中考数学总复习教案 课时8 二元一次方程组及其应用【教案】

合集下载

中考数学复习教案一元一次方程与二元一次方程组

中考数学复习教案一元一次方程与二元一次方程组

中考数学复习教案一元一次方程与二元一次方程组中考数学复习教案一元一次方程与二元一次方程组中考要求:1.根据具体问题中的数量关系,经历形成方程模型、解方程和运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.了解一元一次方程及其相关概念,会解一元一次方程(数字系数)3.能以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力.4.在经历建立方程模型解决实际问题的过程中,体会数学的应用价值.5.经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识.6.了解二元一次方程(组)的有关概念,会解简单的二元一次方程组(数字系数人能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.7.了解二元一次方程组的图象解法,初步体会方程与函数的关系.8.了解解二元一次方程组的消元思想.从而初步理解化未知(1)代人消元法:解方程组的基本思路是消元一把二元变为一元,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.9.整体思想解方程组.(1)整体代入.如解方程组,方程①的左边可化为3(x+5)-18=y+5③,把②中的 3(x+5)看作一个整体代入③中,可简化计算过程,求得y.然后求出方程组的解.(2)整体加减,如因为方程①和②的未知数x、y的系数正好对调,所以可采用两个方程二元一次方程与一次函数的区别和联系.区别:(1)二元一次方程有两个未知数,而一次函数有两个变量;(2)二元一次方程用一个等式表示两个未知数的关系,而一次函数既可以用一个等式表示两个变量之间的关系,又可以用列表或图象来表示两个变量之间的关系.联系:(1)在直角坐标系中分别描出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上;(2)在一次函数的图象上任取一点,它的坐标都适合相应的二元一次方程.10.两个一次函数图象的交点与二元一次方程组的解的联系:在同一直坐标系中,两个一次函数图象的交点的坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点,11.用作图象的方法解二元一次方程组:(1)将相应的二元一次方程组改写成一次函数的表达式;(2)在同一坐标系内作出这两个一次函数的图象;(3)观察图象的交点坐标,即得二元一次方程组的解.整体相加减求解.利用①+②,得x+y=9③,利用②-①得x-y=3④,可使③、④组成简单的方程组求得x,y.经典例题剖析:1.若代数式是同类项,则x=__________.2.已知2x+5y=3,用含y的代数式表示x,则x=___________;当y=1时,x=________3.当k=_______时,方程5x-k=3x+8的解是-2.4.有一个数,十位数字是a,个位数字是b,十分位数字是c,那么这个数可表示为_______.5.三个连续奇数的和是15,那么其中最大的奇数为_______.6.若则 3x+2y=_______7.方程没有解,由此一次函数y=2-x与y= -x的图象必定( )A.重合B.平行C.相交D.无法判断8.已知点(2,-1)是方程y=kx+1的一个解,则直线y=kx+l 的图象不经过的象限是_______9.若与是同类二次根式,求a、b的值.10.解方程组:⑴11.若是方程组的解,则(a+b)(a-b)的值为_______.12.学生问老师多少岁,老师说我像你这么大时你才2岁,你长到我这么大时,我就35岁了,请你算算老师、学生各多少岁?13.今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利. 据估计,今年全省荔枝总产量为50 000吨,销售收入为61 000万元. 已知妃子笑品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求妃子笑和其它品种的荔枝产量各多少吨. 如果设妃子笑荔枝产量为x吨,其它品种荔枝产量为y吨,那么可列出方程组为 .解:14.甲、乙两件服装的成本共n0元,商店老板为获取利润,决定将甲服装按50%利润定价,乙服装接40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元? 答:甲、乙两件服装的成本分别为300元,200元.15.已知x=-3是方程的一个根,(1)求m的值;⑵求代数式的值.16.一个由父亲、母亲、叔叔和x个孩子组成的家庭去某地旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按半价优惠;乙旅行社的收费标准是:家庭旅游算团体票,按原价的优惠.这两家旅行社的原价均为100元.试比较随着孩子人数的变化,哪家旅行社的收费额更优惠?解:甲旅行社的收费总额为:y1=400+50(x-1)= 50x+350,乙旅行社的收费总额为:y2=75(x+3)-75x+225. (1)当孩子数x5时,乙旅行社的收费优惠;(2)当孩子数x=5时,两旅行社的收费相同;(3)当孩子数x5时,甲旅行社的收费优惠. 专题八:一元一次不等式和一元一次不等式组一、中考要求:1.经历将一些实际问题抽象为不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型,进一步发展符号感.2、能够根据具体问题中的大小关系了解不等式的意义.3.经历通过类比、猜测、验证发现不等式基本性质的探索过程,掌握不等式的基本性质.4.理解不等式(组)的解及解集的含义;会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会在数轴上确定其解集;初步体会数形结合的思想.5.能根据具体问题中的数量关系,列出一元一次不等式(组)解决简单的实际问题,并能根据具体问题的实际意义,检验结果是否合理.6.初步体会不等式、方程、函数之间的内在联系与区别.二、知识点讲解:1.不等式:用不等号()表示不等关系的式子.2.不等式的基本性质:()不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.3.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.5.解不等式:求不等式解集的过程叫做解不等式.6.一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不为零的不等式叫做一元一次不等式.7.解一元一次不等式易错点:(1)不等式两边部乘以(或除以)同一个负数时,不等号的方向要改变,这是同学们经常忽略的地方,一定要注意;(2)在不等式两边不能同时乘以0. 8.一元一次不等式的解法.解一元一次不等式的步骤:①去分母,②去话号,③移项,④合并同类项,⑤系数化为1(不等号的改变问题)9.求不等式的正整数解,可负整数解等特解,可先求出这个不等式的所有解,再从中找出所需特解.10.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.11.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.12.解不等式组:求不等式组解集的过程,叫做解不等式组.13.不等式组的分类及解集(a14、一元一次不等式组的解.(1)分别求出不等式组中各个不等式的解集(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

中考一轮复习教案:一元一次方程与二元一次方程组

中考一轮复习教案:一元一次方程与二元一次方程组

一元一次方程与二元一次方程组辅导教案1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质.2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法.3.会列方程(组)解决实际问题.3.我州某校计划购买甲、乙两种树苗共1000株用以绿化校园,甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲,乙两种树苗成活率分别是90%和95%.(1)若购买这种树苗共用去28000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的总成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.4.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?五、牛刀小试1、若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣32、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x3、某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚(2)甲的套餐费用为199元,其中含600MB 的月流量;丙的套餐费用为244.2元,其中包含1GB 的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m 的值.巩固练习1.方程x +5=4的解是( )A .B .C .D . 2.方程3x+2(1-x)=4的解是( )A.x=52B.x=65C.x=2D.x=13.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .(9﹣7)x =1B .(9+7)x =1C .11()179x -= D .11()179x += 4.若单项式22a bx y+与413a b x y --是同类项,则a ,b 的值分别为( ) A .a=3,b=1 B .a=﹣3,b=1 C .a=3,b=﹣1 D .a=﹣3,b=﹣1 5.方程2x 13-=的解是( ) A .-1 B .C .1D .2 6.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组33-11-12强化提升1.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为元.2.已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为.3.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为.4.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多元.5.方程组的解是.6.已知:若代数式x﹣5与2x﹣1的值相等,则x的值是.7.某城市现有42万人口,计划一年后城镇人口增加0.8%,农人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数.若设城镇现有人口为x万,农村现有人口为y万,则所列方程组为。

中考数学总复习的教案5篇

中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。

③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。

③统计与概率分为2个大单元:统计与概率。

(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本。

(3)掌握基础知识,一定要从理解角度出发。

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。

二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。

第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。

中学数学复习:第1-10讲 二元一次方程的方案问题

中学数学复习:第1-10讲 二元一次方程的方案问题

专题10 有关二元一次方程的方案问题考纲要求:1.掌握代入消元法和加减消元法,能解二元一次方程。

2.能用二元一次方程解决实际问题基础知识回顾:1.应用题中常见的等量关系(1)增长率等量关系:增长率=增长量÷基础量×100%.一般类型:设原来量为a,平均增长(下降)率为x,则一次增长(下降)后的值为a(1±x),两次增长(下降)后的值为a(1±x)2 .(2)利润等量关系:利润=售价-成本(进价),利润率=×100%.(3)利息等量关系:利息=本金×利率×期数;本息和=本金+利息;利息税=利息×税率.(4)行程等量关系:路程=速度×时间.招数一、与方程不等式相关的方案设计,据题意得出正确的等量关系,找准等量关系,列出二元一次不等式组,据题意写出正确的方案。

【例1】(2017贵州安顺)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【例2】(2017毕节)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.招数二、二元一次方程组的应用以及一元一次方程的应用等知识,根据题意得出正确的等量关系是解题关键,根据数量关系,找出w与m之间的函数关系式.【例3】学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.招数三、二元一次方程组的应用以及一次函数的图像应用等知识,根据题意得出正确的等量关系是解题关键,根据一次函数的增减性得出费用最省方案是解决问题.【例4】(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【例5】(2016河南)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【例6】(2017黑龙江鹤岗)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A.2种B.3种C.4种D.5种方法、规律归纳:1、在解决实际问题时,需合理安排,从几种方案中,选择最佳方案。

(初中)九年级数学《二元一次方程》中考专题阶段复习讲解教学课件

(初中)九年级数学《二元一次方程》中考专题阶段复习讲解教学课件

【解析】设入住A类旅游饭店的会议x次,入住B类旅游饭店的
会议y次.
根据题意,得
x y 18, 2x y 28,
解得
x y
10, 8.
答:此旅行社入住A类旅游饭店的会议10次,入住B类旅游饭店
的会议8次.
(初中)数学中考专题阶段复习讲解教学课件
谢谢
9 5
.
,
mx ny 7, nx my 1,
则 m 3n 13 3 9 8,所以3 m 3n 3 8 2.
55
答案:2
3.(中考)已知关于x,y的方程组
mx ny 7, 2mx 3ny
4的解为xy
1, 2,
求m,n的值.
【解析】把
x y
1, 2
代入
mx ny 7, 2mx 3ny
人数多22人”所得的方程是x-y=22;调查的吸烟的人数是
x 不,吸烟的人数是
2.5%
根y据共,调查了10 000人,列方
0.5%
程得 x y 10 000,
2.5% 0.5%
x y 22,
所以可列方程组
x 2.5%
y 0.5%
10
000.
2.(中考)学校举行“大家唱大家跳”文艺汇演,设置了歌唱
①-②,得2y=2,y=1,所以原方程组的解为xy
2, 1.
答案:xy
2, 1
2.(中考)解方程组:
2x y 3,① x y 0.②
【解析】①+②,得3x=3,x=1.
把x=1代入②,得y=1.原方程组的解为xy
1, 1.
3.(中考)解方程组
x 3y 12,① 2x 3y 6.②
与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类

《第八章 二元一次方程组》复习教案和单元检测试卷

《第八章 二元一次方程组》复习教案和单元检测试卷

《第八章二元一次方程组》复习教案【教学设计思想】本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。

首先让学生思考回答:①二元一次方程组的解题思路及基本方法。

②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。

【教学目标】知识与技能熟练地解二元一次方程组;熟练地用二元一次方程组解决实际问题;对本章的内容进行回顾和总结,进一步感受方程模型的重要性。

过程与方法通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。

情感态度价值观通过反思消元法,进一步强化数学中的化归思想;学会如何归纳知识,反思自己的学习过程。

【教学方法】:复习法,练习法。

【重、难点】重点:解二元一次方程组、列二元一次方程组解应用题。

难点:如何找等量关系,并把它们转化成方程。

解决办法:反复读题、审题,用简洁的语言概括出相等关系。

【教学过程设计】(一)明确目标前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。

(二)整体感知本章含有两个主要思想:消元和方程思想。

所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。

(三)复习通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。

(四)练习1.2x -5y=18找学生写出它的五个解。

2.分别用代入消元法、加减消元法求出它的解来。

答案:3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓库所余的粮食比1号仓库所余的粮食多30吨。

2024年新版最新中考数学复习全套精彩课件完整版

2024年新版最新中考数学复习全套精彩课件完整版

2024年新版最新中考数学复习全套精彩课件完整版一、教学内容1. 第一章实数与函数实数的概念、性质与运算一次函数、二次函数、反比例函数及其图像2. 第二章代数式与方程整式、分式及其运算一元一次方程、二元一次方程组、不等式及其应用3. 第三章几何图形与证明平面几何图形的性质、判定与应用等腰三角形、直角三角形、四边形的性质与判定相似图形、位似图形及其应用4. 第四章统计与概率数据的收集、整理、描述与分析随机事件、概率的计算与应用二、教学目标1. 熟练掌握实数、代数式、方程、几何图形、统计与概率等基本知识,提高解决问题的能力。

2. 培养学生的逻辑思维能力、空间想象能力和数据分析能力。

3. 提高学生的应试能力,为中考取得优异成绩奠定基础。

三、教学难点与重点1. 教学难点:函数的性质、图像及其应用方程、不等式的解法与应用几何图形的证明与计算统计与概率在实际问题中的应用2. 教学重点:知识点的掌握与巩固各类题型的训练与实践四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、教鞭等。

2. 学具:课本、笔记本、文具、计算器等。

五、教学过程1. 导入新课:通过实际情景引入,激发学生的学习兴趣,为新课的学习奠定基础。

2. 知识回顾:回顾上一节课的主要内容,巩固学生的知识点。

3. 新课讲解:讲解教材中的重点、难点,配合例题进行解析。

对重要概念、性质、定理进行详细阐述,确保学生理解到位。

4. 随堂练习:针对新课内容,设计不同难度的练习题,让学生及时巩固所学知识。

7. 课后作业布置:布置适量的作业,巩固所学知识。

六、板书设计1. 采用提纲式板书,突出重难点,方便学生记录。

2. 结合多媒体教学,展示图形、例题等,提高教学效果。

七、作业设计1. 作业题目:2x 5 = 3(x + 1)(2x + 3)(x 4) < 0(3x 2y)(2x + 4y) (x y)(4x 2y)等腰三角形的底角相等(4)统计与概率:某班有30名学生,其中男生18名,女生12名。

二元一次方程的应用教案

二元一次方程的应用教案

二元一次方程的应用教案
二元一次方程是初中阶段数学中的重要内容,它在现实生活中有着广泛的应用。

设计一堂关于二元一次方程应用的教案需要考虑到学生的实际水平和兴趣,同时要注重培养学生的实际问题解决能力。

以下是一个可能的教案设计:
第一步,导入。

教师可以通过提出一个实际问题引入二元一次方程的概念,比如某商场举办促销活动,购买两种商品A和B的总价是100元,已知商品A的价格是商品B的2倍,让学生思考如何利用方程解决这个问题。

第二步,概念讲解。

在学生对实际问题有了一定的认识后,教师可以引入二元一次方程的概念,解释方程中的系数、常数项以及未知数的含义,并通过实际例子让学生理解方程的表示方法。

第三步,示范案例。

教师可以通过几个具体的案例,比如两个未知数的加减法方程和乘法方程,让学生跟随教师的指导一起解决问题,加深学生对二元一次方程的理解。

第四步,小组讨论。

让学生分成小组,提供一些实际问题,让他们应用所学的二元一次方程知识解决问题,鼓励他们在小组内进行讨论和合作,培养学生的团队合作精神。

第五步,展示和总结。

让每个小组展示他们解决问题的方法和答案,教师进行点评和总结,引导学生总结归纳二元一次方程的应用方法和技巧。

通过以上教学设计,学生不仅可以掌握二元一次方程的基本概念和解题方法,还能够在实际问题中灵活运用所学知识,培养学生的数学建模能力和解决实际问题的能力。

同时,教师在教学中要注重引导学生思考、讨论和合作,营造积极的学习氛围,激发学生学习数学的兴趣。

2015年陕西省中考数学总复习教学案:第8讲 列方程(组)解应用题

2015年陕西省中考数学总复习教学案:第8讲 列方程(组)解应用题

第8讲 列方程(组)解应用题化,虽然近三年对本节的内容未考查到,但由于其是中考需要掌握的内容,而且曾在2011年第14题考查了一元一次方程的实际应用,涉及商品销售打折问题,题型为填空题,分值为3分,因此在2015年的中考试题可能会考查到其相关知识,因此在复习中不容忽视.1.列方程(组)解应用题的一般步骤 (1)__审题__; (2)__设元__;(3)找出包含未知数的__等量关系__; (4)__列出方程(组)__;(5)__求出方程(组)的解__; (6)__检验并作答__.2.各类应用题的等量关系(1)行程问题:路程=速度×时间; 相遇问题:两者路程之和=全程;追及问题:快者路程=慢者先走路程(或相距路程)+慢者后走路程. (2)工程问题:工作量=工作效率×工作时间. (3)几何图形问题:面积问题:S 长方形=ab(a ,b 分别表示长和宽); S 正方形=a 2(a 表示边长); S 圆=πr 2(r 表示圆的半径);注:面积问题常见形式归纳如下:①如图1所示的矩形ABCD 长为a ,宽为b ,空白部分宽一样为x ,则阴影的面积表示为(a -2x)(b -2x).②如图2所示的矩形ABCD 长为b ,宽为a ,阴影道路的宽为x ,则4块空白部分的面积为(a -x)(b -x).③如图3所示的矩形ABCD 长为b ,宽为a ,阴影道路的宽为x ,则空白部分面积的和可以转化为(a -x)(b -x).体积问题:V 长方体=abh(a ,b ,h 分别表示长、宽、高); V 正方体=a 3(a 表示边长);V 圆锥=13πr 2h(r 表示底面圆的半径,h 表示高);其他几何图形问题:如线段、周长等.(4)增长率问题:如果基数用a 表示,末数用A 表示,x 表示增长率,时间间隔用n 表示,那么增长率问题的数量关系是:a(1±x)n =A.(5)利润问题:利润=销售价-进货价=标价×折扣(x10)-进货价(x 表示打x 折);利润率=利润进货价;销售价=(1+利润率)×进货价. (6)利息问题:利息=本金×利率×期数; 本息和=本金+利息.一种思想方法方程思想是把未知数看成已知数,让所设未知数的字母和已知数一样参加运算.这种思想方法是数学中常用的重要方法之一,是代数解法的重要标志.两种设元方法(1)直接设元.在全面透彻地理解问题的基础上,根据题中求什么就设什么是未知数,或要求几个量,可直接设出其中一个为未知数,再用这个未知数表示另一个未知量.这种设未知数的方法叫做直接设元法.(2)间接设元.如果对某些题目直接设元不易求解,便可将并不是直接要求的某个量设为未知数,从而使得问题变得容易解答,我们称这种设未知数的方法为间接设元法.三个注意列方程(组)解应用题的关键是把已知量和未知量联系起来,找出题目中的数量关系,并根据题意或生活实际建立等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须注意:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相等.方程(组)的应用【例1】 (2014·呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4,5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4,5月份的电费分别为多少元.解:设基本电价为x 元/千瓦时,提高电价为y 元/千瓦时,由题意,得⎩⎨⎧180x +150y =213,180x +60y =150,解得⎩⎨⎧x =0.6,y =0.7,则4月份电费为160×0.6=96(元),5月份电费为180×0.6+230×0.7=108+161=269(元).即这位居民4月份的电费为96元,5月份的电费为269元【点评】 本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.1.(2014·淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:某户居民5,6月份共用电500度,缴电费290.5元.已知该用户6月份用电量大于5月份,且5,6月份的用电量均小于400度.问该户居民5,6月份各用电多少度.解:当5月份用电量为x 度≤200度,6月份用电(500-x)度,由题意,得0.55x +0.6(500-x)=290.5,解得x =190,∴6月份用电500-x =310度.当5月份用电量为x 度>200度,6月份用电量为(500-x)度,由题意,得0.6x +0.6(500-x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度分式方程的应用【例2】 (2013·安徽)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x 元,请你用含x 的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x. 解:(1)(4000+25x)元(2)购买每副乒乓球拍用去了x 元,则购买每副羽毛球拍用去了(x +20)元,由题意得2000x=2000+25x x +20,解得x 1=40,x 2=-40,经检验,x 1,x 2都是原方程的根,但x >0,∴x =40.即每副乒乓球拍的价格为40元【点评】 分式方程解应用题.注意双重检验,先检验是否有增根,再检验是否符合题意.2.(2014·威海)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲种粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?解:设乙种粽子的单价是x 元,则甲种粽子的单价为(1+20%)x 元,由题意得300(1+20%)x +400x=260,解得x =2.5,经检验:x =2.5是原分式方程的解,(1+20%)x =3,则买甲粽子为3003=100个,乙粽子为4002.5=160个.即乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个一元二次方程的应用【例3】 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件.若商场平均每天盈利2100元,每件衬衫应降价多少元?解:设每件衬衫应降价x 元,可使商场每天盈利2100元,根据题意得(45-x)(20+4x)=2100,解得x 1=10,x 2=30,因应尽快减少库存,故x =30.即每件衬衫应降价30元【点评】 (1)现实生活中存在大量的实际应用问题,需要用一元二次方程的知识去解决,解决这类问题的关键是在充分理解题意的基础上,寻求问题中的等量关系,从而建立方程.(2)解出方程的根要结合方程和具体实际选择合适的根,舍去不合题意的根.3.(2014·新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米.解:设AB 的长度为x 米,则BC 的长度为(100-4x)米.根据题意得(100-4x)x =400,解得x 1=20,x 2=5.则100-4x =20或100-4x =80.∵80>25,∴x 2=5舍去.即AB =20,BC =20.答:羊圈的边长AB ,BC 分别是20米,20米试题 甲、乙两人分别从相距30千米的A ,B 两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B 地所剩的路程是乙到A 地所剩路程的2倍,求甲、乙两人的速度.错解解:设甲的速度为每小时x 千米,乙的速度为每小时y 千米,得⎩⎨⎧3x +3y =30-3,30-(3+2)x =2[30-(3+2)y],解得⎩⎪⎨⎪⎧x =4,y =5.答:甲的速度为每小时4千米,乙的速度为每小时5千米.剖析(1)一道应用题,究竟列一元一次方程予以解决为好,还是列二元一次方程组为好,要具体分析.一般来说,列一元一次方程时,在列方程的思考上,难度稍大;而列方程组,由于把思考量分摊到两个方程上,降低了列方程的难度,但解方程过程的运算量较大.因此,对于思考量较低或中等的应用题,列一元一次方程为宜;对于思考量或思考难度都很大的应用题,列方程组解决为宜.(2)有些应用题,由于题目所给条件比较隐蔽,符合题意的情况有多种,解这类应用题时要考虑周全,把各种情况下的解全求出来,这样不致于失解,否则会造成解答不完整,犯以偏概全的错误;(3)分类的思想方法实质上就是按照数学对象的共同性质和差异性,将其区分为不同种类的思想方法,分类讨论的思想方法在代数中应用极其广泛,例如实数的分类,代数式的分类,方程和函数的分类等等,可以把整个代数看作一个分类讨论的系统.解此类问题强调:要有分类意识;找出科学的分类标准;分类时满足不重复、不遗漏、最简单原则.正解解:设甲的速度为每小时x 千米,乙的速度为每小时y 千米.①当甲、乙两人相遇前相距3千米时,得⎩⎨⎧3x +3y =30-3,30-(3+2)x =2[30-(3+2)y],解得⎩⎪⎨⎪⎧x =4,y =5. ②当甲、乙两人经过3小时相遇后又相距3千米时,得⎩⎨⎧3x +3y =30+3,30-(3+2)x =2[30-(3+2)y],解得⎩⎨⎧x =513,y =523. 答:甲的速度为每小时4千米,乙的速度为每小时5千米;或甲的速度为每小时513千米,乙的速度为每小时523千米.。

2021年中考数学专题复习-二元一次方程组(学案)

2021年中考数学专题复习-二元一次方程组(学案)

中考数学一轮专题复习 学案07 二元一次方程组1.二元一次方程:含有 2 个未知数(元),并且未知项的次数都是 1 的整式方程,叫做二元一次方程.二元一次方程的一般形式: ax +by +c =0(a ,b ,c 为常数,且a ≠0,b ≠0) .必须满足以下三个条件:(1)等号两边的式子都是整式;(2)有且只有两个未知数;(3)含有未知数的项的次数都是1. 2.二元一次方程组:由两个二元一次方程组成的方程组叫做二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222==a x b y c a x b y c +⎧⎨+⎩,其解一般写成x my n =⎧⎨=⎩的形式.3.二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做这个二元一次方程的一个解,一个二元一次方程有 无数 个解. 4.二元一次方程组的解:使二元一次方程组两边的值相等的两个未知数的值,叫做二元一次方程组的解.检验一对数值是否是某个二元一次方程组的解,常用的方法是将这对数值分别代入方程组中的每个方程.只有当这对数值同时满足所有方程时,才能说这对数值是此方程组的解;如果这对数值不满足其中的某个方程,那么它就不是此方程组的解.【例1】下列方程组中是二元一次方程组的是( )知识点1:二元一次方程(组)的有关概念知识点梳理典型例题A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .91632x x y=⎧⎪⎨+=⎪⎩ 【分析】对照二元一次方程及二元一次方程组的定义,逐项判断即可. 【答案】D .【例2】按如图的运算程序,能使输出结果为3的x ,y 的值是( )A .x =5,y =﹣2B .x =3,y =﹣3C .x =﹣4,y =2D .x =﹣3,y =﹣9 【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x ﹣y =3, A 、x =5时,y =7,故A 选项错误; B 、x =3时,y =3,故B 选项错误; C 、x =﹣4时,y =﹣11,故C 选项错误; D 、x =﹣3时,y =﹣9,故D 选项正确. 故选:D .【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.1.解二元一次方程组的方法:思想:二元一次方程组−−−→消元转化一元一次 方程.消元是解二元一次方程组的基本思路,知识点2:二元一次方程组的解法知识点梳理方法有代入消元法和加减消元法两种.2.代入法:适用于有一个方程中某个未知数的系数为1或-1的情况.代入消元法的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.3.加减法:在方程两边同乘以一个数,将两个方程中同一个未知数的系数变为相同的数(或互为相反数),再将方程两边分别相减(或相加).加减消元法的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.【例3】(2020•天津7/25)方程组241x yx y+=⎧⎨-=-⎩的解是()A.12xy=⎧⎨=⎩B.32xy=-⎧⎨=-⎩C.2xy=⎧⎨=⎩D.31xy=⎧⎨=-⎩【考点】解二元一次方程组【分析】方程组利用加减消元法求出解即可.【解答】解:241x yx y+=⎧⎨-=-⎩①②,①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,典型例题则方程组的解为12x y =⎧⎨=⎩.故选:A .【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 【例4】解方程组:355223x y x y -=⎧⎨+=⎩【答案】解法一:①×②得:6x -2y =10 ③, ②+③得:11x =33,∴x =3.把x =3 代入①得:9-y =5.∴y =4 所以34x y =⎧⎨=⎩.解法二:由①得:y =3x -5 ③ 把③代入②得:5x +2(3x -5)=23,11x =33,∴x =3.把x =3代入③得:y =4.所以34x y =⎧⎨=⎩.1.列二元一次方程组解应用题:审题→找出 相等关系 →列出二元一次方程组→解二元一次方程组→写出答案. 2.列二元一次方程组解应用题的具体步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间的关系; ②找:找出应用题中的相等关系;③设:设未知数(一般求什么,就设什么); ④列:根据相等关系列出两个方程,组成方程组; ⑤解:解所列的方程组,求出未知数的值;⑥验:检验所得未知数的值是否符合实际意义及题意;知识点3:二元一次方程组的实际应用知识点梳理⑦答:写出答案(包括单位名称).【例5】(2020•海南18/22)某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?【考点】二元一次方程组的应用【分析】设改进加工方法前用了x天,改进加工方法后用了y天,根据6天共加工竹笋22吨,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设改进加工方法前用了x天,改进加工方法后用了y天,依题意,得:6 3522x yx y+=⎧⎨+=⎩,解得:42xy=⎧⎨=⎩.答:该合作社改进加工方法前用了4天,改进加工方法后用了2天.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【例6】(2020•重庆A卷24/26)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B 两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100 kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加20%9a.求a的值.【考点】二元一次方程组的应用【分析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;典型例题(2)根据题意列方程即可得到结论.【解答】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得:10010 2.4()21600y xx y-=⎧⎨⨯+=⎩,解得:400500xy=⎧⎨=⎩,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)202.440010(1%) 2.4(1%)50010(12%)21600(1%)9a a a a⨯⨯+++⨯⨯+=+,解得:a=10,答:a的值为10.【点评】本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.1.二元一次方程x-2y=1有无数多个解,下列四组值中不是..该方程的解的是()A.12xy=⎧⎪⎨=-⎪⎩B.11xy=⎧⎨=⎩C.1xy=⎧⎨=⎩D.11xy=-⎧⎨=-⎩2.下列方程组中,是二元一次方程组的是()A.3235x yx y-=⎧⎨+=⎩B.2024x yx y k++=⎧⎨-=⎩C.3010x yxy-+=⎧⎨+=⎩D.2135x yxy+=⎧⎪⎨+=⎪⎩3.已知21xy=⎧⎨=⎩是二元一次方程组71ax byax by+=⎧⎨-=⎩的解,则a-b的值为()A.-1B.1C.2D.34.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为_________.5.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩则x-y的值为________.巩固训练A.12xy=⎧⎨=⎩B.31xy=⎧⎨=⎩C.2xy=⎧⎨=-⎩D.2xy=⎧⎨=⎩8.(2020•北京12/28)方程组1 37 x yx y-=⎧⎨+=⎩的解为.9.解方程组:3126x yx y-=⎧⎨+=⎩①②.10.解方程组224422x yy⎧+=⎪+=.11.解二元一次方程组:⎩⎨⎧=+=-2372yxyx.12.(2018·北京市3/28)方程组33814x yx y-=⎧⎨-=⎩的解为()A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩13.(2018·包头13/26)若a﹣3b=2,3a﹣b=6,则b﹣a的值为.14.(2019·天津市9/25)方程组3276211x yx y+=⎧⎨-=⎩的解是()A.15xy=-⎧⎨=⎩B.12xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩15.(2019·重庆市7/26)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩16.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是()A.301216400x yx y+=⎧⎨+=⎩B.301612400x yx y+=⎧⎨+=⎩C.121630400x yx y+=⎧⎨+=⎩D.161230400x yx y+=⎧⎨+=⎩17.(2020•江西17/23)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.1.二元一次方程x-2y=1有无数多个解,下列四组值中不是..该方程的解的是()A.12xy=⎧⎪⎨=-⎪⎩B.11xy=⎧⎨=⎩C.1xy=⎧⎨=⎩D.11xy=-⎧⎨=-⎩【答案】B.【分析】把各选项中的x、y值代入原方程,判断左右两边是否相等即可.【解答】解:把A选项代入原方程,左边=右边,此项不符合题意;把B选项代入原方程,左边≠右边,此项符合题意;把C选项代入原方程,左边=右边,此项不符合题意;巩固训练解析把D选项代入原方程,左边=右边,此项不符合题意;故答案为:B.2.下列方程组中,是二元一次方程组的是()A.3235x yx y-=⎧⎨+=⎩B.2024x yx y k++=⎧⎨-=⎩C.3010x yxy-+=⎧⎨+=⎩D.2135x yxy+=⎧⎪⎨+=⎪⎩【答案】A.【分析】根据二元一次方程组的定义逐项判断即可.【解答】解:根据二元一次方程组的定义逐项判断,是二元一次方程组的是3 235 x yx y-=⎧⎨+=⎩,故答案为:A.3.已知21xy=⎧⎨=⎩是二元一次方程组71ax byax by+=⎧⎨-=⎩的解,则a-b的值为()A.-1B.1C.2D.3【答案】A.【分析】把21xy=⎧⎨=⎩代入71ax byax by+=⎧⎨-=⎩中得到关于a、b的方程组,解该方程组,进而求解即可.【解答】解:把21xy=⎧⎨=⎩代入71ax byax by+=⎧⎨-=⎩中,得:27 21a ba b+=⎧⎨-=⎩,解得:23ab=⎧⎨=⎩,∴a-b=-1,故答案为:A.4.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为_________.【答案】a<4.【分析】方程组中两个方程相加,得到4x+4y=4+a,再根据x+y<2进而求出a的取值范围即可.【解答】解:3133x y ax y+=+⎧⎨+=⎩①②,①+②得:4x+4y=4+a,∴44ax y++=,【答案】1.【分析】方程组中两个方程相减,得到x-y=1即可.【解答】解:2524x yx y+=⎧⎨+=⎩①②,①-②得:x-y=1.故答案为:1.7.方程组224x yx y-=⎧⎨+=⎩的解是()A.12xy=⎧⎨=⎩B.31xy=⎧⎨=⎩C.2xy=⎧⎨=-⎩D.2xy=⎧⎨=⎩【分析】可解此方程组,也可把四个选项依次代入原方程组验证.【答案】D.8.(2020•北京12/28)方程组137x yx y-=⎧⎨+=⎩的解为.【考点】解二元一次方程组.【答案】见试题解答内容【分析】方程组利用加减消元法求出解即可.【解答】解:137x yx y-=⎧⎨+=⎩①②,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为21xy=⎧⎨=⎩.故答案为:21xy=⎧⎨=⎩.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.解方程组:3126x yx y-=⎧⎨+=⎩①②.【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:5y=5,即y=1,将y=1代入①得:x=4,则方程组的解为41 xy=⎧⎨=⎩.【点评】此题考查了解二元一次方程组.10.解方程组224422x y y ⎧+=⎪+=.【考点】高次方程.【分析】由②得22443y x =-+③,把③代入①解答即可.【解答】解:224422x y y ⎧+=⎪+=①②,由②得22443y x =-+③,把③代入①得:20x =,解得:10x =,2x =,当x 1=0时,y 1=1;当2x =时,212y =-, 所以方程组的解是1101x y =⎧⎨=⎩,2212x y ⎧=⎪⎨=-⎪⎩. 【点评】此题考查高次方程问题,关键是把高次方程化为一般方程再解答.11.解二元一次方程组:⎩⎨⎧=+=-02372y x y x .【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:27320x y x y -=⎧⎨+=⎩①②, ①×2+②得:7x =14,即x =2,把x =2代入①得:y =﹣3,则方程组的解为23x y =⎧⎨=-⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(2018·北京市3/28)方程组33814x y x y -=⎧⎨-=⎩的解为( )A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可;【解答】解:33814x yx y-=⎧⎨-=⎩①②,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为21 xy=⎧⎨=-⎩.故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.13.(2018·包头13/26)若a﹣3b=2,3a﹣b=6,则b﹣a的值为.【考点】解二元一次方程组.【分析】将两方程相加可得4a﹣4b=8,再两边都除以2得出a﹣b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知3236a ba b-=⎧⎨-=⎩①②,①+②,得:4a﹣4b=8,则a﹣b=2,∴b﹣a=﹣2,故答案为:﹣2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.14.(2019·天津市9/25)方程组3276211x yx y+=⎧⎨-=⎩的解是()A.15xy=-⎧⎨=⎩B.12xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩【考点】解二元一次方程组.【分析】运用加减消元法解答即可.【解答】解:3276211x yx y+=⎧⎨-=⎩①②,①+②得,x=2,把x=2代入①得,6+2y=7,解得12y=,故原方程组的解为:212xy=⎧⎪⎨=⎪⎩.故选:D.【点评】本题主要考查了二元一次方程组的解法,熟练掌握二元一次方程组的基本解法是解答本题的关键.15.(2019·重庆市7/26)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩【考点】由实际问题抽象出二元一次方程组.【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.16.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是()A.301216400x yx y+=⎧⎨+=⎩B.301612400x yx y+=⎧⎨+=⎩C.121630400x yx y+=⎧⎨+=⎩D.161230400x yx y+=⎧⎨+=⎩【分析】列方程组解应用题的关键是找出实际问题中的等量关系.本题中存在两个等量关系:甲种奖品的件数+乙种奖品的件数=30;买甲种奖品的钱数+买乙种奖品的钱数=400.【答案】B.17.(2020•江西17/23)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【考点】一元一次方程的应用;二元一次方程组的应用【分析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:2319726x yx y+=⎧⎨+=⎩,解得:53xy=⎧⎨=⎩.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为1922647++=(元).两人合在一起购买所需费用为5(21)(30.5)1040⨯++-⨯=(元).47407-=(元),326⨯=(元),76>,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

中考数学专题复习 专题09 二元一次方程组及其应用(教师版含解析)

中考数学专题复习 专题09 二元一次方程组及其应用(教师版含解析)

中考专题09 二元一次方程组及其应用1.二元一次方程:含有两个未知数,并且未知数的指数都是1的方程整式方程叫做二元一次方程.一般形式是ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。

5.解二元一次方程组的方法将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

(1)代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

6.列方程(组)解应用题的一般步骤(1)审:有什么,求什么,干什么;(2)设:设未知数,并注意单位;(3)找:等量关系;(4)列:用数学语言表达出来;(5)解:解方程(组).(6)验:检验方程(组)的解是否符合实际题意.(7)答:完整写出标准答案(包括单位).注意:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等【经典例题1】(2020年•嘉兴)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【标准答案】D【分析】方程组利用加减消元法变形即可.【答案剖析】 A.①×2﹣②可以消元x ,不符合题意;B.②×(﹣3)﹣①可以消元y ,不符合题意;C.①×(﹣2)+②可以消元x ,不符合题意;D.①﹣②×3无法消元,符合题意.【知识点练习】(2020年年广州模拟)解方程组:.【标准答案】见答案剖析。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
x+y=40, x+y=12, A.4x+3y=12 B.4x+3y=40
x+y=40, x+y=12, C.3x+4y=12 D.3x+4y=40
6.(2019·岳阳第 15 题 4 分)我国古代的数学名著《九章算术》中有下 列问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”其意思 为:今有一女子很会织布,每日加倍增长,5 日共织布 5 尺.问每日各织 多少布?根据此问题中的已知条件,可求得该女子第一天织布335115 尺.
8. (2019·娄底第 23 题 9 分)某商场用 14 500 元购进甲、乙两种矿泉水
共 500 箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)

25
35

35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
解:设购进甲矿泉水 x 箱,购进乙矿泉水 y 箱,依题意,得
x+y=500, 25x+35y=14 500,
2 次,2020 年考查 2 次)
2x-y=5, 1.(2021·郴州第 6 题 3 分)已知二元一次方程组x-2y=1,则 x-y 的
值为
( A)
A.2
B.6
C.-2
D.-6
2.(2021·株洲第 2 题 4 分)方程x2-1=2 的解是 A.x=2 B.x=3 C.x=5 D.x=6
( D)
3.(2019·湘潭第 6 题 4 分)若关于 x 的方程 3x-kx+2=0 的解为 2,则 k 的值为 44 .
m=8,m=5, m=2, ∴n=2,n=6,或n=10, ∴共有 3 种运输方案,
方案 1:安排 A 型车 8 辆,B 型车 2 辆, 所需费用:500×8+400×2=4 800(元); 方案 2:安排 A 型车 5 辆,B 型车 6 辆, 所需费用:500×5+400×6=4 900(元); 方案 3:安排 A 型车 2 辆,B 型车 10 辆, 所需费用:500×2+400×10=5 000(元). ∵4 800<4 900<5 000, ∴安排 A 型车 8 辆,B 型车 2 辆最省钱,最省钱的运输费用为 4 800 元.

中考专题复习第七讲二元一次方程(组)(含详细参考答案)

中考专题复习第七讲二元一次方程(组)(含详细参考答案)

2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c=,若a=b(c≠o)那么ac =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。

】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、二元一次方程组中两个方程的 叫做二元一次方程组的解;4、解二元一次方程组的基本思路是: ;5、二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程=× ②工作效率=】【重点考点例析】考点一:二元一次方程组的解法 例1(2018•嘉兴)用消元法解方程组35432x y x y --⎧⎨⎩=,①=.②时,两位同学的解法如下:解法一:由①-②,得3x=3.解法二:由②得,3x+(x-3y )=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答.x=a y=b 的形式【思路分析】(1)观察两个解题过程即可求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)解法一中的解题过程有错误,由①-②,得3x=3“×”,应为由①-②,得-3x=3;(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2.故原方程组的解是12xy-⎩-⎧⎨==.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.考点二:一(二)元一次方程的应用例2 (2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【思路分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则5654yx-=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.考点三:二元一次方程组的应用例3 (2018•常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【思路分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300x yx y+++⎧⎨⎩==,解得:19010xy⎧⎨⎩==.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.【聚焦山东中考】1.(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+⎨⎩+⎧==B.530015020030x yx y+⎨⎩+⎧==C.302001505300x yx y⎨⎩++⎧==D.301502005300x yx y⎨⎩++⎧==2.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18C.16 D.153.(2018•枣庄)若二元一次方程组3354x yx y+-⎧⎨⎩==的解为x ay b⎧⎨⎩==,则a-b=.4.(2018•青岛)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.5.(2018•滨州)若关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,则关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==的解是.6.(2018•烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【备考真题过关】一、选择题A .14x y ⎧⎨⎩==B .20x y ⎧⎨⎩== C .02x y ⎧⎨⎩==D .11x y ⎧⎨⎩==2.(2018•北京)方程组33814x y x y ⎨⎩--⎧== 的解为( ) A .12x y ⎩-⎧⎨==B .12x y -⎧⎨⎩== C .21x y ⎩-⎧⎨==D .21x y -⎧⎨⎩== 3.(2018•乐山)方程组 432x y x y ==+- 的解是( ) A .32x y -⎩-⎧⎨==B .64x y ⎧⎨⎩== C .23x y ⎧⎨⎩==D .32x y ⎧⎨⎩==4.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x-y=20B .x+y=20C .5x-2y=60D .5x+2y=60 5.(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y ⎨⎩++⎧== B .7068480x y x y ⎨⎩++⎧== C .4806870x y x y ++⎧⎨⎩== D .4808670x y x y ++⎧⎨⎩== 6.(2018•黑龙江)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种元一次方程组111222a x b y c a x b y c ++⎧⎨⎩==的解可以利用2×2阶行列式表示为:x yD x D D y D ⎧⎪⎪⎨⎪⎪⎩==;其中问题:对于用上面的方法解二元一次方程组213212x y x y +-⎧⎨⎩==时,下面说法错误的是( )A .21732D ==--B .D x =-14C .D y =27D .方程组的解为23x y -⎧⎨⎩== 二、填空题 8.(2018•淮安)若关于x 、y 的二元一次方程3x-ay=1有一个解是32x y ⎧⎨⎩== ,则a=. 9.(2018•无锡)方程组225x y x y -+⎧⎨⎩== 的解是. 10.(2018•包头)若a-3b=2,3a-b=6,则b-a 的值为.11.(2018•江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为.12.(2018•遵义)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.13.(2018•齐齐哈尔)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.14.(2018•重庆)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A ,B ,C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(100%-=⨯商品的售价商品的成本价商品的利润率商品的成本价)已知在另一次游戏中,50局比赛后,小光总得分为-6分,则小王总得分为分.三、解答题16.(2018•宿迁)解方程组:20 346x yx y++⎧⎨⎩==.17.(2018•扬州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.18.(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A 型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.19.(2018•白银)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.20.(2018•永州)在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和奶奶的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.21.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.2019年中考专题复习第二章方程与不等式第七讲二元一次方程(组)参考答案【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.4.【思路分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:200115%110%17 ()()4x yx y+-+⎩-⎧⎨==.故答案为:200115%110%17 ()()4 x yx y+-+⎩-⎧⎨==.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.【思路分析】利用关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,∴将解12xy⎧⎨⎩==代入方程组3526x myx ny⎩+⎨-⎧==,可得m=-1,n=2∴关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可整理为:42546a ba⎩+⎧⎨==解得:3212 ab⎧⎪⎪⎨⎪-⎪⎩==方法二:关于x、y的二元一次方程组3526x myx ny⎩+⎨-⎧==的解是12xy⎧⎨⎩==,由关于a、b的二元一次方程组()()()3526()a b m a ba b n a b+--+⎧+⎪⎩-⎪⎨==可知12a ba b+-⎧⎨⎩==解得:3212ab⎧⎪⎪⎨⎪-⎪⎩==,故答案为:3212 ab⎧⎪⎪⎨⎪-⎪⎩==.【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.6.【思路分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a 的不等式,解之求得a的范围,进一步求解可得.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y⎨⎩++⎧==,解得:6040xy⎧⎨⎩==,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车31000003100000⨯=辆、至少享有B型车1002000100000⨯=2辆.7.(2018•聊城)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?2.【思路分析】方程组利用加减消元法求出解即可;【解答】解:33814x yx y⎧⎨⎩--=①=②,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为21xy-⎧⎨⎩==;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.3.【思路分析】先把原方程组化为23142x yx y⎧⎪+⎪⎨⎩==,进而利用代入消元法得到方程组的解为32xy⎧⎨⎩==.【解答】解:由题可得,23142x yx y⎧⎪+⎪⎨⎩==,消去x,可得12432y y-=(),解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为32xy⎧⎨⎩==.故选:D.【点评】本题主要考查了解二元一次方程组,用代入法解二元一次方程组的一般步骤:从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.解这个一元一次方程,求出x(或y)的值.4.【思路分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免误选B.5.【思路分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:70 86480x yx y⎨⎩++⎧==,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题二、填空题8.【思路分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把32xy⎧⎨⎩==代入方程得:9-2a=1,解得:a=4,故答案为:4.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【思路分析】利用加减消元法求解可得.【解答】解:225x yx y⎧⎩-⎨+=①=②,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31xy⎧⎨⎩==,故答案为:31xy⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入法和加减法的应用.10.【思路分析】将两方程相加可得4a-4b=8,再两边都除以2得出a-b的值,继而由相反数定义或等式的性质即可得出答案.【解答】解:由题意知3236a ba b--⎧⎨⎩=①=②,①+②,得:4a-4b=8,则a-b=2,∴b-a=-2,故答案为:-2.【点评】本题主要考查解二元一次方程组,解题的关键是掌握等式的基本性质的灵活运用及两方程未知数系数与待求代数式间的特点.11.【思路分析】设每头牛值金x两,每头羊值金y两,根据“牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设每头牛值金x两,每头羊值金y两,根据题意得:5210 258x yx y+⎨⎩+⎧==.故答案为:5210 258x yx y+⎨⎩+⎧==.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.【思路分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:528256x yx y+⎩+⎧⎨=①=②,(①+②)÷7,得:x+y=2.故答案为:二.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.【思路分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:7755x y sx y s⎩-+⎧⎨==,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.【思路分析】先求出1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27元,得出乙种粗粮每袋售价为(6+2×27)×(1+20%)=72元.再设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程45×30%x+60×20%y=24%(45x+60y),求出89xy=.【解答】解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45,乙种粗粮每袋成本价为6+2×27=60.设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,89xy=.故答案为:89.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.15.【思路分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据50局比赛后小光总得分为-6分,即可得出关于x、y 的二元一次方程,由x、y、(25-x-y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得-1分、平不得分,可求出小王的总得分.【解答】解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿-1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3-1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25-x-y)局,根据题意得:19+3x-y=-6,∴y=3x+25.∵x、y、(25-x-y)均非负,∴x=0,y=25,∴小王的总得分=(-1+3+0)×8-1+25×3=90(分).故答案为:90.【点评】本题考查了二元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题16.【思路分析】直接利用加减消元法解方程得出答案.【解答】解:20346x yx y++⎧⎨⎩=①=②,①×2-②得:-x=-6,解得:x=6,故6+2y=0,解得:y=-3,故方程组的解为:63xy-⎧⎨⎩==.【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键.17.【思路分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(-5)的值;(2)依据x⊗(-y)=2,且2y⊗x=-1,可得方程组2241x yy x-+⎩-⎧⎨==,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(-5)=2×2+(-5)=4-5=-1;(2)∵x⊗(-y)=2,且2y⊗x=-1,∴2241x yy x-+⎩-⎧⎨==,解得7949xy⎧⎪⎪⎨⎪-⎪⎩==,∴741993x y+=-=.【点评】本题主要考查解二元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.18.【思路分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【思路解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得220 28242560y xx y-⎩+⎧⎨==,解得4060xy⎧⎨⎩==.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.19.【思路分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:911616y xy x-+⎧⎨⎩==,解得:970xy⎧⎨⎩==.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【思路分析】设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,根据“男生人数+女生人数=55、男生人数=1.5×女生人数+5”列出方程组并解答.【解答】解:设小明班上参观禁毒教育基地的男生人数为x人,女生人数为y 人,依题意得:551.55x yx y⎨++⎧⎩==,解得3520xy⎧⎨⎩==,答:小明班上参观禁毒教育基地的男生人数为35人,女生人数为20人.【点评】考查了二元一次方程组的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.【思路分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于30050427=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组为1712 184x yx y⎩-+⎧⎨==,。

(浙教版)2020中考数学复习 二元一次方程组 (包含答案)

(浙教版)2020中考数学复习     二元一次方程组 (包含答案)

第08讲 二元一次方程组【考点整理】1. 二元一次方程组的有关概念二元一次方程:含有________个未知数,并且含有未知数的项的次数都是________的整式方程. 二元一次方程的解:适合一个二元一次方程的每一对未知数的值.任何一个二元一次方程都有无数解.由这些解组成的集合,叫做这个二元一次方程的解集. 【智慧锦囊】求特殊解时,解是有限个,如写出x +2y =6的自然数解⎩⎪⎨⎪⎧x =6,y =0,⎩⎪⎨⎪⎧x =2,y =2,⎩⎪⎨⎪⎧x =0,y =3.⎩⎪⎨⎪⎧x =4,y =1. 2.二元一次方程组的解法常用方法:代入消元法,加减消元法.二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b 的形式.3.二元一次方程组的应用列方程组的应用题的一般步骤:1.审;2.设;3.列;4.解;5.验;6.答. 【智慧锦囊】工程问题中的基本量之间的关系:工作效率=工作总量工作时间.(1)甲、乙合做的工作效率=甲的工作效率+乙的工作效率. (2)通常把工作总量看做“1”. 【解题秘籍】 1.代入法和加减法解二元一次方程组时,若方程组其中一个方程中的未知数的系数为1或-1,用代入法;若相同的未知数的系数相等或互为相反数时,则用加减法. 2.化归思想解二元一次方程组的基本思想是“消元”,即化“二元”为“一元”,这种方法体现了数学中的化归思想,具体地说就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂问题”转化为“简单问题”.这是中考的热点考题. 【易错提醒】1.在用代入法求解时,不能正确用其中一个未知数去表示另一个未知数.在求用一个未知数表示另一个未知数时,还原代入.2.方程组中,看错系数问题:看错方程组中哪个方程的系数,所得的解既是方程组中看错系数的方程的解,也是方程组中没有看错系数的方程的解,把解代入没有看错系数的方程中,构成新的方程组,然后解方程组. 【题型解析】1. 二元一次方程(组)的有关概念 【例题1】已知⎩⎪⎨⎪⎧mx +y =5,x +ny =2的解为⎩⎪⎨⎪⎧x =3,y =-1,则(2mn )m等于( )A .4B .8C .16D .322. 二元一次方程组的解法【例题2】甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =10, ①4x -by =-2, ②由于甲错抄方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =3.(1)求出a ,b 的值; (2)求2a -3b +5的立方根; (3)此方程组正确的解应该是多少?3.利用二元一次方程组解决生活实际问题【例题3】(2019湖南益阳10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元. (1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【同步检测】一、选择题:1. (2019•湖南怀化•4分)一元一次方程x ﹣2=0的解是( ) A .x =2B .x =﹣2C .x =0D .x =12. (2019▪贵州黔东▪4分)如果3ab 2m ﹣1与9ab m +1是同类项,那么m 等于( ) A .2B .1C .﹣1D .03. (2019湖北仙桃)(3分)把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( ) A .3种B .4种C .5种D .9种4. (2019•浙江嘉兴)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A .B .C .D .5.(2019•浙江宁波•4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元 B .30元C .25元D .19元二、填空题:6. (2019•湖南常德•3分)二元一次方程组⎩⎨⎧=+=+726y x y x 的解为 .7. (2019•湖北省鄂州市•3分)若关于x 、y 的二元一次方程组的解满足x +y ≤0,则m的取值范围是 .8. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 . 三、解答题9. (2019•浙江丽水•6分)解方程组:⎩⎨⎧=-=--.12,5)2(43y x y x x10. (2019•山东潍坊•5分)己知关于x ,y 的二元一次方程组的解满足x >y ,求k 的取值范围.11. (2019•山东省聊城市•8分)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【参考答案】【考点整理】:两个,一次【题型解析】1. 二元一次方程(组)的有关概念【例题1】已知⎩⎪⎨⎪⎧mx +y =5,x +ny =2的解为⎩⎪⎨⎪⎧x =3,y =-1,则(2mn )m 等于( ) A .4 B .8 C .16 D .32【解析】 将x =3,y =-1代入原方程组得⎩⎪⎨⎪⎧3m -1=5,3-n =2,解得m =2,n =1,则(2mn )m=(2×2×1)2=16. 2. 二元一次方程组的解法【例题2】甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =10, ①4x -by =-2, ②由于甲错抄方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =3.(1)求出a ,b 的值; (2)求2a -3b +5的立方根; (3)此方程组正确的解应该是多少?【解析】:(1)将x =-3,y =-1代入②,得-12+b =-2, 即b =10,将x =5,y =3代入①,得5a +15=10,即a =-1; (2)∵a =-1,b =10,∴2a -3b +5=-2-30+5=-27, 则-27的立方根为-3;(3)方程组为⎩⎪⎨⎪⎧-x +5y =10, ③4x -10y =-2, ④③×2+④得2x =18,即x =9, 将x =9代入①得y =3.8,则方程组的解为⎩⎪⎨⎪⎧x =9,y =3.8.3.利用二元一次方程组解决生活实际问题【例题3】(2019湖南益阳10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【分析】(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意列出方程组,解方程组即可;(2)设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×2.5z﹣20×600≥80000,解得:z≥640;答:稻谷的亩产量至少会达到640千克.【同步检测】一、选择题:1. (2019•湖南怀化•4分)一元一次方程x﹣2=0的解是()A.x=2 B.x=﹣2 C.x=0 D.x=1【分析】直接利用一元一次方程的解法得出答案.【解答】解:x﹣2=0,解得:x=2.故选:A.2. (2019▪贵州黔东▪4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2 B.1 C.﹣1 D.0【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.3. (2019湖北仙桃)(3分)把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( ) A .3种B .4种C .5种D .9种【分析】可列二元一次方程解决这个问题. 【解答】解:设2m 的钢管b 根,根据题意得:a +2b =9,∵a 、b 均为整数, ∴,,,.故选:B .4. (2019•浙江嘉兴)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A .B .C .D .【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为:.故选:D .5.(2019•浙江宁波•4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元B .30元C .25元D .19元【分析】设每支玫瑰x 元,每支百合y 元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x ,y 的二元一次方程,整理后可得出y =x+7,再将其代入5x+3y+10﹣8x 中即可求出结论. 【解答】解:设每支玫瑰x 元,每支百合y 元, 依题意,得:5x+3y+10=3x+5y ﹣4, ∴y =x+7,∴5x+3y+10﹣8x =5x+3(x+7)+10﹣8x =31. 故选:A . 二、填空题:6. (2019•湖南常德•3分)二元一次方程组⎩⎨⎧=+=+726y x y x 的解为 .【分析】由加减消元法或代入消元法都可求解.【解答】解:②-①得x =1 ③ 将③代入①得y =5 ∴故答案为7. (2019•湖北省鄂州市•3分)若关于x 、y 的二元一次方程组的解满足x +y ≤0,则m的取值范围是 m ≤﹣2 .【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y ≤0即可得到关于m 的不等式,求得m 的范围. 【解答】解:,①+②得2x +2y =4m +8, 则x +y =2m +4, 根据题意得2m +4≤0, 解得m ≤﹣2. 故答案是:m ≤﹣2.8. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 . 【分析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于x ,y 的二元一次方程组,此题得解。

中考数学总复习:二元一次方程组ppt专题课件

中考数学总复习:二元一次方程组ppt专题课件

第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
第 七 讲
知识考点 0 1 二元一次方程( 组) 的基本概念
第 八 讲
1. 二元一次方程同时具备的特征是: ( 1) 含有两个未知数; ( 2) 未知数不在分母中; ( 3) 整理后含未知数项的次数是 1. 2. 一般地,二元一次方程的解是不确定的,有无数个,除非有特定条件. 3. 判断一组数是不是二元一次方程组的一个解,就是看这组数是否适合每个 方程,若适合,就是方程组的解,否则就不是方程组的解.
第 八 讲
第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
二、二元一次方程组 1. 二元一次方程组的定义: 一般地, 把具有相同未知数的两个 合在一起所组成的一组方程. 2. 二元一次方程组的解 使二元一次方程组中的两个方程左右两边都相等的 ( 即两个方程的公共解) 叫做二元一次方程组的解. 3. 二元一次方程组的解法 ( 1) 解二元一次方程组的思想是 ( 2) 二元一次方程组的一般解法: . 、 .
x 3 . ∴原方程组的解是 y 1
第 八 讲
第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
第 十 节 第 七 节
第 八 节
的值
第 九 节
复习目标
知识回顾
重点解析
探究拓展
真题演练
三、列二元一次方程组解应用题的步骤 1. 3. 2. 4. 答
第 七 讲
第 八 讲
【答案】一、1. 含有未知数 2. 两个未知数 二、 1. 二元一次方程 2. 两个未知数 3. ( 1) 消元思想 ( 2) 代入消元法 加减 消元法 三、1. 设未知数 2. 列方程组 3. 解方程组

四川省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试): 二元一次方程组

四川省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试): 二元一次方程组

二元一次方程组◆知识讲解21世纪教育网1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法[来源:学。

科。

网Z。

X。

X。

K]代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;21世纪教育网(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1(2011江苏扬州,24,10分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成。

A 工程队每天整治12米,B 工程队每天整治8米,共用时20天。

中考函数专题复习教案

中考函数专题复习教案

九年级数学补课教案3月21日课题初中函数专题复习两课时一、教学目标1、知识技能:学生构建知识体系;通过解决典型的题目,抓住本章要点;解决易出错的题目,找出错陷阱和错因;联系一次函数、反比例函数、二次函数及一元一次方程、分式方程、一元二次方程等相关知识进行综合运用.2、过程与方法:从知识生成的本质和思想方法的本质养成学习数学的能力;经历观察、思考、交流,熟练、灵活解题.3、情感、态度、价值观:培养学生数形结合的数学思想,提高学生的数学应用意识。

二、教学重难点1、教学重点:深化理解函数与方程的概念和性质,熟练进行函数的综合应用。

2、教学难点:进一步理解函数与方程的性质和关系,并能熟练进行函数的综合应用。

三、课型课时:复习课,2课时四、教学工具:多媒体课件、导学案五、教学方法六、教学过程设计函数知识点总结(掌握函数的定义、性质和图像)(一)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;3、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。

两坐标轴的点不属于任何象限。

4、点的对称特征:已知点P(m,n),关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y 轴的直线上的任意两点:横坐标相等。

6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时8.二元一次方程组及其应用
【课前热身】 1. 在方程y
x 4
13-
=5中,用含x 的代数式表示y 为y = ;当x =3时,y = .
2.如果x =3,y =2是方程326=+by x 的解,则b = . 3. 请写出一个适合方程13=-y x 的一组解: .
4. 如果x y y x b a b a 2427773-+-和是同类项,则x 、y 的值是( )
A.x =-3,y =2
B.x =2,y =-3
C.x =-2,y =3
D.x =3,y =-2 【考点链接】
1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程. 2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组. 3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.
4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解. 5. 解二元一次方程的方法步骤:
二元一次方程组 方程.
消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种. 6.易错知识辨析:
(1)二元一次方程有无数个解,它的解是一组未知数的值;
(2)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值; (3)利用加减法消元时,一定注意要各项系数的符号. 【典例精析】 例1 解下列方程组:
(1)
{
4519323
a b a b +=--= (2){
220
7441x y x y ++=-=-
消元
转化
例2 (08泰安)某厂工人小王某月工作的部分信息如下:
信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元; 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件. 生产产品件数与所用时间之间的关系见下表:
信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?
例3 若方程组{
31x y x y +=-=与方程组{
8
4
mx ny mx ny +=-=的解相同,求m 、n 的值.
【中考演练】 1. 若⎩⎨
⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩
⎨⎧==______________
b a . 2. 在方程3x +4y =16中,当x =3时,y =___;若x 、y 都是正整数,这个方程的解为_____. 3. 下列方程组中,是二元一次方程组的是( )
A .⎪⎩

⎨⎧=+=+9114
y x y x
B .⎩⎨
⎧=+=+75z y y x C .⎩⎨⎧=-=6231y x x D .⎩
⎨⎧=-=-1y x xy
y x
4. 关于x 、y 的方程组⎩

⎧=-=+m y x m
y x 932的解是方程3x +2y =34的一组解,那么m =( )
A .2
B .-1
C .1
D .-2
5.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:
2 3
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.
若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组 A .272366x y x y +=⎧⎨
+=⎩B .2723100x y x y +=⎧⎨+=⎩C .273266x y x y +=⎧⎨+=⎩ D .27
32100x y x y +=⎧⎨+=⎩
6.解方程组:
①⎩⎨⎧=-=+1392x y y x ②⎪⎩⎪⎨⎧=---=+121334
3144y x y x
7. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、
乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?
8. 某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和
书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. ① 求该同学看中的随身听和书包单价各是多少元?
② 某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场
购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?。

相关文档
最新文档