新北师大版七年级数学下期末试卷
北师大版七年级下册数学期末考试试题及答案
北师大版七年级下册数学期末考试试卷一、单选题1.我国众多科技实体在各自行业取得了举世瞩目的成就,大疆科技、华为集团、太极股份和凤凰光学等就是其中的杰出代表.上述四个企业的标志是轴对称图形的是( )A .B .C .D .2.下列计算中正确的是( ) A .235a b a +=B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-3.如图,直线a ,b 被直线c 所截,a∥b ,若∥2=45°,则∥1等于( )A .125°B .130°C .135°D .145°4.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cmD .11cm 、4cm 、6cm5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.在下列运算中,正确的是( )A .222()x y x y -=-B .2(2)(3)6a a a +-=-C .222()2a b a ab b +=++D .22(2)(2)2x y x y x y -+=-8.如图,下列条件中能判定//AB CD 的是( )A .35∠=∠B .24∠∠=C .15180∠+∠=︒D .34∠=∠ 9.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A .两点之间线段最短B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性10.如图,∥CAB =∥DBA ,再添加一个条件,不一定能判定∥ABC∥∥BAD 的是( )A .AC =BDB .∥1=∥2C .∥C =∥D D .AD =BC二、填空题11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学计数法表示为________. 12.计算:22(3)ab =_________.13.如图,DA∥CE 于点A ,CD∥AB ,∥1=30°,则∥D=_____.14.一个不透明的布袋中装有3个红球,5个黄球,2个白球,每个球除颜色外都相同,任意摸出一球,摸到黄球的概率为______.15.如果三角形底边上的高是6,底边长为x ,那么三角形的面积y 可以表示为________________;16.如图,四边形ABDC 的对称轴是AD 所在的直线,AC=5,DB=7,则四边形ABDC 的周长为_______17.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∥ABC=120°,∥BCD=80°,则∥CDE=__________度.三、解答题18.计算:022(3)2(1)π---+-;19.如图,已知∥1=∥2,∥D =60˚,求∥B 的度数.20.如图,已知线段AC ,BD 相交于点E ,A D ∠=∠,BE CE =,求证ABE DCE ∆≅∆.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,∥ABC 的顶点均在格点上,直线a 为对称轴,点A ,点C 在直线a 上. (1)作∥ABC 关于直线a 的轴对称图形∥ADC ; (2)若∥BAC =35°,则∥BDA = ; (3)∥ABD 的面积等于 .22.先化简,再求值:2(4)(2)---x x y x y ,其中x =﹣1,y =1.23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 ;(请选择正确的一个)A 、()()22a b a b a b -=+- B 、2222a ab b a b C 、()2a ab a a b +=+(2)若22164x y x y -=+=,,求x y -的值;(3)计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.24.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)表中的a=________;(2)“摸到白球”的概率的估计值是___________(精确到0.1); (3)试估算口袋中黑、白两种颜色的球各有多少个?25.如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式; (3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?26.在∥ABC中,AB=AC,D是BC边的中点,E、F分别是AD、AC边上的点.(1)如图∥,连接BE、EF,若∥ABE=∥EFC,求证:BE=EF;(2)如图∥,若B、E、F在一条直线上,且∥ABE=∥BAC=45°,探究BD与AE的数量之间有何等量关系,并证明你的结论;(3)如图∥,若AB=13,BC=10,AD=12,连接EC、EF,直接写出EC+EF的最小值.参考答案1.B【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.D【解析】【分析】根据幂的运算法则即可依次判断.【详解】A.23+不能计算,故错误;a bB.34÷=,故错误;a a aC.246⋅=,故错误;a a aD.()326-=-,正确a a故选D.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.3.C【解析】【分析】根据两直线平行,同位角相等可得∥3=∥2,再根据邻补角的定义解答.【详解】如图,∥a∥b,∥2=45°,∥∥3=∥2=45°,∥∥1=180°−∥3=135°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∥2+2=4,∥ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∥2+3<6,∥2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∥3+6>8,∥8cm、6cm、3cm能组成三角形,故符合题意;D. ∥4+6<11,∥11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.B【解析】【详解】∥y轴表示当天爷爷离家的距离,X轴表示时间又∥爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∥刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∥选项B中的图形满足条件.故选B.6.A【解析】【详解】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B 错误; 概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误; 故选A . 考点:随机事件. 7.C 【解析】 【分析】根据整式的运算法则即可判断. 【详解】A.222()2x y x xy y -=-+,故错误;B.2(2)(3)6a a a a +-=--,故错误;C.222()2a b a ab b +=++,正确D.22(2)(2)4x y x y x y -+=-,故错误; 故选C . 【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则. 8.D 【解析】 【分析】根据平行线的判定定理进行判断即可. 【详解】解:A 、根据同旁内角互补,两直线平行的判定定理可知35∠=∠不能判定//AB CD ; B 、2∠ 和4∠为对顶角,无法判定//AB CD ;C 、根据同位角相等,两直线平行的判定定理可知15180∠+∠=︒不能判定//AB CD ; D 、根据内错角相等,两直线平行的判定定理可知34∠=∠可得//AB CD . 故选:D . 【点睛】本题主要考查了平行线的判定定理,包括:∥同位角相等,两直线平行;∥内错角相等,两直线平行;∥同旁内角互补,两直线平行.9.D【解析】【分析】用木条EF固定矩形门框ABCD,即是组成∥AEF,故可用三角形的稳定性解释.【详解】解:加上EF后,原不稳定的四边形ABCD中具有了稳定的∥EAF,故这种做法根据的是三角形的稳定性.故选:D.【点睛】本题考查三角形稳定性的实际应用,熟悉相关性质是解题的关键.10.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.∥AC=BD,∥CAB=∥DBA,AB=AB,∥根据SAS能推出∥ABC∥∥BAD,故本选项错误;B.∥∥CAB=∥DBA,AB=AB,∥1=∥2,∥根据ASA能推出∥ABC∥∥BAD,故本选项错误;C.∥∥C=∥D,∥CAB=∥DBA,AB=AB,∥根据AAS能推出∥ABC∥∥BAD,故本选项错误;D.根据AD=BC和已知不能推出∥ABC∥∥BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.5.8 ×10-6【解析】【详解】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=5.8,10的指数为﹣6.故答案为:5.8×10-6.考点:科学记数法.12.249a b【解析】【分析】根据积的乘方:()n n n ab a b =和幂的乘方()nm mn a a =计算即可. 【详解】解:()22222422933ab a b a b ⨯==故答案为:249a b .【点睛】此题考查的是幂的运算性质,掌握积的乘方和幂的乘方是解决此题的关键.13.60°【解析】【分析】先根据垂直的定义,得出∥BAD=60°,再根据平行线的性质,即可得出∥D 的度数.【详解】∥DA∥CE ,∥∥DAE=90°,∥∥1=30°,∥∥BAD=60°,又∥AB∥CD ,∥∥D=∥BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.14.1 2【解析】【分析】让黄球的个数除以球的总数即为摸到红球的概率.【详解】3个红球,5个黄球,2个白球,一共是10个搅拌均匀后从中任意摸出一个球,则摸出的球是黄球的概率是51 102=.故答案为:12.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.15.3y x=【解析】【分析】直接利用三角形面积求法得出答案即可.【详解】∥三角形的底边长为xcm,底边上的高为6cm,∥三角形的面积y(cm2)可以表示为:y=3x.故答案为y=3x.【点睛】此题主要考查了函数关系式以及三角形面积求法,正确记忆三角形面积公式是解题关键.16.24【解析】【详解】∥四边形ABDC的对称轴是AD所在的直线,AC=5,DB=7,∥AB=AC=5,CD=BD=7,∥四边形ABDC的周长=AC+CD+BD+AB=5+7+7+5=24.故答案为24.17.20【解析】由已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,得AB∥DE ,过点C 作CF∥AB ,则CF∥DE ,由平行线的性质可得,∥BCF+∥ABC=180°,所以能求出∥BCF ,继而求出∥DCF ,又由CF∥DE ,所以∥CDE=∥DCF .【详解】解:过点C 作CF∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∥AB∥DE ,∥CF∥DE ,∥∥BCF+∥ABC=180°,∥∥BCF=60°,∥∥DCF=20°,∥∥CDE=∥DCF=20°.故答案为:20.【点睛】此题考查的知识点是平行线的性质,关键是过C 点先作AB 的平行线,由平行线的性质求解.18.314【解析】【分析】根据实数的性质进行化简即可求解.【详解】解:022(3)2(1)π-----1114=-+ 314=.此题主要考查实数的运算,解题的关键是熟知负指数幂的运算法则.19.120B ∠=︒;【解析】【分析】首先证出∥1=∥3,从而得出AB∥CD ,然后推出∥D+∥B=180°,代入求出即可.【详解】解:如图:∥∥1=∥2,∥2=∥3,∥∥1=∥3,∥AB∥CD ,∥∥D+∥B=180°,∥∥D=60°,∥∥B=120°.【点睛】本题考查平行线的判定与性质,难度不大,掌握平行线的判定定理和性质定理是解题关键.20.见解析【解析】【分析】根据AAS 即可证明ABE DCE ∆≅∆.【详解】证明:在∥ABE 和∥DCE 中A D AEB DEC BE CE ∠∠⎧⎪∠=∠⎨⎪=⎩=∥∥ABE∥∥DCE(AAS).【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.21.(1)如图见解析;(2)∥BDA=55°;(3)∥ABD的面积等于28.【解析】【分析】(1)根据网格结构找出点B关于直线a的对称点D的位置,然后与A、C顺次连接即可;(2)根据轴对称的性质解答即可;(3)根据三角形的面积公式列式计算即可得解.【详解】解:(1)∥ADC如图所示;(2)∥BAD=2∥BAC=2×35°=70°,∥AB=AD,∥∥BDA=1(180°-∥BAD)=55°;2故答案为55°;×8×7=28,(3)∥ABD的面积=12故答案为28.【点睛】本题考查了利用轴对称变换作图以及三角形面积的计算,熟练掌握网格结构准确找出对应点的位置.22.﹣4y 2,-4【解析】【分析】根据单项式乘多项式和完全平方公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:x (x ﹣4y )﹣(x ﹣2y )2=x 2﹣4xy ﹣x 2+4xy ﹣4y 2=﹣4y 2,当y =1时,原式=﹣4×12=﹣4.【点睛】本题考查单项式乘多项式和完全平方公式的计算,掌握计算法则和公式结构正确计算是本题的解题关键.23.(1)A ;(2)4;(3)20214040 【解析】【分析】(1)观察图1与图2,根据图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-,得到验证平方差公式;(2)已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可; (3)先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)根据图形得:图1中阴影部分面积22a b =-,图2中长方形面积()()a b a b =+-, ∴上述操作能验证的等式是22()()a b a b a b -=+-,故答案为: A ;(2)22()()16x y x y x y -=+-=,4x y +=,4x y ∴-=;(3)22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111(1)(1)(1)(1)(1)(1)223320202020=-+-+⋯-+20213243201920212233402020=⨯⨯⨯⨯⨯⋯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】此题考查了平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键,注意此类题目每一步都为后续解题提供了解题条件或方法.24.(1)0.58;(2)0.6;(3)白球的个数约为20×0.6=12个,黑球有20-12=8个【解析】【分析】(1)根据表中的数据,计算得出摸到白球的频率.(2)由表中数据即可得;(3)根据摸到白球的频率和球的总数求得两种球的数量即可.(1)a=290÷500=0.58,故答案为:0.58;(2)由表可知,当n 很大时,摸到白球的频率将会接近0.6,所以“摸到白球”的概率的估计值是0.6;故答案为:0.6;(3)因为当n 很大时,摸到白球的频率将会接近0.6;所以白球的个数约为20×0.6=12个,黑球有20-12=8个.【点睛】本题主要考查了如何利用频率估计概率,在解题时要注意频率和概率之间的关系,属于中考常考题型.25.(1)小正方形的边长是自变量,阴影部分的面积为因变量;(2)21444y x =-;(3)阴影部分的面积由140cm 2变到44cm 2【解析】【分析】(1)根据当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,则小正方形的边长是自变量,阴影部分的面积为因变量;(2)根据阴影部分的面积=大正方形的面积-4个小正方形的面积,即可解答;(3)根据当小正方形的边长由1cm 变化到5cm 时,x 增大,x 2也随之增大,-4x 2则随着x 的增大而减小,所以y 随着x 的增大而减小.(1)∥当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化,∥小正方形的边长是自变量,阴影部分的面积为因变量;(2)由题意可得:2221241444y x x =-=-;(3)由(2)知:21444y x =-,当x=1cm 时,14441140y -⨯==(cm 2).当x=5cm 时,21444544y =-⨯=(cm 2).∥当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积由140cm 2变到44cm 2【点睛】本题考查了函数关系式,解决本题的关键是列出函数关系式.26.(1)证明见解析;(2)2AE BD =,证明见解析;(3)12013【解析】【分析】(1)连接CE ,根据等腰三角形的性质可得BE CE =、A ABC CB =∠∠,经过倒角及角的和差运算可得∥ABE =∥ACE ,利用等边对等角即可得证;(2)根据已知易得ABF 和CEF △都是等腰直角三角形,通过证明CBF EAF ≌即可得出结论;(3)由(1)可得EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,利用等面积法即可求解.【详解】解:(1)连接CE ,,∥AB =AC ,D 是BC 边的中点,∥AD 为线段BC 的垂直平分线,A ABC CB =∠∠,∥BE CE =,∥EBC ECB ∠=∠,∥ABC EBC ACB ECB ∠-∠=∠-∠,即∥ABE =∥ACE ,∥∥ABE =∥EFC ,∥∥ACE =∥EFC ,∥EF CE =,∥BE EF =;(2)连接CE ,由(1)可得∥ABE =∥ACE , ∥∥ABE =∥BAC =45°, ∥ABF 和CEF △都是等腰直角三角形, ∥AF BF =,CF EF =, ∥CBF EAF ≌, ∥BC AE =,∥2AE BD =;(3)由(1)可知BE CE =, ∥EC EF BE EF +=+,作BP AC ⊥于点P ,则BP 为BE EF +的最小值,1122ABC S BC AD AC BP =⋅=⋅, 解得12013BP =,∥EC+EF 的最小值为12013.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、线段最值等内容,掌握等腰三角形的性质是解题的关键.21。
北师大版七年级下册数学期末考试试题及答案
北师大版七年级下册数学期末考试试卷一、单选题1.下列运算中,结果正确的是()A .33a a a ÷=B .()224ab ab =C .2a a a ⋅=D .()235a a =2.以下是各种交通标志指示牌,其中不是轴对称图形的是()A .B .C .D .3.用科学记数法表示0.000000202是()A .60.20210-⨯B .72.0210⨯C .62.0210-⨯D .72.0210-⨯4.下列算式能用平方差公式计算的是()A .()()a b a b +--B .22()(2)a b a b +-C .(2)(2)x y x y +-D .()()a b c a b c -++-5.已知三角形的两边分别为4和10,则此三角形的第三边可能是()A .4B .5C .9D .146.下列事件中是确定事件的为()A .三角形的内角和是360°B .打开电视机正在播放动画片C .车辆随机经过一个路口,遇到绿灯D .掷一枚均匀的骰子,掷出的点数是奇数7.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB ⊥BC ,BO =OC ,CD ⊥BC ,点A 、O 、D 在同一直线上,就能保证△ABO ≌△DCO ,从而可通过测量CD 的长度得知小河的宽度AB .在这个问题中,判断△ABO ≌△DCO 的最佳依据是()A .SASB .AASC .ASAD .SSS 8.下列说法正确的个数有()①内错角相等;②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;③同一平面内,过一点有且只有一条直线与已知直线垂直;④等腰三角形的对称轴是角平分线所在直线;⑤一个角的补角一定是钝角;⑥三角形的中线、角平分线都在三角形的内部;⑦三角形三条高相交于一点;⑧若2ADE ∠=∠,则//AD CEA .2个B .3个C .4个D .5个9.已知某海水淡化厂淡水储备量为20吨时,刚开始以每小时10吨的淡化的速度加工生产淡水,2小时后,在继续原速度的生产的前提下,为供给市场以每小时15吨的速度运出淡水,则储备淡水量y (吨)与时间t (时)之间的大致图象为()A .B .C .D .10.如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论:①BD =CD ;②AD+CF =BD ;③AE =BG ;④CE =12BF .其中正确的是()A .①②B .①②④C .①②③④D .①③二、填空题11.计算()332x x ÷的结果为__________.12.若某长方体底面积是60(2cm ),高为h(cm),则体积V(3cm )与h 的关系式为_____.13.如图,小明在以A ∠为顶角的等腰三角形ABC 中用圆规和直尺作图,作出过点A 的射线交BC 于点D ,然后又作出一条直线与AB 交于点E ,连接DE ,若ABC 的面积为4,则BED 的面积为________.14.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.15.化简:(x+1)2+2(1-x)=_______________.16.如图,等边△ABC 的边长为1,AB 边上有一点P ,Q 为BC 延长线上的一点,且CQ =PA ,过点P 作PE ⊥AC 于点E ,过P 作PF ∥BQ 交AC 边于点F ,连接PQ 交AC 边于点D ,则DE 的长为_____.三、解答题17.计算:(1)(﹣3)2+(π﹣3.14)0×(﹣1)2019﹣(13)-2(2)2332935(2)a a a a a a ⋅⋅+--÷18.先化简,再求值:2()3(3)2(2)(2)x y x x y x y x y ---++-,其中17x =-,2y =.19.如图,在△ABC 中,∠C =90°,DB ⊥BC 于点B ,分别以点D 和点B 为圆心,以大于二分之一DB 的长为半径作弧,两弧相交于点E 和点F ,作直线EF ,延长AB 交EF 于点G ,连接DG ,下面是说明∠A =∠D 的说理过程,请把下面的说理过程补充完整:因为DB ⊥BC (已知)所以∠DBC =90°()因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC()所以∠A=(______________________________);由作图法可知:直线EF是线段DB的所以GD=GB所以∠1=()因为∠A=∠1(已知)所以∠A=∠D(___________).20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近____________(精确到0.1),估计摸一次球能摸到黑球的概率是_____________;袋中黑球的个数约为_________只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了____________个黑球.21.某商店实行有奖销售,印有1万张奖券,其中有10张一等奖,50张二等奖,500张三等奖,其余均无奖,任意抽取一张,(1)获得一等奖的概率有多大?(2)获奖的概率有多大?(3)如果使得获三等奖的概率为110,那么需要将多少无奖券改为三等奖券22.(1)如图,已知△ABC,∠C为直角,AC<BC,D为BC上一点,且到A,B两点的距离相等.①用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);②连结AD,若∠B=37°,求∠CAD的度数.(2)已知,在△ABC中,AB=AC,点D、E分别在AB、AC边上,且BD=CE,证明OB=OC.23.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)AP=________cm,BP=__________cm(用含t的代数式表示)(2)若点Q的运动速度与点P的运动速度相等..,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(3)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变......,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.24.如图1,已知:AB∥CD,点E,F分别在AB,CD上,且OE⊥OF.(1)求证:∠1+∠2=90°;(2)如图2,分别在OE,CD上取点G,H,使FO平分∠CFG,EO平分∠AEH,求证:FG∥EH.25.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油实验,并把实验的数据记录下来,制成下表:汽车行驶时间x(h)0123…邮箱剩余油量y(L)100948882…(1)根据上表的数据,请写出y与x的之间的关系式:__________________________________;(2)如果汽车油箱中剩余油量为46L,则汽车行驶了多少小时?(3)如果该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上均匀行驶,请问它在中途不加油的情况下能从高速公路起点开到高速公路终点吗?为什么?参考答案1.C【解析】根据同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法计算即可.【详解】A.331a a÷=,故本选项错误;B .()2222224ab a b a b ⨯==,故本选项错误;C .2a a a ⋅=,故本选项正确;D .()23326a a a ⨯==,故本选项错误.故选C .【点睛】此题考查的是幂的运算性质,掌握同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法是解决此题的关键.2.B【解析】根据轴对称图形的概念对各选项逐一进行分析判断即可得出答案.【详解】A 、是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项符合题意;C 、是轴对称图形,故本选项不符合题意;D 、是轴对称图形,故本选项不符合题意.故选B .【点睛】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形是图形两部分沿对称轴折叠后可重合的图形是解题的关键.3.D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:70.000000202 2.0210-=⨯.故选:D .【点睛】本题考查了用科学记数法表示较小的数,解题的关键是是掌握一般形式为10n a -⨯,其中1||10a < ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D【解析】【分析】根据平方差公式进行的特点对每一选项进行分析即可.平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.【详解】解:A .该式子中两项均为相反项,不能用平方差公式计算,故本选项不符合题意.B .该式子中只有一个相同项,没有相反项,不能用平方差公式计算,故本选项不符合题意.C .该式子中既没有相同项,也没有相反项,不能用平方差公式计算,故本选项不符合题意.D .()()[()][()]a b c a b c a b c a b c -++-=--+-,既有相同项,也有相反项,能用平方差公式计算,故本选项符合题意.故选:D .【点睛】本题考查了平方差公式,运用平方差公式计算时,解题的关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5.C【解析】【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边,故104104-<<+第三边,便可找到答案.【详解】解:根据题意,有:104104-<<+第三边即:614<<第三边综合选项,故本题选择C .【点睛】本题考查三边关系,关键在于掌握两边之和大于第三边,两边之差小于第三边是关键.6.A【解析】【分析】根据确定事件和随机事件的定义对各选项逐一分析即可.【详解】解:A 、三角形的内角和是360°是不可能事件,即确定事件,符合题意;B 、打开电视机正在播放动画片为不确定事件,即随机事件,故不符合题意;C 、车辆随机经过一个路口,遇到绿灯为不确定事件,即随机事件,故不符合题意;D 、掷一枚均匀的骰子,掷出的点数是奇数为不确定事件,即随机事件,故不符合题意;故选:A .【点睛】本题考查了确定事件和随机事件的定义,解决本题的关键是要明确事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.C【解析】【分析】直接利用全等三角形的判定方法得出符合题意的答案.【详解】解:AB BC ⊥ ,CD BC ⊥,90ABO OCD ∴∠=∠=︒,在ABO ∆和DCO ∆中,ABO DCO BO CO BOA COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABO DCO ASA ∴∆≅∆,则证明ABO DCO ∆≅∆的依据的是ASA ,故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是正确掌握全等三角形的判定方法.8.A【解析】【分析】根据平行线的性质对①进行判断;根据点到直线的距离的定义对②进行判断;根据垂直公理对③进行判断;根据等腰三角形的性质对④进行判断;利用特例对⑤进行判断;根据三角形中线、角平分线的定义对⑥进行判断;利用钝角三角形的高所在的直线相交于一点可对⑦进行判断;利用没有对应的图形可对⑧进行判断.【详解】解:两直线平行,内错角相等,所以①错误;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,所以②错误;同一平面内,过一点有且只有一条直线与已知直线垂直,所以③正确;等腰三角形的对称轴是顶角的平分线所在直线,所以④错误;一个角的补角不一定是钝角,如150︒的补角为30°,所以⑤错误;三角形的中线、角平分线都在三角形的内部,所以⑥正确;三角形三条高所在的直线相交于一点,所以⑦错误;若2ADE ∠=∠,则//AD CE ,没有图形,所以⑧错误.故选:A .【点睛】本题考查了对称的性质、轴对称图形、等腰三角形的性质、平行线的判定,解题的关键是掌握相关的概念,对称的性质:如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.9.D【解析】【分析】根据题意,可以写出各段对应的函数解析式,从而可以解答本题.【详解】解:由题意可得,当02x时,1020y x =+,当2x >时,201015(2)550y x x x =+--=-+,当0y =时,10x =,故选:D .【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.B【解析】【分析】由等腰直角三角形的性质可得BD CD =,利用ASA 判定DFB DAC ∆∆≌,可得DF AD =,BF AC =.则CD CF AD =+,即AD CF BD +=;再利用ASA 判定()Rt BEA Rt BEC ASA ≌,得出12CE AE AC ==,可得1122F AC CE B ==,连接CG .因为BCD ∆是等腰直角三角形,即BD CD =.又因为DH BC ⊥,那么DH 垂直平分BC .即BG CG =.在Rt CEG △中,CG 是斜边,CE 是直角边,所以CE CG <.即AE BG <.【详解】解:CD AB ⊥ ,45ABC ∠=︒,BCD ∴∆是等腰直角三角形.BD CD ∴=.故①正确;在Rt DFE △和Rt DAC V 中,90DBF BFD ∠=︒-∠,90DCA EFC ∠=︒-∠,且BFD EFC ∠=∠,DBF DCA ∴∠=∠,在DFB ∆和DAC ∆中,90DBF DAC BD CD BDF CDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()DFB DAC ASA ∴∆≅∆,BF AC ∴=,DF AD =,CD CF DF =+ ,AD CF BD ∴+=;故②正确;BE 平分ABC ∠,ABE CBE ∴∠=∠.在Rt BEA V 和Rt BEC △中,90ABE CBE BE BE BEA BEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()Rt BEA Rt BEC ASA ∴ ≌,12CE AE AC ∴==.又BF AC = ,1122CE AC BF ∴==;故④正确;连接CG .BCD ∆ 是等腰直角三角形,BD CD∴=又DH BC ⊥,DH ∴垂直平分BC ,BG CG ∴=,在Rt CEG △中,CG 是斜边,CE 是直角边,CE CG ∴<,CE AE = ,B AE G ∴<.故③错误.故选:B .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是熟练运用全等三角形的判定方法.11.2272x 或213.5x 【解析】【分析】先计算积的乘方,再进行单项式除以单项式的运算即可得到答案.【详解】()3322732=2722x x x x x ÷÷=,故答案为:2272x 或213.5x .【点睛】此题主要考查了积的乘方和单项式除以单项式,熟练掌握运算法则是解答此题的关键.12.60V h=【解析】【分析】根据长方体的体积=底面积⨯高得出60V h =即可.【详解】解:根据题意得:60V h =,故答案为:60V h =.【点睛】本题考查了函数关系式、长方体的体积,解题的关键是熟记长方体的体积公式.13.1【解析】【分析】根据三角形的中线平分三角形的面积解决问题即可.【详解】解:由作图可知,AD 平分BAC ∠,AB AC = ,BD DC ∴=,122ABD ABC S S ∆∆∴==,由作图可知,AE EB =,112BED ABD S S ∆∆∴==.故答案为:1.【点睛】本题考查作图-复杂作图,等腰三角形的性质的性质等知识,解题的关键是理解三角形的中线平分三角形的面积.14.13【解析】【详解】分析:根据概率公式用女生人数除以总人数即可得结论.详解:所有等可能结果共有6种,其中女生有2种,∴恰好是女生的概率为2163=.故答案为13.点睛:本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.15.x 2+3【解析】【详解】分析:先用完全平方公式和乘法分配律展开,然后合并同类项即可.详解:原式=x 2+2x+1+2-2x=x 2+3.故答案为x 2+3.点睛:本题考查了整式的混合运算.熟练掌握相关运算法则是解题的关键.16.12【解析】【分析】通过求证PFD ∆和QCD ∆全等,推出FD CD =,再通过证明APF ∆是等边三角形和PE AC ⊥,推出AE EF =,即可推出AE DC EF FD +=+,可得12ED AC =,即可推出ED 的长度.【详解】解://PF BQ ,Q FPD ∴∠=∠,等边ABC ∆,60APF B ∴∠=∠=︒,60AFP ACB ∠=∠=︒,APF ∴∆是等边三角形,AP PF ∴=,AP CQ = ,PF CQ ∴=,在PFD ∆和QCD ∆中,FPD Q PDF QDC PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()PFD QCD AAS ∴∆≅∆,FD CD ∴=,PE AC ⊥ 于E ,APF ∆是等边三角形,AE EF ∴=,AE DC EF FD ∴+=+,12ED AC ∴=,1AC = ,12DE ∴=.故答案为:12.【点睛】本题考查了等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,解题的关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.17.(1)1-;(2)68a 【解析】【分析】(1)根据有理数的乘方法则、零指数幂和负整数指数幂的运算法则计算即可;(2)根据单项式乘单项式的运算法则、单项式除以单项式的运算法则、积的乘方法则计算.【详解】解:(1)原式91(1)9=+⨯--919=--1=-;(2)原式66654a a a =+-68a =.【点睛】本题考查了实数的运算、整式的运算,解题的关键是掌握有理数的乘方法则、零指数幂和负整数指数幂的运算法则、单项式乘单项式的运算法则、单项式除以单项式的运算法则.18.277y xy -+,30-【解析】【分析】根据整式的运算法则即可化简求解.【详解】解:原式=222222392(4)x xy y x xy x y -+-++-=2222223928x xy y x xy x y -+-++-=277xy y -其中17x =-,2y =原式=217(2727⨯-⨯-⨯=-2-28=-30【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的乘法公式.19.垂线的定义,内错角相等两直线平行,1∠,两直线平行同位角相等,垂直平分线,D ∠,等边对等角,等量代换.【解析】【分析】利用垂线的定义,平行线的判定和性质,线段的垂直平分线的性质等知识求解即可.【详解】解:因为DB BC ⊥(已知),所以90DBC ∠=︒(垂线的定义).因为90C ∠=︒(已知),所以∠=∠DBC C (等量代换).所以//DB AC (内错角相等两直线平行).所以1A ∠=∠(两直线平行同位角相等).由作图法可知:直线EF 是线段DB 的垂直平分线,所以GD GB =.所以1D ∠=∠(等边对等角).因为1A ∠=∠(已知),所以A D∠=∠(等量代换).故答案为:垂线的定义,内错角相等两直线平行,1∠,两直线平行同位角相等,垂直平分线,D∠,等边对等角,等量代换.【点睛】本题考查作图-复杂作图,平行线的判定和性质,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(1)0.4,0.4;20;(2)25【解析】【分析】(1)根据统计图找到摸到黑球的频率稳定到的常数即为摸到黑球的概率;用总数乘以摸到黑球的频率即可得到黑球的个数;(2)设向袋子中放入了x个黑球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【详解】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4.袋中黑球的个数约为50×0.4=20(只).(2)设放入黑球x个,根据题意得:20 50xx+=+0.6,解得:x=25,经检验:x=25是原方程的根.故答案为:25.【点睛】本题考查了概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解答本题的关键.21.(1)11000;(2)7125;(3)500【解析】【分析】任取一张有1万种情况,其中抽到一等奖有10种情况,二等奖有50种情况,三等奖有500种情况,利用概率公式进行计算即可.【详解】解:(1)获一等奖的概率是101100001000=,(2)获奖的概率是1050500710000125++=,(3)设需要将x 无奖券改为三等奖券,则:50011000010x +=,解得:500x =.【点睛】本题考查了利用概率公式求概率,解题的关键是掌握如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=,难度适中.22.(1)①见解析;②16︒;(2)见解析【解析】【分析】(1)①作线段AB 的垂直平分线交BC 于点D ,连接AD 即可.②求出DAB ∠,CAB ∠,可得结论.(2)证明()ABE ACD SAS ∆≅∆,推出ABE ACD ∠=∠,再证明OBC OCB ∠=∠,即可解决问题.【详解】解:(1)①如图,点D 即为所求.②MN 垂直平分线段AB ,DA DB ∴=,37DAB B ∴∠=∠=︒,90C ∠=︒ ,903753CAB ∴∠=︒-︒=︒,16CAD CAB DAB ∴∠=∠-∠=︒.(2)AB AC = ,BD CE =,AD AE ∴=,在ABE ∆和ACD ∆中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,()ABE ACD SAS ∴∆≅∆,ABE ACD ∴∠=∠,ABC ACB ∠=∠ ,OBC OCB ∴∠=∠,OB OC ∴=.【点睛】本题考查作图-复杂作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(1)2t ,72t -;(2)CAP PBQ ∆≅∆,PC PQ ⊥,理由见解析;(3)2()AP BQ cm ==,2x cm /s =;20/7x cm s =,P 在线段AB 中点,5()BQ cm =.【解析】【分析】(1)根据路程=时间⨯速度求解.(2)利用三角形全等的判定条件,判断两个三角形是否全等.(3)此处判断两个三角形全等用SAS ,需要分情况讨论对应边.【详解】解:(1)P 点运动速度为2/cm s ,运动()t s 走的路程为2()t cm ,AB 长度为7,(72)()BP t cm =-,故答案为2t ,72t -.(2)CAP PBQ ∆≅∆,PC PQ ⊥.证明: 点Q 的运动速度与点P 的运动速度相等,∴当1t =时,2()AP BQ cm ==,725()BP cm =-=,5()AC cm = ,90A B ∠=∠=︒,()CAP PBQ SAS ∴∆≅∆,ACP BPQ ∴∠=∠,90ACP CPA ∠+∠=︒ ,90BPQ CPA ∴∠+∠=︒,PC PQ∴⊥(3)CAB DBA ∠=∠,ACP ∆与BPQ ∆全等,需要满足下面条件之一:①AC PB =,AP BQ =,即5AC PB ==,752()AP BQ cm ==-=,2()AP t cm = ,()BQ xt cm =,2()AP BQ cm ∴==,2x cm /s =,②AC BQ =,AP PB =,即5AC BQ ==,7()2AP PB cm ==,72()2AP t cm ==,74t s ∴=,5()BQ xt cm == ,20/7x cm s ∴=,P 在线段AB 中点,5()BQ cm =.【点睛】本题考查了三角形全等的判定和性质和动点相结合,解题的关键是全等知识点熟练应用和动点的情况分析.24.(1)证明见解析(2)证明见解析【解析】【分析】(1)过点O作OM∥AB,根据平行线的性质得出∠1=∠EOM,求出OM∥CD,根据平行线的性质可求解;(2)根据平行线的性质得出∠AEH+∠CHE=180°,根据角平分线的性质和平行线的判定可求解.【详解】(1)方法一:过点O作OM∥AB,则∠1=∠EOM,∵AB∥CD,∴OM∥CD,∴∠2=∠FOM,∵OE⊥OF,∴∠EOF=90°,即∠EOM+∠FOM=90°,∴∠1+∠2=90°;方法二:过点F作FN∥OE交AB于N,则∠1=∠ANF,∠EOF+∠OFN=180°,∵OE⊥OF,∴∠EOF=90°,∴∠OFN=180°-∠EOF=90°,∵AB∥CD,∴∠ANF=∠NFD,∴∠1=∠NFD,∵∠1+∠OFN+∠NFD=180°,∴∠1+∠2=180°-∠OFN=90°;(2)∵AB∥CD,∴∠AEH+∠CHE=180°,∵FO平分∠CFG,EO平分∠AEH,∴∠CFG=2∠2,∠AEH=2∠1,∵∠1+∠2=90°,∴∠CFG+∠AEH=2∠1+2∠2=180°,∴∠CFG=∠CHE,∴FG∥EH.25.y=100-6x【解析】【详解】分析:(1)由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;(2)求汽车油箱中剩余油量为46L,则汽车行驶了多少小时即是求当Q=46时,t的值;(3)先求出汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间,乘以6求出用油量,再与36L比较大小即可判断.详解:(1)y=100-6x(2)令y=46,则46=100-6x,解得x=9.(3)700÷100=7h,7⨯6=42L,42>36,在中途不加油的情况下不能从高速公路起点开到高速公路终点.点睛:本题主要考查了一次函数的应用,由表格中数据求函数解析式可以根据等量关系列出或者利用待定系数法去求,理清汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间7小时,是第三个问题的突破点.。
北师大版数学七年级下册期末考试试题附答案
北师大版数学七年级下册期末考试试卷本试卷满分120分,考试时间90分钟,试题共25题,选择12道、填空6道、解答7道.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定2.下列计算正确的是()A.a2•a3=a6B.(a+b)2=a2+b2C.(2b2)3=6b6D.(﹣a+b)(﹣b﹣a)=a2﹣b23.下列微信表情图标属于轴对称图形的是()A.B.C.D.4.如图,点C,F,B,E在同一直线上,∠C=∠DFE=90°,添加下列条件,仍不能判定∠ACB与∠DFE 全等的是()A.∠A=∠D,AB=DE B.AC=DF,CF=BEC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E5.如图,在∠ABC中,AB=AC,∠A=30°,直线a∠b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A.40° B.45° C.50° D.35°6.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A .B .C .D .7.下列计算正确的是( )A .(﹣2y +1)(﹣2y ﹣1)=1﹣4y 2B .(12x +1)2=14x 2+1+xC .(x ﹣2y )2=(x +2y )2﹣6xyD .(x +3)(2x ﹣5)=2x 2﹣x ﹣158.如图,已知AB =AC ,AB =5,BC =3,以A ,B 两点为圆心,大于12AB 的长为半径画圆弧,两弧相交于点M ,N ,连接MN 与AC 相交于点D ,则∠BDC 的周长为( )A .8B .10C .11D .139.如图,在Rt∠ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N .再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =12,则∠ABD 的面积是( )A .12B .24C .36D .4810.如图,AB =AC ,BE ∠AC 于E ,CF ∠AB 于F ,BE ,CF 交于D ,则以下结论:∠∠ABE ∠∠ACF ;∠∠BDF ∠∠CDE ;∠点D 在∠BAC 的平分线上.正确的是( )A .∠B .∠C .∠∠D .∠∠∠11.小虎和小丽一起玩一种转盘游戏.转盘分成面积相等的三个区域,分别用“1”,“2”,“3”表示,固定指针转动转盘,任其自由停止.若指针所指的数字为奇数,小虎获胜;否则小丽获胜.则在该游戏中小虎获胜的概率是( )A .12B .49C .59D .2312.如图,有A ,B ,C 三个地点,且AB ∠BC ,从A 地测得B 地的方位角是北偏东43°,那么从C 地测B 地的方位角是( )A .南偏东47°B .南偏西43°C .北偏东43°D .北偏西47° 二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上 13.计算:﹣12016﹣(−13)﹣2+(π+1)0= ;(34)2007×(﹣113)2008= .14.等腰三角形的一个角为40°,则它的顶角为 . 15.计算:2019×2021﹣20202= .16.如图,在∠ABC 中,AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 的直线GH 与DE 平行,若∠C =40°,则∠GAD 的度数为 .17.如图,从以下给出的四个条件中选取一个: (1)∠1=∠2;(2)∠3=∠4;(3)∠A=∠DCE;(4)∠A+∠ABD=180°.恰能判断AB∠CD的概率是.18.如图,这是用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成…按照这样的规律排列下去,则第6个图案中共有个白子.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤),只有一项是符合题目要求的.19.(1)(2x2y﹣3xy2)﹣(6x2y﹣3xy2)(2)(−32ax4y3)÷(−65ax2y2)⋅8a2y(3)(ab+1)2﹣(ab﹣1)2(4)20153﹣2014×2015×2016(5)(4y+3x﹣5z)(3x+5z﹣4y)(6)(34a4b7−12a3b8+19a2b6)÷(13ab3)2,其中a=12,b=﹣4.20.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图1中涂黑一块小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图2中涂黑一块小正方形,使涂黑的四个小正方形组成一个中心对称图形.21.如图,是一个材质均匀的转盘,转盘分成8个全等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,(若指针指向两个扇形的交线时,当作指向右边的扇形),转动一次转盘:(1)求指针指向绿色扇形的概率;(2)指针指向红色扇形的概率大,还是绿色扇形概率大?为什么?22.如图,在∠ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∠BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.23.如图,已知AB=DC,AB∠CD,E、F是AC上两点,且AF=CE.(1)求证:∠ABE∠∠CDF;(2)连接BC,若∠CFD=100°,∠BCE=30°,求∠CBE的度数.24.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.25.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式;(2)请用这3种卡片拼出一个面积为a2+5ab+6b2的长方形(数量不限),在图3的虚线框中画出示意图,并在示意图上按照图2的方式标注好长方形的长与宽;(3)选取1张A型卡片,4张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,图中两阴影部分(长方形)为没有放置卡片的部分.已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2.若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.(用含a或b的代数式表示)答案一、选择题1.C .2.D .3.C .4.D .5.A .6.C .7.B .8.A .9.B .10.D .11.D .12.A . 二、填空题 13.:﹣9,43.14.:40°或100°. 15.:﹣1. 16.:55°. 17.:12.18.54. 三、解答题19.【解析】(1)原式=2x 2y ﹣3xy 2﹣6x 2y +3xy 2=﹣4x 2y ; (2)原式=10x 2y 2;(3)原式=(ab +1+ab ﹣1)(ab +1﹣ab +1)=4ab ;(4)原式=20153﹣(2015﹣1)×2015×(2015+1)=20153﹣(20152﹣1)×2015=20153﹣(20153﹣2015)=20153﹣20153+2015=2015;(5)原式=9x 2﹣(4y ﹣5z )2=9x 2﹣16y 2+40yz ﹣25z 2; (6)原式=(34a 4b 7−12a 3b 8+19a 2b 6)÷19a 2b 6=274a 2b −92ab 2+1,当a =12,b =﹣4时,原式=−274−36+1=﹣4134. 20.【解析】(1)如图1所示:∠、∠、∠、∠处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图2所示:∠、∠使涂黑的四个小正方形组成一个中心对称图形..21.【解析】按颜色把8个扇形分为2红、3绿、3黄,所有可能结果的总数为8,(1)指针指向绿色的结果有3个, ∠P (指针指向绿色)=38; (2)指针指向红色的结果有2个, 则P (指针指向红色)=28=14, 由(1)得:指针指向绿色扇形的概率大. 22.【解析】(1)∠AB =AC , ∠∠C =∠ABC , ∠∠C =36°, ∠∠ABC =36°, ∠D 为BC 的中点, ∠AD ∠BC ,∠∠BAD =90°﹣∠ABC =90°﹣36°=54°. (2)∠BE 平分∠ABC , ∠∠ABE =∠EBC , 又∠EF ∠BC , ∠∠EBC =∠BEF , ∠∠EBF =∠FEB , ∠BF =EF .23.【解答】(1)证明:∠AB ∠CD , ∠∠A =∠DCF , ∠AF =CE , ∠AE =CF ,在∠ABE 和∠CDF 中, {AB =CD∠A =∠DCF AE =CF, ∠∠ABE ∠∠CDF (SAS ).(2)∠∠ABE ∠∠CDF , ∠∠AEB =∠CFD =100°, ∠∠BEC =180°﹣100°=80°, ∠∠CBE =180°﹣80°﹣30°=70°.24.【解析】(1)∠乌龟是一直跑的而兔子中间有休息的时刻, ∠折线OABC 表示赛跑过程中兔子的路程与时间的关系; 由图象可知:赛跑的全过程为1500米; 故答案为:兔子,1500; (2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米). (3)700÷30=703(分钟), 所以乌龟用了703分钟追上了正在睡觉的兔子.(4)∠兔子跑了700米停下睡觉,用了2分钟, ∠剩余800米,所用的时间为:800÷400=2(分钟), ∠兔子睡觉用了:50.5﹣2﹣2=46.5(分钟). 所以兔子中间停下睡觉用了46.5分钟.25.【解析】(1)方法1:大正方形的面积为(a +b )2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b )2=a 2+2ab +b 2, 故答案为:(a +b )2=a 2+2ab +b 2. (2)如图,(3)设DG 长为x .∠S 1=a [x ﹣(a +2b )]=ax ﹣a 2﹣2ab ,S 2=2b (x ﹣a )=2bx ﹣2ab , ∠S =S 2﹣S 1=(2bx ﹣2ab )﹣(ax ﹣a 2﹣2ab )=(2b ﹣a )x +a 2, 由题意得,若S 为定值,则S 将不随x 的变化而变化, 可知当2b ﹣a =0时,即a =2b 时,S =a 2为定值, 故答案为:a =2b ,a 2.。
北师大版七年级下册数学期末考试试题含答案
北师大版七年级下册数学期末考试试卷一、单选题1.下列运算正确的是()A.a+b=ab B.(x+1)2 =x2+1C.a10÷ a5=a2D.(﹣a3)2=a62.某种细胞直径是0.00000095米,将0.00000095用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣6D.95×10﹣83.以每组数为线段的长度,可以构成三角形三边的是()A.5,6,10B.5,6,11C.3,4,8D.4,4,84.下列图形是轴对称图形的是()A.B.C.D.5.下列事件中,是必然事件的是()A.内错角相等B.掷两枚硬币,必有一个正面朝上,一个反面朝上C.13人中至少有两个人的生肖相同D.打开电视,一定能看到三水新闻6.如果∠A=50°,那么∠A的余角是()A.30°B.40°C.90°D.130°7.如图,把一副三角板放在桌面上,当AB∠DC时,∠CAE等于()A.10°B.15°C.20°D.25°8.一个长方体的长、宽、高分别是3m-4,2m和m,则它的体积是()A.3m3-4m2B.3m2-4m3C.6m3-8m2D.6m2-8m39.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b] [(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)] [a+(b﹣c)]D.[a﹣(b﹣c)] [a+(b﹣c)]10.如图所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的有()∠体育场离张强家3.5千米∠张强在体育场锻炼了15分钟∠体育场离早餐店1.5千米∠张强从早餐店回家的平均速度是3千米/小时A.1个B.2个C.3个D.4个二、填空题11.计算:(﹣a)2•a3=_______.12.若a x=2,a y=3,则a x-y=______.13.如图所示,在∠ABC中,AB=AC,∠B=50°,则∠A=________.14.有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的概率为_____.15.已知等腰三角形的两边长为3和6,则它的周长为_____.16.三角形的底边长为8,高是x,那么三角形的面积y与高x之间的关系式是______.17.如图,已知∠ACB=90°,BC=6,AC=8,AB=10,点D在线段AB上运动,线段CD的最短距离是_____.三、解答题)﹣2+(﹣1)202018.﹣32+50﹣(1219.先化简再求值:[(x﹣y)2﹣(y﹣x)(y+x)]÷2x,其中x=2021,y=1.20.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?21.如图,AB=CD,AF=CE,∠A=∠C,那么BE=DF吗?请说明理由.22.三水区响应“绿色环保”号召,鼓励市民节约用电,对电费采用分段收费标准,若某户居民每月应交电费y(元)与用电量x(度)之间关系的图象如图所示:(1)当用电量不超过50度时,每度收费多少元?超过50度时,超过的部分每度收费多少元?(2)若某户居民某月交电费120元,该户居民用电多少度?23.如图,在∠ABC中,∠C=60°,∠A=40°.用尺规作图作边AB的垂直平分线,交AC于点D,交AB于点E(要求:不写作法,保留作图痕迹).24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1)观察图2,写出所表示的数学等式:_________________________=____________________________.(2)观察图3,写出所表示的数学等式:_________________________=____________________________.(3)已知(2)的等式中的三个字母可以取任何数,若a=7x-5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37.请利用(2)中的结论求ab+bc+ac的值.25.如图(1),AB=7cm,AC∠AB,BD∠AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t (s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,∠ACP与∠BPQ全等,此时PC∠PQ吗?请说明理由.(2)将图(1)中的“AC∠AB,BD∠AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s.当点P、Q运动到某处时,有∠ACP与∠BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=__________.(直接写出结果)参考答案1.D【分析】根据合并同类项法则、完全平方公式、同底数幂的的除法的运算法则、幂的乘方的运算法则进行计算后判断即可.【详解】解:A、a与b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(x+1)2=x2+2x+1,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、(-a3)2=a6,原计算正确,故此选项符合题意;故选:D.2.A【解析】【分析】用科学记数法表示较小数时的形式为10n a -⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0 的数字后面即可,确定n 的值时,n 等于该数从左起第一个不为0的数字前所有0的个数.【详解】易知9.5a =,从左起第一个不为0的数字前面有7个0,所以7n =∠70.000000959.510-=⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.A【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A 、5+6=11>10,能组成三角形;B 、5+6=11,不能够组成三角形;C 、3+4=7<8,不能组成三角形;D 、4+4=8,不能组成三角形.故选:A .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.D【解析】【分析】一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、B、C不符合轴对称图形的定义,D符合轴对称图形的定义,故选D.【点睛】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.5.C【解析】【分析】直接利用随机事件的定义分别分析得出答案.【详解】解:A.内错角相等,是随机事件,不合题意;B.掷两枚硬币,必有一个正面朝上,一个反面朝上,是随机事件,不合题意;C.13人中至少有两个人的生肖相同,是必然事件,符合题意;D.打开电视,一定能看到三水新闻,是随机事件,不合题意;故选:C.【点睛】此题主要考查了随机事件,正确把握相关定义是解题关键.6.B【解析】【分析】和为90°的两个角是互为余角,∠A的余角为(90°-∠A),代入计算即可.【详解】解:90°-∠A=90°-50°=40°,故选:B.【点睛】本题主要考查余角的意义和计算方法,关键是掌握如果两个角的和为90°,那么这两个角互为余角.7.B【解析】【分析】根据三角形的内角和定理和平行线的性质定理可得结果.解:∠AB∠DC,∠∠EAB=∠AED=45°,∠∠BAC=30°,∠∠CAE=∠EAB-∠BAC=45°-30°=15°,故选:B.【点睛】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握性质定理.8.C【解析】【分析】根据长方体体积的计算方法,列出算式进行计算即可.【详解】解:根据长方体体积的计算公式得,(3m-4)•2m•m=6m3-8m2,故选:C.【点睛】本题考查单项式乘以多项式的计算方法,掌握计算方法是正确计算的前提.9.D【解析】【分析】由于平方差公式是把多项式分解为两个数的和与两个数的差的积的形式,所以根据这个特点即可判定选择项.【详解】解:(a-b+c)(a+b-c)=[a-(b-c)][a+(b-c)].选项A,B,C不符合平方差公式的结构特征,只有选项D是正确的,故选:D.【点睛】此题主要考查了因式分解的平方差公式的特点:两个数的和乘以两个数的差,此题解题关键是分别找出两个括号的符号相同的和符号不同的项,然后变形就比较简单.10.A【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】解:∠由纵坐标看出,体育场离张强家3.5千米,故∠正确;∠由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故∠正确;∠由纵坐标看出,3.5-2.0=1.5千米,体育场离早餐店1.5千米,故∠正确;∠由纵坐标看出早餐店离家2千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小=4千米/小时,故∠错误;时,2÷12故选:A.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.11.a5【解析】【分析】先计算积的乘方,再根据“同底数幂相乘,底数不变,指数相加”进行计算即可.【详解】解:(﹣a)2•a3= a2•a3=a5,故答案是:a5.【点睛】本题考查了积的乘方、同底数幂的乘法,解题的关键是注意符号的确定..12.23【解析】【详解】试题解析:∠a x=2,a y=3,.∠a x-y=a x÷a y=2÷3=23考点:同底数幂的除法.13.80°【解析】略【详解】根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A的度数解:∠在∠ABC中,AB=AC,∠B=50°∠∠C=50°∠∠A=180°﹣50°﹣50°=80°故答案为80°.【点睛】略14.3 5【解析】【分析】直接利用概率公式得出答案.【详解】解:有5张纸签,分别标有数字2,3,4,5,6,从中随机抽出一张,则抽出标有数字为偶数的是2,4,6,故抽出标有数字为偶数的概率为:35.故答案为:35.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.15.15【解析】【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【详解】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,∠3+3=6,∠3,3,6不能组成三角形,综上所述,等腰三角形的三边长为3,3,6,周长为15;故答案为:15.【点睛】本题考查了等腰三角形的定义以及三角形的三边关系定理,是基础知识,要熟练掌握.注意分类讨论思想的应用.16.y=4x【解析】【分析】根据三角形的面积计算方法可得函数关系式.【详解】解:y=12×8x=4x ,故答案为:y=4x .【点睛】本题考查用函数关系式表示变量之间的关系,掌握三角形面积的计算方法是得出关系式的前提.17.4.8【解析】【分析】当CD∠AB 时,线段CD 的长度最短,依据三角形的面积即可得到CD 的长.【详解】解:∠点D 在线段AB 上运动,∠当CD∠AB 时,线段CD 的长度最短,又∠∠ACB=90°,BC=6,AC=8,AB=10, ∠12AC×BC=12AB×CD ,86 4.810AC BC CD AB ⨯⨯∴===, 故答案为:4.8.【点睛】本题主要考查了垂线段最短,垂线段最短指的是从直线外一点到这条直线所作的垂线段最短.18.-11【解析】【分析】先分别化简乘方,零指数幂,负整数指数幂,然后进行有理数的混合运算.【详解】解:原式=-9+1-4+1=-11.【点睛】本题考查乘方,零指数幂,负整数指数幂及有理数的混合运算,掌握法则和运算顺序正确计算是解题关键.19.x-y;2020【解析】【分析】原式中括号中利用完全平方公式,以及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】解:[(x-y)2-(y-x)(y+x)]÷2x=(x2-2xy+y2-y2+x2)÷2x=(2x2-2xy)÷2x=x-y,当x=2021,y=1时,原式=2021-1=2020.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.(1)34;(2)125【解析】【分析】根据题意求出概率,进行简单计算即可求解.【详解】解:(1)指针指向1,2,3,5,6,8都获奖,∠获奖概率P=68=3,4(2)获得一等奖的概率为18, 100018⨯=125(人),∠获得一等奖的人数可能是125人.【点睛】本题考查了概率的简单应用,概率的求法,属于简单题,熟悉概率的实际含义是解题关键.21.见解析【解析】【分析】由“SAS”可证∠ABF∠∠CDE ,可得BF=DE ,可得BE=DF .【详解】解:BE=DF .理由如下:在∠ABF 和∠CDE 中,AB CDA CAF CE=⎧⎪∠=∠⎨⎪=⎩∠∠ABF∠∠CDE (SAS ),∠BF=DE ,∠BF -EF=DE -EF ,∠BE=DF .【点睛】本题考查了全等三角形的判定和性质,证明∠ABF∠∠CDE 是本题的关键.22.(1)0.6元;1元 (2)140度【解析】【分析】(1)根据图象上点的坐标进行列式计算即可;(2)根据(1)的结论求出超过50度部分的用电量即可求解.【详解】解:(1)不超过50度时每度收费:30÷50=0.6(元),超过50度时,超过的部分每度收费:(60-30)÷(80-50)=1(元);答:当用电量不超过50度时,每度收费0.6元,超过50度时,超过的部分每度收费1元.(2)120-0.6×50=90(元),90÷1=90(度),50+90=140(度).答:该户居民用电140度.【点睛】本题主要考查一次函数的应用,关键学会读懂图象信息,学会构建一次函数解决问题.23.作图见解析【解析】【分析】AB长为半径画弧,两弧交于点M,N,作直线MN交AC于分别以A.B为圆心,大于12D,交AB于E.【详解】解:如图,直线DE即为所求.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)(a+2b)(a+b);a2+3ab+2b2;(2)(a+b+c)2;a2+b2+c2+2ab+2ac+2bc;(3)-18【解析】【分析】(1)根据大矩形的面积=各矩形的面积之和求解即可;(2)根据正方形的面积=各矩形的面积之和求解即可;(3)先求出(a+b+c)2的值,再根据(2)中关系式求得结果.【详解】解:(1)大矩形的面积=(a+2b)(a+b),各部分面积和=a2+3ab+2b2,∠(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b);a2+3ab+2b2;(2)正方形的面积可表示为=(a+b+c)2;各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∠(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.故答案为:(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(3)由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∠(a+b+c)2=(7x-5-4x+2-3x+4)2=1,∠1=a2+b2+c2+2ab+2ac+2bc,∠a2+b2+c2=37,∠1=37+2(ab+bc+ac),∠2(ab+bc+ac)=-36,∠ab+bc+ac=-18.【点睛】本题考查了因式分解的应用,完全平方公式的几何背景,以及完全平方公式在几何图形相关计算中的应用,本题具有一定的综合性,难度中等略大.25.(1)PC∠PQ,理由见解析;(2)t=1,x=2或t=74,x=207;(3)60°【解析】【分析】(1)利用SAS证得∠ACP∠∠BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由∠ACP∠∠BPQ,分两种情况:∠AC=BP,AP=BQ,∠AC=BQ,AP=BP,建立方程组求得答案即可;(3)根据题意得P、Q两点的运动速度为2,得到BP=AC,根据全等三角形的性质得到∠C=∠BPQ,于是得到结论.【详解】解:(1)当t=1时,AP=BQ=2,BP=AC=5又∠AC∠AB,BD∠AB,∠∠A=∠B=90°在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS),∠ACP BPQ∠=∠,∠90APC BPQ APC ACP∠+∠=∠+∠=∠∠CPQ=90°,即线段PC与线段PQ垂直;(2)∠若∠ACP∠∠BPQ,则AC=BP,AP=BQ,7-2t=5,2t=xt,解得t=1,x=2,∠存在t=1,x=2,使得∠ACP与∠BPQ全等,∠若∠ACP∠∠BQP,则AC=BQ,AP=BP,5=xt,2t=7 2解得t=74,x=207,∠存在t=74,x=207,使得∠ACP与∠BPQ全等,综上所述,存在t=1,x=2或t=74,x=207使得∠ACP与∠BPQ全等(3)∠∠A=∠B=60°∠P、Q两点的运动速度相同,∠P、Q两点的运动速度为2,∠t=1,∠AP=BQ=2,∠BP=5,∠BP=AC,在∠ACP和∠BPQ中AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩∠∠ACP∠∠BPQ(SAS);∠∠C=∠BPQ,∠∠C+∠APC=120°,∠∠APC+∠BPQ=120°,∠∠CPQ=60°.故答案为:60°.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,余角的性质,正确的识别图形是解题的关键.。
北师大版七年级下册数学期末考试试题含答案
北师大版七年级下册数学期末考试试题含答案北师大版七年级下册数学期末考试试卷一、单选题1.下列图形中是轴对称图形的是()A。
B。
C。
D。
2.下列运算正确的是()A。
a ÷ a = a^6 (a ≠ 0)B。
a^2 × a^3 = a^6C。
3a + 2a = 5aD。
a^2 ÷ a^(-3) = a^53.下列长度的四根木棒,能与长度分别为3cm和6cm的木棒构成三角形的是()A。
3cmB。
6cmC。
9cmD。
10cm4.石墨烯被认为是一种未来革命性的材料,它是一种由碳原子构成的纳米材料。
其中每两个相邻碳原子间的键长为0.xxxxxxxx0142米,将0.xxxxxxxx0142科学记数法表示为()A。
0.142×10^(-9)B。
1.42×10^(-10)C。
1.42×10^(-11)D。
0.142×10^(-8)5.下列事件中,属于随机事件的是()A。
抛出的篮球往下落B。
在只有白球的袋子里摸出一个红球C。
购买10张彩票,中一等奖D。
地球绕太阳公转6.若多项式m^2 - kmn + n^2是一个完全平方式,则常数k 的值为()A。
1B。
±1C。
2D。
±27.如图,在钝角三角形ABC中,∠ABC为钝角,以点B 为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD于点E。
下列结论错误的是()A。
CE垂直平分ADB。
CE平分∠ACDC。
ABD是等腰三角形D。
ACD是等边三角形8.将202×198变形正确的是()A。
2002 - 4B。
2022 - 4C。
2002 + 2×200 + 4D。
2002 - 2×200 + 49.如图,在四边形ABCD中,AD//BC,∠A为直角,动点P从点A开始沿A→B→C→D的路径匀速前进D,在这个过程中,△APD的面积S随时间t的变化过程可以用图像近似的表示为()A。
七年级下册北师大版数学期末试卷【含答案】
七年级下册北师大版数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 26厘米3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形4. 一个等差数列的前三项分别是2,5,8,那么这个数列的第四项是多少?A. 7B. 10C. 11D. 125. 下列哪个图形是中心对称图形?A. 正方形B. 长方形C. 三角形D. 梯形二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 一个三角形的内角和一定是180度。
()3. 任何两个等边三角形都是全等的。
()4. 一个等差数列的相邻两项之差是常数。
()5. 任何两个等腰三角形都是相似的。
()三、填空题(每题1分,共5分)1. 一个数的因数是______和______。
2. 一个等腰三角形的底角是______度,顶角是______度。
3. 一个正方形的对角线长是______厘米,它的面积是______平方厘米。
4. 一个等差数列的公差是______,它的第10项是______。
5. 一个平行四边形的对角线互相______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述等腰三角形的性质。
3. 简述轴对称图形的定义。
4. 简述中心对称图形的定义。
5. 简述勾股定理的定义。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
3. 一个正方形的对角线长是10厘米,求这个正方形的面积。
4. 一个平行四边形的对角线互相垂直,其中一条对角线长是12厘米,另一条对角线长是16厘米,求这个平行四边形的面积。
北师大版七年级下册数学《期末测试题》(附答案)
6.如图,直线l是菱形ABCD和矩形EFGH的对称轴,点C在EF边上,若菱形ABCD沿直线l从左向右匀速运动直至点C落在GH边上停止运动.能反映菱形进入矩形内部的周长y与运动的时间x之间关系的图象大致是()
A. B. C. D.
【答案】B
【解析】
周长y与运动 时间x之间成正比关系,
故选B
点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.
C.连接AP,BP,则AP+BP>AB,故C符合题意;
D. Q在A的右边时,AQ=AB−BQ或AQ=AB+BQ,故D不符合题意;
故选C.
5.如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()
A. 6.5cmB. 5cmC. 9.5cmD. 11cm
【答案】B
【解析】
由题意可得:∠ACD+∠DAC=90°,∠BCE+∠ACD=90°,AC=BC,
则∠DAC=∠BCE,
在△ACD和△CBE中,
∠CDA=∠BEC∠DAC=∠ECBAC=BC,
∴△ACD≌△CBE(AAS),
∴AD=EC,BE=CD,
∵BC=8cm,BE=3cm,
∴AD=EC=5(cm).
【详解】设∠3=3x,则∠1=28x,∠2=5x,
∵∠1+∠2+∠3=180°,
∴28x+5x+3x=180°,解得x=5°,
∴∠1=140°,∠2=25°,∠3=15°,
【新】北师大版七年级数学下学期期末测试卷及答案(两套)
度七年级数学下学期期末测试卷(一)一、选择题(每题3分,共18分) 1、下列运算正确的是( )。
A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) A 、1个 B 、2个 C 、3个 D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4个二、填空题(每空3分,共27分) 7、单项式313xy -的次数是 . ABC D20408060510152025303540速度时间8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为三角形. 9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 . 12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。
最新北师大版七年级数学下册期末试卷(完整版)
最新北师大版七年级数学下册期末试卷(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2B.3C.9D.±32.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm5.已知x是整数,当30x-取最小值时,x的值是( )A.5 B.6 C.7 D.86.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°8.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,则m的值为().A.2B.3C.4D.59.温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A .400cm 2B .500cm 2C .600cm 2D .300cm 2二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是________千米/时.3.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.4.若()2320m n -++=,则m+2n 的值是________.5.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组x 3y 1{3x 2y 8+=--=2.若关于x ,y 的方程组24,1mx ny x y +=⎧⎨+=⎩与()3,13x y nx m y -=⎧⎨+-=⎩有相同的解. (1)求这个相同的解;(2)求m 、n 的值.3.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、A6、D7、A8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、273、:略4、-15、126、54°三、解答题(本大题共6小题,共72分)1、x2 y1⎧⎨⎩==-2、(1)21xy=⎧⎨=-⎩;(2)m=6,n=43、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1)略(2)成立5、(1)800,240;(2)补图见解析;(3)9.6万人.6、25元超市一共购进1200个魔方。
最新北师大版七年级下册数学期末试卷及答案3套
一、细心填一填(每小题2分,共计20)1. 计算:32x x ⋅ = ;2ab b 4a 2÷= .2.如果1kx x 2++是一个完全平方式,那么k 的值是.3.如图,两直线a 、b 被第三条直线c 所截,若∠1=50°,∠2=130°,则直线a 、b 的位置关系是. 4. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到万元,这个数据用科学记数法可表示为万元.5. 一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是.6. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .7. 如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC ≌△ADE ,还需要添加的条件是 .8.现在规定两种新的运算“﹡”和“◎”:a ﹡b=22b a +;a ◎(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .9.某物体运动的路程s t=3小时时,10. 所示, 30分)11.下列图形中不是..A B C D 12. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .044a a a =-13. 下列结论中,正确..的是( ) A .若22b a ,b a ≠≠则 B .若22b a , b a >>则C .若b a ,b a 22±==则 D .若b1a 1, b a >>则14. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30° 15. 由四舍五入得到近似数3.00万( )A .精确到万位,有1个有效数字B . 精确到个位,有1个有效数字C .精确到百分位,有3个有效数字D . 精确到百位,有3个有效数字 16. 观察一串数:0,2,4,6,….第n 个数应为( )A .2(n -1)B .2n -1C .2(n +1)D .2n +1 17.下列关系式中,正确..的是( ) A .()222b a b a -=- B.()()22b a b a b a -=-+C .()222b a b a +=+ D.()222b 2ab a b a +-=+18.A .1月至3 减小B .1月至3 持平C .1月至3生产D . 1月至319. A .等腰三角形20. 长度分别为3cm ( )A .1B .三、精心算一算(21题321.()()3426y y 2-;22.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.四、认真画一画(23题4分,24题4分,共计8分)23.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是: .24.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)25.在只有一个名额.份,如图所示..若你是26. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?六、生活中的数学(第27小题4分,第28小题5分,共计9分)27.下面是我县某养鸡场2001~2006年的养鸡统计图:(1)从图中你能得到什么信息.(2)各年养鸡多少万只?(3)所得(2)的数据都是准确数吗?(4)这张图与条形统计图比较,有什么优点?28.某种产品的商标如图所示,O是线段AC、BD的交点,并且为图中的两个三角形全等,他的思考过程是:在△ABO和△DCO中⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CDABDCOABODOCAOBBDAC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29.如图所示,要想判断AB 是否与CD 并说明理由.30.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达). (4)运用你所得到的公式,计算下列各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+八、信息阅读题(6分)31.一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x 与他手中持有的钱数y (含备用零钱)的关系如图所示,结合图像回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?一、细心填一填(每题2分,共计20)1. 5x ;2a . 2.±2. 3.平行. 4.3.397×1075.836.26或22㎝7. AC=AE (或BC=DE ,∠E=∠C ,∠B=∠D )8.-209. 45 10.B6395二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)21.解:=1212y 2y - =12y ……3分 22.解:=5x 5x 19x 14x 4x 222-++-+-=29x +- …3分当x=0时,原式四、认真画一画(23题4分,24题423.解:理由是: 垂线段最短 . ……2分 作图……2分24.解每作对一个给1分五、请你做裁判!(第25题小4分,第26小题6分,共计10分)25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是3162=,而小丽去的可能性是61,所以游戏不公平. ……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35 解得x=10.因此小王设计的长为x +际的. ……2分根据题意得2x +(x +2)=35 解得x=11.因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只.(3)近似数.(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分添加的条件为:∠B=∠C (或∠A=∠D 、或符合即可)…3分在△ABO 和△DCO 中DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩⎪⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行(3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)22b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=22b a -.(4): 评分标准:每空1分,(4)小题各1分八、信息阅读题(6分)31.(1)解:由图象可以看出农民自带的零钱为5元;(2)()元5.030520=- (3)()()千克,千克453015154.02026=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. ……第(1)问和答各1分,(2)、(3)各2分.七年级数学(下)期末考试卷时间:120分钟 总分:120分第2题图nmba70°70°110°第3题图CBA2112第六题图DCBA一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x =。
最新北师大新版七年级下学期数学期末考试试卷(最新)
最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列计算正确的是()A.x3+5x3=6x4B.x6÷x3=x5C.(a2)3=a7D.(ab)3=a3b32、在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.3、下列各事件,是必然事件的是()A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°4、设△ABC的三边长分别为a,b,c,其中a,b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的长度取值范围是()A.3<c<5B.2<c<4C.4<c<6D.5<c<65、一副直角三角板按如图所示的方式摆放,点E在AB的延长线上,当DF∥AB 时,∠EDB的度数为()A.10°B.15°C.30°D.45°6、如图,在△ABC中,AB=AC=6,BC=4,分别以点A,点B为圆心,大于的长为半径作弧,两弧交于点E,F,过点E,F作直线交AC于点D,连结BD,则△BCD的周长为()A.7B.8C.10D.127、下列命题中是真命题的是()A.相等的角是对顶角B.若a2=b2,则a=bC.内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直8、如图,△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,P为直线AB上一动点,连接PC,则线段PC的最小值是()A.3B.2.5C.2.4D.29、如图,在等腰△ABC中,AB=AC=5,BC=6,O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,OD:OE:OF=1:4:4,则AO的长度为()A.7B.5C.D.10、如图1,在四边形ABCD中,AB=8,∠C=90°,DC∥AB,动点P从B点出发,沿着B→C→D→A向终点A运动,设点P运动的路程为x,△ABP的面积为y,若y与x的关系如图2所示,下列说法:①BC⊥AB;②四边形ABCD的周长是22;③AD=CD;④△ABP面积的最大值为16,其中正确的是()A.1个B.2个C.3个D.4个二、填空题(每小题3分,满分18分)11、若等腰三角形的一个底角的度数为40°,则它的顶角的度数为°.12、已知a﹣b=3,ab=10,则a2+b2=.13、如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.若BC=2,则AD的长度为.14、若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为.15、若2a=5,8b=11,则2a+3b的值为.16、如图,在等边△ABC中,AC=12,AD是BC边上的中线,点P是AD上一点,且AP=5.如果点M、N分别是AB和AD上的动点,那么PM+MN+NB的最小值为.最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:18、先化简,再求值:[(x+2y)2﹣y(x+3y)+(x﹣y)(x+y)]÷(2x),其中x=﹣3,y=2.19、为鼓励学生多读书,读好书,七年级(8)班班主任精选了《朝花夕拾》、《平凡的世界》、《长征》、《红岩》、《文化苦旅》共5种书,准备送给学生.(1)若上述5种书各有2本,小明从中任选一本,选中《红岩》的概率是多少?(2)若上述5种书各有3本,小明从上述5种书中任选一本,选中《长征》的概率是,班主任老师只需要增加几本《长征》书?20、如图,E,F分别是等边△ABC边AB,AC上的点,且AE=CF,CE,BF交于点P.(1)证明:CE=BF;(2)求∠BPC的度数.21、已知2x+3y=10,xy=4.(1)求(2x﹣3y)2的值;(2)将长方形ABFC和长方形CDEG如图所示放置,AB=2x,CD=3y,AC、DE的长分别为AB、CD的一半,求图中阴影部分的面积.22、如图,在△ABC中,AD为BC边上的高,AE是∠BAD的角平分线,点F为AE上一点,连接BF,∠BFE=45°.(1)求证:BF平分∠ABE;(2)连接CF交AD于点G,若S△ABF =S△CBF,求证:∠AFC=90°;(3)在(2)的条件下,当BE=3,AG=4.5时,求线段AB的长.23、已知AB//CD,点P是平面内一点,过点P作射线PM、PN,PM与AB相交于点E,PN与CD相交于点F.(1)如图1,若点P为直线AB、CD之间区域的一点,∠AEP=40°,∠CFP =30°,求∠MPN的度数;(2)如图2,若点P为直线AB、CD之间区域的一点,∠BEM和∠DFP的角平分线交于点Q.请说明:2∠EQF+∠MPN=180°;(3)如图3,若点P、H是直线CD上的点,连接EH,直线EH交∠MPN的角平分线于点Q,射线PN交AB于点G,设∠DPG=α.当∠PHE=∠PEH 时,求∠PQH(用含α的代数式表示).24、△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD并延长,过点B作BF⊥AD延长线于点F.(1)如图1,若AD平分∠BAC,AD=6,求BF的值;(2)如图2,M是FB延长线上一点,连接AM,当AD平分∠MAC时,试探究AC、CD、AM之间的数量关系并说明理由;(3)如图3,连接CF,①求证:∠AFC=45°;②S△BCF =,S△ACF=21,求AF的值.25、已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.(1)填空:∠AGD+∠EGH=°;(2)若点G在点B的右边.①求证:△DAG≌△GHE;②试探索:EH﹣BG的值是否为定值,若是,请求出定值;若不是,请说明理由.(3)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH 的度数.。
北师大版七年级下册数学《期末考试试题》(带答案解析)
2020年北师大版数学七年级下册期末测试学校 _________ 班级 ____________一、选择题(每小题3分,共30分)1•下列世界博览会会徽图案中是轴对称图形的是(2•下列计算正确的是()551032A. a + a = aB. a • a = a4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()意翻开一张是汉字“信”的概率是 ()7•下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;行于同一条直线的两条直线也互相平行;④同位角相等•其中正确的个数有(8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是(1 = Z 2,那么下列结论正确的是()| ----- p3•如图所示,已知/A. AB //BC B. AB // CD C. / C=ZD D. / 3=Z4A. 5 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45如图①所示,有6张写有汉字的卡片,它们的背面都相同, 现将它们背面朝上洗匀后如图 2摆放,从中任1A.- 26.利用基本作图,作出唯一三角形的是(□ □ U□ □ □ 阳2B. 13C.A.已知三边B .C.已知两角及其夹边D. 已知两边及其夹角 已知两边及其中一边1D.-6对角B. 2个C. 3个D. 4个姓名 _________成绩 ________76C. a 十 a = 3、2八 6D. ( — a ) = —②垂线段最短;③在同一平面内平C. DBro二、填空题(每小题3分,共15分)11.0.000 000 087 用科学记数法可表示为 _____ . 12.如图,已知 AB// CD, / 1 = 120 °,则/ C =13.一棵树高h (m )与生长时间n (年)之间满足一定的关系,请你根据下表中的数写出h (m )与n (年)之间的关A. (a b)(a b) a 2b 2B. (a b)2 a 22ab b 2 2C. 2a(a b) 2a 2abD. (a b)22a 2abb 29•如图,等腰△ABC 中, AB=AC=8 , BC=5 , AB 的垂直平分线DE 交AB 于点 D ,交 AC 于点 E ,贝U ABECB. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度 y 之的周长为()间的关系用图像描述大致是(系式:h= _____ .h(m)2.63.2 3.84.45.014.在一个不透明的箱子里装有红色、蓝色、黄色的球共 20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在 10%和15%,则箱子里蓝色球的个数很可能是15.如图,△ ABE^A ABC 分别沿着 AB, AC 边翻折 180 ° 形成的•若/ BAC = 145。
北师大版数学七年级下册期末考试试题含答案
北师大版数学七年级下册期末考试试卷一、选择题1.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.2.下列各式运算正确的是()A.a2+a2=2a4B.a2•a3=a5C.(﹣3x)3÷(﹣3x)=﹣9x2D.(﹣ab2)2=﹣a2b43.下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军4.计算(x+3)(x﹣3)的结果为()A.x2+6x+9 B.x2﹣6x+9 C.x2+9 D.x2﹣95.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30°,则∠1的度数为()A.30°B.45°C.60°D.75°6.下列各组数据,能构成三角形的是()A.1cm,2cm,3cm B.2cm,2cm,5cmC.3cm,4cm,5cm D.7cm,5cm,1cm7.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S38.李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A.B.C.D.10.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上).11.化简(a+b)(a﹣b)=.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为.(不要求写出自变量x的取值范围)13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(16分)(1)(﹣1)2020+(﹣)2﹣(3.14﹣π)0;(2)(a﹣1)(a+1)﹣(a﹣2)2;(3)(20x2y﹣10xy2)÷(﹣5xy);(4)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).16.先化简,再求值:(x+3y)2﹣2x(x+2y)+(x﹣3y)(x+3y),其中x=﹣1,y=2.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90°,EC⊥AF.求证:AB∥CD.(每一行都要写依据)19.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡.上)21.若x2+2mx+9是完全平方式,则m=.22.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=.23.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC=2,则CD =.24.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为.25.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数度,再沿BF折叠成图c.则图中的∠CFE的度数是度.五、解答题(共3个小题,共30分)26.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD=BE(2)△APC≌△BQC(3)△PCQ是等边三角形.27.如图1,∠FBD=90°,EB=EF,CB=CD.(1)求证:EF∥CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG∥BC,∠FBD=90°,EG=EF,CB=CD,请问(1)中的结论是否仍成立?请证明.28.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F 分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.参考答案一、单选题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.2.下列各式运算正确的是()A.a2+a2=2a4B.a2•a3=a5C.(﹣3x)3÷(﹣3x)=﹣9x2D.(﹣ab2)2=﹣a2b4【分析】分别根据合并同类项法则,同底数幂的乘法法则,单项式除以单项式的运算法则以及积的乘方运算法则逐一判断即可.解:A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项符合题意;C.(﹣3x)3÷(﹣3x)=9x2,故本选项不合题意;D.(﹣ab2)2=a2b4,故本选项不合题意.故选:B.3.下列事件中,属于必然事件的是()A.抛出的篮球会下落B.打开电视,正在播《新闻联播》C.任意买一张电影票,座位号是3的倍数D.校篮球队将夺得区冠军【分析】根据事件发生的可能性大小判断即可.解:A、抛出的篮球会下落,是必然事件;B、打开电视,正在播《新闻联播》,是随机事件;C、任意买一张电影票,座位号是3的倍数,是随机事件;D、校篮球队将夺得区冠军,是随机事件;故选:A.4.计算(x+3)(x﹣3)的结果为()A.x2+6x+9 B.x2﹣6x+9 C.x2+9 D.x2﹣9【分析】根据平方差公式即可得出结果.解:(x+3)(x﹣3)=x2﹣32=x2﹣9.故选:D.5.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30°,则∠1的度数为()A.30°B.45°C.60°D.75°【分析】根据平行线的性质和直角的定义解答即可.解:如图,作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠2=∠AEF=30°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°﹣30°=60°,故选:C.6.下列各组数据,能构成三角形的是()A.1cm,2cm,3cm B.2cm,2cm,5cmC.3cm,4cm,5cm D.7cm,5cm,1cm【分析】看哪个选项中两条较小的边的和不大于最大的边即可.解:A、1+2=3,不能构成三角形;B、2+2<5,不能构成三角形;C、3+4>5,能构成三角形;D、1+5<7,不能构成三角形.故选:C.7.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S3【分析】根据同高三角形面积的比等于对应底边的比可得结论.解:∵BD=DE=EC,∴S△ABD=S△ADE=S△AEC,即S1=S2=S3,故选:C.8.李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据作图的过程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC.解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,∵,∴△EOC≌△DOC(SSS).故选:A.9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A.B.C.D.【分析】根据匀速直线运动的路程、时间图象是一条过原点的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条直线,修车后为了赶时间,加大速度后再做匀速直线运动,其速度比原来变大,斜线的倾角变大,即可得出答案.解:小明骑自行车上学,开始以正常速度匀速行驶,正常匀速行驶的路程、时间图象是一条过原点O的斜线,修车时自行车没有运动,所以修车时的路程保持不变是一条平行于横坐标的水平线,修车后为了赶时间,他比修车前加快了速度继续匀速行驶,此时的路程、时间图象仍是一条斜线,只是斜线的倾角变大.因此选项A、B、D都不符合要求.故选:C.10.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°【分析】题中相等的边较多,且都是在同一个三角形中,因为求“角”的度数,将“等边”转化为有关的“等角”,充分运用“等边对等角”这一性质,再联系三角形内角和为180°求解此题.解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上).11.化简(a+b)(a﹣b)=a2﹣b2.【分析】根据平方差公式直接将(a+b)(a﹣b)展开即可.解:(a+b)(a﹣b)=a2﹣b2.故答案为a2﹣b2.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x米,则菜园的面积y(平方米)与x(米)的关系式为y=﹣2x2+20x.(不要求写出自变量x的取值范围)【分析】根据AB的长为x米可以得出BC的长为(20﹣2x)米,然后根据矩形的面积公式即可求出函数关系式.解:∵AB的边长为x米,而菜园ABCD是矩形菜园,∴BC=20﹣2x,∵菜园的面积=AB×BC=x•(20﹣2x),∴y=﹣2x2+20x.故填空答案:y=﹣2x2+20x.13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为12cm.【分析】根据折叠的性质得到AD=BD,根据三角形的周长公式计算,得到答案.解:由折叠的性质可知,AD=BD,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=12(cm),故答案为:12cm.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为.【分析】用阴影部分的面积除以正方形的总面积即可得.解:由图形知,S①=S②,∴阴影部分的面积为正方形面积的一半,∴蚂蚁停在阴影部分的概率为,故答案为:.三、解答题(本大题共6个题,共54分,解答过程写在答题卡上)15.(16分)(1)(﹣1)2020+(﹣)2﹣(3.14﹣π)0;(2)(a﹣1)(a+1)﹣(a﹣2)2;(3)(20x2y﹣10xy2)÷(﹣5xy);(4)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).【分析】(1)根据实数的运算法则即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据整式的运算法则即可求出答案.(4)根据整式的运算法则即可求出答案.解:(1)原式=1+﹣1=.(2)原式=a2﹣1﹣(a2﹣4a+4)=a2﹣1﹣a2+4a﹣4=4a﹣5.(3)原式=﹣4x+2y.(4)原式=4x6y2•(﹣2xy)+(﹣8x9y3)÷(2x2)=﹣8x7y3+4x7y3=﹣4x7y3.16.先化简,再求值:(x+3y)2﹣2x(x+2y)+(x﹣3y)(x+3y),其中x=﹣1,y=2.【分析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=x2+6xy+9y2﹣2x2﹣4xy+x2﹣9y2=2xy,当x=﹣1,y=2时,原式=2×(﹣1)×2=﹣4.17.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.(1)请作出A点关于CD的对称点A′;(2)若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.【分析】(1)直接利用对称点的性质进而得出答案;(2)直接利用轴对称设计求最短路线的方法得出P点位置.解:(1)如图所示:A′点即为所求;(2)如图所示:点P即为所求.18.如图,E,F分别在AB,CD上,∠1=∠D,∠2+∠C=90°,EC⊥AF.求证:AB∥CD.(每一行都要写依据)【分析】直接利用互余的性质以及三角形内角和定理、平行线的判定方法进而分析得出答案.【解答】证明:∵EC⊥AF(已知),∴∠CHF=90°(垂直的定义),∴∠1+∠C=90°(三角形内角和定理),∵∠2+∠C=90°(已知),∴∠1=∠2(同角的余角相等),又∵∠1=∠D(已知),∴∠2=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).19.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)【分析】由AD∥CB,利用“两直线平行,内错角相等”可得出∠ADB=∠CBD,由等角的补角相等可得出∠ADE=∠CBF,结合DE=BF,∠E=∠F可证出△ADE≌△CBF(ASA),再利用全等三角形的性质可证出AE=CF.【解答】证明:∵AD∥CB(已知),∴∠ADB=∠CBD(两直线平行,内错角相等),∴∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等).20.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.【分析】根据SAS证明△AFC与△AGB全等,进而利用全等三角形的性质得出∠AFC=∠AGC,进而利用AAS证明△ADF与△AEG全等解答即可.【解答】证明:在△AFC与△AGB中,∴△AFC≌△AGB(SAS),∴∠AFC=∠AGC,∴∠AFD=∠AGE,∵AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.∴∠ADF=∠AEG=90°,在△ADF与△AEG中,∴△ADF≌△AEG(AAS),∴AD=AE.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡.上)21.若x2+2mx+9是完全平方式,则m=±3.【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.解:∵x2+2mx+9是完全平方式,∴x2+2mx+9=(x±3)2=x2±6x+9,∴2m=±6,m=±3.故答案为:±3.22.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=60°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解.解:∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣A,∴在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+A=120°,∴∠A=60°,故答案为:60°.23.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC=2,则CD =2.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2BC,再根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.解:∵AC⊥BC,∴∠ACB=90°,∵∠A=30°,∴AB=2BC=2×2=4,∵D为斜边AB的中点,∴CD=AB=×4=2.故答案为:2.24.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为12.【分析】原式利用多项式乘多项式法则计算,合并后根据积中不含x的二次项和一次项,确定出a与b的值,即可求出a+b的值.解:原式=x3+ax2+bx﹣3x2﹣3ax﹣3b=x3+(a﹣3)x2+(b﹣3a)x﹣3b,由积中不含x的二次项和一次项,得到a﹣3=0,b﹣3a=0,解得:a=3,b=9,则a+b=3+9=12.故答案为:12.25.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数150度,再沿BF折叠成图c.则图中的∠CFE的度数是135度.【分析】根据长方形纸条的对边平行,利用平行线的性质和翻折不变性求出∠2=∠EFG,继而求出图b中∠GFC的度数,再减掉∠GFE即可得图c中∠CFE的度数.解:如图,延长AE到H,由于纸条是长方形,∴EH∥GF,∴∠1=∠EFG,根据翻折不变性得∠1=∠2=15°,∴∠2=∠EFG,∠AEG=180°﹣2×15°=150°,又∵∠DEF=15°,∴∠2=∠EFG=15°,∠FGD=15°+15°=30°.在梯形FCDG中,∠GFC=180°﹣30°=150°,根据翻折不变性,∠CFE=∠GFC﹣∠GFE=150°﹣15°=135°.故答案为:150;135.五、解答题(共3个小题,共30分)26.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:(1)AD=BE(2)△APC≌△BQC(3)△PCQ是等边三角形.【分析】(1)根据全等三角形的判定和性质证明即可;(2)根据全等三角形的性质和判定证明即可;(3)根据全等三角形的性质和等边三角形的判定证明即可.【解答】证明:(1)∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE;(2)∵ADC≌△BEC,∴∠ACP=∠BCQ,AC=BC,∠CAP=∠CBQ,∴△APC≌△BQC(ASA);(3)∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形.27.如图1,∠FBD=90°,EB=EF,CB=CD.(1)求证:EF∥CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG∥BC,∠FBD=90°,EG=EF,CB=CD,请问(1)中的结论是否仍成立?请证明.【分析】(1)连接FD,根据等腰三角形的性质和平角的定义得出∠EFB+∠CDB=90°,根据直角三角形两锐角互余得出∠BFD+∠BDF=90°,进一步得出∠EFD+∠CDF=180°,即可证得EF∥CD;(2)连接FD,延长CB到H,根据平移的性质,等腰三角形的性质,直角三角形两锐角互余的性质证得∠EFD+∠CDF=180°,即可证得EF∥CD.【解答】(1)证明:如图1,连接FD,∵EB=EF,CB=CD,∴∠EBF=∠EFB,∠CBD=∠CDB,∵∠FBD=90°,∴∠EBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD;(2)成立,证明:如图2,连接FD,延长CB到H,∵EG∥BC,∴∠EGF=∠HBF,∵∠FBD=90°,∴∠HBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EGF+∠CBD=90°,∵EG=EF,CB=CD,∴∠EGF=∠EFB,∠CBD=∠CDB,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD.28.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F 分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是EF=BE+DF(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且2∠EAF=∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.【分析】(1)延长FD到点G.使DG=BE.连结AG,由“SAS”可证△ABE≌△ADG,可得AE=AG,∠BAE=∠DAG,再由“SAS”可证△AEF≌△AGF,可得EF=FG,即可解题;(2)延长EB到G,使BG=DF,连接AG,即可证明△ABG≌△ADF,可得AF=AG,再证明△AEF≌△AEG,可得EF=EG,即可解题;(3)延长EA到H,使AH=CF,连接BH,由“SAS”可证△ABH≌△CBF,可得BH=BF,∠ABH=∠CBF,由“SAS”可证△EBH≌△EBF,可得EF=EH,可得EF=EH=AE+CF,即可求解.【解答】证明:(1)延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=100°,∠EAF=50°,∴∠BAE+∠FAD=∠DAG+∠FAD=50°,∴∠EAF=∠FAG=50°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=BE+DF,故答案为:EF=BE+DF;(2)结论仍然成立,理由如下:如图2,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)如图,延长EA到H,使AH=CF,连接BH,∵四边形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.。
最新北师大版数学七年级下册 期末试卷测试卷 (word版,含解析)
最新北师大版数学七年级下册 期末试卷测试卷 (word 版,含解析) 一、解答题1.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H . (1)当点H 在线段EG 上时,如图1 ①当∠BEG =36︒时,则∠HFG = .②猜想并证明:∠BEG 与∠HFG 之间的数量关系.(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.2.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒. (1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).3.已知//AB CD ,点E 在AB 与CD 之间. (1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.4.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.5.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;(2)如图2,∠BMH和∠HND的角平分线相交于点E.①请直接写出∠MEN与∠MHN的数量关系:;②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)二、解答题6.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条AB、BC、CD 、DE ,做成折线ABCDE ,如图1,且在折点B 、C 、D 处均可自由转出.(1)如图2,小明将折线调节成50B ∠=︒,85C ∠=︒,35D ∠=︒,判断AB 是否平行于ED ,并说明理由;(2)如图3,若35C D ∠=∠=︒,调整线段AB 、BC 使得//AB CD 求出此时B 的度数,要求画出图形,并写出计算过程.(3)若85C ∠=︒,35D ∠=︒,//AB DE ,请直接写出此时B 的度数. 7.如图1所示:点E 为BC 上一点,∠A =∠D ,AB ∥CD (1)直接写出∠ACB 与∠BED 的数量关系;(2)如图2,AB ∥CD ,BG 平分∠ABE ,BG 的反向延长线与∠EDF 的平分线交于H 点,若∠DEB 比∠GHD 大60°,求∠DEB 的度数;(3)保持(2)中所求的∠DEB 的度数不变,如图3,BM 平分∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).8.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,EF ∥MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出∠PAF 、∠PBN 和∠APB 之间的数量关系; (问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线m ∥n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动.①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设∠ADP =∠α,∠BCP =∠β.则∠CPD ,∠α,∠β之间有何数量关系?请说明理由;②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD ,∠α,∠β之间的数量关系.9.课题学习:平行线的“等角转化”功能. 阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求∠BAC +∠B +∠C 的度数. (1)阅读并补充下面推理过程 解:过点A 作ED ∥BC , ∴∠B =∠EAB ,∠C = 又∵∠EAB +∠BAC +∠DAC =180° ∴∠B +∠BAC +∠C =180° 解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC ,∠B ,∠C “凑”在一起,得出角之间的关系,使问题得以解决. 方法运用:(2)如图2,已知AB ∥ED ,求∠B +∠BCD +∠D 的度数.(提示:过点C 作CF ∥AB ) 深化拓展:(3)如图3,已知AB ∥CD ,点C 在点D 的右侧,∠ADC =70°,点B 在点A 的左侧,∠ABC =60°,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求∠BED 的度数.10.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________. 问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.三、解答题11.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.12.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.13.如图,△ABC 和△ADE 有公共顶点A ,∠ACB =∠AED =90°,∠BAC =45°,∠DAE =30°. (1)若DE //AB ,则∠EAC = ;(2)如图1,过AC 上一点O 作OG ⊥AC ,分别交A B 、A D 、AE 于点G 、H 、F . ①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.14.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.15.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数;(3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN 度数.【参考答案】一、解答题1.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部 【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG +∠HFG =90°,证明见解析;(2)2∠BEG -∠HFG =90°证明见解析部 【分析】(1)①证明2∠BEG +∠HFG =90°,可得结论.②利用平行线的性质证明即可. (2)如图2中,结论:2∠BEG -∠HFG =90°.利用平行线的性质证明即可. 【详解】解:(1)①∵EG 平分∠BEF , ∴∠BEG =∠FEG , ∵FH ⊥EF , ∴∠EFH =90°, ∵AB ∥CD ,∴∠BEF +∠EFG =180°, ∴2∠BEG +90°+∠HFG =180°, ∴2∠BEG +∠HFG =90°, ∵∠BEG =36°, ∴∠HFG =18°. 故答案为:18°.②结论:2∠BEG +∠HFG =90°. 理由:∵EG 平分∠BEF , ∴∠BEG =∠FEG , ∵FH ⊥EF , ∴∠EFH =90°, ∵AB ∥CD ,∴∠BEF +∠EFG =180°,∴2∠BEG +90°+∠HFG =180°, ∴2∠BEG +∠HFG =90°.(2)如图2中,结论:2∠BEG -∠HFG =90°.理由:∵EG 平分∠BEF , ∴∠BEG =∠FEG , ∵FH ⊥EF , ∴∠EFH =90°, ∵AB ∥CD ,∴∠BEF +∠EFG =180°, ∴2∠BEG +90°-∠HFG =180°, ∴2∠BEG -∠HFG =90°. 【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.(1)见解析;(2)10°;(3) 【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E 作HE ∥CD ,设 由(1)得AB ∥CD解析:(1)见解析;(2)10°;(3)18015α︒- 【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠. 【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD , ∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠ ∵180DEB ABE CDE ∠+∠-∠=︒, ∴180,FEB ABE ∠+∠=︒ ∴EF ∥AB , ∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图, 设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE , ∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠= ∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+ 又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+ ∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+ 即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图, 由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠= ∴PND CDM DMQ α∠=∠=∠=, 又∵14CDM CDE ∠=∠,∴33,MDE CDM α∠=∠= ∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+= 又∵PN ∥AB , ∴4,PNB NBA α∠=∠=∵14ABN ABE ∠=∠,∴44416,ABM ABN αα∠=∠=⨯= 又∵AB ∥QM , ∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-. 【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.3.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD . 【分析】(1)图1中,过点E 作EG ∥AB ,则∠BEG=∠ABE ,根据AB ∥CD ,EG ∥AB ,所以CD ∥EG ,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED =360°-2∠BFD . 【分析】(1)图1中,过点E 作EG ∥AB ,则∠BEG =∠ABE ,根据AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG =∠CDE ,进而可得∠BED =∠ABE +∠CDE ;(2)图2中,根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,结合(1)的结论即可说明:∠BED =2∠BFD ;(3)图3中,根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG +∠ABE =180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG +∠CDE =180°,再结合(1)的结论即可说明∠BED 与∠BFD 之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.4.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.5.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣1(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.2【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.二、解答题6.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;(2)根据题意作AB∥CD,即可∠B=∠C=35°;(3)分别画图,根据平行线的性质计算出∠B的度数.【详解】解:(1)AB平行于ED,理由如下:如图2,过点C作CF∥AB,∴∠BCF=∠B=50°,∴∠FCD=85°-50°=35°,∵∠D=35°,∴∠FCD=∠D,∴CF∥ED,∵CF∥AB,∴AB∥ED;(2)如图,即为所求作的图形.∵AB∥CD,∴∠ABC=∠C=35°,∴∠B的度数为:35°;∵A′B∥CD,∴∠ABC+∠C=180°,∴∠B的度数为:145°;∴∠B的度数为:35°或145°;(3)如图2,过点C作CF∥AB,∴CF∥DE,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∴∠B=∠BCF=50°.答:∠B的度数为50°.如图5,过C作CF∥AB,则AB∥CF∥CD,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=130°;如图6,∵∠C=85°,∠D=35°,∴∠CFD=180°-85°-35°=60°,∵AB∥DE,∴∠B=∠CFD=60°,如图7,同理得:∠B=35°+85°=120°,综上所述,∠B的度数为50°或130°或60°或120°.【点睛】本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.7.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.8.(1)∠PAF +∠PBN +∠APB =360°;(2)①,见解析;②或【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠解析:(1)∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,见解析;②CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠PBN +∠CPB =180°,即有∠PAF +∠PBN +∠APB =360°; (2)①过P 作PE ∥AD 交ON 于E ,根据平行线的性质,可得到EPD α∠=∠,CPE β∠=∠,于是CPD αβ∠=∠+∠;②分两种情况:当P 在OB 之间时;当P 在OA 的延长线上时,仿照①的方法即可解答.【详解】解:(1)∠PAF +∠PBN +∠APB =360°,理由如下:作PC ∥EF ,如图1,∵PC ∥EF ,EF ∥MN ,∴PC ∥MN ,∴∠PAF +∠APC =180°,∠PBN +∠CPB =180°,∴∠PAF +∠APC +∠PBN +∠CPB =360°,∴∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,理由如下:如答图,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠+∠②当P 在OB 之间时,CPD αβ∠=∠-∠,理由如下:如备用图1,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠-∠;当P 在OA 的延长线上时,CPD βα∠=∠-∠,理由如下:如备用图2,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD βα∠=∠-∠;综上所述,∠CPD ,∠α,∠β之间的数量关系是CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.9.(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【详解】解:(1)过点A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案为:∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE =12∠ABC =30°,∠CDE =12∠ADC =35°,∴∠BED =∠BEF +∠DEF =30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算. 10.(1);(2)①,②,理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,又∵125PBA ︒∠=,155PCD ︒∠=,∴36012515580BPC ︒︒︒︒∠=--=,故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;过点P 作PM ∥FD ,则PM ∥FD ∥CG ,∵PM ∥FD ,∴∠1=∠α,∵PM ∥CG ,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:过P 作//PQ DF ,∵//DF CG ,∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠,∴APE APQ EPQ βα∠=∠-∠=∠-∠;(3)如图,由①可知,∠N=∠3+∠4,∵EN 平分∠DEP ,AN 平分∠PAC ,∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.三、解答题11.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.12.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE∠=14°∠的大小不变.DAE理由:∵ AD平分∠ BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键. 13.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N =180°-12(∠DHG +∠BGH )=180°-12(∠HAG +∠AGH +∠HAG +∠AHG )=180°-12(180°+∠HAG )=90°-12∠HAG=90°-12(30°+∠FAO +45°)=52.5°-12∠FAO ,∴∠M +∠N =142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO 表示出∠M ,∠N . 14.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.15.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论; (2)先利用三角形的内角和定理求出,即可得出结论; (3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论; (2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。
最新北师大新版七年级下学期数学期末考试试卷(精品期末试卷含数学参考答案)
2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、纳米是一种长度单位,它用来表示微小的长度,1纳米为十亿分之一米,即10﹣9米.甲型H1N1流感病毒的直径大约83纳米左右,“83纳米”用科学记数法表示为()A.8.3×10﹣8米B.8.3×10﹣9米C.83×10﹣9米D.0.83×10﹣11米2、下列运算正确的是()A.a4+a3=a7B.(a﹣1)2=a2﹣1C.(a3b)2=a3b2D.a(2a+1)=2a2+a3、下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为,连续抛此硬币2次必有1次正面朝上4、等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cm B.17cm或13cmC.13cm D.17cm或22cm5、如图,在三角形ABC中,∠C=90°,AC=5,点P是边BC上的动点,则AP的长不可能是()A.4.8B.5C.6D.76、根据下列条件能画出唯一确定的△ABC的是()A.AB=4,BC=3,∠A=30°B.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4D.∠A=50°,∠B=60°,∠C=70°7、如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为()A.25°B.35°C.45°D.55°8、七巧板是我国古代的一项发明,被誉为“东方魔板”,19世纪传到国外被称为“唐图”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.如图,在七巧板铺成的正方形地板上,一个小球自由滚动,则小球停留在阴影部分的概率为()A.B.C.D.9、如果(x 2﹣px +1)(x 2+6x ﹣7)的展开式中不含x 2项,那么p 的值是( )A .1B .﹣1C .2D .﹣210、如图1,矩形ABCD 中,BD 为其对角线,一动点P 从D 出发,沿着D →B →C 的路径行进,过点P 作PQ ⊥CD ,垂足为Q .设点P 的运动路程为x ,PQ ﹣DQ 为y ,y 与x 的函数图象如图2,则AD 的长为( )A .B .C .D .二、填空题(每小题3分,满分18分)11、计算(﹣0.25)2024×(﹣4)2025的结果是 .12、若(x ﹣1)(x ﹣2)=x 2+mx +n ,则n m 的值为 .13、若x ﹣2y =2,则10x ÷100y = .14、如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE =BF ;分别以点E ,F 为圆心,大于EF 的长为半径画弧,在∠ABC 内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN ⊥AB 于点N .若MN =2,AD =4MD ,则AM = ,15、如图,△ABC 中,AB =AC =4,P 是BC 上任意一点,过P 作PD ⊥AC 于D ,PE ⊥AB 于E ,若S △ABC =12,则PE +PD = .16、如图,点C ,D 分别是边∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是 .第5题图 第7题图 第8题图 第16题图第15题图 第14题图2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.19、如图,点D、E分别是等边三角形ABC边BC、AC上的点,且BD=CE,BE与AD交于点F.求证:AD=BE.20、如图,EF∥CD,GD∥CA,∠1=140°.(1)求∠2的度数;(2)若DG平分∠CDB,求∠A的度数.21、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,BE平分∠ABC交AC于点E,交CD于点F,过点E作EG∥CD,交AB于点G,连接CG.(1)求证:∠A+∠AEG=90°(2)求证:EC=EG;(3)若CG=4,BE=5,求四边形BCEG的面积.22、如图,长方形ABCD中,点P沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.(1)求长方形的长和宽;(2)求m、a、b的值;(3)当P点运动到BC中点时,有一动点Q从点C出发,以每秒1个单位的速度沿C→D→A运动,当一个点到达终点,另一个点也停止运动,设点Q运动的时间为x秒,△BPQ的面积为y,求y与x之间的关系式.23、如图①,点A、点B分别在直线EF和直线MN上,EF∥MN,∠ABN=45°,射线AC从射线AF的位置开始,绕点A以每秒2°的速度顺时针旋转,同时射线BD从射线BM的位置开始,绕点B以每秒6°的速度顺时针旋转,射线BD 旋转到BN的位置时,两者停止运动.设旋转时间为t秒.(1)∠BAF=°;(2)在转动过程中,当射线AC与射线BD所在直线的夹角为80°,求出t 的值.(3)在转动过程中,若射线AC与射线BD交于点H,过点H作HK⊥BD交直线AF于点K,的值是否会发生改变?如果不变,请求出这个定值;如果改变,请说明理由.24、对于任意有理数a、b、c、d,定义一种新运算:.(1)=;(2)对于有理数x、y,若是一个完全平方式,则k;(3)对于有理数x、y,若x+y=10,xy=22.①求的值;②将长方形ABCD和长方形CEFG按照如图方式进行放置,其中点B、C、G在同一条直线上,点E在边CD上,连接BD、BF.若AD=x,AB=nx,FG =y,EF=ny,图中阴影部分的面积为45,求n的值.25、△ABC中,∠ACB=90°,AC=BC,点D是BC边上的一个动点,连接AD 并延长,过点B作BF⊥AD延长线于点F.(1)如图1,若AD平分∠BAC,AD=6,求BF的值;(2)如图2,M是FB延长线上一点,连接AM,当AD平分∠MAC时,试探究AC、CD、AM之间的数量关系并说明理由;(3)如图3,连接CF,①求证:∠AFC=45°;②S△BCF =,S△ACF=21,求AF的值.2024—2025学年最新北师大新版七年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、﹣412、13、100 14、6 15、6 16、4三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、918、2a+b,3.19、略20、(1)40°(2)40°21、(1)证明略(2)证明略(3)1022、(1)长为8,宽为4(2)a=4,b=11,m=1(3)y=.23、(1)135(2)20或25(3)不变,=.24、(1)﹣4;(2)2或﹣2;(3)①56;②2.25、(1)3;(2)AM=AC+CD,理由略(3)①∠AFC=45°;②AF的值为12.。
最新北师大版七年级下册数学期末考试试题以及答案
最新北师大版七年级下册数学期末考试试题以及答案最新七年级下册数学期末考试试题1、如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A. B.C. D.2、△ABC中,AB=AC,AB的垂直平分线于AC边所在直线相交所得锐角为50°,则∠B= .3、如图所示,已知等腰三角形ABC,AB边的垂直平分线交AC 于点D,交AB于E,AB=AC=8,BC=6,则△BDC的周长是.4.如图所示,在△ABC中,∠ACB=90°,BD=BC,AE=AC.则∠DCE=5.如图,在△ABC中,AB=AC,D是BC边上的中点,∠BAD=35°.则∠ADC= ,∠C= .6.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A. SAS B.SSSC. ASA D. AAS7、如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN 交AC于点D,则∠A的度数是.8.如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=______°.9.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°.那么∠BCD的度数等于10、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A= .11、如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE 平分∠ACB,∠B=40°,则∠A=______度.12、如图,在ΔABC中,AC=DC=DB,∠ACD=100°,则∠B等于13、如图,锐角三角形ABC中,直线L为BC的中垂线,直线M 为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则14、用直尺和圆规作一个角的角平分线示意图如图所示,则说明∠AOC=∠BOC的依据是______.15.如果三角形内一点P到三角形各边的距离相等的点是三角形的交点,如果三角形内一点P到三角形各顶点的距离相等的点是三角形的交点.(填:中线、高线、角平分线、中垂线)16、如图,已知OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA=2,则PQ的最小值为______,理论根据为______.17、如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B= .18、如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C 放在直线n上,∠1=20°,则∠2等于19、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则点D在AB的中垂线上20、如图所示,△ABC的三边AB、BC、CA的长分别为12、10、6,其三条角平分线的交点为O,则S△A B O∶S△B C O∶S△C A O =________.21、如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为22、如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作23、如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,24、如图所示,已知等边三角形ABC的周长是2a,BM是AC边上的高,N为BC延长线上的一点,且CN=CM,则BN=25、一个等腰三角形的两边长分别是2和4,则它的周长是26、等腰三角形一腰上的中线把这个三角形的周长分成12cm和9cm,求它的各边长.27、如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.28.如图,AD、BC相交于O,OA=OC,∠OBD=∠ODB. 求证:AB=CD.29.在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE⊥AB于点E,E点恰好为AB中点,,(1)试找出图中相等的线段,并说明理由。
(2023年最新)北师大版七年级下册数学期末测试卷
北师大版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为36,则PD+PE+PF=()A.12B.8C.4D.32、下面各运算中,结果正确的是( )A.2a 3+3a 3=5a 6B.-a 2•a 3=a 5C.(a+b)(-a-b)=a 2-b2 D.(-a-b)2=a 2+2ab+b 23、已知,则、的值为()A. B. C. D.4、如图,平分,为上一点,分别在上,且满足,若,则的度数是()A.40°B.50°C.60°D.70°5、如图,把长短确定的两根木棍AB、AC的一端固定在A处,和第三根木棍BM 摆出△ABC,木棍AB固定,木棍AC绕A转动,得到△ABD,这个实验说明()A.△ABC与△ABD不全等B.有两边分别相等的两个三角形不一定全等 C.两边和它们的夹角分别相等的两个三角形全等 D.有两边和其中一边的对角分别相等的两个三角形不一定全等6、如图,已知a∥b,∠1=50°,则∠2=()A.40°B.50°C.120°D.130°7、如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CDB.∠3=∠4C.∠B=∠DD.AD∥BC8、如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A. B.4 C.3 D.9、下列计算正确的是()A. B. C. D.10、在△ABC中,若∠A:∠B=5:7,且∠C比∠A大10°,那么∠C的度数为()A.70°B.60°C.50°D.40°11、一只不透明的袋子中装有1个黑球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出1 个球,摸到黑球的概率为()A. B. C. D.12、1010可以写成()A.10 2·10 5B.10 2+10 5C.(10 2)5D.(10 5)513、如图,在,中,,,,点,,三点在同一条直线上,连结,则下列结论中错误的是()A. B. C. D.14、化简a2•a3的结果是()A.aB.a 5C.a 6D.a 815、世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076g,将数0.0000000076用科学记数法表示为()A.7.6×10 ﹣9B.7.6×10 ﹣8C.7.6×10 9D.7.6×10 8二、填空题(共10题,共计30分)16、如图,I为△ABC的角平分线交点,∠A=40°,则∠BIC的度数是________.17、已知等腰三角形的两边长是6cm和11cm,则它的周长是________.18、函数中自变量x的取值范围是________.19、等腰三角形的两边长分别为3 cm和7 cm,则它的周长为________cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下学期期末考试试卷
一、选择题(每题3分,共24分) 1、下列运算正确的是( )。
A.1055a a a =+;
B.2446
a a a =⨯ ; C.a a a =÷-10 ; D.044a a a =-。
2、下列多项式乘法中,可以用平方差公式计算的是( ) A .(x +1)(1+x ) B .(
a 21+
b )(b -a 2
1
) C .(-a +b )(a -b ) D .(x 2-y )(x +y 2)
3.一根蜡烛长20cm ,点燃后每时燃烧5cm ,燃烧时剩下的高度h (厘米)与时间t (时)之间的关系图是(
4、等腰三角形的一个角为100°,则它的底角为( )
A 、100°
B 、40°
C 、100°或40°
D 、不能确定 5.下列各组中的三条线段能组成三角形的是( ). A .3,4,8 B .5,6,11 C .5,6,10 D .4,4,8 6.如果一个等腰三角形的两边长分别为2cm 和5cm ,那么它的周长是( ). A .9cm B .12cm C .9cm 或12cm D .以上答案都不对 7.下列图形中,是轴对称图形的有( )个。
① 角;②线段;③等腰三角形;④等边三角形;⑤三角形 。
A.1个; B.2个; C. 3个 ; D.4个。
8.如图所示,已知OA=OB ,OC=OD ,AD 、BC 相交于
E ,则图中全等三角形有( ). A. 2对 B. 3对 C. 4对 D.5对 二、填空题(每题3分,共24分)
9. 计算(-2x 2)3=
10. (a +2b)( )=a 2-4b 2;
11、在Rt △ABC 中,∠C =90°,∠B=35°,则∠A =____________。
12用乘法公式计算:2002×1998=
13.从一副牌中任意抽出一张,p (抽到王)=
14.小明有两根4cm 、8cm 的木棒,他想以这两根木棒为边做一个等腰三角形,还需再选用用一根________cm 长的木棒。
15.若92
++mx x 是一个完全平方式,则m 的值是
16.在△ABC 中,AD 是中线,则△ABD 的面积______△ACD 的面积.(填“>”,“<”或“=”) 三、解答题:(共72分) 17.计算(5+5分)
(1)(2x + a )2 —(2x —a )2 (2) 4x (x -1)2+x (2x +5)(5-2x )
18化简求值:(8分)
[]x y y x y x y x 25)3)(()2(22÷--+-+,其中21,2=-=y x
19、已知,如图,AD ∥BC ,∠B =70°∠C =60°,求∠CAE 的度数.(写理由)(7分)
20已知:图中,∠B=40°,∠C=60°,AD 、AF 分别是△ABC 的角平分线和高(7分) (1)∠BAC 等于多少度? (2)∠DAF 等于多少度?
21、已知如图,要测量水池的宽AB ,可过 点A 作直线AC ⊥AB ,由点C 观测,在BA 延长线上找一点B ’,使∠ACB ’= ∠AC B ,这时只要量出A ’B ’的长,就知道AB 的长,对吗?为什么? (6分)
22. 求作:△ABC ,使∠B=∠α,∠C=∠β,BC= a 。
(6分)
A B C D
E C B A
F
E B C D
A 23.如图,DE ⊥A
B ,DF ⊥AC,AE=AF,找出一对全等三角形,并说明理由。
(6分)
24.、(8分)在下面过程中的横线上填空,并在括号内注明理由。
已知:如图BC ∥EF ,BC=EF ,AB=DE ; 说明AC与D F相等。
解:∵BC ∥EF (已知)
∴∠ABC=∠__________( ) 在△ABC 和△DEF 中 ______=_______
∵ _______=________
______=________
∴△ABC ≌___________ ( ) ∴ _______=__________ ( ) 25.(6分)图为一位旅行者在早晨8时从城市 出发到郊外所走的路程与时间的变化图。
根据 图回答问题。
(1) 9时,10时30分,12时所走的路 程分别是多少?
(2) 他休息了多长时间?
(3) 他从休息后直至到达目的地这段时间的平均速度是多少?
26.计算(8分)
(1)已知31=+x x ,求221
x
x +的值 (2)已知x +y =-5,xy =3,求(x -y )2的值
D
F
E
C
B
A。