热管技术
热管技术及原理
热管原理热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1•3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
热管技术
从传热状况看,热管沿轴向可分为 蒸发段,绝热段和冷凝段三部分。
2.2. 热Байду номын сангаас的工作过程
如图:当热管的一端受热时毛细芯中的液 体蒸发汽化,蒸汽在微小的压差下流向另 一端放出热量凝结成液体,液体在沿多孔 材料靠毛细力的作用流回蒸发段。如此循 环往复,热量便从一端传到了另一端!
(1)热管换热设备较常规设备更安全、可靠,可长期连续运行 这一特点对连续性生产的工程,如化工、冶金、动力等部门具有特别重要的意义。 常规换热设备一般都是间壁换热,冷热流体分别在器壁的两侧流过,如管壁或器壁有 泄漏,则将造成停产损失。由热管组成的换热设备,则是二次间壁换热,即热流要通 过热管的蒸发段管壁和冷凝段管壁才能传到冷流体,而热管一般不可能在蒸发段和冷 凝段同时破坏,所以大大增强了设备运行的可靠性。 (2)热管管壁的温度可调性 热管管壁的温度可以调节,在低温余热回收或热交换中是相当重要的,因为可以通 过适当的热流变换把热管管壁温度调整在低温流体的露点以上,从而可防止露点腐蚀, 保证设备的长期运行。这在电站锅炉尾部的空气预热方面应用得特别成功,设置在锅 炉尾部的热管空气预热器,由于能调整管壁温度不仅能防止烟气结露,而且也避免了 烟灰在管壁上的粘结,保证锅炉长期运行,并提高了锅炉效率。 (3)冷、热段结构和位置布置灵活 由热管组成的换热设备的受热部分和放热部分结构设计和位置布置非常灵活,可适 应于各种复杂的场合。由于结构紧凑占地空间小,因此特别适合于工程改造及地面空 间狭小和设备拥挤的场合,且维修工作量。 (4)热管换热设备效率高,节能效果显著。
2.5热管的相容性及寿命
热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发 生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。 相容性在热管的应用中具有重要的意义。只有长期相容性良好的热管, 才能保证稳定的传热性能、长期的工作寿命及工业应用的可能性。影响 热管寿命的因素很多,归结起来,造成热管不相容的主要形式有以下三 方面:
热管的技术资料
五、均溫板與迴路式熱管
生產均溫板(Vapor Chamber)之設備 均溫板關鍵技術 迴路式熱管(Loop Heat Pipe)關鍵技術
生產均溫板之設備
☆.工件成型模具及設備 ☆. 潔淨清洗設備 ☆. 真空燒結爐設備 ☆. 真空焊接爐設備 ☆. 測漏儀器 ☆. 注料設備 ☆. 除氣、封焊設備 ☆. 拋光研磨設備
老化
彎壓
整型
பைடு நூலகம்
清洗
烘乾
包裝
出貨
品管流程及管制重點
進料
規格 數量 外觀
發料
規格 數量
切管
尺寸 外觀
縮頭
尺寸 外觀
清洗
外觀 PH 電阻
燒銲
尺寸 外觀
縮尾
尺寸 外觀
穿網
貼壁 尺寸 外觀
退火
真空 溫度 氣體 時間
充填
真空 溫度 水量 尺寸
整型
整直 外觀
烘乾
溫度 含水
OK
半成品測試
溫度差 熱傳量
彎管
尺寸 外觀
3 mm 4 mm 5 mm 6 mm 8 mm
2
2.5
3
3.5
4
Thickness (mm)
熱管應用:折彎、壓扁、段差
四、熱管信賴度測試
☆加速老化、 ☆冷熱循環、 ☆冷熱衝擊、 ☆洩漏率測試、 ☆強度(爆破)測試、 ☆壽命測試。
☆加速老化測試
Log2(MTBF Hours of operation at Top)
☆熱傳量
ΔT=(T1-T2)(℃)
Qmax Input Power(W)
☆熱反應
Temperature(℃)
T1 T2 Thermal response
热管技术
高温热管
高温热管的应用:高温热管换热器
高温热管
高温热管换热器的优点: 传热性能好:热管换热器任意一个腔体内的 流动都是垂直外掠流动,而且两个腔体内的 流形很容易实现纯逆流流动,可以在不改变 冷、热流体入口温度的条件下,增大平均温 差,提高传热效果。 冷、热流体两侧的传热面积可以自由扩展。 传热面局部破坏时,能确保两流体彼此不渗 混合。
脉动热管
脉动热管: Pulsating Heat Pipe(PHP),也叫振 荡热管(Oscillating Heat Pipe,OHP) 将管内抽成真空并充入部分工质后,由于管径足够小, 管内将形成不均匀分布的汽柱和液柱。 在蒸发端,工质吸热产生汽泡,气泡膨胀升压推动 液柱和汽柱从蒸发段流向冷凝段,汽柱到冷凝段后 遇冷收缩并破裂,被冷凝成液体。 在压差推动下,冷却液体从冷凝段回流到蒸发段, 从而实现热量从热端到冷端的传递。
渠氏热管
渠玉芝发明的渠氏超导热管技术,被国外称之为“渠氏理论 传热技术”,已应用于我国的部分炼油厂、钢铁厂的余热回 收、电脑CPU的散热器、青藏两路冻土地带的路基加固处理 等方面,其传热和节能效果十分明显,已引起国外关注。
渠氏热超导管与上世纪60年代发展起来的常规热管完全不 同。常规热管是靠管内介质液态和气态的相变传递汽化潜能, 它受到温度和循环相变速度的限制,有热损,寿命也不高; 而渠氏热超导管的传热介质是由多种无机元素组成,在外因 热的激发下利用微粒子的高频率振动(每秒2亿次以上)传 递热量,无相变,热阻为零,故称为热超导。
脉动热管
脉动热管可以作为一种高效的导热元件广泛应用于 电子元器件冷却,如下图用于冷却多芯片模块的脉 动热管散热翅和用于cpu散热的无风扇散热器。
热管技术的工作原理及在多领域中的应用
热管技术的工作原理及在多领域中的应用1、热管的基本组成及工作原理A、热管的组成:热管主要由主体(一根封闭的金属管)、充注工作介质的内腔和毛细结构(管芯)。
在制作时,管内的空气和其他杂物要清除干净,需为真空状态。
B、热管的工作原理:一个完成的热管,沿轴可分为蒸发段、绝热段和冷凝段三部分。
当热管在工作时,热管的蒸发段受到外界热量影响,此处的工作介质受热蒸发,蒸发后气压迅速升高,由于蒸发段与冷凝段气压不同,蒸发段的蒸汽沿着通道流向冷凝段,冷凝段温度低于蒸发段,于是蒸汽在此处释放热量并冷凝,回落到蒸发段,此时就完成了热量的传递。
如此的周而复始,就完成了大量的热量的传递。
热管热量的传递是无外力自动发生的,利用工作介质的相变来进行的,通常只要有温差,就能产生热量的传递。
由于蒸发段与冷凝段之间是有绝热装置完全隔离开的,因此能够保证热管内的热量不会散失到外界,保证了热量的传递。
2、热管技术的应用由于热管技术具有很快的传热速度,因此被应用于各个领域。
而且在使用过程中,可根据实际使用情况,可通过热管将热源和冷源完全分离开来完成热量的传递,非常的灵活和便捷。
A、在航空航天中的应用热管技术最早是应用于航天航空中的。
航天器在天空中时,向着阳光的一面温度高,背阴面温度较低,温差较大,而利用热管技术,热管的蒸发段从向阳的一面吸收热量,传递到背阴的一面,以此来实现两侧温度的平衡,避免两侧的温差过大,导致航天器出现故障。
B、工业领域中的热回收应用在工业领域,余热资源非常多,但能够再次进行利用的却很有限,由于技术或资金的原因,导致一些余热资源被浪费掉了。
如很常见的烘干或类似的工序,需要先将环境中的空气(即新风)送进反应炉中,经过加温,加热到符合条件的热度后,在进行下一步作业,为保证炉内空气的新鲜和维持一定的压力,需要将作业完后的空气排出,此时排除的空气会带有一定的热量;通过热管技术,对这部分热量进行回收,对新风进行预热,就减少了能源的投入,降低了成本。
热管工作原理
热管工作原理引言概述:热管是一种利用液体在内部循环运动传热的热传导器件,具有高效、快速、均匀传热的特点。
本文将详细介绍热管的工作原理及其应用。
一、热管结构1.1 热管壳体:通常为金属材料制成,内部充满工作流体。
1.2 蒸发段:位于热管的一端,液体在此蒸发成气体。
1.3 冷凝段:位于热管的另一端,气体在此冷凝成液体。
二、热管工作原理2.1 蒸发:热管的蒸发段受热后,液体吸收热量蒸发成气体。
2.2 运动:气体在热管内部产生对流运动,将热量传递到冷凝段。
2.3 冷凝:气体在冷凝段散热后,冷凝成液体,完成热量传递循环。
三、热管的应用领域3.1 电子散热:热管可用于电子设备的散热,提高散热效率。
3.2 温度调节:热管可用于调节温度,保持设备稳定工作。
3.3 空调制冷:热管在空调中的应用可提高制冷效果,节能环保。
四、热管的优势4.1 高效传热:热管传热效率高,传热速度快。
4.2 均匀传热:热管能够实现均匀传热,避免局部过热。
4.3 结构简单:热管结构简单,易于创造和维护。
五、热管的发展前景5.1 新材料应用:随着新材料的应用,热管的传热效率将进一步提升。
5.2 智能化应用:热管在智能设备中的应用将更加广泛,提高设备性能。
5.3 绿色环保:热管的节能环保特性将使其在未来得到更广泛的应用。
总结:热管作为一种高效的热传导器件,在电子散热、温度调节、空调制冷等领域具有重要应用价值,其优势在于高效传热、均匀传热和结构简单。
随着新材料和智能化技术的发展,热管的应用前景将更加广阔,为节能环保做出贡献。
热管技术 (2)
热管技术1. 简介热管技术是一种使用液体在闭合的金属管道中进行传热和传质的技术。
热管由蒸汽和液体组成,通过液体在内部与外部之间的传热传质来实现冷却或加热的目的。
热管技术广泛应用于各种领域,包括电子设备散热、空调系统、航天器热控等。
2. 原理热管内部通常填充着工作介质,如水、铵、乙醇等。
当热管的一端受热时,工作介质在高温处蒸发成为蒸汽,然后蒸汽通过内部的毛细结构传输到低温处,再由于低温损失能量而冷凝成为液体。
液体由于重力或毛细力作用返回热源端,形成一个封闭系统。
这样循环往复,使得热能能够通过液体的相变和气液传导来传递。
3. 优势3.1 高传热效率由于热管内部液体的相变和气液传导,热管的传热效率相对较高。
相比于传统的散热方式,热管技术能够更有效地将热量传递到远离热源的部分,提高散热效果。
3.2 紧凑型设计热管技术相对于其他传热装置具有较小的体积和重量,可以实现更紧凑的设计。
这对于有空间限制的应用非常有优势,如电子设备和航天器上的散热系统。
3.3 没有机械运动部件热管技术没有机械运动部件,因此具有较低的噪音和振动,提高了系统的可靠性和寿命。
3.4 高可靠性热管技术采用封闭的设计,能够在各种环境条件下稳定运行。
由于没有机械部件,热管技术具有较高的可靠性和寿命。
4. 应用领域4.1 电子设备散热电子设备的高功率密度和紧凑设计使得散热成为一个重要的问题。
热管技术可以高效地将散热器与热源连接起来,提高散热效果,保证电子设备的稳定性和可靠性。
4.2 空调系统热管技术可以应用于空调系统中,通过传热传质来调节室内温度。
热管技术的高传热效率和紧凑设计使得空调系统更加高效和节能。
4.3 航天器热控航天器在太空中的温度变化较大,需要进行热控以保证航天器内部设备的正常工作。
热管技术可以通过吸热和放热来调节航天器内部的温度,实现热平衡。
5. 局限性5.1 温度限制热管技术的工作温度通常在-50℃到100℃之间,超过这个温度范围可能会造成热管的性能损害。
热管的应用及原理大全
热管的应用及原理大全1. 热管的基本原理•热管由两个端口连接的密封金属管组成,内部充满工作介质。
•工作介质在低温端吸收热量,然后蒸发成气体。
•气体在热管内自然对流,传输到高温端并释放热量。
•气体在高温端冷凝成液体,然后通过毛细力回流到低温端。
2. 热管的分类1.传统热管–铜热管:用于电子设备冷却,效率高,成本低。
–马弗热管:用于高温应用,能耗低。
–氨热管:用于低温工作环境,稳定性好。
2.精细热管–超薄热管:用于薄型电子产品的散热,体积小巧。
–微通道热管:用于高功率电子元件的散热,热传导性能好。
–微结构热管:用于微型工程领域,能快速均匀地传导热量。
3. 热管的应用领域1.电子设备冷却–服务器和计算机散热。
–智能手机和平板电脑散热。
–电源模块和功率放大器散热。
2.工业制冷–涡轮机和喷气发动机冷却。
–高精度设备和仪器散热。
–工业炉和燃气轮机冷却。
3.空调与制冷–汽车空调和冷藏车制冷。
–空调设备和恒温器冷却。
–制冷器和冷凝器冷却。
4. 热管的优势和特点•散热性能卓越:热管能够快速有效地传输热量,大大提高散热效率。
•结构简单紧凑:热管通常只有两个端口,结构简单紧凑,便于安装和维护。
•体积轻巧:热管体积小巧,适用于薄型电子设备和微型工程。
•工作稳定可靠:热管通过自然对流工作,无需外部能源,工作稳定可靠。
•环保节能:热管可以提高能源利用效率,减少系统能耗。
5. 热管的发展趋势•进一步提高散热性能:改进热管材料和设计,提高热管的散热能力。
•发展微型热管技术:适应微型化及高功率集成电路的散热需求。
•探索新的应用领域:将热管技术应用于新兴领域,如军事航空等。
以上是关于热管的应用及原理的介绍,热管作为一种高效的热传导技术,正广泛应用于电子设备、工业制冷和空调制冷等领域。
通过不断创新和发展,热管将能够在更多领域展现其优势,并为人们的生活和工作带来更多的便利和舒适。
热管技术及其工程应用z
热管的应用领域广泛,涉及到不同的行业和领域,需要针 对不同的应用场景进行定制化设计和优化,以满足多样化 的需求。
热管技术的发展趋势与前景
高效化
随着科技的发展,对热管传热效率的要求越来越高,未来 热管技术将不断向高效化方向发展,提高热管的传热性能 和效率。
长寿命化
热管的使用寿命是衡量其性能的重要指标之一,未来热管 技术将不断追求长寿命化,提高热管的使用寿命和稳定性 。
微型化
随着微型化技术的发展,未来热管技术将向微型化方向发 展,应用于更小规模和更高精度的领域,如微型电子器件 散热等。
智能化
随着智能化技术的发展,未来热管技术将与智能化技术相 结合,实现热管的自适应调节和智能控制,提高热管的传 热热的案例分析
热管内部的相变过程
总结词
相变过程是热管内部传热的关键环节。
详细描述
在热管内部,工作液体在加热条件下发生相变,由液态变为气态,产生蒸汽流动 。这个相变过程伴随着大量热量的吸收和释放,是热管实现高效传热的关键。
热管的传热过程分析
总结词
热管的传热过程涉及多个物理现象。
详细描述
热管的传热过程包括工作液体的汽化、蒸汽的流动、蒸汽的冷凝和回流等环节。这些环节相互作用, 共同实现高效的热量传递。此外,热管内部的传热还受到管壁导热、蒸汽与管壁的对流换热等因素的 影响。
热管在余热回收和热能利用中的应用
总结词:节能环保
详细描述:热管技术广泛应用于余热回收和热能利用,将废弃的热量转化为可利用的能源,提高能源 利用效率,降低能耗和排放,符合节能环保的理念。
热管在新能源领域的应用
总结词:创新驱动
详细描述:随着新能源技术的不断发展,热管技术在太阳能 、风能等新能源领域得到广泛应用。热管能够高效地转换和 利用新能源产生的热能,推动新能源技术的创新和发展。
热管技术的原理及应用
热管技术的原理及应用1. 什么是热管技术热管技术是一种利用液体蒸发和凝结的原理,实现热量传输和温度调控的先进技术。
通过利用液体在蒸发器中的蒸发和在冷凝器中的凝结,热管可以将热量迅速从高温区域传输到低温区域,实现高效的热量传递。
2. 热管技术的原理热管技术的原理可以简单概括为以下几个步骤:1.液体蒸发:热源作用下,液体在蒸发器内部迅速蒸发,吸收热量并变为气体。
2.气体传输:气体通过热管中空心管道内部的蒸汽管道,从蒸发器传输到冷凝器。
3.气体冷凝:在冷凝器中,气体发生冷凝,释放热量,并变为液体。
4.液体返流:液体在内部管道作用下,返回到蒸发器,并再次蒸发,循环往复。
3. 热管技术的应用热管技术在各个领域具有广泛的应用,包括但不限于以下几个方面:3.1. 电子器件散热热管技术可以有效地解决电子器件散热问题。
通过将热管放置在电子器件的散热片上,热量可以迅速从散热片传输到其他部分,以保持器件的温度在安全范围内。
热管的高效散热性能可以大幅度提高电子器件的工作稳定性和寿命。
3.2. 航空航天领域热管技术在航空航天领域的应用也非常广泛。
例如,在航天器热控系统中,热管可以用于传递和分散热量,保证航天器各个部分的温度均衡和稳定。
此外,热管技术还可用于航空发动机的冷却和热管理。
3.3. 医疗设备和制药行业热管技术在医疗设备和制药行业的应用也非常重要。
例如,热管可以用于医疗设备的温控和热管理,确保设备的稳定性和可靠性。
在制药行业中,热管可以用于控制反应器温度,提高药物合成的效率和质量。
3.4. 太阳能与可再生能源热管技术在太阳能和其他可再生能源领域有广泛应用。
例如,在太阳能热水器中,热管可以将太阳能吸收器中的热量传输到储水罐中,实现热水的供应。
热管还可以用于太阳能光伏板的冷却,提高光伏发电效率。
4. 热管技术的优势热管技术相比传统的热传导方法具有以下几个优势:•高热传导效率:热管可以实现高效的热量传递,使得热量可以迅速从高温区域传输到低温区域。
热管技术
热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3³(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
电子设备的热管理技术
电子设备的热管理技术随着科技的发展,电子设备在我们生活中扮演着日益重要的角色。
从智能手机到笔记本电脑,从家庭电器到工业设备,电子设备已经成为了我们不可或缺的一部分。
然而,电子设备在工作过程中产生的热量也成为一个令人头疼的问题。
过热不仅会导致设备性能下降,还可能损坏设备甚至引发安全隐患。
因此,热管理技术成为电子设备设计中不可忽视的一部分。
热传导技术是电子设备热管理的基础。
热传导是指热能在物质中的传递过程,通过将设备产生的热量迅速传导到周围环境中,可以维持设备的工作温度在可接受范围内。
在电子设备中,常见的热传导技术包括散热片、导热胶和导热硅酮等。
散热片作为一种挡板,可以有效地从设备中吸收热量并将其传导到散热器中,进而通过风扇等方式将热量散发出去。
导热胶和导热硅酮则通过填充材料间的微小隙缝,提高热传导效率,使热量更快速地散发。
除了热传导技术,散热器也是电子设备热管理中重要的一环。
散热器是一种利用气体或液体传热原理的设备,通过增大表面积或增强传热介质的流动,提高热量的散发效果。
常见的散热器有散热风扇和散热水冷头两种。
散热风扇通过不断循环环境空气,从而加速散热效果。
而散热水冷头则利用水的高热导率和流体的特性,将热量通过水流传递到散热器中,并通过水泵循环将热量带走。
另一种常见的热管理技术是热管技术。
热管是一种传热元件,由内部介质、外部壳体和吸湿剂组成。
热管通过利用液态物质(通常是低沸点的液态金属)在内部的循环运动,快速将热量从热源处传到冷却区域,从而实现热量的有效传递和散发。
与传统的热传导技术相比,热管技术具有传热效率高、传热距离远、结构紧凑等优势。
此外,智能温控技术也是电子设备热管理的一大趋势。
智能温控技术通过在设备中引入温度传感器和控制电路,实现对设备工作温度的实时监测和调控。
当设备温度超过设定的阈值时,智能温控系统会自动启动散热装置,以保持设备温度在安全范围内。
智能温控技术不仅能够提高设备的稳定性和可靠性,还能够降低能耗,延长设备使用寿命。
电子器件的热管理和散热设计
电子器件的热管理和散热设计随着科技的发展,电子器件的功率密度不断增加,导致热管理和散热设计成为电子产品设计中的重要问题。
优秀的热管理和散热设计可以提高电子器件的性能和可靠性,延长其寿命。
本文将详细介绍电子器件的热管理和散热设计步骤,并列出一些常见的热管理和散热技术。
步骤一:热传导材料的选择在电子器件的热管理和散热设计中,热传导材料的选择至关重要。
常见的热传导材料包括导热膏、导热垫、导热薄膜等。
选用适合的热传导材料可以提高热能的传导效率,将热量迅速传递到散热器上。
步骤二:散热器设计散热器是电子器件散热的关键部分。
散热器一般采用金属材料制成,如铝、铜等。
设计散热器时,需考虑器件的功率、尺寸、散热器的表面积以及冷却风扇的使用等因素。
合理设计散热器可以有效提高散热效果,保持器件的温度在合理的范围内。
步骤三:流体冷却流体冷却是一种常见的热管理和散热技术。
流体冷却通过循环流动的冷却液将热量带走,以降低器件的温度。
常见的流体冷却方式包括水冷、气冷和油冷等。
流体冷却技术可以将热量从器件中迅速移走,适用于功率密度较高的电子器件。
步骤四:热管技术热管技术是一种高效的热管理和散热技术。
热管由内部密封的工质组成,通过蒸发和冷凝循环来传递热量。
热管具有良好的热传导性能,可以将热量迅速传递到散热器上。
热管技术适用于高功率电子器件的热管理和散热。
步骤五:热沉热沉是一种通过大面积金属散热来降低电子器件温度的技术。
热沉通常由铝或铜制成,具有较大的表面积和良好的导热性能。
将热沉与器件密切接触,可以有效地将热量传递到环境中,降低器件的温度。
步骤六:温度传感器温度传感器是监测电子器件温度的重要组成部分。
通过安装温度传感器,可以实时监控器件的温度变化,及时采取热管理和散热措施。
温度传感器的选择和布置必须考虑到被测点的准确性和可靠性。
步骤七:热模型建立与模拟分析为确保热管理和散热设计的有效性,建立电子器件的热模型并进行模拟分析是必要的。
通过建立准确的热模型,可以预测器件的温度分布,找出热点位置,优化散热结构,提高热管理和散热效果。
热管的应用及原理
热管的应用及原理1. 热管的应用热管是一种热传导和热控制装置,广泛应用于各个领域。
以下是热管的主要应用领域:1.电子器件散热:热管可以将电子器件产生的热量传导到远离器件的散热器上,提高散热效率,有效保护电子器件的工作稳定性。
2.航天航空工业:热管在航天航空领域中广泛应用,可以用于航天器的温度控制和热管理,提高航天器的可靠性和性能。
3.能源领域:热管在核能、太阳能和化学能等能源领域的转换和利用过程中起着重要的作用,可以提高能源转换效率和能量利用率。
4.家电电器:热管在家电电器中的应用也很常见,如电冰箱、空调、热水器等,可以提高设备的能效和使用寿命。
5.医疗器械:热管在医疗器械中被广泛应用,如医用激光设备、核磁共振设备等,可以提高设备的性能和稳定性。
2. 热管的原理热管是一种利用液体的相变和循环来传热的装置。
其基本原理如下:1.工作介质:热管通常由内部充满工作介质的密封管道组成,工作介质一般为易于相变的液体,如水、乙醇、铵等。
2.热力学循环:热管的工作过程是一个闭合的热力学循环过程。
首先,在热管的一端,工作介质吸收热量并蒸发成气体;然后,气体通过压力差的作用将热量传导到热管的另一端;最后,在热管的另一端,气体冷却并凝结成液体,释放热量。
3.热传导:在热管的工作过程中,热量通过工作介质的相变和循环传导,从而实现热量的传递。
4.热阻和热导率:热管的热传导效果主要由热阻和热导率决定。
热阻指的是热量在热管中传导过程中的阻碍程度,而热导率则指的是热量在工作介质中的传导性能。
3. 热管的优势热管具有以下几个优势,使其成为热传导和热控制领域中的重要装置:1.高热传导效率:热管内部的工作介质可以高效传导热量,因此热管具有很高的热传导效率。
2.无需外部动力驱动:热管通过工作介质的相变和循环实现热量的传递,无需外部动力驱动,省去了能源消耗和故障风险。
3.可靠性高:热管的结构简单,传热过程中无机械运动,因此具有较高的可靠性和稳定性。
热管散热技术原理分析
热管散热技术原理分析
热管散热技术是一种有效的散热方式,广泛应用于电子设备和工业领域。
本文分析了热管散热技术的原理和工作机制。
1. 热管的原理
热管是一种基于液体蒸发和凝结的传热器件。
它由内壁涂覆着特殊液体(工质)的密封金属外壳组成。
热管的一个端口被置于热源处,另一个端口被置于散热器处。
2. 热管的工作机制
当热源端的温度高于散热器端时,热管内的工质开始蒸发。
蒸汽沿着内壁升至散热器端,然后冷凝成液体。
这个过程通过内部毛细结构的作用进行。
3. 热管散热技术的优势
热管散热技术具有如下优势:
- 高传热效率:热管内的工质相变过程使得传热效率更高。
- 均匀散热:热管可以将热量均匀地传输到散热器处,减少热
点的出现。
- 静音工作:由于热管无动力部件,没有噪音产生。
- 可靠性高:热管的主要部件是密封的金属外壳和内壁,因此
具有较高的可靠性。
4. 热管散热技术的应用
热管散热技术广泛应用于电子设备和工业领域,包括但不限于:- 电脑和服务器散热
- 汽车发动机散热
- 空调和制冷设备散热
- 太阳能集热器散热
5. 热管散热技术的发展趋势
随着电子设备和工业领域的不断发展,热管散热技术也在不断
改进和创新。
未来的发展趋势包括:
- 热管材料的改良,提升传热效率
- 尺寸的缩小,适应更多场景
- 效率的提高,减少能量消耗
总结而言,热管散热技术是一种高效且可靠的散热方式,具有广泛的应用前景和发展潜力。
> 注:本文内容仅供参考,具体技术参数和应用场景需根据实际情况确认。
热管工艺技术
热管工艺技术热管是一种将热能从一个地方转移到另一个地方的高效技术。
它由一个密封的金属管和内部充满工作流体的薄层衬里组成。
工作流体常常是低沸点的液体,例如乙醚或氨。
热管工艺技术能够有效地管理和控制热量的传输,因此在许多领域中得到广泛应用。
热管的工作原理是基于液体在温度差的作用下发生汽化和凝结的特性。
当热管的一端暴露在高温环境中时,工作流体会汽化,并通过内部空气压力将蒸汽传送到低温环境。
在低温区域,蒸汽会冷凝成液体,并通过内部表面张力的作用返回到高温区域。
这种来回循环的过程使热能能够在高温和低温之间传输,实现热管的热传导功能。
热管的工艺技术使其在许多领域中得到广泛应用。
在电子设备中,热管被用于散热,特别是用于CPU和其他高功率元件的散热。
由于热管具有高效的热传输能力,它能够有效地将热能从高温区域转移到散热器或其他冷却设备中,保持电子设备的稳定工作温度,提高设备的寿命和可靠性。
另外,在太空航天器中,热管也被广泛应用。
由于太空环境中的温度极端,热管工艺技术能够帮助控制和调节太空器件的温度。
热管能够有效地将太空器件上产生的热能传输到遥远的冷却设备,以确保设备的正常工作和保护它们不受过热或过冷的影响。
此外,在一些工业过程中,热管也被用于热能回收和热能利用。
例如,在发电厂中,热管可以将烟气中的余热转化为有用的热能,提高发电效率。
在化工过程中,热管可以通过热能传输和热量控制,实现高效的反应和产品合成。
总之,热管工艺技术是一种高效的热传导技术,能够在不同温度之间实现热量的传输和控制。
通过将热能从高温区域转移到低温区域,热管能够提高设备的散热能力,保持设备的正常工作温度。
热管在电子设备、航天器件和工业过程中都得到了广泛的应用,为各行各业提供了高效的热管理解决方案。
热管技术原理
热管技术原理
热管技术是一种高效的热传递技术,它利用液体在管内的蒸发和凝结过程,将热量从一个地方传递到另一个地方。
热管由内部充满工作流体的密闭管道组成,工作流体通常是一种易于蒸发和凝结的液体,如水、乙醇、氨等。
热管的工作原理可以简单地概括为:热管的一端吸收热量,使工作流体蒸发,蒸汽在管内传递到另一端,然后在那里冷却凝结,释放热量。
热管技术的优点在于它具有高效、可靠、轻便、无噪音、无污染等特点。
热管可以在各种环境下工作,包括真空、重力、高温、低温等条件下。
热管还可以用于各种应用,如电子散热、太阳能热水器、空调、冷却器等。
热管的工作原理可以通过以下几个步骤来解释:
1. 蒸发:当热管的一端吸收热量时,工作流体开始蒸发。
蒸发过程中,工作流体从液态变为气态,吸收热量。
2. 传热:蒸汽在管内传递到另一端,这个过程中,蒸汽会带走热量,从而将热量从一端传递到另一端。
3. 冷凝:当蒸汽到达另一端时,它会冷却凝结成液态,释放热量。
这个过程中,工作流体从气态变为液态,释放热量。
4. 回流:凝结后的工作流体会通过毛细作用回流到热管的另一端,
重新开始蒸发过程。
热管技术是一种高效、可靠、轻便、无噪音、无污染的热传递技术,它可以在各种环境下工作,并且可以用于各种应用。
热管技术的应用前景非常广阔,它将在未来的各个领域中发挥重要作用。
热管技术及原理
热管技術及原理热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
余热利用技术
余热利用技术简介一、热管技术简介1.热管简介热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术目前已广泛应用于宇航、军工、钢铁、机械等行业。
2. 工作原理热管是一种新型高效的传热元件,按较精确的定义应称之为“封闭的两相传热系统”,即在一个抽成真空的封闭的体系内,依赖装入内部的流体的相态变化(液态变为汽态和汽态变为液态)来传递热量的装置。
热管放在热源部分的称之为蒸发段(热端),放在冷却部分的称之为冷凝段(冷端)。
当蒸发段吸热把热量传递给工质后,工质吸热由液体变成汽体,发生相变,吸收汽化潜热。
在管内压差作用下,汽体携带潜热由蒸发段流到冷凝段,把热量传递给管外的冷流体,放出凝结潜热,管内工质又由汽体凝为液体,在重力作用下,又回到蒸发段,继续吸热汽化。
如此周而复始,将热量不断地由热流体传给冷流体。
3. 热管优点①金属、非金属材料本身的导热速率取决于材料的导热系数、温度梯度,正交于温度梯度的截面面积。
以金属银为例,其值为415W/m2٠K 左右,经测定,热管的导热系数是银的几百倍到上千倍,故热管有热超导体之称。
②由于热管内的传热过程是相变过程,而且工质的纯度很高,因此热管内蒸汽温度基本上保持恒温,经测定:热管两端的温差不超过5℃,与其它传热元件相比,热管具有良好的等温性能。
③热管能适应的温度范围与热管的具体结构、采用的工作流体及热管的环境工作温度有关。
目前,热管能适应的温度范围一般为-200℃~2000℃,这也是其它传热元件所难以达到的。
4、热管式余热回收装置1)原理热管式余热回收装置的核心部件是热管。
热管式余热回收装置原理图基本结构:热管蒸汽发生器是由若干根特殊的热管元件组合而成。
其基本结构如图所示。
热管的受热段置于热流体风道内, 热风横掠热管受热段,热管元件的放热段插在水—汽系统内。
散热技术之热管技术简介
热管技术3、热管散热技术热管是一种具有极高导热性能的传热元件,导热能力比普通金属高几百倍。
据相关资料表明,高质量热管的传热效率是铜的1490倍,传递速度可达30m/s,远远高于世界上任何导热金属和传热技术,能到达瞬时传热的效果。
其实热管技术并不是近年才出现的新技术。
它的历史可追溯到上世纪40年代,为了满足二次世界大战的需要,美国通用发电机工程师Gaugler就提出了类似于热管的设计方案,并在1944年取得了专利。
到了1963年,第一根真正的热管被科学家George M.Grover 在美国加里佛尼亚大学的Los Alamos实验室制造出来。
笔者有幸看到了当年第一根热管的设计笔记,但由于字迹潦草,具体内容还请有兴趣的读者自己研究。
热管技术应用广泛,在航空航天、铁路交通、取暖保温中有大规模的使用。
而被引入IT硬件领域,还是上世纪90年代末,最早奔腾2笔记本电脑中出现了热管。
使用目的是为了在压缩体积的条件下取得优秀的散热效果。
随着硬件发热量的提高,现有的传统风冷散热技术已经不能满足散热需求。
于是出现了液冷、半导体制冷、压缩机制冷等散热方式,但由于安全性、稳定性与成本过高等问题无法普及应用。
所以热管这种技术成熟,成本相对较低的技术就被越来越多的台式机散热器采用。
热管的工作原理与特点热管的基本原理与空调等相变制冷类似,也可以说是一个微缩的相变制冷系统。
它是利用高导热性液体相变时吸热蒸发、放热凝结的特性,将热量快速的从吸热端转移到散热端。
从原理示意图上我们可以看出,热管内部液体由于在吸热端受热而气化(按红色箭头的走向),蒸腾到散热端放热后液化(按蓝色箭头走向),最后回流到吸热端这一个循环过程。
这个循环过程是在密闭的金属管体中进行的,不会有液体外漏的不稳定现象,而且热管体积也可控制,适合多种用途。
如果把热管剖开看,我们可以把热管分成管壳、吸液芯和蒸汽通道三个部分:管壳由于必须承受热管内部的真空高压,并且还必须更小的热阻,因此对管材的材料和制造工艺有很高的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言传统散热方式主要是空气冷却、强制风冷散热以及水冷散热。
(1) 空气冷却也称自然冷却,一般是将电子元器件的发热核心部位与型材散热器相接触,通过空气的自然对流方式将热传导出来。
其优点是结构简单、安装方便、成本低廉。
缺点是散热功率低。
(2)风冷散热这是目前最普遍的散热方式,一般是将电力电子元器件的发热核心部位与散热器相接触将热传导出来,然后再通过风扇转动,来加强空气的流动,通过强制对流的方式将散热片上的热传至周围的环境。
优点:结构简单,价格低廉,安全可靠,技术成熟。
缺点:降温的效果有限,不能达到令人满意的程度,并且具有噪音,风扇的使用寿命也有限制。
(3) 水冷散热其原理是利用水泵驱动水流经过热源,进行吸热传递。
优点:水冷散热效率高,热传导率为传统风冷方式的20倍以上,可以解决几百至数千瓦的散热问题,是风冷效果所不能比拟的。
因为即使是散热效率最高的涡轮风扇风冷散热,其温度比水冷散热也要高大约10℃;相比于风冷散热,水冷散热因为没有风扇,所以不会产生振动现象,也无风冷散热的高噪音。
缺点:需要良好的通风环境,并且体积大,安装和维护不方便,容易滴漏、安全性不高,价格一般也相对较高。
(4) 热管散热热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。
具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。
将热管散热器的基板与晶闸管、igbt、igct等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。
通过对上述几种散热方式的分析,我们不难看出,热管散热相对于其他几种传统散热方式存在以下的优势:●热管散热技术具有散热效果好,热阻相对小,使用寿命长,传热快的优点。
热管的热导系数是普通金属的100倍以上;●传热方向可逆,不管任何一端都能成为蒸发端和冷凝端;●优良的热响应性。
热管内汽化的蒸汽能以接近音速的速度传输,从而有效的提高了导热效果;●结构简单紧凑,重量轻,体积小,维护方便;●无功耗、无噪音、符合工业“绿色”的要求;●可以在无重力场的环境下使用。
综上所述:热管传热利用热传导原理与致冷介质的快速热传递性质,通过热管将发热物体的热量迅速传递到热源以外。
采用热管技术使得散热器即便采用低转速、低风量电机,甚至不需风机,完全采用自冷方式,同样可以得到满意的散热效果,使得困扰风冷散热的噪音问题以及大功率电力模块散热问题得到良好解决,随着热管加工工艺的不断改善,其可靠性、安全性、耐用性将会更加提高,而成本和价格也会进一步降低。
热管散热器将有着传统散热器所无法比拟的优势,它的出现开辟了散热行业的新天地。
2 热管的基本工作原理2.1 工作原理物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
热传递有三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部被抽成负压状态,充入适当的液体(即工质),这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一端为蒸发段(简称热端),另外一端为冷凝段(简称冷端),当热管蒸发段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
2.2 组成与工作过程典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10-1~10-4)pa的负压后充以适量的工作液体(即工质),使紧贴管内壁毛细多孔材料中的吸液芯充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛细芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端,放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
如此循环不己,热量由热管的一端传至另—端。
热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程:(1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液-汽)分界面;(2)液体在蒸发段内的(液-汽)分界面上蒸发;(3)蒸汽腔内的蒸汽从蒸发段流到冷凝段;(4)蒸汽在冷凝段内的(汽-液)分界面上凝结;(5)热量从(汽-液)分界面通过吸液芯、液体和管壁传给冷源;(6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。
2.3 工作条件图1表示了热管管内汽-液交界面形状,蒸气质量、流量、压力以及管壁温度tw和管内蒸气温度tv沿管长的变化趋势。
沿整个热管长度,汽-液交界处的汽相与液相之间的静压差都与该处的局部毛细压差相平衡。
图1 热管管内汽-液交界面质量流、压力和温度沿管长的变化示意图热管正常工作的必要条件是:△pc ≥△pl +△pv +△pg其中△pc:毛细压头—是热管内部工作液体循环的推动力,用来克服蒸汽从蒸发段流向冷凝段的压力降△pv,冷凝液体从冷凝段流回蒸发段的压力降△pl,和重力场对液体流动的压力降△pg (△pg可以是正值,是负值或为零,视热管在重力场中的位置而定)。
3 热管的基本特性热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性。
3.1 很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。
与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。
当然,高导热性也是相对而言的,温差总是存在的,可能违反热力学第二定律,并且热管的传热能力受到各种因素的限制,存在着一些传热极限;热管的轴向导热性很强,径向并无太大的改善(径向热管除外)。
3.2优良的等温性热管内腔的蒸汽处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性。
3.3 热流密度可变性热管可以独立改变蒸发段或冷却段的加热面积,即以较小的加热面积输入热量,而以较大的冷却面积输出热量,或者热管可以较大的传热面积输入热量,而以较小的冷却面积输出热量,这样即可以改变热流密度,解决一些其他方法难以解决的传热难题。
3.4 热流方向可逆性一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段。
此特点可用于宇宙飞船和人造卫星在空间的温度展平,也可用于先放热后吸热的化学反应容器及其他装置。
3.5 热二极管与热开关性能热管可做成热二极管或热开关,所谓热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热。
3.6 恒温特性(可控热管)普通热管的各部分热阻基本上不随加热量的变化而变,因此当加热量变化时,热管各部分的温度亦随之变化。
近年来出现了另一种新型热管——可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这样可使热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的恒温特性。
3.7 环境的适应性热管的形状可随热源和冷源的条件而变化,热管可做成电机的转轴、燃气轮机的叶片、钻头、手术刀等等,热管也可做成分离式的,以适应长距离或冲热流体不能混合的情况下的换热;热管既可以用于地面(重力场),也可用于空间(无重力场)。
4 热管的分类由于热管的用途、种类和型式较多,再加上热管在结构、材质和工作液体等方面各有不同之处,故而对热管的分类也很多,常用的分类方法有以下几种。
(1)按照热管管内工作温度可分为:低温热管(-273~0℃)、常温热管(0~250℃)、中温热管(250~450℃)、高温热管(450~1000℃)等。
(2)按照工作液体回流动力可分为:有芯热管、两相闭式热虹吸管(又称重力热管)、重力辅助热管、旋转热管、电流体动力热管、磁流体动力热管、渗透热管等等。
(3)按管壳与工作液体的组合方式划分(这是一种习惯的划分方法)可分为:铜—水热管、碳钢—水热管、铜钢复合—水热管、铝—丙酮热管、碳钢—萘热管、不锈钢—钠热管等等。
(4)按结构形式区分可分为:普通热管、分离式热管、毛细泵回路热管、微型热管、平板热管、径向热管等。
(5)按热管的功用划分可分为:传输热量的热管、热二极管、热开关、热控制用热管、仿真热管、制冷热管等等。
5 热管的相容性及寿命热管的相容性是指热管在预期的设计寿命内,管内工作液体同壳体不发生显著的化学反应或物理变化,或有变化但不足以影响热管的工作性能。
相容性在热管的应用中具有重要的意义。
只有长期相容性良好的热管,才能保证稳定的传热性能、长期的工作寿命及工业应用的可能性。
碳钢-水热管正是通过化学处理的方法,有效地解决了碳钢与水的化学反应问题,才使得碳钢—水热管这种高性能、长寿命、低成本的热管得以在工业中大规模推广使用。
影响热管寿命的因素很多,归结起来,造成热管不相容的主要形式有以下三方面,即:产生不凝性气体,工作液体热物性恶化,管壳材料的腐蚀、溶解。
(1)产生不凝性气体由于工作液体与热管材料发生化学反应或电化学反应,产生不凝性气体,在热管工作时,该气体被蒸汽流吹扫到冷凝段聚集起来形成气塞,从而使有效冷凝面积减小,热阻增大,传热性能恶化,传热能力降低甚至失效。
(2)工作液体物性恶化有机工作介质在一定温度下,会逐渐发生分解,这主要是由于有机工作液体的性质不稳定,或与热管壳体材料发生化学反应,使工作介质改变其物理性能,如甲苯、烷、烃类等有机工作液体易发生该类不相容现象。
(3)管壳材料的腐蚀、溶解工作液体在管壳内连续流动,同时存在着温差、杂质等因素,使管壳材料发生溶解和腐蚀,流动阻力增大,使热管传热性能降低。
当管壳被腐蚀后,引起强度下降,甚至引起管壳的腐蚀穿孔,使热管完全失效。
这类现象常发生在碱金属高温热管中。
6 热管制造热管的主要零部件为管壳、端盖(封头)、吸液芯、腰板(连接密封件)四部分。
不同类型的热管对这些零部件有不同的要求。
6.1管壳热管的管壳大多为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。
管子可以是标准圆形,也可以是异型的,如椭圆形、正方形、矩形、扁平形、波纹管等。
管径可以从2mm到200mm,甚至更大。
长度可以从几毫米到l00m以上。
低温热管换热器的管材在国外大多采用铜、铝作为原料。
采用有色金属作管材主要是为了满足与工作液体相容性的要求。
6.2 端盖热管的端盖具有多种结构形式,它与热管连接方式也因结构形式而异。