2015年高考理科数学天津卷
2015年-高考试卷及答案解析-数学-理科-天津(精校版)
2015年普通高等学校招生全国统一考试(天津理)一、选择题:本题共8小题,每小题5分,共40分.1. 已知全集,集合,集合,则集合(A)(B)(C)(D)2. 设变量满足约束条件,则目标函数的最大值为(A)3 (B)4 (C)18 (D)403. 阅读右边的程序框图,运行相应的程序,则输出的值为(A)(B)6 (C)14 (D)184. 设,则“ ”是“ ”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件5. 如图,在圆中,是弦的三等分点,弦分别经过点 .若,则线段的长为(A)(B)3 (C)(D)6. 已知双曲线的一条渐近线过点,且双曲线的一个焦点在抛物线的准线上,则双曲线的方程为(A)(B)(C)(D)7. 已知定义在上的函数(为实数)为偶函数,记,则的大小关系为(A)(B)(C)(D)8. 已知函数函数,其中,若函数恰有4个零点,则的取值范围是(A)(B)(C)(D)二、填空题:本大题共6小题,每小题5分,共30分.9. 是虚数单位,若复数是纯虚数,则实数的值为 .10. 一个几何体的三视图如图所示(单位:),则该几何体的体积为.11. 曲线与直线所围成的封闭图形的面积为 .12. 在的展开式中,的系数为 .13. 在中,内角所对的边分别为,已知的面积为,则的值为 .14 在等腰梯形中,已知 ,动点和分别在线段和, 则 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数,(I)求最小正周期;(II)求在区间上的最大值和最小值.16. (本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (I) 设A为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A发生的概率;(II) 设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.17. (本小题满分13分)如图,在四棱柱中,侧棱,,,,且点和分别为的中点.(I)求证:(II)求二面角的正弦值;(III)设为棱上的点,若直线和平面所成角的正弦值为,求线段的长18. (本小题满分13分)已知数列满足,且成等差数列.(I)求的值和的通项公式;(II)设,求数列的前项和.19. (本小题满分14分)已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线FM被圆截得的线段的长为c,.(I)求直线的斜率;(II)求椭圆的方程;(III)设动点在椭圆上,若直线的斜率大于,求直线(为原点)的斜率的取值范围.20. (本小题满分14分)已知函数,其中.(I)讨论的单调性;(II)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(III)若关于的方程有两个正实根,求证: .2015年普通高等学校招生全国统一考试答案(天津理)1. 答案: A解析:,所以.2. 答案: C解析:画出不等式组所表示的可行域,由图知,当目标函数经过点时,有最大值18.3. 答案: B解析: 输入;不成立;不成立;成立;输出.4. 答案: A解析:或.5. 答案: A解析:由相交弦定理可知,,又因为是弦的三等分点,所以,所以.6. 答案: D解析:双曲线的渐近线方程为,由点在渐近线上,所以,双曲线的一个焦点在抛物线的准线上,则,由此可得.解析: 因为函数为偶函数,所以,即,所以,所以.8. 答案: D解析: 由得,所以,即,则恰有4个零点等价于方程有4个不同的解,即函数与函数的图象的4个公共点,由图象可知.9. 答案:解析:是纯度数,所以,即.10. 答案:解析:由三视图可知,该几何体是中间为一个底面半径为,高为的圆柱,两端是底面半径为,高为的圆锥,则该几何体的体积.解析:两曲线的交点坐标为,所以它们所围成的封闭图形的面积 .12. 答案:解析: 展开式的通项为,由得,则,所以该项系数.13. 答案: 8解析:因为,所以,又,解方程组得,由余弦定理得:,所以.14. 答案:解析:因为,,所以:,,当且仅当即时的最小值为.15. 答案与解析:(I)解:由已知,有=所以,的最小正周期T=(II) 解:因为在区间上是减函数,在区间上是增函数,,,.所以,在区间上的最大值为,最小值为.16. 答案与解析:(I)解:由已知,有所以,事件A发生的概率为.(II)解:随机变量X的所有可能取值为1,2,3,4.所以,随见变量的分布列为1234随机变量的数学期望17. 答案及解析:如图,以A为原点建立空间直角坐标系,依题意可得,,,,.又因为分别为和的中点,得,.(I)证明:依题意,可得为平面的一个法向量. =.由 此可得=0,又因为直线平面,所以∥平面.(II)解:,.设为平面的法向量,则即不妨设,可得.设为平面的法向量,则又,得不妨设,可得.因此有,于是.所以,二面角的正弦值为.(III)解:依题意,可设,其中,则,从而。
15年高考真题——理科数学(天津卷)
2015年普通高等学校招生全国统一考试(天津)卷数学(理科) 一.选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合U AB =ð ( ) (A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,82.设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为( )(A )3 (B )4 (C )18 (D )403.阅读右边的程序框图,运行相应的程序,输出的S 值为( )(A )10- (B )6 (C )14 (D )18 4.设x R ∈,则“|2|1x -<”是“220x x +->”( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 5.如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N 。
若2CM =,4MD =,3CN =,则线段NE 的长为( ) (A )83 (B )3 (C )103 (D )526.已知双曲线()222210,0x y a b a b-=>>的一条渐近线过点(,且双曲线的一个焦点在抛物线2y =的准线上,则双曲线的方程为( )(A )2212128x y -= (B )2212821x y -= (C )22134x y -= (D )22143x y -= 7.已知定义在R 上的函数()||21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f = ,()2log 5b f =,()2c f m =,则,,a b c 的大小关系为( )(A )a b c << (B )a c b << (C )c a b << (D )c b a <<8.已知函数()()()()22||222x x f x x x -≤⎧⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )(A )()74,+∞ (B )(),74-∞ (C )()0,74 (D )()74,2二.填空题(本大题共6小题,每小题5分,共30分)9.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 。
2015天津高考理科数学试题及答案
2015天津高考理科数学试题及答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷4至6页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:·1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分参考公式:如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,P(A ∪B)=P(A)+P(B). P(AB)=P(A) P(B).柱体的体积公式V 柱体=Sh 椎体的体积公式V = V=1/3Sh其中 S 表示柱体的底面积 其中 S 表示椎体的底面积,h 表示柱体的高. h 表示棱柱的高.第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合 A ∩C u B(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8(2)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为(A )3(B )4(C )18(D )40(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )10- (B )6(C )14(D )18(4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为(A )83 (B )3(C )103 (D )52 (6)已知双曲线()222210,0x y a b a b -=>> 的一条渐近线过点()2,3 ,且双曲线的一个焦点在抛物线247y x = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -= (7)已知定义在R 上的函数()21x m f x -=- (m 为实数)为偶函数,记()()0.52log 3,log 5,2a b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<(8)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞ ⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭(D )7,24⎛⎫ ⎪⎝⎭第II 卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .(11)曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . (12)在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 . (13)在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 . (14)在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上, 1,,9BE BC DF DC AE AF λλ==且则的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数()22sin sin 6f x x x π⎛⎫=-- ⎪⎝⎭,R x ∈ (I)求()f x 最小正周期;(II)求()f x 在区间[-π/3,π/4]上的最大值和最小值.16. (本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.17. (本小题满分13分)如图,在四棱柱1111ABCD A B C D 中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB ,12,5AC AA AD CD,且点M 和N 分别为11C D B D 和的中点. (I)求证: MN ∥平面ABCD (II)求二面角11D -AC B 的正弦值;(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1E A 的长18. (本小题满分13分)已知数列{}n a 满足*212(q )n N ,1,2n n a qa a a +=≠∈==为实数,且q 1,,且233445,,a a a a a a 成等差数列.(I)求q 的值和{}n a 的通项公式;(II)设*2221log ,n n n a b n N a -=∈,求数列n {b }的前n 项和. 19. (本小题满分14分)已知椭圆2222+=1(0)x y a b a b的左焦点为F -c (,0),M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y截得的线段的长为c,. (I)求直线FM 的斜率;(II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP,求直线OP (O 为原点)的斜率的取值范围.20. (本小题满分14分)已知函数()n ,n f x x x x R =-∈,其中*n ,n 2N ∈≥.(I)讨论()f x 的单调性;(II)设曲线()y f x 与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x ,求证:对于任意的正实数x ,都有()()f x g x ≤;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21a x x n。
2015年高考理科数学天津卷(含详细答案)
数学试卷 第1页(共42页)数学试卷 第2页(共42页)数学试卷 第3页(共42页)绝密★启用前2015年普通高等学校招生全国统一考试(天津卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共40分)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 2.本卷共8小题,每小题5分,共40分. 参考公式:·如果事件A ,B 互斥,那么()()()P A B P A P B =+.·如果事件A ,B 相互独立,()()()P AB P A P B =.·柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高.·椎体的体积公式13V Sh =.其中S 表示椎体的底面面积,h 表示椎体的高.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7,8}U =,集合{2,3,5,6}A =,集合{1,3,4,6,7}B =,则集合A UB =ð( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}2.设变量,x y 满足约束条件2030230x x y x y ≥,≥,≤,+⎧⎪-+⎨⎪+-⎩则目标函数6z x y =+的最大值为( )A .3B .4C .18D .403.阅读如图所示的程序框图,运行相应的程序,则输出S 的值为( )A .-10B .6C .14D .18 4.设x R ∈,则“|2|1x -<”是“220x x +->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N .若CM =2,MD =4,CN =3,则线段NE 的长为( )A .83B .3C .103D .526.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线过点(,且双曲线的一个焦点在抛物线2y =的准线上,则双曲线的方程为( )A .2212128x y -= B .2212821x y -= C .22134x y -= D .22143x y -=7.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记0.5(log 3)a f =,2(log 5)b f =,(2)c f m =,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<8.已知函数22|| ,2()(2) ,2x x f x x x ≤,>,-⎧=⎨-⎩函数2g x b f x ()()=--,其中b R ∈.若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A .7,4()+∞ B .7,4()-∞ C .70,4() D .7,24()--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共42页)数学试卷 第5页(共42页) 数学试卷 第6页(共42页)第Ⅱ卷(非选择题 共110分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上. 9.i 是虚数单位,若复数()()12i i a -+是纯虚数,则实数a 的值为___________. 10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为___________3m .11.曲线2y x =与直线y x =所围成的封闭图形的面积为___________.12.在61()4x x-的展开式中,2x 的系数为_________. 13.在ABC △中,内角,,A B C 所对的边分别为a ,b ,c ,已知ABC △的面积为3152b c -=,1cos 4A =-,则a 的值为_________.14.在等腰梯形ABCD 中,已知AB DC ∥,2AB =,1BC =,ABC ∠=60.动点E 和F分别在线段BC 和DC 上,BE BC 且λ=,19DF DC λ=,则 AE AF 的最小值为_________.三、 解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数22sin sin 6f x x x ()()π=--,x R ∈. (Ⅰ)求()f x 最小正周期;(Ⅱ)求()f x 在区间[,]34ππ-上的最大值和最小值.16.(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(Ⅰ)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(Ⅱ)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.17.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD 底面⊥,AB AC ⊥,1AB =,12AC AA ==,5AD CD ==M 和N 分别为11C D B D 和的中点.(Ⅰ)求证:MN ∥平面ABCD ;(Ⅱ)求二面角11D AC B --的正弦值.(III )设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1EA 的长.18.(本小题满分13分)已知数列{}n a 满足2()n n n a qa q q *N 为实数,且1,+=≠∈,11a =,22a =,且23a a +,34a a +,45a a +成等差数列.(Ⅰ)求q 的值和{}n a 的通项公式; (Ⅱ)设2221log ,nn n a b n a *N -=∈,求数列{}n b 的前n 项和.19.(本小题满分14分)已知椭圆2222+=1(0)x y a b a b >>的左焦点为0F c (-,),3,点M 在椭圆上且位于第一象限,直线FM 被圆222+4b x y =截得的线段的长为c ,43|FM .(Ⅰ)求直线FM 的斜率;(Ⅱ)求椭圆的方程;(III )设动点P 在椭圆上,若直线FP 2OP (O 为原点)的斜率的取值范围.20.(本小题满分14分)已知函数(),n f x nx x x R =-∈,其中,2n n *N ≥∈.(Ⅰ)讨论()f x 的单调性; (Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III )若关于x 的方程()=f x a (a 为实数)有两个正实数根1x ,2x ,求证:21|-|21ax x n<+-.3 / 142015年普通高等学校招生全国统一考试(天津卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】{2,5,8}U B =ð,所以{2,5}U A B =ð,故选A .【提示】由全集U 及B ,求出B 的补集,找出A 与B 补集的交集即可. 【考点】集合的运算 2.【答案】C【解析】不等式组2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩所表示的平面区域如图所示,当6z x y =+所表示直线经过点(0,3)B 时,z有最大值18.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【考点】线性规划的最值求解问题第2题图 3.【答案】B【解析】模拟法:输入20S =,1i =;21i =⨯,20218S =-=,25>不成立;224i =⨯=,18414S =-=,45>不成立;248i =⨯=,1486S =-=,85>成立;输出6,故选B .【提示】模拟执行程序框图,依次写出每次循环得到的i ,S 的值,当8i =时满足条件5i >,退出循环,输出S 的值为6. 【考点】程序框图. 4.【答案】A【解析】|2|12113x x x -<⇔-<-<⇔<<1;数学试卷 第10页(共42页) 数学试卷 第11页(共42页)数学试卷 第12页(共42页)AM MB CM MD =,CN NE AN NB =,又因为AM MB AN NB =,所以CN NE CM MD =, 24833CM MD CN ⨯===,故选A . 【提示】由相交弦定理求出45 / 14数学试卷 第16页(共42页) 数学试卷 第17页(共42页)数学试卷 第18页(共42页)18【解析】19DF DC λ=,ABC ∠,12DC AB =,1191999CF DF DC DC DC DC AB λλλλ--=-=-== AE AB BE AB BC λ=+=+,1919AF AB BC CF AB BC AB AB BC λλ-+=++=++=+,22191919()1181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫=++=+++ ⎪ ⎪⎝⎭⎝⎭19194121cos1201818λλλλλλ++=⨯+++⨯⨯⨯︒ 1179218921818λλλ+=92λ3时,AE AF 有最小值,最小值为18数学试卷 第22页(共42页) 数学试卷 第23页(共42页)数学试卷 第24页(共42页)(Ⅰ)证明:依题意,可得(0,0,1)n =为平面的一个法向量,0,MN ⎛=- 由此可得,0MN n =, MN ⊄平面ABCD 平面ABCD .(Ⅱ)(1,AD =-,(2,0,0)AC =,设(,n x y =1110n AD n AC ⎧=⎪⎨=⎪⎩,即220y z +==,不妨设1z =,可得(0,1,1)n =9 / 14设(,n x y =2120n AB n AC ⎧=⎪⎨=⎪⎩,又(0,1,2)AB =不妨设1z =,可得(0,n =-12210,10||||n n n n n n ==-310,10n n =, 所以二面角1D AC -10(Ⅲ)依题意,可设AE A B λ=,其中从而(1,2,1)NE =-,又(0,0,1)n =为平面由已知得cos ,||||(1)NE n NE n NE n ==-30λ-=,个法向量与MN 的数量积为(Ⅱ)通过计算平面(Ⅲ)通过设AE A B λ=,利用平面的一个法向量与NE 的夹角的余弦值为数学试卷第28页(共42页)数学试卷第29页(共42页)数学试卷第30页(共42页)22,33⎫⎛⎪ ⎪ ⎭⎝(Ⅰ)由已知有22c a =试卷 第35页(共42页)数学试卷 第36页(共42页)22,33⎫⎛⎪ ⎪ ⎭⎝23c ,2b =13 / 14数学试卷第40页(共42页)数学试卷第41页(共42页)数学试卷第42页(共42页)。
2015年高考数学真题天津(数学理)
2015年天津市高考数学试卷(理科)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•天津)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8}2.(5分)(2015•天津)设变量x,y满足约束条件,则目标函数z=x+6y的最大值为()A.3B.4C.18 D.403.(5分)(2015•天津)阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10 B.6C.14 D.184.(5分)(2015•天津)设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5分)(2015•天津)如图,在圆O中,M、N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为()A.B.3C.D.6.(5分)(2015•天津)已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.(5分)(2015•天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a8.(5分)(2015•天津)已知函数f(x)=,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()A.(,+∞)B.(﹣∞,)C.(0,)D.(,2)二.填空题(每小题5分,共30分)9.(5分)(2015•天津)i是虚数单位,若复数(1﹣2i)(a+i)是纯虚数,则实数a的值为.10.(5分)(2015•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积m3.11.(5分)(2015•天津)曲线y=x2与y=x所围成的封闭图形的面积为.12.(5分)(2015•天津)在(x﹣)6的展开式中,x2的系数为.13.(5分)(2015•天津)在△ABC中,内角A,B,C所对的边分别为a,14.b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为.14.(5分)(2015•天津)在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且=λ,=,则•的最小值为.三.解答题(本大题共6小题,共80分)15.(13分)(2015•天津)已知函数f(x)=sin2x﹣sin2(x﹣),x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣,]内的最大值和最小值.16.(13分)(2015•天津)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加,现有来自甲协会的运动员3名,其中种子选手2名,乙协会的运动员5名,其中种子选手3名,从这8名运动员中随机选择4人参加比赛.(Ⅰ)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(Ⅱ)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.17.(13分)(2015•天津)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E 的长.18.(13分)(2015•天津)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.19.(14分)(2015•天津)已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(Ⅰ)求直线FM的斜率;(Ⅱ)求椭圆的方程;(Ⅲ)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.20.(14分)(2015•天津)已知函数f(x)=nx﹣x n,x∈R,其中n∈N•,且n≥2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);(Ⅲ)若关于x的方程f(x)=a(a为实数)有两个正实数根x1,x2,求证:|x2﹣x1|<+2.答案:1、解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},∴∁U B={2,5,8},则A∩∁U B={2,5}.故选:A.2、解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+6y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即A(0,3)将A(0,3)的坐标代入目标函数z=x+6y,得z=3×6=18.即z=x+6y的最大值为18.故选:C.3、解:模拟执行程序框图,可得S=20,i=1i=2,S=18不满足条件i>5,i=4,S=14不满足条件i>5,i=8,S=6满足条件i>5,退出循环,输出S的值为6.故选:B.4、解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.5、解:由相交弦定理可得CM•MD=AM•MB,∴2×4=AM•2AM,∴AM=2,∴MN=NB=2,又CN•NE=AN•NB,∴3×NE=4×2,∴NE=.故选:A.6、解:由题意,=,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a2+b2=c2=7,∴a=2,b=,∴双曲线的方程为.故选:D.7、解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴2|﹣x﹣m|﹣1=2|x﹣m|﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=2|x|﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(|log0.53|)=f(log23),b=f(log25),c=f (0);∵0<log23<log25;∴c<a<b.故选:C.8、解:∵g(x)=b﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣b+f(2﹣x),由f(x)﹣b+f(2﹣x)=0,得f(x)+f(2﹣x)=b,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<0,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.即h(x)=,作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当b=时,h(x)=b,有两个交点,当b=2时,h(x)=b,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h (x )=b 恰有4个根, 则满足<b <2,故选:D .9、解:由(1﹣2i )(a+i )=(a+2)+(1﹣2a )i 为纯虚数, 得,解得:a=﹣2.故答案为:﹣2.10.解:根据几何体的三视图,得;该几何体是底面相同的圆柱与两个圆锥的组合体,且圆柱底面圆的半径为1,高为2,圆锥底面圆的半径为1,高为1; ∴该几何体的体积为 V 几何体=2×π•12×1+π•12•2 =π.故答案为:π.12、解:(x ﹣)6的展开式的通项公式为T r+1=•(x )6﹣r•(﹣)r =(﹣)r••x6﹣2r,令6﹣2r=2,解得r=2,∴展开式中x 2的系数为×=,故答案为:.13、解:∵A ∈(0,π),∴sinA==.∵S △ABC ==bc=,化为bc=24,又b ﹣c=2,解得b=6,c=4.由余弦定理可得:a 2=b 2+c 2﹣2bccosA=36+16﹣48×=64.解得a=8.11、 解:先根据题意画出图形,得到积分上限为1,积分下限为0直线y=x 与曲线y=x 2所围图形的面积S=∫01(x ﹣x 2)dx 而∫01(x ﹣x 2)dx=()|01=﹣=∴曲边梯形的面积是. 故答案为:.故答案为:8.14、解:由题意,得到AD=BC=CD=1,所以•=()•()=()•()==2×1×cos60°+λ1×1×cos60°+×2×1+×1×1×cos120°=1++﹣≥+=(当且仅当时等号成立);故答案为:.15、解:(Ⅰ)化简可得f(x)=sin2x﹣sin2(x﹣)=(1﹣cos2x)﹣[1﹣cos(2x﹣)]=(1﹣cos2x﹣1+cos2x+sin2x)=(﹣cos2x+sin2x)=sin(2x﹣)∴f(x)的最小正周期T==π;(Ⅱ)∵x∈[﹣,],∴2x﹣∈[﹣,],∴sin(2x﹣)∈[﹣1,],∴sin(2x﹣)∈[﹣,],∴f(x)在区间[﹣,]内的最大值和最小值分别为,﹣16、解:(Ⅰ)由已知,有P(A)=,∴事件A发生的概率为;(Ⅱ)随机变量X的所有可能取值为1,2,3,4.P(X=k)=(k=1,2,3,4).∴随机变量X的分布列为:X 1 2 3 4P随机变量X的数学期望E(X)=.17、(Ⅰ)证明:如图,以A为坐标原点,以AC、AB、AA1所在直线分别为x、y、z轴建系,则A(0,0,0),B(0,1,0),C(2,0,0),D(1,﹣2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,﹣2,2),又∵M、N分别为B1C、D1D的中点,∴M(1,,1),N(1,﹣2,1).由题可知:=(0,0,1)是平面ABCD的一个法向量,=(0,﹣,0),∵•=0,MN⊄平面ABCD,∴MN∥平面ABCD;(Ⅱ)解:由(I)可知:=(1,﹣2,2),=(2,0,0),=(0,1,2),设=(x,y,z)是平面ACD1的法向量,由,得,取z=1,得=(0,1,1),设=(x,y,z)是平面ACB1的法向量,由,得,取z=1,得=(0,﹣2,1),∵cos<,>==﹣,∴sin<,>==,∴二面角D1﹣AC﹣B1的正弦值为;(Ⅲ)解:由题意可设=λ,其中λ∈[0,1],∴E=(0,λ,2),=(﹣1,λ+2,1),又∵=(0,0,1)是平面ABCD的一个法向量,∴cos<,>===,整理,得λ2+4λ﹣3=0,解得λ=﹣2或﹣2﹣(舍),∴线段A1E的长为﹣2.18、解:(1)∵a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,∴a3=q,a5=q2,a4=2q,又∵a2+a3,a3+a4,a4+a5成等差数列,∴2×3q=2+3q+q2,即q2﹣3q+2=0,解得q=2或q=1(舍),∴a n=;(2)由(1)知b n===,n∈N*,记数列{b n}的前n项和为T n,则T n=1+2•+3•+4•+…+(n﹣1)•+n•,∴2T n=2+2+3•+4•+5•+…+(n﹣1)•+n•,两式相减,得T n=3++++…+﹣n•=3+﹣n•=3+1﹣﹣n•=4﹣.19、解:(Ⅰ)∵离心率为,∴==,∴2a2=3b2,∴a2=3c2,b2=2c2,设直线FM的斜率为k(k>0),则直线FM的方程为y=k(x+c),∵直线FM被圆x2+y2=截得的线段的长为c,∴圆心(0,0)到直线FM的距离d=,∴d2+=,即()2+=,解得k=,即直线FM的斜率为;(Ⅱ)由(I)得椭圆方程为:+=1,直线FM的方程为y=(x+c),联立两个方程,消去y,整理得3x2+2cx﹣5c2=0,解得x=﹣c,或x=c,∵点M在第一象限,∴M(c,c),∵|FM|=,∴=,解得c=1,∴a2=3c2=3,b2=2c2=2,即椭圆的方程为+=1;(Ⅲ)设动点P的坐标为(x,y),直线FP的斜率为t,∵F(﹣1,0),∴t=,即y=t(x+1)(x≠﹣1),联立方程组,消去y并整理,得2x2+3t2(x+1)2=6,又∵直线FP的斜率大于,∴>,解得﹣<x<﹣1,或﹣1<x<0,设直线OP的斜率为m,得m=,即y=mx(x≠0),联立方程组,消去y并整理,得m2=﹣.①当x∈(﹣,﹣1)时,有y=t(x+1)<0,因此m>0,∴m=,∴m∈(,);②当x∈(﹣1,0)时,有y=t(x+1)>0,因此m<0,∴m=﹣,∴m∈(﹣∞,﹣);综上所述,直线OP的斜率的取值范围是:(﹣∞,﹣)∪(,).20、(本题满分为14分)解:(Ⅰ)由f(x)=nx﹣x n,可得f′(x)=n﹣nx n﹣1=n(1﹣x n﹣1),其中n∈N•,且n≥2.下面分两种情况讨论:(1)当n为奇数时,令f′(x)=0,解得x=1,或x=﹣1,当x变化时,f′(x),f(x)的变化情况如下表:x (﹣∞,﹣1)(﹣1,1)(1,+∞)f′(x)﹣+ ﹣f(x)所以,f(x)在(﹣∞,﹣1),(1,+∞)上单调递减,在(﹣1,1)单调递增.(2)当n为偶数时,当f′(x)>0,即x<1时,函数f(x)单调递增;当f′(x)<0,即x>1时,函数f(x)单调递减;所以,f(x)在(﹣∞,1)单调递增,在(1,+∞)上单调递减;(Ⅱ)证明:设点P的坐标为(x0,0),则x0=n,f′(x0)=n﹣n2,曲线y=f(x)在点P处的切线方程为y=f′(x0)(x﹣x0),即g(x)=f′(x0)(x﹣x0),令F(x)=f(x)﹣g(x),即F(x)=f(x)﹣f′(x0)(x﹣x0),则F′(x)=f′(x)﹣f′(x0).由于f′(x)=﹣nx n﹣1+n在(0,+∞)上单调递减,故F′(x)在(0,+∞)上单调递减,又因为F′(x0)=0,所以当x∈(0,x0)时,F′(x)>0,当x∈(x0,+∞)时,F′(x)<0,所以F(x)在∈(0,x0)内单调递增,在(x0,+∞)上单调递减,所以对应任意的正实数x,都有F(x)≤F(x0)=0,即对于任意的正实数x,都有f(x)≤g(x).(Ⅲ)证明:不妨设x1≤x2,由(Ⅱ)知g(x)=(n﹣n2)(x﹣x0),设方程g(x)=a的根为,可得=,由(Ⅱ)知g(x2)≥f(x2)=a=g(),可得x2≤.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=nx,当x∈(0,+∞),f(x)﹣h(x)=﹣x n<0,即对于任意的x∈(0,+∞),f(x)<h(x),设方程h(x)=a的根为,可得=,因为h(x)=nx在(﹣∞,+∞)上单调递增,且h()=a=f(x1)<h(x1),因此<x1,由此可得:x2﹣x1<﹣=,因为n≥2,所以2n﹣1=(1+1)n﹣1≥1+=1+n﹣1=n,故:2=x0.所以:|x2﹣x1|<+2.。
2015年全国高考理科数学试题及答案-天津卷
2015年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:·1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分 参考公式:如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立, P(A ∪B)=P(A)+P(B). P(AB)=P(A) P(B). 柱体的体积公式V 柱体=Sh 锥体的体积公式V = V=1/3Sh 其中 S 表示柱体的底面积 其中 S 表示锥体的底面积, h 表示柱体的高. h 表示锥体的高.第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合 A ∩C u B=(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8(2)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为(A )3(B )4(C )18(D )40(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )10-(B )6(C )14(D )18(4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(5)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为(A )83(B )3 (C )103(D )52(6)已知双曲线()222210,0x y a b a b-=>>的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -= (C )22134x y -= (D )22143x y -= (7)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<(8)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭(C )70,4⎛⎫ ⎪⎝⎭(D )7,24⎛⎫⎪⎝⎭第II 卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 . (10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .(11)曲线2y x = 与直线y x = 所围成的封闭图形的面积为 .(12)在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .(13)在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 .(14)在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上, 且1,9BE BC DF DC λλ==,则A E A F 的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期;(II)求()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16. (本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.17. (本小题满分13分) 如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12AC AA ==,AD CD ==且点M 和N 分别为11C D B D 和的中点.(I)求证: MN ∥平面ABCD(II)求二面角11D AC B --的正弦值;(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1E A 的长18. (本小题满分13分)已知数列{}n a 满足*212(q )n N ,1,2n n a qa a a +=≠∈==为实数,且q 1,,且233445,,a a a a a a +++成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列n {b }的前n 项和.19. (本小题满分14分)已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),离心率为3,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c,.(I)求直线FM 的斜率; (II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FPOP (O 为原点)的斜率的取值范围.20. (本小题满分14分)已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥.(I)讨论()f x 的单调性;(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21ax x n<+-.绝密★启用前2015年普通高等学校招生全套统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算。
2015年天津高考数学理
2015年天津高考数学(理)试题及解析本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上。
写在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高。
·锥体的体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合U A C B =A .{}2,5B .{}3,6C . {}2,5,6D .{}2,3,5,6,8 答案:A解析:集合B 的补集为{2,5,8},则集合A 与集合B 的补集都包含的元素有2和5,因此A C U B=A C U B={2,5},因此本题选A(2)设变量,x y 满足约束条件20,30,230.x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩则目标函数6z x y =+的最大值为A .3B . 4C .18D .40 答案:C解析:可行区域如图所示,A (0,3),B (-2,1),在A 处取最大值z=18.(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为A .-10B .6C . 14D . 18 答案:B解析:由程序框图知:当i=1时,S=20-2×1=18,当i=2时,S=18-2×2=14,当i=4时仍然要进行循环,S=14-4×2=6,此时i=8>5,跳出循环,输出S=6,因此正确答案为B(4)设x R ∈,则“21x -<”是“220x x +->”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:由不等式“|x -2|<1”解出1<x <3,由不等式“x²+x -2>0”解出x <-2或x >1,因为1<x <3,x 的取值范围比x <-2或x >1的x 的取值范围小,因此“|x -2|<1”是“x²+x -2>0”的充分不必要条件。
2015天津高考数学(理科)试题(卷)与图片版答案解析
2015年普通高等学校招生全国统一考试(天津卷) 数 学(理工类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)全集{}1,2,3,4,5,6,7,8U = ,{}2,3,5,6A = ,{}1,3,4,6,7B = ,则集合 为(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8(2)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩ ,则目标函数6z x y =+的最大值为(A )3(B )4(C )18(D )40(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )10- (B )6(C )14(D )18(4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(5)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为 (A )83 (B )3(C )103 (D )52(6)已知双曲线()222210,0x y a b a b -=>> 的一条渐近线过点()2,3 ,且双曲线的一个焦点在抛物线247y x = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -=(7)已知定义在R 上的函数()21x m f x -=- (m 为实数)为偶函数,记()()0.52log 3,log 5,2a b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<(8)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞ ⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭(D )7,24⎛⎫ ⎪⎝⎭二、填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .(11)曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . (12)在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 . (13)在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .(14)在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=o,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r 的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数()22sin sin 6f x x x π⎛⎫=-- ⎪⎝⎭,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间[,]34p p -上的最大值和最小值. 16. (本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率; (II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.17. (本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12,5AC AA AD CD ====,且点M 和N 分别为11C D B D 和的中点.(I)求证:MN ABCD P 平面; (II)求二面角11D -AC B -的正弦值;(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1E A 的长 18. (本小题满分13分)已知数列{}n a 满足*212(q )n N ,1,2n n a qa a a +=≠∈==为实数,且q 1,,且233445,,a a a a a a +++成等差数列.(I)求q 的值和{}n a 的通项公式;(II)设*2221log ,n n n a b n N a -=∈,求数列n {b }的前n 项和. 19. (本小题满分14分)已知椭圆2222+=1(0)x y a b a b>>的左焦点为F -c (,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c ,43|FM|=3. (I)求直线FM 的斜率; (II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.20. (本小题满分14分)已知函数()n ,n f x x x x R =-∈,其中*n ,n 2N ∈≥. (I)讨论()f x 的单调性;(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21a x x n<+-。
2015年天津市高考数学(理科)真题及答案解析
2015年天津市高考数学真题(理科)一、选择题1.已知全集{1,2,3,4,5,6,7,8}U =,集合A={2,3,5,6},集合B={1,3,4,6,7},则集合U A C B=I ( )A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,82.设变量,x y 满足约束条件20.30.230.x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩则目标函数6z x y =+的最大值为( )A .3B .4C .18D .403.阅读下边的程序框图,运行相应的程序,则输出S 的值为( )A .10-B .6C .14D .184.设x R ∈,则“|2|1x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.如图,在圆O 中,N M ,是弦AB 的三等分点,弦CD ,CE 分别经过点N M ,,若2CM =,4MD =,3CN =,则线段NE 的长为( )A .83B .3C .103D .526.已知双曲线22221x y a b-=(0b 0a >,>)的一条渐近线过点(23,),且双曲线的一个焦点在抛物线247y x =的准线上,则双曲线的方程为( )A .2212128x y -= B .2212821x y -= C .22134x y -= D .22143x y -= 7.已知定义在R 上的函数()21x m f x -=-(m 为实数)为偶函数,记0.5(log 3)a f =,2(log 5)b f =,(2)c f m =,则b c a ,,的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<8.已知函数22||()22x x f x x x -≤⎧=⎨-⎩,2,(),>,函数()(2)g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A .7()4+∞,B .7()4-∞,C .7(0)4, D .7(2)4,二、填空题9.i 是虚数单位,若复数(12)()i a i -+是纯虚数,则实数a 的值为 . 10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .11.曲线2y x =与直线y x =所围成的封闭图形的面积为 .12.在61()4x x-的展开式中,2x 的系数为 . 13.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知ABC ∆的面积为315,12,cos 4b c A -==-,则a 的值为 . 14.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=︒。
2015年高考理科数学天津卷(含答案解析)
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(天津卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共40分)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 2.本卷共8小题,每小题5分,共40分. 参考公式:·如果事件A ,B 互斥,那么()()()P A B P A P B =+. ·如果事件A ,B 相互独立,()()()P AB P A P B =.·柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高.·椎体的体积公式13V Sh =.其中S 表示椎体的底面面积,h 表示椎体的高.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7,8}U =,集合{2,3,5,6}A =,集合{1,3,4,6,7}B =,则集合A U B =ð( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}2.设变量,x y 满足约束条件2030230x x y x y ≥,≥,≤,+⎧⎪-+⎨⎪+-⎩则目标函数6z x y =+的最大值为( )A .3B .4C .18D .403.阅读如图所示的程序框图,运行相应的程序,则输出S 的值为( )A .-10B .6C .14D .18 4.设x R ∈,则“|2|1x -<”是“220x x +->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N .若CM =2,MD =4,CN =3,则线段NE 的长为( )A .83B .3C .103D .526.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线过点(,且双曲线的一个焦点在抛物线2y =的准线上,则双曲线的方程为( )A .2212128x y -=B .2212821x y -=C .22134x y -=D .22143x y -=7.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记0.5(log 3)a f =,2(log 5)b f =,(2)c f m =,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<8.已知函数22|| ,2()(2) ,2x xf x x x ≤,>,-⎧=⎨-⎩函数2g x b f x ()()=--,其中b R ∈.若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A .7,4()+∞ B .7,4()-∞ C .70,4()D .7,24()--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页)数学试卷 第6页(共18页)第Ⅱ卷(非选择题 共110分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上. 9.i 是虚数单位,若复数()()12i i a -+是纯虚数,则实数a 的值为___________. 10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为___________3m .11.曲线2y x =与直线y x =所围成的封闭图形的面积为___________.12.在61()4x x-的展开式中,2x 的系数为_________.13.在ABC △中,内角,,A B C 所对的边分别为a ,b ,c ,已知ABC △的面积为,2b c -=,1cos 4A =-,则a 的值为_________.14.在等腰梯形ABCD 中,已知AB DC ∥,2AB =,1BC =,ABC ∠=60.动点E 和F分别在线段BC 和DC 上,BE BC 且λ=,19DF DC λ=,则 AE AF 的最小值为_________.三、 解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数22sin sin 6f x x x ()()π=--,x R ∈. (Ⅰ)求()f x 最小正周期; (Ⅱ)求()f x 在区间[,]34ππ-上的最大值和最小值.16.(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(Ⅰ)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(Ⅱ)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.17.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD 底面⊥,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为11C D B D 和的中点.(Ⅰ)求证:MN ∥平面ABCD ;(Ⅱ)求二面角11D AC B --的正弦值.(III )设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1EA 的长.18.(本小题满分13分)已知数列{}n a 满足2()n n n a qa q q *N 为实数,且1,+=≠∈,11a =,22a =,且23a a +,34a a +,45a a +成等差数列.(Ⅰ)求q 的值和{}n a 的通项公式;(Ⅱ)设2221log ,nn n a b n a *N -=∈,求数列{}n b 的前n 项和.19.(本小题满分14分)已知椭圆2222+=1(0)x y a b a b>>的左焦点为0F c (-,),离心率为3,点M 在椭圆上且位于第一象限,直线FM 被圆222+4bx y =截得的线段的长为c,|FM(Ⅰ)求直线FM 的斜率;(Ⅱ)求椭圆的方程;(III )设动点P 在椭圆上,若直线FP,求直线OP (O 为原点)的斜率的取值范围.20.(本小题满分14分)已知函数(),n f x nx x x R =-∈,其中,2n n *N ≥∈.(Ⅰ)讨论()f x 的单调性; (Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III )若关于x 的方程()=f x a (a 为实数)有两个正实数根1x ,2x ,求证:21|-|21ax x n<+-.数学试卷 第7页(共18页)数学试卷 第8页(共18页)数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(天津卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】{2,5,8}U B =ð,所以{2,5}U A B =ð,故选A .【提示】由全集U 及B ,求出B 的补集,找出A 与B 补集的交集即可. 【考点】集合的运算 2.【答案】C【解析】不等式组2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩所表示的平面区域如图所示,当6z x y =+所表示直线经过点(0,3)B 时,z 有最大值18.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【考点】线性规划的最值求解问题第2题图 3.【答案】B【解析】模拟法:输入20S =,1i =;21i =⨯,20218S =-=,25>不成立;224i =⨯=,18414S =-=,45>不成立;248i =⨯=,1486S =-=,85>成立;输出6,故选B .【提示】模拟执行程序框图,依次写出每次循环得到的i ,S 的值,当8i =时满足条件5i >,退出循环,输出S 的值为6. 【考点】程序框图.AM MB CM MD =,CN NE AN NB =,又因为AM MB AN NB =,所以CN NE CM MD =, 2833CM MD CN ⨯=,故选A . 【提示】由相交弦定理求出AM ,再利用相交弦定理求NE 即可. 4数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)19D F D λ=,1DC AB =,1191999CF DF DC DC DC DC AB λλλλ--=-=-==AE AB BE AB BCλ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+, 22191919()1181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫=++=+++ ⎪ ⎪⎝⎭⎝⎭19194121cos1201818λλλλλλ++=⨯+++⨯⨯⨯︒ 117218λλ+=时,AE AF 有最小值,18数学试卷 第13页(共18页)数学试卷 第14页(共18页) 数学试卷 第15页(共18页)可得(0,0,1)n =为平面的一个法向量,0,MN ⎛=- 由此可得,0MN n =, ⊄平面ABCD MN ∥平面ABCD .(Ⅱ)1(1,AD =-,(2,0,0)AC =,设(,n x y =1110n AD n AC ⎧=⎪⎨=⎪⎩,即0=,不妨设1z =,可得(0,1,1)n =设2(,,)n x y z =为平面2120n AB n AC ⎧=⎪⎨=⎪⎩,又1(0,1,2)AB =20x =⎩不妨设1z =,可得2(0,2,1)n =-,121210,10||||n n n n n n ==-2310,10n n =, 所以二面角1D AC -10(Ⅲ)依题意,可设11AE A B λ=,其中从而(1,NE =-,又(0,0,1)n =为平面,||||(1)NE n NE n NE n ==-30λ-=,72-,所以线段1A E 的长为72-.为坐标原点,以的一个法向量与MN 的数量积为(Ⅲ)通过设AE A B λ=,利用平面的一个法向量与NE 的夹角的余弦值为22,33⎫⎛⎪ ⎪ ⎭⎝(Ⅰ)由已知有2213c a =数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)22,33⎫⎛⎪ ⎪ ⎭⎝。
2015年普通高等学校招生全国统一考试理数(天津卷)及解析
2015年普通高等学校招生全国统一考试(天津卷)第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015高考天津卷,理1)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B 等于( A )(A){2,5} (B){3,6}(C){2,5,6} (D){2,3,5,6,8}解析:由已知得∁U B={2,5,8},所以A∩∁U B={2,5},故选A.2.(2015高考天津卷,理2)设变量x,y满足约束条件则目标函数z=x+6y的最大值为( C )(A)3 (B)4 (C)18 (D)40解析:由约束条件画出可行域如图中阴影部分所示,当动直线x+6y-z=0过点(0,3)时,z max=0+6×3=18.故选C.3.(2015高考天津卷,理3)阅读如图所示的程序框图,运行相应的程序,则输出S的值为( B )(A)-10 (B)6 (C)14 (D)18解析:执行程序:S=20,i=1,i=2,S=20-2=18;i=4,S=18-4=14;i=8,S=14-8=6,满足i>5的条件,结束循环,输出S的值为6,故选B.4.(2015高考天津卷,理4)设x∈R,则“|x-2|<1”是“x2+x-2>0”的( A )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解析:|x-2|<1⇔-1<x-2<1⇔1<x<3;x2+x-2>0⇔x<-2或x>1.由于(1,3)⫋(-∞,-2)∪(1,+∞),所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.5.(2015高考天津卷,理5)如图,在圆O中,M,N是弦AB的三等分点,弦CD,CE分别经过点M,N.若CM=2,MD=4,CN=3,则线段NE的长为( A )(A)(B)3(C)(D)解析:令AB=3a(a>0),因为CM·MD=AM·MB,即2×4=2a2,所以a=2.又因为CN·NE=AN·NB,即3NE=4×2,所以NE=,故选A.6.(2015高考天津卷,理6)已知双曲线-=1(a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为( D )(A)-=1 (B)-=1(C)-=1 (D)-=1解析:因为点(2,)在渐近线y=x上,所以=,又因为抛物线的准线为x=-,所以c=,故a2+b2=7,解得a=2,b=.故双曲线的方程为-=1.故选D.7.(2015高考天津卷,理7)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数.记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( C )(A)a<b<c (B)a<c<b(C)c<a<b (D)c<b<a解析:因为f(x)=2|x-m|-1为偶函数,所以m=0.因为a=f(lo3)=f(log 23),b=f(log25),c=f(0),log25>log23>0,而函数f(x)=2|x|-1在(0,+∞)上为增函数,所以f(log25)>f(log23)>f(0),即b>a>c.故选C.8.(2015高考天津卷,理8)已知函数f(x)=函数g(x)=b-f(2-x),其中b∈R.若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是( D )(A),+∞(B)-∞,(C)0,(D),2解析:函数y=f(x)-g(x)恰有4个零点,即方程f(x)-g(x)=0,即b=f(x)+f(2-x)有4个不同的实数根,即直线y=b与函数y=f(x)+f(2-x)的图象有4个不同的交点.又y=f(x)+f(2-x)=作出该函数的图象如图所示,由图可得,当<b<2时,直线y=b与函数y=f(x)+f(2-x)的图象有4个不同的交点,故函数y=f(x)-g(x)恰有4个零点时,b的取值范围是,2.第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.9.(2015高考天津卷,理9)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为.解析:因为(1-2i)(a+i)=2+a+(1-2a)i为纯虚数,所以解得a=-2.答案:-210.(2015高考天津卷,理10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.解析:由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1,两个圆锥的高均为1,圆柱的高为2.因此该几何体的体积为V=2×π×12×1+π×12×2=πm3.答案:π11.(2015高考天津卷,理11)曲线y=x2与直线y=x所围成的封闭图形的面积为.解析:曲线y=x2与直线y=x所围成的封闭图形如图中阴影部分所示,由解得x=0或x=1,所以S=(x-x2)dx=x2-x3=-=.答案:12.(2015高考天津卷,理12)在的展开式中,x2的系数为.解析:x-6的展开式的通项为T r+1=x6-r-r=-r x6-2r,令6-2r=2,得r=2,所以x2的系数为×-2=.答案:13.(2015高考天津卷,理13)在△ABC中,内角A,B,C 所对的边分别为a,b,c.已知△ABC的面积为3,b-c=2,cos A=-, 则a 的值为.解析:因为cos A=-,0<A<π,所以sin A==.由3=bcsin A得bc=24.又因为b-c=2,所以b=6,c=4.由余弦定理得a2=b2+c2-2bccos A=36+16+12=64.故a=8.答案:814.(2015高考天津卷,理14)在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.动点E 和F 分别在线段BC 和DC 上,且=λ,=, 则·的最小值为.解析:如图,以A为原点,AB所在直线为x轴建立直角坐标系,则B(2,0),C,,D,.由=λ(λ>0),得E2-,λ,由=,得F+,.从而·=2-,λ·+,=++≥+2×=.当且仅当λ=时,取等号.答案:三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)(2015高考天津卷,理15)已知函数f(x)=sin 2x-sin 2x-,x ∈R.(1)求f(x)的最小正周期;(2)求f(x)在区间-,上的最大值和最小值.解:(1)由已知,有 f(x)=-=cos 2x+sin 2x -cos 2x =sin 2x-cos 2x=sin 2x-.所以,f(x)的最小正周期T==π.(2)因为f(x)在区间-,-上是减函数, 在区间-,上是增函数,f -=-,f -=-,f =.所以,f(x)在区间-,上的最大值为,最小值为-.16. (本小题满分13分)(2015高考天津卷,理16)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.解:(1)由已知,有P(A)==.所以,事件A发生的概率为.(2)随机变量X的所有可能取值为1,2,3,4.P(X=k)=(k=1,2,3,4).所以,随机变量X的分布列为随机变量X的数学期望E(X)=1×+2×+3×+4×=.17.(本小题满分13分)(2015高考天津卷,理17)如图,在四棱柱ABCD A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M 和N分别为B1C和D1D的中点.(1)求证:MN∥平面ABCD;(2)求二面角D1AC B1的正弦值;(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.解:如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2).又因为M,N分别为B1C和D1D的中点,得M1,,1,N(1,-2,1).(1)依题意,可得n=(0,0,1)为平面ABCD的一个法向量.=0,-,0,则·n=0,又因为直线MN⊄平面ABCD,所以MN∥平面ABCD.(2)=(1,-2,2),=(2,0,0).设n1=(x1,y1,z1)为平面ACD1的法向量,则即不妨设z1=1,可得n1=(0,1,1).设n2=(x2,y2,z2)为平面ACB1的法向量,则又=(0,1,2),得不妨设z2=1,可得n2=(0,-2,1).因此有cos n1,n2==-,于是sin n1,n2=.所以,二面角D1AC B1的正弦值为.(3)依题意,可设=λ,其中λ∈[0,1],则E(0,λ,2),从而=(-1,λ+2,1).又n=(0,0,1)为平面ABCD的一个法向量,由已知,得cos,n===,整理得λ2+4λ-3=0,又因为λ∈[0,1],解得λ=-2.所以,线段A1E的长为-2.18. (本小题满分13分)(2015高考天津卷,理18)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.解:(1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1).又因为q≠1,故a3=a2=2,由a3=a1·q,得q=2.当n=2k-1(k∈N*)时,a n=a2k-1=2k-1=;当n=2k(k∈N*)时,a n=a2k=2k=,所以{a n}的通项公式为a n=(2)由(1)得b n==,n∈N*,设{b n}的前n项和为S n,则S n=1×+2×+3×+…+(n-1)×+n×,S n=1×+2×+3×+…+(n-1)×+n×,上述两式相减,得S n=1+++…+-=-=2--,整理得,S n=4-,n∈N*.所以,数列{b n}的前n项和为4-,n∈N*.19. (本小题满分14分)(2015高考天津卷,理19)已知椭圆+=1(a>b>0)的左焦点为F(-c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,|FM|=.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.解:(1)由已知有=,又由a2=b2+c2,可得a2=3c2,b2=2c2.设直线FM的斜率为k(k>0),则直线FM的方程为y=k(x+c).由已知,有2+2=2,解得k=.(2)由(1)得椭圆方程为+=1,直线FM的方程为y=(x+c),两个方程联立,消去y,整理得3x2+2cx-5c2=0,解得x=-c或x=c.因为点M在第一象限,可得M的坐标为c,c.由|FM|==,解得c=1,所以椭圆的方程为+=1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t=,即y=t(x+1)(x≠-1),与椭圆方程联立消去y,整理得2x2+3t2(x+1)2=6.又由已知,得t=>,解得-<x<-1或-1<x<0.设直线OP的斜率为m,得m=,即y=mx(x≠0),与椭圆方程联立,整理可得m2=-.①当x∈-,-1时,有y=t(x+1)<0,因此m>0,于是m=,得m∈,.②当x∈(-1,0)时,有y=t(x+1)>0,因此m<0,于是m=-,得m∈-∞,-.综上,直线OP的斜率的取值范围是-∞,-∪,.20. (本小题满分14分)(2015高考天津卷,理20)已知函数f(x)=nx-x n,x∈R,其中n∈N*,且n≥2.(1)讨论f(x)的单调性;(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);(3)若关于x的方程f(x)=a(a为实数)有两个正实数根x1,x2,求证: |x2-x1|<+2.(1)解:由f(x)=nx-x n,可得f'(x)=n-nx n-1=n(1-x n-1),其中n∈N*,且n≥2.下面分两种情况讨论:①当n为奇数时,令f'(x)=0,解得x=1或x=-1.所以,f(x)在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.②当n为偶数时,当f'(x)>0,即x<1时,函数f(x)单调递增;当f'(x)<0,即x>1时,函数f(x)单调递减.所以,f(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减.(2)证明:设点P的坐标为(x0,0),则x0=,f'(x0)=n-n2.曲线y=f(x)在点P处的切线方程为y=f'(x0)(x-x0),即g(x)=f'(x0)(x-x0).令F(x)=f(x)-g(x),即F(x)=f(x)-f'(x0)(x-x0),则F'(x)=f'(x)-f'(x0).由于f'(x)=-nx n-1+n在(0,+∞)上单调递减,故F'(x)在(0,+∞)上单调递减.又因为F'(x0)=0,所以当x∈(0,x0)时,F'(x)>0,当x∈(x0,+∞)时,F'(x)<0,所以F(x)在(0,x0)内单调递增,在(x0,+∞)上单调递减,所以对于任意的正实数x,都有F(x)≤F(x0)=0,即对于任意的正实数x,都有f(x)≤g(x).(3)证明:不妨设x1≤x2.由(2)知g(x)=(n-n2)(x-x0).设方程g(x)=a的根为x'2,可得x'2=+x0.当n≥2时,g(x)在(-∞,+∞)上单调递减.又由(2)知g(x2)≥f(x2)=a=g(x'2),可得x2≤x'2.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=nx.当x∈(0,+∞)时,f(x)-h(x)=-x n<0,即对于任意的x∈(0,+∞),f(x)<h(x).设方程h(x)=a的根为x'1,可得x'1=.因为h(x)=nx在(-∞,+∞)上单调递增,且h(x'1)=a=f(x1)<h(x1),因此x'1<x1.由此可得x2-x1<x'2-x'1=+x0.因为n≥2,所以2n-1=(1+1)n-1≥1+=1+n-1=n,故2≥=x0.则当x1≤x2时,|x2-x1|=x2-x1<+2.同理可证当x1>x2时,结论也成立.所以,|x2-x1|<+2.。
2015高考试题——理数(天津卷)Word版含答案
2015年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:·1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分 参考公式:如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立, P(A ∪B)=P(A)+P(B). P(AB)=P(A) P(B).柱体的体积公式V 柱体=Sh 锥体的体积公式V = V=1/3Sh 其中 S 表示柱体的底面积 其中 S 表示锥体的底面积, h 表示柱体的高. h 表示锥体的高.第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合 A ∩C u B=(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8(2)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为(A )3(B )4(C )18(D )40(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )10- (B )6(C )14(D )18(4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(5)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为(A )83 (B )3(C )103 (D )52(6)已知双曲线()222210,0x y a b a b-=>>的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -=(C )22134x y -= (D )22143x y -=(7)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<(8)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭(C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭第II 卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 . (10)一个几何体的三视图如图所示(单位:m ), 则该几何体的体积为 3m .(11)曲线2y x = 与直线y x = 所围成的封闭图形的面积为 .(12)在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .(13)在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 .(14)在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC和DC上,1,,9BE BC DF DC AE AF λλ==且则的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16. (本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.17. (本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12,AC AA AD CD ====,且点M 和N 分别为11C D B D 和的中点.(I)求证: MN ∥平面ABCD(II)求二面角11D AC B --的正弦值;(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1E A 的长18. (本小题满分13分)已知数列{}n a 满足*212(q )n N ,1,2n n a qa a a +=≠∈==为实数,且q 1,,且233445,,a a a a a a +++成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列n {b }的前n 项和.19. (本小题满分14分)已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),离心率为,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c,(I)求直线FM 的斜率; (II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP,求直线OP (O 为原点)的斜率的取值范围.20. (本小题满分14分)已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥.(I)讨论()f x 的单调性;(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21ax x n<+-.绝密★启用前2015年普通高等学校招生全套统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算。