数学八年级上(新版)人教新课标16.2+二次根式的乘除(1)+课件
(人教版)八年级下册:16.2《二次根式的乘除(1)》ppt课件
= 8 1 2 = 42 23
= 42 6 = 4 6 (2)已知 a 2 50 , b 3 32 ,求S;
解:由题意得:
S = a gb = 2 503 32
= 6 5032 = 6 40 2
15
= 6 40 = 2 4 0
.
五、强化训练
2、设正方形的面积为S,边长为 a. (1)已知S=50,求 a ;
解:由题意得:
a = s = 50
= 5 2 2 = 52 2
=5 2
(2)已知S=242,求 a.
解:由题意得:
a = s = 242 = 1 1 2 2 = 112 2
16
=11 2
.
Thank you!
.
17
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
= 16 × 81=__4_×__9_=_3_6_.
8
.
三、研读课文
知运 二 识算 次 点根 二式
的 乘 法
9
(2) 4a 2b3 解:(2) 4a 2b3
= 4 · a 2· b 3 =__2_·_a _·_b __b _
=_2_a_b_·_b_ =_2_a_b __b_
温馨提示:被开方数 4a2b3中含有因数或因式
三、研读课文
一个长方形的长和宽分别是 1 0 和 2 2 .
求这个长方形的面积.
解:由长方形的面积=长×宽,可得
S = 102 2 = 2 10 2
= 2 2 2 5 =2 22 5
= 22 5 = 4 5
13
.
四、归纳小结
1、 a.• b a b ( a ≥0,_b___≥0)
人教版八年级下册数学16.2二次根式的乘除(2) ——二次根式的除法课件 (共18张PPT)
(5) 3 3 5
(6) 0.4 (7) 3 24
(8)
5x 12 y3
难点突破
例 5 化简 (aa1- ) a11=1a =__.____
分析:含字母的二次根式的化简,通常要知道字母的符号,而字 母的符号又常借被开方数的非负性而隐藏.因此,化简时要从 被开方数入手.
解:∵a -a1有意义,∴-1a≥0,∴-a>0.
a0,b0
二次根式相除,根号不变,把被开方数相除。
思考:
1、这里的字母a,b可以取任意实数吗? 2、为了方便记忆,你能用一句话叙述这一规律吗? 3、等式 m3 m3 成立的条件是__m__>_5___
m5 m5
实践应用
a b
a b
a 0 ,b 0
例1 计算 (1) 24 3
(2) 3 1 2 18
∴a -1a=a
(-1 a)=a
(-a) (-a) (-a)
=a
(--aa)2=a
-a
-a
=-aa -a=- -a.
巩固提升
1.计算 4 8 1 的结果是( A )
3
A. 3
B. 5
C. 6
D. 8
2.若使等式
42k k1
42k 成立,则实数k取值范围是_1_<__k__≤_2__
k1
3.下列二次根式 4 5, y, x2y2, a 2+ 9, 2 x中属于最
课外作业
1.计算:
(1) 30 3 22221 23 2
(2) 7314 3 21 152 2
(3) a3b (3 b)(32a) ( 4 )7 ( 5 6 1 )2( 4 )2
2a
(5) 2 5 50
人教版八年级数学下册 16.2 二次根式的乘法 课件(共16张ppt)
(1) 144 169;
(2) 1 2a 8a3 . 4
解: (1) 144 169= 144 169
12 13 156;
(2) 1 2a 8a3 1 2a 8a3
4
4
1 16a 4 1 4a 2 a 2 .
4
4
四、拓展
1.课堂小结
一、本节课的主要内容是什么?
(一)二次根式的乘法法则: a b aba 0,b 0.
(二)积的算术平方根的性质:
ab a b .
(三)化简二次根式的步骤:
1.将被开方数尽可能分解成完全平方数.
2.平方项用公式 a2 aa 0移出根号外.
(1)
14
7;(2) 3 5 2 10;(3)
3x
1 3
xy
.
解:(1)
14
7 14 7 7 2;
72 2 72 2
二次根式相乘,被开 方数的积中有开得尽 方的要移出根号外.
二、探究
(2)3 5 2 10 3 2 510 6 52 2
三、检测
1.化简:1 2 5
2 3 12
3 2 xy 1 4 288 1
x
72
2.化简:
(1) 49121 (2)
225
(3) 4 y
(4)
16ab2c3
3.已知一个矩形的长和宽分别
是 10cm和2 2cm,求这个矩
形的面积。
三、检测
4 计算:
易错提醒: ab a b
注意:a,b都必须是非负数.
二、探究
例1 计算:
(1) 3 5 ;
16.2二次根式的乘除法(教案)
1.教学重点
本节课的教学重点主要包括以下内容:
a.掌握二次根式乘法的运算法则,特别是\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)的形式,以及如何将其他形式的二次根式乘法转化为这一形式;
b.理解并应用二次根式除法的运算法则,特别是\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)和\( \frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} \)的形式,以及如何处理分母中含有二次根式的情况;
(3)\( \sqrt{a^2} \times \sqrt{b^2} = |a||b| \)(a、b为任意实数)
2.掌握二次根式除法的运算法则,能够正确计算以下形式的除法:
(1)\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)(a≥0,b>0)
2.培养学生的逻辑思维能力,使其能够理解并运用二次根式乘除法的性质,解决实际问题;
3.培养学生的数学建模能力,通过解决实际情境中的问题,让学生体会数学知识在实际生活中的应用;
4.培养学生的数学抽象能力,让学生从具体的二次根式乘除运算中抽象出一般性规律,形成数学认知结构;
5.培养学生的合作交流意识,鼓励学生在小组讨论和交流中,共同探索二次根式乘除法的运算规律,提高解决问题的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示二次根式乘除法的基本原理,如使用尺子和直角三角形模型来计算对角线长度。
人教版八年级数学第十六章 二次根式课本
3、利用
成一个数或式的平方的形式.如
4、注意逆用二次根式的性质,即
得到
成立,可以把任意一个非负数或式写 .
,
,利用这两个性质可以对二次根式进行化简.
5、运用二次根式的性质化简时,最后结果中的二次根式要化为最简二次根式或整 式.最简二次根式必须满足两个条件:(1)被开方式中不含分母;(2)被开方式中不 含能开得尽方的因数或因式. 三、典型例题讲解
2 / 12
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
16.2 二次根式的乘除
知识点一 知识点二 知识点三 知识点四 知识点五 知识点六
知识点四商的算术平方根
������ ������
=
������������(a≥0,b>0).
名师解读 (1)商的算术平方根,等于被除数的算术平方根与除数
的算术平方根的商.
(2)在应用商的算术平方根时,一定要注意根号下的字母,不管是
数还是代数式,都必须满足a≥0,b>0.
如 (-4)(-16)化成 -4 × -16就是错误的,而 (-4)(-16)化成 4 ×
16才是正确的. (3)如果给出的二次根式,被开方数的因式中有一些幂的指数不
小于 2,即含有完全平方的因式(或因数),通常可根据积的算术平方 根的性质,并利用 ������2=a(a≥0),将这个因式(或因数)“开方”出来.
知识点一 知识点二 知识点三 知识点四 知识点五 知识点六
23
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四
拓展点一根据二次根式的隐含条件化简二次根式
例 1 把二次根式(x-1) 11-������中根号外的因式移到根号内,结果是 ()
A. 1-������ B.- 1-������ C.- ������-1 D. ������-1
10
教材新知精讲
综合知识拓展
知识点一 知识点二 知识点三 知识点四 知识点五 知识点六
例3
计算:(1) 72 ÷
6;(2)
1
1 2
÷
16;
(3)4 1 13÷6 3 15;
(4)-23
������3������
(a>0,b>0).
2
������ ������
16.2.1二次根式的乘除课件
3
(3) 9 1 ( 4) 9 3 1
2
4
24
你发现了什么?用你发现的规律填空:
(1) 2 3 6 =
(2) 5 7 35 =
探究
(4)(9) 4 9成立吗?
不成立!
4、 9没有意义。
一般情况下,a≥0,b≥0时, a 与b ab
有什么关系?
一般地,对于二次根式的乘法,有:
例题讲解
化简: (1)
3 (2) 100
25 y 9x2
解: (1) 3 3 3 100 100 10
(2)
25 y 9x2
25 y
9x2
52 y 5 y
32 x2 3x
计算:(1) 2 ( 2) 2 3 ( 3) 27
3
8
3x
解(1)解法一:
2 2 23 6 6 6 3 3 33 32 32 3 解法二:
25x3 y4 25 y4 x3
5y2 x x
5xy2 x
讨论
计算:
有什么发现?
(1) 4 2 ( 2) 4 2
93
93
(3) 16 4 ( 3) 16 4
25 5
25 5
根据你发现的规律填空:
(1)
2 3
=
2 3
(2)
5 7
= 75
一般地,对二次根式的除法,有:
(1) 8 ( 2 )= 4
( 5 )=(21)02 5
(3) a-1 •( a-1)= a-1
(34)3
2=
6
2.化简下列二次根式,使得分母中不含有根号:
(1)-8 3 (2)3 2
8
27
(3) 5a 10a
16.2二次根式的运算(第1课时)讲解与例题
二次根式的运算第1课时1.二次根式的乘法法则(1)二次根式的乘法法则(性质3):a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立.②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根. ③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4× 3.6;(2)545×3223. 分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法. 解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230. 2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a ≥0,b ≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a ,b 是限制公式右边的,对公式的左边,只要ab ≥0即可.②公式中的a ,b 可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab =a ·b (a ≥0,b ≥0)可以推广为abc =a ·b ·c (a ≥0,b ≥0,c ≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简: (1)300;(2)21×63;(3)(-50)×(-8);(4)96a 3b 6(a >0,b >0).分析:根据积的算术平方根的性质:ab =a ·b (a ≥0,b ≥0)进行化简. 解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a 3b 6=42·6·a 2·a ·(b 3)2=4ab 36a .3.二次根式的除法法则 对于两个二次根式a ,b ,如果a ≥0,b >0,那么a b =a b.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a ≥0,b >0,则有a b =a b .②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a ≥0,b >0与二次根式乘法的条件a ≥0,b ≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =m na b (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =a b,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用:(1)数学表达式:如果a ≥0,b >0,则有a b =a b ; (2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握)【例4】把下列各式中根号外的因数(式)移到根号内.(1)535; (2)-2a 12a; (3)-a -1a ; (4)x y x(x <0,y <0). 分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15. (2)∵12a>0,∴a >0. ∴-2a 12a =-(2a )2·12a=-(2a )2·12a=-2a . (3)∵-1a>0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a)=-a . (4)∵x <0,y <0,∴x y x =-(-x )2y x=-(-x )2·y x=-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式.①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式;②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +b b 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎪⎨⎪⎧ a +b =2,3a +b =b ,解得⎩⎪⎨⎪⎧a =0,b =2. 所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算(1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用.(3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件;②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上;④误认为形如a 2+b 2的式子是能开得尽方的二次根式.【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a). 分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除. 解:(1)9145÷(3235)×12223 =(9÷32×12)145÷35×83=(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12ab a 2b ·a b·a =-12ab a 4 =-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式. a 与a ;a +b 与a -b ;a +b 与a -b ;a b +c d 与a b -c d .③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab <0时,化简ab 2,得__________.(2)把代数式x -1x根号外的因式移到根号内,化简的结果为__________. (3)把-x 3(x -1)2化成最简二次根式是__________. (4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是( ). A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙的解法都正确D .甲、乙的解法都不正确解析:(1)在ab 2中,因为ab 2≥0,所以ab ·b ≥0.因为ab <0,b ≠0,所以b <0,a >0.原式=b 2·a =-b a .(2)因为-1x ≥0,又由分式的定义x ≠0,得x <0.所以原式=-(-x )-1x=-(-x )2(-1x)=--x . (3)化简时,需知道x ,x -1的符号,而它们的符号可由题目的隐含条件推出. ∵(x -1)2>0(这里不能等于0),∴-x 3≥0,即x ≤0,1-x >0. 故原式=(-x )2·(-x )(1-x )2=-x 1-x-x . (4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a (2)--x(3)-x 1-x-x (4)C 8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用.如:借助于计算器可以求得42+32=__________,442+332=__________,4442+3332=__________,4 4442+3 3332=__________,……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55,4442+3332=308 025=555,4 4442+3 3332=30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-x x -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值. 分析:式子a b =a b,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6. ∴6<x ≤9.∵x 为偶数,∴x =8.∴原式=(1+x )(x -4)(x -1)(x +1)(x -1) =(1+x )x -4x +1 =(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6.【例8-2】观察下列各式: 223=2+23,338=3+38. 验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23; 338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38. (1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用. 解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415. (2)猜想:n n n 2-1=n +n n 2-1(n ≥2,n 为正整数). 证明:因为n n n 2-1=n 3n 2-1=n 3-n +n n 2-1=n (n 2-1)+n n 2-1=n +n n 2-1,所以nn n 2-1=n +n n 2-1.。
《16.2 二次根式的乘除(第1课时)》教学设计
《16.2 二次根式的乘除(第1课时)》教学设计《16.2 二次根式的乘除(第1课时)》教学设计一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1); (2).师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.例2 计算:(1); (2); (3)师生活动学生计算,教师检验.(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x移出根号外.【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.4.巩固概念,学以致用练习:教科书第7页练习第1题. 第10页习题16.2第1题.【设计意图】巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是( )A.B.C.D.【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.2.化简______________________________。
新人教版八年级数学下册16.2二次根式的乘除(1)ppt课件(17页)
变:若(3)的条件为a≤0,b≥0呢?
应用巩固
练习1 计算下列各式:
(1) 18 2;
(2) 3(- 6);
(3) 3 6 8; (4) 9 16 ;
(5) 2 4 ;(6) 5 4 ;(7) 12a3b2 .
请写出两个二次根式,猜一猜,它们的积应该是多 少?
特殊化,从能开得尽方的 二次根式乘法运算开始思考!
2 7=么联系?
4 25
=
16 9
=
4 25 16 9
1 4
=
36
1 4 36
能用字母表示你所发现的规律吗?
自主探究
二次根式乘法法则: 一般地有 a b= ab(a≥0,b≥0 ). 二次根式与二次根式相乘,等于各被开方数相乘 的算术平方根.
反之: ab= a b(a≥0,b≥0 ).
能试着说说上述公式成立的理由吗?
2 7=?
巩固新知
例1 计算:
(1) 3 5 ; (2) 8 2 ;
(3) 1 2 7 ;(4) 1 a 3b .
3
3
本章中,如未特别说明,所有的字母都表示正数.
巩固新知 例2 计算:
(1) 16 81 ;(2) 1 2 ;(3) 4a 2b3 . 解:(1) 16 81=36;
八年级 下册
16.2 二次根式的乘除(1)
课件说明
• 本课在学习二次根式的概念和性质的基础上,结合 算术平方根的概念,通过观察,归纳出二次根式的 乘法法则,并应用这个法则进行二次根式的计算和 化简.
课件说明
• 学习目标: 1.探索二次根式乘法法则; 2.能根据二次根式乘法法则进行二次根式的乘法 运算.
16.2二次根式的乘除
知识要点
这样的二次根式,叫做最简二次根式。
最简二次根式的特点
被开方数不含分母。 被开方数中不含能开得尽方的因数或因式。
在二次根式的运算中, 最后结果 的一般要求
2 分母中不含二次根式。 如: × 2 1 被开方数不能含有小数或分数。如: 或 0.2 × 2 2x y 分子分母不能约分。 如: 2 × 3x
a b
2 a ( a a 0) 3.将平方式(或平方数)应用 把这个因式(或因数)开出来,将二次根式 化简。
课堂小结
1. 二次根式的乘法:
a b ab a 0, b 0 ab a b a 0, b 0
2. 二次根式的除法有两种常用方法:
(1)利用公式: a b
新课导入
1. 一个平行四边形的底为 5,高为 3 ,求 这个平行四边形的面积。
提示 根据平行四边形的面积公式 S = ah 求解。
3 5
S=
5
3
这是最终结果吗? 这个结果能否继续化简? 如何化简?
2. 如果矩形的面积是 20 ,长为 5 ,求宽。
提示 根据矩形的面积公式 S = ab 求解。
20
?
5
b=
20 5
这是最终结果吗? 这个结果能否继续化简? 如何化简?
16.2二次根式的乘除
探究
有什么 规律?
1. 计算:
4 ? 25
2 ?
2
5
5
2? 5 10
4? 25
1 ? 9 1 16
100 = 102 = 10
骣 骣 1 1 鼢 珑 ? 鼢 珑 鼢 珑 桫 桫 3 4
2 2
有什么 规律?
1 1 ? 3 4
16.2 二次根式的乘除 课件2024-2025学年人教版数学八年级下册
D.20
(2) 12b ∙
93
4
.
课堂引入
问题1.一个长方形的长为 6,宽为 3 ,请求长方形的面积.
追问1:像 6, 3这样表示一个数的算术平方根的数字是实数吗?
如何进行二次根式的加、减、乘、除运算?运算的过程中要遵循怎样的
运算法则?
一、二次根式的乘法
问题2.像 6 × 3这样,是两个二次根式的积,怎样计算?
因式的二次根式.
化简时通常要求最终结果中的分母不含根号,而且各个二次根式都是最简二次
根式.
特别注意:(1)分母中含根号的要化简成没根号;
(2)根号中有分数的也要化简;
(3)根号中有小数的也要化简.
合作学习
2.说出二次根式的乘除法则,并用字母表示.
二次根式的乘法法则公式: × = ( ≥ 0, ≥ 0);
(
1
1
1
+
+
+
2+1
3+ 2
4+ 3
⋯+
1
)(
2018+ 2017
2018 + 1)的值.
例题精析
(
1
2+1
+
1
1
+
3+ 2
4+ 3
+⋯+
1
)(
2018+ 2017
2018 + 1)
解:
原式= (
1
1
1
+
+
+
2+1
3+ 2
4+ 3
⋯+
新人教版《二次根式的乘除》课件公开课PPT
n(n2-1)+n n2-1
=
综设上AE所的述长,符为合m,条△件AD的E点的P面只积有为一S个,求,其S关坐于标m为的(2函,-2数√(关"3系" )式). ,并写出自变量m的取值范围;
"(i∴)当△四C边DE形的C最DM大N面是积平为行" 四"8边1"形/",8∵" M,此向时下A平E=移m4=个"9单" /"位2"得"N,B,∴E=NA的B-坐A标E=为" ("39+"n/,"n2-"2).,
按团体票一次性购买16张门票需要35×60%×16=336(元).
示为( B ) ②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.
解:由题意,得:①甲组单独施工12天完成,商店需付装修费用3 600元;乙组单独施工24天完成,商店需付装修费用3 360元,比较可 知,甲组比乙组早12天完工,商店早开业12天可盈利200×12=2 400(元). 知识点四 列一元一次不等式解应用题
A. 13
B. 12
C. a3
D.
5 3
8.把下列二次根式化成最简二次根式:
(1) 3.5 ;
解:原式=
14 2
(2)
4 15
;
解:原式=35 5
(3)
27 3x
;
(4) 16x3+32x2 (x>0).
解:原式=3x x
解:原式=4x x+2
∴(的2)A函点B数E=从9关9,O点系.CA式=(出9绵,.并发写阳,沿出x中轴自向变考点量Bm)运等的动取式(值点范E与围xx点; - +A,B31不重=合),过点xxE作- +直31线l平成行立于B的C,交xAC的于点取D.设值AE范的长围为在m,△数AD轴E的上面积可为S表,求S关于m
八年级数学下册第十六章二次根式16.2《二次根式的乘除》课件
巩固新知 深化理解
1.下列运算正确的是( D ) A.2 18 3 5 6 80 B. 52 32 52 32 5 3 2 C. (4)(16) 4 16 (2)(4) 8 D. 52 32 52 32 53 15
用你发现的规律填空:
(1) 2 3 = 23; (2) 3 5 = 35.
(1) 4 9 = 4 9; (2) 16 25= 16 25; (3) 25 36 = 25 36.
实战演练 运用新知
例1 计算:
(1) 3 5; (2) 1 27; 3
(3) 2 3 5.
是 3 x5 .
巩固新知 深化理解
5.设长方形的面积为S,相邻两边分别为 a ,b . (1)已知 a 8 , b 12 ,求S;
解:由题意得:
S = *b = 8 12
= 8 12 = 42 23
= 4 6.
(2)已知 a 2 50 , b 3 32 ,求S.
4 2.
合作探究 获取新知 分母有理化
把分母中的根号化去,使分母变成有理数的这个过程就
叫做分母有理化.
化简: (1) 3 ; 5
解:(1) 3 3 5 5 5 5
(2) 1 . 3 2
(2) 1
1( 3+ 2)
3 2 ( 3 2)( 3+ 2)
15 . 5
归纳 有理化因式确定方法:形如
合作探究 获取新知 归纳总结
想一想:3 5 2 2 如何计算呢? 解:3 5 2 2=(3 2)( 5 2)=6 10.
二次根式的乘法扩充法则: m a n b =mn ab(a 0,b 0)
16.2二次根式的乘除(第1课时 ) 课件
二次根式乘法运算公式
a b a b(a≥0,b≥0)
积的算术平方根,等于积中各因式的算术 根的积。
注意:
a b
问题1: (4) (9) × 4 9
问题2: 9 16×
2 2
×
a
9 16
2 2
5 3 × 5 3
一般的:
a b ab
1.将被开方数尽可能分解成几个平方数
2.应用 ab a b
3.将平方项应用
a a
2
(a 0) 化简.
做一做
(1) 24,
化简
(2) 72,
2 6
(4) 9a ,
3 a
6 2
(5) 2a ,
a 2
2
(3) 50 5 2
(6) a
ab
化简: (1) a b a
4
2
b
2
反过来:
(a≥0,b≥0)
ab a b(a≥0,b≥0)
在本章中, 如果没有特别说明,所有的字母都表示正数
ab a b (a 0, b
例2.化简: ( 1 ) 16 81 ;(2) 4a b ;
2 3
解 : (1) 16 81 16 81 4 9
(2) 4a b
2
3
1 x x 1
x 2
2
x≥1 x≤1
∴x=1
4
x 1
x为任何实数.
x为任何实数.
想一想
这个长方形的面积是多 少?
解 : 长方形的面积为 6 3
这个结果能否化简?如何化简?
一个长方形的长为 6cm,宽为 3
合作探究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 x2 y 3 xy
2 x = ; 3
(5)
=
; (6)
=
。
10
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
1. 二次根式的乘法和除法法则:
a · b ab
(a ≥ 0, b ≥ 0), (a ≥ 0, b > 0).
a
b
a b
2.二次根式相乘除法,先按照法则进行运算, 如果积或商中含有二次根式,要将它化成最 简二次根式.
2
复习提问
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
1、积的算术平方根的性质:
ab a b
2、逆运算:
(a 0, b 0)
积的算术平方根等于积中各因式的算术平方根.
a b ab
(a≥0,b≥0)
3
算术平方根的积等于各个被开方数积的算术平方根
3、商的算术平方的性质: 《恒谦教育教学资源库》
二次根式相乘除,先按照法则进行运算,
5
如果积或商中含有二次根式,要将它化成最简二次根式.
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
1.计算:
(1) 7
·
14; 7 2
(2)
24 6
; 2
1 (3) 6
·
1 ; 8
3 12
(4) 45 - 5
-3
6
《恒谦教育教学资源库》
3 a (3) a 9a
2 3 3 2 6 6
23 6
4.等式
A、x≠5
x 3 x 3 x 5 x 5
成立的条件是( D )
D、x>5
B、x≥3C、x≥3且x≠5
5.下列等式中成立的是(
C )
A、 C、
8 4 2 2
48 3 48 3 16 4
7
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
2.计算:
( 1 ) 45 3 3
15
(2) 3
·
; 6 30
15
3
5
8
达 标 检 测
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
1.如果, x x 10 x( x 10) 那么( B) A、x≥0 B、x≥10 C、0≤x≤10 D、x为全体实数 2.下列各式计算正确的是( B ) A、 5a a 5a B、 a 1 1 C、 8a9 4a3 D、 x( x 5) x x 5 a 3.下列式子中不成立的是( A ) A、 B、 C、 2 (2 3)(2 3) 1 D、 2 3
a a (a≥0,b>0) b b 商的算术平方根等于被除式的算术平方根除以
a b a( a≥0,b>0) b
4
教师备课、备考伴侣 专注中国基础教育资源建设
除式的算术平方根 4、逆运算
算术平方根的商等
《恒谦教育教学资源库》
1 (2) 2 2 5 6
教师备课、备考伴侣 专注中国基础教育资源建设
例 计算:
(1) 15 ( 5 · 27);
(2)24 ab 3 a.
15 解:(1) 15 ( 5 · 27 ) 15 5× 27 5×27 1 1 ; 9 3
24 ab ab (2)24 ab 3 a · 8 b. 8 3 a a
11
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
课本P126 习题9.3 复习与巩固 1、2题
12
48 (3) 3
=10
教师备课、备考伴侣 专注中国基础教育资源建设
5 (4) 5
(1) 5 · 20 5 × 20 100
1 1 1 10 3 (2) 2 2 5 2 5 2 10 6 6 3 3 48 48 (3) 16 4 ; 3 3
5 25 25 (4) 5 5 5 5
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
编辑发行:西安恒谦教育科技股份有限公司
全国统一客服电话:400-715-6688
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
学习目标:
1、了解二次根式的乘除法法则,会运用法则 化简二次根式。 2、会根据法则进行二次根式的运算,进一步 提高学生的运算能力。 3、学会独立思考并能与同学交流。
1 B、 3 27 9 3
D、 3 2 3
9
《恒谦教育教学资源库》
教师备课、备考伴侣 专注中国基础教育资源建设
3 6 2.计算:
3 2
1 162 2
9
(1) 3(
m (3)
3 1)
1 3 3 1 = ;(2) 2
2 3
=
3 2
;
a n
m ab b= ;(4) nb