹣ 6.28 ,莂=3.72 (平方厘米);螀答:阴影部分的面积是3.72 平方厘米.芇点袈组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考评查了梯形和圆的面积公式的灵活应用.蒃肃 2.如图,求阴影部分的面积.(单位:厘米)羀莄蒄考点莀分析节解答芁组合图形的面积.肅根据图形可以看出:阴影部分的面积等于正方形的面积减去4 个扇形的面积.正方形的面积等于(10×10)100 平方厘米, 4 个扇形的面积等于半径为( 10÷2) 5 厘米的圆的面积,即: 3.14 ×5×5=78.5(平方厘米).荿解:扇形的半径是:蝿10÷2,袅 =5(厘米);莃10×10﹣3.14 ×5×5,蚂100﹣78.5 ,芈=21.5 (平方厘米);薅答:阴影部分的面积为21.5 平方厘米.蒅点螀解答此题的关键是求4 个扇形的面积,即半径为5 厘米的圆的面积.评蚈莆3.计算如图阴影部分的面积.(单位:厘米)节膂肇肆考芃组合图形的面积.点芁分螀分析图后可知, 10 厘米不仅是半圆的直径,还是长方形的长,根据半径析等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.袆解莅解:10÷2=5(厘米),答荿长方形的面积 =长×宽 =10×5=50(平方厘米),22(平方厘米),膀半圆的面积 =πr÷2=3.14×5÷2=39.25薇阴影部分的面积 =长方形的面积﹣半圆的面积,膂 =50﹣ 39.25 ,螁=10.75(平方厘米);虿答:阴影部分的面积是10.75 .莇点膃这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼评凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.袀聿4.求出如图阴影部分的面积:单位:厘米.肈芅考节组合图形的面积.点蒈专螈平面图形的认识与计算.题肂分莁由题意可知:阴影部分的面积 =长方形的面积﹣以 4 厘米为半径的半圆的析面积,代入数据即可求解.羇解芄解:8×4﹣3.14×42÷2,答肄 =32﹣ 25.12 ,葿=6.88 (平方厘米);莇答:阴影部分的面积是6.88 平方厘米.肅点膅解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差评求出.袁肀螅5.求如图阴影部分的面积.(单位:厘米)羂羀葿考蒅圆、圆环的面积.点肄分莂由图可知,正方形的边长也就是半圆的直径,阴影部分由 4 个直径为 4 厘析米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算 1 个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.2衿解芆解:S=πr答肅=3.14 ×( 4÷2)2蒀=12.56(平方厘米);莈阴影部分的面积 =2 个圆的面积,羆 =2×12.56 ,袂=25.12(平方厘米);袃答:阴影部分的面积是25.12 平方厘米.螈点螇解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知评条件去计算.羄羁6.求如图阴影部分面积.(单位:厘米)膇蒇羅肀考点芇分析袀长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.螃图一中阴影部分的面积 =大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积 =梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.蒂解芀解:图一中阴影部分的面积 =6×6÷2﹣4×6÷2=6(平方厘米);答羈图二中阴影部分的面积 =( 8+15)×( 48÷8)÷ 2﹣ 48=21(平方厘米);袄答:图一中阴影部分的面积是 6 平方厘米,图二中阴影部分的面积是 21 平方厘米.薀点蝿此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面评积公式,再将题目中的数据代入相应的公式进行计算.蒄袅7.计算如图中阴影部分的面积.单位:厘米.羃膈膄蚃考肁组合图形的面积.点分薈羅由图意可知:阴影部分的面积 = 圆的面积,又因圆的半径为斜边上的高,析利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.螄解腿解:圆的半径:15×20÷2×2÷25,答羇 =300÷25,蚅 =12(厘米);袅阴影部分的面积:薂×3.14 ×122,蒇 = ×3.14 ×144,蒆=0.785×144,蚃=113.04(平方厘米);蚀答:阴影部分的面积是113.04 平方厘米.膀点膆此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.评蚄肃蕿8.求阴影部分的面积.单位:厘米.羆蒁膁罿考蚇组合图形的面积;三角形的周长和面积;圆、圆环的面积.点薃分艿( 1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,析代入圆的面积公式,从而可以求出阴影部分的面积;莈( 2)阴影部分的面积 =圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.莇解薄解:(1)阴影部分面积:答蚂 3.14 ×﹣3.14×,袇=28.26﹣ 3.14 ,膇=25.12(平方厘米);莂(2)阴影部分的面积:2螀 3.14 ×3﹣×( 3+3)× 3,芇=28.26﹣ 9,袈=19.26(平方厘米);蒃答:圆环的面积是25.12 平方厘米,阴影部分面积是19.26 平方厘米.肃点羀此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.评莄蒄9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)芁莀肅考节组合图形的面积;圆、圆环的面积.点荿专蝿平面图形的认识与计算.题袅分莃观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长析相等,所以图中阴影部分的周长,就是直径为 10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积 =大半圆的面积﹣以10÷2=5 厘米为半径的半圆的面积﹣以 3÷2=1.5 厘米为半径的半圆的面积,利用半圆的面积公式即可求解.蚂解芈解:周长:3.14×(10+3),答薅=3.14 ×13,蒅=40.82(厘米);螀22×(3÷2)蚈面积:×3.14 ×[( 10+3)÷2] ﹣×3.14×(10÷2)﹣×3.142,莆 = ×3.14 ×( 42.25 ﹣25﹣ 2.25 ),节= ×3.14 ×15,膂=23.55(平方厘米);肇答:阴影部分的周长是40.82 厘米,面积是 23.55 平方厘米.肆点芃此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长 =πr ,得出评图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.芁螀袆10.求阴影部分的面积.(单位:厘米)莅考点圆、圆环的面积.分析先用“ 3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积 =阴影部分的面积”解答即可.解答解: r=3 , R=3+3=6, n=120,,=,=37.68 ﹣9.42 ,=28.26 (平方厘米);答:阴影部分的面积是28.26 平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14 ×( 10÷2)2÷2=39.25 平方厘米,再求出空白三角形的面积 10×( 10÷2)÷ 2=25 平方厘米,相减即可求解.2=39.25 ﹣25=14.25 (平方厘米).答:阴影部分的面积为14.25 平方厘米.点评考查了组合图形的面积,本题阴影部分的面积 =半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.2解答解:( 4+10)× 4÷2﹣3.14 ×4 ÷4,=15.44 (平方厘米);答:阴影部分的面积是15.44 平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10 厘米和15 厘米,三角形①的底和高分别为10 厘米和( 15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解: 10×15﹣10×( 15﹣7)÷ 2,=150﹣ 40,=110(平方厘米);答:阴影部分的面积是110 平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:( 6+10)× 6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48 平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解: 2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3 平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答2=13×4÷2﹣3.14 ×4,=26﹣12.56 ,=13.44 (平方厘米);答:阴影部分的面积是13.44 平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积 =梯形的面积﹣圆的面积.17.( 2012?长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积 =梯形的面积﹣半圆的面积.梯形的面积 = (a+b)2h,半圆的面积 = πr,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2= ×14×3﹣×3.14×9,=21﹣14.13 ,=6.87 (平方厘米);答:阴影部分的面积为6.87 平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。

小学六年级-阴影部分面积-专题复习-典型例题(含答案)

小学六年级-阴影部分面积-专题复习-典型例题(含答案)

阴影部分面积专题例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为 r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=平方厘米例 3.求图中阴影部分的面积。

(单位:厘米) 解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5÷2=所以阴影面积为:π÷=平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。

(单位:厘米) 解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=平方厘米例9.求阴影部分的面积。

(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。

阴影面积经典例题

阴影面积经典例题

阴影面积经典例题
例1:一个边长为4cm的正方形,其中一个顶点位于坐标原点,其余两个顶点在x轴上,求这个正方形的面积。

例2:已知抛物线y=x^2与直线y=x相交于A、B两点,求这两个交点的横坐标。

例3:一个圆心角为120°,半径为3的扇形,如果将它卷成一个圆锥的侧面,则这个圆锥的底面圆的半径为多少?
例4:一个直角三角形两条直角边长分别为3和4,则这个直角三角形的面积是多少?
例5:一个等腰三角形的底边长为6,腰长为8,则这个等腰三角形的面积是多少?
例6:一个圆内有一个最大的正方形,已知圆的半径为5,求正方形的面积。

例7:一个平行四边形的底边长为6,高为4,则这个平行四边形的面积是多少?
例8:一个长方形的长为8,宽为6,则这个长方形的周长和面积分别是多少?
例9:一个三角形的三边长分别为3、4、5,求这个三角形的面积。

例10:一个圆的直径为6,则这个圆的周长和面积分别是多少?。

六年级数学求阴影面积典型题

六年级数学求阴影面积典型题

六年级数学求阴影面积典型题一、题目示例1. 已知正方形边长为10厘米,以正方形的四个顶点为圆心,边长为半径画弧,求图中阴影部分的面积。

解析:- 我们可以发现这个阴影部分的面积可以通过正方形的面积减去中间空白部分的面积得到。

- 正方形的面积公式(公式为边长),这里公式厘米,所以正方形面积公式平方厘米。

- 中间空白部分是由四个相同的部分组成的,每一部分是一个扇形减去一个等腰直角三角形。

- 因为扇形的半径公式厘米,圆心角公式,根据扇形面积公式公式,这里公式,公式厘米,所以一个扇形的面积公式平方厘米。

- 对于等腰直角三角形,它的直角边等于扇形的半径公式厘米,根据等腰直角三角形面积公式公式(这里公式),所以一个等腰直角三角形的面积公式平方厘米。

- 那么一个空白部分的面积公式平方厘米。

- 四个空白部分的面积公式平方厘米。

- 最后阴影部分面积公式平方厘米。

将公式代入,可得公式(这里出现负数是因为计算过程中的近似,实际上阴影部分面积为公式,取绝对值为公式平方厘米)。

2. 如图,圆的半径为公式厘米,三角形为等腰直角三角形,求阴影部分的面积。

解析:- 圆的面积公式为公式,这里公式厘米,所以圆的面积公式平方厘米。

- 因为三角形是等腰直角三角形,它的底和高都等于圆的半径公式厘米,根据三角形面积公式公式(这里公式),所以三角形面积公式平方厘米。

- 阴影部分面积公式平方厘米。

将公式代入,可得公式平方厘米。

3. 长方形的长为公式厘米,宽为公式厘米,在长方形内有一个半圆(直径为长方形的长),求阴影部分的面积。

解析:- 长方形的面积公式(公式为长,公式为宽),这里公式厘米,公式厘米,所以长方形面积公式平方厘米。

- 半圆的半径公式厘米,根据半圆的面积公式公式,所以半圆的面积公式平方厘米。

- 阴影部分面积公式平方厘米。

将公式代入,可得公式平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阴影面积专题训练
例1.如图,ABCD是直角梯形,求阴影部分的面积和。

(单位:厘米)
练习:1.求下图中阴影部分的面积。

2.求图中阴影部分的面积。

(单位:厘米)
3.下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。

例2 下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。

练习:
1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。

2.图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。

例3 两条对角线把梯形ABCD分割成四个三角形。

已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)
练习:1.如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?
2.下图的梯形ABCD中,下底是上底的2倍,E是AB的中点。

那么梯形ABCD的面积是三角形BDE面积的多少倍?
3.下图梯形ABCD中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC的面积比三角形AOD的面积大多少平方厘米?
例4在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。

练习:1.如图,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。

已知三角
形的面积是108平方厘米,求三角形CDE的面积。

2.下图中,BD=2厘米,DE=4厘米,EC=2厘米,F是AE的中点,三角形ABC的BC边上的高是4厘米,阴影面积是多少平方厘米?
例5:一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?
练习:1.求四边形ABCD的面积。

(单位:厘米)
2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。

3.有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米,那么面积就增加4.5平方厘米。

求原来梯形的面积。

例6:正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

练习:1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。

2.正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。

3.求下图长方形ABCD的面积(单位:厘米)。

例7:四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。

三角形CDH的面积是多少平方厘米?
练习:1图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。

2.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

(单位:厘米)
3.下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?
例8下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?
练习1.如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。

2.在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)
3.图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。

求平行四边形的面积。

例9图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。

练习1.如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。

求AH长多少厘米?
2.图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。

3.正方形的边长是2(a+b),已知图中阴影部分B的面积是7平方厘米,求阴影部分A和C 的和是多少平方厘米?
例10. 在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

练习:1如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

2..求下图(单位:厘米)中四边形ABCD的面积。

相关文档
最新文档