新人教六年级数学下册《圆柱的体积(例5)》优秀教学设计

合集下载

人教版数学六年级下册圆柱的体积教学设计(推荐3篇)

人教版数学六年级下册圆柱的体积教学设计(推荐3篇)

人教版数学六年级下册圆柱的体积教学设计(推荐3篇)人教版数学六年级下册圆柱的体积教学设计【第1篇】教学目标:1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式进行正确计算。

教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

教学过程:一、情景导入:1、教师:(出示)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?学生:1、比平日多了两个蛋糕。

2、两个蛋糕一个大一个小。

3、蛋糕都是圆柱形的。

2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?学生:蛋糕大,意味着圆柱的体积大。

3、教师:那你还知道什么是圆柱的体积吗?学生:圆柱的体积就是圆柱体占空间的大小。

4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

教师:板书:圆柱的体积二、课上探究1、教师:同学们回忆一下我们还学过那些立体图形?学生:还学过正方体和长方体。

教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

圆柱的体积小学六年级数学教案优秀5篇

圆柱的体积小学六年级数学教案优秀5篇

圆柱的体积小学六年级数学教案优秀5篇《圆柱的体积》教案篇一一、揭示课题,确定目标谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。

(教师板书,学生齐读)启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)引导:(1)什么是圆柱的体积?(2)圆柱的体积和什么有关?(3)圆柱的体积公式是怎样推导出来的?(4)圆柱的体积是怎样求出来的?(5)学习圆柱的体积公式有什么用?谈话:对!刚才这几位同学跟老师想的一样。

启发:圆柱的体积就是圆柱所占空间的大小谈话:这堂课我们主要解决三个问题:(出示探究问题)1、圆柱的体积和什么有关?2、这个公式是怎样推导出来的?3、学习了圆柱的体积能解决什么实际问题?【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。

二、温故知新,自学课本1、提出问题谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。

是怎样计算的?引导:我们已经学过长方体、正方体的体积计算。

(教师随着学生的回答,逐一出示出上述图形)。

谈话:长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长统一为:长方体或正方体的体积=底面积×高谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。

谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。

能不能直接用体积单位去量呢?引导:它的侧面是一个曲面,用体积单位直接量是有困难的。

2、引发猜想谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)引导:圆柱体的体积既和底面积有关,又和高有关。

3、自学课本谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?启发:请大家阅读课本,在课本中寻找答案。

《圆柱的体积》数学教学设计(优秀4篇)

《圆柱的体积》数学教学设计(优秀4篇)

《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。

教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。

2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

二、解决实际问题1、练习三第7题。

学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。

2、练习三第5题。

(1)指导学生变换公式:因为V=Sh,所以h=VS。

也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

3、练习三第8题。

(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

4、练习三第9、10题(1)学生独立审题,完成9、10两题。

(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。

利用这个底面积再求出另一个圆柱的体积。

三、布置作业完成一课三练的相关练习。

《圆柱的体积》数学教案篇二一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。

(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。

(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。

人教版数学六年级下册圆柱的体积优秀教案(推荐3篇)

人教版数学六年级下册圆柱的体积优秀教案(推荐3篇)

人教版数学六年级下册圆柱的体积优秀教案(推荐3篇)人教版数学六年级下册圆柱的体积优秀教案【第1篇】设计说明1.创设问题情境,激发学习兴趣。

兴趣是最好的老师。

新课伊始,为学生创设“圆柱形橡皮泥的体积你会求吗?”的问题情境,引导学生经过思考、讨论、交流,找到解决的方法。

这样的设计不仅自然渗透了圆柱(新问题)和长方体(已知)的知识联系,还让学生体会到可以有许多方法去解决生活中的实际问题,激发了学生的学习兴趣和探究新知的欲望。

2.实践操作,促进知识迁移。

知识和经验的积累来源于大量的实践活动。

动手操作不但能使学生获得感性的体验,更能加深学生对知识的理解。

本设计为学生创设动手操作的情境,使学生通过动手拼摆,充分感知图形之间的关系,深刻理解圆柱的体积公式的合理性,充分认识到图形转化过程中形变而质不变的辩证关系,使学生在把旧知迁移、发展、转化、构建为新知的同时,动手操作、观察及归纳能力也得到极大的提高。

课前准备教师准备圆柱的体积公式演示教具多媒体课件学生准备圆柱的体积公式演示学具教学过程第1课时圆柱的体积(1)⊙创设情境,导入新课1.出示一块圆柱形橡皮泥。

师:同学们,我们以前学过长方体和正方体体积的计算方法,现在我想知道这块圆柱形橡皮泥的体积是多少,你有好的办法吗?2.学生小组讨论交流并汇报。

预设生1:可以把这块橡皮泥捏成长方体,利用长方体的体积公式来解决。

生2:可以把它放到量杯中,计算上升的水的体积。

3.引入新课。

解决生活中的问题有很多方法,需要我们去发现、去探究。

这节课我们就共同去探究圆柱体积的计算方法。

设计意图:通过创设问题情境,引发学生思考,进一步体会“转化”思想。

⊙新知探究1.利用知识的迁移,猜想圆柱体积的计算方法。

(1)提出猜想。

师:在刚才的问题中同学们提出可以将圆柱形橡皮泥捏成长方体,这时会有什么变化?(形状变了,体积没变)师:我们已经掌握了长方体、正方体的体积计算方法,大家猜一猜:圆柱体积可能等于底面积×高吗?(2)学生讨论、交流。

人教版数学六年级下册圆柱的体积教案(推荐3篇)

人教版数学六年级下册圆柱的体积教案(推荐3篇)

人教版数学六年级下册圆柱的体积教案(推荐3篇)人教版数学六年级下册圆柱的体积教案【第1篇】教学目标:1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。

教学重点:理解和掌握圆柱的体积计算公式,会求圆柱的体积教学难点:理解圆柱体积计算公式的推导过程。

教学用具:圆柱体积演示教具。

教学过程:一、复述回顾,导入新课以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。

2题同桌互说。

说完后坐好。

)1、说一说:(1)什么叫体积?常用的体积单位有哪些?(2)长方体、正方体的体积怎样计算?如何用字母表示?长方体、正方体的体积=()×()用字母表示()2、求下面各圆的面积(只说出解题思路,不计算。

)(1)r=1厘米;(2)d=4分米;(3)C=6.28米。

(二)揭示课题你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。

(板书课题)二、设问导读请仔细阅读课本第8-9页的内容,完成下面问题(一)以小组合作完成1、2题。

1、猜一猜,圆柱的体积可能等于()×()2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。

这个长方形的面积就是圆的面积。

圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。

(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系(1)圆柱的底面积变成了长方体的()。

(2)圆柱的高变成了长方体的()。

(3)圆柱转化成长方体后,体积没变。

因为长方体的体积=()×(),所以圆柱的体积=()×()。

如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()[汇报交流,教师用教具演示讲解2题](二)独立完成3、4题。

2023年人教版数学六年级下册圆柱的体积优秀教案(优选3篇)

2023年人教版数学六年级下册圆柱的体积优秀教案(优选3篇)

人教版数学六年级下册圆柱的体积优秀教案(优选3篇)〖人教版数学六年级下册圆柱的体积优秀教案第【1】篇〗教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。

2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、培养学生初步的空间观念和思维能力;教学重点:理解和掌握圆柱的体积计算公式,会求圆柱的体积。

教学难点:理解圆柱体积计算公式的推导过程。

教具准备:圆柱体积演示教具。

教学过程:一、旧知铺垫1、谈话引入最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。

现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)这节课我们就来学习圆柱的体积。

二、自主探究,解决问题(一)认识圆柱体积的意义。

圆柱的体积到底是指什么?谁能举例说呢?(二)圆柱体积的计算公式的推导。

1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)2、回忆圆面积的推导过程。

3、教具演示。

(1)取圆柱体模型。

(2)将圆柱体切成两半。

(3)分别将两半均分成若干小块。

(4)动手拼成一个近似的长方体。

(三)归纳公式。

(板书:圆柱的体积=底面积高)用字母表示:(板书:V=Sh)三、巩固新知1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?审题。

提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。

现在这个杯子装了2/3的水,装了多少水呢?2、完成试一试3、跳一跳:统一直柱体的体积的计算方法。

四、课堂总结、拓展延伸这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?这个公式适合哪些图形?他们有什么共同特点?五、布置作业练一练1-5题。

〖人教版数学六年级下册圆柱的体积优秀教案第【2】篇〗一、让学生在现实情境中体验和理解数学《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。

人教版六年级下册数学《圆柱的体积》教案6篇

人教版六年级下册数学《圆柱的体积》教案6篇

人教版六年级下册数学《圆柱的体积》教案6篇人教版六年级下册数学《圆柱的体积》教案1教学目标圆柱的体积(1)圆柱的体积(教材第25页例5)。

探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。

教学重难点1.掌握圆柱的体积公式,并能运用其解决简单实际问题。

2.理解圆柱体积公式的推导过程。

教学工具推导圆柱体积公式的圆柱教具一套。

教学过程【复习导入】1.口头回答。

(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。

2.引入新课。

我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。

今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?教师板书:圆柱的体积(1)。

【新课讲授】1.教学圆柱体积公式的推导。

(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。

②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。

近似长方体的高就是圆柱的高,没有变化。

故体积不变。

(4)学生根据圆的面积公式推导过程,进行猜想:①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。

人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

第三单元第3课时圆柱的体积(1)教学设计情境导入—引“探究”教师谈话导入:什么是物体的体积?你会计算哪些物体的体积?长方体和正方体的体积计算公式?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?V长=长×宽×高V正=棱长×棱长×棱长V=底面积×高字母表示:V=Sh思考:圆柱的体积怎样计算呢?前面的学习中我们遇到过这样的问题吗?知识链接—构“联系”回忆一下圆面积的计算公式是如何推导出来的?(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的长方形。

长方形的长相当于圆周长的一半,长方形的宽就当于圆的半径,用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式。

圆柱的体积该怎么计算呢?今天我们就一起来研究这个问题。

(板书课题:圆柱的体积)学习任务一:圆柱体积公式的推导【设计意图:由复习圆面积公式的推导过程入手,实现知识的迁移,从而调动学生学习的积极性,激发学生探求新知的欲望,在教学中充分运用课件中的动画直观演示的同时,广泛让学生动手、动脑、动口,在操作中感知,在猜想中验证,在观察中理解,在比较中归纳。

让学生在自主探究、合作交流中发现和解决问题,培养学生乐学、积极探究的学习态度,获得成功的体验。

这样进行教学,不仅有利于学生理解公式的推导过程,而且在公式的推导过程中,充分让学生感受和体验“转化”这一解决数学问题重要的思想方法。

】新知探究—习“方法”结合教材的内容,探究圆柱体积公式的推导。

1.提问:什么是圆柱的体积?圆柱的体积怎么求?(说一说、想一想、猜一猜)让学生自由发言。

(1)学生猜想可以把圆柱转化成什么图形?(借助于圆面积公式的推导进行知识迁移学习)出示推导示意图,建立直观,巩固旧知(2)阅读教材内容,利用手中的学具进行探索,小组交流。

2.圆柱体积公式的推导(1)多媒体课件演示圆柱体等分转化为长方体。

(让学生观察)通过课件的演示、观察、思考:(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?(4) 你认为圆柱的体积可以怎样计算?3.交流展示,小组讨论,交流汇报。

小学六年级下册数学《圆柱的体积》教案优秀6篇

小学六年级下册数学《圆柱的体积》教案优秀6篇

小学六年级下册数学《圆柱的体积》教案优秀6篇《圆柱的体积》教案篇一最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。

现把它撷取下来与各位同行共赏。

……师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?生:(绝大部分学生举起了手)底面.gaokaobaba 积乘高。

师:那你们是怎样理解这个计算方法的呢?生1:我是从书上看到的。

(举起的手放下了一大半。

很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。

但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。

老师便顺水推舟,让他们来讲。

)生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。

而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。

真行!当然这仅是你的猜测,要是再能证明就好了。

生3:我可以证明。

推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。

那不就证明了圆柱体积的计算公式就是用底面积乘高吗?(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。

)师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。

)生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!小学六年级数学《圆柱的体积》教案(优秀9篇)作为一名教职工,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。

《圆柱的体积》数学教学设计(优秀4篇)

《圆柱的体积》数学教学设计(优秀4篇)

《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、知识技能运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、过程方法让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、情感态度价值观通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:圆柱体体积的计算公式的推导过程及其应用。

教学难点:理解圆柱体体积公式的推导过程。

教学准备:圆柱体积公式推导演示学具、多媒体课件。

教学过程:一、复习导入同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?二、图柱转化,自主探究,验证猜想。

(一)猜想。

1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。

)[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教师由复习圆面积公式的推导过程入手,实现知识的迁移。

]2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

(二)操作验证。

1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

在操作时,学生分组边操作边讨论以下问题:①拼成的近似长方体的体积与原来的圆柱体积有什么关系?②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系??。

拼成的近似长方体的高与原来的圆柱的高有什么关系?2、小组代表汇报(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励) 3、电脑演示操作(1)电脑演示圆柱体转化成长方体的过程:仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?(分的分数越多,拼成的图形就越接近长方体)(2)根据学生的观察、分析、推想,老师完成板书:长方体的体积=底面积某高圆柱的体积=底面积某高V=Sh(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

数学人教版六年级下册六年级下册《圆柱的体积》教学设计

数学人教版六年级下册六年级下册《圆柱的体积》教学设计

六年级下册《圆柱的体积》教学设计教学内容:人教版小学数学六年级下册p25例5教学目标:1、理解圆柱体积公式的推导过程,掌握计算公式。

2、使学生学会运用公式计算圆柱的体积教学重点:圆柱体体积的计算公式的推导过程及其应用。

教学难点:理解圆柱体体积公式的推导过程。

教学准备:圆柱体积公式推导演示学具、多媒体课件。

教学过程:一、导入新课(一)创设情境,激趣导入1、谈话引入:有一个牙膏公司,利润多年上不去`,让人出点子,大家想不出好点子,有一个小伙子说“我有一个点子,就是把牙膏口的直径扩大一毫米,卖的就好了。

”同学们,你们说这是为什么呀?(2)那什么叫做圆柱的体积呢?【设计理念:通过亲切、自然的课前交流,使学感受到数学就在我们身边,给学生营造一种轻松愉快的学习氛围。

】2、激趣引入:出示圆柱形水杯。

(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?(3)说一说长方体体积的计算公式。

用字母怎样表示?(4)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,3.圆柱体积计算公式的推导。

(1)教师演示学具,学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等许多扇形,把它们拼成一个近似长方体的立体图形.(2)学生讨论:长方体的底面积和高于圆柱的什么有关?(3)通过观察讨论,学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=sh)4.学生讨论:如果知道圆柱底面的半径r和高h,圆柱的体积公式还可以写成: V=πr2h5.分组讨论完成例6.(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(2)指名口答,讲解订正。

例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)答:502.4大于498,所以这个杯子能装下这袋奶。

六年级下册数学《圆柱的体积教案(例5、例6)》教案

六年级下册数学《圆柱的体积教案(例5、例6)》教案
六年级数学组集体备课表
课 题
圆柱的体积(1)
备课日期
参加 教师
六年级全体数学教师
主持人
主讲人
教学 内容
课本第25、26页内容。
教学 目标
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
教学重难点
②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
答:因为502.4大于498,所以杯子能装下这袋牛奶。
三、ห้องสมุดไป่ตู้固练习
1、完成第26页的“做一做”习题。
2、完成练习五的第1—3题。
四、板书设计
圆柱的体积
圆柱的体积=底面积×高
V=Sh或V=πr2h
例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
重点:1、掌握圆柱体积的计算公式。
2、应用圆柱的体积计算公式解决简单的实际问题。
难点:圆柱体积的计算公式的推导。
突破难点、方法与策略
圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。
教具、学具准备
多媒体课件、圆柱体体积公式推导模型。
教学 过程
一、复习导入
1、复习旧知
(1)、长方体的体积公式是什么?
(2)、复习圆面积计算公式的推导过程。
2、揭示课题:圆柱的体积

人教版数学六年级下册圆柱的体积教案模板(推荐3篇)

人教版数学六年级下册圆柱的体积教案模板(推荐3篇)

人教版数学六年级下册圆柱的体积教案模板(推荐3篇) 人教版数学六年级下册圆柱的体积教案模板【第1篇】第二课时教学目标1.经历同桌合作,测量、计算圆柱形物体体积的过程。

2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。

3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。

教学重点能根据学生自己测量的数据进行圆柱体积的计算。

教学难点给出圆柱底面周长如何计算圆柱的体积。

教具准备学生自备的茶叶筒或露露瓶。

教学过程一、测量茶叶筒的体积1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?生:茶叶筒的高,底面直径或半径。

师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。

学生同桌合作测量并计算。

2.交流测量数据的方法和计算的结果。

3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。

如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?生:利用周长先求出半径,再进行计算。

师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。

或用皮尺测量。

请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。

二、巩固练习1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?2.独立完成练一练的1-3题。

三、家庭作业1.练一练的第4小题。

2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?圆柱的体积第三课时容积教学目标1.结合具体事例,经历探索容积计算问题的过程。

2.掌握计算容积的方法,能解决有关容积的简单实际问题。

3.在解决容积问题的过程中,体验数学与日常生活的密切联系。

六年级下册数学人教版圆柱体积例5、例6、例7教学设计

六年级下册数学人教版圆柱体积例5、例6、例7教学设计
2.操作探究,理解公式:组织学生进行实际操作,如用积木搭建圆柱体,引导学生观察、思考圆柱体积的计算方法。在此基础上,引导学生发现圆柱体积的计算公式,并加以解释和验证。
3.分层次教学,关注个体差异:针对不同学生的学习水平,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。对于空间想象能力较弱的学生,教师应给予个别辅导,帮助他们理解圆柱体积的计算方法。
2.教师继续提问:“我们已经学习了长方体、正方体的体积计算方法,那么圆柱体的体积该如何计算呢?”让学生带着问题进入新课的学习。
(二)讲授新知
1.教师通过动画或实物演示,引导学生观察圆柱体的结构特征,如底面是圆形,侧面是曲面等。
2.教师引导学生将圆柱体分解成底面为圆形的圆形底板和侧面为矩形的侧面,从而得出圆柱体积的计算公式:圆柱体积=底面积×高。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结圆柱体积的计算方法和应用。
2.教师强调圆柱体积计算公式中的关键要素,如底面积、高,并提醒学生注意在实际问题中正确应用。
3.教师对本节课学生Байду номын сангаас表现进行点评,鼓励他们在今后的学习中继续努力。
4.教师布置课后作业,要求学生运用所学知识解决实际问题,并进行课后拓展,如查找生活中的圆柱体积计算实例。
4.合作交流,提高解决问题的能力:鼓励学生与他人合作,共同解决实际问题。通过小组讨论、分享解题思路,培养学生的团队协作能力和表达能力。
5.知识拓展,提高应用意识:结合生活实际,设计一些拓展性问题,如计算圆柱形水池的容量、圆柱形柱子的体积等,让学生运用所学知识解决实际问题,提高数学应用意识。
6.评价与反馈:在教学过程中,教师应及时对学生的表现给予评价和反馈,鼓励学生积极参与课堂活动,培养学生的自信心。同时,关注学生的错误,指导他们找出错误原因,并进行针对性改正。

人教版数学六年级下册第10课圆柱的体积教学设计(推荐3篇)

人教版数学六年级下册第10课圆柱的体积教学设计(推荐3篇)

人教版数学六年级下册第10课圆柱的体积教学设计(推荐3篇)人教版数学六年级下册第10课圆柱的体积教学设计【第1篇】探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

教学重难点:学生会应用圆柱体积公式解决实际问题。

探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。

要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。

⑴估测。

这个圆柱形鱼缸的容积大约是多少?⑵操作、汇报。

如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。

底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。

3.14×152×12=8478(立方厘米)⑷评价。

组织学生间进行评价。

你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

⑸反思。

引导学生将实际计算结果与自己的估测结果进行对比。

新人教版小学六年级下册数学《用圆柱的体积解决问题》教学设计优秀教案

新人教版小学六年级下册数学《用圆柱的体积解决问题》教学设计优秀教案

新人教版小学六年级下册数学《用圆柱的体积解决问题》教学设计优秀教案一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。

(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。

(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。

二、教学重难点教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。

教学难点:转化前后的沟通。

三、教学准备每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。

四、教学过程(一)复习旧知,做好铺垫1.板书:圆柱的体积。

问:圆柱的体积怎么计算?体积和容积有什么区别?2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。

(完整板书:用圆柱的体积解决问题。

)【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。

(二)探索实践,体验转化过程1.创设情境,提出问题。

每个小组桌子上有一个没有装满水的矿泉水瓶。

教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)预设1:瓶子还有多少水?(剩下多少水?)预设2:喝了多少水?(也就是瓶子的空气部分。

)预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)2.你觉得你能轻松解决什么问题?(1)预设1:瓶子有多少水?(怎么解决?)学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。

教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。

请你准备好直尺,或许等会儿有用哦!(2)预设2:喝了多少水?学生:喝掉部分的形状是不规则,没有办法计算。

人教版数学六年级下册圆柱的体积创新教案(推荐3篇)

人教版数学六年级下册圆柱的体积创新教案(推荐3篇)

人教版数学六年级下册圆柱的体积创新教案(推荐3篇)人教版数学六年级下册圆柱的体积创新教案【第1篇】教学目标:1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。

教学重点:理解和掌握圆柱的体积计算公式,会求圆柱的体积教学难点:理解圆柱体积计算公式的推导过程。

教学用具:圆柱体积演示教具。

教学过程:一、复述回顾,导入新课以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。

2题同桌互说。

说完后坐好。

)1、说一说:(1)什么叫体积?常用的体积单位有哪些?(2)长方体、正方体的体积怎样计算?如何用字母表示?长方体、正方体的体积=()×()用字母表示()2、求下面各圆的面积(只说出解题思路,不计算。

)(1)r=1厘米;(2)d=4分米;(3)C=6.28米。

(二)揭示课题你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。

(板书课题)二、设问导读请仔细阅读课本第8-9页的内容,完成下面问题(一)以小组合作完成1、2题。

1、猜一猜,圆柱的体积可能等于()×()2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。

这个长方形的面积就是圆的面积。

圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。

(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系(1)圆柱的底面积变成了长方体的()。

(2)圆柱的高变成了长方体的()。

(3)圆柱转化成长方体后,体积没变。

因为长方体的体积=()×(),所以圆柱的体积=()×()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆柱的体积》教学设计
一、学习内容
教科书第25页圆柱的体积例5及做一做。

二、教材分析
教材首先从回顾旧知(长方体、正方体的体积计算)入手,引出圆柱体积的计算问题,并提出圆柱能否转化成已学过的立体图形来计算体积。

接着通过教具演示图说明把圆柱的底面分成若干个相等的扇形,把圆柱切开,拼成一个近似的长方体,然后引导观察和推理。

三、学习目标
1.运用迁移规律,引导学生借助面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积公式计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

3.引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。

4. 借助实物演示,培养学生抽象、概括的思维能力。

四、学习重点
圆柱体积计算公式的推导过程及其应用。

五、学习难点
理解圆柱体积公式的推导过程。

六、学习过程。

相关文档
最新文档