电磁场与电磁波(西安交大第三版)第2章课后答案
《电磁场与电磁波》西安交大出版社 课后答案(全)
球坐标系中的坐标分量表示。 解:在圆柱坐标系中
F1 cos sin 0 Fx1 cos sin 0 1 cos F sin cos 0 F sin cos 0 0 sin 1 y1 F 0 0 1 F 0 0 1 0 0 z1 z1 ˆ sin ˆ F1 ( , , z ) cos F 2 cos sin 0 Fx 2 cos sin 0 0 sin F sin cos 0 F sin cos 0 1 cos 2 y2 F 0 0 1 F 0 0 1 0 0 z2 z2 ˆ cos ˆ F2 ( , , z ) sin
ˆ 2y ˆz ˆ 证明 :因为 A B 2 x
A ( B) C 0
所以三个矢量 A 、B 和 C 形成一个三角形 此三角形的面积为
ˆ x 1 S A B Ax 2 Bx ˆ y Ay By ˆ y ˆ ˆ ˆ z x z Az 5 5 0 5 2 5 2 20 2 / 2 10.6 Bz 3 7 1
(e)A 和 B 之间的夹角 根据 A B AB cos 得
A B 7 cos 0.764 AB 9.163
40.19 0
(f) A 在 B 上的投影
A ˆ B 7 2.86 Ab B 2.45
电磁场与电磁波(第三版)课后标准答案谢处方
JS v ω r ez era
e a sin
e
Q 4 a
sin
将球面划分为无数个宽度为 dl a d 的细圆环,则球面上任一个宽度为 dl a d 细
.-
圆环的电流为
d
I
JS
dl
Q 4
sin
d
细圆环的半径为 b a sin ,圆环平面到球心的距离 d a cos ,利用电流圆环的轴线上
.-
第二章习题解答
2.1
一个平行板真空二极管内的电荷体密度为
4 9
0U0d 4
3 x 2
3
,式中阴极板位
于 x 0 ,阳极板位于 x d ,极间电压为 U0 。如果 U0 40 V 、 d 1cm 、横截面
S 10cm2 ,求:(1) x 0 和 x d 区域内的总电荷量 Q ;(2) x d 2 和 x d 区域内
解 电偶极子 p1 在矢径为 r 的点上产生的电场为
E1
1 4 0
[3(
p1 r)r r5
p1 r3
]
所以 p1 与 p 2 之间的相互作用能为
We
p2
E1
1 [3( p1 4 0
r)( p2 r5
r)
p1 r
p2
3
]
因为1 r, p1 ,2 r, p2 ,则
p1 r p1r cos1
处的电场强度 E 中,有一半是有平面上半径为 3z0 的圆内的电荷产生的。
解 半径为 r 、电荷线密度为 l d r 的带电细圆环在 z 轴上 z z0 处的电场强度为
d
E
ez
r z0 d r 20 (r 2 z02 )3
2
故整个导电带电面在 z 轴上 z z0 处的电场强度为
电磁场与电磁波(第三版)课后问题详解__谢处方
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cmS =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由212mv qU = 得61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
《电磁场与电磁波》课后习题解答(全)
(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
《电磁场与电磁波》课程习题解答(第3版)共85页word资料
电磁场与电磁波课程习题解答(第3版)一章习题解答1.1 给定三个矢量A 、B 和C 如下:求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ; (7)()⨯A B C g 和()⨯A B C g ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11(4)由 cos AB θ===A B A B g ,得 1cos AB θ-=(135.5=o (5)A 在B 上的分量 B A =A cos AB θ==A B B g (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e所以 ()⨯=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e(8)()⨯⨯=A B C 1014502x yz---=-e e e 2405x y z -+e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
解 (1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e , 由此可见 故123PP P ∆为一直角三角形。
电磁场与电磁波课后习题答案 第二章
1-1. (1) 叙述库仑定律,并写出数学表达式。
(2)电荷之间的作用力满足牛顿第三定律吗?请给出证明。
解:(1)库仑定律内容为:真空中两个静止的点电荷之间的相互作用力的大小,与它们的电量q 和'q 的乘积成正比,与它们之间距离R 的平方成反比。
作用力的方向沿两者连线的方向。
两点电荷同号时为斥力,异号时为吸力。
所以:(2)电荷之间的作用力不满足牛顿第三定律,请看下面的例证:1q 以速度1v 运动,q 2以速度2v运动。
如图1-2所示。
此时,2q 在1q 处产生有电场2E和磁场2H 。
而1q 在2q 处也产生电场1E和磁场1H 。
但因2q 在1q 处产生的磁场方向与1v 平行。
故由洛仑兹公式知,q 1所受的力为 )(2120112121N E q H v q E q F=⨯+=μ 只有电场力。
但q 1对q 2的作用力为:10221112H v q E q Fμ⨯+= (N) 既有电场力,又有磁场力,所以两者不相等。
1-2 (1) 洛仑磁力表达式中,哪部分做功,哪部分不做功,为什么? (2) 洛仑兹力满足迭加原理吗?为什么? 解: (1) 洛仑磁力公式为H v q E q F0μ⨯+= (N )洛仑兹力做的功为⎰⋅=csd F W,其中dt v s d = 所以有:⎰⋅=cs d F W=⎰∆⋅tdt v F=⎰∆⨯+tdt v H v q E q)(0μ=⎰⎰∆∆⋅⨯+⋅ttdt v H v q dt v E q)(0μ=⎰∆⋅tdt v E q(J)其中使用了矢量恒等式()()BA C CB A ⨯⋅=⨯⋅所以,洛仑兹力作的功为⎰∆⋅=tdt v E q W=)(J sd E qC⎰⋅所以,洛仑兹力中,因为E q 与电荷的做功无关。
而H v q0μ⨯部分总是与电荷的运动方向垂直,故E q 部分做功,而H v q0μ⨯部分不做功。
(2)因为电荷受力与E 和H间都是线性关系,所以,洛仑兹力满足迭加原理。
电磁场与电磁波第二章课后答案
第二章静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程: 积分形式: ⎰=⋅S S E 0d εq⎰=⋅ll E 0d微分形式: 0ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 30d |4))(()(|r r r r r r E περ3,⎰=⋅S S E 0d εq高斯定律介质中静电场方程:积分形式: q S =⋅⎰ d S D ⎰=⋅ll E 0d微分形式: ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程: 积分形式: εqS =⋅⎰ d S E⎰=⋅ll E 0d微分形式: ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。
在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερSn E =; ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ==离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21ew 对于各向同性的线性介质,则 2 21E w e ε=电场力:库仑定律:r r q q e F 24πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
电磁场与电磁波第三版课后答案
电磁场与电磁波第三版课后答案本文是对《电磁场与电磁波》第三版的课后习题答案的整理与解答。
本书是电磁场与电磁波领域的经典教材,其中的习题对于巩固和加深对电磁场与电磁波知识的理解非常重要。
以下是本文对第三版的习题答案的详细解析。
第一章电磁场基本概念1.1 电磁场基本概念习题答案:1.电磁场的基本概念是指在空间中存在着电场和磁场,它们相互作用产生相互关联的现象;它们是由带电粒子的运动而产生的,是物理学的基本概念之一。
2.宏观电荷位移是指电荷在物体内部的移动;它的存在使得物体表面或其周围的电场产生变化,从而产生an内部电磁场。
3.电磁场的基本方程是麦克斯韦方程组,由四个方程组成:高斯定律、法拉第电磁感应定律、法拉第电磁感应定律的积分形式和安培环路定律。
1.2 矢量分析习题答案:1.根据题目所给的向量,求两个向量的点乘积:$\\vec{A}\\cdot\\vec{B}=A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{ z}$2.根据题目所给的向量,求两个向量的叉乘积:$\\vec{A}\\times\\vec{B}=(A_{y}B_{z}-A_{z}B_{y})\\hat{i}+(A_{z}B_{x}-A_{x}B_{z})\\hat{j}+(A_{x}B_{y}-A_{y}B_{x})\\hat{k}$3.定义标量和矢量场,然后利用高斯定理得出结论。
1.3 电场与静电场习题答案:1.静电场是指电场的源是静止电荷,不会随时间变化,不产生磁场。
2.在静电场中,高斯定律表示为:$\ abla \\cdot\\vec{E} = \\frac{1}{\\varepsilon_0}\\rho$,其中$\ abla\\cdot \\vec{E}$表示电场的散度,$\\varepsilon_0$表示真空介电常数,$\\rho$表示电荷密度。
3.电场的位移矢量$\\vec{D}$定义为$\\vec{D} =\\varepsilon_0 \\vec{E} + \\vec{P}$,其中$\\varepsilon_0$表示真空介电常数,$\\vec{E}$表示电场强度,$\\vec{P}$表示极化强度。
电磁场与电磁波理论基础 第二章 课后答案
u=0
∂u 1 ∂u ∂u E = −∇u = − e ρ + eϕ + e z ρ ∂ϕ ∂z ∂ρ
得到 题 2-9 图
E = −∇u = 0, ρ ≤ a
a2 a2 E = − A 1 + 2 cos ϕ e ρ + A 1 − 2 sin ϕ eϕ , ρ ≥ a ρ ρ
代入得到
2 2
r1
-2 q
Y
S1 (-a, 0 , 0)
X
S 2 (a, 0, 0)
题 2-7 图
u (r ) =
q 4πε 0
1
( x + a)
2
+ y2 + z2
−
2 2 2 ( x − a) + y + z 2
电位为零,即令
q u (r ) = 4πε 0
∂u2 =0 ∂x
代入,得到
ρ S下 = −ε 0
∂u1 ∂x
=
x =0
ρd ρd ε U ε U x2 − 0 0 + 0 = − 0 0 + 0 2d 6 x =0 6 d d
ρ0
对于上极板,导体中的电位为常数
u1 = U 0
有
∂u1 =0 ∂x
上极板下表面电荷密度为
l
场分布具有柱对称性,电通密度矢量 D 仅有 e ρ 分量,由 高斯定理 题 2-15 图
D ⋅ dS = ρ
(S ) (V )
V
dV
取圆柱面为高斯面,有
2π
Dρ ρ ldϕ = 20 ρ e
0 0 0
电磁场与电磁波_章二习题答案
静电场 恒定电场习题解答主要问题: 1) 矢量标量书写不加区分(忘记在矢量顶部加箭头) 2) 机械抄袭标准答案,不理解其含义3)不理解极化电荷面密度和极化电荷体密度含义:极化电荷面密度仅仅存在于介质表面,静电场情形下导体表面没有极化电荷面密度(题2-15) 4)所谓验证边界条件对静电场而言有两种方法(题2-13),一是从电位着手判断电位是否连续(12?Φ=Φ)法向电位条件如何?(1212s n nεερ∂Φ∂Φ-+=∂∂,这里格外需要注意说明边界上有没有电荷?s ρ=)二是判断切向电场是不是连续,法向电通密度是不是相等,要是不等,面电荷密度是多少 这两种方法等价。
5)2-2题很多人和标准答案中的坐标图不一致,答案却一样,明显错误2-1、半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。
若已知球内和球外的电位分别为:122(,) ()(,) ()r Ar r a Aa r r a rθθθθΦ=≤⎧⎪⎨Φ=≥⎪⎩ 式中A 为常数。
求1) 两种介质中的E 和D ;2) 两种介质中的自由电荷密度。
解:1) 在r < a 区域内:111111111A Ar r A A θθεεθε∂Φ∂Φ=-∇Φ=--=--∂∂==--rθr θ1r θE e e e e D E e e , 在r > a 区域内:()()2222222121Aa r r rAarθθεεθ∂Φ∂Φ=-∇Φ=--=-∂∂==-2r θr θ22r θE e e e e D E e e 2) 在r < a 区域内:。
()()()21112111sin sin 2cot r r D D r r r Arθρθθθεθθ∂∂=∇⋅=+∂∂=-+1D在r > a 区域内:()()2222222311sin sin cot r r D D r r r Aa rθρθθθεθ∂∂=∇⋅=+∂∂=-2D 在球面r = a 上,电荷面密度()()()12s r a r a A ρεεθ===⋅-=⋅-=+21r 21n D D e D D2-2一个半径为a 的半圆环上均匀分布线电荷ρl ,求垂直于半圆环平面的轴线z =a 处的电场强度。
电磁场与电磁波第三版 郭辉萍 第二章习题解答
D2 z ( x, y,0) = 2
所以
r r r r D2 ( x, y, 0) = ax ⋅ 3 y − a y ⋅ 3x + az ⋅ 2 r E2 ( x, y, 0) = r r r r ax ⋅ 3 y − a y ⋅ 3 x + az ⋅ 2 D2 = ε0 ⋅εr2 3⋅ε0
故不能求出区域 2 中任一点处的 E2 和 D2 2.15 同轴电容器内导体半径为 a, 外导体内直径为 b, 在 a<r<b′部分填充介电常数为ε 的电介质, 求: (1) 单位长度的电容; (2) 若a=5 mm、 b=10 mm、 b′=8 mm, 内外导体间所加电压为 10 000 V, 介 质的相对介电常数为εr=5, 空气的击穿场强为 3×106 V/m, 介质的击穿场强为 20×106 V/m, 问电介质是否会被击穿? 解:
r
r
r
r
r
r
D2 z ( x, y,0) = 2 ,
(1)
r r ax D2 x ( x, y,0) + a y D2 y ( x, y,0) 3 ⋅ ε0
由(1)和(2)解得
=
r r ax ⋅ 2 y − a y ⋅ 2 x 2 ⋅ ε0
(2)
D2 x ( x, y,0) = 3 y ,
D2 y ( x, y,0) = −3 x ,
φab = ∫ E ⋅ d r = ∫
a
b
ur
r
b
a
ρs a ρs a b dr = ln ε 0r ε0 a
1 1
要使 ρ >b 的区域外电场强度为 0,即:
r ur ρ s a + ρ s b uu b 2 E= 1 ar =0,得 ρ S1 = − ρ s2 ε 0r a
电磁场与电磁波第三版 郭辉萍 第2章习题答案
(2-1-5)
第2章 静电场分析
2. 分布电荷的电场强度
上述的分析, 我们假设电荷是集中在一个点上, 从宏观的角度讲, 电荷是连续的分布在一段线上、 一 个面上或一个体积内的, 因此, 我们先定义电荷分布。 线电荷密度(Charge Line Density): 当电荷分布 在一细线(其横向尺寸与长度的比值很小)上时, 定 义线电荷密度为单位长度上的电荷
第2章 静电场分析
第2章 静电场和恒定电场
2.1 电场强度与电位函数
2.2 真空中静电场的基本方程 2.3 电介质的极化与介质中的场方程 2.4 导体间的电容与电耦合 2.5 静电场的边界条件
2.6 恒定电场
习 题
第2章 静电场分析
2.1 电场强度与电位函数
2.1.1 库仑定律 库仑定律(Coulom's Law)是静电现象的基本实验定 律, 它表明固定在真空中相距为R的两点电荷q1与q2之间 的作用力:正比于它们的电荷量的乘积; 反比于它们之 两点电 间距离的平方;作用力的方向沿两者间的连线;
(2-1-7)
第2章 静电场分析
P(r) R
dV
V
r
r
O
图2 - 3 体电荷产生的场
第2章 静电场分析
体电荷密度(Charge Volume Density): 如果电 荷分布在一个体积空间内, 定义体电荷密度为单位体 积内的电荷
q V lim V 0 V
式中, Δq是体积元ΔV内所包含的电荷。
荷同性为斥力, 异性为吸力(如图2-1所示), 表达式为
第2章 静电场分析
q1q2 q1q2 F12 a R R 2 3 4 0 R 4 0 R
F12 q2 R
电磁场与电磁波第二章课后答案
第二章静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:E d S q积分形式: E d l 0S l微分形式:E E 0已知电荷分布求解电场强度:1,E(r)( r ) ;1( r) ( r ) d V4 0V | r r|(r)( r r)2,E(r) d VV 4 0| r r|33,E d S q高斯定律S介质中静电场方程:积分形式:D d S q E d l0S l微分形式:D E0线性均匀各向同性介质中静电场方程:积分形式:E d S qE d l 0S l微分形式:E E0静电场边界条件:1,E1 t E 2 t。
对于两种各向同性的线性介质,则D1t D2 t122,D2 n D 1n s 。
在两种介质形成的边界上,则D1 n D2 n对于两种各向同性的线性介质,则1 E1 n 2E2 n3,介质与导体的边界条件:e n E0 ;e n D S若导体周围是各向同性的线性介质,则E n S;Sn 静电场的能量:1 Q21孤立带电体的能量: W e Q2 C2离散带电体的能量: W e n1i Q i i 12分布电荷的能量:W e11S d S1V 2d V l d lS 2l 21静电场的能量密度:w e D E212对于各向同性的线性介质,则w e E2电场力:库仑定律: Fq q2err4常电荷系统: Fd W eq 常数d ldW e常电位系统: F常数d l题解2-1 若真空中相距为d的两个电荷q1及q2的电量分别为q点电荷q 位于q1及q2的连线上时,系统处于平衡状态,试求及 4 q ,当q的大小及位置。
电磁场与电磁波(第三版)课后答案第2章
电磁场与电磁波(第三版)课后答案第2章第⼆章习题解答⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解质⼦的质量271.710kg m -=?、电量191.610C q -=?。
由21mv qU = 得 61.3710v ==? m s故 0.318J v ρ== 2A m26(2)10I J d π-== A⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a a φφωρωθθππ===J v e e ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球⾯上任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin a φωθ=?=v r e ω球⾯的上电荷⾯密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
《电磁场与电磁波第三版》课后答案
ˆ cos ˆ cos sin ˆ F2 (r , , ) sin sin , F2 ( , , z ) 3 用直角坐标系中的坐标分 1.9 将圆柱坐标系中的矢量场 F1 ( , , z ) 2
量表示。 解:根据
习题
ˆ 3y ˆz ˆ y ˆ 2z ˆ; B x ˆ ,求:(a) A 和 B 的大小(模) 1.1 已知 A 2 x ; (b) A 和 B 的单位
矢量;(c) A B ;(d) A B ;(e)A 和 B 之间的夹角;(f) A 在 B 上的投影。 解:(a) A 和 B 的大小
ˆ sin ˆ cos cos ˆ F1 (r , , ) sin cos Fr 2 sin cos F 2 cos cos F 2 sin sin cos cos cos sin sin sin cos sin cos sin sin cos sin cos cos Fx 2 sin Fy 2 0 Fz 2 cos 0 sin sin sin 1 cos sin 0 0 cos
ˆ Ay y ˆ A Ax x ˆ By y ˆ B Bx x ˆ x
ˆ y By Cy
ˆ z ˆ ( Bz C x Bx C z ) y ˆ ( Bx C y B y C x ) z ˆ Bz ( B y C z Bz C y ) x Cz
ˆ 12 y ˆz ˆ 3y ˆz ˆ 和 2x ˆ ,求从 P 点到 Q 点的距离矢 1.6 P 点和 Q 点的位置矢量分别为 5 x
电磁场与电磁波第二章课后答案
第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。
在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
电磁场与电磁波第二章课后答案之欧阳历创编
第二章静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 30d |4))(()(|r r r r r r E περ 3,⎰=⋅S S E 0d εq高斯定律介质中静电场方程: 积分形式: q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程: 积分形式: εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2,s n n D D ρ=-12。
在两种介质形成的边界上,则 对于两种各向同性的线性介质,则3,介质与导体的边界条件:0=⨯E e n ;S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ==离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ved 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21ew对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q elW F d d常电位系统:常数==ϕlW F ed d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
电磁场与电磁波第三版课后答案 谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波(西安交大第三版)第2章课后答案
第2章习题2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:z y r z x r z y r z xr ˆˆ;ˆˆ;ˆˆ;ˆˆ4321+=+=+-=+-=84ˆ15ˆ6ˆ3)ˆˆˆˆ(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。
题2-2图解:(a) 由对称性04321=+++=E E E E E(b) 由对称性0321=++=E E E E(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ˆ2)}ˆˆ()ˆˆ{(40021περπερ-=+--=+=半径为a 的半圆环线电荷产生的电场为y a E lb ˆ20περ=总电场为0=+=b a E E E2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为ϕad 的窄条,,电荷线密度为ϕρρad s l =,对ϕ积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ˆ)ˆcos ˆsin (22ˆ00000⎰⎰-=--==πππερϕϕϕπερπεϕρ题2-3图 题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。
解: 在平板上'x 处取宽度为'dx 'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'ˆ21),(0dx y x E d s =其中22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y ya x y a x x y x E s --+++-++=περ 2-5.已知真空中电荷分布为r a ,b 为常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章习题2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:z y r z x r z y r z xr ˆˆ;ˆˆ;ˆˆ;ˆˆ4321+=+=+-=+-=84ˆ15ˆ6ˆ3)ˆˆˆˆ(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。
题2-2图解:(a) 由对称性04321=+++=E E E E E(b) 由对称性0321=++=E E E E(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ˆ2)}ˆˆ()ˆˆ{(40021περπερ-=+--=+=半径为a 的半圆环线电荷产生的电场为y a E lb ˆ20περ=总电场为0=+=b a E E E2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为ϕad 的窄条,,电荷线密度为ϕρρad s l =,对ϕ积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ˆ)ˆcos ˆsin (22ˆ00000⎰⎰-=--==πππερϕϕϕπερπεϕρ题2-3图 题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。
解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'ˆ21),(0dx y x E d s =其中 22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y ya x y a x x y x E s --+++-++=περ 2-5.r 为场点到坐标原点的距离,a ,b 为常数。
求电场强度。
解: 由于电荷分布具有球对称性,电场分布也具有球对称性,取一半径为 r 的球面,利用高斯定理⎰⎰=⋅sqS d E 0ε等式左边为 r sE r S d E ⎰⎰=⋅24π半径为 r 的球面内的电量为⎪⎪⎩⎪⎪⎨⎧>+<=a r ba a a r a r q ;554;542325ππ 因此,电场强度为⎪⎪⎩⎪⎪⎨⎧>+<=a r r ba a ar ar E r ;55;52023203εε2-6.r 为场点到z 轴的距离,a 为常数。
求电场强度。
解: 由于电荷分布具有轴对称性,电场分布也具有轴对称性,取一半径为 r ,单位长度的圆柱面,利用高斯定理⎰⎰=⋅sqS d E 0ε等式左边为 rsE r S d E ⎰⎰=⋅π2半径为 r 、高为1的圆柱面内的电量为⎪⎪⎩⎪⎪⎨⎧><===⎰⎰a r aa r ar dr a r rdr q r r ;32;322223002ππππρ 因此,电场强度为⎪⎪⎩⎪⎪⎨⎧><=a r r a a r a r E r ;3;30202εερρ(,,);;x y z x ax a =≤>⎧⎨⎩00求电场强度。
解: 由于电荷分布具有面对称性,电场分布也具有面对称性,取一对称的方矩形封闭面,利用高斯定理,穿过面积为 S 的电通量为S E x 2,方形封闭面内的电量为 ⎩⎨⎧><=a x aS ax xS q ;2;200ρρ因此,电场强度为 ⎪⎪⎩⎪⎪⎨⎧><=a x a a x xE x ;;0000ερερρ(,,);;x y z x x ax a =≤>⎧⎨⎩求电场强度。
解: 由于电荷分布具有面对称性,电场分布也具有面对称性,取一对称的矩形封闭面,利用高斯定理,穿过面积为 S 的电通量为S E x 2,方形封闭面内的电量为⎩⎨⎧><===⎰⎰ax S a ax S x xSdx Sdx q xx;;222200ρ因此,电场强度为 ⎪⎪⎩⎪⎪⎨⎧><<=a xaa x x E x ;20;202002ερερ⎪⎪⎩⎪⎪⎨⎧-<-<<--=a x a x a x E x ;20;2022εε2-9.在电荷密度为ρ(常数)半径为a 的带电球中挖一个半径为b 的球形空腔,空腔中心到带电球中心的距离为c(b+c<a)。
求空腔中的电场强度。
解:由电场的叠加性,空腔中某点的电场等于完全均匀填充电荷的大球在该点的电场与完全均匀填充负电荷的小球在该点的电场之和。
完全均匀填充电荷的大球在该点的电场为3ερR E a =完全均匀填充负电荷的小球在该点的电场为3ερrE b -=所以,空腔中某点的电场为003)(3ερερcr R E E E b a =-=+=c为从球心指向空腔中心的矢量。
题2-9图2-10.已知电场分布为E x b x b x b x x b x x b =-<<>-<⎧⎨⎪⎪⎩⎪⎪22222;// ;/ ;/求电荷分布。
解:由0/ερ=⋅∇E得⎪⎩⎪⎨⎧><=⋅∇=2/;02/;200b x b x b E εερC 为常数。
求电荷分布。
解: 由0/ερ=⋅∇E得00=⋅∇=Eερ在r=a,r=b 有面电荷.电荷面密度为 ⎩⎨⎧=-====br b C ar a C E D n n s ;/;/000εεερ2-12.若在圆球坐标系中电位为⎪⎩⎪⎨⎧≥<<-≤-=Φb r b r a a raba r ab r ;0);();()( 求电荷分布。
解:由02/ερ-=Φ∇得 =Φ∇-=20ερ0Φ-∇=E rr ∂Φ∂-=ˆ ⎪⎩⎪⎨⎧≥<<≤=br b r a raba r r E r ;0;;0)(2⎩⎨⎧=-====br b a ar a b E D n n s ;/;/000εεερ2-13.分别计算方形和圆形均匀线电荷在轴线上的电位。
(a) (b)解:(a) 方形均匀线电荷在轴线上的电位 方形每条边均匀线电荷的电位2/)2(2/)2(ln4''4)(222202/2/220L L d L Ld z d dz d l L L l -+++=+=Φ⎰-περπερ 其中 222)2/(L z d += 方形均匀线电荷在轴线上的电位为2/2/2/2/ln )(22220L L z L L z z l -+++=Φπερ(b) 圆形均匀线电荷在轴线上的电位22020222'4)(za a za ad z ll+=+=Φ⎰ερϕπερπ2-14.计算题2-5给出的电荷分布的电位。
解: 题2-5给出的电荷分布的电场为⎪⎪⎩⎪⎪⎨⎧>+<=a r r ba a a r ar E r ;55;52023203εε 由电位的定义,电位为⎰∞=Φrr dr E r )(对于r>a⎰∞+=+=Φrr ba a dr r ba a r 02320235555)(εε 对于r<a20402022032023202055555)(a r a ba a dr ar dr r ba a r a ar εεεεε-++=++=Φ⎰⎰∞⎪⎪⎩⎪⎪⎨⎧>+<-+=Φa rb a r a a r ar ab a r );5(5);4545(51)(022420εε2-15四个点电荷在圆球坐标系中大小和位置分别为)0,2/,(πa q ,)2/,2/,(ππa q ,),2/,(ππa q -,)2/3,2/,(ππa q -,求a r >>处的电位。
解 此4个点电荷组成分别沿x 、y 轴放置的互相垂直的两对电偶极子xaq p ˆ21=,yaq p ˆ22=,电位为 20214ˆ)()(r r p p r πε⋅+=Φ在圆球坐标系中ϕθcos sin ˆˆ=⋅r x,ϕθsin sin ˆˆ=⋅r y )sin (cos sin 24ˆ)()(202021ϕϕθπεπε+=⋅+=Φraq r r p p r2-16.已知电场强度为E xy z =+-345 ,试求点(0,0,0)与点(1,2,1)之间的电压。
解⎰⋅=Φ-Φ=b aab l d E b a V)()(解1 从点a (0,0,0)到点b (1,2,1)的路径l 取1l (0,0,0)到点(1,0,0)-+ 2l 点(1,0,0)到点(1,2,0)-+3l 点 (1,2,0)到点(1,2,1)654310120321=-+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰⎰⎰⎰dz dy dx l d E l d E l d E l d E V l l l lba解2 Φ-∇=E)543(z y x -+-=Φ6)1,2,1()0,0,0(=Φ-Φ=ab V2-17.已知在球坐标中电场强度为 E rr =32 ,试求点(,,)a θϕ11与点(,,)b θϕ22之间的电压。
解 从点(,,)a θϕ11到点(,,)b θϕ22的路径l 取1l (,,)a θϕ11到点),,(11ϕθb +2l 点),,(11ϕθb (1,0,0)到点(1,2,0)-+3点 (1,2,0)到点(1,2,1))11(3ˆˆ3122b a dr r rrl d E l d El d E l d E V l l l l b a -=⋅=⋅+⋅+⋅=⋅=⎰⎰⎰⎰⎰2-18.解 取1)0,,(1ϕb +2l 点)0,,(1ϕb 到点,(2b⎰⎰⎰⋅+⋅=⋅=l l l l d El d E l d E V 12 a bd b aln 2ˆˆ2=⋅=⎰ρρρρ a ,长度为L 的圆柱介质棒均匀极化,极化方向为轴向,极化强度为解: (1)介质中的束缚电荷体密度为0'=⋅-∇=Pρ(2) 介质表面的束缚电荷面密度为P ns ⋅=ˆ'ρ 在圆柱介质棒的侧面上束缚电荷面密度为零;在上下端面上束缚电荷面密度分别为0'P s ±=ρ.2-20.求上题中的束缚电荷在轴线上产生的电场。
解: 上下端面上束缚电荷产生的电场 由例题,圆盘形电荷产生的电场为⎪⎪⎩⎪⎪⎨⎧<++->+-=0');''1(20');''1(2)'(220220z a z z z a z z z E s sz ερερ式中a 为圆盘半径.对上式做变换,2/'L z z -=,0P s =ρ,可上端面上束缚电荷产生的电场为⎪⎪⎩⎪⎪⎨⎧<+--+->+---=2/);)2/(2/1(22/);)2/(2/1(2)(22002201L z a L z L z P L z a L z L z P z E z εε同理,做变换,2/'L z z +=,0P s -=ρ,可下端面上束缚电荷产生的电场为 ⎪⎪⎩⎪⎪⎨⎧-<++++->+++--=2/);)2/(2/1(22/);)2/(2/1(2)(22002202L z a L z L z P L z a L z L z P z E z εε上下端面上束缚电荷产生的总电场为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-<+---+++<<-+---++++->+---+++=2/];)2/(2/)2/(2/[22/2/];)2/(2/)2/(2/2[22/];)2/(2/)2/(2/[22222002220022200L z a L z L z a L z L z P L z L a L z L z a L z L z PL z aL z L z a L z L z P E z εεε2-21.半径为a 的介质球均匀极化,P P z =0 ,求束缚电荷分布。