CAN-BUS介绍

合集下载

CAN协议规范标准

CAN协议规范标准
性”; SRR 位(扩展格式):SRR 的全称是“替代远程请求位(Substitute
Remote Request BIT)”。SRR 是一隐性位。它在扩展格式的标准帧 RTR 位位置,因此代替标准帧的RTR 位。因此,标准帧与扩展帧的冲 突是通过标准帧优先于扩展帧这一途径得以解决的; IDE 位(扩展格式):IDE 的全称是“识别符扩展位(Identifier Extension Bit)”IDE 位属于:
物理层协议
三一智能
OSI Reference Layers
应用层 表示层 会话层 传输层 网络层 数据链路层 物理层
ISO/OSI 7层模型
逻辑链路控制 (LLC)
- 验收滤波 - 过载通知 - 恢复管理
介质访问控制 (MAC)
- 数据封包、解包 - 帧编码(填充、消除填充) - 错误检测、标定
物理层 (PLS)
- 位编/解码 - 位定时/同步
三一智能
CAN-bus 相关概念
三一智能
❖CAN总线电平标称值
CANH
2.5 V
CANL
Vdiff = 0V 隐性(逻辑1)
CAN-bus 相关概念
3.5 V
Vdiff = 2V
Vdiff = 0V
1.5 V 显性(逻辑0) 隐性(逻辑1)
8us
隐隐显隐显显
“110100”
三一智能
❖帧格式
CAN-bus 相关概念
➢ 标准帧:具有11位标识符的CAN帧;
标准帧
仲裁域
控制域
数据域
11位标识符
DLC
r0 IDE RTR
SOF
三一智能
CAN-bus 相关概念
➢ 扩展帧:具有29位标识符的CAN帧;11位标识符

CANBUS原理介绍

CANBUS原理介绍

CAN总线原理介绍一.现场总线简介1、现场总线的概念:现场总线是应用在生产现场,在微机化测量控制设备之间实现双向串行多节点数字通信的系统。

也被称为开放式的数字化多节点通信的底层控制网络。

现场总线作为智能设备的联系纽带,把挂接在总线上的作为网络节点的智能设备连接为网络系统,并进一步构成自动化系统,实现基本控制、补偿计算、参数修改、报警、显示、监控、优化及控管一体化的综合自动化功能。

2、几种较有影响的现场总线技术:基金会现场总线(FF-Foundation Fieldbus), Lonworks, PROFIBUS, HART, CAN 现场总线是几种较重要的现场总线技术。

二.CAN总线技术:1、CAN总线简介:CAN (Controller Area Network)—控制器局域网。

它是一种有效支持分布式控制或实时控制的串行通信网络。

CAN总线最早是由德国Bosch公司在80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆、光导纤维,通信速率可达1Mbps。

CAN总线通信接口中集成了CAN协议的物理层,数据链路层功能,可完成对通信数据的成帧处理,包括位填充,数据块编码,循环冗余校验,优先级判别等项工作。

2、CAN总线技术的主要特点:⑴多主站依据优先权进行访问。

CAN为多主方式工作,网络上的任一节点在任何时候都可以主动地向网络上的其他节点发送信息。

⑵采用短帧传送。

CAN采用短帧结构,废除了对传统的站地址编码,而是对通讯数据进行编码。

每帧数据信息为0。

8个字节,具体长度由用户决定。

⑶无破坏基于优先权的仲裁。

当多个节点同时向总线发送信息时,优先级较低的节点会主动的退出总线发送,而最高优先级的节点可不受影响地继续传输数据,从而大大节省了总线冲突时间。

⑷借助接收滤波的多地址帧传送。

CAN只需通过报文滤波即可实现点对点,一点对多点以及全局广播等几种方式来传输数据,无需专门的“调度”。

CAN-Bus

CAN-Bus

CAN-Bus介绍控制器局部网(Controller Area Network )是BOSCH公司为现代汽车应用领先推出的一种多主机局部网,由于其卓越性能现已广泛应用于工业自动化、多种控制设备、交通工具、医疗仪器以及建筑、环境控制等众多部门。

控制器局部网将在我国迅速普及推广。

控制器区域网(Controller Area Network)CAN现场总线已经成为在仪表装置通讯的新标准。

它提供高速数据传送, 在短距离(40m)条件下具有高速(1Mbit/s)数据传输能力,而在最大距离10000m时具有低速(5kbits/s)传输能力, 极适合在高速的工业自控应用上。

CAN总线可在同一网络上连接多种不同功用的传感器(如位置,温度或压力等)。

CAN-Bus总线特点CAN总线与其他总线相比有如下特点:●它是一种多主总线,即每个节点机均可成为主机,且节点机之间也可进行通信;●通信介质可以是双绞线、同轴电缆或光导纤维,通信速率可达1Mbps;●CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余校验、优先级判别等项工作;●CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码。

采用这种方法的优点可使网络内的节点个数在理论上不受限制,数据块的标识码可由11位或29位二进制数组成,因此可以定义211或229个不同的数据块,这种按数据块编码的方式,还可使不同的节点同时接受到相同的数据,这一点在分步式控制中非常重要;●数据段长度最多为8个字节,可满足通常工业领域中控制命令,工作状态及测试数据的一般要求。

同时,8个字节不会占用总线时间过长,从而保证了通信的实时性;●CAN协议采用CRC检验并可提供相应的错误处理功能,保证了数据通信的可靠性●CAN总线所具有的卓越性能、极高的可靠性和独特设计,特别适合工业设备测控单元连。

因此CAN-Bus总线成为倍受工业界的重视,并已公认为最有前途的现场总线之一。

CAN-BUS总线

CAN-BUS总线
着他们旋转。当一个模块有了有用的信息,它便抓住挂环挂上这条信息,任何一个 需要这条信息的模块都可以从挂环上取下这条信息。

(4)通信协议中有个仲裁系统,通常这个系统按照每条信息的数字拼法为各数据
传输设定优先规则。例如,以0结尾的数字信息要比以1结尾的有优先权。
2
CAN数据总线传递数据的构成
• CAN数据总线在极短的时间里,在各控制单元间传递数据,可将其
转向角度 传感器
转向柱电气 控制单元 驱动 CAN bus 多功能方 向盘控制 单元
舒适系统中 央控制单元
轮胎压力 监控控制 单元
驻车加热 空调控制 控制单元 单元
挂车识别 控制单元
停车辅助 座椅调节 控制单元 控制单元
汽车电气 控制单元
转向柱电气 控制单元 舒适 CAN bus
语音输入 控制单元
卡片阅读 器
被送入低位CAN
线。

状态域:判定数据中的优先权。如果两个控 制单元都要同时发送各自的数据,那么,具 有较高优先权的控制单元,优先发送
• 检查域:显示在 数据域中所包含 的信息项目数。 在本部分允许任 何接收器检查是 否已经接收到所 传递过来的所有 信息。

数据域:在数据域中,信息被传递到其他控 制单元。
•一个电话用户(控制单元)将 数据“讲”入网络中,其他用户 通过网络“接听”这个数据 •对这个数据感兴趣的用户就会利 用该数据,而其他用户则选择忽 略
1
CAN的优点
--减少信号线及传感器的个数。一个传感器的信号可以通过CAN-BUS 传输给多个控制器,而不是给每个控制器配一个同样功能的传感器。 因此可节省导线(现在整车线束已经约3km长),成本低。
1
数据总线的类型

CAN-bus器件是什么意思

CAN-bus器件是什么意思

CAN-bus器件是什么意思概述CAN-bus(Controller Area Network)即控制器局域网,是国际上应用最广泛的现场总线之一。

起先,CAN-bus 被设计作为汽车环境中的微控制器之间通讯,在车载各电子控制装置ECU 之间交换信息,形成汽车电子控制网络。

它是一种多主方式的串行通讯总线,基本设计规范要求有较高的位速率,高抗干扰性,而且能够检测出产生的任何错误。

信号传输距离达到10Km 时,仍然可提供高达5Kbps 的数据传输速率。

由于CAN 串行通讯总线具有这些特性,它很自然的在汽车、制造业以及航空工业中受到广泛应用。

我们致力于发展中国的CAN-bus 产品与应用事业。

到目前为止,我们已成功开发出一系列CAN-bus 教学、接口、工具、应用等产品,能够为客户提供从芯片、工具、模块、软件、方案、教学等各个方面的专业服务,涉及CAN-bus 多个行业与应用领域。

我们自主开发的多个CAN-bus 型号产品已经领先于国外技术水平,并已投入广泛的实际应用。

产品分类类别产品分类描述CAN 控制器独立CAN 控制器SJA1000 是一款独立的CAN 控制器,广泛应用于汽车和一般工业环境中的控制器局域网络集成CAN 控制器的单片机P87C591 是一个单片8 位高性能微控制器,具有片内CAN 控制器。

它采用了强大的80C51 指令集并成功地包含了SJA1000 CAN 控制器强大的PeliCAN 功能NXP 集成CAN 控制器的ARM 芯片随着CAN-bus 的广泛应用,NXP 推出的很多32 位的ARM7 芯片都集成有CAN 控制器,方便开发、设计,而且节约了系统设计的成本TI 集成CAN 控制器的ARM 芯片TI S2000 系列和S8000 系列ARM 芯片都集成了CAN 的控制器。

广泛应用于汽车电子,运动控制,过程控制,以及医疗设备等要求低成本的嵌入式微控制器领域CAN 收发器CAN 收发器CAN 收发器是CAN 协议控制器和物理总线之间的接口。

CAN BUS

CAN BUS

在信息数据列中有11位的状态区,这11位二进制中 前7位既是发送信息的控制器标识符,同时又表示 了它的优先级,即从前往后数,前面零越多,优先 级越高。而后4位则是这个控制器发送不同信息的 编号,如发动机控制单元既要发送转速信号,又要 发送水温等信号,则后4位就有所不同。
CAN-BUS系统
Canbus系统的难题-发送和接受的同步
广播原理:一家发送,大家接 收
CAN-BUS系统
CAN-BUS系统组成:
CAN收发器: 安装在控制器内部,同时兼具接受和发送的功能,将控制器传来的数据化为 电 信号并将其送入数据传输线。 数据传输终端:是一个电阻,防止数据在线端被反射,以回声的形式返回,影响数据的传 输。 数据传输线:双向数据线,由高低双绞线组成。
针脚号 1 4 5 6 7 14 15 16 对应的线束 15号线 接地 接地 CANBUS(高) k线 CANBUS(低) L线 30号线
注:未标明的针脚号暂未使用。
CAN-BUS系统
Canbus上的信息 Canbus上的信息是以二进制形式出现的 。也就是说控制单元将信息转换成二进制 ,Canbus用电平来模拟二进制,接受控 制单元将电平转换成二进制数据,再将二 进制数据转换成正常数据。
CAN-BUS系统
CAN 诊断
CAN 信息
CAN 驱动 CAN 舒适 CAN 仪表
CAN-BUS系统
CAN-区域图
诊断接口 网关
发动机
变速箱
ABS J104
ESP传 感器
J533
雨括器 L
安全气囊 J234
G85
电动转向 J500 转向柱 J527
收音机
车载电话
雨括器 R
J519

canbus总线

canbus总线

CAN总线1. 简介CAN(Controller Area Network)总线是一种串行通信协议,广泛应用于汽车、工控等领域中。

它是一种高可靠性、高抗干扰的通信方式,具有多主机、多从机的结构,能够支持多个节点之间的通信。

2. CAN总线的特点2.1 高可靠性CAN总线采用差分传输方式,通过在两条通信线上分别传输互补的信号来实现数据传输,可以有效地抵抗传输线上的电磁干扰和噪声。

此外,CAN总线拥有校验机制,当数据传输过程中发生错误时,接收端可以通过异或校验位来检测错误,并进行纠正。

2.2 多主从结构CAN总线可以支持多个主机和多个从机的通信。

主机用于发送命令和控制数据的节点,从机用于接收并执行命令的节点。

这种结构使得CAN总线非常适用于分布式控制系统,能够实现多个节点之间的实时通信。

2.3 高速通信CAN总线的通信速率可以达到几百kbps甚至几Mbps,可以满足多数应用的通信需求。

高速通信可以保证节点之间的实时性,并且降低通信延时。

2.4 灵活的网络拓扑结构CAN总线支持多种网络拓扑结构,包括总线型、星型、树型等。

这种灵活的结构使得CAN总线可以适用于不同的应用场景,如汽车电子系统中的各种控制模块之间的通信。

3. CAN总线的应用3.1 汽车领域CAN总线在汽车领域中得到了广泛应用。

汽车中有许多控制模块,如发动机控制单元(ECU)、制动控制单元(BCU)、车身控制单元(BCU)等,这些模块之间需要进行实时通信才能保证汽车的正常运行。

CAN总线通过其高可靠性和实时性,成为了汽车电子系统的首选通信协议。

3.2 工控领域在工控领域中,CAN总线也得到了广泛应用。

工控设备通常需要各种传感器和执行器之间的实时通信,以实现工艺过程的监控和控制。

CAN总线可以提供高可靠性的通信,并且支持多主从结构,非常适用于工控场景。

4. CAN总线的实现4.1 硬件实现CAN总线的硬件实现主要包括CAN控制器和CAN收发器。

CAN-bus常用芯片及原理

CAN-bus常用芯片及原理

CAN-bus相关技术发展趋势
未来几年,CAN-bus技术将在低功耗、高速率、高可靠性、多系统互联和自主驾驶等方面得到进一步发 展和应用。
更快的传输速度
应用更先进的通信协议和物 理层,能够提供更高的传输 速度。
多系统互联
CAN-bus可作为不同通信总 线的桥梁,实现不同单元之 间的信息交换。
自动驾驶
CAN-bus技术在自动驾驶控 制系统中得到广泛应用,加 速了自动驾驶的发展和普及。
总结和展望
CAN-bus是分布式控制的经典案例,具有稳定性、高可靠性和强大性。今后, CAN-bus技术将依然是难以匹敌的,用途布不同行业。
CAN-bus常用芯片及原理
从基础知识到通信协议,我们深入探讨CAN-bus技术,为您介绍其常用芯片、 通信原理、应用领域、技术趋势等方面的知识。
CAN-bus基础知识介绍
CAN-bus通信的本质,即分布式控制,决定了它的稳定性和强大性。
分布式控制系统
电气连接
控制器之间进行数据交换,以实现总线通信系统。
总线结构
采用环形结构,数据沿着环路传递, 同时数据具有广播特性,可以被总线 上所有控制器接收。
数据链路层
采用CSMA/ CR(非安全模式)与 CAN-ID实现数据和命令的传输,以 确保总线上数据的顺序和重要性。
CAN-bus通信协议详解
CAN-bus有多种通信协议,大多数用于汽车领域。
1
SAE J1939
汽车领域
CAN-bus可用于车载电子控制系统、车身电子 控制系统等。
船舶领域
CAN-bus的高可靠性和高带宽可确保其在涵盖 整个船舶的所有系统和设备之间进行信息交换。
工业自动化
CAN-bus被广泛应用于各种工厂机器、机床和 物流机器人等设备控制中。

CANBUS介绍

CANBUS介绍

CANBUS介绍作为ISO11898CAN标准的CANBus(ControLLer Area Net-work Bus),是制造厂中连接现场设备(传感器、执行器、控制器等)、面向广播的串行总线系统,最初由美国通用汽车公司(GM)开发用于汽车工业,后日渐增多地出现在制造自动化行业中。

1、CANBus系统组成及性能CANBus系统通过相应的CAN接口连接工业设备(如限位开关、光电传感器、管道阀门、电机启动器、过程传感器、变频器、显示板、PLC和PCI 作站等)构成低成本网络。

直接连接不仅提供了设备级故障诊断方法,而且提高了通信效率和设备的互换性。

CANBus数据传输速率为1Mbit/s,线路距离lkm,基本站点数64,传输媒体是屏蔽双绞线或光纤。

2、CANBus数据链路控制特点CANBus数据链路层协议采用平等式(Peer to peer)通信方式,即使主机出现故障,系统其余部分仍可运行(当然性能受一定影响)。

当一个站点状态改变时,它可广播发送信息到所有站点。

CANBus的信息传输通过报文进行,报文帧有4种类型:数据帧、远程帧、出错帧和超载帧,其中数据帧格式如图8所示。

CANBus帧的数据场较短,小于8B,数据长度在控制场中给出。

短帧发送一方面降低了报文出错率,同时也有利于减少其他站点的发送延迟时间。

帧发送的确认由发送站与接收站共同完成,发送站发出的ACK场包含两个“空闲”位(recessive bit),接收站在收到正确的CRC场后,立即发送一个“占有”位(dominant bit),给发送站一个确认的回答。

CANBus还提供很强的错误处理能力,可区分位错误、填充错误、CRC 错误、形式错误和应答错误等。

CANBus应用一种面向位型的损伤仲裁方法来解决媒体多路访问带来的冲突问题。

其仲裁过程是:当总线空闲时,线路表现为“闲置”电平(recessive level),此时任何站均可发送报文。

发送站发出的帧起始字段产生一个“占有”电平(dominant level),标志发送开始。

CAN-bus现场总线基础教程【第1章】现场总线CAN-bus-CAN-bus物理层(2)

CAN-bus现场总线基础教程【第1章】现场总线CAN-bus-CAN-bus物理层(2)

文库资料 ©2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd.第1章 现场总线CAN-bus1.1 CAN-bus 物理层物理层主要是完成设备间的信号传送,把各种信息转换为可以传输的物理信号(通常为电信号或光信号),并将这些信号传输到其他目标设备。

基于该目的,CAN-bus 对信号电平、通信时使用的电缆及连接器等做了详细规定。

CAN-bus 由ISO 标准化后发布了两个标准,分别是ISO11898(125kbps~1Mbps 的高速通信标准)和ISO11519(小于125kbps 的低速通信标准)。

这两个标准仅在物理层不同,在数据链路层是相同的。

1.1.1 CAN 收发器与信号电平位于CAN-bus 物理层的器件要完成逻辑信号与电缆上物理信号的转换,该器件被称为收发器,其外形如图1.1所示。

图1.1 CAN 收发器的引脚与实物图CAN-bus 使用两根线缆进行信号传输,如图1.2所示,这两根线缆的名称分别为CAN_High 和CAN_Low (简称CAN_H 和CAN_L )。

CAN 收发器根据两根线缆之间的电压差来判断总线电平,这种传输方式被称为差分传输。

线缆上传输的电平信号只有两种可能,分别为显性电平和隐性电平,其中显性电平代表逻辑0,隐性电平代表逻辑1。

ISO11898和ISO11519-2电信号数据对比如表1.1所示。

表1.1 ISO11898和ISO11519-2电信号数据对比图1.2 双绞线文库资料 ©2017 Guangzhou ZHIYUAN Electronics Stock Co., Ltd.双绞线(屏蔽/非屏蔽)双绞线(屏蔽/非屏蔽)CAN-bus 采用双绞线连接,并配合差分传输方式,可以有效的抑制共模干扰。

共模干扰是指信号线上的干扰信号的幅度和相位都相同,如图1.3所示。

例如通信电缆被一个电磁脉冲辐射了,根据中学的物理知识我们知道交变的磁场能感应出产生交变的电场,反映在信号电位上就是出现了瞬间的电压跌落或尖峰。

CAN总线

CAN总线

Technical Training
CAN-BUS
CAN-BUS的由来 CAN-BUS的由来
由于现代汽车的技术水平大幅提高,要求能对更多的汽车运行参数进行控制,因而汽车控制器的数 量在不断的上升,从开始的几个发展到几十个以至于上百个控制单元。控制单元数量的增加,使得 它们互相之间的信息交换也越来越密集。为此德国BOSCH公司开发了一种设计先进的解决方案- CAN数据总线,提供一种特殊的局域网来为汽车的控制器之间进行数据交换。
Page 11
2010
X
TI
Technical Training
CAN-BUS
奔驰CAN-Bus 系统 奔驰
诊断CAN 诊断 内部 CAN
中央CAN 中央 Telematics CAN
车前端 CAN 底盘 CAN 车辆动态 CAN
内部 CAN 驱动系 CAN
2010
Page 12
X
TI
Technical Training
2010
Page 7
X
TI
Technical Training
CAN-BUS
CAN-Bus是Controller Area Network的缩写,称为控制单元的局域网, 它是车用控制单元传输信息的一种传送形式。 车上的布线空间有限,CAN-Bus系统的控制单元连接方式采用铜缆串行方 式。由于控制器采用串行合用方式,因此不同控制器之间的信息传送方式 是广播式传输。也就是说每个控制单元不指定接收者,把所有的信息都往 外发送;由接收控制器自主选择是否需要接收这些信息。
数据协议 ABS/EDS 控制单元 发动机控制单元 1 号数据协议 发动机控制单元 2 号数据协议 自动变速箱控制单元
信息 - 发动机牵引力矩控制请求 - 发动机转速 - 节气门位置 - 强制降档 - 冷却液温度 - 车速 - 选档杆位置 - 变速箱紧急运行 - 行驶档位切换

汽车CAN-BUS多路信息传输系统介绍

汽车CAN-BUS多路信息传输系统介绍
汽车CAN-BUS多路信息传输系统 介绍
目录
• 引言 • CAN-BUS技术概述 • 汽车CAN-BUS多路信息传输系统原
理 • 汽车CAN-BUS多路信息传输系统应
用实例 • 挑战与解决方案 • 未来发展趋势与前景展望
01 引言
目的和背景
汽车电子化和智能化发展
随着汽车技术的不断进步,汽车内部的电子控制系统越来越 多,需要一种高效、可靠的数据传输系统来实现各个系统之 间的信息交换。
安全性问题
汽车CAN-BUS系统涉及到车辆控制和安全等方面,因此需要解决 网络安全和信息安全问题。
解决方案及创新思路
优化网络拓扑结构
通过优化CAN-BUS网络的拓扑结构,提高信息传 输的效率和实时性。例如,采用星型、树型等拓 扑结构,减少信息传输的延迟和冲突。
加强网络安全防护
采用加密、认证等网络安全技术,确保CAN-BUS 系统的信息安全和网络安全。同时,建立完善的 网络安全防护体系,防止恶意攻击和非法访问。
节能控制
通过CAN-BUS系统实现发动机与其他控 制单元的协同工作,如与变速箱控制单元 协同实现最佳换挡策略,降低油耗。
故障诊断
当发动机出现故障时,控制单元可以通 过CAN-BUS系统将故障信息发送给仪 表盘,以便驾驶员及时了解并处理。
实例二:车身电子稳定系统中的应用
实时监控
车身电子稳定系统通过CAN-BUS系统实时获取车辆动态参数(如车 速、横摆角速度、侧向加速度等),以判断车辆是否处于稳定状态。
提高汽车性能和安全性
通过CAN-BUS多路信息传输系统,可以实现汽车各个系统之 间的实时数据共享和协同工作,从而提高汽车的整体性能和 安全性。
报告范围
CAN-BUS多路信息传输系统基 本原理:介绍CAN-BUS多路信

CANBUS原理介绍

CANBUS原理介绍

CANBUS原理介绍
CAN总线(Controller Area Network,CAN)是一种高性能多点环形
总线系统,是由Robert Bosch GmbH公司研制的局域网技术,它采用多路
复用的物理环形局域网,结构简单,支持全双工,具有抗干扰能力强,实
现简易,可靠性高,操作速率高,安装灵活,可编程性强、节约线缆布线
长度等特点,可以有效解决多点控制的问题,现已成为车用总线通信系统
中最成功和最广泛采用的总线系统。

CAN总线系统由总线线缆、各终端终端控制芯片、映射器、收发器、
电缆接头等组成。

CAN总线线缆由两条线组成,分别为CAN_H和CAN_L,CAN_H是正极性,CAN_L为负极性,它们分别对应于CAN总线系统的两个
总线信号线,它们同时传输信号。

CAN总线系统中的终端芯片可以被分为发送控制芯片和接收控制芯片,它们分别用于发送和接收CAN总线信息。

发送控制芯片主要用于将CAN总
线信息发送出去,发送控制芯片可以通过对CAN总线信息的编码来发送CAN总线信息。

接收控制芯片可以接收CAN总线信息,并将其解码,以供
使用。

映射器是一种用于连接CAN总线系统的中间设备,它可以将CAN总线
信息转换为其他总线信息,如I2C、SPI等,以符合其他终端芯片的要求。

汽车CAN-BUS介绍

汽车CAN-BUS介绍

汽车CAN-BUS介绍CAN是控制器局域网络的英文缩写、即:Controller Area Network. BUS在这里指的是公共通讯-也就是我们常说的总线的意思。

既连接模块和传输数据的线路。

通过CAN进行的数据通讯是一种串行数据通讯。

早在1980年,BOSCH 的工程师们就开始研究在轿车上的串行数据通讯系统,他们发现还没有一种适合所有车辆的网络通讯协议,于是BOSCH在1983年开始开发一种全新的串行总线系统,新的总线系统还提供一项新的功能--减少线束的使用量,但这并不是促使CAN开发的主要原因,梅赛德斯-奔驰的工程师们对新的串行数据总线系统的研究比较早,INTEL公司是他们的主要半导体供应商,德国的沃尔夫哈德-劳伦兹博士将这种新的网络协议命名为CAN(Controller Area Network),霍斯特-威茨迪恩博士也在理论上给予了支持。

在1986年2月,BOSCH向底特律的SAE委员会介绍了这种多功能的网络通讯协议,1987年,INTEL公司研制成功了第一片应用于CAN的芯片:82526 在短短的4年里,一个想法变成了现实,不久PHILIPS公司也开发出了应用于CAN的芯片82C200.在当时,这两款最早的芯片在数据接收到过滤和信息的处理上有很大的不同。

INTEL比较推崇Full CAN的理念,PHILIPS使用的则是Basic CAN的理念。

在今天,更多的信息处理及数据接收方式都可以同时存在于同一个芯片当中。

使用CAN-BUS的优势使用CAN-BUS的优势是显而易见的:一,节约线束的使用二,减少了不必要的线路插头三,减少了不必要的传感器的使用四,实现了信息资源的共享五,数据传输更快CAN-BUS的应用领域一,车辆控制二,船只电气控制三,飞机及航空器控制四,工业制动化控制五,电梯或自动扶梯控制六,非工业控制领域七,医疗器械领域CAN-BUS的历史1983年 BOSCH开始开发应用于车辆数据通讯的网络系统1986年向SAE协会介绍CAN协议并正式发布1987年英特尔(LNTEL)及菲利普半导体(Philip Semiconductors)研制出第一款CAN芯片1991年 BOSCH CAN2.0发布1991年 CAN家族高级扩展(Higher-Layer)协议发布1992年 CiA(CAN in Automation)国际用户及制造商集团成立1992年 CAN实用扩展协议(CAN Application Layer)发布1992年梅赛德斯-奔驰第一次在车辆上使用CAN网络1993年 ISO 11898标准发布1994年 CiA成立第一个国际CAN协会组织(CAN Conference Organization)1994年 Allen-Bradley公司发布设备网络协议(DeviceNet protocol) 1995年 ISO 11898修订版发布1995年 CiA发布CANopen协议2000年 TTCAN (Time-Triggered communication Protocol)发布在1986年,Robert Bosch公司向SAE介绍了CAN串行数据总线系统,历史上最成功的网络协议诞生了.在今天,欧洲的汽车制造商们制造的每一辆轿车都至少应用了一种CAN系统.CAN也应用在其他种类的汽车上,在全世界范围内,CAN必将引领串行数据通讯的潮流.CAN-BUS的基本概念CAN的标准。

CAN-BUS多路传输系统简介

CAN-BUS多路传输系统简介

七、CAN多路信息传输系统 的检修方法:
1、数据控制单元的故障信
息,可利用该车系的“专用检码 器”,连接OBD-Ⅱ检测接口进 行诊断,方法与普通车系相同。
例如: (1)故障代码-P1625 发动机/变速器CAN总线不可靠
信号; (2)故障代码- P1854 数据总线传动硬件损坏(发动机 /变速器控制器损坏)。
四、实例:
1、EFI和AT-CAN数据总线连接方式: 6个信号借用2根CAN线传送,节省了 导线10余根。
2、组合仪表的连接方式: 大量的减少连接线的数量。
3、转向EPS数据总线连接方式:
连接在就近的“控制模块”线路上。
3、各系统的“控制模块”,都 有自己的电源线和接地线,通过
CAN-H、L线传送信息。 4、每个“控制模块”,都由其系 统的ECU监控工作,都有自己的故
障代码输出。
5、为了防止电子数据在终端反 射迥荡干扰,影响数据传输,CAN -H、L线终端的“控制模块”中,
都设有60Ω抗干扰电阻。
3、网络—多条数据总线和模块在一 起,相互交流信息,叫:冈络。
4、网关—使不同传输速度的模块 (服务器),实现信息共享,叫:网关。
又叫“中央控制单元”。 5、帧—为了可靠地传输数据,把原 始数据分割为许多一定长度的“数据单 元”,称为“帧”。它有长短之分。 6、通讯速率—每秒多少个千字节Kb/s。
BUS(控制器、收发器、处理器、节点),外部 连接了两条“数据总线”。它分:CAN高速线 (通讯速率为500kb/s;时间为0.25ms;间隔 7ms发送一次),用于:电喷系统和动力传递系
统及ABS制动系统等。 2、CAN低速线(通讯速率为100kb/s;时间 为1ms;间隔20ms发送一次),用于:车身控 制系统(灯光、门窗等)仪表显示、自诊系统。

CAN-BUS技术简介

CAN-BUS技术简介

Page 8
CAN-BUS技术简介
车载网络基础知识
总线系统的优点: 提高整个系统的可靠性 降低布线成本 减少各种电缆数量 减小导线束横截面 灵活布线 多重使用传感器 能够传输复杂数据 进行系统变更时灵活性较高 随时能够扩展数据范围 为客户实现新功能 有效诊断 降低硬件成本
Page 1
CAN-BUS技术简介
车载网络概述
一般车载网络: * LIN (local interconnect network) 总线 * 中速 CAN (controller area network) 总线 * 高速 CAN 总线 * 媒体定向系统传输(MOST)环
总线 LIN 总线 中速 CAN 总线 高速 CAN 总线 MOST环
Page 9
CAN-BUS技术简介
各控制单元之间的所有信息都通过两根数据线进行交换——CAN数据
总线
Page 10
CAN-BUS技术简介
与数据传输形式1相比,CAN数据总线,所有信息都通过两根数据线进
行传递
相同的数据只须通过CAN数据系统中的两根双向数据线进行传递 通过该种数据传递形式,所有的信息,不管控制单元的多少和信息容
Page 2
波特率 9.6 kbit/s 125 kbit/s 500 kbit/s 24 Mbits/s
CAN-BUS技术简介
CAN是控制单元区域网络Controller Area Network的缩写。 含义是控制单元通过网络进行数据交换。 CAN数据总线可比作公共汽车:
公共汽车可以同时运输大量乘客; CAN数据总线包含大量的数据信息。
产生信 息 10℃ 20℃ 30℃ 40℃
3位的位值变化 0V;0V;0V 0V;0V;5V 0V;5V;0V 0V;5V;5V 5V;0V;0V
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是CAN-BUS?
CAN-BUS即CAN总线技术,全称为“控制器局域网总线技术(Controller Area Network-BUS)”。

Can-Bus总线技术最早被用于飞机、坦克等武器电子系统的通讯联络上。

将这种技术用于民用汽车最早起源于欧洲,在汽车上这种总线网络用于车上各种传感器数据的传递。

CAN-BUS的工作原理
大家知道当今车辆的电控系统是越来越多,例如电子燃油喷射装置、ABS装置、安全气囊装置、电动门窗、主动悬架等等。

同时遍布于车身的各种传感器实时的监测车辆的状态信息,并将此信息发送至相对应的控制单元内。

『车身上各种控制单元的分布图』
通过上图我们可以看到车身上的各种控制单元,车越高级,车身上的控制单元也就越多,每个控制单元都可看做一台独立的电脑,它可以接受信息,同时能对各种信息进行处理、分析,然后发出一个指令。

比如发动机控制单元会接受来自进气压力传感器、发动机温度传感
器、油门踏板位置传感器、发动机转速传感器等等的信息,在经过分析和处理后会发送相应的指令来控制喷油嘴的喷油量、点火提前角等等,其它控制单元的工作原理也都类似。

在这里可以给大家做一个比喻,车上的各种控制单元就好比一家公司各个部门的经理,每个部门的经理接受来自自己部门员工的工作汇报,经过分析作出决策,并命令该部门的员工去执行。

『控制单元』
车身上的这些控制单元并不是独立工作的,它们作为一个整体,需要信息的共享,那么这就存在一个信息传递的问题。

比如发动机控制单元内的发动机转速与油门踏板位置这两个信号也需要传递给自动变速器的控制单元,然后自动变速器控制单元会据此来发出升档和降档的操作指令,那么两个控制单元之间又是如何进行通信的呢?
『每项信息都通过各自独立的数据线进行交换』
目前在车辆上应用的信息传递形式有两种。

第一种是每项信息都通过各自独立的数据线进行交换。

比如两个控制单元间有5种信息需要传递,那么则需要5根独立的数据线。

也就是说信息的种类越多,数据线的数量和控制单元的针脚数也会相应增加。

这些复杂繁多的线束无疑会增加车身重量,也为整车的布线带来一定困难。

『所有信息都通过两根数据线进行交换』
第二种方式是控制单元之间的所有信息都通过两根数据线进行交换,这种数据线也叫CAN数据总线。

通过该种方式,所有的信息,不管信息容量的大小,都可以通过这两条数据线进行传递,这种方式充分的提高了整个系统的运行效率。

我们常见的电脑键盘有104个按键,却可以发出数百种不同的指令,但键盘与电脑主机之间的数据连接线只有7根,键盘正是依靠这7根数据连接线上不同的编码信号来传递信息的。

CAN数据总线的原理也正是如此。

这种一线一用的专线制改为一线多用制,可以大大减少汽车上电线的数量,同时也简化了整车的布线。

在了解到两个控制单元是通过两根数据线来进行信息交换的基础上,我们可以将其推而广之,多个控制单元之间的通信其实就是将每个控制单元都连接到这两条CAN总线上,从而实现多个控制单元间的信息共享。

『多个控制单元间的信息传递』
目前汽车上的CAN总线连接方式主要有两种,一种是用于驱动系统的高速CAN总线,速率可达到500kb/s,另一种是用于车身系统的低速CAN总线,速率为100kb/s。

当然对于中高级轿车还有一些如娱乐系统或智能通讯系统的总线,它们的传输速率更高,可以超过
1Mb/s。

高速CAN总线主要连接发动机控制单元、ABS控制单元、安全气囊控制单元、组合仪表等这些与汽车行驶直接相关的系统。

这些系统由于信息传递量较大而且对于信息传递的速度有很高的要求,所以则需要高速CAN总线来满足其信息传递的需要。

车身系统的CAN 总线主要连接像中控锁、电动门窗、后视镜、车内照明灯等对数据传输速率要求不高的车身舒适系统上。

这就像要抵达同一个目的地的两辆车,轿车可以选择走高速公路,因为只有高速公路才能发挥出轿车的速度优势,从而节省出更多的时间。

而一辆卡车由于速度比较慢,则只需要走普通国道即可,因为走高速也不能体现出它的速度优势,相反会产生更多的费用。

『不同的系统采用不同速率的总线』
上图中颜色相同的控制单元间采用一种特定速率的总线系统,这种根据各自需求来使用不同CAN总线的方式可以较好的优化资源,降低整车的成本。

除此之外,还有一种子总线系统,其主要连接电器开关与控制单元,或者传感器与控制单元之间。

比如电动车窗的按键与相应控制单元间则采用的是子总线系统。

这种子总线系统主要是传递系统内相对数据量较少的数据,当然它的数据传输速率更低,而且采用的是单线制。

总线系统又称作CAN-BUS,其实也是因为它的工作原理与运行中的公共汽车很类似。

其中每个站点相当于一个控制单元,而行驶路线则是CAN总线,CAN总线上传递的是数据,而公共汽车上承载的是乘客。

某个控制单元接收到负责向它发送数据的传感器的信息后,经过分析处理会采取相应措施,并将此信息发送到总线系统上。

这样此信息会在总线系统上进行传递,每个与总线系统连接的控制单元都会接收到此信息,如果此信息对自己有用则会存储下来,如果对其无用,则会进行忽略。

整个原理很类似于一个电话会议进行的方式,一个电话用户(控制单元)将数据“讲”入网络中,其他用户通过网络“接听”这个数据,对这个数据感兴趣的用户则会利用,其他用户则会选择忽略。

『不同的总线系统通过网关来进行信息的交换与传递』
前面讲到不同的总线系统会有不同的传输速率,这就给不同总线系统间的通讯造成了一定的麻烦。

它就相当于联合国开大会,每个成员国都讲自己的本国语言,如果要想互相听懂,就必须有位能精通所有语言的翻译来进行信息的传递。

车载网络系统中很重要的一个控制单元就是“网关”,它同时连接多种不同的CAN数据总线,并在传递数据时起翻译作用。

『网关在车载网络中起到的“翻译”作用』
在这里可以给大家举一个例子,比如从属于驱动总线系统的室外温度传感器将检测到的温度信号发送给仪表盘控制单元,然后仪表板控制单元会将此信号发送到驱动总线系统上,该信号会被发动机控制单元采集到,同时会经过网关的“翻译”继续传递到车身总线系统上。

而从属于车身总线系统上的自动空调控制单元会收到此信号,并据此作出加大制冷量或者减小吹风量等动作,这样的一个过程体现了整个车载网络的信息共享。

最后再来说说CAN总线系统的优点:
①比传统的布线方式的数据传输速度更高。

②比传统布线方式要节省线束,降低了车身重量,同时优化了车身的布线方式。

③以CAN总线方式连接的控制单元中有一个发生故障,其它控制单元仍可发送各自的数据,互不影响。

④ CAN数据总线为双线制,如果有一条发生故障,CAN系统会转为单线运行模式,提高了整车的稳定性。

⑤ CAN系统的双线在实际中是像“麻花”一样缠绕在一起的,这样可以有效的防止电磁波的干扰和向外辐射。

⑥基于CAN总线系统可以实现更丰富的车身功能。

CAN总线系统的应用大大简化了车身线路的布局,这一点可以从发动机舱简洁、整齐的布局得以体现。

车身功能增加了,但是线束却相应的简化了,同时线束的简化也给维修带来了更多的便利性。

使用过程中,某个部件在发生故障的情况下,会自动关闭输出功能,以使总线上的其它部件不受影响,一定程度上提高了车身电控系统的稳定性。

这种将各个功能件连在一起构成的完整的网络系统可以实现信息与数据的全车共享,使汽车在控制方面更加智能、精确。

其实这项技术已经开始走入了普通的家用轿车,不再是豪华车的专属。

相关文档
最新文档