第9章(X三极管及基本放大电路)

合集下载

第9章 功率大电路要点

第9章 功率大电路要点

e
e 1 2
复合PNP型 c ic
准互补输出功放电路:
T1:电压推动级(前置级) T2、R1、R2:UBE扩大电路
U CE 2 U BE 2 R1 R2 R2
ui
T1 T3
+VCC
T4 T5 T6 -VCC RL
合理选择R1、R2大小,b3、 b5间便可得到 UBE2 任意倍 R2 数的电压。 T3、T4、T5、T6:复合管构 成互补对称功放
实际输出功率Po
U om U om U om Po = Vo I o 2 2 R L 2R L
图解分析演示图
2
(2)计算电源提供的功率PV
1 P V i dt V1 CC c 1 T0
VCC 2π
T
VCC 2π

0
π
uO dt RL

0
π
VCC UOM U OM sin ωt dt π RL RL
1 U om 1 V 2CC 2 RL 8 RL
2
实用的OCL准互补功放电路:
Rc1
反馈级 R1
T2 Rf
共射放大级 Re4 T4 C2 UBE 倍增 电路 C3
准互补功放级 T7 T9 Re7 Re9
+24V
ui
T1
R2
T6 R3
T5
Rb1
Rb2
C1
保险管 BX C5 R4 RL
差动放大级
T3 Re3 偏置电路 D1 D2
第九章 功率放大电路 9.1 功率放大电路的主要特点 9.2 互补对称功率放大电路 9.3 集成功率放大器及其应用 9.4 功率放大电路的安全运行
9.1 功率放大电路的主要特点

第9章 放大电路的频率响应

第9章  放大电路的频率响应

第9章放大电路的频率响应1.已知某放大电路电压放大倍数的频率特性表达式为:式中f单位Hz,表明其下限频率为;上限频率为;中频电压增益为dB,输出电压与输入电压中频段的相位差为。

2.幅度失真和相位失真统称为失真,它属于失真,在出现这类失真时,若u i为正弦波,则u o为波,若u i为非正弦波,则u o与u i的频率成分,但不同频率成分的幅度变化。

3.饱和失真,截止失真都属于失真,在出殃这类失真时,若u i为正弦波,则u o为波。

u o与u i的频率成分。

4.多级放大电路的通频带比组成它的各个单级放大电路的通频带。

5.多级放大电路在高频时产生的附加相移比组成它的各个单级放大电路在相同频率产生的附加相移。

6.多级放大电路放大倍数的波特图是各级波特图的。

7.在三级放大电路中,已知|A u1|=50,|A u2|=80,|A u3|=25,则其总电压放大倍数|A u|= ,折合为 dB。

8.在多级放大电路中,后级的输入电阻是前级的,而前级的输出电阻则也可视为后级的;前级对后级而言又是。

9.为了放大从热电偶取得的反映温度变化的微弱信号,放大电路应采用 ______耦合方式。

10.为了使放大电路的信号与负载间有良好的匹配,以使输出功率尽可能加大,放大电路应采用耦合方式。

11.电路图所示:其中V cc=6.7V,R b=300kΩ,R c=2 kΩ,晶体管的β=100,r bb’=300Ω,U BE=0.7V,电容C1=C2=5μF,R L=。

①求中频电压放大倍数A u②求下限频率f L③若信号频率f=10Hz,希望放大倍数 |A u|仍不低于0.7|A um|则应更换哪个元件?其值为多少?12.某放大电路的电压放大倍数复数表达式为:f的单位为Hz①求中频电压放大倍数A um②画出A u幅频特性波特图③求上限截止频率f H和下限截止频率f L13.图示电路中的T1,T2均为硅管,U BE=0.7V,两管间为直接耦合方式,已知β1=β2=50,r bb’1= r bb’2=300Ω,电容器C1、C2、C3、C4的容量足够大。

电工学(少学时)唐介第9章 基本放大电路

电工学(少学时)唐介第9章 基本放大电路
第9章 基本放大电路
9.2 放大电路的工作原理 9.3 放大电路的静态分析 9.4 放大电路的动态分析 9.5 双极型晶体管基本放大电路
9.8 多级放大电路 9.9 差分放大电路
教学要求:
第9章 基本放大电路
1. 理解共射极单管放大电路的基本结构和工作原理。 2. 掌握静态工作点的估算和动态微变等效电路的分析方法。 了解输入电阻、输出电阻的概念。了解放大电路的频率特性。 3. 要很好理解共射放大电路、共集放大电路的特点。 4. 了解多级放大的概念。掌握阻容耦合放大电路的静态和动 态方法。了解直接耦合放大电路中的零点漂移现象。 5. 了解差动放大电路的工作原理,了解差模信号和共模信号 的概念。 重点:单管放大电路的基本结构和工作原理,共射放大电路、 共集放大电路静态和动态分析方法。直接耦合放大电路中的零 点漂移现象。 难点:放大电路的工作原理及静态和动态分析方法。
例2:用估算法计算图示电路的静态工作点。
+UCC RB IB RC + + TUCE UBE – – IC
由KVL可得:
U CC I B RB U BE I E RE I B RB UBE (1 β ) I B RE
U CC U BE IB RB (1 β ) RE
+ + TUCE UBE – – IE

直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )
对交流信号(有输入信号ui时的交流分量) XC 0,C 可看作 C2 对地短路 RB 短路。忽略电源的内 + iC + 阻,电源的端电压恒 C1 iB + 定,直流电源对交流 T uCE 短路 + + + 可看作短路。 RS 短路 uBE – RL uo – ui + – iE 交流通路 u

模拟电子技术基础(第四版)童诗白、华成英 教材9

模拟电子技术基础(第四版)童诗白、华成英 教材9
动画avi\17-2.avi 动画
当输入信号为正弦交流电时 微导通。 当 ui = 0 时,T1、T2 微导通。
第九章 功率放大器
当 ui > 0 (↑ 至 ↓), T1 微导通 → 充分导通 → 微导通; 充分导通 微导通; T2 微导通 → 截止 → 微导通。 微导通。 当 ui < 0 (↓ 至 ↑), T2 微导通 → 充分导通 → 微导通; 微导通; T1 微导通 → 截止 → 微导通。 微导通。 二管导通的时间都比输入信号的 半个周期更长, 半个周期更长,功放电路工作在 甲乙类状态。 甲乙类状态。
图9.1.5 OCL电路 电路
不同类型的二只晶体管交替工作, 不同类型的二只晶体管交替工作,且均组成射极输出形式的 电路称为“互补”电路; 电路称为“互补”电路;二只管子的这种交替工作方式称为 互补”工作方式。 “互补”工作方式。
五、桥式推挽功率放大电路 Balanced Transformerless(BTL电路) 电路) ( 电路
第九章 功率放大器
直流电源提供的直流功率不变 R/L(=RC//RL)上获得的最大 上获得的最大 交流功率P 交流功率 /Om为
1 ′ ′ P0′m = ( ) RL = I CQ ( I CQ RL ) 2 2
2
I CQ
即图中三角形QDE的面积 的面积 即图中三角形
图9.1.1输出功率和效率的图解分析 输出功率和效率的图解分析
希望输入信号为零时,电源不提供功率,输入信号 希望输入信号为零时,电源不提供功率, 愈大,负载获得的功率也愈大, 愈大,负载获得的功率也愈大,电源提供的功率也 随之增大,从而提高效率。 随之增大,从而提高效率。 变压器耦合乙类推挽功率放大电路 无输入信号, 无输入信号,三管截止 有输入信号, 有输入信号,三管交替 导通 同类型管子在电路中交 同类型管子在电路中交 替导通的方式称为“ 替导通的方式称为“推 工作方式。 挽”工作方式。 图9.13(a)变压器耦合乙类推挽功率放大电路 变压器耦合乙类推挽功率放大电路

《模拟电子技术基础》目录

《模拟电子技术基础》目录

模拟电子技术根底主编:黄瑞祥副主编:周选昌、查丽斌、郑利君杨慧梅、肖铎、赵胜颖目录绪论第1章集成运算放大器1.1 抱负运算放大器的功能与特性抱负运算放大器的电路符号与端口抱负运算放大器的功能与特性1.2 运算放大器的反相输入阐发闭环增益输入、输出阻抗有限开环增益的影响加权加法器运算放大器的同相输入阐发闭环增益输入、输出阻抗有限开环增益的影响电压跟随器1.4 运算放大器的差分输入阐发1.5 仪表放大器1.6 积分器与微分器1.6.1 具有通用阻抗的反相输入方式1.6.2 反相积分器1.6.3 反相微分器1.7 运算放大器的电源供电1.7.1 运算放大器的双电源供电1.7.2 运算放大器的单电源供电本章小结习题第2章半导体二极管及其底子电路2.1 半导体根底常识2 本征半导体2 杂质半导体2 两种导电机理——扩散和漂移2.2 PN结的形成和特性2.2.1 PN结的形成2.2.2 PN结的单向导电性2.2.3 PN结的反向击穿2.2.4 PN结的电容特性2.3 半导体二极管的布局及指标参数2 半导体二极管的布局2 二极管的主要参数2 半导体器件型号定名方法2.4 二极管电路的阐发方法与应用2.4.1 二极管电路模型2.4.2 二极管电路的阐发方法2 二极管应用电路2.5 特殊二极管2.5.1 肖特基二极管2.5.2 光电子器件本章小结习题第3章三极管放大电路根底3.1 三极管的物理布局与工作模式3 物理布局与电路符号3 三极管的工作模式3.2 三极管放大模式的工作道理3.2.1 三极管内部载流子的传递3.2.2 三极管的各极电流3.3 三极管的实际布局与等效电路模型3.3.1 三极管的实际布局3.3.2 三极管的等效电路模型3.4 三极管的饱和与截止模式3.4.1 三极管的饱和模式3.4.2 三极管的截止模式3.5 三极管特性的图形暗示3.5.1 输入特性曲线3.5.2 输出特性曲线3.5.3 转移特性曲线3.6 三极管电路的直流阐发3.6.1 三极管直流电路的阐发方法3.6.2 三极管直流电路阐发实例3.7 三极管放大器的主要参数3.7.1 三极管放大器电路3.7.2 集电极电流与跨导3.7.3 基极电流与基极的输入电阻发射极电流与发射极的输入电阻电压放大倍数3.8 三极管的交流小信号等效模型3.8.1 混合∏型模型3.8.2 T型模型3.8.3 交流小信号等效模型应用3.9 放大器电路的图解阐发3.10 三极管放大器的直流偏置3.10.1 单电源供电的直流偏置3.10.2 双电源供电的偏置电路集电极与基极接电阻的偏置电路恒流源偏置电路3.11 三极管放大器电路3.11.1 放大器的性能指标3.11.2 三极管放大器的底子组态共发射极放大器发射极接有电阻的共发射极放大器共基极放大器共集电极放大器本章小结习题第4章场效应管及其放大电路4.1 MOS场效应管及其特性4 增强型MOSFET〔EMOSFET〕4 耗尽型MOSFET〔DMOSFET〕4 四种MOSFET的比较4 小信号等效电路模型4.2 结型场效应管及其特性4 工作道理4 伏安特性4 JFET的小信号模型4.3 场效应管放大电路中的偏置4 直流状态下的场效应管电路4 分立元件场效应管放大器的偏置4 集成电路中场效应管放大器的偏置4.4 场效应管放大电路阐发4 FET放大电路的三种底子组态4 共源放大电路4 共栅放大电路4 共漏放大电路4 有源电阻本章小结习题第5章差分放大器与多级放大器5.1 电流源5 镜像电流源5 微电流源比例电流源5.2 差分放大器差分放大器模型差分放大器电路差分放大器的主要指标差分放大器的传输特性5.2.5 FET差分放大器5.2.6 差分放大器的零点漂移5.3 多级放大器5 多级放大器的一般布局5 多级放大器级间耦合方式5 多级放大器的阐发计算5.4 模拟集成电路读图操练5.4.1 模拟集成电路内部布局框图5.4.2 简单集成运放电路道理通用型模拟集成电路读图操练集成运算放大器的主要技术指标集成运算放大器的分类正确选择集成运算放大器集成运算放大器的使用要点本章小结习题第6章滤波电路及放大电路的频率响应6.1 有源滤波电路6 滤波电路的底子概念与分类6 低通滤波器高通滤波器带通滤波器带阻滤波器6.2 放大电路的频率响应6 三极管的高频等效模型6 单管共射极放大电路的频率特性阐发多级放大电路的频率特性本章小结习题第7章反响放大电路7.1 反响的底子概念与判断方法7 反响的底子概念7 负反响放大电路的四种底子组态反响的判断方法7.2 负反响放大电路的方框图及一般表达式7.2.1 负反响放大电路的方框图7.2.2 负反响放大电路的一般表达式7.3 负反响对放大电路性能的影响7.3.1 提高增益的不变性7.3.2 改变输入电阻和输出电阻7.3.3 减小非线性掉真和扩展频带7.4 深度负反响放大电路的阐发深度负反响条件下增益的近似计算虚短路和虚断路7.5 负反响放大电路的不变性问题负反响放大电路自激振荡及不变工作的条件负反响放大电路不变性的阐发负反响放大电路自激振荡的消除方法本章小结习题第8章功率放大电路8.1 概述8 功率放大电路的主要特点8 功率放大电路的工作状态与效率的关系8.2 互补对称功率放大电路8.2.1 双电源互补对称电路〔OCL电路〕8.2.2 单电源互补对称功率放大器〔OTL〕8.2.3 甲乙类互补对称功率放大器8.2.4 复合管互补对称功率放大器8.2.5 实际功率放大电路举例8.3 集成功率放大器8.3.1 集成功率放大器概述8.3.2 集成功放应用简介8.4 功率放大器实际应用电路OCL功率放大器实际应用电路OTL功率放大器实际应用电路集成功率放大器实际应用电路功率放大器应用中的几个问题本章小结习题第9章信号发生电路9.1 正弦波发生电路9.1.1 正弦波发生电路的工作道理和条件9.1.2 RC正弦波振荡电路9.1.3 LC正弦波振荡电路9.1.4 石英晶体正弦波振荡电路9.2 电压比较器单门限电压比较器迟滞比较器窗口比较器集成电压比较器9.3 非正弦波发生电路9.3.1 方波发生电路9.3.2 三角波发生电路9.3.3 锯齿波发生电路集成函数发生器简介本章小结习题第10章直流稳压电源10.1 引言10.2 整流电路10.2.1 单相半波整流电路单相全波整流电路10.2.3 单相桥式整流电路10.3 滤波电路10.3.1 电容滤波电路10.3.2 电感滤波电路10.3.3 LC滤波电路Π型滤波电路10.4 线性稳压电路10.4.1 直流稳压电源的主要性能指标10.4.2 串联型三极管稳压电路10.4.3 提高稳压性能的办法和庇护电路10.4.4 三端集成稳压器10.5 开关式稳压电路10.5.1 开关电源的控制方式10.5.2 开关式稳压电路的工作道理及应用电路10.5.3 脉宽调制式开关电源的应用电路本章小结习题。

第9章 基本放大电路

第9章  基本放大电路

- 43 -第9章 基本放大电路放大是模拟电路最重要的一种功能。

本章所要介绍的基本放大电路几乎是所有模拟集成电路的基本单元。

工程上的各类放大电路都是由若干基本放大电路组合而成的,其中第一级称为输入级,最后一级称为输出级,其余各级为中间级。

9.1 放大电路的工作原理放大电路或称为放大器,其作用是把微弱的电信号、电压、电流、功率放大到所需要的量级,而且输出信号的功率要比输入信号的功率大,输出信号的波形要与输入信号的波形相同。

现以晶体管共射极接法的电路为例来说明放大电路的工作原理。

输入信号按波形不同可分为直流信号与交流信号两种。

由于正弦信号是一种基本信号,在对电路进行性能分析与测试时,常以它作为输入信号。

因此,也以正弦信号作为输入信号来说明放大电路的工作原理。

在输入端与输出端分别接有电容C 1、C 2,它们起着传递信号,隔离直流的作用,电容C 1、C 2称为输入和输出耦合电容或隔直电容。

由于耦合作用要求电容的容抗值很小,一般为几微法至几百微法,因而需要采用有极性的电解电容器。

输入端未加输入信号时,放大电路的工作状态称为静态。

这时U CC 提供了直流偏置电流。

由于电容的隔直作用,输入端和输出端不会有电压与电流。

可见,静态时,除了输入端与输出端外,晶体管各极电压与电流都是直流,其波形如图9-1各波形中的虚线所示。

输入端加上输入信号时,放大电路的工作状态称为动态。

交流输入信号u i 通过C 1耦合到晶体管的发射结两端,使发射结电压u BE 以静态值U BE 为基准上下波动,但方向不变,即u BE 始终大于零,发射结保持正向偏置,晶体管始终处于放大状态。

这时的发射结电压u BE =U BE +u be 。

忽略C 1上的交流电压降,则u be =u i 。

发射结电压的变化会引起各极电流的相应变化,而且它们都会有一个静态直流分量和一个交流信号分量,其波形如图9-1所示。

i C 的变化引起R C i C 的相应变化。

(完整版)三极管及放大电路原理

(完整版)三极管及放大电路原理

测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。

”下面让我们逐句进行解释吧。

一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。

根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。

测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。

图2绘出了万用电表欧姆挡的等效电路。

由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。

测试的第一步是判断哪个管脚是基极。

这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。

在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。

二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。

将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。

(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。

根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c 极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

模拟电子技术答案 第9章 功率放大电路

模拟电子技术答案 第9章 功率放大电路

第9章 功率放大电路自测题一、选择合适的答案填入括号内。

(1)功率放大电路的最大输出功率是在输入电压为正弦波时,输出基本不失真情况下,负载上可获得的最大( A )。

A.交流功率B.直流功率C.平均功率(2)功率放大电路的转换效率是指( B )。

A.输出功率与晶体管所消耗的功率之比;B.最大输出功率与电源提供的平均功率之比;C.晶体管所消耗的功率与电源提供的平均功率之比。

(3) 在选择功放电路中的晶体管时,应当特别注意的参数有( BDE )。

A .βB .I CMC .I CBOD .U CEOE .P CMF .f T(4) 若图T9.1所示电路中晶体管饱和管压降的数值为CES U ,则最大输出功率P OM =( C )。

A.2()2CC CES LV U R - B.21()2CC CES L V U R - C.21()22CC CES L V U R -图T9.1 图T9.2二、电路如图T9.2 所示,已知T l 和T 2的饱和管压降2CES U V =,直流功耗可忽略不计。

回答下列问题:(1)R 3、R 4 和T 3的作用是什么?(2)负载上可能获得的最大输出功率P om 和电路的转换效率η各为多少?(3)设最大输入电压的有效值为1V 。

为了使电路的最大不失真输出电压的峰值达到16V ,电阻R 6至少应取多少千欧?解:(1)消除交越失真。

(2)最大输出功率和效率分别为:2()162CC CES omLV U P W R -==, 69.8%4CC CES CC V U V πη-=⋅≈ (3)由题意知,电压放大倍数为:61111.3u R A R =+≥== ∴61(11.31)10.3R R k ≥-=Ω习题9.1判断下列说法是否正确,用“√”和“×”表示判断结果。

(1)在功率放大电路中,输出功率越大,功放管的功耗越大。

( × )(2)功率放大电路的最大输出功率是指在基本不失真情况下,负载上可能获得的最大交流功率。

模电第四版习题解答

模电第四版习题解答

模电第四版习题解答 YUKI was compiled on the morning of December 16, 2020模拟电子技术基础第四版清华大学电子学教研组编童诗白华成英主编自测题与习题解答目录第1章常用半导体器件‥‥‥‥‥‥‥‥‥‥3第2章基本放大电路‥‥‥‥‥‥‥‥‥‥‥14 第3章多级放大电路‥‥‥‥‥‥‥‥‥‥‥31 第4章集成运算放大电路‥‥‥‥‥‥‥‥‥41 第5章放大电路的频率响应‥‥‥‥‥‥‥‥50 第6章放大电路中的反馈‥‥‥‥‥‥‥‥‥60 第7章信号的运算和处理‥‥‥‥‥‥‥‥‥74 第8章波形的发生和信号的转换‥‥‥‥‥‥90 第9章功率放大电路‥‥‥‥‥‥‥‥‥‥‥114 第10章直流电源‥‥‥‥‥‥‥‥‥‥‥‥‥126第1章常用半导体器件自测题一、判断下列说法是否正确,用“×”和“√”表示判断结果填入空内。

(1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。

( √ )(2)因为N 型半导体的多子是自由电子,所以它带负电。

( ×)(3)PN 结在无光照、无外加电压时,结电流为零。

( √ )(4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。

( ×)(5)结型场效应管外加的栅一源电压应使栅一源间的耗尽层承受反向电压,才能保证其R大的特点。

( √)GSU大于零,则其输入电阻会明显变小。

(6)若耗尽型N 沟道MOS 管的GS( ×)二、选择正确答案填入空内。

(l) PN 结加正向电压时,空间电荷区将 A 。

A.变窄B.基本不变C.变宽(2)稳压管的稳压区是其工作在 C 。

A.正向导通B.反向截止C.反向击穿(3)当晶体管工作在放大区时,发射结电压和集电结电压应为 B 。

A.前者反偏、后者也反偏B.前者正偏、后者反偏C.前者正偏、后者也正偏(4) U GS=0V时,能够工作在恒流区的场效应管有 A 、C 。

第9章 功率放大电路

第9章 功率放大电路

出波形不可避免地产生一定的非线性失真。在实际的功率放大
电路中,应根据负载的要求来规定允许的失真度范围。 4、分析估算采用图解法 由于功放中的晶体管工作在大信号状态,因此分析电路时, 不能用微变等效电路分析方法,可采用图解法对其输出功率和 效率等指标作粗略估算。
第9章 功率放大电路
5、功放中晶体管的保护及散热问题
•按照放大信号的频率,分为低频功放和高频功放。前者用于 放大音频范围(几十赫兹到几十千赫兹)的信号,后者用于放 大射频范围(几百千赫兹到几十兆赫兹)的信号。本课程仅介 绍低频功放。
第9章 功率放大电路
四、提高输出功率的方法
1. 提高电源电压 2. 改善器件的散热条件 普通功率三极管的外壳较小, 散热效果差, 所以允许的耗 散功率低。当加上散热片, 使得器件的热量及时散热后, 则 输出功率可以提高很多。例如低频大功率管3AD6在不加散热片
第9章 功率放大电路
二、变压器耦合功率放大电路
电源提供的功率为PV=ICQ VCC
,全部消耗在管子上。
RL等效到原边的电阻为
RL (
N1 2 ) RL N2
则可作出交流负载线
第9章 功率放大电路
在理想变压器的情况下,最大输出功率为
I CQ VCC 1 P0 m I CQVCC 2 2 2
即三角形QAB的面积 在输入信号为正弦波时,若集电极电流也为正弦波 直流电源提供的功率不变 电路的最大效率为: Pom / PV =50 ℅
第9章 功率放大电路
实用的变压器功率放大电路
希望输入信号为零时,电源不提供功率,输入信号 愈大,负载获得的功率也愈大,电源提供的功率也 随之增大,从而提高效率。 变压器耦合乙类推挽功率放大电路 无输入信号,二管截止 有输入信号,二管交替 导通 同类型管子在电路中交 替导通的方式称为“推 挽”工作方式。 图9.1.3变压器耦合乙类推挽功率放大电路

第9章 低频功率放大电路

第9章 低频功率放大电路

第九章低频功率放大电路一个实用的放大器通常含有三个部分:输入级、中间级及输出级,其任务各不相同。

一般地说,输入级与信号源相连,因此,要求输入级的输入电阻大,噪声低,共模抑制能力强,阻抗匹配等;中间级主要完成电压放大任务,以输出足够大的电压;输出级主要要求向负载提供足够大的功率,以便推动如扬声器、电动机之类的功率负载。

功率放大电路的主要任务是:放大信号功率。

9.1 低频功率放大电路概述9.1.1 分类功率放大电路按放大信号的频率,可分为低频功率放大电路和高频功率放大电路。

前者用于放大音频范围(几十赫兹到几十千赫兹)的信号,后者用于放大射频范围(几百千赫兹到几十兆赫兹)的信号。

功率放大电路按其晶体管导通时间的不同,可分为甲类、乙类、甲乙类和丙类等四种。

乙类功率放大电路的特征是在输入信号的整个周期内,晶体管仅在半个周期内导通,有电流通过;甲乙类功率放大电路的特征是在输入信号周期内,管子导通时间大于半周而小于全周;丙类功率放大电路的特征是管子导通时间小于半个周期。

9.1.2 功率放大器的特点功率放大器的主要任务是向负载提供较大的信号功率,故功率放大器应具有以下三个主要特点:1.输出功率要足够大功率放大电路的任务是推动负载,因此功率放大电路的重要指标是输出功率,而不是电压放大倍数。

2.效率要高效率定义为:输出信号功率与直流电源供给频率之比。

放大电路的实质就是能量转换电路,因此它就存在着转换效率。

3.非线形失真要小功率放大电路工作在大信号的情况时,非线性失真时必须考虑的问题。

因此,功率放大电路不能用小信号的等效电路进行分析,而只能用图解法进行分析。

9.1.3 提高输出功率的办法1.提高电源电压选用耐压高、容许工作电流和耗散功率大的器件。

2.改善器件的散热条件直流电源提供的功率,有相当多的部分消耗在放大器件上,使器件的温度升高,如果器件的热量及时散热后,则输出功率可以提高很多。

9.1.4 提高效率的方法1.改变功放管的工作状态在乙类功率放大电路中,功放管静态电流几乎为零,因此直流电源功率为零。

《模拟电子技术》课件第9章 信号发生电路

《模拟电子技术》课件第9章 信号发生电路

电路可以输出频率为
f0
AV
FV 3 1
2πRC
1 1
3
的正弦波
RC正弦波振荡电路一般用于产生频率低于 1 MHz 的正弦波
4. 稳幅措施
采用非线性元件 热敏元件
起振时,
AV
1
Rf R1
3
即 AV FV 1
热敏电阻的作用
热敏电阻
Vo
Io
Rf 功耗
Rf 温度
Rf 阻值
AV
AV 3
四、 三端式LC振荡电路 2. 电容三点式振荡电路
T
Rc
C1
Rb2 Rb1
L
+ +
C2

– +–
+
A β RC
rb e
F Vf C1
Vo
C2
令 A F C1 β RC 1
C 2 rbe
起振条件为 β C 2 rbe
C1 RC
谐振频率
f0

1 LC
C C1C2 C1 C2
四、 三端式LC振荡电路 3. 电感三点式振荡电路
§9.2 RC正弦波振荡电路
一、RC串并联网络振荡电路 1. 电路组成
RC桥式振荡电路
i2
R2
R1
i1
vN -
vI
vP
A +
vO
反馈网络兼做选频 网络
AV
1
Rf R1
2. RC串并联选频网络的选频特性
1
1
Z R jω C
Z2 R// jωC
FV
V f V1
Z2 Z1 Z2
jωCR (1 ω2 R2C 2 ) 3 jωCR

第九章 功率放大电路

第九章 功率放大电路

时, 允许的最大功耗 Pcm 仅为1W,加了120mm×120 mm×4 mm的
散热片后, 其Pcm可达到10 W。 在实际功率放大电路中,为了 提高输出信号功率, 在功放管一般加有散热片。
第9章 功率放大电路
9.1.4 提高效率的方法
第9章 功率放大电路
9.2 互补对称功率放大电路
9.2.1 双电源互补对称电路 (OCL电路)
第9章 功率放大电路
第9章 功率放大电路
9.1 功率放大电路概述 9.2 互补对称功率放大电路 9.3 集成功率放大器
第9章 功率放大电路
9.1 低频功率放大电路概述
实际的放大电路中,输出信号要驱动一定的负载装置,如收音机中扬声器的音圈、 电动机控制绕组、计算机监视器或电视机的扫描偏转线圈等。所以,实际的多级放大 电路除了应有电压放大级外,还要求有一个能输出一定信号功率的输出级,这类主要 用于向负载提供功率的放大电路常称为功率放大电路。
第9章 功率放大电路
2. 效率要高 放大电路输出给负载的功率是由直流电源提供的。在输出 功率比较大时,效率问题尤为突出。如果功率放大电路的效 率不高,不仅造成能量的浪费,而且消耗在电路内部的电能 将转换为热量,使管子、元件等温度升高而损毁。为定量反
映放大电路效率的高低,定义放大电路的效率为 η,
Po 100% PE
9.1.1 分类
•按晶体管导通时间不同,可分为甲类、乙类、甲乙类等
iC O O O iB iB iC iC iC iC iC
t
O O
iB O iB
t
O O
iB O iB
t
t t
(a) 甲类 (b) 乙类
图 9 – 1 甲类、乙类、甲乙类功率放大电路的工作状态示意图

晶体三极管及基本放大电路

晶体三极管及基本放大电路

2.截止失真
若偏置电阻Rb偏大,此时基极电流IBQ很小,由示波器观察到的输出电压vo波 形将出现截止失真。
(a)实验电路
(b)截止失真波形
(c)图解分析
截止失真波形的观测
产生截止失真的原因是:IBQ偏小时,静态工作点偏低。在输入电压vi的负半 周时,三极管的发射结将在一段时间内处于反向偏置,造成ic负半周、vo的正半周 相应的波顶被削去。
3.分类
三极管的种类很多,通常按以下方法进行分类: 按半导体制造材料可分为:硅管和锗管。硅管受温度影响较小、工作稳定, 因此在自动控制设备中常用硅管。
按三极管内部基本结构可分为:NPN型和PNP型两类。目前我国制造的硅管
多为NPN型(也有少量PNP型),锗管多为PNP型。
按工作频率可分为:高频管和低频管。工作频率高于3MHz为高频管,工作
金属封装小功率管 金属封装大功率管
2.结构
三极管的核心是两个互相联系的PN结,按两个PN结的组合方式不同,可分为 NPN型和PNP型两类。
PNP型三极管
NPN型三极管
三极管内部有发射区、基区和集电区,引出电极分别为发射极e、基极b、集 电极c。发射区与基区之间的PN结称为发射结,集电区与基区之间的PN结称为集电 结。
电压放大倍数
输入电阻 ri=Rb1// Rb2//rbe
输出电阻 ro≈Rc
分压式偏置放大电路的交流通路
工程应用
要确保分压偏置电路的静态工作点稳定,应满足两个条件:I2»IBQ(实际可 取I2=10 IBQ);VBQ»VBEQ,(实际可取VBQ= 3VBEQ)。
要改变分压偏置电路的静态工作点,通常的方法是调整上偏置电阻Rb1的阻值。 若该电路的静态工作点正常,而放大倍数严重下降,应重点检查射极旁路电 容Ce是否开路或失效。

第9章 基本放大电路复习题

第9章 基本放大电路复习题

电流串联
和 电流并联

12.射极输出器的主要特点是:电压放大倍数接近 1 , 输入电阻 大 ,输出电阻 小 。
第9章 基本放大电路复习题
三、填空题
13.共模抑制比是指 差模放大倍数/共模放大倍数 。
14.固定偏置共发射极放大电路,输出出现饱和失真,
其输出波形为: u0
;其原因是 IB太大 ;
改善波形失真应调节 固定偏置电阻RB增大
UCE UCC ICRC 121.56 3(V)
②(略)

Au


U0

Ui
-
RL' rbe
50
63 63 1.8
50 2 1.8
56
(√ )22.自由电子和空穴都是载流子。 (×)23.晶体管在使用时,只要耗散功率不超过PCM值,
晶体管就不会损坏。
(×)24.三极管的正常工作时只能工作在放大状态。
第9章 基本放大电路复习题
一、是非题(对的打√,错的打×)
(√ )25.带电阻负载的单级交流电压放大电路,交流负 载线和直流负载线一定相交于静态工作点Q点 上。
压ui为正弦波,它输出的电压 波形如图,若要改善输出波形,
uO 0
2
t
可采用___A___方法。
(A)增加RB (B)减小RB (C)减小RC (D)增加RC
第9章 基本放大电路复习题
二、选择题
10.检查放大器中的晶体管在静态时是否进入截止区,
最简便的方法是测量___D___。
(A)IB
(B)IC
(√ )18.N型半导体的主要载流子是电子。 (√ )19.三极管在电流放大状态,发射结一定正偏,

三极管工作原理图

三极管工作原理图

三极管工作原理图引言概述:三极管是一种常见的电子元件,广泛应用于电子电路中。

它具有非常重要的作用,可以放大电流和控制电流的流动。

本文将详细介绍三极管的工作原理图,包括三极管的结构、工作原理和应用。

一、三极管的结构1.1 发射区:发射区是三极管的主要区域,它通常由n型半导体材料构成。

发射区有两个接触点,分别是发射极和基极。

发射极是电流的输入端,基极则用于控制电流的流动。

1.2 基区:基区是三极管的中间区域,通常由p型半导体材料构成。

基区的宽度决定了三极管的放大能力,它与发射区和集电区相隔一定距离。

1.3 集电区:集电区是三极管的输出端,通常由n型半导体材料构成。

它与发射区相隔一定距离,用于控制电流的输出。

二、三极管的工作原理2.1 放大作用:当电流从发射极进入基极时,通过基区的扩散作用,将电流放大,并从集电极输出。

这种放大作用使得三极管能够在电子电路中扮演放大信号的角色。

2.2 控制作用:三极管的基极通过控制电流的大小和方向,能够控制集电极的电流流动。

通过改变基极电流,可以实现对输出电流的控制,从而实现对电路的开关控制。

2.3 双极性特性:三极管具有双极性特性,即它既可以放大正向电流,也可以放大反向电流。

这使得三极管在电子电路中具有更广泛的应用。

三、三极管的应用3.1 放大器:三极管的放大作用使得它成为放大器电路的重要组成部份。

通过合理的电路设计和三极管的工作原理,可以实现对信号的放大,满足不同应用场景的需求。

3.2 开关:三极管的控制作用使得它可以作为开关使用。

通过控制基极电流的开关状态,可以实现电路的开关控制,如调光灯、电子开关等。

3.3 振荡器:三极管还可以用于振荡器电路的设计。

通过合理的电路结构和三极管的特性,可以实现信号的产生和放大,实现振荡器的功能。

四、三极管的特性4.1 饱和区:当三极管的基极电流较大时,三极管处于饱和区。

此时,集电极电流达到最大值,三极管的放大作用最好。

4.2 放大区:当三极管的基极电流适中时,三极管处于放大区。

《电工学-电子技术-下册》试题及解答

《电工学-电子技术-下册》试题及解答

第九章:半导体二极管和三极管、第十章:基本放大电路一、单项选择题*1.若用万用表测二极管的正、反向电阻的方法来判断二极管的好坏,好的管子应为( C )A 、正、反向电阻相等B 、正向电阻大,反向电阻小C 、反向电阻比正向电阻大很多倍D 、正、反向电阻都等于无穷大 *2.电路如题2图所示,设二极管为理想元件,其正向导通压降为0V ,当U i =3V 时,则U 0的值( D )。

A 、不能确定B 、等于0C 、等于5VD 、等于3V**3.半导体三极管是具有( B )PN 结的器件。

A 、1个 B 、2个 C 、3个 D 、4个5.晶体管的主要特性是具有( D )。

A 、单向导电性B 、滤波作用C 、稳压作用D 、电流放大作用 *6.稳压管的稳压性能是利用PN 结的( D )。

A 、单向导电特性 B 、正向导电特性 C 、反向截止特性 D 、反向击穿特性8.对放大电路进行动态分析的主要任务是( C ) A 、确定静态工作点QB 、确定集电结和发射结的偏置电压C 、确定电压放大倍数A u 和输入、输出电阻r i ,r 0D 、确定静态工作点Q 、放大倍数A u 和输入、输出电阻r i ,r o *9.射极输出器电路如题9图所示,C 1、C 2足够大,对输入的交流信号u 可视作短路。

则输出电压u 0与输入电压u i 之间的关系是( B )。

A 、两者反相,输出电压大于输入电压B 、两者同相,输出电压小于且近似等于输入电压C 、两者相位差90°,且大小相等D 、两者同相,输出电压大于输入电压 *11.在共射极放大电路中,当其他参数不变只有负载电阻R L 增大时,电压放大倍数将( B )A 、减少B 、增大C 、保持不变D 、大小不变,符号改变 13.在画放大电路的交流通路时常将耦合电容视作短路,直流电源也视为短路,题2图题9图这种处理方法是( A )。

A 、正确的B 、不正确的C 、耦合电容视为短路是正确的,直流电源视为短路则不正确。

第9章直接耦合放大电路和集成运算放大器

第9章直接耦合放大电路和集成运算放大器

图 9 –3 集成电路剖面结构示意图 (3) 电路元件间的绝缘采用反偏的 PN 结隔离槽或二氧化硅绝缘层。
在图 9 ­3 中,P 型衬底往往接在电路的最低电位,元件间的 P 型隔离 槽也接向这个低电位。这样无形中构成了许多反偏的 PN 结,呈现出高达几十兆 欧姆的电阻,巧妙地把各元件隔离起来。此外,也可用二氧化硅薄层作为绝缘层。 三 、集成电路的外形封装
在硅片上制成一个元件的成本与它在硅片上占据的面积成正比。电感元件、 较大阻值的电阻和高值电容都会占用较大面积的硅片,因此,在集成电路中尽量 较少使用电容元件,不用电感和高阻值电阻。
(2) 大量使用三极管作为有源单元。 三极管占据单元面积小且成本低廉,所以在集成电路内部用量最多。三极
管单元除用作放大以外,还大量用作恒流源或作为二极管、稳压管使用,如图 9­ 3 中的二极管 V1 和 V2 。
第 9 章 直接耦合放大电路和 集成运算放大器
9.1 直接耦合放大电路
在测量仪表和自动控制系统中,常常遇到一些变化缓慢的低频信号(频率为 几赫兹至几十赫兹,甚至接近于零)。采用阻容耦合或变压器耦合的放大电路是 不能放大这种信号的。 因为在阻容耦合电路中,电容对这些信号呈现的阻抗极 大, 信号被电容隔断,无法传输到下一级。而在变压器耦合的电路中, 信号将 被变压器原边线圈的低阻所短路,也无法耦合到副边去。因此,放大这类变化缓 慢的信号,只能用直接耦合放大电路。
集成运放的外部引出端子有输入端子、输出端子、连接正负电源的电源端子、 失调调整端子、相位校正用的相位补偿端子、公共接地端子和其他附加端子。图 9­ 6 给出了集成运放 F007 的外引线图,图中包括输入端子、输出端子、电 源端子和失调调整端子。对于不同的产品,其外部引出端子的排列可以从产品说 明书上查阅。 本书的附录Ⅵ示出了常用的一些国产集成运放的引线排列图,供 使用时参考。 二、集成运放的主要性能指标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为了反映扩散到集电区的电流ICE与基区复 合电流IBE之间的比例关系,定义共发射极 IB 直流电流放大系数为:
N
Rc
B
IBE
I CE I C I CBO I C I BE I B I CBO I B
其含义是:基区每复合一个电子, 则有 个电子扩散到集电区去。
P +
Rb N -
复合管
放大电路概论 一、 放大的概念 电子学中放大的目的是将微弱的变化信 号放大成较大的信号。这里所讲的主要是电 压放大电路。 电压放大电路可以用有输入口和输出口 的四端网络表示,如图。
ui Au uo
二、放大电路的性能指标 1、电压放大倍数Au
ui
Au
uo
Uo Au Ui
Au是复数,反映了输出和输入的 幅值比与相位差。 Ui 和Uo 分别是输入和输出电压 的有效值。
uCE在很大范围内变化时IC基本 不变。因此,当IB一定时,集 电极电流具有恒流特性。

60
大 区
40
20
iB=0A 0 2 4 6 8 10 uCE / V
截止区
3)饱和区 条件:发射结正偏,集电结正偏。
IC I B
iC / mA
(IC不受IB控制) 失去电流放大作用
饱和区
100 80
(c) 共集电极
1、三极管实现放大作用的外部条件是:
发射结正向偏置, 集电结反向偏置。
对NPN: VC>VB>VE 对PNP: VC<VB<VE
IC
RC
RB
IB
EC
IE
EB
由实验数据可得如下结论:
1) IE=IB+IC (KCL) 2) IB << IC IB << IE IC IE 3) IB (IB的微小变化) IC 变化大
+ UCC -
1、输入特性曲线
iB / A 100 80 25℃ 60 40
uCE =0 uCE ≥1
iB f (uBE ) uCE 常数
当uCE =0时,晶体管相 当于两个并联的二极管
死区电压 当UCE≥1V时, 输入特性曲线右移
20
0
0.2
0.4
0.6
0.8 uBE / V
当UCE≥1V的输入特性曲线基本重合
扩散运动

N
IE
E
1)发射区向基区发射电子的过程 2)电子在基区的扩散和复合过程 3)电子被集电区收集的过程
电流分配关系
I I I
C
I CE I CBO
对于PNP管,三个电极产生的电流方向 正好和NPN管相反
C ICBO ICE IC
I BE I CBO B
E
I CE I BE I C I B
第9章 基本放大电路
§9.1 双极型晶体管(三极管) §9.2 共射极放大电路 §9.3静态工作点的稳定和分压式偏置放大电路 §9.4共集电极放大器(射极输出器)
§9.1 双极型晶体管(三极管)
一、三极管的结构与电路符号
C 集电区 集电区 基区
C
P
N P
集电结
B N
P N
基区BBiblioteka 集电结发射区发射结
发射结
R C
IC IB
I C I B
共射极交流电流放大倍数
RB EB
EC
I
E
2、三极管内部载流子的运动 内部条件:
E区:掺杂浓度高;
IC
B区:掺杂浓度低,薄; C区:掺杂浓度低,尺寸大;
漂移运动 本征激发
C ICBO ICE
N
Rc
电场力作用 非平衡少子漂移运动
IB
B
IBE
P + UCC -
Rb + UBB -
Uo | Au | Ui
2、输入电阻ri
定义:
Ii Ui
ri
Au
US ~
Ui ri Ii
放大电路一定要有前级(信号源)为其提供信号, 那么就要从信号源取电流。输入电阻是衡量放大 电路从其前级取电流大小的参数。输入电阻越大, 从其前级取得的电流越小,对前级的影响越小。 一般来说, ri越大越好。 ri越大,Ii 就越小, ui就越接近uS
E PNP型
发射区 E
发射载流子作用 E区:掺杂浓度高; NPN型 B区:掺杂浓度低,薄; 控制载流子作用 C区:掺杂浓度低,尺寸大; 收集载流子作用
C 集电区 基区 B 发射区 N P N E NPN型 C 集电区 基区 B 发射区 P N P E PNP型 发射结 集电结 发射结 集电结
电路符号
T RL IE=IB+IC
ui=0时
无信号输入时
基本放大电路的工作原理 静态工作点
RB C1 +EC
RC
IB
IC C 2
T ( IC,UCE )
(IB,UBE)
UBE
R UCE L
(IB,UBE) 和( IC,UCE )分别对应于输入输出 特性曲线上的一个点称为静态工作点。
P ICUCE C
PCM决定三极管的工作点允许范围
6、集电极-发射极间的反向击穿电压 U(BR)CEO
基极开路时, 集电极-发射极间的反向击穿电压。 三个极限参数:
iC ICM
功耗线
ICM
U(BR)CEO
PCM
决定三极管的安全工作区
安全 工作区
PCM
0
U( BR) CEO u CE
三极管的安全工作区
iC + uCE
+ UCC -
四、三极管的特性曲线
三极管的特性曲线是指各电极间电压和电流之间的关系曲线。 以共射为例。
1、输入特性曲线
iB f (uBE ) uCE 常数
mA
Rc
2、输出特性曲线
i
C
f (uCE ) iB 常数
iB A + Rb UBB - V - + uBE
iC + iE V - uCE
B
C
T E
符号中的箭头方向表示 发射结正向偏置时的电 流方向。
NPN型
C B
T
E PNP型
二、三极管的电流分配与放大作用
三极管有两个PN结,三个极,需两个电源,则必有一个公共端。
三极管的三种连接方式:
IE E IB B IC C IB E IE
C
B IC B IB
E IE C
IC
(a) 共基极
(b) 共发射极
(3)集电极电阻Rc: 其作用是将集电极电流的变
化转换成电压的变化。 (4)耦合电容C1、 C2: 其作用是隔直流、 通交流。 (5)符号“⊥”为接地符号, 是电路中的零参考电 位。
基本放大电路的工作原理 静态工作点 +EC 由于电源 的存在 IB0 RB C1 I
B
RC
IC0
IC C 2
UCC Rb

Rc iB iC V iE

C2
V : 三极管,根据输入信号的 变化规律,控制直流电源所 给出的电流,使在 RL上获得 较大的电压或功率 + RL uo -
电路中各元件的作用如下: (1)集电极电源UCC: 其作用是为整个电路提供能 源, 保证三极管的 发射结正向偏置, 集电结反向偏置。 (2)基极偏置电阻Rb: 其作用是为基极提供合适 的偏置电流。
Rc
iB A + Rb UBB - V - + uBE
iC + iE V - uCE
+ UCC -
2)饱和状态
条件:发射结正偏,集电结正偏。 RB UBE IB 最大值 IC UCE=UCC-RCIC
当UC 0
U CC IC RC
特征:1) IB
故 IB再增大, IC 亦不能增大了
IC不变 (失去控制能力)
以共射放 大器为例 讲解工作 原理
§9.2 共射放大电路
§9.2.1 基本放大电路的组成及分析
Rb : 基极偏置电 阻,为三极管基 极提供合适的正 向偏流 C1、C2 : 耦合电容(电解电容), ①有效地构成交流信号的通路;②避免 信号源与放大器之间直流电位的互相 影响 C1 + ui - Rc : 集电极电阻,将集电极电 流转换成集电极电压,并影响 放大器的电压放大倍数 UCC : 直流电源, ①向RL提供能量, ②给V提供适当的 偏置
3、输出电阻ro 放大电路对其负载而言,相当于信号 源,我们可以将它等效为戴维南等效电路, 这个戴维南等效电路的内阻就是输出电阻。 输出端 uS ~ Au
ro
输出端
uso ~
如何确定电路的输出电阻?
在电路的计算中求ro有两个方法: 1) 所有的电源(包括信号源)置零, 保留受控源。然后采用加压求流法。
2、输出特性曲线
iC / mA
i
C
f (uCE ) iB 常数
饱和区
100 80
输出特性曲线分为三个区:
1) 截止区 2) 放大区 3)饱和区
10 uCE / V

60 40
20


iB=0A 0 2 4 6 8
截止区
1)截止区:
IB= 0,
IC = ICEO 0
集射极反向电流(穿透电流)
>
所以T处于饱和状态。
u0 UCES 0V
I B ( sat )
I C ( sat )

12m A 0.24m A 50
五、三极管的主要参数
1、共发射极电流放大系数
IC IB
I C I B
U CE 常数
——直流电流放大系数
——交流电流放大系数
相关文档
最新文档