初一数学上册课文《列代数式》练习题.doc

合集下载

七年级数学上册《代数式》同步练习题(附答案)

七年级数学上册《代数式》同步练习题(附答案)

七年级数学上册《代数式》同步练习题(附答案)课前练习1. 用字母表示数的书写规则:(1)字母与字母相乘时,“×”号通常省略不写或写成“ ______ ”;(2)字母与数相乘时,数通常写在字母的__________;(3)带分数与字母相乘时,通常化带分数为___________;(4)字母与字母相除时,要写成__________的形式;2. 用含字母的式子表示数量关系:用表示数的_______表示问题中的数或数量;_____________能简明表达数量关系;同一问题中,相同的字母必须表示相同的量,不同的____必须用不同的字母表示;用字母表示实际问题中的某个量时,字母的______必须使式子有意义且符合实际情况.3. 用字母表示数,字母和数一样参与运算,可以用_____把数量关系简明地表示出来.4. 下列含有字母的式子符合书写规范的是( )A. 1aB. 312bC. 0.5xyD. (x +y )÷z 5. “比a 的32倍大1的数”用式子表示为( )A. 32a +1B. 23a +1C. 52aD. 32(a +1) 6. 购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需钱数为( )A. (a+b )元B. 3(a+b )元C. (3a+b )元D. (a+3b )元7. 填空:(1)买单价为6元的钢笔a 支,共需______元;(2)一台电视机的标价为a 元,则打八折后的售价为______元;(3)温度由30度下降t 度后是______度课前练习参考答案1. ①. ②. 前面 ③. 假分数 ④. 分数2. ①. 字母 ②. 用字母表示数 ③. 量 ④. 取值3.式子4.C5.A6.D【解析】试题分析:买1个面包和3瓶饮料所用的钱数:a+3b 元;故选D .考点:列代数式.7. ①. 6a ②. 0.8a ③. (30-t )1.用代数式表示:a 与3的和的2倍,下列选项中的表示正确的是( )A .2(a +3)B .2a +3C .2(a −3)D .23a -2.下列代数式书写正确的是( )A .7aB .x ÷yC .3a +bD .123ab3.下列代数式中符合书写要求的是( ) A .ab4 B .413x C .x ÷y D .−52a4.某种苹果的售价是每千克x 元,打7折销售后每千克____元.5.小明买单价为x 元的球拍a 个,结账后还有27元,小明出门带了现金____元.6.甲数比乙数的5倍小3,若乙数为x ,则甲数为_________.7.下列各式书写规范的是( )A .3a ⨯B .112abC .5x +只D .m2n8.一个两位数,它的十位数字是x ,个位数字是y ,那么这个两位数是( ).A .x +yB .10xyC .10(x +y )D .10x +y9.列代数式:x 的三分之二比x 的2倍少多少?__________.10.现有5元面值人民币m 张,10元面值人民币n 张,共有人民币________元(用含m 、n 的代数式表示).11.某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a 个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%.用含a 的代数式表示该公司这两周共生产医用护目镜______个.12.为鼓励居民节约用水,某市自来水公司实施阶梯水价:如果每月用水不超过8吨,按每吨2.3元收费;如果每月用水量超过8吨,则超出部分按每吨3.5元收费,设每月用水量为x 吨.(1)当每月用水量不超过8吨时,用含x 的代数式表示用水费用为 元;(2)当每月用水超过8吨时,需付水费多少元?(用含x 的代数式表示)(3)若小红家8月份用水12吨,则需交水费多少元?课堂练习参考答案1.A【分析】根据和与倍数关系得出代数式解答即可.【详解】解:a 与3和的2倍用代数式表示为:2(a +3),故选:A .【点睛】此题考查列代数式问题,关键是根据和与倍数关系得出代数式.2.C【分析】根据代数式的书写方法分别进行判断.【详解】解:A 、7a 应写为7a ,故不符合题意;B 、x ÷y 应写为x y ,故不符合题意;C 、3a +b 书写正确,故符合题意;D 、123ab 应写为53ab ,故不符合题意;故选C .【点睛】本题考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.也考查了代数式的书写.3.D【分析】根据代数式的书写规范逐项排查即可.【详解】解:A 、不符合书写要求,应为4ab ,故此选项不符合题意;B 、不符合书写要求,应为133x ,故此选项不符合题意; C 、不符合书写要求,应为x y ,故此选项不符合题意;D 、−52a 符合书写要求,故此选项符合题意.故选:D .【点睛】本题考查了代数式的书写规范,书写代数式要关注以下几点:①在代数式中出现的乘号,通常简写成“·”或者省略不写;②数字与字母相乘时,数字要写在字母的前面;③在代数式中出现的除法运算,一般按照分数的写法来写、带分数也要写成假分数.4.0.7x【分析】根据题意,可以用含x 的代数式表示出苹果现价,本题得以解决.【详解】解:由题意可得,苹果现价是每千克0.7x 元,故答案为:0.7x .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.5.(ax +27)【分析】用球拍的总价加上结账后剩余的钱可得结果.【详解】解:由题意可得:小明出门带了现金:(ax +27)元,故答案为:(ax +27).【点睛】本题考查了列代数式,解题的关键是理解题意,理清数量关系.6.5x -3【分析】设乙数是x ,根据甲数比乙数的5倍小3,列出代数式即可.【详解】解:设乙数为x ,则甲数为5x -3,故答案为:5x -3.【点睛】本题考查代数式问题,理解题意能力,关键是设出未知数,根据题目所给的等量关系列代数式求解.7.B【分析】根据代数式的书写要求判断各项.【详解】解:A 、数字与字母相乘时,数字要写在字母的前面且省略乘号,原书写不规范,不符合题意;B 、112ab 是正确的形式,符合题意;C 、5x +只应写为(5x +)只,不符合题意;D 、m2n 应写为2mn ,不符合题意;故选B .【点睛】本题考查了代数式,解题的关键是掌握代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.D【分析】根据两位数的表示方法:十位数字×10+个位数字,即可解答.【详解】解:∵一个两位数,它的十位数是x ,个位数字是y ,∴根据两位数的表示方法,这个两位数表示为:10x +y .故选:D【点睛】本题考查了用字母表示数的方法,会用含有字母的式子表示数量是解题的关键.9.2x −23x【分析】根据分数、倍数与差的意义解答.【详解】解:∵x 的三分之二为23x ,x 的2倍为2x ,∴“x 的三分之二比 x 的 2 倍少多少”列代数式为:2x −23x ,故答案为:2x −23x .【点睛】本题考查列代数式的有关应用,熟练掌握分数、倍数与差的意义是解题关键.10.(5m +10n )【分析】由5元面值人民币m张,可得人民币5m元,由10元面值人民币n张,可得人民币10n元,从而可得答案.【详解】解:由题意得:共有人民币(5m+10n)元,故答案为:(5m+10n)【点睛】本题考查的是列代数式,掌握列代数式的方法是解题的关键.11.2.1a【分析】根据题意,第二周的生产数量为:(110%)a+,加上第一周的数量,合并同类项即可求得【详解】第一周生产a个第二周生产(110%)a+=1.1a个这两周共生产a+1.1a=2.1a个故答案为:2.1a【点睛】本题考查了列代数式,单项式的加法即合并同类项,求得第二周的生产数量是解题的关键.12.(1)2.3x;(2)3.5x−9.6;(3)32.4元【分析】(1)根据当每月用水量不超过8吨时,按每吨2.3元收费,则可用含x的代数式表示用水费用;(2)根据当每月用水量超过8吨时,则超出部分按每吨3.5元收费,则可用含x的代数式表示用水费用;(3)根据小红家用水量为12吨,则按照(2)中水费公式计算,即可得到答案.【详解】(1)∵根据当每月用水量不超过8吨时,按每吨2.3元收费,∴此时用水费用=2.3x;(2)∵每月用水不超过8吨,按每吨2.3元收费;每月用水量超过8吨,则超出部分按每吨3.5元收费,∴此时用水费用=2.3×8+3.5×(x−8)=3.5x−9.6;(3)∵小红家用水量为12吨,∴需交水费=3.5×12−9.6=32.4(元)【点睛】本题考查了由实际问题列代数式,解答本题的关键是正确理解题意,分清楚如何计算水费.课后练习1.下列各式:①113x;②2•3;③20%x;④a-b÷c;⑤m3n23;⑥x-5;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个2.某水果批发市场规定,批发苹果重量不少于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg 时,超过的部分按批发价打八折.若某人批发苹果重量为x(x>100)kg时,需支付多少现金,可列式子为()A.100xB.100x+2.5×0.8×(x﹣100)C.100×2.5+2.5×0.8×(x﹣100)D.x+2.5×(x﹣100)的意义是()3.代数式mn−2n 除mA.m除以n减2 B.2C.n与2的差除以m D.m除以n与2的差所得的商4.下列图形是由同样大小的棋子按一定规律组成的,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为()A.141 B.106 C.169 D.1505.用代数式表示“m的3倍与n的差的平方”为____________.6.n是任意整数,我们常用2n表示偶数,由此想到奇数可以表示为____________,比2n小的最大奇数为____________.7.对单项式“0.75m”可以解释为:一件商品原价m元,若按原价的七五折出售,这件商品现在的售价为0.75m 元.某超市的苹果价格为39元/斤,则代数式“50−3.9x”可表示的实际意义______.8.某花店新开张,第一天销售盆栽m盆,第二天比第一天多销售7盆,第三天的销量是第二天的3倍少13盆,则第三天销售了_________盆.(结果用含m的式子表示)9.一条河的水流速度时3km/ℎ,船在静水中的速度是v km/ℎ,则船在这条河中顺水行驶的速度是______km/ℎ;逆水行驶的速度是______km/ℎ.10.如图的瓶子中盛满了水,则水的体积是__________________.(用代数式表示)11.图1由若干个小圆圈组成的一个形如正三角形的图案,第1层有1个圆圈,每一层都比上一层多1个圆圈,一共堆了n层.(1)如图1所示,第100层有个小圆圈,从第1层到第n层共有个小圆圈;(2)我们自上往下按图2的方式排列一串连续的正整数1,2,3,…,则第20层的第5个数是;(3)我们自上往下按图3的方式排列一串整数31,﹣33,35,﹣37,…,则求从第1层到第20层的所有数的绝对值的和.课后练习参考答案1.C【分析】根据代数式的书写规则:分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,数与字母相乘,乘号省略或者用“.”表示,对各项代数式逐一判定即可.x中分数不能为带分数;【详解】①113②2•3中数与数相乘不能用“.”;③20%x,书写正确;④a-b÷c中不能出现除号;⑤m3n2书写正确;3⑥x-5书写正确;不符合代数式书写要求的有①②④共3个.故选:C.【点睛】本题考查代数式的书写要求,解题的关键是要熟练地掌握代数式的书写要求:分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,数与字母相乘,乘号省略或者用“.”表示. 2.C【分析】根据批发苹果重量不少于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg时,超过的部分按批发价打八折,列式子即可.【详解】解:由题意可列式子为:100×2.5+2.5×0.8×(x﹣100)故选:C.【点睛】本题考查列代数式,解题的关键是读懂题意正确列出式子.3.D【分析】根据代数式的意义,表示m除以n与2的差所得的商.表示m除以n与2的差所得的商,【详解】解:代数式mn−2故选:D.【点睛】本题考查了代数式,掌握代数式的意义,要把运算过程表述清楚.4.A【分析】本题的图从②个图开始可以看作是由图①的一个棋子为中心依次向外以五边形的形式向外扩张,棋子依次是5的整数倍关系.所以第⑥个图形中棋子的颗数也就容易计算了.【详解】解:∵第①个图形中棋子的个数为:1=1+5×0=1+5×0;第②个图形中棋子的个数为:1+5×(0+1)=6;第③个图形中棋子的个数为:1+5×(0+1+2)=16;…∴第n个图形中棋子的个数为:1+5×(0+1+2+⋯+n−1)=1+5n(n−1);2=141则第⑧个图形中棋子的颗数为:1+5×8×72故应选A.【点睛】本题考查了规律型中图形的变化类,根据图形中棋子数目的变化找出变化规律是解题的关键.5.(3m-n)2【分析】m的3倍是3m,与n的差就是3m-n,然后对差求平方.【详解】解:m的3倍与n的差的平方是(3m-n)2.故答案是:(3m-n)2.【点睛】本题考查了列代数式的知识;列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.6.2n+1或2n-1 2n-1【分析】根据偶数和奇数的意义:整数中,是2的倍数的数是偶数,不是2的倍数的数是奇数,偶数可用2n表示,奇数可用2n+1表示,故可求解.【详解】n是任意整数,我们常用2n表示偶数,由此想到奇数可以表示为2n+1或2n-1,比2n小的最大奇数为2n-1.故答案为:2n+1或2n-1; 2n-1.【点睛】解答此题的关键:应明确偶数和奇数的含义.7.用50元买原价39元/斤一折出售的苹果x斤后余下的钱.【分析】根据代数式50−3.9x,50是支付的钱,3.9x=(39×110)x按原价一折,购买x斤的钱,其差表示余下的钱即可.【详解】解:3.9x按原价一折,购买x斤的钱,代数式“50−3.9x=50−(39×110)x”可表示的实际意义是:支付50元买原价39元/斤一折出售的苹果x 斤后余下的钱,故答案为:用50元买原价39元/斤一折出售的苹果x斤后余下的钱.【点睛】本题考查代数式的意义,特别注意减号与小数的实际意义,通过代数式变形将小数的实际意义突出出来是解题关键.8.(3m+8)【分析】先求出第二天销售的盆数,然后求出第三天销售的盆数即可.【详解】解:由题意可得,第二天销售了(m+7)盆第三天销售了3(m+7)-13=(3m+8)盆故答案为:(3m+8).【点睛】此题考查的是利用代数式表示实际意义,掌握实际问题中各个量的关系是解题关键.9.(3+v)(v−3)【分析】根据顺水逆水行船问题可知顺水速度=船在静水中的速度+水速,逆水速度=船在静水中的速度-水速,由此可求解.【详解】解:由顺水速度=船在静水中的速度+水速,逆水速度=船在静水中的速度-水速,可得:船在这条河中顺水行驶的速度是(3+v)km/h,逆水行驶的速度是(v−3)km/h;故答案为:(3+v);(v−3).【点睛】本题主要考查了列代数式,熟练掌握列代数式是解题的关键.10.πa2(H+ℎ4)【分析】根据圆柱体积公式计算即可.【详解】解:瓶子的体积为:π(2a2)2H+π(a2)2ℎ=πa2(H+ℎ4),故填:πa2(H+ℎ4).【点睛】本题主要考查了圆柱体积的计算,发现水的体积等于两个容器的体积之和成为解答本题的关键.11.(1)100,n(n+1)2;(2)195;(3)50400.【分析】(1)观察图1发现规律:第n层有n个小圆圈,从第1层到第n层共有圆圈的个数为1+2+3+…+n,计算即可得圆圈的个数,进而可得结论;(2)观察图2发现规律:从1开始的自然数列,第n层放n个,进而可得第20层第5个数;(3)观察图3发现规律:第n层放n个,从第1个数开始,符号“+﹣”周期变化,绝对值依次加2,可得第20层最后一个数的绝对值,最后得第1层到第20层所有数的绝对值和.【详解】解:(1)图1规律:第n层有n个小圆圈,则第100层有100个小圆圈,.因为1+2+3+…+n=n(n+1)2所以从第1层到第n层共有n(n+1)个小圆圈;2;故答案为:100,n(n+1)2(2)图2规律:从1开始的自然数列,第n层放n个,则第20层第5个数为:1+2+3+…+19+5=195.故答案为:195;(3)图3规律:第n层放n个,从第1个数开始,符号“+﹣”周期变化,绝对值依次加2,则第20层最后一个数的绝对值为:31+(2+3+4+…+20)×2=449,则第1层到第20层所有数的绝对值和为:31+33+35+…+449=50400.故答案为:50400.【点睛】本题考查了根据图形的变化规律列式,计算等知识,理解图形的变化规律,并寻找其中规律是解题关键.。

数学湘教版七年级上册第二章2.2列代数式练习题(无答案)

数学湘教版七年级上册第二章2.2列代数式练习题(无答案)

初中数学湘教版七年级上册第二章2.2列代数式练习题(无答案)一、选择题1.东西湖区域出租汽车行驶2千米以内(包括2千米)的车费是10元,以后每行驶1千米,再加0.7元.如果某人坐出租汽车行驶了m千米(m是整数,且m≥2),则车费是()A. (10−0.7m)元B. (11.4+0.7m)元C. (8.6+0.7m)元D. (10+0.7m)元2.下列代数式书写规范的是()A. −12ab B. −1a C. a−10米 D. 113a3.m表示一个一位数,n表示一个两位数,若把m放在n的左边,组成一个三位数,则这个三位数可表示为()A. mnB. m+nC. 10m+nD. 100m+n4.某商店举办促销活动,促销的方法是将原价x元的商品以(710x−50)元出售,则下列说法中,能正确表达该商店促销方法的是()A. 原价降价50元后再打7折B. 原价打7折后再降价50元C. 原价降价50元后再打3折D. 原价打3折后再降价50元5.下列各式中,代数式有()个(1)a+b=b+a(2)1(3)2x−1(4)x+23x(5)s=πr2(6)−k6A. 2B. 3C. 4D. 56.搭一个正方形需要4根火柴棒,按照图中的方式搭n个正方形需要()根火柴棒.A. 4nB. 4+3(n−1)C. 3nD. 4n−(n+1)7.一个长方形的周长为50,若它的一边用字母x表示,则此长方形的面积为()A. x(25+x)B. x(25−x)C. x(50−2x)D. x(50−x)8.已知一艘船顺流而下1小时行驶了a千米,若水流的速度是b千米/小时,则该艘船逆流而上1小时可行驶的路是()千米.A. a−2bB. a−bC. aD. a+b9.某苹果的原价是每千克x元,现按8折优惠出售,则现价多少元?()A. 8xB. x+8C. 0.8xD. x=0.810.甲、乙二人从M地同时出发去N地,甲用一半的时间以每小时a千米的速度行走,另一半的时间以每小时b千米的速度行走;乙以每小时a千米的速度行走一半的路程,另一半路程以每小时b千米的速度行走.若a≠b,则()先到达N地.A. 甲B. 乙C. 二人同时到达D. 不确定二、填空题11.小明用a元钱去购买某种练习本.这种练习本原价每本b元(b>1),现在每本降价1元,则他现在可以购买到这种练习本的本数为______.12.学校图书馆原有图书a册,最近增加了20%,现在有图书______册.13.某轮船顺水航行3h,逆水航行1.5ℎ,已知轮船在静水中的速度是akm/ℎ,水流速度是ykm/ℎ,该轮船顺水航行比逆水航行多航行了______千米.14.某运动品牌搞促销活动,规定原售价为x元的运动鞋,打8折后再降30元,则该运动鞋现在的售价为______.15.一个两位数的个位上的数为a,十位上的数为b,将8插入这个两位数的中间,则得到的三位数可表示为______.三、解答题16.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,其中种茄子每亩可获利2400元,种西红柿每亩可获利2600元,王大伯一共获纯利多少元.(1)若设种茄子x亩,用含有x的式子填下表:(2)王大伯种两种蔬菜一共获纯利多少元.(用含x的代数式表示)17.点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为______;(2)若线段BM的长为4.5,则线段AC的长为______;(3)若线段AC的长为x,求线段BM的长(用含x的式子表示).18.某工厂第一车间有x人,第二车间比第一车间人数的4少30人,如果从第二车间调5出10人到第一车间,那么:(1)两个车间共有多少人?(用含有x的式子表示);(2)若调动后,第一车间的人数比第二车间多70人,问第一车间有多少人?19.A,B两仓库分别有水泥60吨和40吨,C,D两工地分别需要水泥70吨和30吨,已知从A,B仓库运到C,D工地的运价如下表:到C工地到D工地A仓库每吨15元每吨12元B仓库每吨10元每吨9元(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为______吨,从B仓库将水泥运到C工地的运输费用为______元;(2)求把全部水泥从A,B两仓库运到C,D两工地的总运输费;(用含x的代数式表示并化简)(3)如果从A仓库运到C工地的水泥为10吨,总运输费为多少元?。

列代数式专项练习60题(有答案)

列代数式专项练习60题(有答案)

列代数式专项练习60题(有答案)1.正方体棱长为a,体积为V,则V与a之间的关系式为_________ ,当a=4cm时,V= _________ cm3.2.一个数比a的3倍的平方小3,则这个数是_________ .3.体校里男学生人数是m,女学生人数是n,教练人数和学生人数的比是1:20,则教练人数是_________ .4.某商品的进价是x元,售价是132元,则此商品的利润是_________ .5.“x的2倍与y的3倍的差”列式为_________ .6.在负整数a后添上3,使其位数增加一位,则这个数可表示为_________ .7.若一个数比x的2倍小3,则这个数可表示为_________ .8.“比a的3倍小2的数”用整式表示是_________ .9.“x与y的和”用代数式可以表示为_________ .10.用代数式表示“a的3倍与4的和”为_________ .11.某校共有学生x人,其中女生占总数的m%,则男生人数为_________ 人.12.某商品进价是m元,提价30%后标价,又打九折出售,则该商品的利润是_________ .13.一个笼子里的鸡a只,兔b只,则笼子里的鸡和兔的脚共有_________ 只.14.某工厂的产值由a万元增加了20%,达到_________ 万元.15.一台a元的电视机,降价20%后的价格为_________ 元.16.某工厂今年的产值是a万元,比去年增加了20%,则去年的产值是_________ .17.苹果每千克p元,若苹果超过10千克以上,则全部9折优惠,买15千克应付_________ 元.18.张红在一次考试中,得数学a分,语文b分,则张红这二科的平均成绩是_________ 分.19.科学家在南极考察时,拾到一块不规则的矿石,科学家用一把刻度尺,一只圆柱体的玻璃杯和足量的水,就测出了这块矿石的体积.如果玻璃杯的内直径为r,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则这块矿石的体积是_________ .20.一件商品原价为a元,先涨价5元后,再按8.5折出售,那么现售价用代数式表示为_________ .21.如图,正方形的边长为2,分别以正方形的两个相对顶点为圆心,以正方形的一边为半径画弧,则阴影部分的面积是_________ .22.如图是数值转换器的示意图,如果输入的数字用x表示,那么输出的数字可以用代数式_________ 表示.23.小亮从一列火车的第m节车厢起,一直数到第2m节车厢,他数过的车厢节数是_________ .24.小明在考试前到文具店里买了2支2B的铅笔和一副三角板,2B的铅笔每支x元,三角板每副3元,小明总共应付_________ 元(用含x的代数式表示).25.三毛早上从报社以每份0.4元的价格购进了a份报纸.以每份0.5元的价格出售,一天共售b份报纸,剩余的报纸以每份0.2元的价格退回报社,回家后三毛发现这一天的辛苦还是赚到了钱,那么三毛这天赚了_________ 元.26.n(n≥2)个球队进行单循环赛(参加比赛的每个队都与其他所有的队各赛一场),总的比赛场数是_________ .27.绥阳某商店的一种商品每件进价为a元,按进价提高30%标价,再按标价的8折出售,那么打折后,每件商品的售价是_________ 元.28.“圆形方孔钱”是中国古钱币的突出代表.如图,一枚圆形方孔钱的外圆直径为a,中间方孔边长为b,则图示阴影部分面积为_________ .30.如图,两个长方形的一部分重叠在一起,重叠部分是边长为3的正方形,则阴影部分的面积是_________ .31.三角形三边的长分别是(2x+1)厘米,(3x﹣2)厘米,(8﹣2x)厘米,求这个三角形的周长,如果x=3,三角形的周长是多少?32.晓霞的爸爸开了一个超市,一天,她爸爸分别以P元进了A、B两种商品,后来A商品提价20%,B商品降价10%,这样在某一天中,A商品卖了10件,B商品卖了20件,问这一天里超市作这两种买卖是赚了还是赔了?并说明理由.33.列代数式:(1)比a与b的积的2倍小5的数;(2)a与b的平方差;(3)被5除商是a,余数是2的数.34.我国出租车收费标准因地而异,A市为:起步价10元,3km后每千米加价1.2元;B市为:起步价8元,3km 后每千米加价1.4元;(1)试分别写出在A,B两城市坐出租车x(x>3)km所付的车费;(2)求在A,B两城市坐出租车x(x>3)km的差价是多少元?35.如图,大正方形的边长为a,小正方形的边长为2,求阴影部分的面积.36.窗户的形状如图,其上部是半圆形,下部是长方形.已知窗户的下部宽为xm,窗户长方形部分高度为1.5xm.计算:(1)窗户的面积S;(2)窗框的总长L.37.“十一”黄金周期间,小刚拿着妈妈给的800元钱到重百商场购买运动服和运动鞋,他来到自己喜欢的“阿迪、(1)200~500元(含500元)的部分打9折;(2)500~800元(含800元)的部分打8折;(3)800元以上的部分打7折(商品金额可累计),他又看到运动服标价a元/件(400≤a≤500),运动鞋标价b元/双(300≤b≤400);(1)算他单独买一件运动服需多少钱;(用含a的代数式表示)(2)计算他一次性买一件运动服和一双运动鞋共需多少钱.(用含a、b的代数式表示)38.为了节约用水,某市决定调整居民用水收费方法,规定:如果每户每月用水不超过20吨,每吨水收费3元,如果每户每月用水超过20吨,则超过部分每吨水收费3.8元;小红看到这种收费方法后,想算算她家每月的水费,但是她不清楚家里每月的用水是否超过20吨.(1)如果小红家每月用水15吨,水费是多少.如果每月用水35吨,水费是多少;(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢.39.某轮船顺水航行4小时,逆水航行2.5小时,已知轮船在静水中的速度为m千米/小时,水流速度为y千米/小时.轮船共航行了多少千米?40.一轮船航行于甲、乙两港口之间,在静水中的航速为m千米/小时,水流速度为12千米/小时,(1)则轮船顺水航行5小时的行程是多少?(2)轮船逆水航行4小时的行程是多少?(3)轮船顺水航行5小时和逆水航行4小时的行程相差多少?41.某公园的成人票价是20元,儿童票价是8元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童人数是甲旅行团的.(1)求两个旅行团的门票总费用是多少?(2)当x=10人,y=6人时,求两个旅行团的门票总费用是多少元?42.小明想把一长是60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形的四个角各剪去一个相同小正方形(如图).(1)若设这些小正方形的边长为xcm,求图中阴影部分小长方形的面积.(2)当x=5时,求这个盒子的体积.43.某礼堂第1排a个座位,后面每排比第一排多1个座位,用含a的代数式表示:(1)第2排有多少个座位?第5排有多少个座位?第10排有多少个座位?(2)前10排共有多少个座位?(3)第11排比第5排多多少个座位?44.如图,正方形ABCD的边长为a,长方形AEFD的长AE为b,(1)用代数式表示图中阴影部分的面积;(2)求当a=5cm,b=7cm时,阴影部分的面积.45.一个三位数,个位上的数是十位上的数的平方,百位上的数比十位上的数的4倍多1.将十位上的数设为x.(1)列式表示这个三位数;(2)这个三位数是多少?46.学校组织初一年级全体同学参加植树造林劳动.全体同学分三队,第一队植树x棵,第二队植的树比第一队植树的两倍少80棵,第三队植的树比第二队植树多了10%.(1)求全体同学一共植树多少棵?(用含x的式子表示)(2)若x=100棵,求全体同学共植树多少棵?47.攀枝花市出租车收费标准为:起步价5元(其中包含2千米),2千米后每千米价1.8元.则某人乘坐出租车x 千米的付费为多少元.(用代数式表示)48.龙港某企业有甲、乙两种经营收入,2010年甲种年收入是乙种年收入的1.5倍,预计2011年甲种年收入将减少20%,而乙种年收入将增加40%,记2010年乙种年收入为a万元.(1)2010年该企业甲种年收入为_________万元;(2)2011年该企业甲种年收入为_________万元;乙种年收入为_________万元.(3)当a=100万元时,请问该企业2011年总收入比2010年总收入是增加,还是减少?增加或减少了多少?请说明理由.49.用代数式表示下列图形中阴影部分的面积.(1)S阴影=_________;(2)S阴影=_________.50.学校需要到印刷厂印刷n份材料,甲印刷厂的收费标准是每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂的收费标准是每份材料收0.4元印刷费,不收制版费.(1)两个印刷厂的收费各是多少元?(用含n的代数式来表示)(2)学校要印2600份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.51.一辆汽车以每小时80千米的速度行驶,从A城市到B城市需要t小时,按题意解决下列问题(1)如果汽车行驶的速度每小时增加v千米,那么从从A城市到B城市还需要多少小时.(2)如果某次因紧急情况,从B城市返回到A城市的平均速度比原来每小时增加12千米,那么预计返回比原来可提前多少时间.52.一种笔记本售价为2.3元/本,如果买100本以上(不含100本),售价为2.2元/本.(1)列式表示买n本笔记本所需的钱数;(2)按照售价规定,会不会出现多买比少买反而付钱少的情况?(3)如果需要100本笔记本,怎样购买更省钱?并说明理由.53.甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取.某顾客购买的电器价格是x元.(1)当x=850时,该顾客应选择在_________商场购买比较合算;(2)当x>1000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=1700时,该顾客应选择哪一家商场购买比较合算?说明理由.54.列代数式:(1)a的3倍与b的和;(2)a与b的差的平方;(3)被5除商是x,余数是2的数.55.如图,将一张长方形大铁皮切割(切痕为虚线)成九块,其中有两块是边长都为a厘米的大正方形,两块是边长都为b厘米的小正方形,且a>b.(1)这张长方形大铁皮长为_________厘米,宽为_________厘米(用含a、b的代数式表示);(2)①求这张长方形大铁皮的面积(用含a、b的代数式表示);②若最中间的小长方形的周长为22厘米,大正方形与小正方形的面积之差为33厘米2,试求a和b的值,并求这张长方形大铁皮的面积;(3)现要从切块中选择5块,恰好焊接成一个无盖的长方体盒子,共有哪几种方案可供选择(画出示意图)?按哪种方案焊接的长方体盒子的体积最大?试说明理由.(接痕的大小和铁皮的厚度忽略不计)56.在正常情况下,某出租车司机每天驾车行驶t小时,且平均速度为v千米/小时.已知他在A日比正常情况少行驶2小时,平均速度比正常情况慢5千米/小时,他在B日比正常情况多行驶2小时,平均速度比正常情况快5千米/小时,(1)求A日出租车司机比正常情况少行驶多少千米?(用含v,t的代数式表示)(2)已知A日出租车司机比正常情况少行驶120千米,求B日出租车司机比正常情况多行驶多少千米?57.已知我市出租车收费标准如下:乘车路程不超过3km的一律收费7元;超过3km的部分按每千米加1.8元收费.(1)如果有人乘计程车行驶了m千米(m>3),那么他应付多少车费?(列代数式)(2)游客甲乘出租车行驶了4km,他应付车费多少元?(3)某游客乘出租车从西区大润发到文昌楼,付了车费10.6元,试估算从西区大润发到文昌楼大约有多少公里?58.如图为一梯级的纵截面,一只老鼠沿长方形的两边A→B→D路线逃跑,一只猫同时沿梯级(折线)A→C→D的路线去捉,结果在距离C点0.6米的D处,捉住了老鼠.请将下表中的语句“译成”数学语言(写出代数式).设梯级(折线)A→C的长度x米AB+BC的长为A→C→D的长为A→B→D的长为设猫捉住老鼠所用时间为t秒猫的速度老鼠的速度59.某地公交公司推出刷卡月票制,即持有这种月票的乘客通过刷卡扣除每次的车票.某人买了50元的这种月票卡,如果此人乘车的次数用m表示,每次乘车的余额用n表示,它们之间的关系如下表:乘车次数m 月票余额n/元1 50﹣0.82 50﹣1.63 50﹣2.44 50﹣3.2……回答下列问题:(1)如果此人乘车的次数m,那么月票余额是_________元.(2)此人最多能乘车几次?简单说明理由.60.一本小说共m页,一位同学第一天看了全书的少6页,第二天看了剩下的多6页,第三天把剩下的全部看完,该同学第三天看了多少页?若m=900,则第三天看了多少页?列代数式专项练习60题参考答案:1.∵正方体边长为a,∴它的体积是V=a3.当a=4cm时,V=4 3=64cm3.故答案为:a3,64.2.由题意得:(3a)2﹣3=9a2﹣3,故答案为:9a2﹣3.3.设没分为x人,则教练有x人,学生有20x人,由题意,得∴20x=m+n,∴x=,∴教练有人.故答案为:人4.∵某商品的进价是x元,售价是132元,∴此商品的利润=售价﹣进价=132﹣x(元).故答案为(132﹣x)元.5.x的2倍是2x,y的3倍是3y,则x的2倍与y的3倍的差为:2x﹣3y.故答案是:2x﹣3y.6.在负整数a后添上3,使其位数增加一位,则这个数可表示为10a﹣3.故答案为10a﹣3.7.一个数比x的2倍小3,则这个数可表示为2x﹣3.故填:2x﹣38.由题意得:3a﹣2,故答案为:3a﹣2.9.“x与y的和”用代数式可以表示为:x+y.故答案为x+y10.先求a的3倍是3a,再求与4的和为3a+4.故答案为:3a+4.11.由题意得:x﹣m%x,故答案为:(x﹣m%x).12.∵某商品进价是m元,提价30%后标价,又打九折出售,∴此商品的售价为0.9×1.3m=1.17m(元),∴该商品的利润是1.17m﹣m=0.17m(元).故答案为0.17m13.∵鸡有两只脚,兔有四只脚,又∵鸡有a只,兔有b只,∴鸡和兔的脚共有:2a+4b.故答案为:2a+4b14.根据题意得产值由a万元增加了20%,达到的产值15.∵电视机的原价为a元,∴降价20%后的价格为(1﹣20%)a=0.8a(元).故答案为0.8a16.∵今年比去年增加了20%,∴今年的产值占去年的1+20%=120%,∴去年的产值=a÷120%=a万元.故答案为:a万元.17.15×0.9p=13.5p.故答案是:13.5p.18.二科的平均成绩是:(a+b).故答案是:(a+b).19.根据圆柱的体积公式可得这块矿石的体积为:.故填:20.根据一件商品原价为a元,先涨价5元,则价格变为:a+5,再按8.5折出售,依题意得:(a+5)×0.85.故答案为:0.85(a+5)21.S阴影=2S扇形﹣S正方形=2×﹣22=π×22﹣22=2(π﹣2).故填2(π﹣2)22.根据示意图可得:2x﹣3.故答案为2x﹣3.23.根据题意列得:他数过的车厢有(2m﹣m+1)即(m+1)节.故答案为:m+1.故选D24.因为2支2B铅笔2x元,一副三角板3元,所以小明总共应付(2x+3)元.故答案为:2x+325.∵每份0.4元的价格购进了a份报纸,∴这些报纸的成本是0.4a元,∵每份0.5元的价格出售,一天共售b份报纸,∴共买了0.5b元,∵剩余的报纸以每份0.2元的价格退回报社,∴退回了0.2(a﹣b)元,他一天工赚到的钱数为:0.5b+0.2(a﹣b)﹣0.4a=0.3b26.n支球队举行单循环比赛,比赛的总场数为:n(n ﹣1).故答案为:n(n﹣1)27.根据题意得:a•(1+30%)×80%=1.04a;故答案为:1.04a.28.圆的面积为π×()2=,中间正方形的面积为b2,∴图中阴影部分面积为:﹣b2.故答案为:﹣b2.29.∵由题意可得计算过程如下:( x×2+y2)÷2,∴当x=5,y=﹣2时,( x×2+y2)÷2=(5×2+4)÷2=7.故答案为:730.阴影部分的面积是:ab+cd﹣2×32=ab+cd﹣18;故答案为:ab+cd﹣18.31.三角形的周长是2x+1+3x﹣2+8﹣2x=3x+7,当x=3时,原式=3x+7=3×3+7=16.32.在一天的两种商品的买卖中,超市不赚不赔.∵10件A商品一共卖了10×(1+20%)P=12P(元),20件B商品一共卖了20×(1﹣10%)P=18P(元),∴这30件商品一共卖了12P+18P=30P(元),∵30P﹣30P=0,∴超市不赚不赔33.(1)2ab﹣5.(2)a2﹣b2.(3)5a+234.(1)A:10+1.2(x﹣3)=1.2x+6.4;B:8+1.4(x﹣3)=1.4x+3.8;(2)A与B的差价=(1.2x+6.4)﹣(1.4x+3.8)=2.6﹣0.2x.35.阴影部分的面积=GF•DG+GF•CG=GF•CD=×2•a.=a.36.①S==(m2)(4分);②L===(m)37.(1)由题意得,单独买一件运动服需要的钱数为:200+(200﹣a)×0.9即20+0.9a.(2)∵700≤a+b≤900,而打折却有7折和8折两种方式,∴当700≤a+b≤800时,应付费:200+300×0.9+(a+b﹣500)×0.8即为70+0.8a+0.8b(元);当800<a+b≤900时,应付费:200+300×0.9+300×0.8+(a+b﹣800)×0.7即为150+0.7a+0.7b(元)38.(1)每月用水15吨时,水费为:15×3=45元(1分)每月用水35吨时,水费为:3.8(35﹣20)+60=117元…(2分)(2)①如果每月用水x≤20吨,水费为:3x元(4分)②如果每月用水x>20吨,水费为:3.8(x﹣20)+60或3.8x﹣16元39.根据题意得:4(m+y)+2.5(m﹣y)=6.5m+1.5y.轮船共航行了(6.5m+1.5y)千米.40.(1)根据题意得:(m+12)×5=5m+60(千米);答:轮船顺水航行5小时的行程是(5m+60)千米.(2)根据题意得:(m﹣12)×4=4m﹣48(千米)答:轮船逆水航行4小时的行程是(4m﹣48)千米.(3)根据题意得:5m+60﹣(4m﹣48)=m+108(千米)答:轮船顺水航行5小时和逆水航行4小时的行程相差(m+108)千米.41.(1)由题意得:甲旅行团门票总费用:20x+8y;乙旅行团门票总费用:20×2x+8×y=40x+4y;(2)甲旅行团门票总费用:20x+8y=20×10+8×6=248(元);乙旅行团门票总费用:40x+4y=40×10+4×6=424(元),248+424=672(元).答:两个旅行团的门票总费用是672元42.(1)剩余部分的面积为:(60×40﹣4x2)cm2;(2)盒子的体积为:x(60﹣2x)(40﹣2x)cm3;当x=5时,原式=5(60﹣10)(40﹣10)=7500cm3;答:盒子的体积为7500立方厘米43.(1)∵第1排a个座位,后面每排比第一排多1个座位,(2)根据题意得:a+(a+1)+(a+2)+…+(a+9)=10a+(1+9)×9÷2=10a+45答:前10排共有10a+45个座位;(3)∵第11排有(a+10)个座位,第5排有(a+4)个座位,∴第11排比第5排多的座位数是:(a+10)﹣(a+4)=6(个);则第11排比第5排多6个座位44.(1)阴影部分的面积为:a(b﹣a)(3分);(2)当a=5cm,b=7cm时,原式=5×(7﹣5)=10cm2 45.(1)100(4x+1)+10x+x2(1分)=400x+100+10x+x2=x2+410x+100(2分);(2)当x=0时,x2+410x+100=100,当x=1时,x2+410x+100=511,当x=2时,x2+410x+100=924,当x取3,4,…,9时,4x+1>9,不合题意.由上可知,这个三位数是100或511或924.(4分)46.(1)∵第一队植树x棵,第二队植的树比第一队的2倍少80棵,∴第二队的植树棵数为:2x﹣80,∵第三队植的树比第二队植树多了10%.∴第三队的植树棵数为:(2x﹣80)(1+10%),所以三个队共植树:x+2x﹣80+(2x﹣80)(1+10%)=x﹣168,(2)当x=100棵时,全体同学共植树:x﹣168=×100﹣168=352(棵)47.根据题意可知:当x≤2,支出费用为:5元,若某人乘坐出租车x(x>2)千米的付费=5+1.8×(x﹣2),整理得:应付费用为:1.4+1.8x48.(1)1.5a(1分)(2)1.5a(1﹣20%);a(1+40%)各(1分)(3)2010年总收入250万元,(1分)2011年总收入260万元,(1分)260﹣250=10万元.(1分)答:该企业2011年总收入比2010年总收入增加了10万元49.(1)阴影部分的面积:;(2)阴影部分的面积:,故答案为ab ,.(2)学校要印2600份材料,在甲厂印费用=0.2×2600+500=1020(元);在乙厂印费用=0.4×2600=1040元,∵1020<1040,∴在甲厂印刷比较合算51.1)A城市与B城市之间的距离:80t,从A城市到B 城市的时间:小时,答:需要小时.(3分)(2)由题意:t ﹣=t ﹣=t ﹣=(7分)答:可以提前小时到达52.(1)当n≤100时,买n本笔记本所需的钱数是:2.3n,当n>100时,买n本笔记本所需的钱数是:2.2n;(2)因为2.3n>2.2n,所以会出现多买比少买付钱少的情况;(3)如果需要100本笔记本,购买101本笔记本,比较省钱53.(1)根据题意可得:当x=850时,在甲商场没有优惠,在乙商场有优惠,费用是:500+(850﹣500)×95%=8332.5(元),故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+(x﹣1000)×90%=0.9x+100;在乙商场的费用是:500+(x﹣500)×95%=0.95x+25;(3)把x=1700代入(2)中的两个代数式:0.9x+100=0.9×1700+100=1630,0.95x+25=0.95×1700+25=1635,∵1635>>1630,∴选择甲商场合算54.(1)3a+b,(2)(a﹣b)2,(3)5x+2.55.(1)(2a+b)、(a+2b)…(2分)(2)①依题意可得:(2a+b)(a+2b)=2a2+4ab+ab+2b2=(2a2+5ab+2b2)cm2…(4分)②依题意得a2﹣b2=33即(a+b)(a﹣b)=33又2(a+b)=22即a+b=11①∴a﹣b=3②…(6分)由①②式可求得解得:a=7,b=4当a=7,b=4时,2a2+5ab+2b2=2×72+5×7×4+2×42=270答:这张长方形大铁皮的面积是270cm2.…(8分)(3)共有下列四种方案可供选择:V2=a2bV3=a2bV4=ab2…(12分)∴V1=V4,V2=V3∴V1﹣V2=ab2﹣a2b=ab(b﹣a)∵a>b∴V1=V4<V2=V3∴方案②与③的体积最大.56.(1)由已知得:A日出租车司机比正常情况少行驶:vt﹣(t﹣2)(v﹣5)=2v+5t﹣10(米);(2)由已知得:B日出租车司机比正常情况多行驶(t+2)(v+5)﹣vt=2v+5t+10(米)①,又由(1)和已知的得:2v+5t﹣10=120,将2v+5t=130代入①得140(米).答:B日出租车司机比平时多行驶140千米57.(1)由题意得:应付的车费为:7+(m﹣3)×1.8=1.8m+1.6(元)即他应付1.8m+1.6元车费;(2)由(1)知,如果有人乘计程车行驶了m千米(m >3),那么他应付1.8m+1.6元车费,此时甲乘出租车行驶了4km,所以1.8×4+1.6=8.8(元),即他应付车费8.8元;(3)由(1)知,如果有人乘计程车行驶了m千米(m >3),那么他应付1.8m+1.6元车费,此时游客付了10.6元,则可列出方程为:1.8m+1.6=10.6解得:m=5,即从西区大润发到文昌楼大约有5公里58.AB+BC的长=A→C的长,为x,∵CD=0.6米,∴A→C→D的长=x+0.6,A→B→D的长=x﹣0.6,猫的速度=,老鼠的速度=.故答案为:x;x+0.6;x﹣0.6;;.59.(1)此人乘车的次数m,则月票余额是:50﹣0.8m;(2)50﹣0.8m≥0,故答案为:(1)(50﹣0.8m).60.∵一本小说共m 页,一位同学第一天看了全书的少6页,∴第一天看了m﹣6,剩下m ﹣(m﹣6)=m+6,∵第二天看了剩下的多6页,∴第二天看了,剩下:,当m=900时,(页).。

2-1整式—列代数式专项练习题人教版七年级数学上册

2-1整式—列代数式专项练习题人教版七年级数学上册

2.1整式——列代数式专项练习题一.选择题1.下列代数式书写正确的是()A.a4 B.m÷n C.D.x(b+c)2.代数式的意义是()A.x除以y加3B.y加3除xC.y与3的和除以xD.x除以y与3的和所得的商3.代数式x﹣y2的意义为()A.x的平方与y的平方的差B.x与y的相反数的平方差C.x与y的差的平方D.x减去y的平方的差4.若x表示某件物品的原价,则代数式(1+10%)x表示的意义是()A.该物品打九折后的价格B.该物品价格上涨10%后的售价C.该物品价格下降10%后的售价D.该物品价格上涨10%时上涨的价格5.下列代数式中符合书写要求的是()A.ab4 B.4x C.x÷y D.﹣a6.代数式的正确解释是()A.a与b的倒数的差的立方B.a与b的差的倒数的立方C.a的立方与b的倒数的差D.a的立方与b的差的倒数7.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打6折B.原价打6折后再减去10元C.原价减去10元后再打4折D.原价打4折后再减去10元8.小明、小亮参加学校运动会800米赛跑:小明前半程的速度为2x米/秒,后半程的速度为x米秒,小亮则用米/秒的速度跑完全程,结果是()A.小明先到终点B.小亮先到终点C.同时到达D.不能确定9.已知点A,B,C,D在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位.若点A表示数a,点D表示数d,且d=﹣2a,则与数轴的原点重合的点是()A.A B.B C.C D.D10.某水果批发市场规定,批发苹果重量不多于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg时,超过的部分按批发价打八折.若某人批发苹果重量为x(x>100)kg 时,需支付多少现金,可列式子为()A.100xB.100x+2.5×0.8×(x﹣100)C.100×2.5+2.5×0.8×(x﹣100)D.x+2.5×(x﹣100)二.填空题11.若商场去年的总销售量为n,预计今年增加20%的销售量,则今年的销售量为.12.九年级某班同学,每人都会打篮球或踢足球,其中会打篮球的人数比会踢足球的人数多12人,两种都会的有8人,设会踢足球的有a人,则该班同学共有人(用含a的代数式表示).13.某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%.用含a的代数式表示该公司这两周共生产医用护目镜个.14.《孙子算经》是中国南北朝时期重要的数学专著,其中包含了“鸡兔同笼”“物不知数”等许多有趣的数学问题.《孙子算经》中记载:“今有物不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”其译文为:“有一个正整数,除以3余2,除以5余3,除以7余2,求符合条件的正整数.”请用含有k的代数式表示满足条件的所有正整数.15.今年5月1日,历时8年修复的太原古县城正式开城迎客.统计结果显示,太原古县城第一时段a天内共接待游客m万人次,第二时段b天内共接待游客3m万人次,则这两个时段内平均每天接待游客万人次.16.如图,一块长为m,宽为n的长方形草坪,上下开辟的花园,都是由等半径的两个四分之一圆和一个半圆组成,那么中间草坪的面积是.三.解答题17.如图是用总长为12米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC=EB=x米.(1)用含x的代数式表示AB=米、BC=米;(2)用含x的代数式表示长方形ABCD的面积(要求化简).18.如图,在一条数轴上,点O为原点,点A、B、C表示的数分别是m+1,2﹣m,9﹣4m.(1)求AC的长;(用含m的代数式表示)(2)若AB=5,求BC的长.19.已知a,b,c,d四个数,a<b<c<d,满足|a﹣b|=|c﹣d|,其中n≥2且为正整数.(1)若n=2.①当b﹣a=1,d=5,求c的值;②给定有理数e,满足|b﹣e|=|c﹣d|,请用含a,b的式子表示e;(2)若f=|a﹣c|,g=|b﹣c|且|f﹣g|=|c﹣d|,求n的值.20.已知数轴上有A、B、C三点,分别表示有理数:﹣22,﹣2,8,动点P从A点出发,以每秒1个单位长度的速度向终点C运动,设点P运动时间为t秒.(1)填空:AB=,PA=,PC=.(可用含t的代数式表示)(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向终点C运动,请用含t的代数式表示P、Q两点之间的距离.21.求两位数的平方,可以用“列竖式”的方法进行速算,求解过程如图1.(1)仿照图1,补全图2的竖式;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3,若这个两位数的十位数是a,用含a的代数式表示这个两位数.22.今年春季,三元土特产喜获丰收,某土特产公司组织10辆汽车装运甲,乙两种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一土特产,且必须装满,设装运甲种土特产的汽车有x辆,根据如表提供的信息,解答以下问题:土特产种类甲乙每辆汽车运载量4 3(吨)100 90每吨土特产利润(元)(1)装运乙种土特产的车辆数为辆(用含有x的式子表示);(2)求这10辆汽车共装运土特产的数量(用含有x的式子表示);(3)求销售完装运的这批土特产后所获得的总利润(用含有x的式子表示).。

列代数式之销售问题

列代数式之销售问题

列代数式之销售问题
【知识点】
单价=总价/数量利润=售价-进价
【练习题】
1.用y元去买年货坚果,已知每斤坚果25元,那么可以买______斤
2.某商品原价是m元,若八五折出售现在的价格是______元
3.一支圆珠笔a元,5支圆珠笔共______元
4.某商品的进价为x元,售价为120元,则商品的利润为______元
5.班会活动中,买苹果m千克,单价x元,则购买苹果需______元
6.某水果市场,苹果的零售价为每斤2元,一人要买x斤苹果,付资y元(y>2x),
可以找回______元
7.购买单价为a元的物品10个,付出b元(b>10a),应找回______元
8.一件上衣的原价是a元,由于反季降价20%销售,其零售价是______元
9.端午节期间,小明拿着b元去“惠民超市”买粽子,售价为a元的粽子打八
折出售,则买完粽子后还剩______元
10.一个进价为x元的大衣的利润率是20%,那么这件大衣的利润是______元
11.一个进价为x元的大衣的利润率是25%,那么这件大衣的售价是______元
12.某商店出售茶杯、茶壶,茶杯每只4元,茶壶每只20元,该商店的优惠办法
是买一只茶壶赠一只茶杯,某顾客欲购买茶壶5只,茶杯x只(茶杯数超过5只),则应付______元
13.一台电视机的标价为a元,则打八折后的售价为
答案
1. 25y
2. 85%m
3. 5a
4. 120−x
5. xm
6. y −2x
7. b −10a
8. 0.8a 9. b −0.8a 10. 20%x
11. 1.25x
12. 4x +80 13. 0.8a 元。

七年级数学《代数式》习题(含答案)

七年级数学《代数式》习题(含答案)

七年级数学《代数式》—巩固提高一、耐心填一填:1、32x y 5-的系数是2、当x= __________时,的值为自然数;312-x 3、a 是13的倒数,b 是最小的质数,则21a b-= 。

4、三角形的面积为S ,底为a ,则高h= __________ 5、去括号:-2a 2 - [3a 3 - (a - 2)] = __________6、若-7x m+2y 与-3x 3y n 是同类项,则m n +=7、化简:3(4x -2)-3(-1+8x )= 8、y 与10的积的平方,用代数式表示为________9、当x=3时,代数式________132的值是--x x 10、当x=________时,|x|=16;当y=________时,y 2=16; 二、精心选一选: 1、 a 的2倍与b 的31的差的平方,用代数式表示应为( ) A 22312b a - B b a 3122- C 2312⎪⎭⎫ ⎝⎛-b a D 2312⎪⎭⎫⎝⎛-b a2、下列说法中错误的是( )A x 与y 平方的差是x 2-y 2B x 加上y 除以x 的商是x+xyC x 减去y 的2倍所得的差是x-2yD x 与y 和的平方的2倍是2(x+y)2 3、已知2x 6y 2和321,9m - 5mn -173m nx y -是同类项则的值是 ( ) A -1 B -2 C -3 D -44、已知a=3b, c=) (cb ac b a ,2a 的值为则-+++ A 、712D 611C 115B511、、、 5、已知:a<0, b>0,且|a|>|b|, 则|b+1|-|a-b|等于( )A 、2b-a+1 B.1+a C.a-1 D.-1-a6、上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为( ) Aa bx y++ Bax by ab + Cax by a b ++ D x y2+ 7、 小华的存款是x 元小林的存款比小华的一半还多2元,则小林的存款是( ) A)2(21+x B )2(21-x C 221+x D 221-x 8、m-[n-2m-(m-n)]等于( )A -2mB 2mC 4m-2nD 2m-2n 9、若k 为有理数,则|k|-k 一定是( )A 0B 负数C 正数D 非负数 10、已知长方形的周长是45㎝,一边长是a ㎝,则这个长方形的面积是( )A 、平方厘米、平方厘米245aB 2)45(a a -C 、平方厘米、平方厘米-a)-245a( D a)245(三、化简题1、2222(835)(223)a ab b a ab b ----+ 2、)231(34x xy xy -+- 3、)(2)2(333c b a c b a b a ---+ 4、 ()⎪⎭⎫ ⎝⎛++-+--13431354b a b a5、2223[723()1]a a a a a ----+ 6、2222(876)[8()]x y xy xy xy x y y x -+---+四、化简求值1、523531411()[2()()][()()]2323x y x y x y x y x y +++-+-+-+,其中3x y += 2、2225[(53)6()]a a a a a a -+---,其中12a =-3、已知:2(2)10x y +++=,求222225{2[3(42)]}xy xy xy xy x y ----的值。

最新七年级上册代数式单元练习(Word版 含答案)

最新七年级上册代数式单元练习(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。

(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。

(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。

2.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。

七年级《列代数式》专项练习50题(有答案)ok

七年级《列代数式》专项练习50题(有答案)ok

七年级列代数式专项训练50题(有答案)1. 从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( ) A.222()ab a b -=-B.222()2a b a ab b +=++C.222()2a b a ab b -=-+D. 22()()ab a b a b -=+-2. 某商场2006年的销售利润为a ,预计以后每年比上一年增长b %,那么2008年该商场的销售利润将是( ) A .()21ab + B . ()21%ab + C .()2%a ab + D .2a ab +3. 如图,阴影部分的面积是( ) A.112xy B.132xyC.6xy D.3xy4. 某商品原价为a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( )A .1.08a 元B .0.88a 元C .0.968a 元D .a 元5. 目前,财政部将证券交易印花税税率由原来的1‰(千分之一)提高到3‰.如果税率提高后的某一天的交易额为a 亿元,则该天的证券交易印花税(交易印花税=印花税率×交易额)比按原税率计算增加了多少亿元A .a ‰B . 2a ‰C . 3a ‰D .4a ‰6. 为了吸收国民的银行存款,今年中国人民银行对一年期银行存款利率进行了两次调整,由原来的2.52%提高到 3.06%.现李爷爷存入银行a 万元钱,一年后,将多得利息( )万元. A .0.44a % B .0.54a %C .0.54aD .0.54%7. 用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是 144,小正方形的面积是4,若用x ,y 表示矩形的长和宽(x >y ),则下列关系式中不 正确的是( )A .x +y =12B .x -y =2C .xy =35D .x 2+y 2=1448. 用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .2(3)a b - B .23()a b -C .23a b - D .2(3)a b -9. 在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )甲乙yxA .43倍B .32倍C .2倍D .3倍10. 已知一个多项式与239xx +的和等于2341x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +11. 如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <012. 一盒铅笔12支,n 盒铅笔共有 支.13. 针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整.已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为__________________元. 14. 在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图(2)),分别计算这两个图形阴影部分的面积,可以验证的 乘法公式是 (用字母表示).15. 一根钢筋长a 米,第一次用去了全长的13,第二次用去了余下的12,则剩余部分的长度为米.(结果要化简)16. 一台电视机的原价为a 元,降价4%后的价格为_________________元.17. 利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:222()2a b a ab b +=++.你根据图乙能得到的数学公式是 .18. 对单项式“5x ”,我们可以这样解释:香蕉每千克5元,某人买了x 千克,共付款5x 元. 请你对“5x ”再给出另一个实际生活方面的合理解释: . 19. 为了增加游人观赏花园风景的路程, 将平行四边形花园中形如图1的恒宽为a 米的直路改为形如图2恒宽为a 米的曲路, 道路改造前后各余下的面积(即图中阴影部分面积)分别记为S 1和S 2,则S 1________S 2(填“>”“=”或“<”).20. “a 的2倍与1的和”用代数式表示是 .图(1)图(2)aba bba a bba甲乙图1 图221. 张老师带领x 名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总 费用为y 元,则y = .22. 用代数式表示“a 与b 的和”,式子为 .23. 如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.24. 某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是 元(结果用含m 的代数式表示).25. 一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重__________千克.26. 为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a 元,则该班学生共捐款元(用含有a 的代数式表示).27. 某工厂计划a 天生产60件产品,则平均每天生产该产品______ ____件. 28. 用代数式表示“a 、b 两数的平方和”,结果为 .29. 如果用s 表示路程(单位:千米),t 表示时间(单位:小时),v 表示速度(单位:千米/时), 那么t = 小时 (用s 和v 表示).30. 惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:若第n 年小慧家仍需还款,则第n 年应还款 万元(n >1).31.三个连续的偶数中若中间的一个是,是代数式表示其它两个偶数是().(A )(B )(C )(D )32.某钢铁厂每天生产钢铁吨,现在每天比原来增加,现在每天钢铁的产量是()吨.(A ) (B ) (C ) (D )33.下列各式:(1);(2);(3);(4);(5);(6)其中代数式的个数为(). A .2 B .3 C .4 D .5(1) (2) (3) ……第一年第二年 第三年 … 应还款(万元) 3 %4.095.0⨯+0.58.50.4%+⨯… 剩余房款(万元) 98.58…34.代数式,用语言叙述正确的是().A.与的平方差 B.的平方减 5乘以的平方C.的平方与的平方的5倍的差D.与的差的平方35.下列各式:(1);(2);(3)(4);(5);(6)其中不符合代数式书写要求的有().A.5个B.4个C.3个D.2个36.关于代数式的意义,下列说法中不正确的是().A.比的平方少1的数B.的平方与1的差C.与1两数的平方差D.与1的差的平方37.下面各判断后面的代数式中错误的是().A.的3倍与的2倍的和为B.除以的商与2的差的平方为C.、两数和乘以、两数差为D.与的和的为38.用字母表示三个连续奇数的和_________.39.的2倍与3的差_________.40.的平方的5倍与的和_________.41.比、的积的小7的数_________.42.李明有本教科书,课外书比教科书多本,那么他共有_________本书.43.一件上衣售价为元,降价10%后的售价为_________.44.某商品利润是元,利润率是20%,此商品的进价是_________元.45.一项工程,甲队单独完成要天,乙队单独完成要天,两队合作需要_________天完成.46.“除以的商的平方与减去的差的和”用代数式表示是_________.47.如图,圆中挖掉一个正方形,试用r表示阴影部分面积.48.如图,用a来表示阴影部分的面积.49.如图所示一个边长为1的正方形的分割方法,当分割n次时其中最小的四边形的面积是多少.50.一种蔬菜x千克,不加工直接出售每千克可卖y元,如果经过加工重量减少了20%,价格增加了40%,问x千克这种蔬菜加工后可卖多少钱;如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?51.举出三个实际问题,其中的数量关系可以用a、b来表示.答案:第1题:D 第2题:B 第3题:A第4题:C 第5题:B 第6题:B 第7题:D 第8题:A 第9题:B第10题:A 第11题:D 第12题:12n第13题:0.4a第14题:22()()a b a b a b-=+-(或22()()a b a b a b+-=-)第15题:13a第16题:(1–4%)a元或0.96a元第17题:222()2a b a ab b-=-+第18题:某人以5千米/时的速度走了x小时,他走的路程是5x千米(答案不唯一)第19题:= 第20题:21a+第21题:5x+10 第22题:a+b 第23题:3n+1第24题:2)1(100m-第25题:25x-第26题:32005a-第27题:60a第28题:22b a + 第29题:s v第30题:0.540.002n -(填[]0.59(2)0.50.4%n +--⨯⨯或其它正确而未化简的式子也给满分)31. C 32.D 33.B 34.C 35.B 36.D 37.D38. 设为自然数,则三个连续的奇数和为=39. . 40. 41.42. 43.元 44.45.46.47.(提示:如答图,把正方形分成两个三角形,其中三角形的面积是.48.(提示:如答图,其中阴影面积的一半,等于以a 为半径的四分之一的圆的面积减去以a 为两直角边的直角三角形的面积)49.(提示:当分割一、二、三…次所得的最小四边形的面积依次是,分割n 次得最小四边形的面积是)50.1.12xy 元,1680元,180元51.(1)a 、b 分别表示长方形的长和宽,则长方形的面积是 (2)如果a 表示某种物品的单价、b表示某种物品的数量,则这种物品的总价可表示为,(3)a 表示汽车行驶的速度,b 表示汽车行驶的时间,则可表示汽车行驶的路程.。

初中数学湘教版七年级上册第二章 代数式2.2 列代数式-章节测试习题(4)

初中数学湘教版七年级上册第二章 代数式2.2 列代数式-章节测试习题(4)

章节测试题1.【答题】已知a是两位数,b是一位数,把b接在a的后面,就成了一个三位数,这个三位数可以表示为()A. a+bB. 100b+aC. 100a+bD. 10a+b【答案】D【分析】本题主要考查了三位数的表示方法,该题的易错点是忘了a是个两位数,错写成(100a+b).【解答】解:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a是两位数,b是一位数,依据题意可得a扩大了10倍,所以这个三位数可表示成10a+b.选D.2.【答题】某商店进了一批商品,每件商品的进价为a元,若要获利20%,则每件商品的零售价应为()A. 20%a元B. (1+20%)a元C. 元D. (1-20%)a元【答案】B【分析】此题的等量关系:零售价-进价=获利.获利20%,即实际获利=20%a,设未知数,列方程求解即可.【解答】解:设每件售价为x元,则x-a=20%a,解得x=(1+20%)a.选D.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.3.【答题】用含字母的式子表示下列数量关系.(1)小雪买单价为a元的笔记本4本,共花______元;(2)三角形的底为a,高为h,则三角形的面积是______;(3)m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为______.(4)某微商平台有一商品,标价为a元,按标价5折再降价30元销售,则该商品售价为______元.【答案】4a;ah;10m+n;(0.5a–30)【分析】本题考查列代数式.列式子表示数量关系,一定要弄清“和”“差”“积”“倍”等关系.【解答】(1)笔记本4本共花4a元;(2)三角形的面积是ah;(3)由题意知m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,即m扩大了10倍,n不变,可得这个三位数为10m+n.故答案为10m+n;(4)由题意可得,该商品的售价为a×0.5–30=(0.5a–30)元,故答案为(0.5a–30).4.【答题】某种水果的售价是a千克b元,那么表示的实际意义是______.【答案】每元买千克【分析】本题考查代数式的意义.【解答】表示的实际意义是每元买千克,故答案为每元买千克.5.【题文】某商场的一种彩电标价为m元/台,节日期间,商场按九折的优惠价出售,则商场销售n台彩电共得多少元?你所得到的单项式的系数和次数分别是多少?【答案】0.9mn元,0.9mn的系数是0.9,次数是2.【分析】本题考查列代数式以及单项式的相关概念.【解答】销售n台彩电共得0.9mn元,0.9mn的系数是0.9,次数是2.6.【答题】原价为a元的书包,现按8折出售,则售价为______元.【答案】a【分析】本题考查列代数式.【解答】依题意可得,售价为a=a,故答案为a.7.【答题】某商店进了一批商品,每件商品的进价为a元,若要获利20%,则每件商品的零售价应为()A. 20%a元B. (1+20%)a元C. 元D. (1-20%)a元【答案】B【分析】本题考查列代数式.【解答】设每件售价为x元,则x–a=20%a,解得x=(1+20%)a.选D.8.【答题】下面由小木棒拼出的系列图形中,第个图形由个正方形组成,请写出第个图形中小木棒的根数与的关系式______.【答案】S=3n+1【分析】本题考查图形的规律.【解答】当时,;当时,;当时,;当时,;当时,,∴第个图形中小木棒的根数与的关系式为S=3n+1,故答案为S=3n+1.9.【题文】如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.【答案】(1)4m;(2)33.【分析】本题考查列代数式以及求代数式的值.【解答】(1)矩形的宽为m–n,矩形的长为m+n,矩形的周长为2[(m–n)+(m+n)]=4m;(2)当m=7,n=4时,矩形的长为m+n=7+4=11,矩形的宽为m–n=7–4=3,∴矩形的面积为S=11×3=33.10.【题文】张华发现某月的日历中一个有趣的问题,他用笔在上面画如图所示的十字框,若设任意一个十字框里的五个数为a、b、c、d、k.设中间的一个数为k,如图,试回答下列问题:(1)此日历中能画出______个十字框;(2)若a+b+c+d=84,求k的值;(3)是否存在k的值,使得a+b+c+d=108,请说明理由.【答案】(1)12;(2)k=21;(3)不存在,理由见解答.【分析】本题考查数字的规律.【解答】(1)由题意可得:十字框顶端分别在:1,2,5,6,7,8,9,12,13,14,15,16一共有12个位置;(2)由题意可得:设最上面为a,最左边为b,最右边为c,最下面为d,则b=a+6,c=a+8,d=a+14,k=a+7,故a+a+6+a+8+a+14=84,解得a=14,则k=21;(3)不存在k的值,使得a+b+c+d=108,理由:当a+b+c+d=108,则a+a+6+a+8+a+14=108,解得a=20,故d=34>31(不合题意),故不存在k的值,使得a+b+c+d=108.11.【答题】在下列各式中,不是代数式的是()A. 5x–yB.C. x=1D. 1【答案】C【分析】本题考查代数式的定义.【解答】A.5x–y是代数式,故不符合题意;B.是代数式,故不符合题意;C.x=1是方程,不是代数式,故符合题意;D.1是代数式,故不符合题意;选C.12.【答题】用代数式表示“m的一半与n的3倍的和”是()A. B. C. D.【答案】D【分析】本题考查列代数式.【解答】“m的一半与n的3倍的和”可以表示为,选D.13.【答题】一个两位数,用x表示十位数字,个位数字比十位数字大3,则这个两位数为()A. 11x+3B. 11x–3C. 2x+3D. 2x–3【答案】A【分析】本题考查列代数式.【解答】由题意可得,这个两位数为10x+(x+3)=10x+x+3=11x+3,选A.14.【答题】某超市一商品的进价为m元,将其价格提高50%作为零售价,半年后又以6折的价格促销,则此时这一商品的价格为()A. m元B. 0.9m元C. 0.92m元D. 1.04m元【答案】B【分析】本题考查列代数式.【解答】由题意可得,这一商品的价格为m(1+50%)×0.6=0.9m(元),选B.15.【答题】“比a的2倍大1的数”用代数式表示是()A. 2(a+1)B. 2(a﹣1)C. 2a+1D. 2a﹣1【答案】C【分析】本题考查列代数式.【解答】∵该数比a的2倍大,故是在2a的基础上加上1,因此,答案是2a+1,选C.16.【答题】元旦期间,某服装店为了让利给顾客,一款羊绒毛衣原售价为b元,现降价20%后,再次降价a元,则现售价为()A. 元B. 元C. 元D. 元【答案】A【分析】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.根据原售价下调了20%后又降价a元为现价列出方程,即可解答.【解答】设原售价是b元,则现价=(1-20%)b-a=,选A.17.【答题】用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子()A. (4n﹣4)枚B. 4n枚C. (4n+4)枚D. n2枚【答案】B【分析】本题考查图形的规律.观察图形可知,构成每个“口”字的棋子数量,等于构成边长为(n+1)的正方形所需要的棋子数量减去构成边长为(n+1-2)的正方形所需要的棋子数量.【解答】由图可知第n个“口”字需要用棋子的数量为(n+1)2-(n+1-2)2=4n,选B.18.【答题】某养殖场2016年底的生猪出栏价格是每千克a元.受市场影响,2017年第一季度末的出栏价格平均每千克下降了15%,到了第二季度末平均每千克比第一季度末又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()A. (1-15%)(1+20%)a元B. (1-15%)20%a元C. (1+15%)(1-20%)a元D. (1+20%)15%a元【答案】A【分析】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.由题意可知:2014年第一季度出栏价格为2013年底的生猪出栏价格的(1﹣15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【解答】第三季度初这家养殖场的生猪出栏价格是每千克(1﹣15%)(1+20%)a元.选A.19.【答题】某商店进了一批商品,每件商品的进价为a元,若想获利,则每件商品的零售价定为()A. 元B. 元C. 元D. 元【答案】D【分析】本题考查一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.根据等量关系:零售价-进价=获利获利,即实际获利=,设未知数,列方程求解即可.【解答】设每件售价为x元,则x-a=,解得x=(1+.选D.20.【答题】体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500﹣2x﹣3y表示的实际意义为______.【答案】体育委员买了3个足球和2个篮球后剩余的经费【分析】本题考查列代数式.【解答】∵买一个足球a元,一个篮球b元,∴3a表示委员买了3个足球,2b表示买了2个篮球,∴代数式500﹣3a﹣2b表示体育委员买了3个足球、2个篮球,剩余的钱.。

【精选】数学七年级上册 代数式单元练习(Word版 含答案)

【精选】数学七年级上册 代数式单元练习(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;2.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.3.在一个m(m≥3,m为整数)位的正整数中,若从左到右第n(n≤m,n为正整数)位上的数字与从右到左第n位上的数字之和都等于同一个常数k(k为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位上的数字为s(1≤s≤9,s为整数),百位上的数字为t(0≤t≤9,t为整数),是整数,求这个四位“对称等和数”;(2)已知数A,数B,数C都是三位“对称等和数”.A= (1≤a≤9,a为整数),设数B 十位上的数字为x(0≤x≤9,x为整数),数C十位上的数字为y(0≤y≤9,y为整数),若A+B+C=1800,求证:y=﹣x+15.【答案】(1)解:设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b 为整数),由题意得:s+b=t+a=4,∴b=4﹣s,a=4﹣t,∵四位数为能被11整除,∴ =1000s+100t+10a+b,=1000s+100t+10(4﹣t)+4﹣s,=999s+90t+44,=1001s+88t+44+2t﹣2s,=11(91s+8t+4)+2(t﹣s),∵91s+8t+4是整数,∴2(t﹣s)是11的倍数,即t﹣s是11的倍数,∵1≤s≤9,∴﹣9≤﹣s≤﹣1,∵0≤t≤9,∴﹣9≤t﹣s≤8,∴t﹣s只能为0,即t=s,∵是整数,4﹣s≥0,4﹣t≥0,∴s=t=2或s=t=4,当s=t=2时,a=b=2,当s=t=4时,a=b=0,综上所述,这个四位“对称等和数”有2个,分别是:2222,4400(2)解:证法一:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,则b+c=2x,d+e=2y,∵A+B+C=1800,∴B+C=1800﹣135=1665,∴ =1665,∴15≤b+d≤16,①当b+d=15时,x+y=16,c+e=5,∴b+d+c+e=15+5=20,即2x+2y=20,x+y=10≠16,不符合题意;②当b+d=15时,x+y=15,c+e=15,∴b+d+c+e=15+15=30,即2x+2y=30,x+y=15,符合题意;∴y=﹣x+15,③当b+d=16时,x+y=6,c+e=5,∴b+d+c+e=16+5=21,即2x+2y=21,x+y=10.5≠6,不符合题意;④当b+d=16时,x+y=5,c+e=15,∴b+d+c+e=16+15=31,即2x+2y=31,x+y=15.5≠5,不符合题意;综上所述,则y=﹣x+15.证法二:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,∵A+B+C=1800,即135+ + =1800,+ =1665,100m+10x+2x﹣m+100n+10y+2y﹣n=1665,99(m+n)+12(x+y)=1665,33(m+n)+4(x+y)=555,x+y= =139﹣8(m+n)+ ,∵0≤x≤9,0≤y≤9,且x、y是整数,∴是整数,∵1≤m≤9,1≤n≤9,∴2≤m+n≤18,∴3≤1+m+n≤19,则1+(m+n)=4,8,12,16,∴m+n=3,7,11,15,当m+n=3时,x+y=139﹣8×3+ =114(舍),当m+n=7时,x+y=139﹣8×7+ =81(舍),当m+n=11时,x+y=139﹣8×11+ =48(舍),当m+n=15时,x+y=139﹣8×15+ =15,∴y=﹣x+15【解析】【分析】(1)设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b为整数),根据“对称等和数”的意义可得s+b=t+a=4,变形得b=4﹣s,a=4﹣t,再由这个四位数能被11整除和这个四位数的构成可得=11(91s+8t+4)+2(t﹣s),易得t ﹣s是11的倍数,结合s、t的范围即可求解;(2)根据“对称等和数”的意义和A=可得2a=1+5,a=3,则数A可求解,由题意可设B=,C=,因为A+B+C=1800,所以将A、B、C代入上式,再根据三位数的构成=100百位上的数字+10十位上的数字+个位上的数字可得100m+10x+2x﹣m+100n+10y+2y﹣n=1665,整理可得33(m+n)+4(x+y)=555,则x+y可用含m、n的代数式表示,结合x、y的取值范围和x、y、m、n是正整数分析即可求解。

七年级上册代数式专题练习(word版

七年级上册代数式专题练习(word版

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。

浙教版七年级数学上册《第四章代数式》测试题(含答案)

浙教版七年级数学上册《第四章代数式》测试题(含答案)

第4章代数式测试题 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列式子中符合代数式的一般书写要求的是( )A .a ×bB .3x 2C .2÷abD .223a2.如果单项式12x a y 2与13x 3y b是同类项,那么a ,b 的值分别为( )A .2,2B .-3,2C .2,3D .3,23.下列说法正确的是( )A .0不是代数式B .2πa2b5的系数是2,次数是4 C .x 2-2x +6的项分别是x 2 , 2x ,6 D .25(xy -5x 2y +y -7)的三次项系数是-24.下列计算正确的是( ) A .3x 2y -2y 2x =x 2y B .5y -3y =2y C .7a +a =7a 2 D .3a +2b =5ab5.若a ,b 互为相反数,c ,d 互为倒数,则代数式a +b -cd 的值等于( )A .1B .-1C .0D .-26.已知一个三位数,百位上的数字为a ,十位上的数字为b ,个位上的数字为c ,则这个三位数可表示成( )A .abcB .a +b +cC .100a +10b +cD .100c +10b +a7.某超市销售一批商品,若零售价为每件a 元,获利25%,则每件商品的进价应为( )A .25%a 元B .(1-25%)a 元C .(1+25%)a 元D .a1+25%元 8.已知|a +1|+(3-b)2=0,则a 2b 等于( )A .1B .-1C .3D .-39.多项式5a 3-6a 3b +3a 2b -3a 3+6a 3b -5-2a 3-3ba 2的值( )A .只与a 的取值有关B .只与b 的取值有关C .与a ,b 的取值都有关D .与a ,b 的取值都无关10.对a ,b 定义运算“*”如下:a*b =⎩⎪⎨⎪⎧2a +b (a ≥b ),2a -b (a <b ).已知x*3=-1,则实数x 等于( )A .1B .-2C .1或-2D .不确定第Ⅱ卷 (非选择题 共90分)二、填空题(每小题4分,共24分)11.“x 的2倍与5的和”用代数式可以表示为__________. 12.-πx3y7的系数是________,次数是________.13.如图是一个数值转换器,若输入的a 的值为2,则输出的值为________.14.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3相加后不含x 的二次项,则m 的值为________.15.已知x 2+3x +5=7,那么多项式3x 2+9x -2的值是________.16.实数a ,b ,c 在数轴上对应的点的位置如图Z 4-2所示,则|a -c|-|a -b|-|b -c|=________.三、解答题(共66分) 17.(6分)化简:(1)3a +7a -5a; (2)4x -3xy -6x +2xy ;(3)32a 2-2a -4+3a -12a 2;(4)5+7(x -1)-(2x +3);(5)3x -7y -2(x -4y)+x; (6)3(a +b -c)-5(a -b +c).18.(6分)先化简,再求值:3(2x +1)+2(3-x),其中x =-1.19.(6分)先化简,再求值:5(3x 2y -xy 2)-3(xy 2+5x 2y),其中x =12,y =-1.20.(8分)某超市今年第一季度的营业额为m万元,预计本年度每季度比上一季度的营业额增长p%.请你完成下列问题:(1)用代数式分别表示第二季度、第三季度、第四季度的预计营业额;(2)当m=10,p=15时,求出本年度预计营业总额(结果精确到0.1万元).21. (8分)2016年9月15日太空实验室“天宫二号”顺利升空,同学们备受鼓舞,开展了火箭模型制作比赛.如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用含a,b的代数式表示该截面的面积S;(2)当a=2.2 cm,b=2.8 cm时,求这个截面的面积.22.(10分)七年级(1)班李娥同学做一道题:“已知两个代数式A,B,A=x2+2x-1,计算A+2B.”他误将A+2B写成了2A+B,结果得到答案x2+5x-6,请你帮助他求出正确的答案.23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形中有多少颗黑色棋子?(2)第几个图形中有2019颗黑色棋子?请说明理由.24.(12分)为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,下表是该市自来水收费价格的价目表.(1)若某户居民2月份用水4立方米,则应交水费________元;(2)若某户居民3月份用水a立方米(其中6<a<10),则该用户3月份应交水费多少元(用含a的整式表示,结果要化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x 立方米,求该户居民4,5月份共交水费多少元(用含x的整式表示,结果要化成最简形式).答案1.B 2.D 3.D 4.B 5.B 6.C 7.D 8.C 9.D 10.A 11.2x +5 12.-17π 4 13.0 14.4 15. 4 16.2a -2b 17.解:(1)原式=5a. (2)原式=-xy -2x. (3)原式=a 2+a -4. (4)原式=5x -5. (5)原式=2x +y. (6)原式=-2a +8b -8c.18.解:原式=6x +3+6-2x =4x +9.当x =-1时,原式=5. 19.解:原式=(15x 2y -5xy 2)-(3xy 2+15x 2y)=-8xy 2. 当x =12,y =-1时,原式=-4.20.解:(1)第二季度预计营业额:m(1+p%)万元; 第三季度预计营业额:m(1+p%)2万元; 第四季度预计营业额:m(1+p%)3万元. (2)49.9万元.21.解:(1)S =12ab +2a ·a +12(a +2a)b =2ab +2a 2.(2)当a =2.2 cm ,b =2.8 cm 时,S =2a(a +b)=2×2.2×(2.2+2.8)=22(cm 2). 22.解:因为2A +B =x 2+5x -6,A =x 2+2x -1, 所以B =(x 2+5x -6)-2(x 2+2x -1)=-x 2+x -4, 所以A +2B =x 2+2x -1+2(-x 2+x -4)=-x 2+4x -9. 23.解:(1)第5个图形中有18颗黑色棋子.(2)第672个图形中有2019颗黑色棋子.理由:由规律可知,第n个图形有(3n+3)颗黑色棋子,令3n+3=2019,解得n=672.所以第672个图形中有2019颗黑色棋子.24.解:(1)根据题意,得2×4=8(元).(2)根据题意,得4(a-6)+6×2=(4a-12)元.(3)由5月份用水量多于4月份,得4月份用水量少于7.5立方米,当4月份的用水量少于5立方米时,5月份用水量超过10立方米,则4,5月份共交水费2x+8(15-x-10)+4×4+6×2=(-6x+68)元;当4月份用水量大于或等于5立方米,但不超过6立方米时,5月份用水量不少于9立方米,但不超过10立方米,则4,5月份共交水费2x+4(15-x-6)+6×2=(-2x+48)元;当4月份用水量超过6立方米,但少于7.5立方米时,5月份用水量超过7.5立方米,但少于9立方米,则4,5月份共交水费4(x-6)+6×2+4(15-x-6)+6×2=36(元).。

七年级数学上册《列代数式》-典型例题一

七年级数学上册《列代数式》-典型例题一

典型例题一
例题01 用字母表示下面实际问题.
(1)行驶中的火车的速度为v 米 / 秒,汽车行驶的速度是火车速度的3
1,用v 表示汽车速度;
(2)如图,表示圆环的面积;
(3)如图,是用火柴摆出的三角形的图案,当摆n 个三角形时,需火柴多少根.
分析 (1)如果v 是一个数,该题就是求v 的31是多少,可表示为v 3
1; (2)分别用R 、r 把大圆和小圆的面积表示出来,用大圆面积减去小圆的面积就是圆环的面积;
(3)由图可以发现,当第一个三角形摆完之后,每增加一个三角形就要增加2根火柴,所以摆n 个三角形需)]1(23[-+n 根火柴.
解 (1)汽车的速度可表示为v 3
1;
(2)圆环的面积为:22r R ππ-;
(3)摆成n 个三角形需要火柴)1(23-+n 根.
说明 (1)用含字母的式子表示实际问题时,我们必须弄清实际问题中的数量关系;
(2)字母和字母相乘可以把“×”写在“·”或不写,如b a ⨯可写成b a ⋅或ab ;而b a ÷或b ÷1,则写成b
b a 1,;(3)数乘以字母,或数乘以含有字母的式子,一般省略乘号,并把数写在前面,如a ⨯3写成a 3,不写成3a ,同理,)(3b a +⨯写成)(3b a +.。

初一列代数式习题精选及参考答案

初一列代数式习题精选及参考答案

《列代数式》习题精选3.下列各式:(1);(2);(3);(4);(5);(6)其中代数式的个数为().A.2 B.3 C.4 D.54.代数式,用语言叙述正确的是().A.与的平方差 B.的平方减 5乘以的平方C.的平方与的平方的5倍的差D.与的差的平方5.下列各式:(1);(2);(3)(4);(5);(6)其中不符合代数式书写要求的有().A.5个B.4个C.3个D.2个6.关于代数式的意义,下列说法中不正确的是().A.比的平方少1的数B.的平方与1的差C.与1两数的平方差D.与1的差的平方7.下面各判断后面的代数式中错误的是().A.的3倍与的2倍的和为B.除以的商与2的差的平方为C.、两数和乘以、两数差为D.与的和的为二、填空题1.用字母表示三个连续奇数的和_________.2.的2倍与3的差_________.3.的平方的5倍与的和_________.4.比、的积的小7的数_________.7.某商品利润是元,利润率是20%,此商品的进价是_________元.8.一项工程,甲队单独完成要天,乙队单独完成要天,两队合作需要_________天完成.9.“除以的商的平方与减去的差的和”用代数式表示是_________.三、解答题1.如图,圆中挖掉一个正方形,试用r表示阴影部分面积.2.如图,用a来表示阴影部分的面积.3.如图所示一个边长为1的正方形的分割方法,当分割n次时其中最小的四边形的面积是多少.4.一种蔬菜x千克,不加工直接出售每千克可卖y元,如果经过加工重量减少了20%,价格增加了40%,问x千克这种蔬菜加工后可卖多少钱;如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?《列代数式精选》参考答案:一、1. C 2.D 3.B 4.C 5.B 6.D 7.D二、1.设为自然数,则三个连续的奇数和为=2.3.4.5.6.元7.8. 9.三、1.(提示:如答图,把正方形分成两个三角形,其中三角形的面积是.2.(提示:如答图,其中阴影面积的一半,等于以a为半径的四分之一的圆的面积减去以a为两直角边的直角三角形的面积)3.(提示:当分割一、二、三…次所得的最小四边形的面积依次是,分割n次得最小四边形的面积是)4.1.12xy元,1680元,180元仅供个人用于学习、研究;不得用于商业用途。

七年级数学上册《列代数式》-典型例题六

七年级数学上册《列代数式》-典型例题六

典型例题六
例题06 选择题
(1)如图是L 形钢条截面,它的面积为( )
A .lt cl +
B .lt t t c +-)(
C .t t l t t c )()(-+-
D .)()(2t l t c t c l -+-+++
(2)一个到火星旅行的计划,来回的行程需要三个地球年(包括在火星上停留a 个地球天),已知火星和地球之间的距离为34000000千米.那么,这个旅行的平均速度是每小时多少千米?(说明:地球年、地球天,是指在地球上一年或一天,即一年=365天,一天=24小时)
A .3400000012)3653(⨯-⨯a
B .24)3653(34000000⨯-⨯a
C .
24)3653(340000002⨯-⨯⨯a D .)3653(22434000000a -⨯⨯⨯ 分析:第(1)小题lt cl +表示的是两个宽都是t 的长方形的面积之和,如图,把原图形分为两个长方形,它们的宽都是t ,其中一个的长为l ,而另一个的长为t c -,可见A 不正确,而B 正确.
第(2)小题所求速度应为路程除以小时数之商,由此排除A 、D (它们的除数分别是千米数与天数),题目中谈的是往返行程,是距离的2倍.
解:(1)B (2)C .
说明:第(1)小题中的C 小于实际面积,D 是周长的表达式,这些粗心就容易导致错
误.。

七年级数学上册《列代数式》-典型例题五

七年级数学上册《列代数式》-典型例题五

典型例题五
例题05 观察等式
1+2+1=4
1+2+3+2+1=9
1+2+3+4+3+2+1=16
1+2+3+4+5+4+3+2+1=25
(1)写出和上面等式具有同样结构,等号左边最大数是10的式子.
(2)写出一个等式,要求它能代表所有类似的等式,清楚地反映出这类等式的特点. 分析:我们通过观察等式发现,这些式子右边都是一个自然数的平方,左边是一连串自然数相加,其中,最在的自然数的平方恰好是右边的数.即左边最大的数与右边二次幂的底数相同,要表示所有这类式子都具有的这种相等关系,只有使用字母.
解:(1)1+2+3+…+10+9+8+7+…+1=102.
(2)21)3()2()1(321n n n n n =++-+-+-+++++
说明:题中所给的每一个式子都只是一个特殊的情况,多个这样的式子也能反映出普遍规律,但是比较麻烦.
要想用一个式子表示类似许多式子的规律性,只有用字母.。

最新人教版七年级数学上册 代数式单元练习(Word版 含答案)

最新人教版七年级数学上册 代数式单元练习(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D在点A,C之间时,∵CD=2AD,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。

北师大版七年级上册 3.2 列代数式专题练习(含答案)

北师大版七年级上册   3.2 列代数式专题练习(含答案)

2019-2020列代数式专题(含答案)一、单选题1.一个两位数,十位数字是a ,个位数字是b ,则这个两位数可以表示为( ) A .ab B .10a+b C .10b+a D .a+b2.已知a 是两位数,b 是一位数,把b 接在a 的后面,就成了一个三位数,这个三位数可以表示为( )A .a+bB .100b+aC .100a+bD .10a+b3.a 是一位数,b 是两位数.把a 放在b 的右边,所得的三位数可以表示为( ) A .100b+a B .10b+a C .ba D .b+a4.下面四个整式中,不能表示图中阴影部分面积的是( )A.()()322x x x ++-B.()36x x ++C.()232x x ++D.25x x +二、填空题5.如图,阴影部分的面积用整式表示为_________.6.将7张如图1所示的长为a ,宽为b(a>b)的小长方形纸片按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,求a,b满足的条件.7.把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长和是_____cm.(用m或n的式子表示).8.观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…… 猜想:(1)1+3+5+7…+99 =________;(2)1+3+5+7+…+(2n-1)=________.(结果用含n的式子表示,其中n =1,2,3,……).三、解答题>),沿图中虚线用剪刀9.如图1是一个长为2a、宽为2b的长方形(其中a,b均为正数,且a b均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.>),沿图中虚线用剪刀均如图1是一个长为2a、宽为2b的长方形(其中a,b均为正数,且a b匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.()1你认为图2中大正方形的边长为________;小正方形(阴影部分)的边长为________.(用含a、b 的代数式表示)()2仔细观察图2,请你写出下列三个代数式:2()a b +,2()a b -,ab 所表示的图形面积之间的相等关系,并选取适合a 、b 的数值加以验证.()3已知7a b +=,6ab =.求代数式()a b -的值.10.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形. (1)用含m 或n 的代数式表示拼成矩形的周长; (2)m=7,n=4,求拼成矩形的面积.11.小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同)⑴请用代数式表示装饰物的面积:________,用代数式表示窗户能射进阳光的面积是______(结果保留π)⑵当a=32,b=1时,求窗户能射进阳光的面积是多少?(取π≈3 ) ⑶小亮又设计了如图2的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?12.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编制了一道应用题:为保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:月用水量(吨) 单价(元/吨)不大于10吨部分 1.5大于10吨不大于m 吨部分()1050m ≤≤2大于m 吨部分3()1若某用户六月份用水量为18吨,求其应缴纳的水费;()2记该用户六月份用水量为x 吨,试用含x 的代数式表示其所需缴纳水费y (单位:元). 13.初一年级学生在7名教师的带领下去公园秋游,公园的门票为每人20元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.()1若有m 名学生,用代数式表示两种优惠方案各需多少元? ()2当50m =时,采用哪种方案优惠?()3当400m=时,采用哪种方案优惠?14.某市居民使用自来水按如下标准收费(水费按月缴纳):户月用水量单价不超过12 m3的部分a元∕m3超过12 m3但不超过20 m3的部分 1.5a元∕m3超过20 m3的部分2a元∕m3(1) 当a=2时,某用户一个月用了28 m3水,求该用户这个月应缴纳的水费;(2) 设某户月用水量为n 立方米,当n>20时,则该用户应缴纳的水费_____________元(用含a、n 的整式表示);(3) 当a=2时,甲、乙两用户一个月共用水40 m3,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3,,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).15.如图,在长和宽分别是a,b的长方形的四个角都剪去一个边长为x的正方形,折叠后,做成一无盖的盒子(单位:cm).(1)用a,b,x表示纸片剩余部分的面积;(2)用a,b,x表示盒子的体积;(3)当a=10,b=8且剪去的每一个小正方形的面积等于4 cm2时,求剪去的每一个正方形的边长及所做成的盒子的体积.16.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a 、b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.17.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”,如:22831=-,22221653,2475=-=-,……因此8、16、24这三个数都是奇特数.(1)56是奇特数吗?为什么?(2)设两个连续奇数为21n -和2n 1+ (其中n 取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?18.如图,在一块长为a ,宽为2b 的长方形铁皮中,以2b 为直径分别剪掉两个半圆, (1)求剩下铁皮的面积(用含a ,b 的式子表示);(2)当a =4,b =1时,求剩下铁皮的面积是多少?(π取3.14)参考答案1.B【解析】【分析】用十位上的数字乘以10,加上个位上的数字,即可列出这个两位数.【详解】因为十位数字为a,个位数字为b,所以这个两位数可以表示为10a+b.故选:B.【点睛】此题考查了用字母表示数,以及两位数的表示方法.两位数字的表示方法:十位数字×10+个位数字.2.D【解析】试题解析:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a是两位数,b是一位数,依据题意可得a扩大了10倍,所以这个三位数可表示成10a+b.故选D.点睛:本题主要考查了三位数的表示方法,该题的易错点是忘了a是个两位数,错写成(100a+b).3.B【解析】【分析】把a放在b的右边,a在个位不变,b扩大为原来的10倍,所得三位数为b×10+a=10b+a.【详解】所得三位数为b×10+a=10b+a.故选B.【点睛】熟练地掌握如何列代数式是解决本题的关键.4.D【解析】A、大长方形的面积为:(x+3)(x+2),空白处小长方形的面积为:2x,所以阴影部分的面积为(x+3)(x+2)-2x,故正确;B、阴影部分可分为长为x+3,宽为x和长为x+2,宽为3的两个长方形,它们的面积分别为x(x+3)、2×3=6,所以阴影部分的面积为x(x+3)+6,故正确;C、阴影部分可以分为长为x+2,宽为3的长方形和边长为x的正方形,所以阴影部分面积为3(x+2)+x2,故正确;D、x2+5x,错误;故选D.5.x2+3x+6【解析】【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为:x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.6.a=3b【解析】分析:表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.详解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE-PC=4b-a,∴阴影部分面积之差S=AE•AF-PC•CG=3bAE-aPC=3b(PC+4b-a)-aPC=(3b-a)PC+12b2-3ab,则3b-a=0,即a=3b.故答案为:a=3b.点睛:此题考查了整式的混合运算的应用,弄清题意是解本题的关键.7.4n.【解析】先设小长方形的宽为x,长为y,根据题意分别求出EP=n-y,FQ=n-2x,EP+FQ=n-(m-n)=2n-m,再把各边长进行相加,即可得出两个阴影部分图形的周长和是:2m+2(2n-m)=4n.故答案为:4n.点睛:此题考查了列代数式,解题关键是弄清题意,找出合适的数量关系,列出代数式,在解题时要根据题意结合图形得出答案. 8. 502 n 2【解析】(1)由1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;…得到:1+3是2个奇数等于22,1+3+5是3个奇数等于32,1+3+5+7是4个奇数等于42,… 由此可得从1开始有多少个连续奇数相加就得几的平方,1+3+5+…+99是由1,3,5,…,99共连续50个奇数相加,因此可得1+3+5+7…+99 =502; (2)根据(1)的规律,可知1+3+5+7+…+(2n -1)共有n 个奇数相加,因此1+3+5+7+…+(2n -1)=n 2,故答案为:(1)502;(2)n 2.9.(1)a +b ;a -b ;(2)(a +b )2=(a -b )2+4ab (3)a -b =5 【解析】 【分析】()1观察图形的出图2中大小正方形的边长;()2 由()1可得大正方形的面积2()a b +,减去阴影部分的小正方形的面积2()a b -,等于4块小长方形的面积4ab ,即22()()4a b a b ab +=-+;() 3由()2可以求出222()()474625a b a b ab -=+-=-⨯=,进一步开方得出答案即可.【详解】()1大正方形的边长为+a b ;小正方形的边长(阴影部分)为-a b ; ()2 22()()4a b a b ab +=-+.例如:当5a =,2b =时,22()(52)49a b +=+=,()()2245245249a b ab -+=--⨯⨯=, 22()()4a b a b ab ∴+=-+.()3 22()()4a b a b ab +=-+,222()()474625a b a b ab ∴-=+-=-⨯=,5a b ∴-=或5a b -=-,a b >,5a b ∴-=.【点睛】本题主要考查列代数式,完全平方公式的实际应用,掌握图形与代数式的关系是解题的关键. 10.(1)矩形的周长为4m ;(2)矩形的面积为33.【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m ﹣n ,矩形的宽为:m+n ,矩形的周长为:2[(m-n)+(m+n)]=4m ;(2)矩形的面积为S=(m+n )(m ﹣n )=m 2-n 2,当m=7,n=4时,S=72-42=33.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.11.(1)2b 8π,2ab-b 8π;(2)98;(3)更大了,2b 16π 【解析】试题分析:(1)易知装饰物是一个半圆的面积12π(2b -)2=8πb 2;射进阳光的面积=长方形面积-装饰物面积; 将a =32,b =1代入ab -8πb 2,化简即可; (3)先求出图2中能射进阳光的面积,再减去ab -8πb 2即可.试题解析:(1)12π(2b -)2=8πb 2, ab -8πb 2. (2)ab -8πb 2=32×1-8π×1 =32-38=98. (3)更大了,窗帘的面积:π(4b )2=16πb 2 , ( ab -16πb 2)-(ab -8πb 2)=8πb 2-16πb 2=16πb 2.故答案为: (1). 8πb 2, ab -8πb 2 (2). 98, (3). 更大了,16πb 2. 12.(1)31元;(2)35x m --【解析】【分析】()1 确定18吨在第二档范围,然后根据两档的单价,列式计算即可得解;()2分10x ≤,10x m ≤<,x m >三种情况列式整理即可.【详解】解:()1∵101850<<,∴应缴纳水费为:()1.51021810⨯+⨯-1516=+31=元;()210x ≤吨时, 1.5y x =,10x m <≤时,()1.51021025y x x =⨯+-=-,x m >时,()()1.5102103y m x m =⨯+-+-1522033m x m =+-+-35x m =--.【点睛】本题主要考查列代数式,读懂图表信息理解分档收费的标准是解题的关键.13.(1) 甲16m, 乙:1?5105m +;(2) 甲方案优惠,理由见解析;(3) 乙方案优惠,理由见解析【解析】【分析】()1 根据题意确定两种优惠方案所需的钱数;()2把50m =代入计算,比较即可;()3 把400m =代入计算,比较即可得到答案.【详解】解:()1甲方案需要的钱数为:200.816m m ⨯⨯=,乙方案需要的钱数为:()2070.7515105m m ⨯+⨯=+;()2当50m =时,乙方案:1550105855⨯+=(元),甲方案:1650800⨯=(元),∵800855<,∴甲方案优惠;(3)当400m =时,乙方案:154001056105⨯+=(元),甲方案:164008400⨯=(元),∵61058400<,∴乙方案优惠.【点睛】本题主要考查代数式的计算,根据题意选择有效数据列出代数式是解题的关键.14.(1)80;(2)2an-16a;(3)()() ()() 1161220)+762028 2482840x xx xx x⎧-<≤⎪≤≤⎨⎪+≤≤⎩元()元(元【解析】【分析】分别计算出12m3,按a元/m3收费,超过12 m3但不超过20 m3的部分,按1.5a元/m3收费,超过20m3,按2a元/m3收费,然后计算三部分的和即可求解.【详解】(1)2×12+2×1.5×(20-12)+2×2×(28-20)=80元答:该用户这个月应缴纳80元水费(2) 2an-16a(3)∵甲用户缴纳的水费超过了24元∴x>12①12<x≤20甲:2×12+3×(x-12)=3x-12乙:20≤40-x<2812×2+8×3+4×(40-x-20)=128-4x共计:3x-12+128-40x=116-x②20≤x≤28甲:2×12+3×8+4(x-20)=4x-32乙:12≤40-x≤202×12+3×(40-x-12)=108-3x共计:4x-32+108-3x=x+76③28≤x≤40甲:2×12+3×8+4×(x-20)=4x-32 乙:0≤40-x≤122×(40-x)=80-2x共计:4x-32+80-2x=2x+48答:甲、乙两用户共缴纳的水费为()() ()() 1161220)+762028 2482840x xx xx x⎧-<≤⎪≤≤⎨⎪+≤≤⎩元()元(元.故答案为:(1)80;(2)2an-16a;(3)()() ()() 1161220)+762028 2482840x xx xx x⎧-<≤⎪≤≤⎨⎪+≤≤⎩元()元(元.【点睛】本题考查了列代数式的知识,根据题目给出的条件,找出合适的数量关系是解题关键,检测观察、归纳、分类、概括的能力.15.(1) (ab-4x2)cm2(2) x(a-2x)(b-2x)cm3(3) 48cm3【解析】【分析】(1)剩余部分的面积=原矩形的面积-四个小正方形的面积;(2)体积=底面积×高;(3)根据正方形的面积求x的值,代入(2)所得的代数式即可求得体积.【详解】(1)剩余部分的面积(ab−4x2)cm2;(2)盒子的体积为:x (a −2x )(b −2x )cm 3;(3)由x 2=4,得x =2,当a =10,b =8,x =2时,x (a −2x )(b −2x ),=2(10−2×2)(8−2×2),=2×6×4,=48(cm 3).答:盒子的体积为48立方厘米.【点睛】考查用代数式表示正方形、矩形的面积和体积,需熟记公式,认真观察图形,得出等量关系. 16.(1)211b +a(a+b)22;(2)492. 【解析】 试题分析:阴影部分是三角形,利用三角形的面积公式即可列出阴影的面积,然后再代入求值即可. 解:(1)阴影部分的面积为22111;222b a ab ++ (2)当a=3,b =5时,2211111149259352222222b a ab ++=⨯+⨯+⨯⨯=. 17.(1)是(2)两个连续奇数构造的奇特数是8的倍数【解析】分析:(1)根据56=152-132进行判断.(2)利用平方差公式计算(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=4n•2=8n ,得到两个连续奇数构造的奇特数是8的倍数.详解:(1)56这个数是奇特数.因为56=152-132.(2)两个连续奇数构造的奇特数是8的倍数.理由如下:(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=4n•2=8n.点睛:本题考查了平方差公式:a2-b2=(a-b)(a-b).也考查了代数式的变形能力.18.(1)2ab﹣πb2;(2)4.86 .【解析】【分析】根据长方形与圆形的面积即可求出阴影部分的面积,然后代入a、b的值即可求出答案.【详解】解:(1)长方形的面积为:a×2b=2ab,两个半圆的面积为:π×b2=πb2,∴阴影部分面积为:2ab﹣πb2,(2)当a=4,b=1时,2ab﹣πb2=2×4×1﹣3.14×1=4.86.答:剩下铁皮面积是4.86.【点睛】本题考查列代数式,涉及代入求值,有理数运算等知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学上册课文《列代数式》练习题
想要学好初一数学必须要多做练习,通过练习能够巩固大家对知识的掌握,为此下面为大家带来初一数学上册课文《列代数式》练习题,希望大家能够认真利用这些练习题,从而提高数学学习成绩。

◆随堂检测
1、下列式子书写正确的有( )
①2b;②m3;③;④;⑤90-c
A、1个
B、2个
C、3个
D、4个
2、已知某商场打7折后的价格为a元,则原价为( )
A、元
B、元
C、元
D、元
3、m箱苹果的质量为a千克,则3箱苹果的质量为。

4、甲乙两地相距x千米,某人原计划t小时到达,后因故提前1小时到达,则他每小时应比原计划多走千米。

5、说出下列代数式的意义
(1) (2)
◆典例分析
例:托运行李p千克(p为整数)的费用标准:已知托运第1个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角。

若某人托运p千克(p1)的行李,则托运费用为多少?
解:若某人托运p千克(p1)的行李,则托运费用为[2+0.5(p1)]元。

评析:本例的关键是理解清楚托运第1个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角其中的意思。


么托运p千克(p1)的行李,其托运费用应该就是[2+0.5(p1)]元。

◆课下作业
●拓展提高
1、下列结论中正确的是( )
A、字母a表示任意数
B、不是代数式
C、是代数式
D、a不是代数式
2、一件工作,甲独做a天完成,乙独做b天完成,甲乙合做3天后,还剩下全部工作的
没完成。

3、某工厂第一年的产值为a万元,第二年产值增加了,第三年又比第二年增加了,则第三年的产值为万元。

4、甲乙两列火车分别从相距s千米的A、B两地同时出发,相向而行,甲的速度为a千米/时,乙的速度为b千米/时,则甲乙两列火车经过小时相遇。

5、某商场对所销售的茶叶进行促销活动:每购买一包装为50克的袋装茶叶则送小包装5克的茶叶2袋,某顾客获得小包装茶叶有2m 袋,则他共得到的茶叶(包括所购买的茶叶与所赠送茶叶的总和)为克。

6、有一串代数式:,,,,,,,
(1)观察特点,用自己的语言叙述这串代数式的规律。

(2)写出第2009个代数式。

(3)写出第n个,第n+1个代数式。

7、某是为了加强公民的节水意识,制定了以下用水标准:每户每月用水未超过8立方米时,每立方米收费1.00元,并加收0.20元的城市污水处理费;超过8立方米的部分每立方米收费1.50元,并加收0.40元的城市污水处理费。

某户用水量为x立方米,问这个月水费是多少元?
●体验中考
1、(2008年青海西宁中考题)回收废纸用于造纸可以节约木材。

根据专家估计,每回收一吨废纸可以节约3立方米木材,那么回收吨废纸可以节约立方米木材。

2、(2008年青海省中考题)对代数式,我们可以这样解释:香蕉每千克5元,某人买了千克,共付款元。

请你对再给出另一个实际生活方面的合理解释:。

3、(2009年广州市中考题)如图①,图②,图③,图④,,是用围棋棋子按照某种规律摆成的一行广字,按照这种规律,第5个广字中的棋子个数是________,第个广字中的棋子个数是________。

4、(2008年湖北宜昌中考题改编)2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a-1)米,三峡坝区的传递路程为(881a+2309)米。

设圣火在宜昌的传递总路程为x米。

请你用含a的代数式表示s。

参考答案:
◆随堂检测
1、B
2、B
3、
4、
5、(1)m的倒数与n的倒数的差;(2)x、y的和与x、y的差的积。

◆课下作业
●拓展提高
1、A
2、
3、
4、
5、
6、(1)正号和负号交替出现,系数的绝对值分别是1,2,3,,x的次数也分别是1,2,3,;
(2) ;
(3) ,
7、若时,水费为1.00x+0.20=x+0.20;
若时,水费为81.00+1.50(x-8)+0.40=1.5x-3.6。

●体验中考
1、
2、某人以5千米/时的速度走了小时,他走的路程是千米(答案不唯一)。

3、15;
4、s=700(a-1)+(881a+2309)=1581a+1609。

初一数学上册课文《列代数式》练习题为大家带来过了,希望大家能够在练习中加深对知识点的掌握,从而在考试中取得好成绩。

相关文档
最新文档