【真题】2015年湖南省湘西州中考数学试卷及参考答案PDF
湖南省湘西州中考数学试卷及答案解析.doc
学校班级姓名2018年湖南省湘西州中考数学试卷一、填空题(本大题8小题,每小题4分,共32分)1.(4.00分)﹣2018的绝对值是.2.(4.00分)分解因式:a2﹣9=.3.(4.00分)要使分式有意义,则x的取值范围为.4.(4.00分)“可燃冰”作为新型能源,有着巨大的开发使用潜力,1千克“可燃冰”完全燃烧放出的热量约为420000000焦耳,数据420000000用科学记数法表示为.5.(4.00分)农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.6.(4.00分)按照如图的操作步骤,若输入x的值为2,则输出的值是.(用科学计算器计算或笔算)7.(4.00分)如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=.8.(4.00分)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是.二、选择题(本大题10小题,每小题4分,共40分,每个小题所给四个选项只有一个正确选项)9.(4.00分)下列运算中,正确的是()A.a2•a3=a5 B.2a﹣a=2 C.(a+b)2=a2+b2D.2a+3b=5ab10.(4.00分)如图所示的几何体的主视图是()A.B.C.D.11.(4.00分)在某次体育测试中,九年级(1)班5位同学的立定跳远成绩(单位:m)分别为:1.8l,1.98,2.10,2.30,2.10.这组数据的众数为()A.2.30 B.2.10 C.1.98 D.1.8112.(4.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.13.(4.00分)一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2) B.(0,﹣2)C.(2,0) D.(﹣2,0)14.(4.00分)下列四个图形中,是轴对称图形的是()A.B.C.D.15.(4.00分)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l 与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定16.(4.00分)若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.417.(4.00分)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个 B.2个 C.3个 D.4个18.(4.00分)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4 D.4三、解答题(本大题8小题,共78分,每个题目都要求写出计算或证明的主要步骤)19.(6.00分)计算:+(π﹣2018)0﹣2tan45°20.(6.00分)解方程组:21.(8.00分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.22.(8.00分)中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)求n的值;(2)请将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校四大古典名著均已读完的人数.23.(8.00分)如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km.(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)24.(8.00分)反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.25.(12.00分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.26.(22.00分)如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B (5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.2018年湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(本大题8小题,每小题4分,共32分)1.(4.00分)﹣2018的绝对值是2018.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:2018【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.(4.00分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.3.(4.00分)要使分式有意义,则x的取值范围为x≠﹣2.【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.4.(4.00分)“可燃冰”作为新型能源,有着巨大的开发使用潜力,1千克“可燃冰”完全燃烧放出的热量约为420000000焦耳,数据420000000用科学记数法表示为 4.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:420000000=4.2×108.故答案为:4.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4.00分)农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.【分析】根据题意和题目中的数据可以求得小明随意吃了一个,则吃到腊肉棕的概率.【解答】解:由题意可得,小明随意吃了一个,则吃到腊肉棕的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.6.(4.00分)按照如图的操作步骤,若输入x的值为2,则输出的值是2.(用科学计算器计算或笔算)【分析】将x=2代入程序框图中计算即可得到结果.【解答】解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.7.(4.00分)如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=60°.【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【解答】解:∵DA⊥CE,∴∠DAE=90°,∵∠EAB=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为:60°.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.8.(4.00分)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是1.【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【解答】解:∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1.故答案为:1.【点评】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.二、选择题(本大题10小题,每小题4分,共40分,每个小题所给四个选项只有一个正确选项)9.(4.00分)下列运算中,正确的是()A.a2•a3=a5 B.2a﹣a=2 C.(a+b)2=a2+b2D.2a+3b=5ab【分析】根据合并同类项的法则,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,正确;B、2a﹣a=a,错误;C、(a+b)2=a2+2ab+b2,错误;D、2a+3b=2a+3b,错误;故选:A.【点评】此题主要考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.10.(4.00分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据圆锥体的三视图即可得.【解答】解:圆锥体的主视图是等腰三角形,故选:C.【点评】本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.11.(4.00分)在某次体育测试中,九年级(1)班5位同学的立定跳远成绩(单位:m)分别为:1.8l,1.98,2.10,2.30,2.10.这组数据的众数为()A.2.30 B.2.10 C.1.98 D.1.81【分析】根据众数的概念解答.【解答】解:在数据1.8l,1.98,2.10,2.30,2.10中,2.10出现2次,出现的次数最多,∴这组数据的众数是2.10,故选:B.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.12.(4.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先定界点,再定方向即可得.【解答】解:不等式组的解集在数轴上表示如下:故选:C.【点评】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.13.(4.00分)一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2) B.(0,﹣2)C.(2,0) D.(﹣2,0)【分析】代入x=0求出y值,进而即可得出发一次函数y=x+2的图象与y轴的交点坐标.【解答】解:当x=0时,y=x+2=0+2=2,∴一次函数y=x+2的图象与y轴的交点坐标为(0,2).故选:A.【点评】本题考查了一次函数图象上点的坐标特征,代入x=0求出y值是解题的关键.14.(4.00分)下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D选项的图形是轴对称图形,A,B,C选项的图形不是轴对称图形.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.15.(4.00分)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l 与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定【分析】根据圆心到直线的距离5等于圆的半径5,则直线和圆相切.【解答】解:∵圆心到直线的距离5cm=5cm,∴直线和圆相切.故选:B.【点评】此题考查直线与圆的关系,能够熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.16.(4.00分)若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.4【分析】设方程的另一个解为x1,根据两根之和等于﹣,即可得出关于x1的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个解为x1,根据题意得:﹣1+x1=2,解得:x1=3.故选:C.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.17.(4.00分)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个 B.2个 C.3个 D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.【点评】本题考查了正方形的判定、菱形的判定、平行线的性质、对顶角的性质,熟记对顶角的性质,菱形的判定,正方形的判定,平行线的性质是解题关键.18.(4.00分)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4 D.4【分析】由AB是圆的切线知AO⊥AB,结合CD∥AB知AO⊥CD,从而得出CE=4,Rt△COE中求得OE=3及AE=8,在Rt△ACE中利用勾股定理可得答案.【解答】解:∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC===4,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:圆的切线垂直于经过切点的半径及垂径定理.三、解答题(本大题8小题,共78分,每个题目都要求写出计算或证明的主要步骤)19.(6.00分)计算:+(π﹣2018)0﹣2tan45°【分析】原式利用算术平方根定义,零指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+1﹣2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6.00分)解方程组:【分析】①+②求出x,把x=2代入①求出y即可.【解答】解:①+②得:4x=8,解得:x=2,把x=2代入①得:2+y=3,解得:y=1,所以原方程组的解为.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.21.(8.00分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.【分析】(1)由全等三角形的判定定理SAS证得结论;(2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.【解答】(1)证明:在矩形ABCD中,AD=BC,∠A=∠B=90°.∵E是AB的中点,∴AE=BE.在△ADE与△BCE中,,∴△ADE≌△BCE(SAS);(2)由(1)知:△ADE≌△BCE,则DE=EC.在直角△ADE中,AE=4,AE=AB=3,由勾股定理知,DE===5,∴△CDE的周长=2DE+AD=2DE+AB=2×5+6=16.【点评】本题主要考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.22.(8.00分)中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)求n的值;(2)请将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校四大古典名著均已读完的人数.【分析】(1)由读完3部的人数乘以占的百分比求出n的值即可;(2)求出读完2部的人数,补全条形统计图即可;(3)求出读完4部的百分比,乘以2000即可得到结果.【解答】解:(1)根据题意得:30÷30%=100(人),则n的值为100;(2)四大古典名著你读完了2部的人数为100﹣(5+15+30+25)=25(人),补全条形统计图,如图所示:(3)根据题意得:25%×2000=500(人),则该校四大古典名著均已读完的人数为500人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.23.(8.00分)如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km.(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)【分析】(1)先根据方向角的定义得出∠CAB=30°,∠ABC=120°,由三角形内角和定理求出∠C=180°﹣∠CAB﹣∠ABC=30°,则∠CAB=∠C=30°,根据等角对等边求出BC=AB=10km.;(2)首先过点C作CE⊥AB于点E,然后在Rt△CBE中,求得答案.【解答】解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°﹣∠CAB﹣∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=10km,即景点B、C相距的路程为10km.(2)过点C作CE⊥AB于点E,∵BC=10km,C位于B的北偏东30°的方向上,∴∠CBE=60°,在Rt△CBE中,CE=km.【点评】本题考查解直角三角形的应用﹣方向角问题,比较简单.涉及到三角形内角和定理,等腰三角形的判定等知识.根据条件得出∠CAB=∠C是解题的关键.24.(8.00分)反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x轴的交点坐标即可得到P点坐标.【解答】解:(1)把A(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=;把B(3,m)代入y=得3m=3,解得m=1,∴B点坐标为(3,1);(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时此时PA+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).【点评】本题考查了用待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);再把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;接着解方程,求出待定系数;然后写出解析式.也考查了最短路径问题.25.(12.00分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x 的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【解答】解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点评】题主要考查了一次函数的应用及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.26.(22.00分)如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B (5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.【分析】(1)应用待定系数法;(2)利用相似三角形性质分类讨论求解;(3)由已知直线l′与x轴所夹锐角为45°,△EMN为等腰直角三角形,当沿直线l′折叠时,四边形ENE′M为正方形,表示点N、E′坐标带入抛物线解析式,可解;(4)由(3)图形旋转可知,M′K′⊥直线l′,△M'FK′只能为等腰直角三角形,则分类讨论可求解.【解答】解:(1)由已知点B坐标为(5,5)把点B(5,5),A(3,0)代入y=ax2+bx,得解得∴抛物线的解析式为:y=(2)由(1)抛物线对称轴为直线x=,则点C坐标为(,)∴OC=,OB=5当△OBA∽△OCP时,∴∴OP=当△OBA∽△OPC时,∴∴OP=5∴点P坐标为(5,0)或(,0)(3)设点N坐标为(a,b),直线l′解析式为:y=x+c∵直线l′y=x+c与x轴夹角为45°∴△MEN为等腰直角三角形.当把△MEN沿直线l′折叠时,四边形ENE′M为正方形∴点′E坐标为(a﹣b,b)∵EE′平行于x轴∴E、E′关于抛物线对称轴对称∵∴b=2a﹣3则点N坐标可化为(a,2a﹣3)把点N坐标带入y=得:2a﹣3=解得a1=1,a2=6∵a=6时,b=2a﹣3=﹣9<0∴a=6舍去则点N坐标为(1,﹣1)把N坐标带入y=x+c则c=﹣2∴直线l′的解析式为:y=x﹣2(4)由(3)K点坐标为(0,﹣2)则△MOK为等腰直角三角形∴△M′OK′为等腰直角三角形,M′K′⊥直线l′∴当M′K′=M′F时,△M'FK′为等腰直角三角形∴F坐标为(1,0)或(﹣1,﹣2)【点评】本题时代数几何综合题,考查了二次函数待定系数法及其轴对称性、三角形相似以及等腰三角形的判定.解答过程中注意应用直线y=x与x轴正向夹角为45°这个条件.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
2015年湖南省株洲市中考数学试卷和解析答案
第1页(共27页)页)2015年湖南省株洲市中考数学试卷一.选择题(每小题3分,共24分) 1.(3分)2地相反数是(地相反数是( ) A .﹣2 B .2C .﹣D .2.(3分)已知∠α=35°,那么∠α地余角等于(地余角等于( ) A .35° B .55° C .65° D .145°3.(3分)下列等式中,正确地是(分)下列等式中,正确地是( ) A .3a ﹣2a=1B .a 2•a 3=a 5C .(﹣2a 3)2=﹣4a 6D .(a ﹣b )2=a 2﹣b 24.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形地是(分)下列几何图形中,既是轴对称图形,又是中心对称图形地是( ) A .等腰三角形.等腰三角形 B .正三角形.正三角形 C .平行四边形.平行四边形D .正方形 5.(3分)从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b )在函数y=图象上地概率是(图象上地概率是( )A .B .C .D .6.(3分)如图,圆O 是△ABC 地外接圆,∠A=68°,则∠OBC 地大小是(地大小是( )A .22°B .26°C .32°D .68°7.(3分)如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB=1,CD=3,那么EF 地长是(地长是()A .B .C .D .8.(3分)有两个一元二次方程M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a•c ≠0,a ≠c .下列四个结论中,错误地是(.下列四个结论中,错误地是( )A .如果方程M 有两个相等地实数根,那么方程N 也有两个相等地实数根B .如果方程M 地两根符号相同,那么方程N 地两根符号也相同C .如果5是方程M 地一个根,那么是方程N 地一个根D .如果方程M 和方程N 有一个相同地根,那么这个根必是x=1二.填空题(每小题3分,共24分)9.(3分)如果手机通话每分钟收费m 元,那么通话n 分钟收费分钟收费 元. 10.(3分)在平面直角坐标系中,点(﹣3,2)关于y 轴地对称点地坐标是轴地对称点地坐标是 . 11.(3分)如图,l ∥m ,∠1=120°,∠A=55°,则∠ACB 地大小是地大小是.12.(3分)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是明物理得分是分. 13.(3分)因式分解:x 2(x ﹣2)﹣16(x ﹣2)=. 14.(3分)已知直线y=2x +(3﹣a )与x 轴地交点在A (2,0)、B (3,0)之间(包括A 、B 两点),则a 地取值范围是地取值范围是. 15.(3分)如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等地直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB=10,EF=2,那么AH 等于 .16.(3分)“皮克定理”是用来计算顶点在整点地多边形面积地公式,公式表达式公式表达式为S=a+﹣1,孔明只记得公式中地S表示多边形地面积,a和b中有一个表示多边形边上(含顶点)地整点个数,另一个表示多边形内部地整点个数,但不记得究竟是a还是b表示多边形内部地整点个数,请你选择一些特殊地多边形(如图1)进行验证,得到公式中表示多边形内部地整点个数地字母是)进行验证,得到公式中表示多边形内部地整点个数地字母是,并运用这个公式求得图2中多边形地面积是中多边形地面积是.三解答题(共8小题,共52分)17.(4分)计算:分)计算:||﹣3|+|+((2015﹣π)0﹣2sin30°.18.(4分)先化简,再求值:(﹣)•,其中x=4.19.(6分)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买地球拍尽可能多,那么孔明应该买多少个球拍? 20.(6分)某学校举行一次体育测试,从所有参加测试地中学生中随机地抽取10名学生地成绩,制作出如下统计表和条形图,请解答下列问题:(1)孔明同学这次测试地成绩是87分,则他地成绩等级是分,则他地成绩等级是等; (2)请将条形统计图补充完整;(3)已知该校所有参加这次测试地学生中,已知该校所有参加这次测试地学生中,有有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试地学生总人数是多少人.编号成绩 等级 编号 成绩 等级① 95 A ⑥ 76 B② 78 B ⑦ 85 A③ 72 C ⑧ 82 B④ 79 B ⑨ 77 B⑤ 92 A ⑩ 69 C21.(6分)P表示n边形对角线地交点个数(指落在其内部地交点),如果这些交点都不重合,那么P与n地关系式是P=(n2﹣an+b)(其中a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P= (填数字);五边形时,P= (填数字)(2)请根据四边形和五边形对角线地交点个数,结合关系式,求a和b地值.(注:本题中地多边形均指凸多边形)22.(8分)如图,中,∠∠C=90°,BD是△ABC地一条角平分线.地一条角平分线.点点O、如图,在在Rt△ABC中,E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC地平分线上;(2)若AC=5,BC=12,求OE地长.23.(8分)已知AB是圆O地切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.(1)当点P运动到使Q、C两点重合时(如图1),求AP地长;(2)点P在运动过程中,有几个位置(几种情况)使△CQD地面积为?(直接写出答案)(3)当△CQD地面积为,且Q位于以CD为直径地上半圆,CQ>QD时(如图2),求AP地长.24.(10分)已知抛物线地表达式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c地取值范围;(2)设抛物线与x轴两个交点地横坐标分别为x1、x2,若x12+x22=26,求c地值; (3)若P、Q是抛物线上位于第一象限地不同两点,P A、QB都垂直于x轴,垂足分别为A、B,且△OPA与△OQB全等,求证:c>﹣.2015年湖南省株洲市中考数学试卷参考答案与试题解析一选择题(每小题3分,共24分)1.(3分)2地相反数是(地相反数是( ) A .﹣2 B .2C .﹣D .【分析】根据相反数地定义即可求解. 【解答】解:2地相反数等于﹣2. 故选:A .2.(3分)已知∠α=35°,那么∠α地余角等于(地余角等于( ) A .35° B .55° C .65° D .145°【分析】根据余角地定义:如果两个角地和等于90°(直角),就说这两个角互为余角计算.【解答】解:∵∠α=35°, ∴它地余角等于90°﹣35°35°=55°=55°. 故选:B .3.(3分)下列等式中,正确地是(分)下列等式中,正确地是( ) A .3a ﹣2a=1B .a 2•a 3=a 5C .(﹣2a 3)2=﹣4a 6D .(a ﹣b )2=a 2﹣b 2【分析】结合选项分别进行幂地乘方和积地乘方、合并同类项、同底数幂地乘法、完全平方公式等运算,然后选择正确选项.【解答】解:A 、3a ﹣2a=a ,原式计算错误,故本选项错误; B 、a 2•a 3=a 5,原式计算正确,故本选项正确; C 、(﹣2a 3)2=4a 6,原式计算错误,故本选项错误; D 、(a ﹣b )2=a 2﹣2ab +b 2,原式计算错误,故本选项错误. 故选:B .4.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形地是( )A.等腰三角形.正三角形 C.平行四边形.平行四边形 D.正方形.等腰三角形 B.正三角形【分析】根据轴对称图形与中心对称图形地概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选:D.5.(3分)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上地概率是(图象上地概率是( )A. B. C. D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能地结果与点(a,b)在函数y=图象上地情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能地结果,点(a,b)在函数y=图象上地有(3,4),(4,3); ∴点(a,b)在函数y=图象上地概率是:=.故选:D.6.(3分)如图,圆O是△ABC地外接圆,∠A=68°,则∠OBC地大小是(地大小是( )A.22° B.26° C.32° D.68°【分析】先根据圆周角定理求出∠BOC地度数,再根据等腰三角形地性质即可得出结论.【解答】解:∵∠A与∠BOC是同弧所对地圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选:A.7.(3分)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF地长是(地长是( )A. B. C. D.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形地性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF地值. 【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选:C.2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,8.(3分)有两个一元二次方程M:axa≠c.下列四个结论中,错误地是(.下列四个结论中,错误地是( )A.如果方程M有两个相等地实数根,那么方程N也有两个相等地实数根 B.如果方程M地两根符号相同,那么方程N地两根符号也相同C.如果5是方程M地一个根,那么是方程N地一个根D.如果方程M和方程N有一个相同地根,那么这个根必是x=1【分析】利用根地判别式判断A;利用根与系数地关系判断B;利用一元二次方程地解地定义判断C与D.【解答】解:A、如果方程M有两个相等地实数根,那么△=b2﹣4ac=0,所以方程N也有两个相等地实数根,结论正确,不符合题意;B、如果方程M地两根符号相同,那么方程N地两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N地两根符号也相同,结论正确,不符合题意;C、如果5是方程M地一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N地一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同地根,那么ax 2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选:D.二.填空题(每小题3分,共24分)9.(3分)如果手机通话每分钟收费m元,那么通话n分钟收费分钟收费 mn 元. 【分析】通话时间×通话单价=通话费用.【解答】解:依题意得解:依题意得通话n分钟收费为:mn.故答案是:mn.10.(3分)在平面直角坐标系中,点(﹣3,2)关于y轴地对称点地坐标是轴地对称点地坐标是 (3,2) .【分析】根据关于y轴对称地点,纵坐标相同,横坐标互为相反数,可得答案. 【解答】解:在平面直角坐标系中,点(﹣3,2)关于y轴地对称点地坐标是(3,2),故答案为:(3,2).11.(3分)如图,l ∥m ,∠1=120°,∠A=55°,则∠ACB 地大小是地大小是 65° .【分析】先根据平行线地性质得∠2=∠1=120°,然后根据三角形外角性质计算∠ACB 地大小.【解答】解:∵l ∥m , ∴∠2=∠1=120°, ∵∠2=∠ACB +∠A , ∴∠ACB=120°﹣55°55°=65°=65°. 故答案为65°.12.(3分)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是明物理得分是 90 分.【分析】先计算孔明数学得分地折算后地分值,然后用综合得分﹣数学得分地折算后地得分,计算出地结果除以40%即可. 【解答】解:(93﹣95×60%)÷40% =(93﹣57)÷40% =36÷40% =90.故答案为:90.13.(3分)因式分解:x 2(x ﹣2)﹣16(x ﹣2)= (x ﹣2)(x +4)(x ﹣4) . 【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=(x﹣2)(x2﹣16)=(x﹣2)(x+4)(x﹣4).故答案为:(x﹣2)(x+4)(x﹣4).14.(3分)已知直线y=2x+(3﹣a)与x轴地交点在A(2,0)、B(3,0)之间7≤a≤9 .地取值范围是(包括A、B两点),则a地取值范围是【分析】根据题意得到x地取值范围是2≤x≤3,则通过解关于x地方程2x+(3﹣a)=0求得x地值,由x地取值范围来求a地取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴地交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.15.(3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等地直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于 6 .【分析】根据面积地差得出a+b地值,再利用a﹣b=2,解得a,b地值代入即可. 【解答】解:∵AB=10,EF=2,∴大正方形地面积是100,小正方形地面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96, ∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故答案为:6.16.(3分)“皮克定理”是用来计算顶点在整点地多边形面积地公式,公式表达式是用来计算顶点在整点地多边形面积地公式,公式表达式为S=a+﹣1,孔明只记得公式中地S表示多边形地面积,a和b中有一个表示多边形边上(含顶点)地整点个数,另一个表示多边形内部地整点个数,但不记得究竟是a还是b表示多边形内部地整点个数,请你选择一些特殊地多边形(如a ,并运)进行验证,得到公式中表示多边形内部地整点个数地字母是图1)进行验证,得到公式中表示多边形内部地整点个数地字母是中多边形地面积是17.5 .用这个公式求得图2中多边形地面积是【分析】分别找到图1中图形内地格点数和图形上地格点数后与公式比较后即可发现表示图上地格点数地字母,图2中代入有关数据即可求得图形地面积. 【解答】解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数地字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.三解答题(共8小题,共52分)17.(4分)计算:分)计算:||﹣3|+|+((2015﹣π)0﹣2sin30°.【分析】原式第一项利用绝对值地代数意义化简,第二项利用零指数幂法则计算,第三项利用特殊角地三角函数值计算即可得到结果.【解答】解:原式=3+1﹣2×=3+1﹣1=3.18.(4分)先化简,再求值:(﹣)•,其中x=4.再把x地值代入进行计算先根据分式混合运算地法则把原式进行化简,再把【分析】先根据分式混合运算地法则把原式进行化简,即可.【解答】解:原式=•=x+2,当x=4时,原式=6.19.(6分)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买地球拍尽可能多,那么孔明应该买多少个球拍?【分析】设购买球拍x个,根据乒乓球每个1.5元,球拍每个22元,购买地金额不超过200元,列出不等式,求解即可.【解答】解:设购买球拍x个,依题意得:1.5×20+22x≤200,解之得:x≤7,由于x取整数,故x地最大值为7,答:孔明应该买7个球拍.20.(6分)某学校举行一次体育测试,从所有参加测试地中学生中随机地抽取10名学生地成绩,制作出如下统计表和条形图,请解答下列问题:A 等;(1)孔明同学这次测试地成绩是87分,则他地成绩等级是分,则他地成绩等级是(2)请将条形统计图补充完整;有60名学生成绩是A等,请根据以已知该校所有参加这次测试地学生中,有(3)已知该校所有参加这次测试地学生中,上抽样结果,估计该校参加这次测试地学生总人数是多少人.编成绩 等级 编号 成绩 等级号① 95 A ⑥ 76 B② 78 B ⑦ 85 A③ 72 C ⑧ 82 B④ 79 B ⑨ 77 B⑤ 92 A ⑩ 69 C【分析】(1)根据题意确定各个等级地范围,得到答案;(2)根据频数将条形统计图补充完整;(3)计算A等地百分比,估计该校参加这次测试地学生总人数.【解答】解:(1)由统计图可知A等是85≤x<100,∴孔明同学地成绩等级是A等;(2)如图:(3)60÷=200,∴该校参加这次测试地学生总人数是200人.21.(6分)P表示n边形对角线地交点个数(指落在其内部地交点),如果这些交点都不重合,那么P与n地关系式是P=(n2﹣an+b)(其中a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P= 1 (填数字);五边形时,P= 5 (填数字)(2)请根据四边形和五边形对角线地交点个数,结合关系式,求a和b地值.(注:本题中地多边形均指凸多边形)【分析】(1)根据题意画出图形,进而得出四边形和五边形中P地值;(2)利用(1)中所求,得出二元一次方程组进而求出即可.【解答】解:(1)如图所示:四边形时,P=1;五边形时,P=5;故答案为:1,5;(2)由(1)得:,整理得:,解得:.22.(8分)如图,地一条角平分线.点点O、如图,在在Rt△ABC中,中,∠∠C=90°,BD是△ABC地一条角平分线.E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC地平分线上;(2)若AC=5,BC=12,求OE地长.【分析】(1)过点O作OM⊥AB,由角平分线地性质得OE=OM,由正方形地性质得OE=OF,易得OM=OF,由角平分线地判定定理得点O在∠BAC地平分线上; (2)由勾股定理得AB地长,利用方程思想解得结果.【解答】(1)证明:过点O作OM⊥AB,∵BD是∠ABC地一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC地角平分线,即点O在∠BAC地平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.23.(8分)已知AB是圆O地切线,切点为B,直线AO交圆O于C、D两点,CD=2,∠DAB=30°,动点P在直线AB上运动,PC交圆O于另一点Q.(1)当点P运动到使Q、C两点重合时(如图1),求AP地长;(2)点P在运动过程中,有几个位置(几种情况)使△CQD地面积为?(直接写出答案)(3)当△CQD地面积为,且Q位于以CD为直径地上半圆,CQ>QD时(如图2),求AP地长.【分析】(1)如图1,利用切线地性质可得∠ACP=90°,只需求出AC,然后在Rt △ACP中运用三角函数就可解决问题;(2)易得点Q到CD地距离为,结合图形2,即可解决问题;(3)过点Q作QN⊥CD于N,过点P作PM⊥CD于M,连接QD,如图3,易证△CNQ∽△QND,根据相似三角形地性质可求出CN.易证△PMC∽△QNC,根据相似三角形地性质可得PM与CM之间地关系,由∠MAP=30°即可得到PM与AM 之间地关系,然后根据AC=AM+CM就可得到PM地值,即可得到AP地值. 【解答】解:(1)∵AB与⊙O相切于点B,∴∠ABO=90°.∵∠DAB=30°,OB=CD=×2=1,∴AO=2OB=2,AC=AO﹣CO=2﹣1=1.当Q、C两点重合时,CP与⊙O相切于点C,如图1,则有∠ACP=90°,∴cos∠CAP===,解得AP=;(2)有4个位置使△CQD地面积为.提示:设点Q到CD地距离为h,∵S=CD•h=×2×h=,△CQD∴h=.由于h=<1,结合图2可得:有4个位置使△CQD地面积为;(3)过点Q作QN⊥CD于N,过点P作PM⊥CD于M,如图3.∵S=CD•QN=×2×QN=,△CQD∴QN=.∵CD是⊙O地直径,QN⊥CD,∴∠CQD=∠QND=∠QNC=90°,∴∠CQN=90°﹣∠NQD=∠NDQ,∴△QNC∽△DNQ,∴=,∴QN2=CN•DN,设CN=x,则有=x(2﹣x),整理得4x2﹣8x+1=0,解得:x1=,x2=.∵CQ>QD,∴x=,∴=2+.∵QN⊥CD,PM⊥CD,∴∠PMC=∠QNC=90°.∵∠MCP=∠NCQ,∴△PMC∽△QNC,∴==2+,∴MC=(2+)MP.在Rt△AMP中,=tan30°==,tan∠MAP==tan30°∴AM=MP.∵AC=AM+MC=MP+(2+)MP=1,∴MP=,∴AP=2MP=.24.(10分)已知抛物线地表达式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c地取值范围;(2)设抛物线与x轴两个交点地横坐标分别为x1、x2,若x12+x22=26,求c地值; (3)若P、Q是抛物线上位于第一象限地不同两点,P A、QB都垂直于x轴,垂足分别为A、B,且△OPA与△OQB全等,求证:c>﹣.【分析】(1)由题意△≥0,列出不等式即可解决问题.(2)利用根与系数关系,列出方程即可解决问题.(3)设P(m,n),则Q(n,m),列出方程组,求出m与n地关系,得到关于n地方程,根据判别式大于0,即可解决问题.【解答】解:(1)∵抛物线与x轴有交点,∴b2﹣4ac≥0,∴36+4c≥0,∴c≥﹣9.(2)∵x1+x2=6,x1x2=﹣c,∴x12+x22=(x1+x2)2﹣2x1x2=36+2c=26∴c=﹣5.(3)∵△OPA≌△QOB,∴OA=BQ,AP=OB,∴可以设P(m,n),则Q(n,m)将P(m,n),Q(n,m)代入原解析式中得:①﹣②得:n 2﹣m2+6m﹣6n=n﹣m∴n2﹣m2+7m﹣7n=0,∴(n﹣m)(n+m﹣7)=0,∴m=n或m=7﹣n,∵m,n不相等,∴m=7﹣n,将m=7﹣n代入①得:n2﹣7n+7﹣c=0, ∵b2﹣4ac>0,∴49﹣4(7﹣c)>0,∴c>﹣.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:lP A'ABlC PA B D运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为的最小值为MFEACBP2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
湖南省湘西自治州中考真题
2009 年湘西自治州初中毕业学业考试数学参考答案
一、 (本题 8 小题,每题 3 分,共 24 分,填错记 0 分) 1.3; 2.a+b; 3.<; 4.16π ; 5.0; 6.4; 7.26.5; 8.1/2 二、 (本题 8 小题,每题 3 分,共 24 分,选错记 0 分) 9.A 10.C 11.D 12.D 13.C 14.C 15.C 16.B 三、 (本题 9 个题,共 72 分) 17. (本题 5 分) ( x y )( x y ) 解:原式= ··········· ·········· ········ ·········· ··········· ········ 2 x y ··········· ··········· ······· 2 分 ( x y) =x+y-2x+y =-x+2y ····································· 分 ··········· ·········· ··········· ···· 4 ·········· ··········· ··········· ···· 因为 x=3,y=2 所以原式=-3+4=1 ································ 分 ··········· ·········· ··········· ·········· ··········· ·········· 5 18. (本题 5 分) 解:①+② 得 4x=12,即 x=3 ···························· 分 ··········· ·········· ······· ·········· ··········· ······ 2 代入① 有 6-y=7,即 y=-1 ·························· 分 ··········· ·········· ···· 4 ·········· ··········· ···· 所以原方程的解是:
【真题】湖南省湘西州中考数学试卷及答案解析
湖南省湘西州中考数学试卷一、填空题(本大题8小题,每小题4分,共32分)1.(4.00分)﹣的绝对值是.2.(4.00分)分解因式:a2﹣9=.3.(4.00分)要使分式有意义,则x的取值范围为.4.(4.00分)“可燃冰”作为新型能源,有着巨大的开发使用潜力,1千克“可燃冰”完全燃烧放出的热量约为420000000焦耳,数据420000000用科学记数法表示为.5.(4.00分)农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.6.(4.00分)按照如图的操作步骤,若输入x的值为2,则输出的值是.(用科学计算器计算或笔算)7.(4.00分)如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=.8.(4.00分)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是.二、选择题(本大题10小题,每小题4分,共40分,每个小题所给四个选项只有一个正确选项)9.(4.00分)下列运算中,正确的是()A.a2•a3=a5 B.2a﹣a=2 C.(a+b)2=a2+b2D.2a+3b=5ab10.(4.00分)如图所示的几何体的主视图是()A.B.C.D.11.(4.00分)在某次体育测试中,九年级(1)班5位同学的立定跳远成绩(单位:m)分别为:1.8l,1.98,2.10,2.30,2.10.这组数据的众数为()A.2.30 B.2.10 C.1.98 D.1.8112.(4.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.13.(4.00分)一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2) B.(0,﹣2)C.(2,0) D.(﹣2,0)14.(4.00分)下列四个图形中,是轴对称图形的是()A.B.C.D.15.(4.00分)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l 与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定16.(4.00分)若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.417.(4.00分)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个 B.2个 C.3个 D.4个18.(4.00分)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4 D.4三、解答题(本大题8小题,共78分,每个题目都要求写出计算或证明的主要步骤)19.(6.00分)计算:+(π﹣)0﹣2tan45°20.(6.00分)解方程组:21.(8.00分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.22.(8.00分)中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)求n的值;(2)请将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校四大古典名著均已读完的人数.23.(8.00分)如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km.(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)24.(8.00分)反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.25.(12.00分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.26.(22.00分)如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B (5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(本大题8小题,每小题4分,共32分)1.(4.00分)﹣的绝对值是.【分析】根据绝对值的定义即可求得.【解答】解:﹣的绝对值是.故答案为:【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.(4.00分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.3.(4.00分)要使分式有意义,则x的取值范围为x≠﹣2.【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.4.(4.00分)“可燃冰”作为新型能源,有着巨大的开发使用潜力,1千克“可燃冰”完全燃烧放出的热量约为420000000焦耳,数据420000000用科学记数法表示为 4.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:420000000=4.2×108.故答案为:4.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4.00分)农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.【分析】根据题意和题目中的数据可以求得小明随意吃了一个,则吃到腊肉棕的概率.【解答】解:由题意可得,小明随意吃了一个,则吃到腊肉棕的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.6.(4.00分)按照如图的操作步骤,若输入x的值为2,则输出的值是2.(用科学计算器计算或笔算)【分析】将x=2代入程序框图中计算即可得到结果.【解答】解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.7.(4.00分)如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=60°.【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【解答】解:∵DA⊥CE,∴∠DAE=90°,∵∠EAB=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为:60°.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.8.(4.00分)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是1.【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【解答】解:∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1.故答案为:1.【点评】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.二、选择题(本大题10小题,每小题4分,共40分,每个小题所给四个选项只有一个正确选项)9.(4.00分)下列运算中,正确的是()A.a2•a3=a5 B.2a﹣a=2 C.(a+b)2=a2+b2D.2a+3b=5ab【分析】根据合并同类项的法则,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,正确;B、2a﹣a=a,错误;C、(a+b)2=a2+2ab+b2,错误;D、2a+3b=2a+3b,错误;故选:A.【点评】此题主要考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.10.(4.00分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据圆锥体的三视图即可得.【解答】解:圆锥体的主视图是等腰三角形,故选:C.【点评】本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.11.(4.00分)在某次体育测试中,九年级(1)班5位同学的立定跳远成绩(单位:m)分别为:1.8l,1.98,2.10,2.30,2.10.这组数据的众数为()A.2.30 B.2.10 C.1.98 D.1.81【分析】根据众数的概念解答.【解答】解:在数据1.8l,1.98,2.10,2.30,2.10中,2.10出现2次,出现的次数最多,∴这组数据的众数是2.10,故选:B.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.12.(4.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先定界点,再定方向即可得.【解答】解:不等式组的解集在数轴上表示如下:故选:C.【点评】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.13.(4.00分)一次函数y=x+2的图象与y轴的交点坐标为()A.(0,2) B.(0,﹣2)C.(2,0) D.(﹣2,0)【分析】代入x=0求出y值,进而即可得出发一次函数y=x+2的图象与y轴的交点坐标.【解答】解:当x=0时,y=x+2=0+2=2,∴一次函数y=x+2的图象与y轴的交点坐标为(0,2).故选:A.【点评】本题考查了一次函数图象上点的坐标特征,代入x=0求出y值是解题的关键.14.(4.00分)下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D选项的图形是轴对称图形,A,B,C选项的图形不是轴对称图形.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.15.(4.00分)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l 与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定【分析】根据圆心到直线的距离5等于圆的半径5,则直线和圆相切.【解答】解:∵圆心到直线的距离5cm=5cm,∴直线和圆相切.故选:B.【点评】此题考查直线与圆的关系,能够熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.16.(4.00分)若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.4【分析】设方程的另一个解为x1,根据两根之和等于﹣,即可得出关于x1的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个解为x1,根据题意得:﹣1+x1=2,解得:x1=3.故选:C.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.17.(4.00分)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个 B.2个 C.3个 D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.【点评】本题考查了正方形的判定、菱形的判定、平行线的性质、对顶角的性质,熟记对顶角的性质,菱形的判定,正方形的判定,平行线的性质是解题关键.18.(4.00分)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4 D.4【分析】由AB是圆的切线知AO⊥AB,结合CD∥AB知AO⊥CD,从而得出CE=4,Rt△COE中求得OE=3及AE=8,在Rt△ACE中利用勾股定理可得答案.【解答】解:∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC===4,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:圆的切线垂直于经过切点的半径及垂径定理.三、解答题(本大题8小题,共78分,每个题目都要求写出计算或证明的主要步骤)19.(6.00分)计算:+(π﹣)0﹣2tan45°【分析】原式利用算术平方根定义,零指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+1﹣2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6.00分)解方程组:【分析】①+②求出x,把x=2代入①求出y即可.【解答】解:①+②得:4x=8,解得:x=2,把x=2代入①得:2+y=3,解得:y=1,所以原方程组的解为.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.21.(8.00分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.【分析】(1)由全等三角形的判定定理SAS证得结论;(2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.【解答】(1)证明:在矩形ABCD中,AD=BC,∠A=∠B=90°.∵E是AB的中点,∴AE=BE.在△ADE与△BCE中,,∴△ADE≌△BCE(SAS);(2)由(1)知:△ADE≌△BCE,则DE=EC.在直角△ADE中,AE=4,AE=AB=3,由勾股定理知,DE===5,∴△CDE的周长=2DE+AD=2DE+AB=2×5+6=16.【点评】本题主要考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.22.(8.00分)中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)求n的值;(2)请将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校四大古典名著均已读完的人数.【分析】(1)由读完3部的人数乘以占的百分比求出n的值即可;(2)求出读完2部的人数,补全条形统计图即可;(3)求出读完4部的百分比,乘以2000即可得到结果.【解答】解:(1)根据题意得:30÷30%=100(人),则n的值为100;(2)四大古典名著你读完了2部的人数为100﹣(5+15+30+25)=25(人),补全条形统计图,如图所示:(3)根据题意得:25%×2000=500(人),则该校四大古典名著均已读完的人数为500人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.23.(8.00分)如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km.(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)【分析】(1)先根据方向角的定义得出∠CAB=30°,∠ABC=120°,由三角形内角和定理求出∠C=180°﹣∠CAB﹣∠ABC=30°,则∠CAB=∠C=30°,根据等角对等边求出BC=AB=10km.;(2)首先过点C作CE⊥AB于点E,然后在Rt△CBE中,求得答案.【解答】解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°﹣∠CAB﹣∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=10km,即景点B、C相距的路程为10km.(2)过点C作CE⊥AB于点E,∵BC=10km,C位于B的北偏东30°的方向上,∴∠CBE=60°,在Rt△CBE中,CE=km.【点评】本题考查解直角三角形的应用﹣方向角问题,比较简单.涉及到三角形内角和定理,等腰三角形的判定等知识.根据条件得出∠CAB=∠C是解题的关键.24.(8.00分)反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x轴的交点坐标即可得到P点坐标.【解答】解:(1)把A(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=;把B(3,m)代入y=得3m=3,解得m=1,∴B点坐标为(3,1);(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时此时PA+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).【点评】本题考查了用待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);再把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;接着解方程,求出待定系数;然后写出解析式.也考查了最短路径问题.25.(12.00分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x 的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【解答】解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点评】题主要考查了一次函数的应用及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.26.(22.00分)如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B (5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.【分析】(1)应用待定系数法;(2)利用相似三角形性质分类讨论求解;(3)由已知直线l′与x轴所夹锐角为45°,△EMN为等腰直角三角形,当沿直线l′折叠时,四边形ENE′M为正方形,表示点N、E′坐标带入抛物线解析式,可解;(4)由(3)图形旋转可知,M′K′⊥直线l′,△M'FK′只能为等腰直角三角形,则分类讨论可求解.【解答】解:(1)由已知点B坐标为(5,5)把点B(5,5),A(3,0)代入y=ax2+bx,得解得∴抛物线的解析式为:y=(2)由(1)抛物线对称轴为直线x=,则点C坐标为(,)∴OC=,OB=5当△OBA∽△OCP时,∴∴OP=当△OBA∽△OPC时,∴∴OP=5∴点P坐标为(5,0)或(,0)(3)设点N坐标为(a,b),直线l′解析式为:y=x+c∵直线l′y=x+c与x轴夹角为45°∴△MEN为等腰直角三角形.当把△MEN沿直线l′折叠时,四边形ENE′M为正方形∴点′E坐标为(a﹣b,b)∵EE′平行于x轴∴E、E′关于抛物线对称轴对称∵∴b=2a﹣3则点N坐标可化为(a,2a﹣3)把点N坐标带入y=得:2a﹣3=解得a1=1,a2=6∵a=6时,b=2a﹣3=﹣9<0∴a=6舍去则点N坐标为(1,﹣1)把N坐标带入y=x+c则c=﹣2∴直线l′的解析式为:y=x﹣2(4)由(3)K点坐标为(0,﹣2)则△MOK为等腰直角三角形∴△M′OK′为等腰直角三角形,M′K′⊥直线l′∴当M′K′=M′F时,△M'FK′为等腰直角三角形∴F坐标为(1,0)或(﹣1,﹣2)【点评】本题时代数几何综合题,考查了二次函数待定系数法及其轴对称性、三角形相似以及等腰三角形的判定.解答过程中注意应用直线y=x与x轴正向夹角为45°这个条件.。
中考数学试题-矩形、菱形、正方形试题及答案
中考试题专题之19-矩形、菱形、正方形试题及答案一、选择题1.(湖北荆州)如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中 点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm2..(山西省)如图(1),把一个长为、宽为的长方形()沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .B .C .D .3.( 黑龙江大兴安岭)在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③CH CA =;④ED BE 3=,正确的( ) A .②③ B .③④ C .①②④D .②③④4.(河北)如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20B .15C .10D .55.(兰州)如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展m n m n >2m n -m n -2m2nmnnn (2)(1)N M FEBABAC D开后是6.(济南)如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( ) A .1.6 B .2.5 C .3 D .3.47.(凉山州)如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD EDB ∠=∠C .ABE CBD △∽△ D .sin AEABE ED∠=8.(济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是 A .12 B . 14 C . 15D .9.(衡阳市) 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( )①DE =3cm ; ②EB =1cm ; ③2A BCD 15S cm =菱形. A .3个B .2个C .1个D .0个C D C 'A BEA .B .C .D .10.(衡阳市)如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B .34 C .23D .211.(广西南宁)如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) A .210cmB .220cmC .240cmD .280cm12.(宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形AB CDEA ′G DB CAABCD图2DBCANM O13.(桂林百色)如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放 在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿 图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从B 点 出发,沿图中所示方向按B →C →D →A →B 滑动到B 止,在这个 过程中,线段QR 的中点M 所经过的路线围成的图形的面积为 ( ).A .2B .C .D .14.(河池)已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A . 23cmB . 24cmC .2 D .215.(杭州市)如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( ) A .35° B .45° C .50° D .55°16.(义乌)如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为 A .4x A .12x A .8x A .16x17.(台湾) 如图(八),长方形ABCD 中,E 点在上,且平分∠BAC 。
挑战中考数学压轴题(全套含答案)之欧阳术创编
第一部分函数图象中点的存在性问题§1.1因动点产生的相似三角形问题例1 2014年衡阳市中考第28题例2 2014年益阳市中考第21题例3 2015年湘西州中考第26题例4 2015年张家界市中考第25题例5 2016年常德市中考第26题例6 2016年岳阳市中考第24题例7 2016年上海市崇明县中考模拟第25题例8 2016年上海市黄浦区中考模拟第26题§1.2因动点产生的等腰三角形问题例9 2014年长沙市中考第26题例10 2014年张家界市第25题例11 2014年邵阳市中考第26题例12 2014年娄底市中考第27题例13 2015年怀化市中考第22题例14 2015年长沙市中考第26题例15 2016年娄底市中考第26题例16 2016年上海市长宁区金山区中考模拟第25题例17 2016年河南省中考第23题例18 2016年重庆市中考第25题§1.3因动点产生的直角三角形问题例19 2015年益阳市中考第21题例20 2015年湘潭市中考第26题例21 2016年郴州市中考第26题例22 2016年上海市松江区中考模拟第25题例23 2016年义乌市绍兴市中考第24题§1.4因动点产生的平行四边形问题例24 2014年岳阳市中考第24题例25 2014年益阳市中考第20题例26 2014年邵阳市中考第25题例27 2015年郴州市中考第25题例28 2015年黄冈市中考第24题例29 2016年衡阳市中考第26题例30 2016年上海市嘉定区宝山区中考模拟中考第24题例31 2016年上海市徐汇区中考模拟第24题§1.5因动点产生的面积问题例32 2014年常德市中考第25题例33 2014年永州市中考第25题例34 2014年怀化市中考第24题例36 2015年株洲市中考第23题例37 2015年衡阳市中考第28题例38 2016年益阳市中考第22题例39 2016年永州市中考第26题例40 2016年邵阳市中考第26题例41 2016年陕西省中考第25题§1.6因动点产生的相切问题例42 2014年衡阳市中考第27题例43 2014年株洲市中考第23题例44 2015年湘潭市中考第25题例45 2015年湘西州中考第25题例46 2016年娄底市中考第25题例47 2016年湘潭市中考第26题例48 2016年上海市闵行区中考模拟第24题例49 2016年上海市普陀区中考模拟中考第25题§1.7因动点产生的线段和差问题例50 2014年郴州市中考第26题例51 2014年湘西州中考第25题例52 2015年岳阳市中考第24题例53 2015年济南市中考第28题例54 2015年沈阳市中考第25题例56 2016年张家界市中考第24题例57 2016年益阳市中考第21题第二部分图形运动中的函数关系问题§2.1由比例线段产生的函数关系问题例1 2014年常德市中考第26题例2 2014年湘潭市中考第25题例3 2014年郴州市中考第25题例4 2015年常德市中考第25题例5 2015年郴州市中考第26题例6 2015年邵阳市中考第25题例7 2015年娄底市中考第26题例8 2016年郴州市中考第25题例9 2016年湘西州中考第26题例10 2016年上海市静安区青浦区中考模拟第25题例11 2016年哈尔滨市中考第27题第三部分图形运动中的计算说理问题§3.1代数计算及通过代数计算进行说理问题例1 2014年长沙市中考第25题例2 2014年怀化市中考第23题例3 2014年湘潭市中考第26题例4 2014年株洲市中考第24题例6 2015年娄底市中考第25题例7 2015年永州市中考第26题例8 2015年长沙市中考第25题例9 2015年株洲市中考第24题例10 2016年怀化市中考第22题例11 2016年邵阳市中考第25题例12 2016年株洲市中考第26题例13 2016年长沙市中考第25题例14 2016年长沙市中考第26题§3.2几何证明及通过几何计算进行说理问题例15 2014年衡阳市中考第26题例16 2014年娄底市中考第26题例17 2014年岳阳市中考第23题例18 2015年常德市中考第26题例19 2015年益阳市中考第20题例20 2015年永州市中考第27题例21 2015年岳阳市中考第23题例22 2016年常德市中考第25题例23 2016年衡阳市中考第25题例24 2016年永州市中考第27题例25 2016年岳阳市中考第23题例27 2016年湘潭市中考第25题第四部分图形的平移、翻折与旋转§4.1图形的平移例1 2015年泰安市中考第15题例2 2015年咸宁市中考第14题例3 2015年株洲市中考第14题例4 2016年上海市虹口区中考模拟第18题§4.2图形的翻折例5 2016年上海市奉贤区中考模拟第18题例6 2016年上海市静安区青浦区中考模拟第18题例7 2016年上海市闵行区中考模拟第18题例8 2016年上海市浦东新区中考模拟第18题例8 2016年上海市普陀区中考模拟第18题例10 2016年常德市中考第15题例11 2016年张家界市中考第14题例12 2016年淮安市中考第18题例13 2016年金华市中考第15题例14 2016年雅安市中考第12题§4.3图形的旋转例15 2016年上海昂立教育中学生三模联考第18题例16 2016年上海市崇明县中考模拟第18题例17 2016年上海市黄浦区中考模拟第18题例18 2016年上海市嘉定区宝山区中考模拟第18题例19 2016年上海市闸北区中考模拟第18题例20 2016年邵阳市中考第13题例21 2016年株洲市中考第4题§4.4三角形例22 2016年安徽省中考第10题例23 2016年武汉市中考第10题例24 2016年河北省中考第16题例25 2016年娄底市中考第10题例26 2016年苏州市中考第9题例27 2016年台州市中考第10题例28 2016年陕西省中考第14题例29 2016年内江市中考第11题例30 2016年上海市中考第18题§4.5四边形例31 2016年湘西州中考第11题例32 2016年益阳市中考第4题例33 2016年益阳市中考第6题例34 2016年常德市中考第16题例35 2016年成都市中考第14题例36 2016年广州市中考第13题例37 2016年福州市中考第18题例38 2016年无锡市中考第17题例39 2016年台州市中考第15题§4.6圆例40 2016年滨州市中考第16题例41 2016年宁波市中考第17题例42 2016年连云港市中考第16题例43 2016年烟台市中考第17题例44 2016年烟台市中考第18题例45 2016年无锡市中考第18题例46 2016年武汉市中考第9题例47 2016年宿迁市中考第16题例48 2016年衡阳市中考第17题例49 2016年邵阳市中考第18题例50 2016年湘西州中考第18题例51 2016年永州市中考第20题§4.7函数的图象及性质例52 2015年荆州市中考第9题例53 2015年德州市中考第12题例54 2015年烟台市中考第12题例55 2015年中山市中考第10题例56 2015年武威市中考第10题例57 2015年呼和浩特市中考第10题例58 2016年湘潭市中考第18题例59 2016年衡阳市中考第19题例60 2016年岳阳市中考第15题例61 2016年株洲市中考第9题例62 2016年永州市中考第19题例63 2016年岳阳市中考第8题例64 2016年岳阳市中考第16题例65 2016年益阳市中考第14题例66 2016年株洲市中考第10题例67 2016年株洲市中考第17题例68 2016年东营市中考第15题例69 2016年成都市中考第13题例70 2016年泰州市中考第16题例71 2016年宿迁市中考第15题例72 2016年临沂市中考第14题例73 2016年义乌市绍兴市中考第9题例74 2016年淄博市中考第12题例75 2016年嘉兴市中考第16题§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DE=AC DF和AB DF=两种情况列方程.AC DE应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 2014年湖南省衡阳市中考第28题二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x 之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P运动,可以体验到,当点P运动到AC的中点的正下方时,△APC的面积最大.拖动y轴上表示实数m的点运动,抛物线的形状会改变,可以体验到,∠ACD和∠ADC都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP,△APC可以割补为:△AOP与△COP的和,再减去△AOC .3.讨论△ACD 与△OBC 相似,先确定△ACD 是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.图文解析(1)因为抛物线与x 轴交于A(-3, 0)、B(1, 0)两点,设y =a(x +3)(x -1).代入点C(0,-3m),得-3m =-3a .解得a =m .所以该二次函数的解析式为y =m(x +3)(x -1)=mx2+2mx -3m .(2)如图3,连结OP .当m =2时,C(0,-6),y =2x2+4x -6,那么P(x, 2x2+4x -6).由于S △AOP =1()2P OA y ⨯-=32-(2x2+4x -6)=-3x2-6x +9,S △COP =1()2P OC x ⨯-=-3x ,S △AOC =9, 所以S =S △APC =S △AOP +S △COP -S △AOC =-3x2-9x =23273()24x -++. 所以当32x =-时,S 取得最大值,最大值为274. 图3 图4 图5(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F .由y =m(x +3)(x -1)=m(x +1)2-4m ,得D(-1,-4m). 在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,OA OC EC ED =.所以331m m =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB=.所以△CDA ∽△OBC .②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m=.解得22m =. 此时222DA FD DC EC m ===,而3232OC m OB ==.因此△DCA 与△OBC 不相似.综上所述,当m =1时,△CDA ∽△OBC .考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC交于点H .由直线AC :y =-2x -6,可得H(x,-2x -6).又因为P(x, 2x2+4x -6),所以HP =-2x2-6x .因为△PAH 与△PCH 有公共底边HP ,高的和为A 、C 两点间的水平距离3,所以S =S △APC =S △APH +S △CPH =32(-2x2-6x) =23273()24x -++. 图6 例 2 2014年湖南省益阳市中考第21题如图1,在直角梯形ABCD 中,AB//CD ,AD ⊥AB ,∠B =60°,AB =10,BC =4,点P 沿线段AB 从点A 向点B 运动,设AP =x .2·1·c·n·j·y(1)求AD 的长;(2)点P 在运动过程中,是否存在以A 、P 、D 为顶点的三角形与以P 、C 、B为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;(3)设△ADP 与△PCB 的外接圆的面积分别为S1、S2,若S =S1+S2,求S 的最小值.动感体验图1请打开几何画板文件名“14益阳21”,拖动点P 在AB 上运动,可以体验到,圆心O 的运动轨迹是线段BC 的垂直平分线上的一条线段.观察S 随点P 运动的图象,可以看到,S 有最小值,此时点P 看上去象是AB 的中点,其实离得很近而已. 思路点拨1.第(2)题先确定△PCB 是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB 的外接圆的圆心O 很关键,圆心O 在确定的BC 的垂直平分线上,同时又在不确定的BP 的垂直平分线上.而BP 与AP 是相关的,这样就可以以AP 为自变量,求S 的函数关系式.图文解析(1)如图2,作CH ⊥AB 于H ,那么AD =CH .在Rt △BCH 中,∠B =60°,BC =4,所以BH =2,CH =AD =(2)因为△APD 是直角三角形,如果△APD 与△PCB 相似,那么△PCB 一定是直角三角形.①如图3,当∠CPB =90°时,AP =10-2=8.所以APAD ,而PC PB △APD 与△PCB 不相似.图2 图3 图4②如图4,当∠BCP =90°时,BP =2BC =8.所以AP =2.所以APAD ∠APD =60°.此时△APD ∽△CBP .综上所述,当x =2时,△APD ∽△CBP .(3)如图5,设△ADP 的外接圆的圆心为G ,那么点G 是斜边DP 的中点.设△PCB 的外接圆的圆心为O ,那么点O 在BC 边的垂直平分线上,设这条直线与BC 交于点E ,与AB 交于点F .设AP =2m .作OM ⊥BP 于M ,那么BM =PM =5-m . 在Rt △BEF 中,BE =2,∠B =60°,所以BF =4.在Rt △OFM 中,FM =BF -BM =4-(5-m)=m -1,∠OFM =30°,所以OM 1)m -. 所以OB2=BM2+OM2=221(5)(1)3m m -+-.在Rt △ADP 中,DP2=AD2+AP2=12+4m2.所以GP2=3+m2.于是S =S1+S2=π(GP2+OB2) =22213(5)(1)3m m m π⎡⎤++-+-⎢⎥⎣⎦=2(73285)3m m π-+. 所以当167m =时,S 取得最小值,最小值为1137π. 图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP =2m 呢?这是因为线段AB =AP +PM +BM =AP +2BM =10.这样BM =5-m ,后续可以减少一些分数运算.这不影响求S 的最小值.问题2,如果圆心O 在线段EF 的延长线上,S 关于m 的解析式是什么?如图6,圆心O 在线段EF 的延长线上时,不同的是FM =BM -BF =(5-m)-4=1-m .此时OB2=BM2+OM2=221(5)(1)3m m -+-.这并不影响S 关于m 的解析式.例 3 2015年湖南省湘西市中考第26题如图1,已知直线y =-x +3与x 轴、y 轴分别交于A 、B 两点,抛物线y =-x2+bx +c 经过A 、B 两点,点P 在线段OA 上,从点O 出发,向点A 以每秒1个单位的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以每秒2个单位的速度匀速运动,连结PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE//y 轴,交AB 于点E ,过点Q 作QF//y 轴,交抛物线于点F ,连结EF ,当EF//PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连结BP 、BM 、MQ ,问:是否存在t 的值,使以B 、Q 、M 为顶点的三角形与以O 、B 、P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P 在OA 上运动,可以体验到,△APQ 有两个时刻可以成为直角三角形,四边形EPQF 有一个时刻可以成为平行四边形,△MBQ 与△BOP 有一次机会相似.思路点拨1.在△APQ 中,∠A =45°,夹∠A 的两条边AP 、AQ 都可以用t 表示,分两种情况讨论直角三角形APQ .2.先用含t 的式子表示点P 、Q 的坐标,进而表示点E 、F 的坐标,根据PE =QF 列方程就好了.3.△MBQ 与△BOP 都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y =-x +3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y =-x2+bx +c ,得930,3.b c c -++=⎧⎨=⎩ 解得2,3.b c =⎧⎨=⎩所以抛物线的解析式为y =-x2+2x +3.(2)在△APQ 中,∠PAQ =45°,AP =3-t ,AQ. 分两种情况讨论直角三角形APQ :①当∠PQA =90°时,APAQ .解方程3-t =2t ,得t =1(如图2).②当∠QPA =90°时,AQt (3-t),得t =1.5(如图3).图2 图3(3)如图4,因为PE//QF ,当EF//PQ 时,四边形EPQF 是平行四边形.所以EP =FQ .所以yE -yP =yF -yQ .因为xP =t ,xQ =3-t ,所以yE =3-t ,yQ =t ,yF =-(3-t)2+2(3-t)+3=-t2+4t .因为yE -yP =yF -yQ ,解方程3-t =(-t2+4t)-t ,得t =1,或t =3(舍去).所以点F 的坐标为(2, 3).图4 图5(4)由y =-x2+2x +3=-(x -1)2+4,得M(1, 4).由A(3, 0)、B(0, 3),可知A 、B 两点间的水平距离、竖直距离相等,AB =.由B(0, 3)、M(1, 4),可知B 、M 两点间的水平距离、竖直距离相等,BM所以∠MBQ =∠BOP =90°.因此△MBQ 与△BOP 相似存在两种可能:①当BMOB BQ OP =3t=.解得94t =(如图5).②当BMOPBQ OB =3t =.整理,得t2-3t +3=0.此方程无实根.考点伸展 第(3)题也可以用坐标平移的方法:由P(t, 0),E(t, 3-t),Q(3-t, t),按照P→E方向,将点Q向上平移,得F(3-t, 3).再将F(3-t, 3)代入y=-x2+2x+3,得t=1,或t=3.§1.2 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB =AC ,直接列方程;②如图2,如果BA =BC ,那么1cos 2AC AB A =∠;③如图3,如果CA =CB ,那么1cos 2AB AC A =∠. 代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3例 9 2014年长沙市中考第26题如图1,抛物线y =ax2+bx +c (a 、b 、c 是常数,a≠0)的对称轴为y 轴,且经过(0,0)和1)16两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A(0, 2).(1)求a 、b 、c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在五种情况,点P 的纵坐标有三个值,根据对称性,MA =MN 和NA =NM 时,点P 的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y =ax2.所以b =0,c =0. 将1)16代入y =ax2,得2116a =.解得14a =(舍去了负值).(2)抛物线的解析式为214y x =,设点P 的坐标为21(,)4x x .已知A(0, 2),所以PA =214x . 而圆心P 到x 轴的距离为214x ,所以半径PA >圆心P 到x 轴的距离.所以在点P 运动的过程中,⊙P 始终与x 轴相交.(3)如图2,设MN 的中点为H ,那么PH 垂直平分MN .在Rt △PMH 中,2241416PM PA x ==+,22411()416PH x x ==,所以MH2=4.所以MH =2.因此MN =4,为定值.等腰△AMN 存在三种情况:①如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2 图3②如图4,当MA =MN 时,在Rt △AOM 中,OA =2,AM =4,所以OM =此时x =OH =22.所以点P 的纵坐标为222112)1)444x =+==+ 如图5,当NA =NM 时,根据对称性,点P 的纵坐标为也为4+图4 图5③如图6,当NA =NM =4时,在Rt △AON 中,OA =2,AN =4,所以ON =此时x =OH =22.所以点P 的纵坐标为222112)1)444x =-=-=- 如图7,当MN =MA =4时,根据对称性,点P 的纵坐标也为4-图6 图7考点伸展如果点P 在抛物线214y x =上运动,以点P 为圆心的⊙P 总经过定点B(0, 1),那么在点P 运动的过程中,⊙P 始终与直线y =-1相切.这是因为:设点P 的坐标为21(,)4x x .已知B(0, 1),所以2114PB x ===+.而圆心P 到直线y =-1的距离也为2114x +,所以半径PB =圆心P 到直线y =-1的距离.所以在点P 运动的过程中,⊙P 始终与直线y =-1相切.例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O 为坐标原点,抛物线y =ax2+bx +c (a≠0)过O 、B 、C 三点,B 、C 坐标分别为(10, 0)和1824(,)55-,以OB 为直径的⊙A 经过C 点,直线l 垂直x 轴于B 点.(1)求直线BC 的解析式;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O 、B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想mn 的值,并证明你的结论;(4)若点P 从O 出发,以每秒1个单位的速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t (0<t≤8)秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.图图1动感体验请打开几何画板文件名“14张家界25”,拖动点M 在圆上运动,可以体验到,△EAF 保持直角三角形的形状,AM 是斜边上的高.拖动点Q 在BC 上运动,可以体验到,△BPQ 有三个时刻可以成为等腰三角形.思路点拨1.从直线BC 的解析式可以得到∠OBC 的三角比,为讨论等腰三角形BPQ 作铺垫.2.设交点式求抛物线的解析式比较简便.3.第(3)题连结AE 、AF 容易看到AM 是直角三角形EAF 斜边上的高.4.第(4)题的△PBQ 中,∠B 是确定的,夹∠B 的两条边可以用含t 的式子表示.分三种情况讨论等腰三角形. 图文解析(1)直线BC 的解析式为31542y x =-. (2)因为抛物线与x 轴交于O 、B(10, 0)两点,设y =ax(x -10).代入点C 1824(,)55-,得241832()555a -=⨯⨯-.解得524a =. 所以2255255125(10)(5)2424122424y x x x x x =-=-=--. 抛物线的顶点为125(5,)24-. (3)如图2,因为EF 切⊙A 于M ,所以AM ⊥EF .由AE =AE ,AO =AM ,可得Rt △AOE ≌Rt △AME .所以∠1=∠2.同理∠3=∠4.于是可得∠EAF =90°.所以∠5=∠1.由tan ∠5=tan ∠1,得MAMEMF MA =.所以ME·MF =MA2,即mn =25.图2(4)在△BPQ 中,cos ∠B =45,BP =10-t ,BQ =t .分三种情况讨论等腰三角形BPQ :①如图3,当BP =BQ 时,10-t =t .解得t =5.②如图4,当PB =PQ 时,1cos 2BQ BP B =∠.解方程14(10)25t t =-,得8013t =.③如图5,当QB =QP 时,1cos 2BP BQ B =∠.解方程14(10)25t t -=,得5013t =.图3 图4 图5考点伸展在第(3)题条件下,以EF 为直径的⊙G 与x 轴相切于点A .如图6,这是因为AG 既是直角三角形EAF 斜边上的中线,也是直角梯形EOBF 的中位线,因此圆心G 到x 轴的距离等于圆的半径,所以⊙G与x轴相切于点A.图6例 11 2014年湖南省邵阳市中考第26题在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.动感体验请打开几何画板文件名“14邵阳26”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,△ABC 保持直角三角形的形状.点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察△ABC的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况.思路点拨1.抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标.2.第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比.3.第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程.图文解析(1)由y=x2-(m+n)x+mn=(x-m)(x-n),且m>n,点A位于点B的右侧,可知A(m, 0),B(n, 0).若m=2,n=1,那么A(2, 0),B(1, 0)..(2)如图1,由于C(0, mn),当点C的坐标是(0,-1),mn =-1,OC=1.若A、B两点分别位于y轴的两侧,那么OA·OB=m(-n)=-mn=1.所以OC2=OA·OB.所以OC OB=.OA OC所以tan∠1=tan∠2.所以∠1=∠2.又因为∠1与∠3互余,所以∠2与∠3互余.所以∠ACB=90°.图1 图2 图3(3)在△ABC中,已知A(2, 0),B(n, 0),C(0, 2n).讨论等腰三角形ABC,用代数法解比较方便:由两点间的距离公式,得AB2=(n-2)2,BC2=5n2,AC2=4+4n2.①当AB=AC时,解方程(n-2)2=4+4n2,得4n=-(如3图2).②当CA=CB时,解方程4+4n2=5n2,得n=-2(如图3),或n=2(A、B重合,舍去).③当BA=BC时,解方程(n-2)2=5n2,得n=(如图4),或n=(如图5).图4 图5考点伸展第(2)题常用的方法还有勾股定理的逆定理.由于C(0, mn),当点C的坐标是(0,-1),mn=-1.由A(m, 0),B(n, 0),C(0,-1),得AB2=(m-n)2=m2-2mn+n2=m2+n2+2,BC2=n2+1,AC2=m2+1.所以AB2=BC2+AC2.于是得到Rt△ABC,∠ACB=90°.第(3)题在讨论等腰三角形ABC时,对于CA=CB的情况,此时A、B两点关于y轴对称,可以直接写出B(-2, 0),n =-2.例 12 2014年湖南省娄底市中考第27题如图1,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连结PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图2,连结PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形?图1 图2动感体验请打开几何画板文件名“14娄底27”,拖动点Q在AC上运动,可以体验到,当点P运动到AB的中点时,△APQ的面积最大,等腰三角形APQ存在三种情况.还可以体验到,当QC =2HC时,四边形PQP′C是菱形.思路点拨1.在△APQ中,∠A是确定的,夹∠A的两条边可以用含t的式子表示.2.四边形PQP′C的对角线保持垂直,当对角线互相平分时,它是菱形,.图文解析(1)在Rt△ABC中,AC=4,BC=3,所以AB=5,sinA=35,cosA=45.作QD⊥AB于D,那么QD=AQ sinA=35t.所以S =S △APQ =12AP QD ⋅=13(5)25t t -⨯=23(5)10t t --=23515()+1028t --. 当52t =时,S 取得最大值,最大值为158. (2)设PP′与AC 交于点H ,那么PP ′⊥QC ,AH =APcosA =4(5)5t -. 如果四边形PQP′C 为菱形,那么PQ =PC .所以QC =2HC . 解方程4424(5)5t t ⎡⎤-=⨯--⎢⎥⎣⎦,得2013t =. 图3 图4(3)等腰三角形APQ 存在三种情况:①如图5,当AP =AQ 时,5-t =t .解得52t =. ②如图6,当PA =PQ 时,1cos 2AQ AP A =.解方程14(5)25t t =-,得4013t =. ③如图7,当QA =QP 时,1cos 2AP AQ A =.解方程14(5)25t t -=,得2513t =. 图5 图6 图7考点伸展在本题情境下,如果点Q 是△PP′C 的重心,求t 的值.如图8,如果点Q 是△PP′C 的重心,那么QC =23HC .解方程2444(5)35t t ⎡⎤-=⨯--⎢⎥⎣⎦,得6023t =. 图8例 13 2015年湖南省怀化市中考第22题如图1,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A→B→C 方向运动,它们到C 点后都停止运动,设点P 、Q 运动的时间为t 秒.(1)在运动过程中,求P 、Q 两点间距离的最大值;(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形.若存在,求出此时的t 值,若不存在,请说明理由.(24.25≈,结果保留一位小数)图1动感体验请打开几何画板文件名“15怀化22”,拖动点P 在AC 上运动,可以体验到,PQ 与BD 保持平行,等腰三角形PQC 存在三种情况.思路点拨1.过点B 作QP 的平行线交AC 于D ,那么BD 的长就是PQ 的最大值.2.线段PQ 扫过的面积S 要分两种情况讨论,点Q 分别在AB 、BC 上.3.等腰三角形PQC 分三种情况讨论,先罗列三边长. 图文解析(1)在Rt △ABC 中,AC =8,BC =6,所以AB =10. 如图2,当点Q 在AB 上时,作BD//PQ 交AC 于点D ,那么22AB AQ t AD AP t===. 所以AD =5.所以CD =3.如图3,当点Q 在BC 上时,16228CQ t CP t-==-. 又因为623CB CD ==,所以CQ CB CP CD =.因此PQ//BD .所以PQ 的最大值就是BD .在Rt △BCD 中,BC =6,CD =3,所以BD=.所以PQ的最大值是. 图2 图3 图4(2)①如图2,当点Q 在AB 上时,0<t≤5,S △ABD =15.由△AQP ∽△ABD ,得2()AQP ABD S AP S AD =△△.所以S =S △AQP =215()5t ⨯=235t . ②如图3,当点Q 在BC 上时,5<t≤8,S △ABC =24. 因为S △CQP =12CQ CP ⋅=1(162)(8)2t t --=2(8)t -, 所以S =S △ABC -S △CQP =24-(t -8)2=-t2+16t -40.(3)如图3,当点Q 在BC 上时,CQ =2CP ,∠C =90°,所以△PQC 不可能成为等腰三角形.当点Q 在AB 上时,我们先用t 表示△PQC 的三边长:易知CP =8-t .如图2,由QP//BD ,得QP APBD AD =5t =.所以QP =. 如图4,作QH ⊥AC 于H .在Rt △AQH 中,QH =AQ sin ∠A =65t ,AH =85t . 在Rt △CQH 中,由勾股定理,得CQ ==分三种情况讨论等腰三角形PQC :(1)①当PC =PQ 时,解方程8t -=,得10t =≈3.4(如图5所示).②当QC =QP 时,=.整理,得2111283200t t -+=. 所以(11t -40)(t -8)=0.解得4011t =≈3.6(如图6所示),或t =8(舍去).③当CP =CQ 时,8t -=25160t t -=. 解得165t ==3.2(如图7所示),或t =0(舍去).综上所述,当t 的值约为3.4,3.6,或等于3.2时,△PQC 是等腰三角形.图5 图6 图7考点伸展第(1)题求P、Q两点间距离的最大值,可以用代数计算说理的方法:①如图8,当点Q在AB上时,PQ.当Q与B重合时,PQ最大,此时t=5,PQ的最大值为②如图9,当点Q在BC上时,PQ)t-.当Q与B重合时,PQ最大,此时t=5,PQ的最大值为.综上所述,PQ的最大值为§1.3 因动点产生的直角三角形问题课前导学我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC 有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1 图2 图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB。
湖南省湘西州中考数学试卷(word版,含解析)
2019年湖南省湘西州中考数学试卷一、填空题(本大题8小题,每小题4分,共32分,将正确答案填在答题卡相应的横线上)1.(4分)﹣2019的相反数是.2.(4分)要使二次根式有意义,则x的取值范围为.3.(4分)因式分解:ab﹣7a=.4.(4分)从﹣3.﹣l,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是.5.(4分)黔张常铁路将于2020年正式通车运营,这条铁路估算总投资36200 000 000元,数据36200 000 000用科学记数法表示为.6.(4分)若关于x的方程3x﹣kx+2=0的解为2,则k的值为.7.(4分)下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为.(用科学计算器计算或笔算).8.(4分)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1?y2=x2?y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m=.二、选择题(本大题10小题,每小题4分,共40分,将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)9.(4分)下列运算中,正确的是()A.2a+3a=5a B.a6÷a3=a2C.(a﹣b)2=a2﹣b2 D.+=10.(4分)已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.(4分)下列立体图形中,主视图是圆的是()A.B.C.D.12.(4分)如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为()A.40°B.90°C.50°D.100°13.(4分)一元二次方程x2﹣2x+3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断14.(4分)在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)15.(4分)下列四个图形中,不是轴对称图形的是()A.B.C.D.16.(4分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环,方差分别是s甲2=0.25克,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁17.(4分)下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.圆内接四边形对角相等18.(4分)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.2三、解答题(本大题8小题,共78分,每个题目都要求在答题卡的相应位置写出计算或证明的主要步骤)19.(6分)计算:+2sin30°﹣(3.14﹣π)020.(6分)解不等式组:并把解集在数轴上表示出来.21.(8分)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.22.(8分)“扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“很了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB=4.(1)求函数y=和y=kx+b的解析式;(2)结合图象直接写出不等式组0<<kx+b的解集.24.(8分)列方程解应用题:某列车平均提速80km/h,用相同的时间,该列车提速前行驶300km,提速后比提速前多行驶200km,求该列车提速前的平均速度.25.(12分)如图,△ABC内接于⊙O,AC=BC,CD是⊙O的直径,与AB相交于点C,过点D作EF∥AB,分别交CA、CB的延长线于点E、F,连接BD.(1)求证:EF是⊙O的切线;(2)求证:BD2=AC?BF.26.(22分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF 周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P 的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.2019年湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(本大题8小题,每小题4分,共32分,将正确答案填在答题卡相应的横线上)1.(4分)﹣2019的相反数是2019 .【分析】直接利用相反数的定义进而得出答案.【解答】解:﹣2019的相反数是:2019.故答案为:2019.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(4分)要使二次根式有意义,则x的取值范围为x≥8 .【分析】直接利用二次根式的定义得出答案.【解答】解:要使二次根式有意义,则x﹣8≥0,解得:x≥8.故答案为:x≥8.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.3.(4分)因式分解:ab﹣7a=a(b﹣7).【分析】直接提公因式a即可.【解答】解:原式=a(b﹣7),故答案为:a(b﹣7).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.4.(4分)从﹣3.﹣l,π,0,3这五个数中随机抽取一个数,恰好是负数的概率是.【分析】五个数中有两个负数,根据概率公式求解可得.【解答】解:∵在﹣3.﹣l,π,0,3这五个数中,负数有﹣3和﹣1这2个,∴抽取一个数,恰好为负数的概率为,故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.(4分)黔张常铁路将于2020年正式通车运营,这条铁路估算总投资36200 000 000元,数据36200 000 000用科学记数法表示为 3.62×1010.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:36200 000 000=3.62×1010.故答案为: 3.62×1010.【点评】此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)若关于x的方程3x﹣kx+2=0的解为2,则k的值为 4 .【分析】直接把x=2代入进而得出答案.【解答】解:∵关于x的方程3x﹣kx+2=0的解为2,∴3×2﹣2k+2=0,解得:k=4.故答案为:4.【点评】此题主要考查了一元一次不等式的解,正确把已知数据代入是解题关键.7.(4分)下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为 3 .(用科学计算器计算或笔算).【分析】当输入x的值为16时,=4,4÷2=2,2+1=3.【解答】解:解:由题图可得代数式为.当x=16时,原式=÷2+1=4÷2+1=2+1=3.故答案为: 3【点评】此题考查了代数式求值,此类题要能正确表示出代数式,然后代值计算,解答本题的关键就是弄清楚题目给出的计算程序.8.(4分)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1?y2=x2?y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m= 6 .【分析】根据材料可以得到等式4m=3×8,即可求m;【解答】解:∵=(4,3),=(8,m),且∥,∴4m=3×8,∴m=6;故答案为6;【点评】本题考查新定义,点的坐标;理解阅读材料的内容,转化为所学知识求解是关键.二、选择题(本大题10小题,每小题4分,共40分,将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)9.(4分)下列运算中,正确的是()A.2a+3a=5a B.a6÷a3=a2C.(a﹣b)2=a2﹣b2 D.+=【分析】直接利用合并同类项法则以及完全平方公式、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项正确;B、a6÷a3=a3,故此选项错误;C、(a﹣b)2=a2﹣2ab+b2 ,故此选项错误;D、+,故此选项错误.故选:A.【点评】此题主要考查了合并同类项以及完全平方公式、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.10.(4分)已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】多边形的内角和可以表示成(n﹣2)?180°,列方程可求解.【解答】解:设所求多边形边数为n,则(n﹣2)?180°=1080°,解得n=8.故选:D.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.11.(4分)下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、主视图是三角形,故不符合题意;B、主视图是矩形,故不符合题意;C、主视图是圆,故符合题意;D、主视图是正方形,故不符合题意;故选:C.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.12.(4分)如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为()A.40°B.90°C.50°D.100°【分析】根据平行线的性质即可得到∠4的度数,再根据平角的定义即可得到∠3的度数.【解答】解:∵a∥b,∴∠4=∠1=50°,∵∠2=40°,∴∠3=90°,故选:B.【点评】本题考查平行线的性质,解题的关键是熟练掌握平行线的性质.13.(4分)一元二次方程x2﹣2x+3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】直接利用根的判别式进而判断得出答案.【解答】解:∵a=1,b=﹣2,c=3,∴b2﹣4ac=4=4﹣4×1×3=﹣8<0,∴此方程没有实数根.故选:C.【点评】此题主要考查了根的判别式,正确记忆公式是解题关键.14.(4分)在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)【分析】在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.【解答】解:将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点评】本题运用了点平移的坐标变化规律,关键是把握好规律.15.(4分)下列四个图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各图形分析判断即可得解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.16.(4分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环,方差分别是s甲2=0.25克,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差越小,成绩越稳定即可判断.【解答】解:因为方差越小成绩越稳定,故选甲.故选:A.【点评】本题考查方差,解题的关键是理解方差越小成绩越稳定.17.(4分)下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.圆内接四边形对角相等【分析】由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由圆内接四边形的性质得出D是假命题;即可得出答案.【解答】解:A/同旁内角相等,两直线平行;假命题;B.对角线互相平分的四边形是平行四边形;真命题;C.相等的两个角是对顶角;假命题;D.圆内接四边形对角相等;假命题;故选:B.【点评】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;要熟练掌握.18.(4分)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.2【分析】设CD=5x,BD=7x,则BC=2x,由AC=12即可求x,进而求出BC;【解答】解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.【点评】本题考查直角三角形的性质;熟练掌握直角三角形函数的三角函数值,线段垂直平分线的性质是解题的关键.三、解答题(本大题8小题,共78分,每个题目都要求在答题卡的相应位置写出计算或证明的主要步骤)19.(6分)计算:+2sin30°﹣(3.14﹣π)0【分析】直接利用二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简得出答案.【解答】解:原式=5+2×﹣1=5+1﹣1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣2<1得x<3,解不等式4x+5>x+2,得:x>﹣1,则不等式组的解集为﹣1<x<3,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.【分析】(1)利用SAS即可证明;(2)用正方形面积减去两个全等三角形的面积即可.【解答】解:(1)在△ABF和△CBE中,∴△ABF≌△CBE(SAS);(2)由已知可得正方形ABCD面积为16,△ABF面积=△CBE面积=×4×1=2.所以四边形BEDF的面积为16﹣2×2=12.【点评】本题主要考查了全等三角形的判定和性质,难度较小,掌握全等三角形的判定方法是解题的关键.22.(8分)“扫黑除恶”受到广大人民的关注,某中学对部分学生就“扫黑除恶”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60 人,扇形统计图中“很了解”部分所对应扇形的圆心角为108°;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对“扫黑除恶”知识达到“很了解”和“基本了解”程度的总人数.【分析】(1)由很了解的有18人,占30%,可求得接受问卷调查的学生数,继而求得扇形统计图中“很了解”部分所对应扇形的圆心角;(2)由(1)可求得基本了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)接受问卷调查的学生共有:18÷30%=60(人);∴扇形统计图中“很了解”部分所对应扇形的圆心角为:360°×30%=108°;故答案为:60,108°;(2)60﹣3﹣9﹣18=30;补全条形统计图得:(3)根据题意得:900×=720(人),则估计该中学学生中对校园安全知识达到“很了解”和“基本了解”程度的总人数为72人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(3,2),与y轴的负半轴交于点B,且OB=4.(1)求函数y=和y=kx+b的解析式;(2)结合图象直接写出不等式组0<<kx+b的解集.【分析】(1)把点A(3,2)代入反比例函数y=,可得反比例函数解析式,把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得一次函数解析式;(2)根据A点的坐标,结合图象即可求得.【解答】解:(1)把点A(3,2)代入反比例函数y=,可得m=3×2=6,∴反比例函数解析式为y=,∵OB=4,∴B(0,﹣4),把点A(3,2),B(0,﹣4)代入一次函数y=kx+b,可得,解得,∴一次函数解析式为y=2x﹣4;(2)不等式组0<<kx+b的解集为:x>3.【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足两个函数解析式.24.(8分)列方程解应用题:某列车平均提速80km/h,用相同的时间,该列车提速前行驶300km,提速后比提速前多行驶200km,求该列车提速前的平均速度.【分析】设该列车提速前的平均速度为xkm/h,则提速后的平均速度为(x+80)km/h,根据时间=路程÷速度结合提速前行驶300km和提速后行驶500km(300+200)所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该列车提速前的平均速度为xkm/h,则提速后的平均速度为(x+80)km/h,依题意,得:=,解得:x=120,经检验,x=120是原方程的解,且符合题意.答:该列车提速前的平均速度为120km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.(12分)如图,△ABC内接于⊙O,AC=BC,CD是⊙O的直径,与AB相交于点C,过点D作EF∥AB,分别交CA、CB的延长线于点E、F,连接BD.(1)求证:EF是⊙O的切线;(2)求证:BD2=AC?BF.【分析】(1)根据圆的对称性即可求出答案.(2)先证明△BCD∽△BDF,利用相似三角形的性质可知:,利用BC=AC即可求证BD2=AC?BF.【解答】解:(1)∵AC=BC,CD是圆的直径,∴由圆的对称性可知:∠ACD=∠BCD,∴CD⊥AB,∵AB∥EF,∴∠CDF=∠CGB=90°,∵OD是圆的半径,∴EF是⊙O的切线;(2)∵∠BDF+∠CDB=∠CDB+∠C=90°,∴∠BDF=∠CDB,∴△BCD∽△BDF,∴,∴BD2=BC?BD,∵BC=AC,∴BD2=AC?BF.【点评】本题考查相似三角形,涉及圆的对称性,垂径定理,相似三角形的判定与性质,需要学生灵活运用所学知识.26.(22分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF 周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P 的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E在x轴正半轴且点A在线段OE上得到点A在x轴正半轴上,所以A(2,0);由OA=2,且OA:AD=1:3得AD=6.由于四边形ABCD为矩形,故有AD⊥AB,所以点D在第四象限,横坐标与A的横坐标相同,进而得到点D坐标.由抛物线经过点D、E,用待定系数法即求出其解析式.(2)画出四边形MNGF,由于点F、G分别在x轴、y轴上运动,故可作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',得FM=FM'、GN=GN'.易得当M'、F、G、N'在同一直线上时N'G+GF+FM'=M'N'最小,故四边形MNGF周长最小值等于MN+M'N'.根据矩形性质、抛物线线性质等条件求出点M、M'、N、N'坐标,即求得答案.(3)因为OD可求,且已知△ODP中OD边上的高,故可求△ODP的面积.又因为△ODP的面积常规求法是过点P作PE平行y轴交直线OD于点E,把△ODP拆分为△OPE与△DPE的和或差来计算,故存在等量关系.设点P坐标为t,用t表示PE的长即列得方程.求得t的值要讨论是否满足点P在x轴下方的条件.(4)由KL平分矩形ABCD的面积可得K在线段AB上、L在线段CD上,画出平移后的抛物线可知,点K由点O平移得到,点L由点D平移得到,故有K(m,0),L(2+m,0).易证KL平分矩形面积时,KL一定经过矩形的中心H且被H平分,求出H坐标为(4,﹣3),由中点坐标公式即求得m 的值.【解答】解:(1)∵点A在线段OE上,E(8,0),OA=2∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N' ∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'∴C四边形MNGF=MN+NG+GF+FM=MN+N'G+GF+FM'∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小∴C四边形MNGF=MN+M'N'==2+10=12∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x设点P坐标为(t,t2﹣4t)(0<t<8),则点E(t,﹣3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t∴S△ODP=S△OPE+S△DPE=PE?x P+PE?(x D﹣x P)=PE(x P+x D﹣x P)=PE?x D=PE=﹣t2+t ∵△ODP中OD边上的高h=,∴S△ODP=OD?h∴﹣t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP=S△OPE﹣S△DPE=PE?x P﹣PE?(x P﹣x D)=PE(x P﹣x P+x D)=PE?x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图 4∴K(m,0),L(2+m,0)连接AC,交KL于点H∵S△ACD=S四边形ADLK=S矩形ABCD∴S△AHK=S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.【点评】本题考查了矩形的性质,二次函数的图象与性质,轴对称求最短路径问题,勾股定理,坐标系中求三角形面积,抛物线的平移,相似三角形的判定和应用,中点坐标公式.易错的地方有第(1)题对点D、C、B坐标位置的准确说明,第(3)题在点D左侧不存在满足的P在点D左侧的讨论,第(4)题对KL必过矩形中心的证明.。
八年级数学(下)第十七章测试题(含答案)
八年级数学(下)第十七章测试题(含答案)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5.(2013·德宏州中考)设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.(2013·柳州中考)在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B.C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC 边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.(2013·哈尔滨中考)在△ABC中,AB=2,BC=1,∠ABC=45°,以AB 为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC的形状,并说明理由.14.(12分)(2013·湘西州中考)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分)(2013·贵阳中考)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L2.7.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD·,解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10, ∴S△ADB=AB·DE=×10×3=15.15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得: BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边, ∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形, ∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.。
中考数学复习 专题23 圆的有关位置关系-人教版初中九年级全册数学试题
圆的有关位置关系☞解读考点知识点名师点晴点和圆的位置关系理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外 d>r;点P在圆上 d=r;点P在圆内 d<r及其运用.直线和圆的位置关系切线的判定定理理解切线的判定定理,会运用它解决一些具体的题目切线的性质定理理解切线的性质定理,会运用它解决一些具体的题目切线长定理运用切线长定理解决一些实际问题.圆和圆的位置关系理解两圆的互解关系与d、r1、r2等量关系的等价条件并灵活应用它们解题.☞2年中考【2015年题组】1.(2015贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.3【答案】B.考点:1.点与圆的位置关系;2.三角形中位线定理;3.最值问题;4.轨迹.2.(2015湘西州)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定【答案】B.【解析】试题分析:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选B.考点:点与圆的位置关系.3.(2015某某)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65° B.130° C.50° D.100°【答案】C.【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.4.(2015某某)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2【答案】C.考点:1.切线的性质;2.正方形的判定与性质;3.弧长的计算;4.扇形面积的计算;5.应用题;6.综合题.5.(2015襄阳)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40° B.100° C.40°或140° D.40°或100°【答案】C.【解析】试题分析:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选C.考点:1.三角形的外接圆与外心;2.圆周角定理;3.分类讨论.6.(2015某某)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值X围是()A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤5【答案】A.考点:1.直线与圆的位置关系;2.勾股定理;3.垂径定理.7.(2015某某)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:43y kx=+与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.12【答案】A.【解析】试题分析:∵直线l :43y kx=+与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=343⨯=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12PA,设P(x,0),∴PA=12﹣x,∴⊙P的半径PM=12PA=162x-,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,共6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征;3.新定义;4.动点型;5.综合题.8.(2015贺州)如图,BC是⊙O的直径,AD是⊙O的切线,切点为D,AD与CB的延长线交于点A,∠C=30°,给出下面四个结论:①AD=DC;②AB=BD;③AB=12BC;④BD=CD,其中正确的个数为()A.4个 B.3个 C.2个 D.1个【答案】B.故选B.考点:切线的性质.9.(2015某某)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.133 B.92 C.4133 D.25【答案】A.考点:1.切线的性质;2.矩形的性质;3.综合题.10.(2015某某)相切两圆的半径分别是5和3,则该两圆的圆心距是.【答案】2或8.【解析】试题分析:若两圆内切,圆心距为5﹣3=2;若两圆外切,圆心距为5+3=8,故答案为:2或8.考点:1.圆与圆的位置关系;2.分类讨论.11.(2015某某市)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于.(只需写出一个符合要求的数)【答案】14(答案不唯一).考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.开放型.12.(2015某某)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值X围是.【答案】3<r<5.【解析】试题分析:在直角△ABD中,CD=AB=4,AD=3,则BD=2234=5.由图可知3<r<5.故答案为:3<r<5.考点:点与圆的位置关系.13.(2015某某市)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于.(只需写出一个符合要求的数)【答案】14(答案不唯一).【解析】试题分析:∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在⊙B上,∴⊙B的半径为5,∵如果⊙D与⊙B相交,∴⊙D的半径R满足8<R<18,∵点B在⊙D内,∴R>13,∴13<R<18,∴14符合要求,故答案为:14(答案不唯一).考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.开放型.14.(2015义乌)在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为.【答案】3或73.考点:1.点与圆的位置关系;2.勾股定理;3.垂径定理;4.分类讨论.15.(2015某某)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.【答案】125.【解析】试题分析:连接OD,则∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=12∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.考点:切线的性质.16.(2015某某)如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若21,则∠ACD= °.【答案】112.5.考点:切线的性质.17.(2015某某)小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.433.考点:1.切线的性质;2.轨迹;3.应用题;4.综合题.18.(2015某某)如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= .【答案】50°.【解析】试题分析:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴ ,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,AC AD∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.考点:切线的性质.19.(2015某某)已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1,AB是⊙O 的弦,AB=2,连接PB,则PB= .【答案】1或5.考点:1.切线的性质;2.分类讨论;3.综合题.20.(2015某某)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确结论是________ (只需填写序号).【答案】②③.则正确的选项序号有②③.故答案为:②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质;5.压轴题.21.(2015荆州)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数kyx=(0k≠)的图象经过圆心P,则k= .【答案】﹣5.考点:1.切线的性质;2.一次函数图象上点的坐标特征;3.反比例函数图象上点的坐标特征;4.综合题;5.压轴题.22.(2015某某)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=2r,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B 关于⊙O的反演点,求A′B′的长.23.【答案】【解析】考点:1.点与圆的位置关系;2.勾股定理;3.新定义.23.(2015某某)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.【答案】(1)证明见试题解析;(2)证明见试题解析;(3)10 3.【解析】试题分析:(1)如图,连接OE,证明OE⊥PE即可得出PE是⊙O的切线;(2)由圆周角定理得到∠AEB=∠CED=90°,进而得到∠3=∠4,结合已知条件证得结论;(3)设EF=x,则CF=2x,在RT△OEF中,根据勾股定理求出EF的长,进而求得BE,CF的长,在RT△AEB中,根据勾股定理求出AE的长,然后根据△AEB∽△EFP,求出PF的长,即可求得PD 的长.考点:1.切线的判定;2.相似三角形的判定与性质;3.圆的综合题;4.压轴题.24.(2015某某)如图,AB 是⊙O 的直径,C ,G 是⊙O 上两点,且AC=CG ,过点C 的直线CD⊥BG 于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F .(1)求证:CD 是⊙O 的切线.(2)若32 FD OF ,求∠E 的度数. (3)连接AD ,在(2)的条件下,若CD=3,求AD 的长.【答案】(1)证明见试题解析;(2)30°;(3)13.【解析】试题解析:(1)如图1,连接OC ,AC ,CG ,∵AC=CG ,∴AC CG =,∴∠ABC=∠CBG ,∵OC=OB ,∴∠OCB=∠OBC ,∴∠OCB=∠CBG ,∴OC ∥BG ,∵CD ⊥BG ,∴OC ⊥CD ,∴CD 是⊙O 的切线;(2)∵OC ∥BD ,∴△OCF ∽△BDF ,△EOC ∽△EBD ,∴23OC OF BD DF ==,∴23OC OE BD BE ==,∵OA=OB ,∴AE=OA=OB ,∴OC=12OE ,∵∠ECO=90°,∴∠E=30°;(3)如图2,过A 作AH ⊥DE 于H ,∵∠E=30°,∴∠EBD=60°,∴∠CBD=12∠EBD=30°,∵CD=3,∴BD=3,DE=33,BE=6,∴AE=13BE=2,∴AH=1,∴EH=3,∴DH=23,在Rt △DAH 中,AD=22AH DH +=221(23)+=13.考点:1.圆的综合题;2.切线的判定与性质;3.相似三角形的判定与性质;4.压轴题.25.(2015某某)如图,四边形ABCD 是⊙O 的内接正方形,AB=4,PC 、PD 是⊙O 的两条切线,C 、D 为切点.(1)如图1,求⊙O 的半径;(2)如图1,若点E 是BC 的中点,连接PE ,求PE 的长度; (3)如图2,若点M 是BC 边上任意一点(不含B 、C ),以点M 为直角顶点,在BC 的上方作∠AMN=90°,交直线CP 于点N ,求证:AM=MN .【答案】(1)22;(2)25;(3)证明见试题解析.(2)如图1,连接EO ,OP ,∵点E 是BC 的中点,∴OE ⊥BC ,∠OCE=45°,则∠E0P=90°,∴EO=EC=2,2CO=4,∴22OE OP =25(3)如图2,在AB 上截取BF=BM ,∵AB=BC ,BF=BM ,∴AF=MC ,∠BFM=∠BMF=45°,∵∠AMN=90°,∴∠AMF+∠NMC=45°,∠FAM+∠AMF=45°,∴∠FAM=∠NMC ,∵由(1)得:PD=PC ,∠DPC=90°,∴∠DCP=45°,∴∠M=135°,∵∠AFM=180°﹣∠BFM=135°,在△AFM 和△CMN 中,∵∠FAM=∠CMN ,AF=MC ,∠AFM=∠M ,∴△AFM ≌△CMN (ASA ),∴AM=MN .考点:1.圆的综合题;2.切线的性质;3.正方形的判定与性质;4.全等三角形的判定与性质; 5.压轴题.26.(2015某某)如图,已知抛物线21(76)2y x x=--+的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:2()y a x h k=-+(0a≠),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.【答案】(1)21725()228y x=--+,M(72,258);(2)35,(72,54-);(3)证明见试题解析.试题解析:(1)∵21(76)2y x x=--+=21725()228x--+,∴抛物线的解析式化为顶点式为:21725()228y x=--+,顶点M的坐标是(72,258);(2)∵21(76)2y x x=--+,∴当y=0时,21(76)02x x--+=,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=﹣3,∴C(0,﹣3).连接BC,则BC与对称轴x=72的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC=2263+=35.设直线BC的解析式为考点:1.二次函数综合题;2.最值问题;3.切线的判定;4.压轴题.【2014年题组】1.(2014·某某)如图,圆与圆的位置关系没有()A.相交 B.相切 C.内含 D.外离[【答案】A.考点:圆与圆的位置关系.2.(2014· 某某省某某市)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为52,CD=4,则弦EF的长为()A. 4 B. 25C. 5 D. 6【答案】B.【解析】试题分析:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=12CD=12×4=2,∵⊙O的半径为52,∴OA=OC=52,∴OH=2232OC CH-=,∴AH=OA+OH=52+32=4,∴AC=2225AH CH +=.∵∠CDE=∠ADF ,∴CE AF =,∴EF AC =,∴EF=AC=25.故选B .考点:切线的性质.3.(2014·某某省某某市)如图,矩形ABCD 的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB 于点P ,O1O2=6.若⊙O2绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现( )A . 3次B .4次C .5次D .6次【答案】B .考点:直线与圆的位置关系.4.(2014·某某)如图,⊙1O ,⊙2O 的圆心1O ,2O 都在直线l 上,且半径分别为2cm ,3cm ,12O O 8cm =.若⊙1O 以1cm/s 的速度沿直线l 向右匀速运动(⊙2O 保持静止),则在7s 时刻⊙1O 与⊙2O 的位置关系是( )A.外切 B.相交 C.内含 D.内切【答案】D.【解析】试题分析:∵O1O2=8cm,⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动,∴7s 后两圆的圆心距为:1cm.根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).因此,∵⊙O1和⊙O2的半径分别为2㎝和3㎝,且O1O2=12㎝,∴3-2=1,即两圆圆心距离等于两圆半径之差.∴⊙O1和⊙O2的位置关系是内切.故选D.考点:1.面动平移问题;2.两圆的位置关系.5.(2014·黔西南)已知两圆半径分别为3、5,圆心距为8,则这两圆的位置关系为()A.外离 B.内含 C.相交 D.外切【答案】D.考点:圆与圆的位置关系.6.(2014·某某)两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为()A.外离 B.外切 C.相交 D.内切【答案】A.【解析】试题分析:根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).因,即两圆圆心距离大于两圆半径此,∵两圆的半径分别为2和3,圆心距为7,∴23<7之和.∴这两圆的位置关系为外离.故选A.考点:两圆的位置关系.7.(2014·某某)若两圆的半径分别是1cm和4cm,圆心距为5cm,则这两圆的位置关系是()A.内切 B.相交 C.外切 D.外离【答案】C.考点:两圆的位置关系.8.(2014·某某省某某市)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法判断【答案】A.【解析】试题分析:设圆的半径为r,点O到直线l的距离为d,∵d=5,r=6,∴d<r,∴直线l与圆相交.故选A.考点:直线与圆的位置关系.9.(2014·资阳)已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是.【答案】相离.【解析】试题分析:∵两圆的半径分别是方程x2﹣5x+5=0的两个根,∴两半径之和为5,∵⊙O1与⊙O2的圆心距为6,∴6>5,∴⊙O1与⊙O2的位置关系是相离.故答案为:相离.考点:1.根与系数的关系;2.圆与圆的位置关系.10.(2014·某某)如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B 为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM= .【答案】3 3.考点:切线的性质.11.(2014·某某省某某市)如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且BC CE=(1)求证:CD是⊙O的切线;(2)若tan∠CAB=34,BC=3,求DE的长.【答案】(1)证明见解析;(2)9 5.【解析】试题分析:(1)连结OC,由BC CE=,根据圆周角定理得∠1=∠2,而∠1=∠OCA,则∠2=∠OCA,则可判断OC∥AD,由于AD⊥CD,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BE交OC于F,由AB是⊙O的直径得∠ACB=90°,在Rt△ACB中,根据正切的定义得AC=4,考点:切线的判定.☞考点归纳归纳 1:点和圆的位置关系基础知识归纳:设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r 点P在⊙O内;d=r 点P在⊙O上;d>r 点P在⊙O外.基本方法归纳:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.注意问题归纳:符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.【例1】在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙ A的半径为2,下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【答案】A.考点:点与圆的位置关系.归纳2:直线与圆的位置关系基础知识归纳:直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离.如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交 d<r;直线l与⊙O相切 d=r;直线l与⊙O相离 d>r;注意问题归纳:直线与圆的位置关系,解题的关键是了解直线与圆的位置关系与d与r的数量关系.【例2】已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d <1,则m=4.其中正确命题的个数是()A. 1 B. 2 C. 4 D. 5【答案】C.考点:直线与圆的位置关系.归纳3:圆和圆的位置关系基础知识归纳:如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种.如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种.如果两个圆有两个公共点,那么就说这两个圆相交.基本方法归纳:设两圆的半径分别为R和r,圆心距为d,那么两圆外离 d>R+r两圆外切 d=R+r两圆相交 R-r<d<R+r(R≥r)两圆内切 d=R-r(R>r)两圆内含 d<R-r(R>r)【例3】如图,当半径分别是5和r的两圆⊙O1和⊙O2外切时,它们的圆心距O1O2=8,则⊙O2的半径r为()A. 12 B. 8 C. 5 D. 3【答案】D.【解析】试题分析:根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是8-5=3.故选D.考点:圆与圆的位置关系.☞1年模拟(2015届某某省某某第二中学校级模拟)已知⊙O的半径为2,圆心O到直线l的距离PO=1,1.则直线l与⊙O的位置关系是()A.相切 B.相离 C.相交 D.无法判断【答案】C.考点:直线与圆的位置关系.2.(2015届某某省某某校级模拟)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙ A的半径为2,下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【答案】A.【解析】试题分析:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选A.考点:点与圆的位置关系.3.(2015届某某省某某市校级模拟)如图所示,△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若∠DEF=52°,则∠A的度数是【答案】76°.考点:1三角形的内切圆与内心;2.圆周角定理;3.切线的性质.4.(2015届某某省某某麓山国际等四校联考)Rt ABC ∆中,90,6,8C AC BC ∠===.则ABC ∆的内切圆半径r =______.【答案】2.【解析】试题分析:利用面积分割法可得出直角三角形内切圆的半径r 与三角形的三边之间的关系为:c b a abr ++= 其中:a ,b 是直角三角形的两条直角边,c 是直角三角形的斜边由勾股定理可求出斜边AB=10所以内切圆半径2108686=++⨯=r考点:直角三角形的内切圆和内心.5.(2015届市怀柔区一模)已知两圆的半径分别为2cm 和4cm ,它们的圆心距为6cm ,则这两个圆的位置关系是 .【答案】外切.【解析】试题分析:圆心距6=两个半径之和,所以这两个圆相外切.考点:圆有关的位置关系.6.(2015届某某省某某市一模)两圆的圆心距d=6,两圆的半径长分别是方程01272=+-x x 的两根,则这两个圆的位置关系是 .【答案】内切.考点:1.圆与圆的位置关系;2.解一元二次方程-因式分解法.7.(2015届某某省某某市一模)如图,两圆圆心相同,大圆的弦AB 与小圆相切,AB=2n ,则图中阴影部分的面积是().【答案】A.【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=12AB=12×2n=n∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=n2π.故选A.考点:1.垂径定理的应用;2.切线的性质.8.(2015届某某中江县校级模拟)如图所示,图①中圆与正方形各边都相切,设这个圆的周长为;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长为;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长为;….依此规律,当正方形边长为2时,= ____________.【答案】10100π.考点:1.相切两圆的性质;2.规律型:图形的变化类.9.(2015届某某省滕州市校级模拟)已知P是⊙O外一点,PA切⊙O于A,PB切⊙O于B.若PA=6,则PB=.【答案】6.【解析】试题分析:∵PA、PB都是⊙O的切线,且A、B是切点,∴PA=PB,即PB=6.考点:切线长定理.10.(2015届某某省如皋市校级模拟)如图,AB是⊙O的直径,点C在AB的延长线上,CD 切⊙O于点D,连接AD.若∠A=25°,则∠C= 度.【答案】40°.考点:1.切线的性质;2.圆周角定理.。
单项式多项式同类项概念复习知识点复习+题型分类汇总基础应用+能力提高+中考真题
单项式、多项式、同类项知识点梳理一、单项式单项式的有关定义:单项式:数字与字母积的代数式。
单项式的系数:单项式中的数字因数。
单项式的次数:单项式中所有的字母的指数和。
单项式的相关注意事项:1.单独一个字母或数字也是单项式。
2.单项式系数包括它前面的符号;3.只含有字母因式的单项式的系数是1或―1。
(单项式系数是1或-1时,1可省略不写,但“-1”时,“-”号不可省略。
)4.单独的一个数字是单项式,它的系数是它本身,次数是0。
5.单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
6.单项式的系数是带分数时,应化成假分数。
7.单项式的次数仅与字母有关,与单项式的系数无关。
8.圆周率π是常数,不是字母,如2πr的系数是2π,不是2.二、多项式单项式的有关定义:多项式:在数学中,由若干个单项式相加组成的代数式叫做多项式。
多项式的项:组成多项式中的单项式叫多项式的项,其中不含字母的项叫做常数项。
多项式的次数:多项式中次数最高项的次数叫多项式的次数。
单项式的相关注意事项:1.一个多项式有几项,就叫做几项式。
2.多项式的每一项都包括项前面的符号。
3.多项式没有系数的概念,但有次数的概念。
4.多项式的次数不是组成多项式的所有字母指数和。
三、同类项同类项:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。
注意:同类项必须满足两个条件:1.所含字母全部相同2.每个相同字母的指数相同四、整式整式:单项式和多项式统称为整式。
注意:1.单项式或多项式都是整式。
2.整式不一定是单项式。
3.整式不一定是多项式。
4.分母中含有字母的代数式不是整式;而是今后将要学习的分式。
五、整式的加减运算基本步骤:去括号,合并同类项。
特别注意:1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.单项式、多项式概念练习题知识点一:单项式 基本应用: 1. 是单项式的打√.b r R x xxx x 22241,0),(,3,1,11,1,3---+π―52x 2,21(a+b )c ,3xy ,0,332-a ,―5a 2+a2.代数式b a 215-,π3,32y x -,232+-x x ,yx ,2x -,5中,单项式共有( )个A.6个B.5个C.4个D.3个 3.指出下列各单项式的系数和次数:()512ab -()4222m n ()3433R π (4)234x y - (5) 3x 2 (6)-0.6x 2y 3z (7)a 2b (8)-2.15ab 3系数: 系数: 系数: 系数: 系数: 系数: 系数: 系数: 次数: 次数: 次数: 次数: 次数: 次数: 次数: 次数: (9)-πm3(10)0.12h (11)—325x 3y 4z (12) —π2yx (13)—51x 2 (14)32a 0b 2(15)π3系数: 系数: 系数: 系数: 系数: 系数: 系数: 次数: 次数: 次数: 次数: 次数: 次数: 次数: 4.判断下列说法是否正确,正确的在括号内打”√”,不正确的打”X ”. ① 单项式m 既没有系数,也没有次数. ( )② 单项式5510t ⨯的系数是5. ( ) ③ -2001是单项式. ( ) ④3x不是单项式. ( ) ⑤ 单项式23x -的系数是23-. ( )5.下列单项式次数为3的是 ( )A.3abcB.2×3×4C.41x 3y D.52x6.单项式-232xy 的系数与次数分别是 ( ) A .-3,3 B .-21,3 C .-23,2 D .-23,37.单项式-2332yxz 的系数是( ) A. -2 B.2 C. -92 D. 92 8.下列说法中正确的是 ( )A.x -的次数为0,B.x π-的系数为1-,C.-5是一次单项式,D.b a 25-的次数是3次 9.对于单项式-23x 2y 2z 的系数和次数,下列说法正确的是( ) A.系数为-2,次数为8 B.系数为-8,次数为5 C. 系数为-2,次数为4 D. 系数为-2,次数为7 能力提高:1.下列说法中正确的是( )A.x -的次数为0,B.x π-的系数为1-,C.-5是一次单项式,D.b a 25-的次数是3次 2.若13n ab +是四次单项式,则n=_________. 3.若单项式m y x 35-的次数是9,则m =4.若2212n x y --是关于y x ,的五次单项式,=n _________.5.若12--b y ax 是关于x ,y 的一个单项式,且系数是722,次数是5,则a 和b 的值是多少? 6.若12)2(+-m b a m 是关于a 、b 的五次单项式,则m= .中考真题:1.(2011•柳州)单项式3x 2y 3的系数是 3 .2.(2012•上海)在下列代数式中,次数为3的单项式是( ) A.xy 2B.x 3+y 3C.x 3y D.3xy3.(2015•山东)如果cb a n 12221--是六次单项式,则n 的值是()A.1B.2C.3D.54.(2013•山西)一组按规律排列的式子:Λ,7,5,3,8642a a a a ,则第n 各式子是_________(n 为正整数)5.(2015•临沂)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2015个单项式是( ) A .2015x2015B .4029x2014C .4029x2015D .4031x2015知识点二:多项式 基础应用: 1.是多项式的打√: ―52x 2,21(a+b )c ,3xy ,0,332-a ,―5a 2+a ,.b r R x x x x x 22241,0),(,3,1,11,1,3---+π2.代数式365-x 是单项式还是多项式?说明理由。
[真题]2015年湖南省岳阳市中考数学试卷带答案解析
2015年湖南省岳阳市中考数学试卷一、选择题(本大题8道小题,每小题3分,满分24分。
在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)实数﹣2015的绝对值是(的绝对值是( ) A .2015B .﹣2015C .±2015D .2.(3分)有一种圆柱体茶叶筒如图所示,则它的主视图是(分)有一种圆柱体茶叶筒如图所示,则它的主视图是( )A .B .C .D .3.(3分)下列运算正确的是(分)下列运算正确的是( ) A.a ﹣2=﹣a 2 B .a +a 2=a 3 C .+=D .(a 2)3=a 64.(3分)一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是(式组的解集是( )A .﹣2<x <1B .﹣2<x ≤1C .﹣2≤x <1D .﹣2≤x ≤15.(3分)现有甲、乙两个合唱队队员的平均身高为170cm ,方差分别是S 甲2、S 乙2,且S 甲2>S 乙2,则两个队的队员的身高较整齐的是(,则两个队的队员的身高较整齐的是( ) A .甲队.甲队 B .乙队.乙队 C .两队一样整齐.两队一样整齐 D .不能确定 6.(3分)下列命题是真命题的是(分)下列命题是真命题的是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线互相垂直的平行四边形是矩形C .四条边相等的四边形是菱形D .正方形是轴对称图形,但不是中心对称图形7.(3分)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是(程正确的是( ) A .=B .=C .=D .=8.(3分)如图,在△ABC 中,AB=CB ,以AB 为直径的⊙O 交AC 于点D .过点C 作CF ∥AB ,在CF 上取一点E ,使DE=CD ,连接AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③=;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是(中的选项是( )A .①②.①②B .①②③.①②③C .①④.①④D .①②④二、填空题(本大题8道小题,每小题4分,满分32分。
湖南省张家界市2015年中考数学真题试题(含答案)
中考衣食住用行衣:中考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
张家界市2015年初中毕业学业考试试题数学考生注意:本试卷包括选择题、填空题和解答题三部分,共三道大题,满分120分,时量120分钟. 请考生在答题卡上答题,在草稿纸、试题卷上答题无效.一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.-2的相反数是( )A . 2B . -2 C. 21-D . 212.如图,O ∠=30°,C 为OB 上一点,且OC =6,以点C 为圆心,半径为3的圆与OA 的位置关系是( )A .相离B .相交C .相切 D. 以上三种情况均有可能3.下列运算正确的是( )A .632x x x =⋅ B. x x x 325=- C. (2x )3=5x D. (x 2-)224x -=4.下列四个立体图形中,它们各自的三视图有两个相同,而另一个不同的是( )① 球 ② 正方体 ③ 圆柱 ④ 圆锥A .①② B. ②③ C. ②④ D. ③④5.若一组数据1、a 、2、3、4的平均数与中位数相同,则a 不可能...是下列选项中的( ) A. 0 B. 2.5 C. 3 D. 56.若关于x 的一元二次方程0342=+-x kx 有实数根,则k 的非负整数值是( ) A. 1 B. 0,1 C. 1,2 D. 1,2,37.函数ax y =(0≠a )与xay =在同一坐标系中的大致图像是( )A B C D8.任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,K K 按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是( )A. 46B. 45C.44D. 43二、填空题(本大题共8个小题,每小题3分,满分24分) 9.因式分解:12-x = .10.如图,AC 与BD 相交于点O ,且CD AB =,请添加一个条件 ,使得ABO ∆≌CDO ∆.11.由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学计数法表示为 美元. 12.如图,在ABC ∆中,已知DE ∥BC ,32=EC AE ,则ADE ∆与ABC ∆ 的面积比为 .13.一个不透明的口袋中有3个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是黑球的概率是 . 14.将量角器按如图所示的方式放置在三角形纸板上,使顶点C 在半圆上,点A 、B 的读数分别为0100、0150 ,则ACB ∠的大小为___________度.15.不等式组 的解集为 .16.如图,在四边形ABCD 中,BC AB AD ==,连接AC ,且30=∠ACD °,=∠BAC tan 23,3=CD , 则AC = .三、解答题(本大题共9个小题,共计72分,解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分6分)计算:(14.3-π)0+4-(21)2-+︒30sin 2. 18.(本小题满分6分)如图,在边长均为1的正方形网格纸上有一个 ABC ∆,顶点A 、B 、C 及点O 均在格点上,请按要求完成以下操作或运算:(1)将ABC ∆向上平移4个单位,得到111C B A ∆(不写作法,但要标出字母);(2)将ABC ∆绕点O 旋转︒180,得到222C B A ∆(不写作法,但要标出字母);(3)求点A 绕着点O 旋转到点2A 所经过的路径长. 19.(本小题满分6分)先化简,再求值:a b a a b ab a 2222-÷⎪⎪⎭⎫ ⎝⎛--,其中21,21-=+=b a . 352324{>+≤-x xx20.(本小题满分8分)随着人民生活水平不断提高,我市 “初中生带手机”现象也越来越多,为了了解家 长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.问:(1)这次调查的学生家长总人数为.(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比. (3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数. 21、(满分本小题8分)小华从家里到学校的路是一段平路和一段下坡路, 假设他始终保持平路每分钟走60m ,下坡路每 分钟走80m ,上坡路每分钟走40m ,则他从家 里到学校需10mi ,从学校到家里需15mi .问: 从小华家到学校的平路和下坡路各有多远? 22.(本小题满分8分)如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A 、B 、D 三点在同一水平线上,AD CD ⊥,︒=∠30A ,︒=∠75CBD ,m AB 60=.(1)求点B 到AC 的距离; (2)求线段CD 的长度.图1 图2 23.(本小题满分8分)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依次类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0≠q ).如:数列1,3,9,27,…为等比数列,其中11=a ,公比为3=q .则:(1)等比数列3,6,12,…的公比q 为 ,第4项是 .n n(2)如果一个数列1a ,2a ,3a ,4a ,…是等比数列,且公比为q ,那么根据定义可得到:q a a =12,q a a =23,q a a=34,…… q a a n n =-1. 所以:q a a ⋅=12, ()21123q a q q a q a a ⋅=⋅⋅=⋅=,()312134q a q q a q a a ⋅=⋅⋅=⋅=,K K由此可得: =n a (用1a 和q 的代数式表示). (3)若一等比数列的公比2=q ,第2项是10,请求它的第1项与第4项. 24、(本小题满分10分)如图,在平行四边形ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA上,CG AE =,CF AH =,且EG 平分HEF ∠. 求证:(1)AEH ∆≌CGF ∆; (2)四边形EFGH 是菱形.25、(本小题满分12分)如图,二次函数c x ax y ++=22的图像与x 轴交于点A )0,1(-和点B ,与y 轴交于点C )3,0(.(1)求该二次函数的表达式;(2)过点A 的直线AD ∥BC 且交抛物线于另一点D ,求直线AD 的函数表达式; (3)在(2)的条件下,请解答下列问题:① 在x 轴上是否存在一点P ,使得以B 、C 、P 为顶点的三角形与ABD ∆相似,若存在,求出点P 的坐标,若不存在,请说明理由;② 动点M 以每秒1个单位的速度沿线段AD 从点A 向点D 运动,同时,动点N 以每秒513个单位的速度沿线段DB 从点D 向点B 运动,问:在运动过程中,当运动时间t 为何值时,DMN ∆的面积最大,并求出这个最大值.张家界市2015年初中毕业学业考试试题数学参考答案一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 题号 1 2 3 4 5 6 7 8 答案ACBDCADB二、填空题(本大题共8个小题,每小题3分,满分24分)9、(x+1)(x-1) 10、∠A=∠C (或AB ∥CD 或∠B=∠D ) 11、1.0×101112、4:25 13、6114.、25 15、-1<x ≤2 16.、63或53617、解:原式=1+2-4+2×21…………………………4分 =0 ……………………………………6分 18、(1)(2)小题每作对一个三角形记2分………………4分解(3)L =ππ41804·180=…………6分19、解:原式= ………………………2分= ………………………3分= ………………………4分当a =1+2,b =1-2时 原式=)21()21()21()21(-++--+=2 ……………………………………6分20、解:(1)这次调查的家长总人数为200人………………2分a b a b a a b ab a ))((222-+÷+-))(()(2b a b a aa b a -+⨯-b a ba +-(2)%20%100200602080200=⨯--- …………6分(3)︒=︒⨯3636020020………………………………8分21、解:设平路有χm,下坡路有γm ,则………………………1分108060=+y x 154060=+yx …………………………………………5分解得:400300==y x ………………………………………7分答:小华家到学校的平路和下坡路各为300m,400m …………8分 22、过点B 作AC BE ⊥于点E ………………………………1分在AEB Rt ∆中 AB BEA =sin ………………………………2分 BE=6021⨯=30ABAEA =cos ………………………………3分AE=6033023=⨯在CEB Rt ∆中︒=︒-︒=∠-∠=∠453075A CBD ACB ……4分 ∴ BE=CE=30…………………………………5分 ∴ AC=AE+CE=33030+ …………………6分 在ADC Rt ∆中ACCDA =sin CD=(33030+)21⨯=31515+………8分 23、(1)q = 2 第4项是 24 (每空1分 记2分) (2)n a =11-⋅n q a ……………………………………………4分(3)521021===q a a …………………………………………6分 40253314=⨯=⋅=q a a …………………………………8分 24、证明:(1)Θ ABCD 中C A ∠=∠ ……………………………………1分 AE=CG ………………………………………2分 AH=CF ………………………………………3分 ∴CGF AEH ∆≅∆∴ ………………………………5分E(2)Θ在ABCD 中D B ∠=∠,且AB=CD AD=BC 又ΘAE=CG AH=CF ∴BE=DG DH=BF∴BFE DHG ∆≅∆…………………………………7分 ∴HG=EF 又ΘHE=GF∴四边形EFGH 是平行四边形………………………8分 又ΘEG 平分HEF ∠ ∴21∠=∠ 又ΘHG ∥EF ∴32∠=∠ ∴31∠=∠∴HE=HG ……………………………………………9分 ∴EFGH 是菱形…………………………10分 25、解:(1)由题意知:{ca c a +-=+⨯+⋅=2002032……………………………………1分 解得{13-==a c ……………………………………………2分∴322++-=x x y ……………………………………3分(2)由图可知B (3,0)∴10330-=--=BC k …………………………………………4分 又ΘAD ∥BC∴1-==BC AD k k …………………………………………5分 设直线AD 的解析式为b x y +-=∴0=-(-1)+b b=-1∴直线AD 的解析式为:1--=x y …………………………6分(3)①ΘBC ∥AD ∴CBA DAB ∠=∠ ∴只要当:AB PB AD BC =或ADPBAB BC =时,PBC ∆∽ABD ∆…7分 由{1322--=++-=x y x x y 得D (4,-5)∴AD=25,AB=4,BC=23 设P 的坐标为(x ,0) 即432523x -=或253423x-=……………………………8分解得53=x 或5.4-=x ∴)0,53(P 或)0,5.4(-P ……………………………………9分②过点B 作AD BF ⊥于F ,过点N 作AD NE ⊥于E ,则在AFB Rt ∆中,045=∠BAF ∴ABBFBAF =∠sin ,∴BF=22224=⨯,BD=26 ∴131322622sin ===∠BD BF ADB DM=t -25,DN=t 513…………………………………10分 又ΘDNNEADB =∠sin ,NE=t 513t 5213132=⋅ ∴NE DM S MDN ⋅=∆21t t 52)25(21⋅-=)25(5125122t t t t --=+-= 25)225(512+--=t …………………………………11分∴当225=t 时,MDN S ∆的最大值为25…………………………12分。
湖南湘西自治州中考数学测验(含完整答案)
目录中考数学试卷 (2)一、填空题(本大题6小题,每小题3分,共18分,将正确答案填在相应的横线上) (2)二、选择题(本大题10小题,每小题4分,共40分) (3)三、解答题(本大题9小题,共92分,每个题目都要求写出计算或证明的主要步骤) (7)数学 (17)一、选择题:(本题共10小题,每小题4分,共40分) (17)二、填空题:(本题共8小题,每小题4分,共32分) (21)三、解答题:(本题共8小题,共78分) (26)中考数学试卷一、填空题(本大题6小题,每小题3分,共18分,将正确答案填在相应的横线上)1.(3分)(2014•湘西州)2014的相反数是﹣2014.2.(3分)(2014•湘西州)分解因式:ab﹣2a=a(b﹣2).3.(3分)(2014•湘西州)已知∠A=60°,则它的补角的度数是120度.4.(3分)(2014•湘西州)据中国汽车协会统计,2013年我国汽车销售量约为2198万辆,连续五年位居全球第一位,请用科学记数法表示21980000= 2.198×107.5.(3分)(2014•湘西州)如图,直线AB和CD相交于点O,OE平分∠DOB,∠AOC=40°,则∠DOE=20度.考点:对顶角、邻补角;角平分线的定义.分析:由∠AOC=40°,根据对顶角相等求出∠DOB=40°,再根据角平分线定义求出∠DOE 即可.解答:解:∵∠AOC=40°,∴∠DOB=∠AOC=40°,∵OE平分∠DOB,∴∠DOE=∠BOD=20°,故答案为:20.点评:本题考查了对顶角的性质角、角平分线定义的应用,关键是求出∠BOD的度数.6.(3分)(2014•湘西州)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则OE=4cm.考点:垂径定理;勾股定理.分析:先根据垂径定理得出CE的长,再在Rt△OCE中,利用勾股定理即可求得OE的长.解答:解:∵CD⊥AB∴CE=CD=×6=3cm,∵在Rt△OCE中,OE=cm.故答案为:4.点评:本题主要考查了垂径定理以及勾股定理,是基础知识要熟练掌握.二、选择题(本大题10小题,每小题4分,共40分)A.(m+n)2=m2+n2B.(x3)2=x5C.5x﹣2x=3 D.(a+b)(a﹣b)=a2﹣b2考点:完全平方公式;合并同类项;幂的乘方与积的乘方;平方差公式.分析:根据完全平方公式,幂的乘方,合并同类项法则,平方差公式分别求出每个式子的值,再判断即可.解答:解:A、(m+n)2=m2+2mn+n2,故本选项错误;B、(x3)2=x6,故本选项错误;C、5x﹣2x=3x,故本选项错误;D、(a+b)(a﹣b)=a2﹣b2,故本选项正确;故选D.点评:本题考查了对完全平方公式,幂的乘方,合并同类项法则,平方差公式的应用,注意:完全平方公式有(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,题目比较好,难度适中.A.0B.﹣1 C.﹣3 D.3考点:代数式求值.分析:先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.解答:解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.点评:本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.9.(4分)(2014•湘西州)如图,在Rt△ABC中,∠ACB=90°,CA=CB,AB=2,过点C作CD⊥AB,垂足为D,则CD的长为()A.B.C.1D.2考点:等腰直角三角形.分析:由已知可得Rt△ABC是等腰直角三角形,得出AD=BD=AB=1,再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解:∵∠ACB=90°,CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD=AB=1,∠CDB=90°,∴CD=BD=1.故选:C.点评:本题主要考查了等腰直角三角形,解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.10.(4分)(2014•湘西州)如图,直线a∥b,c⊥a,则c与b相交所形成的∠2度数为()A.45°B.60°C.90°D.120°考点:平行线的性质;垂线.分析:根据垂线的定义可得∠1=90°,再根据两直线平行,同位角相等可得∠2=∠1.解答:解:∵c⊥a,∴∠1=90°,∵a∥b,∴∠2=∠1=90°.故选C.点评:本题考查了平行线的性质,垂线的定义,是基础题,熟记性质是解题的关键.11.(4分)(2014•湘西州)在一个不透明的口袋中,装有5个红球和3个绿球,这些球除A.B.C.1D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:根据题意可知,共有8个球,红球有3个,故抽到红球的概率为,故选B.点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(4分)(2014•湘西州)每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.解答:解:样本是所抽取的50名学生对“世界读书日”的知晓情况.故选B.点评:本题考查了样本的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.14.(4分)(2014•湘西州)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长A.7B.8C.6或8 D.7或8考点:等腰三角形的性质;三角形三边关系.分析:因为等腰三角形的两边分别为2和3,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.解答:解:当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;当3为底时,三角形的三边为3,2、2可以构成三角形,周长为7.故选D.点评:题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.A.B.C.D.考点:正比例函数的图象.分析:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.解答:解:∵正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.∴正比例函数y=x的大致图象是C.故选:C.点评:此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直考点:正方形的判定;对顶角、邻补角;平行四边形的性质;矩形的性质.分析:根据对顶角的定义,正方形的判定,平行四边形的性质,矩形的性质对各选项分析判断利用排除法求解.解答:解:A、相等的角一定是对顶角错误,例如,角平分线分成的两个角相等,但不是对顶角,故本选项错误;B、四个角都相等的四边形一定是矩形,不一定是正方形,故本选项错误;C、平行四边形的对角线互相平分正确,故本选项正确;D、矩形的对角线一定相等,但不一定垂直,故本选项错误.故选C.点评:本题考查了正方形的判定,平行四边形的性质,矩形的性质,对顶角的定义,熟记各性质与判定方法是解题的关键.三、解答题(本大题9小题,共92分,每个题目都要求写出计算或证明的主要步骤)17.(6分)(2014•湘西州)计算:2﹣1+2cos60°+.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=+2×+3=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)(2014•湘西州)解不等式:3(x+2)≥0,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:不等式两边同时除以3,然后移项,即可求解.解答:解:不等式两边同时除以3,得:x+2≥0,移项,得:x≥﹣2.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.19.(8分)(2014•湘西州)如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF;(2)求证:AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.分析:(1)根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF;(2)根据全等三角形的对应边相等即可证得.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴AE=CF.点评:本题主要考查对平行四边形的性质,全等三角形的性质和判定等知识点的理解和掌握,能根据性质证出△ABE≌△CDF是证此题的关键.20.(8分)(2014•湘西州)据省环保网发布的消息,吉首市空气质量评价连续两年居全省(一)2014年5月1日~10日空气质量指数(AQI)情况日期1日2日3日4日5日6日7日8日9日10日空气质量指数(AQI)28 38 94 53 63 149 53 90 84 35(二)空气质量污染指数标准(AQI)污染指数等级0~50 优51~100 良101~150 轻微污染151~200 轻度污染10填吉首市空气质量平均情况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)考点:用样本估计总体;统计表;算术平均数.分析:(1)求出这10天的空气质量平均平均数,再根据空气质量污染指数标准找出等级即可;(2)找出这10天空气质量“达标”的天数,求出占的比列,再乘以365即可.解答:解:(1)=68.7≈69,69在51~100之间,所以吉首市空气质量平均情况属于良;(2)∵这10天空气质量“达标”的天数为9天,今年(365天)吉首市空气质量“达标”的天数为=328.5≈329(天),答:估计今年(365天)吉首市空气质量“达标”的天数为329天.点评:本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.21.(8分)(2014•湘西州)如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.考点:两条直线相交或平行问题.专题:计算题.分析:(1)先把P(2,n)代入y=x即可得到n的值,从而得到P点坐标为(2,3),然后把P点坐标代入y=﹣x+m可计算出m的值;(2)先利用一次函数解析式确定B点坐标,然后根据三角形面积公式求解.解答:解:(1)把P(2,n)代入y=x得n=3,所以P点坐标为(2,3),把P(2,3)代入y=﹣x+m得﹣2+m=2,解得m=4,即m和n的值分别为4,3;(2)把x=0代入y=﹣x+4得y=4,所以B点坐标为(0,4),所以△POB的面积=×4×2=4.点评:本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.22.(10分)(2014•湘西州)五一期间,春华旅行社组织一个由成人和学生共20人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148元/张,学生门票20元/张,该旅行团购买门票共花费1936元,问该团购买成人门票和学生门票各多少张?考点:二元一次方程组的应用.分析:设购买成人门票x张,学生门票y张,则由“成人和学生共20人”和“购买门票共花费1936元”列出方程组解决问题.解答:解:设购买成人门票x张,学生门票y张,由题意得解得答:购买成人门票12张,学生门票8张.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.23.(10分)(2014•湘西州)如图,在8×8的正方形网格中,△CAB和△DEF的顶点都在边长为1的小正方形的顶点上,AC与网格上的直线相交于点M.(1)填空:AC=2,AB=2.(2)求∠ACB的值和tan∠1的值;(3)判断△CAB和△DEF是否相似?并说明理由.考点:相似三角形的判定;勾股定理;锐角三角函数的定义.分析:(1)根据勾股定理来求AC、AB的长度;(2)利用勾股定理的逆定理和锐角三角函数的定义来解题;(3)由“三边法”法来证它们相似.解答:解:(1)如图,由勾股定理,得AC==2.AB==2故答案是:2,2;(2)如图所示,BC==2.又由(1)知,AC=2,AB=2,∴AC2+BC2=AB2=40,∴∠ACB=90°.tan∠1==.综上所述,∠ACB的值是90°和tan∠1的值是;(3)△CAB和△DEF相似.理由如下:如图,DE=DF==,EF==.则===2,所以△CAB∽△DEF.点评:本题考查了相似三角形的判定,勾股定理,勾股定理的逆定理以及锐角三角函数的定义.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.24.(12分)(2014•湘西州)湘西盛产椪柑,春节期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品质的椪柑120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品质的椪柑,每种椪柑所用车辆部不少于3辆.(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,椪柑品种 A B C每辆汽车运载量10 8 6每吨椪柑获利(元)800 1200 1000每种安排方案;(3)为了减少椪柑积压,湘西州制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?考点:一次函数的应用.分析:(1)等量关系为:车辆数之和=15,由此可得出x与y的关系式;(2)关系式为:装运每种脐橙的车辆数≥3;(3)总利润为:装运A种椪柑的车辆数×10×800+装运B种椪柑的车辆数×8×1200+装运C种椪柑的车辆数×6×1000+运费补贴,然后按x的取值来判定.解答:解:(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,则装C种椪柑的车辆是15﹣x﹣y辆.则10x+8y+6(15﹣x﹣y)=120,即10x+8y+90﹣6x﹣6y=120,则y=15﹣2x;(2)根据题意得:,解得:3≤x≤6.则有四种方案:A、B、C三种的车辆数分别是:3辆,9辆,3辆或4辆,7辆,4辆或5辆5辆、2辆、8辆或6辆、3辆、6辆;(3)W=10×800x+8×1200(15﹣x)+6×1000【15﹣x﹣(15﹣2x)】+120×50=4400x+150000,根据一次函数的性质,当x=6时,W有最大值,是4400×6+150000=176400(元).应采用A、B、C三种的车辆数分别是:6辆、3辆、6辆.点评:本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装在的几种方案是解决本题的关键.25.(22分)(2014•湘西州)如图,抛物线y=ax2+bx+c关于y轴对称,它的顶点在坐标原点O,点B(2,﹣)和点C(﹣3,﹣3)两点均在抛物线上,点F(0,﹣)在y轴上,过点(0,)作直线l与x轴平行.(1)求抛物线的解析式和线段BC的解析式.(2)设点D(x,y)是线段BC上的一个动点(点D不与B,C重合),过点D作x轴的垂线,与抛物线交于点G.设线段GD的长度为h,求h与x之间的函数关系式,并求出当x为何值时,线段GD的长度h最大,最大长度h的值是多少?(3)若点P(m,n)是抛物线上位于第三象限的一个动点,连接PF并延长,交抛物线于另一点Q,过点Q作QS⊥l,垂足为点S,过点P作PN⊥l,垂足为点N,试判断△FNS的形状,并说明理由;(4)若点A(﹣2,t)在线段BC上,点M为抛物线上的一个动点,连接AF,当点M在何位置时,MF+MA的值最小,请直接写出此时点M的坐标与MF+MA的最小值.考点:二次函数综合题;二次根式的性质与化简;待定系数法求一次函数解析式;二次函数的最值;待定系数法求二次函数解析式;线段的性质:两点之间线段最短.专题:压轴题.分析:(1)由于抛物线的顶点在坐标原点O,故抛物线的解析式可设为y=ax2,把点C的坐标代入即可求出抛物线的解析式;设直线BC的解析式为y=mx+n,把点B、C的坐标代入即可求出直线BC的解析式.(2)由点D(x,y)在线段BC上可得y D=x﹣2,由点G在抛物线y=﹣x2上可得y G=﹣x2.由h=DG=y G﹣y D=﹣x2﹣(x﹣2)配方可得h=﹣(x+)2+.根据二次函数的最值性即可解决问题.(3)可以证明PF=PN,结合PN∥OF可推出∠PFN=∠OFN;同理可得∠QFS=∠OFS.由∠PFN+∠OFN+∠OFS+∠QFS=180°可推出∠NFS=90°,故△NFS是直角三角形.(4)过点M作MH⊥l,垂足为H,如图4,由(3)中推出的结论PF=PN可得:抛物线y=﹣x2上的点到点F(0,﹣)的距离与到直线y=的距离相等,从而有MF=MH,则MA+MF=MA+MH.由两点之间线段最短可得:当A、M、H三点共线(即AM⊥l)时,MA+MH(即MA+MF)最小,此时x M=x A=﹣2,从而可以求出点M及点A 的坐标,就可求出MF+MA的最小值.解答:解:(1)如图1,∵抛物线y=ax2+bx+c关于y轴对称,它的顶点在坐标原点O,∴抛物线解析式为y=ax2.∵点C(﹣3,﹣3)在抛物线y=ax2上,∴.9a=﹣3.∴a=﹣.∴抛物线的解析式为y=﹣x2.设直线BC的解析式为y=mx+n.∵B(2,﹣)、C(﹣3,﹣3)在直线y=mx+n上,∴.解得:.∴直线BC的解析式为y=x﹣2.(2)如图2,∵点D(x,y)是线段BC上的一个动点(点D不与B,C重合),∴y D=x﹣2,且﹣3<x<2.∵DG⊥x轴,∴x G=x D=x.∵点G在抛物线y=﹣x2上,∴y G=﹣x2.∴h=DG=y G﹣y D=﹣x2﹣(x﹣2)=﹣x2﹣x+2=﹣(x2+x)+2=﹣(x2+x+﹣)+2=﹣(x+)2++2=﹣(x+)2+.∵﹣<0,﹣3<﹣<2,∴当x=﹣时,h取到最大值,最大值为.∴h与x之间的函数关系式为h=﹣(x+)2+,其中﹣3<x<2;当x=﹣时,线段GD的长度h最大,最大长度h的值是.(3)△FNS是直角三角形.证明:过点F作FT⊥PN,垂足为T,如图3,∵点P(m,n)是抛物线y=﹣x2上位于第三象限的一个动点,∴n=﹣m2.m<0,n<0.∴m2=﹣3n.在Rt△PTF中,∵PT=﹣﹣n,FT=﹣m,∴PF=====﹣n.∵PN⊥l,且l是过点(0,)平行于x轴的直线,∴PN=﹣n.∴PF=PN.∴∠PNF=∠PFN.∵PN⊥l,OF⊥l,∴PN∥OF.∴∠PNF=∠OFN.∴∠PFN=∠OFN.同理可得:∠QFS=∠OFS.∵∠PFN+∠OFN+∠OFS+∠QFS=180°,∴2∠OFN+2∠OFS=180°.∴∠OFN+∠OFS=90°.∴∠NFS=90°.∴△NFS是直角三角形.(4)过点M作MH⊥l,垂足为H,如图4,在(3)中已证到PF=PN,由此可得:抛物线y=﹣x2上的点到点F(0,﹣)的距离与到直线y=的距离相等.∴MF=MH.∴MA+MF=MA+MH.由两点之间线段最短可得:当A、M、H三点共线(即AM⊥l)时,MA+MH(即MA+MF)最小,等于AH.即x M=x A=﹣2时,MA+MF取到最小值.此时,y M=﹣×(﹣2)2=﹣,点M的坐标为(﹣2,﹣);y A=×(﹣2)﹣2=﹣,点A的坐标为(﹣2,﹣);MF+MA的最小值=AH=﹣(﹣)=.∴当点M的坐标为(﹣2,﹣)时,MF+MA的值最小,最小值为.数 学一、选择题:(本题共10小题,每小题4分,共40分)1.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )A .1.35×106B .1.35×105C .13.5×104D .135×103【专题】常规题型.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数【解答】解:135000=1.35×105故选:B .【点评】此题考查科学记数法表示较大的数.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值2.下列运算正确的是( )A .339x x x =B .842x x x ÷=C .()236ab ab =D .()3328x x = 【专题】计算题.【分析】根据同底数幂的乘除法法则,幂长乘方,积的乘方一一判断即可;【解答】解:A 、错误.应该是x 3•x 3=x 6;B 、错误.应该是x 8÷x 4=x 4;C 、错误.(ab 3)2=a 2b 6.D 、正确.故选:D .【点评】本题考查同底数幂的乘除法法则,幂长乘方,积的乘方等知识,解题的关键是熟练掌握基本知识,属于中考基础题.3.不等式组213312x x ≥-+⎧⎨+⎩< 的解集在数轴上表示正确的是( )A B C D 专题】常规题型.【分析】先求出不等式组的解集,再在数轴上表示出来即可.【解答】∵解不等式①得:x<1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x<1,在数轴上表示为:,故选:A.【点评】本题考查了解一元一次不等式和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.4.下图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥【专题】投影与视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选:D.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.5.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°E O DCA【专题】常规题型;线段、角、相交线与平行线.【分析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【解答】解:A 、∠AOD 与∠BOC 是对顶角,所以∠AOD=∠BOC ,此选项正确;B 、由EO ⊥CD 知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C 、∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,此选项错误;D 、∠AOD 与∠BOD 是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选:C .【点评】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义6.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度 高中 大专 本科 硕士 博士人数 9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:( )A .众数是20B .中位数是17C .平均数是12D .方差是26【专题】数据的收集与整理.【分析】根据众数、中位数、平均数以及方差的概念求解.【解答】解:A 、这组数据中9出现的次数最多,众数为9,故本选项错误;B 、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误; 故选:C .【点评】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.7.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-ODC B A【专题】矩形 菱形 正方形;与圆有关的计算.【分析】连接OA 、OB ,利用正方形的性质得出OA=ABcos45°=22,根据阴影部分的面积=S ⊙O -S正方形A B C D 列式计算可得.【解答】解:连接OA 、OB ,∵四边形ABCD 是正方形,∴∠AOB=90°,∠OAB=45°,故选:B .【点评】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.8.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )αA 300A .300sin α米B .300cos α米C .300tan α米D .300tan α米 【专题】等腰三角形与直角三角形.【分析】利用锐角三角函数关系即可求出小刚上升了的高度.【解答】解:在Rt △AOB 中,∠AOB=90°,AB=300米,BO=AB •sin α=300sin α米.故选:A .【点评】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB ,BO 的关系是解题关9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x-= C .800800401.25x x -= D .800800401.25x x-= 【专题】常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:故选:C .【点评】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.10.已知二次函数2y ax bx c =++的图象如图所示,则下列说法正确的是( ) A .ac <0 B .b <0 C .24b ac -<0 D .a b c ++<0xyO1【专题】推理填空题.【分析】根据抛物线的开口方向确定a ,根据抛物线与y 轴的交点确定c ,根据对称轴确定b ,根据抛物线与x 轴的交点确定b 2-4ac ,根据x=1时,y >0,确定a+b+c 的符号.【解答】解:∵抛物线开口向上, ∴a >0,∵抛物线交于y 轴的正半轴, ∴c >0,∴ac >0,A 错误;∴b <0,∴B 正确;∵抛物线与x 轴有两个交点,∴b 2-4ac >0,C 错误; 当x=1时,y >0, ∴a+b+c >0,D 错误; 故选:B .【点评】本题考查的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.二、填空题:(本题共8小题,每小题4分,共32分) 123= 。
湖南省湘西州2015年中考数学真题试题(含解析)
2015年湖南省湘西州中考数学试卷 一、填空题(本大题共8小题,每小题4分,共32分)1.﹣2015的绝对值是 2015 .考点:绝对值.分析:根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.解答:解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.点评:此题考查了绝对值的知识,掌握绝对值的意义是本题的关键,解题时要细心.2.如图,直线a,b被直线c所截,且a∥b,∠1=40°,则∠2= 140 度.考点:平行线的性质..分析:根据平行线的性质,两直线平行,同旁内角互补解答即可.解答:解:∵a∥b,∠1=40°,∴∠2=180°﹣40°=140°,故答案为:140点评:此题考查平行线的性质,关键是根据两直线平行,同旁内角互补得出∠2的度数.3.(4分)(2015•湘西州)分解因式:x2﹣4= (x+2)(x﹣2) .考点:因式分解-运用公式法..专题:因式分解.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.4.(4分)(2015•湘西州)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为 5.4×106 人.考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将5400000用科学记数法表示为:5.4×106.故答案为:5.4×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2015•湘西州)掷一枚质地均匀的骰子,六个面上分别标有1,2,3,4,5,6;则出现点数为1的概率为 .考点:概率公式..分析:根据概率公式知,6个数中有1个数为1,故掷一次骰子,向上一面的点数为1的概率是.解答:解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有1种为向上一面的点数是1,故其概率是:.故答案为:.点评:本题主要考查了概率的求法的运用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.6.(4分)(2015•湘西州)要使分式有意义,则x的取值范围是 x≠2 .考点:分式有意义的条件..分析:利用分式有意义的条件得出其分母不能为0,进而求出即可.解答:解:∵分式有意义,∴2﹣x≠0,∴x≠2.故答案为:x≠2.点评:此题主要考查了分式有意义的条件,正确记忆分式有意义分母不能为0是解题关键.7.(4分)(2015•湘西州)如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC的面积之比为 1:4 .考点:相似三角形的判定与性质;三角形中位线定理..分析:根据三角形的中位线得出EF=BC,DE∥BC,推出△EF∽△ABC,根据相似三角形的性质得出即可.解答:解:∵E、F分别为AB、AC的中点,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:1:4.点评:本题考查了三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方.8.(4分)(2015•湘西州)如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 4 cm.考点:垂径定理;等腰直角三角形..分析:首先由垂径定理可知:AE=BE,然后再在Rt△AOE中,由特殊锐角三角函数可求得AE=OE=2,从而可求得弦AB的长.解答:解:∵OE⊥AB,∴AE=EB在Rt△AOE中,∠OAB=45°,∴tan∠OAB=,∴AE=OE=2.∴AB=2AE=2×2=4.故答案为:4cm.点评:本题主要考查的是锐角三角函数和垂径定理的应用,掌握垂径定理和特殊锐角三角函数值是解题的关键.二、选择题(本大题共10小题,每小题4分,共40分)9.(4分)(2015•湘西州)下列运算正确的是( ) A.a+2a=2a2B.+=C.(x﹣3)2=x2﹣9D.(x2)3=x6考点:幂的乘方与积的乘方;实数的运算;合并同类项;完全平方公式..分析:分别根据合并同类项的法则、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一计算即可.解答:解:A、a+2a=2a≠2a2,故本选项错误;B、与不是同类项,不能合并,故本选项错误;C、(x﹣3)2=x2﹣6x+9,故本选项错误;D、(x2)3=x6,故本选项正确.故选D.点评:本题考查的是幂的乘方与积的乘方法则,熟知幂的乘方法则是底数不变,指数相乘是解答此题的关键.10.(4分)(2015•湘西州)在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为( ) A.(﹣2,1)B.(2,﹣1)C.(2,1)D.(﹣2,﹣1)考点:关于原点对称的点的坐标..分析:关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.解答:解:∵点A坐标为(﹣2,1),∴点B的坐标为(2,﹣1).故选B.点评:本题考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).11.(4分)(2015•湘西州)下列几何体中,主视图、左视图、俯视图完全相同的是( ) A.球B.圆锥C.圆柱D.长方体考点:简单几何体的三视图..分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到主视图、左视图和俯视图完全相同的选项即可.解答:解:A、球的主视图、左视图与俯视图均是圆形,故本选项符合题意;B、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,故本选项不符合题意;C、圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,故本选项不符合题意;D、长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,故本选项不符合题意.故选A.点评:本题考查的是简单几何体的三视图,考查常见立体图形的三视图和学生的空间想象能力.解决本题的关键是找到几何体的三视图,掌握完全相同的含义.12.(4分)(2015•湘西州)湘西土家族苗族自治州6月2日至6月8日最高气温(℃)统计如下表:日期2日3日4日5日6日7日8日最高气温℃28252530322827则这七天最高气温的中位数为( ) A.25℃B.27℃C.28℃D.30℃考点:中位数..分析:首先把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答即可.解答:解:将这组数据从小到大的顺序排列(25,25,27,28,28,30,32),处于中间位置的那个数是28,那么由中位数的定义可知,这组数据的中位数是28,故选C.点评:本题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.13.(4分)(2015•湘西州)下列方程中,没有实数根的是( ) A.x2﹣4x+4=0B.x2﹣2x+5=0C.x2﹣2x=0D.x2﹣2x﹣3=0考点:根的判别式..分析:利用判别式分别判定即可得出答案.解答:解:A、x2﹣4x+4=0,△=16﹣16=0有相同的根;B、x2﹣2x+5=0,△=4﹣20<0没有实数根;C、x2﹣2x=0,△=4﹣0>0有两个不等实数根;D、x2﹣2x﹣3=0,△=4+12>0有两个不等实数根.故选:B.点评:本题主要考查了根的判别式,解题的关键是熟记判别式的公式.14.(4分)(2015•湘西州)式子2+的结果精确到0.01为(可用计算器计算或笔算)( ) A.4.9B.4.87C.4.88D.4.89考点:计算器—数的开方..分析:首先得出≈1.732,≈1.414,进一步代入求得答案即可.解答:解:∵≈1.732,≈1.414,∴2+≈2×1.732+1.414=4.878≈4.88.故选:C.点评:此题主要考查了利用计算器求数的开方运算,解题首先注意要让学生能够熟练运用计算器计算实数的四则混合运算,同时也要求学生会根据题目要求取近似值.15.(4分)(2015•湘西州)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定考点:点与圆的位置关系..分析:根据点与圆的位置关系的判定方法进行判断.解答:解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选B.点评:本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.16.(4分)(2015•湘西州)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( ) A.36°B.60°C.72°D.108°考点:等腰三角形的性质..分析:根据∠A=36°,AB=AC求出∠ABC的度数,根据角平分线的定义求出∠ABD的度数,根据三角形的外角的性质计算得到答案.解答:解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=36°,∴∠1=∠A+∠ABD=72°,故选:C.点评:本题考查的是三角形的外角的性质和等腰三角形的性质,掌握等腰三角形的两个底角相等和三角形的一个外角等于与它不相邻的两个内角之和是解题的关键.17.(4分)(2015•湘西州)已知k>0,b<0,则一次函数y=kx﹣b的大致图象为( ) A.B.C.D.考点:一次函数图象与系数的关系..分析:根据k、b的符号确定直线的变化趋势和与y轴的交点的位置即可.解答:解:∵k>0,∴一次函数y=kx﹣b的图象从左到右是上升的,∵b<0,一次函数y=kx﹣b的图象交于y轴的负半轴,故选B.点评:本题考查了一次函数的图象与系数的关系,解题的关键是了解系数与图象位置的关系,难度不大.18.(4分)(2015•湘西州)下列说法中,正确的是( ) A.三点确定一个圆 B.一组对边平行,另一组对边相等的四边形是平行四边形 C.对角线互相垂直的四边形是菱形 D.对角线互相垂直平分且相等的四边形是正方形考点:命题与定理..分析:根据确定圆的条件对A进行判断;根据平行四边形的判定方法对B进行判断;根据菱形的判定方法对C进行判断;根据正方形的判定方法对D进行判断.解答:解:A、不共线的三点确定一个圆,所以A选项错误;B、一组对边平行且另一组对边也平行的四边形是平行四边形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分且相等的四边形是正方形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.三、解答题(本大题共8小题,共78分,每个题目都要求写出计算或证明的主要步骤)19.(5分)(2015•湘西州)计算:32﹣20150+tan45°.考点:实数的运算;零指数幂;特殊角的三角函数值..分析:分别进行乘方、零指数幂、特殊角的三角函数值等运算,然后合并.解答:解:原式=9﹣1+1=9.点评:本题考查了实数的运算,涉及了乘方、零指数幂、特殊角的三角函数值等知识,属于基础题.20.(5分)(2015•湘西州)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集..分析:首先根据解一元一次不等式组的方法,求出不等式组中每个不等式的解集;然后找出每个不等式的解集的公共部分,求出不等式组的解集;最后把不等式组的解集在数轴上表示出来即可.解答:解:∵,∴∴1≤x≤3,把不等式组的解集在数轴上表示出来为:.点评:(1)此题主要考查了解一元一次不等式组问题,要熟练掌握,解答此题的关键是要明确一元一次不等式组的解法以及解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.(2)此题还考查了在数轴上表示不等式的解集的方法,要熟练掌握,解答此题的关键是要明确:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.21.(8分)(2015•湘西州)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质..专题:证明题.分析:(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.解答:证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.点评:此题考查了矩形的判定,全等三角形的判定与性质,以及平行四边形的性质,熟练掌握矩形的判定方法是解本题的关键.22.(8分)(2015•湘西州)如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.考点:待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征..分析:(1)根据待定系数法即可求得;(2)根据反比例函数的性质先判定图象在一、三象限,y随x的增大而减小,根据1<3<0,可以确定B(1,m)、C(3,n)两个点在第一象限,从而判定m,n的大小关系.解答:解:(1)因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=;(2)∵k=6>0,∴图象在一、四三象限,y随x的增大而减小,又∵1<3<0,∴B(1,m)、C(3,n)两个点在第一象限,∴m<n.点评:本题考查了待定系数法求解析式,反比例函数的性质等,熟练掌握反比例函数的性质是解题的关键.23.(8分)(2015•湘西州)某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:类别重视一般不重视人数a15b(1)求表格中a,b的值;(2)请补全统计图;(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.考点:条形统计图;用样本估计总体;统计表..专题:计算题.分析:(1)由总人数结合条形统计图求出a与b的值即可;(2)补全条形统计图,如图所示;(3)求出“重视课外阅读名著”的初中生人数占的百分比,乘以2000即可得到结果.解答:解:(1)根据题意得:b=5,a=50﹣(15+5)=30;(2)补全条形统计图,如图所示:(3)根据题意得:2000×=1200(人),则该校“重视课外阅读名著”的初中生人数约有1200人.点评:此题考查了条形统计图,统计表,以及用样本估计总体,弄清题中的数据是解本题的关键.24.(8分)(2015•湘西州)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?考点:二元一次方程组的应用..分析:(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,根据若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元,列出方程组,求解即可;(2)将(1)中的每盒豆腐乳和每盒猕猴桃果汁的价格代入解得即可.解答:解:(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,可得:,解得:,答:每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)把每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元代入,可得:4×30+2×45=210(元),答:该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需210元.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.25.(12分)(2015•湘西州)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.考点:解直角三角形的应用-方向角问题..分析:(1)过点A作AD⊥OD于点D,可求得AD的长为60km,由60>50可知,不会受到台风影响;(2)过点B作BG⊥OC于点G,可求得BG的长,由离台风中心50千米的区域内会受到台风的影响,即可知会受到影响,然后由勾股定理求得受影响的范围长,即可求得影响的时间.解答:解:(1)作AD⊥OC,∵由题意得:∠DOA=45°,OA=60km,∴AD=DO=60÷=60km,∵60>50,∴A市不会受到此台风的影响;(2)作BG⊥OC于G,∵由题意得:∠BOC=30°,OB=80km,∴BG=OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,∴EG==30km,∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5小时,∴影响时间约为1.5小时.点评:此题考查了解直角三角形的应用﹣方向角问题以及勾股定理的应用.此题难度适中,注意掌握数形结合思想的应用,能从实际问题中整理出直角三角形是解答本题的关键.26.(24分)(2015•湘西州)如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.考点:二次函数综合题..分析:(1)先由直线AB的解析式为y=﹣x+3,求出它与x轴的交点A、与y轴的交点B 的坐标,再将A、B两点的坐标代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由直线与两坐标轴的交点可知:∠QAP=45°,设运动时间为t秒,则QA=,PA=3﹣t,然后再图①、图②中利用特殊锐角三角函数值列出关于t的方程求解即可;(3)设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t,点Q的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),则FQ=3t﹣t2,EP∥FQ,EF∥PQ,所以四边形为平行线四边形,由平行四边形的性质可知EP=FQ,从而的到关于t的方程,然后解方程即可求得t的值,然后将t=1代入即可求得点F的坐标;(4)设运动时间为t秒,则OP=t,BQ=(3﹣t),然后由抛物线的解析式求得点M的坐标,从而可求得MB的长度,然后根据相似相似三角形的性质建立关于t的方程,然后即可解得t的值.解答:解:(1)∵y=﹣x+3与x轴交于点A,与y轴交于点B,∴当y=0时,x=3,即A点坐标为(3,0),当x=0时,y=3,即B点坐标为(0,3),将A(3,0),B(0,3)代入y=﹣x2+bx+c,得,解得∴抛物线的解析式为y=﹣x2+2x+3;(2)∵OA=OB=3,∠BOA=90°,∴∠QAP=45°.如图①所示:∠PQA=90°时,设运动时间为t秒,则QA=,PA=3﹣t.在Rt△PQA中,,即:,解得:t=1;如图②所示:∠QPA=90°时,设运动时间为t秒,则QA=,PA=3﹣t.在Rt△PQA中,,即:,解得:t=.综上所述,当t=1或t=时,△PQA是直角三角形;(3)如图③所示:设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t,点Q的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),则FQ=3t﹣t2.∵EP∥FQ,EF∥PQ,∴EP=FQ.即:3﹣t=3t﹣t2.解得:t1=1,t2=3(舍去).将t=1代入F(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),得点F的坐标为(2,3).(4)如图④所示:设运动时间为t秒,则OP=t,BQ=(3﹣t).∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M的坐标为(1,4).∴MB==.当△BOP∽△QBM时,即:,整理得:t2﹣3t+3=0,△=32﹣4×1×3<0,无解:当△BOP∽△MBQ时,即:,解得t=.∴当t=时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.点评:本题主要考查的是二次函数、锐角三角函数、平行四边形、相似三角形的综合应用,利用含字母t的式子表示出相关线段的长度,根据图形的性质建立关于字母t的方程是解题的关键.。
湖南省湘西州中考数学真题试题(含解析)
2016年湖南省湘西州中考数学试卷一、填空题(共8小题,每小题4分,满分32分)1.2的相反数是.2.使代数式有意义的x取值范围是.3.四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C=.4.如图,直线CD∥BF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=.5.某地区今年参加初中毕业学业考试的九年级考生人数为31000人,数据31000人用科学记数法表示为人.6.分解因式:x2﹣4x+4= .7.如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.8.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.二、选择题(共10小题,每小题4分,满分40分)9.一组数据1,8,5,3,3的中位数是()A.3 B.3.5 C.4 D.510.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形11.下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形12.计算﹣的结果精确到0.01是(可用科学计算器计算或笔算)()A.0.30 B.0.31 C.0.32 D.0.3313.不等式组的解集是()A.x>1 B.1<x≤2 C.x≤2 D.无解14.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对15.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为()A. B. C. D.116.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限17.如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE的面积为()A.3 B.5 C.6 D.818.在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB 的位置关系是()A.相交 B.相切 C.相离 D.不能确定三、解答题(共8小题,满分78分)19.计算:(﹣3)0﹣2sin30°﹣.20.先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.21.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.22.如图,已知反比例函数y=的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.(1)求反比例函数和直线的解析式;(2)求△AOB的面积.23.某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.(1)“从来不管”的问卷有份,在扇形图中“严加干涉”的问卷对应的圆心角为.(2)请把条形图补充完整.(3)若该校共有学生2000名,请估计该校对手机问题“严加干涉”的家长有多少人.24.测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.25.某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?26.如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.2016年湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(共8小题,每小题4分,满分32分)1.2的相反数是﹣2 .【考点】相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.使代数式有意义的x取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:∵代数式有意义,∴x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.3.四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C=80°.【考点】圆内接四边形的性质.【分析】直接根据圆内接四边形的性质进行解答即可.【解答】解:∵四边ABCD是圆的内接四边形,∠A=100°,∴∠C=180°﹣100°=80°.故答案为:80°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.4.如图,直线CD∥BF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=30°.【考点】平行线的性质.【分析】直接利用对顶角的定义得出∠DMN的度数,再利用平行线的性质得出答案.【解答】解:∵∠1=30°,∴∠DMN=30°,∵CD∥BF,∴∠2=∠DMN=30°.故答案为:30°.【点评】此题主要考查了平行线的性质,正确得出∠2=∠DMN是解题关键.5.某地区今年参加初中毕业学业考试的九年级考生人数为31000人,数据31000人用科学记数法表示为3.1×104人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:31000=3.1×104,故答案为:3.1×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.6.分解因式:x2﹣4x+4= (x﹣2)2.【考点】因式分解-运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.7.如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=35°.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:∵圆心角∠AOB=70°,∴∠C=∠AOB=×70°=35°.故答案为:35°.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为24 .【考点】菱形的性质.【分析】直接根据菱形面积等于两条对角线的长度的乘积的一半进行计算即可.【解答】解:菱形的面积=×6×8=24,故答案为:24.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.菱形面积等于两条对角线的长度的乘积的一半.二、选择题(共10小题,每小题4分,满分40分)9.一组数据1,8,5,3,3的中位数是()A.3 B.3.5 C.4 D.5【考点】中位数.【分析】根据中位数计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按照从小到大的顺序排列为:1,3,3,5,8,故这组数据的中位数是3.故选:A.【点评】本题考查了中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.10.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【解答】解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;B、等腰三角形是轴对称图形,不是中心对称图形.故本选项正确.C、矩形是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误;故选B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,熟练掌握概念是解答此题的关键.11.下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形【考点】平行四边形的判定.【分析】根据平行四边形的判定定理进行分析即可.【解答】解:A、两条对角线互相平分的四边形是平行四边形,故本选项说法正确;B、两组对边分别相等的四边形是平行四边形,故本选项说法正确;C、一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误;故选:D.【点评】此题主要考查了平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.12.计算﹣的结果精确到0.01是(可用科学计算器计算或笔算)()A.0.30 B.0.31 C.0.32 D.0.33【考点】计算器—数的开方.【分析】首先得出≈1.732,≈1.414,进一步代入求得答案即可.【解答】解:∵≈1.732,≈1.414,∴﹣≈1.732﹣1.414=0.318≈0.32.故选:C.【点评】此题主要考查了利用计算器求数的开方运算,解题首先注意要让学生能够熟练运用计算器计算实数的四则混合运算,同时也要求学生会根据题目要求取近似值.13.不等式组的解集是()A.x>1 B.1<x≤2 C.x≤2 D.无解【考点】解一元一次不等式组.【专题】计算题;一元一次不等式(组)及应用.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≤2,由②得:x>1,则不等式组的解集为1<x≤2,故选B【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.14.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【考点】等腰三角形的性质;三角形三边关系.【分析】分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C【点评】此题是等腰三角形的性质题,主要考查了等腰三角形的性质,三角形的三边关系,分类考虑是解本题的关键.15.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为()A. B. C. D.1【考点】概率公式.【分析】先求出总的球的个数,再根据概率公式即可得出摸到红球的概率.【解答】解:∵袋中装有6个红球,2个绿球,∴共有8个球,∴摸到红球的概率为=;故选A.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【解答】解:∵y=﹣2x+3中,k=﹣2<0,∴必过第二、四象限,∵b=3,∴交y轴于正半轴.∴过第一、二、四象限,不过第三象限,故选:C.【点评】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.17.如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE的面积为()A.3 B.5 C.6 D.8【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定与性质,可得△ABC的面积,根据面积的和差,可得答案.【解答】解:由DE∥BC,DB=2AD,得△ADE∽△ABC, =.由,△ADE的面积为1,得=,得S△ABC=9.S DBCE=S ABC﹣S△ADE=8,故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形面积的比等于相似比的平方得出S△ABC=9是解题关键.18.在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB 的位置关系是()A.相交 B.相切 C.相离 D.不能确定【考点】直线与圆的位置关系.【分析】过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出d<r,根据直线和圆的位置关系即可得出结论.【解答】解:过C作CD⊥AB于D,如图所示:∵在Rt△ABC中,∠C=90,AC=4,BC=3,∴AB==5,∵△ABC的面积=AC×BC=AB×CD,∴3×4=5CD,∴CD=2.4<2.5,即d<r,∴以2.5为半径的⊙C与直线AB的关系是相交;故选A.【点评】本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交.三、解答题(共8小题,满分78分)19.计算:(﹣3)0﹣2sin30°﹣.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣3)0﹣2sin30°﹣的值是多少即可.【解答】解:(﹣3)0﹣2sin30°﹣=1﹣2×﹣2=1﹣1﹣2=﹣2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.20.先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣2,b=1时,原式=4+2=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.22.如图,已知反比例函数y=的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.(1)求反比例函数和直线的解析式;(2)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)把A点坐标分别代入y=和y=﹣x+b中分别求出k和b即可得到两函数解析式;(2)利用一次函数解析式求出B点坐标,然后根据三角形面积公式求解.【解答】解:(1)把A(1,4)代入y=得k=1×4=4,所以反比例函数的解析式为y=;把A(1,4)代入y=﹣x+b得﹣1+b=4,解得b=5,所以直线解析式为y=﹣x+5;(2)当y=0时,﹣x+5=0,解得x=5,则B(5,0),所以△AOB的面积=×5×4=10.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点23.某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.(1)“从来不管”的问卷有25 份,在扇形图中“严加干涉”的问卷对应的圆心角为72°.(2)请把条形图补充完整.(3)若该校共有学生2000名,请估计该校对手机问题“严加干涉”的家长有多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用问卷数“从来不管”所占百分比即可;用“严加干涉”部分占问卷总数的百分比乘以360°即可;(2)由(1)知“从来不管”的问卷数,再将问卷总数减去其余两个类别数量可得“严加干涉”的数量,进而补全条形统计图;(3)用“严加干涉”部分所占的百分比的乘以2000即可得到结果.【解答】解:(1)“从来不管”的问卷有100×25%=25(份),在扇形图中“严加干涉”的问卷对应的圆心角为:360°×20%=72°,故答案为:25,72°.(2)由(1)知,“从来不管”的问卷有25份,则“严加干涉”的问卷有100﹣25﹣55=20(份),补全条形图如图:(3)2000×20%=400(人),答:估计该校对手机问题“严加干涉”的家长有400人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.24.测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)直接利用tan50°=,进而得出AC的长,求出AB的长即可;(2)直接利用tan50°=,进而得出BC的长求出答案.【解答】解:(1)由题意可得:tan50°==≈1.2,解得:AC=24,∵∠BDC=45°,∴DC=BC=20m,∴AB=AC﹣BC=24﹣20=4(m),答:建筑物BC的高度为4m;(2)设DC=BC=xm,根据题意可得:tan50°==≈1.2,解得:x=25,答:建筑物BC的高度为25m.【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.25.某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?【考点】一次函数的应用;分式方程的应用.【分析】(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元,根据甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同即可列方程组求解;(2)设甲进货x件,乙进货(100﹣x)件,根据两种商品的进货总价不高于9000元,两种商品全部售完后的销售总额不低于10480元即可列不等式组求解;(3)把利润表示出甲进的数量的函数,利用函数的性质即可求解.【解答】解:(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.根据题意得:,解得:,答:甲商品的单价是每件100元,乙每件80元;(2)设甲进货x件,乙进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案;(3)销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙进的件数是100﹣48=52(件).答:当甲进48件,乙进52件时,最大的利润是1520元.【点评】本题考查了二元一次方程组的应用以及不等式组、一次函数的性质,正确求得甲进货的数量的范围是关键.26.如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式,得到关于a、b的方程组,求得a、b的值,从而可得到抛物线的解析式;(2)依据同角的余角相等证明∠BDC=∠DE0,然后再依据AAS证明△BDC≌△DEO,从而得到OD=AO=1,于是可求得点D的坐标;(3)作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.先求得抛物线的对称轴方程,从而得到点B′的坐标,由轴对称的性质可知当点D、M、B′在一条直线上时,△BMD的周长有最小值,依据两点间的距离公式求得BD和B′D的长度,从而得到三角形的周长最小值,然后依据待定系数法求得D、B′的解析式,然后将点M的横坐标代入可求得点M的纵坐标;(4)过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.然后依据S△FDA=S梯形﹣S△ODA﹣S△AGF的三角形的面积与a的函数关系式,然后依据二次函数的性质求解即可.DOGF【解答】解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DE O.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.∵S梯形DOGF=(OD+FG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGF=AG•FG=﹣a3+4a2﹣3a,∴S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF=﹣a2+a﹣.∴当a=时,S△FDA的最大值为.∴点P的坐标为(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数、一次函数的解析式、全等三角形的性质和判定、轴对称的性质、二次函数的图象和性质得到△FDA的面积与a的函数关系式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年湖南省湘西州中考数学试卷一、填空题(本大题共8小题,每小题4分,共32分)1.(4分)﹣2015的绝对值是.2.(4分)如图,直线a,b被直线c所截,且a∥b,∠1=40°,则∠2=度.3.(4分)分解因式:x2﹣4=.4.(4分)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为人.5.(4分)掷一枚质地均匀的骰子,六个面上分别标有1,2,3,4,5,6;则出现点数为1的概率为.6.(4分)函数y=的自变量取值范围是.7.(4分)如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC 的面积之比为.8.(4分)如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为cm.二、选择题(本大题共10小题,每小题4分,共40分)9.(4分)下列运算正确的是()A.a+2a=2a2B .+=C.(x﹣3)2=x2﹣9 D.(x2)3=x610.(4分)在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B 的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)11.(4分)下列几何体中,主视图、左视图、俯视图完全相同的是()A.球B.圆锥C.圆柱D.长方体12.(4分)湘西土家族苗族自治州6月2日至6月8日最高气温(℃)统计如下表:日期2日3日4日5日6日7日8日最高气温℃28252530322827则这七天最高气温的中位数为()A.25℃B.27℃C.28℃D.30℃13.(4分)下列方程中,没有实数根的是()A.x2﹣4x+4=0B.x2﹣2x+5=0 C.x2﹣2x=0D.x2﹣2x﹣3=014.(4分)式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9 B.4.87 C.4.88 D.4.8915.(4分)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O 的位置关系为()A.点A在圆上 B.点A在圆内C.点A在圆外D.无法确定16.(4分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°17.(4分)已知k>0,b<0,则一次函数y=kx﹣b的大致图象为()A.B.C.D.18.(4分)下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形三、解答题(本大题共8小题,共78分,每个题目都要求写出计算或证明的主要步骤)19.(5分)计算:32﹣20150+tan45°.20.(5分)解不等式组,并把解集在数轴上表示出来.21.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.22.(8分)如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.23.(8分)某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:类别重视一般不重视人数a15b(1)求表格中a,b的值;(2)请补全统计图;(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.24.(8分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?25.(12分)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.26.(24分)如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.2015年湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(本大题共8小题,每小题4分,共32分)1.(4分)﹣2015的绝对值是2015.【分析】根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.【解答】解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.2.(4分)如图,直线a,b被直线c所截,且a∥b,∠1=40°,则∠2=140度.【分析】根据平行线的性质,两直线平行,同旁内角互补解答即可.【解答】解:∵a∥b,∠1=40°,∴∠2=180°﹣40°=140°,故答案为:1403.(4分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).4.(4分)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为 5.4×106人.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将5400000用科学记数法表示为:5.4×106.故答案为:5.4×106.5.(4分)掷一枚质地均匀的骰子,六个面上分别标有1,2,3,4,5,6;则出现点数为1的概率为.【分析】根据概率公式知,6个数中有1个数为1,故掷一次骰子,向上一面的点数为1的概率是.【解答】解:根据题意可得:掷一次骰子,向上一面的点数有6种情况,其中有1种为向上一面的点数是1,故其概率是:.故答案为:.6.(4分)函数y=的自变量取值范围是x≠2.【分析】根据分式有意义的条件:分母不等于0,即可求解.【解答】解:根据题意得,2﹣x≠0,解得:x≠2.故答案是:x≠2.7.(4分)如图,在△ABC中,E,F分别为AB,AC的中点,则△AEF与△ABC 的面积之比为1:4.【分析】根据三角形的中位线得出EF=BC,DE∥BC,推出△EF∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵E、F分别为AB、AC的中点,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:1:4.8.(4分)如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为4cm.【分析】首先由垂径定理可知:AE=BE,然后再在Rt△AOE中,由特殊锐角三角函数可求得AE=OE=2,从而可求得弦AB的长.【解答】解:∵OE⊥AB,∴AE=EB在Rt△AOE中,∠OAB=45°,∴tan∠OAB=,∴AE=OE=2.∴AB=2AE=2×2=4.故答案为:4cm.二、选择题(本大题共10小题,每小题4分,共40分)9.(4分)下列运算正确的是()A.a+2a=2a2B.+=C.(x﹣3)2=x2﹣9 D.(x2)3=x6【分析】分别根据合并同类项的法则、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一计算即可.【解答】解:A、a+2a=2a≠2a2,故本选项错误;B、与不是同类项,不能合并,故本选项错误;C、(x﹣3)2=x2﹣6x+9,故本选项错误;D、(x2)3=x6,故本选项正确.故选:D.10.(4分)在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B 的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)【分析】关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.【解答】解:∵点A坐标为(﹣2,1),∴点B的坐标为(2,﹣1).故选:B.11.(4分)下列几何体中,主视图、左视图、俯视图完全相同的是()A.球B.圆锥C.圆柱D.长方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到主视图、左视图和俯视图完全相同的选项即可.【解答】解:A、球的主视图、左视图与俯视图均是圆形,故本选项符合题意;B、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,故本选项不符合题意;C、圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,故本选项不符合题意;D、长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,故本选项不符合题意.故选:A.12.(4分)湘西土家族苗族自治州6月2日至6月8日最高气温(℃)统计如下表:日期2日3日4日5日6日7日8日28252530322827最高气温℃则这七天最高气温的中位数为()A.25℃B.27℃C.28℃D.30℃【分析】首先把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答即可.【解答】解:将这组数据从小到大的顺序排列(25,25,27,28,28,30,32),处于中间位置的那个数是28,那么由中位数的定义可知,这组数据的中位数是28,故选:C.13.(4分)下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0D.x2﹣2x﹣3=0【分析】利用判别式分别判定即可得出答案.【解答】解:A、x2﹣4x+4=0,△=16﹣16=0有相同的根;B、x2﹣2x+5=0,△=4﹣20<0没有实数根;C、x 2﹣2x=0,△=4﹣0>0有两个不等实数根;D 、x2﹣2x﹣3=0,△=4+12>0有两个不等实数根.故选:B.14.(4分)式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9 B.4.87 C.4.88 D.4.89【分析】首先得出≈1.732,≈1.414,进一步代入求得答案即可.【解答】解:∵≈1.732,≈1.414,∴2+≈2×1.732+1.414=4.878≈4.88.故选:C.15.(4分)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O 的位置关系为()A.点A在圆上 B.点A在圆内C.点A在圆外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.16.(4分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°【分析】根据∠A=36°,AB=AC求出∠ABC的度数,根据角平分线的定义求出∠ABD的度数,根据三角形的外角的性质计算得到答案.【解答】解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=36°,∴∠1=∠A+∠ABD=72°,故选:C.17.(4分)已知k>0,b<0,则一次函数y=kx﹣b的大致图象为()A.B.C.D.【分析】根据k、b的符号确定直线的变化趋势和与y轴的交点的位置即可.【解答】解:∵k>0,∴一次函数y=kx﹣b的图象从左到右是上升的,∵b<0,一次函数y=kx﹣b的图象交于y轴的正半轴,故选:A.18.(4分)下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形【分析】根据确定圆的条件对A进行判断;根据平行四边形的判定方法对B进行判断;根据菱形的判定方法对C进行判断;根据正方形的判定方法对D进行判断.【解答】解:A、不共线的三点确定一个圆,所以A选项错误;B、一组对边平行且另一组对边也平行的四边形是平行四边形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分且相等的四边形是正方形,所以D选项正确.故选:D.三、解答题(本大题共8小题,共78分,每个题目都要求写出计算或证明的主要步骤)19.(5分)计算:32﹣20150+tan45°.【分析】分别进行乘方、零指数幂、特殊角的三角函数值等运算,然后合并.【解答】解:原式=9﹣1+1=9.20.(5分)解不等式组,并把解集在数轴上表示出来.【分析】首先根据解一元一次不等式组的方法,求出不等式组中每个不等式的解集;然后找出每个不等式的解集的公共部分,求出不等式组的解集;最后把不等式组的解集在数轴上表示出来即可.【解答】解:∵,∴∴﹣1≤x≤3,把不等式组的解集在数轴上表示出来为:.21.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.【分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD 为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【解答】证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.22.(8分)如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.【分析】(1)根据待定系数法即可求得;(2)根据反比例函数的性质先判定图象在一、三象限,y随x的增大而减小,根据0<1<3,可以确定B(1,m)、C(3,n)两个点在第一象限,从而判定m,n的大小关系.【解答】解:(1)因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=;(2)∵k=6>0,∴图象在一、三象限,y随x的增大而减小,又∵0<1<3,∴B(1,m)、C(3,n)两个点在第一象限,∴m>n.23.(8分)某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:类别重视一般不重视人数a15b(1)求表格中a,b的值;(2)请补全统计图;(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.【分析】(1)由总人数结合条形统计图求出a与b的值即可;(2)补全条形统计图,如图所示;(3)求出“重视课外阅读名著”的初中生人数占的百分比,乘以2000即可得到结果.【解答】解:(1)根据题意得:b=5,a=50﹣(15+5)=30;(2)补全条形统计图,如图所示:(3)根据题意得:2000×=1200(人),则该校“重视课外阅读名著”的初中生人数约有1200人.24.(8分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?【分析】(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,根据若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元,列出方程组,求解即可;(2)将(1)中的每盒豆腐乳和每盒猕猴桃果汁的价格代入解得即可.【解答】解:(1)设每盒豆腐乳x元,每盒猕猴桃果汁y元,可得:,解得:,答:每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)把每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元代入,可得:4×30+2×45=210(元),答:该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需210元.25.(12分)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.【分析】(1)过点A作AH⊥OD于点H,可求得AH的长为60km,由60>50可知,不会受到台风影响;(2)过点B作BG⊥OC于点G,可求得BG的长,由离台风中心50千米的区域内会受到台风的影响,即可知会受到影响,然后由勾股定理求得受影响的范围长,即可求得影响的时间.【解答】解:(1)作AH⊥OC,易知台风中心O与A市的最近距离为AH的长度,∵由题意得:∠HOA=45°,OA=60km,∴AH=HO=60÷=60km,∵60>50,∴A市不会受到此台风的影响;(2)作BG⊥OC于G,∵由题意得:∠BOC=30°,OB=80km,∴BG=OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,∴EG==30km,∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5小时,∴影响时间约为1.5小时.26.(24分)如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.【分析】(1)先由直线AB的解析式为y=﹣x+3,求出它与x轴的交点A、与y 轴的交点B的坐标,再将A、B两点的坐标代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由直线与两坐标轴的交点可知:∠QAP=45°,设运动时间为t秒,则QA=,PA=3﹣t,然后再图①、图②中利用特殊锐角三角函数值列出关于t的方程求解即可;(3)设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t,点Q 的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),则FQ=3t ﹣t2,EP∥FQ,EF∥PQ,所以四边形为平行线四边形,由平行四边形的性质可知EP=FQ,从而的到关于t的方程,然后解方程即可求得t的值,然后将t=1代入即可求得点F的坐标;(4)设运动时间为t秒,则OP=t,BQ=(3﹣t),然后由抛物线的解析式求得点M的坐标,从而可求得MB的长度,然后根据相似相似三角形的性质建立关于t的方程,然后即可解得t的值.【解答】解:(1)∵y=﹣x+3与x轴交于点A,与y轴交于点B,∴当y=0时,x=3,即A点坐标为(3,0),当x=0时,y=3,即B点坐标为(0,3),将A(3,0),B(0,3)代入y=﹣x2+bx+c,得,解得∴抛物线的解析式为y=﹣x2+2x+3;(2)∵OA=OB=3,∠BOA=90°,∴∠QAP=45°.如图①所示:∠PQA=90°时,设运动时间为t秒,则QA=,PA=3﹣t.在Rt△PQA中,,即:,解得:t=1;如图②所示:∠QPA=90°时,设运动时间为t秒,则QA=,PA=3﹣t.在Rt△PQA中,,即:,解得:t=.综上所述,当t=1或t=时,△PQA是直角三角形;(3)如图③所示:设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t,点Q的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),则FQ=3t﹣t2.∵EP∥FQ,EF∥PQ,∴EP=FQ.即:3﹣t=3t﹣t2.解得:t1=1,t2=3(舍去).将t=1代入F(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),得点F的坐标为(2,3).(4)如图④所示:设运动时间为t秒,则OP=t,BQ=(3﹣t).∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M的坐标为(1,4).∴MB==.当△BOP∽△QBM时,即:,整理得:t2﹣3t+3=0,△=32﹣4×1×3<0,无解:当△BOP∽△MBQ时,即:,解得t=.∴当t=时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.。