2018届中考总复习数学课件:第13课时 二次函数的图像与性质(Word版)
2018年人教版全国中考数学复习课件第13课时 二次函数的图象及其性质(一)
考点聚焦
考向探究
第13课时┃二次函数的图象及其性质(一)
解 析
画出抛物线y=x2-2x+1,如图所示.
(1)∵a=1,∴抛物线开口向上,正确; (2)∵令x2-2x+1=0,Δ =(-2)2-4×1×1=0,∴该抛物线与x 轴有两个重合的交点,正确; -2 b (3)∵- =- =1,∴该抛物线对称轴是直线x=1,正确; 2a 2×1 (4)∵抛物线开口向上,且抛物线的对称轴为直线x=1,∴当x> 1时,y随x的增大而增大,不正确.
b 4ac-b - , ____________________ 4a 2a
b x=- 2a 为对称轴的抛物线 ________
为 顶 点 , 以 直 线
用描点法画 二次函数
2 y = a ( x - h ) +k (1) 用配方法化成 ____________________ 的形
回归教材
考点聚焦
考向探究
第13课时┃二次函数的图象及其性质(一)
解 析
方法一:∵抛物线 y=ax2+bx+c 与 x 轴的公共
点是(-1,0),(3,0), ∴抛物线的解析式可设为 y=a(x+1)(x-3)(a≠0), 即 y=a(x2-2x-3)=a(x-1)2-4a(a≠0), ∴抛物线的对称轴是直线 x=1. 方法二:∵抛物线关于其对称轴对称,且其对称轴 x=h 与 x 轴垂直, ∴对称轴必过点(-1,0),(3,0)的中点, -1+3 则 h-(-1)=3-h,得 h= =1. 2 即抛物线的对称轴是直线 x=1.
回归教材
考点聚焦
考向探究
第13课时┃二次函数的图象及其性质(一)
二次项系 数a的 特性 常数项c 的意义
中考数学复习 第三单元 函数及其图象 第13课时 二次函数的图象及其性质(一)课件
9 解得
2
++2= ,
= 2,
2
第十八页,共二十五页。
课堂考点探究
例 2[2019·原创] 根据下列条件求解析式.
(2)已知二次函数的图象以 A(-1,4)为顶点,且过点 B(2,-5).求二次函数解析式;
(2)由顶点 A(-1,4),可设二次函数关系式为 y=a(x+1)2+4(a≠0).∵二次函数的图象过点 B(2,-5),
口向
,对称轴是直线
,顶点坐标是
.
第七页,共二十五页。
1
1
4
4
-1 (2)
x=2 (2,9)
课前双基巩固
3.[九上 P47 习题 22.2 第 4 题改编] 抛物线 y=ax2+bx+c 与 x 轴的公共点是(-1,0),(3,0),这条抛物线的对称轴是直
线
.
[答案]x=1
[解析] 方法一:∵抛物线 y=ax2+bx+c 与 x 轴的公共点是(-1,0),(3,0),
象上,则 y1,y2,y3 的大小关系是
(
A.y3>y2>y1
B.y3>y1=2
C.y1>y2>y3
D.y1=y2>y3
)
第十四页,共二十五页。
[答案] D
课堂考点探究
3.[2017·菏泽] 一次函数 y=ax+b 和反比例函数 y= 在同一平
[答案] A
面直角坐标系中的图象如图 13-1 所示,则二次函数
图13-1
第十五页,共二十五页。
课堂考点探究
4.[2017·枣庄] 已知函数 y=ax2-2ax-1(a 是常数,a≠0),下列结论正确的是 (
二次函数的图像与性质ppt课件
函数的凹凸性
当a>0时,函数凹;当a<0时,函数凸。
函数的零点和方程
零点是方程y=0的解,方程求解可以用二次公式。
二次函数的应用
1
抛物线运动
抛物线可以描述物体在空中的轨迹,如
弹性系数
2
抛出物体的运动轨迹。
二次函数可以表示材料的弹性特性,如
描述力和变形的关系。
3
跳水成绩预测
通过二次函数建模,可以预测跳水运动
二次函数的图像与性质 ppt课件
通过本课件,你将深入了解二次函数的定义和表达式,并学习二次函数的图 像特征,如开口方向、对称轴、最值点和零点等。还将探究二次函数的性质, 如增减性、凹凸性、最值和零点方程。从抛物线运动到报价模型,掌握二次 函数的应用。最后,了解二次函数的变形与拓展,包括平移、缩放、翻转和 混合运用。同时,我们将解决常见错误和实际问题应用。
常见错误和解决方法
1 符号错误
检查符号的正确使用,特别是a的正负。
3 图像理解错误
注意开口方向、对称轴和最值点的判断。
2 方程解法错误
仔细检查求解方程是否正确,特别是二次方 程。
4 实际问题应用
将数学模型应用到实际问题时,需考虑问题 的实际情况并合理使用二次函数。
开口方向
当a>0时,抛物线开口向上;当a<0时, 抛物线开口向下。
最值点
最值点是抛物线的最高点(当a>0)或最 低点(当a<0)。最值点的坐标为(-b/2a, f(-b/2a))。
二次函数的性质
函数的增减性
当a>0时,函数单调递增;当a<0时,函数单调 递减。
函数的最值
最值主要由最值点确定,注意开口方向和a的值 来确定最值。
中考数学总复习第三单元函数第13课时二次函数的图像与性质课件
图13-2
图 13-3
[答案] B
[解析] 抛物线 y=ax2+bx+c 的开口方向向上,
则 a>0.对称轴在 y 轴的右侧,则 a,b 异号,所
以 b<0,故-b>0.又因为抛物线与 x 轴有两个
交点,所以 b2-4ac>0,所以直线 y=-bx+b2-4ac
经过第一、二、三象限.当 x=-1 时,y>0,即
第 13 课时 二次函数的图像与性质
课前双基巩固
考点聚焦
考点一 二次函数的概念
1.二次函数的定义
定义
一般地,如果两个变量 x 和 y 之间的函数关系可以表示成① y=ax2+bx+c
(a,b,c 是常数,且 a≠0),那么称 y 是 x 的二次函数
二次函数 y=ax2+bx+c (1)等号右边是关于自变量 x 的二次式,x 的最高次数是 2;
的增大而 减小 ,简记为“左增右减”
最值
抛物线有最低点,当 x=- b 时,y 有最 小 2a
抛物线有最高点,当 x=- b 时,y 有最 大 2a
值,y
最小值=
4ac -b2 4a
值,y
最大值=
4ac -b2 4a
二次项系数 a 的 特性
������ 的大小决定抛物线的开口大小, ������ 越大,抛物线的开口越小; ������ 越小,抛物线的开口越大
的结构特征
(2)二次项系数 a≠0
课前双基巩固
2.二次函数的三种表示形式
(1)一般式:② y=ax2+bx+c(a≠0) . (2)顶点式:y=a(x-h)2+k(a≠0),其中二次函数图像的顶点坐标是③ (h,k) . (3)两点式:y=a(x-x1)(x-x2)(a≠0).其图像与 x 轴的交点的坐标为④ (x1,0) ,⑤ (x2,0) .
中考数学 第13讲 二次函数的图象及其性质课件
6.(2015·兰州)二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0), B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是 ( C) A.当n<0时,m<0
B.当n>0时,m>x2 C.当n<0时,x1<m<x2 D.当n>0时,m<x1 7.(2013·庆阳)如图,已知二次函数的图象与x轴的两个交点分别为(-1
1.(2015·兰州)下列函数解析式中,一定为二次函数的是( C ) A.y=3x-1 B.y=ax2+bx+c
C.s=2t2-2t+1 D.y=x2+x1
2.(2015·兰州)在下列二次函数中,其图象的对象轴为 x=-2 的是( A ) A.y=(x+2)2 B.y=2x2-2 C.y=-2x2-2 D.y=2(x-2)2 3.(2014·兰州)把抛物线 y=-2x2 先向右平移 1 个单位长度,再向上平移 2 个单位长度后,所得函数的表达式为( C ) A.y=-2(x+1)2+2 B.y=-2(x+1)2-2 C.y=-2(x-1)2+2 D.y=-2(x-1)2-2
3.图象与性质
4.图象的平移
5.抛物线y=ax2数的三种解析式 (1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0); (2)交点式:y=a(x-x1)(x-x2)(a,x1,x2是常数,a≠0); (3)顶点式:y=a(x+h)2+k(a,h,k是常数,a≠0). 抛物线的顶点常见的三种变动方式 (1)两抛物线关于x轴对称,此时顶点关于x轴对称,a的符号相反; (2)两抛物线关于y轴对称,此时顶点关于y轴对称,a的符号不变; (3)开口反向(或旋转180°),此时顶点坐标不变,只是a的符号相反.
(完整word版)二次函数的图像和性质总结
二次函数的图像和性质1。
二次函数的图像与性质:2.抛物线的平移法则:(1)抛物线k ax +=2y 的图像是由抛物线2y ax =的图像平移k 个单位而得到的。
当0>k 时向上平移;当0>k 时向下平移。
(2)抛物线2)(h x a y +=的图像是由抛物线2y ax =的图像平移h 个单位而得到的.当0>h 时向左平移;当0<h 时向右平移.(3)抛物线的k h x a y ++=2)(图像是由抛物线2y ax =的图像上下平移k 个单位,左右平移h 个单位而得到的。
当0>k 时向上平移;当0>k 时向下平移;当0>h 时向左平移;当0<h 时向右平移.3.二次函数的最值公式:形如c bx ax y ++=2的二次函数。
时当0>a ,图像有最低点,函数有最小值ab ac y 442-=最小值;时当0<a ,图像有最高点,函数有最大值,a b ac y 442-=最大值;4。
抛物线c bx ax y ++=2与y 轴的交点坐标是(0,c )5。
抛物线的开口大小是由a 决定的,a 越大开口越小。
6.二次函数c bx ax y ++=2的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。
(2)自变量的取值范围不是一切实数:自变量的取值范围不是一切实数时,应当抓住对称轴abx 2-=,把他与取值范围相比较,再进行求最值.6.二次函数与一元二次方程的关系:(1)抛物线c bx ax y ++=2与x 轴的交点坐标的横坐标方程02=++c bx ax 的两根。
(2)抛物线与x 轴的交点个数是由ac b 42-=∆决定的:当0>∆时抛物线与x 轴有两个交点;当0=∆抛物线与x 轴有一个交点;当0<∆时抛物线与x 轴没有点。
0≥∆时抛物线与x 轴有交点。
(此定理的逆定理也成立。
)7.二次函数的三种常用形式:(1)一般式:k h x a y ++=2)( (2)顶点式:c bx ax y ++=2(3)两根式:))((21x x x x a y --=8.一元二次方程的解法:(1)直接开平方法;(2)配方法;(3)公式法;(4)因式分解法;(5)图像法。
中考数学复习 第三单元 函数及其图象 第13课时 二次函数的图象与性质课件
解得a=-1.
∴ 抛物线的函数解析式为
y=-(x-1)2+4,
即y=-x2+2x+3.
3.[2019·威海]在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,
列表如下:
x
…
-1
0
1
2
3
…
y甲
…
6
3
2
3
6
…
乙写错了常数项,列表如下:
x
…
-1
0
1
2
3
…
y乙
…
-2
-1
2
7
14
…
通过上述信息,解决以下问题:
A.3
B.4
C.5
( C )
D.6
4.在抛物线y=-x2+2x-3中,若y随x的增大而增大,则x的取值范围是 ( B )
A.x<-1
B.x<1
C.x>1
D.x>-1
5.二次函数y=x2+b的图象经过点(1,4),则b的值是
经过点(-1,m),则m的值是
4
3
;若该二次函数图象还
.
6.写出抛物线y=2(x-1)2上一对对称点的坐标,这对对称点的坐标可以是
解得 a=1 是正确的.
根据乙同学提供的数据,选择 x=-1,y=-2;x=1,y=2 代入 y=x2+bx+c,
条件
设法
顶点在原点
y=ax2(a≠0)
顶点在y轴上
y=ax2+c(a≠0,y轴为对称轴)
顶点在x轴上
y=a(x-h)2(a≠0,直线x=h是对称轴)
中考数学全程复习方略第十三讲二次函数的图象与性质课件
∵将抛物线y1平移后得到顶点为B且对称轴为直线l的
抛物线y2.
∴抛物线y2的表达式为:y2=-
1(x-1)2.
2
(2)在直线l上存在点P,使△PBC是等腰三角形,
由y1=-12
x2-x+
3 2
=-
1(x+1)2+2可知C点的坐标为
2
(-1,2),根据勾股定理得BC= 22 22=2 2,
设P点的坐标为(1,m),
ab<0(b与a异号) 对称轴在y轴右侧
c=0
经过原点
c>0
与y轴正半轴相交
c<0
与y轴负半轴相交
字母或 代数式
b2-4ac
字母的符号 b2-4ac=0 b2-4ac>0 b2-4ac<0
图象的特征
与x轴有唯一交点(顶 点) 与x轴有两个不同交 点 与x轴没有交点
特殊 关系
当x=1时,y=a+b+c 当x=-1时,y=a-b+c 若a+b+c>0,即当x=1时,y>0 若a+b+c<0,即当x=1时,y<0
【题组过关】
1.(2019·凉山州中考)二次函数y=ax2+bx+c的部分图
象如图所示,有以下结论:①3a-b=0;②b2-4ac>0;③5a-
2b+c>0;④4b+3c>0,其中错误结论的个数是( A )
A.1
B.2
C.3
D.4
2.(2019·汕头潮南区期末)如图,抛物线y=ax2+bx+c (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为 (-1,0),其部分图象如图所示,下列结论:
2018年数学中考第一轮复习讲义:2018年数学中考第一轮复习讲义:第13讲 二次函数图像与性质
第十三讲二次函数图像与性质1.一般地,形如 的函数叫做二次函数,当a ,b 时,是一次函数.2.二次函数y =ax 2+bx +c 的图象是 ,对称轴是直线x= ,顶点坐标是( , ).3.抛物线的开口方向由a 确定,当a >0时,开口 ;当a <0时,开口 ;a 的值越 ,开口越 .4.抛物线与y 轴的交点坐标为 .当c >0时,与y 轴的 半轴有交点;当c <0时,与y 轴的 半轴有交点;当c =0时,抛物线过 .5.若a >0,当x =2b a-时,y 有最小值,为 ; 若a <0,当x =2b a-时,y 有最大值,为 . 6.当a >0时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 ;当a <0时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧.y 随x 的增大而 .7.当m >0时,二次函数y =ax 2的图象向 平移 个单位得到二次函数y =a (x +m)2的图象;当k >0时,二次函数y =ax 2的图象向 平移 个单位得到二次函数y =ax 2+k 的图象.平移的口诀:左“ ”右 “ ”;上“ ”下“ ”.1.(2017哈尔滨)抛物线y=﹣(x+)2﹣3的顶点坐标是( )A .(,﹣3) B .(﹣,﹣3) C .(,3)D .(﹣,3)2. (2017.江苏宿迁)将抛物线y=x 2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是( )A .y=(x+2)2+1B .y=(x+2)2﹣1C .y=(x ﹣2)2+1D .y=(x ﹣2)2﹣13.(2017广西)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )A .y=(x ﹣1)2+1B .y=(x+1)2+1C .y=2(x ﹣1)2+1D .y=2(x+1)2+14.(2016·福建龙岩·4分)已知抛物线y=ax 2+bx+c 的图象如图所示,则|a ﹣b+c|+|2a+b|=( )A .a+bB .a ﹣2bC .a ﹣bD .3a5.已知二次函数y = (x +m )2 - n 的图象如图所示,则一次函数y = mx + n 与反比例函数mn y x= 的图象可能是( )(第5题图) A. B. C. D.6. 如图抛物线2y ax bx c =++的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =OC . 下列结论:①22b c -=;②12a =;③1ac b =-;④0a b c+>. 其中正确的个数有( )A .1个B .2个C .3个D .4个知识点一、求二次函数图象的顶点坐标【例题】(2017四川眉山)若一次函数y=(a+1)x+a 的图象过第一、三、四象限,则二次函数y=ax 2﹣ax ( )A.有最大值 B.有最大值﹣ C.有最小值 D.有最小值﹣【考点】H7:二次函数的最值;F7:一次函数图象与系数的关系.【分析】一次函数y=(a+1)x+a 的图象过第一、三、四象限,得到﹣1<a <0,于是得到结论.【解答】解:∵一次函数y=(a+1)x+a 的图象过第一、三、四象限, ∴a+1>0且a <0,∴﹣1<a <0,∴二次函数y=ax 2﹣ax由有最小值﹣,故选D .【变式】(2017湖北随州)对于二次函数y=x 2﹣2mx ﹣3,下列结论错误的是( )A .它的图象与x 轴有两个交点B .方程x 2﹣2mx=3的两根之积为﹣3C .它的图象的对称轴在y 轴的右侧D .x <m 时,y 随x 的增大而减小【考点】HA :抛物线与x 轴的交点;H3:二次函数的性质.【分析】直接利用二次函数与x 轴交点个数、二次函数的性质以及二次函数与方程之间关系分别分析得出答案.【解答】解:A 、∵b 2﹣4ac=(2m )2+12=4m 2+12>0,∴二次函数的图象与x 轴有两个交点,故此选项正确,不合题意;B 、方程x 2﹣2mx=3的两根之积为: =﹣3,故此选项正确,不合题意;C 、m 的值不能确定,故它的图象的对称轴位置无法确定,故此选项错误,符合题意;D 、∵a=1>0,对称轴x=m ,∴x <m 时,y 随x 的增大而减小,故此选项正确,不合题意;故选:C .知识点二、二次函数图象的增减性及其其它性质【例题】(2015江苏常州)已知二次函数2(1)1y x m x =+-+,当x >1时,y 随x 的增大而增大,而m 的取值范围是( )A .1m =-B .3m =C .1m ≤-D .1m ≥-【答案】D .【分析】根据二次函数的性质即可做出判断. 【解析】抛物线的对称轴为直线12m x -=-,∵当x >1时,y 的值随x 值的增大而增大,∴112m --≤,解得:1m ≥-.故选D . 【点评】本题考查了二次函数的性质,能正确地判断出确定出对称轴是解题的关键.【变式】(2016•鄂州)如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a+3b+c <0;③c >﹣1;④关于x 的方程ax 2+bx+c (a≠0)有一个根为﹣其中正确的结论个数有( )A.1个B.2个C.3个D.4个【分析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y<0,可判断②;由OA=OC,且OA<1,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.【解答】解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以﹣>0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac﹣b+1=0,两边同时乘c可得ac2﹣bc+c=0,即方程有一个根为x=﹣c,由②可知﹣c=OA,而当x=OA是方程的根,∴x=﹣c是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.知识点三二次函数的对称轴【例题】(2015湖南怀化)二次函数y=2x+2x的顶点坐标为,对称轴是直线.【答案】(-1,-1);直线x=-1.【分析】将二次函数配成顶点式,然后得出顶点坐标和对称轴.【解析】y=2x+2x=2(1)x+-1,从而得出抛物线的顶点坐标(-1,-1);对称轴直线x=-1.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.【变式】(2016·四川南充)抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=﹣2 D.直线x=2【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程.【解答】解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选B.【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(﹣,),对称轴为直线x=﹣.知识点四、二次函数的最大(小)值【例题】(2017•玉林)对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下B.对称轴是x=m C.最大值为0 D.与y轴不相交【考点】H3:二次函数的性质;H7:二次函数的最值..【分析】根据二次函数的性质即可一一判断.【解答】解:对于函数y=﹣2(x﹣m)2的图象,∵a=﹣2<0,∴开口向下,对称轴x=m,顶点坐标为(m,0),函数有最大值0,故A、B、C正确,故选D.【点评】本题考查二次函数的性质,解题的关键是熟练掌握二次函数的性质,属于基础题,中考常考题型.【变式】(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若1≤x≤3<h,当x=3时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.知识点五、二次函数图象与系数的关系【例题】(2017山东烟台)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④【考点】H4:二次函数图象与系数的关系.【分析】由抛物线开口方向得到a>0,然后利用抛物线抛物线的对称轴得到b 的符合,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=﹣2a,加上x=﹣1时,y>0,即a﹣b+c>0,则可对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,而x=﹣1时,y>0,即a﹣b+c>0,∴a+2a+c>0,所以④错误.故选C.【变式】(2017年江苏扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2【考点】H4:二次函数图象与系数的关系.【分析】抛物线经过C点时b的值即可.【解答】解:把C(2,1)代入y=x2+bx+1,得22+2b+1=1,解得b=﹣2.故b的取值范围是b≥﹣2.故选:C.知识点六、二次函数图象的平移【例题】(2017江苏盐城)如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.【变式】(2016·山东省滨州市·3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣ D.y=﹣(x+)2+【考点】二次函数图象与几何变换.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+﹣3=﹣(x﹣)2﹣.故选A.【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【典例解析】【例题1】(2017山东临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,可得y=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【解答】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,故选B.【点评】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.【例题2】(2017山东泰安)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm2【考点】H7:二次函数的最值.【分析】在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t ≤4),则PC=(6﹣t)cm,CQ=2tcm,利用分割图形求面积法可得出S=t2四边形PABQ﹣6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解.【解答】解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴AC==6cm.设运动时间为t(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm,∴S四边形PABQ=S△ABC﹣S△CPQ=AC•BC﹣PC•CQ=×6×8﹣(6﹣t)×2t=t2﹣6t+24=(t﹣3)2+15,∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故选C.【例题3】(2017甘肃天水)如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n (m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.【例题4】(2016·四川攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形【考点】二次函数图象与系数的关系.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C 错误;由a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A 点坐标为(﹣1,0), ∴a ﹣b+c=0,而b=﹣2a , ∴a+2a+c=0, ∴3a+c=0, ∴选项C 错误;当a=,则b=﹣1,c=﹣,对称轴x=1与x 轴的交点为E ,如图, ∴抛物线的解析式为y=x 2﹣x﹣, 把x=1代入得y=﹣1﹣=﹣2, ∴D 点坐标为(1,﹣2), ∴AE=2,BE=2,DE=2,∴△ADE 和△BDE 都为等腰直角三角形, ∴△ADB 为等腰直角三角形, ∴选项D 正确. 故选D .【点评】本题考查了二次函数y=ax 2+bx+c 的图象与系数的关系:当a >0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y 轴的交点坐标为(0,c ).热点1:(2017乌鲁木齐)如图,抛物线y=ax 2+bx+c 过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a≥0,其中所有正确的结论是②④⑤.【考点】H4:二次函数图象与系数的关系.【分析】由开口方向、对称轴及抛物线与y轴交点位置可判断①;由x=3时的函数值及a>0可判断②;由抛物线的增减性可判断③;由当x=﹣时,y=a•(﹣)2+b•(﹣)+c=且a﹣b+c=0可判断④;由x=1时函数y取得最小值及b=﹣2a可判断⑤.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=﹣时,y=a•(﹣)2+b•(﹣)+c==,∵当x=﹣1时,y=a﹣b+c=0,∴当x=﹣时,y=a•(﹣)2+b•(﹣)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(﹣,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=﹣2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.热点2:(2017湖北咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是x<﹣1或x >4 .【考点】HC:二次函数与不等式(组).【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.热点3:(2016·山东省菏泽市·3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C 6,若点P(11,m)在第6段抛物线C6上,则m= ﹣1 .【考点】二次函数图象与几何变换;抛物线与x轴的交点.【专题】规律型.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C 4顶点坐标为(7,﹣1),A4(8,0);C 5顶点坐标为(9,1),A5(10,0);C 6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.一、选择题1.(2016·山东省滨州市·3分)抛物线y=2x 2﹣2x+1与坐标轴的交点个数是( )A .0B .1C .2D .32.二次函数2(2)1y x =+-的图象大致为( ) A . B .C . D .3.已知二次函数3+2+-=2x x y ,当x ≥2时,y 的取值范围是( ) A .y ≥3 B .y ≤3 C .y >3 D .y <34.(2016·四川眉山·3分)若抛物线y=x 2﹣2x+3不动,将平面直角坐标系xOy 先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为( )A .y=(x ﹣2)2+3B .y=(x ﹣2)2+5C .y=x 2﹣1D .y=x 2+45.二次函数y=a 2x +bx+c 的图象如图所示,则下列关系式错误的是( )6.(2016·湖北黄石·3分)以x 为自变量的二次函数y=x 2﹣2(b ﹣2)x+b 2﹣1的图象不经过第三象限,则实数b 的取值范围是( ) A .b ≥ B .b ≥1或b ≤﹣1 C .b ≥2 D .1≤b ≤27.二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的个数是( )A.4个B. 3个C. 2个D. 1个8.(2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣49.(2016·黑龙江齐齐哈尔·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每小题5分,满分20分)10.二次函数243y x x=--的顶点坐标是(,).11.(2016·黑龙江哈尔滨·3分)二次函数y=2(x﹣3)2﹣4的最小值为﹣4 .12.(2017浙江义乌)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+313.抛物线y=ax2+bx+2经过点(﹣2,3),则3b﹣6a= .14.(2017湖南株洲)如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为.15.(2017•玉林)已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<错误!超链接引用无效。
第13课时 二次函数的图象与性质优秀课件
第13课时 二次函数的图象与性质(每年第10题必考,3分)1点对点“过”考点2典例“串”考点3陕西5年真题、副题“明”考法点对点“过”考点【对接教材】北师:九下第二章P28-P63;人教:九上第二十二章P27-P57.二次函数表达式的确定二次函数图象的平移二次函数与一元二次方程、不等式的关系二次函数的概念与一元二次方程的关系与不等式的关系二次函数的图象与性质二次函数的图象与性质根据二次函数解析式判断函数性质根据二次函数解析式判断函数图象根据二次函数图象判断相关结论考点1二次函数的概念形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数.其中a、b、c 分别是函数解析式的二次项系数、一次项系数和常数项.返回思维导图二次函数的图象与性质考点21. 根据二次函数解析式判断函数性质函数二次函数y=ax2+bx+c(a≠0)对称轴(1)直接利用公式x=________(2)配方转化为顶点式y=a(x-h)2+k,则对称轴为________注:还可利用x= (其中x1、x2为y值相等的两点的横坐标)求解顶点坐标(1)直接利用顶点坐标公式_________________(2)配方化为顶点式y=a(x-h)2+k,则顶点坐标为________(3)将对称轴x=x0代入函数表达式求得对应的y0x=h(h,k)122x x返回思维导图函数二次函数y=ax2+bx+c(a≠0)增减性a>0对称轴左侧,即x< , y随x 的增大而________对称轴右侧,即x> , y随x的增大而________a<0对称轴左侧,即x< , y随x的增大而________对称轴右侧,即x> , y随x的增大而________最大值或最小值a>0当x=________时,y最小值=a<0当x=________时,y最大值=减小增大增大减小返回思维导图2. 根据二次函数解析式判断函数图象一般式y=ax2+bx+c(a≠0)a的正负决定开口方向a>0开口向________ a<0开口向________a,b决定对称轴位置b=0对称轴为______轴a、b同号对称轴在y轴________侧a、b异号对称轴在y轴________侧上下y左右返回思维导图一般式y=ax2+bx+c(a≠0)c决定与y轴交点位置c=0抛物线过原点c>0抛物线与y轴交于________半轴c<0抛物线与y轴交于________半轴b2-4ac决定与x轴交点个数b2-4ac=0与x轴有唯一的交点(顶点)b2-4ac>0与x轴有________交点b2-4ac<0与x轴没有交点正负两个返回思维导图3. 根据二次函数图象判断相关结论图象结论a ________0b ________0c ________0b 2-4ac ________0a ________0b ________0c ________0b 2-4ac ________0a ________0b ________0c ________0b 2-4ac ________0a ________0b ________0c ________0b 2-4ac ________0>><><=>>>>><<<>=返回思维导图图象结论a________0b________0c________0b2-4ac________0a________0b________0c ________0b2-4ac________0a________0b________0c________0b2-4ac________0a________0b________0c________0b2-4ac________0 >>><>>>=<>>=>===返回思维导图二次函数表达式的确定考点3表达式的三种形式1. 一般式:y=ax2+bx+c(a≠0,a、b、c为常数);2. 顶点式:y=a(x-h)2+k(a≠0,a,h,k为常数),其中(h,k)是抛物线的顶点坐标;3. 交点式:y=a(x-x1)(x-x2)(a≠0,a为常数,x1,x2为抛物线与x轴的两个交点的横坐标).返回思维导图二次函数图象的平移考点4平移前的解析式平移方向平移后的解析式简记y=a(x-h)2+k 向左平移m个单位y=a(x-h )2+k左“+”向右平移m个单位y=a(x-h )2+k右“-”向上平移m个单位y=a(x-h)2+k上“+”向下平移m个单位y=a(x-h)2+k下“-”返回思维导图【提分要点】(1)在一般式y=ax2+bx+c(a≠0)或顶点式y=a(x-h)2+k(a≠0)中,左右平移给x加减平移单位,上下平移给等号右边整体加减平移单位.(2)二次函数图象平移的实质是图象上点的整体平移(研究顶点坐标为主),平移过程中a不变,因此可先求出其顶点坐标,根据顶点坐标的平移求解即可.返回思维导图二次函数与一元二次方程、不等式的关系考点51. 二次函数与一元二次方程的关系方程ax 2+bx +c =0的解是二次函数y =ax 2+bx +c 与x 轴交点的横坐标值抛物线与x 轴有两个交点⇔方程有两个______的实数根⇔b 2-4ac >0抛物线与x 轴有一个交点⇔方程有两个相等的实数根⇔b 2-4ac ______0抛物线与x 轴无交点⇔方程__________⇔b 2-4ac ______0不相等=无实数根<返回思维导图2. 二次函数与不等式的关系(1)ax 2+bx +c >0的解集⇔函数y =ax 2+bx +c 的图象位于x 轴________对应的点的横坐标的取值范围;(2)ax 2+bx +c <0的解集⇔函数y =ax 2+bx +c 的图象位于x 轴________对应的点的横坐标的取值范围.上方下方返回思维导图典例“串”考点例1 已知抛物线y =x 2-2bx +b 2-1.(1)抛物线开口向______,化为顶点式为 ;(2)抛物线的对称轴为直线____________;(3)抛物线的顶点坐标为____________;(4)该二次函数有最________值(填“大”或“小”),为____________;(5)抛物线与y 轴的交点坐标为____________,与x 轴的交点坐标为;(6)若抛物线对称轴在直线x =1右侧,则抛物线不经过第______象限;(7)若点(b -3,y 1)、(b +3,y 2)都在抛物线上,则y 1与y 2的大小关系为__________;上y =(x -b )2-1x =b (b ,-1)小-1(0,b 2-1)(b +1,0)或(b -1,0)三y 1=y 2(8)当-1<b <1,若x =2b ,则y ____0(填“>”、“<”或“=”);(9)若b =2.①在如图所示的平面直角坐标系中画出函数图象;②若y 随x 的增大而增大,则x 的取值范围为________;③当-2≤x ≤5时,y 的最大值为__________,最小值为________.例1题图<x ≥215-1例1题解图(9)①画出函数图像如解图:例2 在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示.例2题图判断下列结论的正误:(1)abc <0 ( )(2)4ac -b 2<0 ( )(3)2a +b =0 ( )(4)3a +b <0 ( )√√××(5)3a +c <0( )(6)二次函数的最小值为a -b +c ( )(7)9a -3b +c =0( )(8)当y <0时,-3<x <1( )(9)对于任意实数m ,a -b ≥m (am +b )总成立( )(10)若该函数与y 轴的交点在(0,-1)和(0,-2)之间(包括端点),则 ≤a ≤ ( )(11)方程ax 2+bx +c -3=0的两根一个小于1,另一个大于-3 ( )1323√√√√×××例3 已知抛物线y =-x 2+3x +4.(1)将抛物线向左平移2个单位长度,再向上平移1个单位长度,平移后的抛物线表达式为______________(2)将抛物线平移后,得到的新的抛物线的顶点为( , ),则平移方式为 ;(3)抛物线关于原点对称的抛物线表达式为,关于x 轴对称的抛物线的表达式为,关于y 轴对称的抛物线的表达式为 ;(4)抛物线关于直线x =1对称的抛物线的表达式为 ;(5)抛物线关于直线y =-2对称的抛物线的表达式为 ;3214y =-x 2-x +7向下平移6个单位长度y =x 2+3x -4y =x 2-3x -4y =-x 2-3x +4y =-x 2+x +6y =x 2-3x -8【提分要点】抛物线y=a(x-h)2+k(a≠0)的平移、轴对称、旋转变换可以对应看作其顶点(h,k)的平移、轴对称、旋转变换,掌握各种变化后的a值和顶点(h′,k′)便可轻松得到变换后的二次函数表达式,具体如下:y=a(x-h)2+k a顶点(h,k)平移变换不变变x轴相反数(h,-k)轴对称变换y轴不变(-h,k)绕顶点(180°)相反数(h,k)旋转变换绕原点(180°)相反数(-h,-k)陕西5年真题、副题“明”考法命题点1二次函数的图象与性质(必考)类型一 函数增减性1. (2018陕西副题10题3分)已知抛物线y=x2+(m+1)x+m,当x=1时,y>0,且当x<-2时,y的值随x值的增大而减小,则m的取值范围是( )CA.m>-1 B.m<3C.-1<m≤3 D.3<m≤4类型二 与函数图象的对称轴或顶点有关的问题(5年4考)2. (2018陕西10题3分)对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. (2019陕西10题3分)在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n )x +n 关于y 轴对称,则符合条件的m 、n 的值为( )A. m = ,n = B. m =5,n =-6C. m =-1,n =6 D. m =1,n =-257187 C D4. (2015陕西副题10题3分)在平面直角坐标系中,有两条抛物线关于x 轴对称,且它们的顶点相距10个单位长度.若其中一条抛物线的函数表达式为y =x 2+6x +m ,则m 的值是( )A. -4或-14B. -4或14C. 4或-14D. 4或145. (2017陕西10题3分)已知抛物线y =x 2-2mx -4(m >0)的顶点M 关于坐标原点O 的对称点为M ′.若点M ′在这条抛物线上,则点M 的坐标为( )A. (1,-5)B. (3,-13)C. (2,-8)D. (4,-20)6. (2017陕西副题10题3分)已知抛物线y =x 2+bx +c 的对称轴为x =1,且它与x 轴交于A 、B 两点.若AB 的长是6,则该抛物线的顶点坐标为( )A. (1,9)B. (1,8)C. (1,-9)D. (1,-8)D C C7. (2016陕西10题3分)已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点,将这条抛物线的顶点记为C ,连接AC 、BC ,则tan ∠CAB 的值为( ) A. B. C. D. 21255255D类型三 函数图象与坐标轴的交点问题(2015.10)8. (2015陕西10题3分)下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,D正确的是( )A. 没有交点B. 只有一个交点,且它位于y轴右侧C. 有两个交点,且它们均位于y轴左侧D. 有两个交点,且它们均位于y轴右侧命题点2二次函数图象的平移9. (2019陕西副题10题3分)在平面直角坐标系中,将抛物线y =x 2-(a -2)x +a 2-1向右平移4个单位长度,平移后的抛物线与y 轴的交点为A (0,3),则平移后的抛物线的对称轴为( )A. x =-1B. x =1C. x =-2D. x =210. (2016陕西副题10题3分)将抛物线M :y = x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M ′.若抛物线M ′与x 轴交于A 、B 两点,M ′的顶点记为C ,则∠ACB =( )A. 45°B. 60°C. 90°D. 120°13 D C点击链接至练习册。
二次函数的图像与性质课件
一阶导数等于零的点是函数的拐点,也是单调性的分界点。通过分析这
些点的左右两侧的导数符号变化,可以判断出函数的单调性。
二次函数的极值问题
极值的概念
01
02
03
极值
函数在某点的值大于或小 于其邻近点的值,称为该 函数在该点有极值。
极大值
函数在某点的左侧递减, 右侧递增,则该点为极大 值点。
极小值
函数在某点的左侧递增, 右侧递减,则该点为极小 值点。
顶点坐标
总结词
顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点坐标可以通过公式计算得出,顶点的x坐标为-b/2a,y坐标为cb^2/4a。这个顶点是抛物线的最低点或最高点,取决于抛物线的开口方向。
对称轴
总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是抛物线的对称轴,也是顶点的x 坐标。
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于x轴对称当且仅当$a > 0$,关于y轴对称当且仅当 $a < 0$。
点对称
总结词
二次函数的图像关于某点对称。
详细描述
对于形式为$f(x) = ax^2 + bx + c$的二次函数,其图像关于点$(h, k)$对称当且仅当 $f(h+x) = f(h-x)$且$f(k+y) = f(k-y)$。
解方程问题
总结词
通过二次函数的图像与x轴的交点,可以求 解一元二次方程的根。
详细描述
一元二次方程的根即为二次函数图像与x轴 的交点横坐标。通过观察二次函数的开口方 向和与x轴的交点数,可以判断一元二次方 程实数根的个数。
二次函数的图像和性质PPT课件
二次函数的顶点形式是f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。
二次函数图像的性质
对称轴
二次函数的对称轴是x = -最大值。
开口方向
二次函数开口向上当且仅当a > 0,开口向下当且仅当a < 0。
二次函数的变换
导数
二次函数的导数是一条直线,表示了函数的变化率。
凹性质
二次函数的凹性质取决于a的值,a > 0时函数向上凹,a < 0时函数向下凹。
凸性质
二次函数的凸性质取决于a的值,a > 0时函数向上凸,a < 0时函数向下凸。
二次函数的非负和非正性质
1 非负性质
2 非正性质
当a > 0时,二次函数的图像位于x轴以上。
建筑
物理
二次函数的图像和性质可应用 于建筑设计,优化结构和形状。
P物理实验中,二次函数可以 用于描述运动曲线和力学模型。
总结和展望
通过本课程,我们深入了解了二次函数的图像和性质,掌握了解析和图像求 解的方法,并应用于实际领域。希望你喜欢这次学习!继续思考和探索,创 造性地应用二次函数。
1
平移
平移变换可通过改变顶点来实现,横向平移表示为f(x ± h),纵向平移表示为f(x) ± k。
2
缩放
缩放变换可通过改变a的值来实现,a > 1时函数变窄,0 < a < 1时函数变宽。
3
反转
反转变换可通过改变a的符号来实现,a > 0时函数朝上,a < 0时函数朝下。
二次函数的导数和凹凸性质
二次函数的图像和性质
欢迎来到二次函数的图像和性质课程!通过本课程,您将学习二次函数的定 义和表达形式,并探索其图像的性质和变换。让我们开始吧!
中考数学第三单元函数及其图象第13课时二次函数的图象与性质市赛课公开课一等奖省名师优质课获奖PPT课
• 将函数y=x2图象向右平移
3个单位得到函数y=(x-3)2,其
图象经过点(1,4)
• 将函数y=x2图象向上平移
3个单位得到函数y=x2+3,其
结果
•
A
B
C
×
×
×
第20页
高频考向探究
探究三 求二次函数表示式
例3 [·杭州] 设二次函数y=ax2+bx-(a+b)(a,b是常数,a≠0).
值最小时解析式,请你解答.
(2)∵定点抛物线顶点坐标为(b,c+b2+1),且-1+2b+c+1=1,∴c=1-2b,
∵顶点纵坐标为c+b2+1=2-2b+b2=(b-1)2+1,
∴当b=1时,c+b2+1最小,即抛物线顶点纵坐标值最小,此时c=-1,
∴抛物线解析式为y=-x2+2x.
第28页
当堂效果检测
3.交点式:若已知二次函数图象与x轴两个交点坐标(x1,0),(x2,0),设所求二次函数表示式为y=a(x-x1)(x-x2),
将第三个点(m,n)坐标(其中m,n为常数)或其它已知条件代入,求出待定系数a,最终将表示式化为普通形
式.
第12页
高频考向探究
探究一 二次函数图象与性质
例 1 [2017·枣庄] 已知函数 y=ax2-2ax-1(a 是常数,a≠0),下列结论正确的是
(_________,
)
≤随 x 的增大而减小;当 x
当 x_________时,y
>随 x 的增大而增大
__________时,y
中考数学复习 第三单元 函数及其图象 第13课时 二次函数的图象与性质(一)课件
常数项 c 的意义
抛物线有最低点,当 x=- 时,y 有
最
小
值,y 最小值=
-
抛物线有最高点,当 x=- 时,y 有
最
大
值,y 最大值=
-
的大小决定抛物线的开口大小, 越大,抛物线的开口越小; 越
小,抛物线的开口越大
c 是抛物线与 y 轴交点的纵坐标,即 x=0 时,y=c
.
(2)顶点式:y=a(x-h)2+k(a≠0),其中二次函数图象的顶点坐标是④ (h,k)
.
(3)两点式:y=a(x-x1)(x-x2)(a≠0),其图象与x轴的交点的坐标为⑤(x1,0),(x2,0) .
考点二 二次函数的图象与性质
y=ax2+bx+c(a,b,c为常数,a≠0)
函数
a<0
a>0
“括号内左加右减,括号外上加下减”的平移原则,确定平移后的解析式.
| 考向精练 |
1.[2019·绍兴]在平面直角坐标系中,抛
[答案] B
物线y=(x+5)(x-3)经过变换后得到抛物
[解析]y=(x+5)(x-3)=(x+1)2-16,顶点
线 y=(x+3)(x-5), 则 这 个 变 换 可 以 是
图象
开口方向
对称轴
顶点坐标
开口⑥ 向上
开口⑦ 向下 ,并向下无限延伸
,并向上无限延伸
直线⑧ x=-
⑨ - ,-
(续表)
函
y=ax2+bx+c(a,b,c 为常数,a≠0)
数
中考数学复习 第三单元 函数及其图象 第13课时 二次函数的图象及其性质(一)课件
1
5
例 1 已知抛物线 y=2x2+x-2.
(4)若抛物线与 x 轴的两个交点为 A,B,与 y 轴的交点为 C,求 S△ ABC.
1
5
(4)令 y=0,即2x2+x-2=0,解得 x1= 6-1,x2=- 6-1,∴AB=2 6,
5
1
5 5 6
易知 C 点坐标为 0,-2 ,∴S△ABC=2×2 6 × 2=
第三单元
第 13 课时
二次函数的图象及其性质(一)
函数及其图象
考点聚焦
考点一
二次函数的概念
一般地,形如① y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.
【温馨提示】函数y=ax2+bx+c未必是二次函数,当②
二次函数.
a≠0
时,y=ax2+bx+c是
考点二 二次函数的图象与性质
[答案] 7
是
[解析]y=-2x2-4x+5=-2(x+1)2+7,
.
即二次函数y=-2x2-4x+5的最大
值是7,故答案为7.
[答案] (1)-1
4.已知二次函数y=ax2-4ax+3a.
(1)若a=1,则函数y的最小值为
[解析](1)当a=1时,
;
(2)若当1≤x≤4时,y的最大值是4,则a的值为
函数
y=ax2+bx+c(a,b,c为常数,a≠0)
a<0
a>0
图象
开口方向
开口③ 向上
延伸
,并向上无限
开口④ 向下 ,并向下无限延
伸
2018届中考数学复习课件:第13课时 二次函数的图象和性质(二)(共40张PPT)
第13课时 二次函数的图象和性质(二)
当堂反馈
4. (2016·阜新)二次函数y=ax2+bx+c的图象如图所示,下 列选项正确的是( B ) A. a>0 B. b>0 C. c<0 D. 关于x的一元二次方程ax2+bx+c=0没有实数根
第13课时 二次函数的图象和性质(二)
当堂反馈
5. (2016·绵阳)二次函数y=ax2+bx+c的图象如图所示,
故选A.
第13课时 二次函数的图象和性质(二)
考点演练
考点一 二次函数的各项系数与图像之间的关系
例2 (2016·兰州)二次函数y=ax2+bx+c的图象如图所示, 对称轴是直线x=-1.有下列结论:① abc>0;② 4ac<b2; ③ 2a+b=0;④ a-b+c>2.其中正确结论的个数是( C ) A. 1 B. 2 C. 3 D. 4
第13课时 二次函数的图象和性质(二)
考点演练
考点四 二次函数与坐标轴的交点问题
例5 (2016·永州)抛物线y=x2+2x+m-1与x轴有两个不同的
交点,则m的取值范围是( A )
A. m<2
B. m>2
C. 0<m≤2
D. m<-2
第13课时 二次函数的图象和性质(二)
考点演练
考点四 二次函数与坐标轴的交点问题
解:根据抛物线的开口向下可知a<0; 根据抛物线的对称轴在y轴左侧可知a、b同号,则b<0; 根据抛物线与y轴的交点在y轴的正半轴上可知c>0.
① ∵ a<0,b<0,c>0,∴ abc>0正确. ② ∵ 抛物线与x轴有两个交点,∴ b2-4ac>0.∴ 4ac<b2正确.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三单元函数第十三课时二次函数的图像与性质基础达标训练1. (2017哈尔滨)抛物线y=-35(x+12)2-3的顶点坐标是()A. (12,-3) B. (-12,-3) C. (12,3) D. (-12,3)2. (2017金华)对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是()A. 对称轴是直线x=1,最小值是2B. 对称轴是直线x=1,最大值是2C. 对称轴是直线x=-1,最小值是2D. 对称轴是直线x=-1,最大值是2第3题图3. (2017长沙中考模拟卷五)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x =1,且经过点P(3,0),则a-b+c的值为()A. 0B. -1C. 1D. 24. (2017连云港)已知抛物线y=ax2(a>0)过A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A. y1>0>y2B. y2>0>y1C. y1>y2>0D. y2>y1>0第5题图5. (2017六盘水)已知二次函数y=ax2+bx+c的图象如图所示,则()A. b>0,c>0B. b>0,c<0C. b<0,c<0D. b<0,c>06. 将抛物线y=3x2-3向右平移3个单位长度,得到新抛物线的表达式为()A. y=3(x-3)2-3B. y=3x2C. y=3(x+3)2-3D. y=3x2-67. (2017宁波)抛物线y=x2-2x+m2+2(m是常数)的顶点在()A. 第一象限B. 第二象限C. 第二象限D. 第三象限第8题图8. (2017鄂州)已知二次函数y=(x+m)2-n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()9. (2017随州)对于二次函数y=x2-2mx-3,下列结论错误的是()A. 它的图象与x轴有两个交点B. 方程x2-2mx=3的两根之积为-3C. 它的图象的对称轴在y轴的右侧D. x<m时,y随x的增大而减小10. (2017徐州)若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是()A. b<1且b≠0B. b>1C. 0<b<1D. b<111. (2017眉山)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-ax()A. 有最大值a4 B. 有最大值-a4C. 有最小值a4 D. 有最小值-a412. (2017兰州)下表是一组二次函数y=x2+3x-5的自变量x与函数值y的对应值:那么方程x2+3x-5=0的一个近似根是()A. 1B. 1.1C. 1.2D. 1.3第13题图13. (2017河北)如图,若抛物线y =-x 2+3与x 轴围在封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =k x (x >0)的图象是( )14. (2017长沙中考模拟卷六)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,第14题图现有下列结论:①b 2-4ac >0;②abc >0;③c a >-8;④ 9a +3b +c <0.其中,正确结论的个数是( )A. 1B. 2C. 3D. 415. (2017苏州)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( )A. x 1=0,x 2=4B. x 1=-2,x 2=6C. x 1=32,x 2=52D. x 1=-4,x 2=016. (2017乐山)已知二次函数y =x 2-2mx (m 为常数),当-1≤x ≤2时,函数值y的最小值为-2,则m 的值是( )A. 32B. 2C. 32或 2D. -32或 217. (2017上海)已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是______________.(只需写一个)18. (2017百色)经过A (4,0),B (-2,0),C (0,3)三点的抛物线解析式是______________.19. (2017广州)当x =________时,二次函数y =x 2-2x +6有最小值________.第20题图20. (2017兰州)如图,若抛物线y =ax 2+bx +c 上的P (4,0),Q 两点关于它的对称轴x =1对称,则Q 点的坐标为________.21. (2017青岛)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是________.第22题图22. (2017咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是____.23. (2017鄂州)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是________.24. (6分)设二次函数y=x2+px+q的图象经过点(2,-1),且与x轴交于不同的两点A(x1,0),B(x2,0),M为二次函数图象的顶点,求使△AMB的面积最小时的二次函数的解析式.25. (8分)(2017云南)已知二次函数y=-2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O 是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.26. (8分)(2017北京)在平面直角坐标系x O y中,抛物线y=x2-4x+3与x轴交于点A,B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.27. (9分)(2017荆州)已知关于x的一元二次方程x2+(k-5)x+1-k=0,其中k 为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k-5)x+1-k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.28. (9分)(2017郴州)设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者.例如:max{-1,-1}=-1,max{1,2}=2,max(4,3)=4.参照上面的材料,解答下列问题:(1)ma x{5,2}=________,max{0,3}=________;(2)若max{3x+1,-x+1}=-x+1,求x的取值范围;(3)求函数y=x2-2x-4与y=-x+2的图象的交点坐标.函数y=x2-2x-4的图象如图所示,请你在图中作出函数y=-x+2的图象,并根据图象直接写出max{-x+2,x2-2x-4}的最小值.第28题图能力提升训练1. (2017天津)已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M,平移该抛物线,使点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,则平移后的抛物线解析式为()A. y=x2+2x+1B. y=x2+2x-1C. y=x2-2x+1D. y=x2-2x-1第2题图2. (2017扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A. b≤-2B. b<-2C. b≥-2D. b>-23. (2017长沙中考模拟卷二)已知二次函数y=ax2+bx+c(a>0)经过点M(-1,2)和点N(1,-2),交x轴于点A,B,交y轴于点C. 现有以下四个结论:①b=-2;②该二次函数图象与y轴交于负半轴;③存在实数a,使得M,A,C三点在同一条直线上;④若a=1,则OA·OB=OC2.其中,正确的结论有() A. ①②③④ B. ②③④C. ①②④D. ①②③4. (2017武汉)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0),若2<m<3,则a的取值范围是________.5. (9分)(2017天津)已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当点P′落在第二象限内,P′A2取得最小值时,求m的值.答案1. B【解析】y=-35(x+12)2-3为顶点式,顶点坐标是(-12,-3).2. B【解析】由二次函数y=-(x-1)2+2可知,对称轴为直线x=1排除选项C,D,函数开口向下,有最大值,当x=1时,最大值为y=2,故选B.3. A【解析】∵对称轴x=1且经过点P(3,0),∴抛物线与x轴的另一个交点是(-1,0),代入抛物线解析式y=ax2+bx+c中,得a-b+c=0.4. C【解析】如解图,根据图象可知,y1>0,y2>0,且y1>y2>0.第4题解图5. B【解析】∵图象开口向下,∴a<0,∵对称轴x=-b2a在y轴右侧,∴-b2a>0,∴b>0,又∵图象与y轴的交点在x轴下方,∴c<0.6. A【解析】由函数图象左右平移的规律遵从“左加右减”可知:当y=3x2-3的图象向右平移3个单位时,得到新抛物线的表达式为y=3(x-3)2-3.7. A【解析】对称轴x=-b2a=1,代入表达式可得y=m2+1,∴顶点坐标为(1,m2+1),∵m2≥0,∴m2+1≥1,∴顶点坐标在第一象限.8. C【解析】∵二次函数y=(x+m)2-n的顶点在第二象限,∴-m<0,-n>0,∴m>0,n<0,mn<0,∴一次函数y=mx+n经过第一、三、四象限,反比例函数y=mnx经过第二、四象限.9. C【解析】∵b2-4ac=(-2m)2-4×1×(-3)=4m2+12>0,∴图象与x轴有两个交点,A正确;令y=0得x2-2mx-3=0,方程的解即抛物线与x轴交点的横坐标,由A知图象与x轴有两个交点,故方程有两个根,再根据一元二次方程根与系数的关系可得两根之积为-31=-3,B正确;根据抛物线对称轴公式可得对称轴为x =-b 2a =--2m 2=m ,∵m 的值不能确定,故对称轴是否在y轴的右侧不能确定,C 错误;∵a =1>0,抛物线开口向上,∴对称轴左侧的函数值y 随x 的增大而减小,由C 知抛物线对称轴为x =m ,∴当x <m 时,y 随x 的增大而减小,D 正确.10. A 【解析】∵函数y =x 2-2x +b 的图象与坐标轴有三个交点,∴图象与x 轴有两个交点,则(-2)2-4b>0,解得b <1,又∵图象与y 轴有一个交点,∴b ≠0,综上,b 的取值范围是b <1且b ≠0.11. B 【解析】∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴⎩⎨⎧a +1>0a <0,解得-1<a <0,∵二次函数y =ax 2-ax =a (x -12)2-14a ,又∵-1<a <0,∴二次函数y =ax 2-ax 有最大值,且最大值为-14a.12. C 【解析】由表格可知当x =1.2时,y 的值最接近0,∴x 2+3x -5=0的一个近似根是1.2.13. D 【解析】在抛物线y =-x 2+3中,令y =0,解得x =±3,令x =0,则y =3,∴抛物线与x 轴围成封闭区域(边界除外)内的整点有:(-1,1),(1,1),(0,1),(0,2),共4个,∴k =4,∴反比例函数解析式为y =4x ,其图象经过点(1,4),(2,2),(4,1),故选D.14. D 【解析】观察图象可知,函数与x 轴有两个交点,∴Δ=b 2-4ac >0,故①项正确;函数图象开口向上,与y 轴交于负半轴,∴a >0,c <0,对称轴-b 2a =1,∴b <0,∴abc >0,故②正确;由②可得对称轴-b 2a =1,∴b =-2a ,可将抛物线的解析式化为y =ax 2-2ax +c(a ≠0),由函数图象知:当x =-2时,y>0,即4a-(-4a)+c=8a+c>0,即ca>-8,故③正确;由二次函数的对称性可知,当x=3和x=-1时,y的值相等,观察图象可知,当x=-1时,y <0,∴当x=3时,y<0,则9a+3b+c<0,故④项正确,综上所述,正确结论为①②③④,共4个.15. A【解析】∵二次函数y=ax2+1的图象经过点(-2,0),∴代入得(-2)2a+1=0,解得a=-14,即-14(x-2)2+1=0,解得x1=0,x2=4.16. D【解析】∵二次函数的对称轴为x=m,∴对称轴不确定,需分情况讨论.①当m≥2时,此时-1≤x≤2落在对称轴的左边,当x=2时,y取得最小值-2,即-2=22-2m×2,解得m=32(舍);②当-1<m<2时,此时在对称轴x=m处取得最小值-2,即-2=m2-2m·m,解得m=-2或m=2,又-1<m<2,故m=2;③当m≤-1时,此时-1≤x≤2落在对称轴的右边,当x=-1时,y取得最小值-2,即-2=(-1)2-2m×(-1),解得m=-32,综上所述,m=-32或 2.17. y=x2-1(答案不唯一)【解析】∵二次函数的图象开口向上,∴a>0,顶点坐标为(0,-1),可设二次函数解析式为y=ax2-1,即y=x2-1(答案不唯一).18. y=-38(x-4)(x+2)【解析】设抛物线解析式为y=a(x-4)(x+2),把C(0,3)代入上式得3=a(0-4)(0+2),解得a=-38,故y=-38(x-4)(x+2).19. 1,5【解析】∵y=x2-2x+6=(x2-2x+1)+5=(x-1)2+5,∴当x=1时,y=x2-2x+6有最小值,且最小值为5.20. (-2,0) 【解析】∵抛物线上点P 和点Q 关于x =1对称,P(4,0),可设Q (m ,0),∴m +42=1,解得m =-2,∴Q (-2,0).21. m >9 【解析】∵抛物线y =x 2-6x +m 与x 轴没有交点,∴方程x 2-6x +m =0无实数解,即b 2-4ac =(-6)2-4m <0,解得m >9.22. x <-1或x >4 【解析】观察题图,当直线在抛物线之上时,即mx +n >ax 2+bx +c ,∵A (-1,p ),B (4,q ),∴关于x 的不等式的解集为x <-1或x >4.23. 2≤m ≤8 【解析】∵将抛物线y =(x +1)2向下平移m 个单位,得到抛物线y =(x +1)2-m ,由平移后抛物线与正方形ABCD 的边有交点,则当点B 在抛物线上时,m 取最小值,此时(1+1)2-m =2,解得m =2,当点D 在抛物线上时,m 取最大值,此时(2+1)2-m =1,解得m =8,综上所述,m 的取值范围是2≤m ≤8.24. 解:∵二次函数y =x 2+px +q 经过点(2,-1),代入得-1=22+2p +q , 即2p +q =-5,∵x 1,x 2为x 2+px +q =0两根,∴x 1+x 2=-p ,x 1x 2=q ,∴|AB |=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=p 2-4q ,顶点M (-p 2,4q -p 24),∴S △AMB =12|AB |·|4q -p 24|=12p 2-4q ·|4q -p 24|=18·(p 2-4q )12·|4q -p 2|=18(p 2-4q )32,当p 2-4q 最小时,S △AMB 有最小值,∵p 2-4q =p 2+8p +20=(p +4)2+4,∴当p =-4时,p 2-4q 取最小值4,此时q =3,故所求的二次函数解析式为y =x 2-4x +3.25. 解:(1)不等式b +2c +8≥0成立.理由如下:∵二次函数y =-2x 2+bx +c 图象的顶点坐标为(3,8),∴⎩⎪⎨⎪⎧-b2×(-2)=3,4×(-2)c -b 24×(-2)=8,解得⎩⎨⎧b =12c =-10,∴b +2c +8=0,∴不等式b +2c +8≥0成立;(2)由(1)知,b =12,c =-10,∴代入得y =-2x 2+12x -10,由已知得点A 的坐标为(3,0),设M (x ,-2x 2+12x -10),当点M 在x 轴上方时,S =12×3×(-2x 2+12x -10)=9,解得x 1=2或x 2=4;当点M 在x 轴下方时,S =12×3×[-(-2x 2+12x -10)]=9,解得x 3=3-7或x 4=3+7,∴满足S =9的所有点M 的坐标为(2,6),(4,6),(3-7,-6),(3+7,-6).26. 解:(1)∵抛物线y =x 2-4x +3与x 轴交于点A ,B (点A 在点B 左侧),∴令y =0,则有x 2-4x +3=(x -3)·(x -1)=0,解得x 1=1,x 2=3,∴A (1,0),B (3,0),∵抛物线y =x 2-4x +3与y 轴交于点C ,∴令x =0,得y =3,∴C (0,3),设直线BC 的表达式为y =kx +b (k ≠0),将B (3,0),C (0,3)代入y =kx +b ,得⎩⎨⎧3k +b =0b =3,解得⎩⎨⎧k =-1b =3, ∴直线BC 的表达式为y =-x +3;(2)∵y =x 2-4x +3=(x -2)2-1,∴抛物线对称轴为x =2,顶点为(2,-1),∵l ⊥y 轴,l 交抛物线于点P 、Q ,交BC 于点N ,x 1<x 2<x 3,∴-1<y 1=y 2=y 3<0,点P 、Q 关于x =2对称,∴-1<-x 3+3<0,x 1+x 22=2,∴3<x 3<4, x 1+x 2=4,∴7<x 1+x 2+x 3<8.27. 解:(1)∵a =1,b =k -5,c =1-k ,∴b 2-4ac =(k -5)2-4(1-k )=k 2-6k +21=(k -3)2+12,其中(k -3)2≥0,∴b 2-4ac =(k -3)2+12>0,∴无论k 为何值,方程总有两个不相等的实数根;(2)∵二次函数图象不经过第三象限,∴对称轴x =5-k 2>0且不与y 轴负半轴相交,即1-k ≥0,联立得⎩⎪⎨⎪⎧5-k 2>01-k≥0,解得k ≤1;(3)依题意得,对于y =x 2+(k -5)x +1-k ,∵x =3时,y <0,∴y =32+3(k -5)+1-k <0,即2k -5<0,k <52,∴k 的最大整数取2.28. 解:(1)5,3;(2)由题意知:3x +1≤-x +1,解得x ≤0;(3)联立函数解析式得⎩⎨⎧y =x 2-2x -4y =-x +2, 解得⎩⎨⎧x 1=3y 1=-1或⎩⎨⎧x 2=-2y 2=4,第28题解图∴两函数的交点坐标为:(3,-1),(-2,4);如解图,过两交点作直线即为所求图象;观察解图可知:max {-x +2,x 2-2x -4}的最小值为-1.能力提升训练1. A 【解析】∵抛物线与x 轴交于A 、B 两点,∴令y =0,即x 2-4x +3=0,解得x 1=1,x 2=3,∴A (1,0),B(3,0),∵y =x 2-4x +3=(x -2)2-1,∴M (2,-1).∵要使平移后的抛物线的顶点在x 轴上,需将图象向上平移1个单位,要使B 平移后的对应点B ′落在y 轴上,需再向左平移3个单位,∴M ′(-1,0),则平移后二次函数的解析式为y =(x +1)2,即y =x 2+2x +1.2. C 【解析】如解图,二次函数y =x 2+bx +1与y 轴交于点(0,1),对称轴为x =-b 2,当b =-2时,对称轴x =1,抛物线过(0,1),C (2,1);当b <-2时,对称轴x>1,抛物线与△ABC 不相交;当b >-2时,对称轴x <1,抛物线与△ABC 相交,综上所述,b ≥-2.第2题解图3. C 【解析】∵二次函数y =ax 2+bx +c (a >0)经过点M (-1,2)和点N (1,-2),∴⎩⎨⎧2=a -b +c -2=a +b +c,解得b =-2,故①正确;∵二次函数y =ax 2+bx +c ,a >0,∴该二次函数图象开口向上,∵点M (-1,2)和点N (1,-2),∴直线MN 的解析式为y =-2x ,当-1<x <1时,二次函数图象在y =-2x 的下方,∴该二次函数图象与y 轴交于负半轴,故②正确;根据抛物线图象的特点,M 、A 、C 三点不可能在同一条直线上,故③错误;当a =1时,c =-1,∴该抛物线的解析式为y =x 2-2x -1,当y =0时,0=x 2-2x +c ,利用根与系数的关系可得x 1·x 2=c ,即OA ·OB =|c |,当x =0时,y =c ,即OC =|c |=1=OC 2,∴若a =1,则OA ·OB =OC 2,故④正确.综上所述,正确的结论有①②④.4. 13<a <12或-3<a <-2 【解析】令y =0,即ax 2+(a 2-1)x -a =0,(ax -1)(x+a )=0,∴关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的交点为(1a ,0)和(-a,0),即m=1a或m=-a,又∵2<m<3,则13<a<12或-3<a<-2.5. 解:(1)∵抛物线y=x2+bx-3经过点A(-1,0),∴0=1-b-3,解得b=-2,∴抛物线的解析式为y=x2-2x-3=(x-1)2-4,∴顶点坐标为(1,-4);(2)①由点P(m,t)在抛物线y=x2-2x-3上,得t=m2-2m-3,又∵点P′和P关于原点对称,∴P′(-m,-t),∵点P′落在抛物线y=x2-2x-3上,∴-t=(-m)2-2(-m)-3,即t=-m2-2m+3,∴m2-2m-3=-m2-2m+3,解得m1=3,m2=-3;②由题意知,P′(-m,-t)在第二象限内,∴-m<0,-t>0,即m>0,t<0,又∵抛物线y=x2-2x-3的顶点坐标(1,-4),得-4≤t<0,过点P′作P′H⊥x轴,H为垂足,即H(-m,0),又∵A(-1,0),t=m2-2m-3,则P′H2=t2,AH2=(-m+1)2=m2-2m+1=t+4,当点A和H不重合时,在Rt△P′AH中,P′A2=P′H2+AH2;当点A和H重合时,AH=0,P′A2=P′H2,符合题意,∴P′A2=P′H2+AH2,即P′A2=t2+t+4(-4≤t<0),令y′=t2+t+4,则y′=(t+12)2+154,∴当t=-12时,y′取得最小值,将t=-12代入t=m2-2m-3,得-12=m2-2m-3,解得m1=2-142,m2=2+142,由m>0,可知m=2-142不符合题意,应舍去,∴m=2+142.。