基于单片机的语音电子日历

合集下载

推荐-基于51单片机控制的语音报时万年历课程设计1 精品

推荐-基于51单片机控制的语音报时万年历课程设计1  精品

基于51单片机控制的语音报时万年历-----20/11/20XX SDU(WH)一.实验要求运用单片机及相关外设实现以下功能:1)万年历及时钟显示2)时间日期可调3)可对时间进行整点报时和随机报时二.方案分析根据实验要求,选用STC公司的8051系列,STC12C5A16S2增强型51单片机。

此单片机功能强大,具有片内EEPROM、1T分频系数、片内ADC转换器等较为实用功能,故选用此款。

实验中,对日期和时间进行显示,显示的字符数较多,故选用12864LCD屏幕。

该屏幕操作较为便捷,外围电路相对简单,实用性较强。

为了实现要求中的时间日期可调,故按键是不可缺少的,所以使用了较多的按键。

一方面,单片机的I/O口较为充足;另一方面,按键较多,选择的余地较大,方便编程控制。

实验中,并未要求对时间和日期进行保存和掉电续运行,所以并未添加EEPROM和DS12C887-RTC芯片。

实际上,对万年历来说,这是较为重要的,但为了方便实现和编程的简单,此处并未添加,而是使用单片机的定时器控制时间,精度有差别。

且上电默认时间为20XX-01-01 09:00:00 之后需要手动调整为正确时间。

要求中的语音报时功能,这里选用ISD1760芯片的模块来帮助实现。

此模块通过软件模拟SPI协议控制。

先将所需要的声音片段录入芯片的EEPROM区域,之后读出各段声音的地址段,然后在程序中定义出相应地址予以控制播放哪一声音片段。

三.电路硬件设计实际效果图四.程序代码部分Main.h#ifndef _MAIN_H#define _MAIN_H#include "reg52.h"#include "INTRINS.H"#include "math.h"#include "string.h"#include "key.h"#include "led.h"#include "12864.h"#include "main.h"#include "isd1700.h"#include "sound.h"extern unsigned int count;extern unsigned int key_time[8]; extern unsigned char key_new; extern unsigned char key_old; extern unsigned char stop_flag; extern unsigned char key_follow[8]; extern unsigned int key_num[8];sbit BEEP=P3^7;sbit ISD_SS=P0^7;sbit ISD_MISO=P0^4;sbit ISD_MOSI=P0^5;sbit ISD_SCLK=P0^6;extern unsigned char date_show[]; extern unsigned char time_show[]; extern unsigned char sec;extern unsigned char min;extern unsigned char hour;extern unsigned char day;extern unsigned char month; extern unsigned char year_f; extern unsigned char year_l; extern unsigned char leap_year_flag;extern unsigned char update_flag;extern unsigned char adjust_flag;extern unsigned char key;unsigned char report();#endifMain.c#include "main.h"unsigned int count=0;unsigned int key_num[8]=0;unsigned char key_new=0;unsigned char key_old=0;unsigned char stop_flag=0;unsigned char key_follow[8]=0;unsigned char sec=1;unsigned char min=0;unsigned char hour=9;unsigned char day=1;unsigned char month=1;unsigned char year_f=20;unsigned char year_l=14;unsigned char leap_year_flag=0;unsigned char date_show[]="20XX-01-01"; unsigned char time_show[]="09:00:00";unsigned char update_flag=1;unsigned char key=0;unsigned char adjust_flag=0;unsigned char adjust_pos=0;unsigned char report_flag=0;void main(){unsigned char i;P2=0XFF;BEEP=0;init();initinal(); //调用LCD字库初始化程序TMOD=0x01; //使用定时器T0TH0=(65536-1000)/256; //定时器高八位赋初值TL0=(65536-1000)%256; //定时器低八位赋初值*/ EA=1; //开中断总允许ET0=1; //允许T0中断TR0=1; //启动定时器T0while(1){if(update_flag){lcd_pos(1,0);for(i=0;i<10;i++)write_dat(date_show[i]);lcd_pos(2,4);for(i=0;i<8;i++)write_dat(time_show[i]);update_flag=0;}if(key!=keyscan_nor()){key=keyscan_nor();if(key==8&&!adjust_flag)adjust_flag=1;if(key&&adjust_flag){if(key==1){adjust_pos++;if(adjust_pos==14)adjust_pos=0;}else if(key==2){if(!adjust_pos)adjust_pos=13;elseadjust_pos--;}else if(key==6){if(!adjust_pos)sec++;else if(adjust_pos==1)sec=sec+10;else if(adjust_pos==2)min++;else if(adjust_pos==3)min=min+10;else if(adjust_pos==4)hour++;else if(adjust_pos==5)hour=hour+10;else if(adjust_pos==6)day++;else if(adjust_pos==7)day=day+10;else if(adjust_pos==8)month++;else if(adjust_pos==9)month=month+10;else if(adjust_pos==10)year_l++;else if(adjust_pos==11)year_l=year_l+10;else if(adjust_pos==12)year_f++;else if(adjust_pos==13)year_f=year_f+10; }else if(key==7){if(!adjust_pos)sec--;else if(adjust_pos==1)sec=sec-10;else if(adjust_pos==2)min--;else if(adjust_pos==3)min=min-10;else if(adjust_pos==4)hour--;else if(adjust_pos==5)hour=hour-10;else if(adjust_pos==6)day--;else if(adjust_pos==7)day=day-10;else if(adjust_pos==8)month--;else if(adjust_pos==9)month=month-10;else if(adjust_pos==10)year_l--;else if(adjust_pos==11)year_l=year_l-10;else if(adjust_pos==12)year_f--;else if(adjust_pos==13)year_f=year_f-10;}else if(key==3)adjust_flag=0;if(key==6||key==7){if(sec>=80)sec=0;if(min>=80)min=0;if(hour>=40)hour=0;if(month>30)month=1;if(day>50)day=0;if(year_f>=120)year_f=0;if(year_l>=120)year_l=0;}}}if(key==3)report_flag=1;if(report_flag){clrram();Dingwei(2,1);lcd_mesg("REPORTING!!!");report();clrram();}}}void time0() interrupt 1{static unsigned char timer=0;TH0=(65536-50000)/256; //定时器高八位赋初值TL0=(65536-50000)%256; //定时器低八位赋初值timer++;if(timer==20){sec++;time_show[6]=sec/10+48;time_show[7]=sec%10+48;if(sec>=60){sec=0;min++;time_show[6]=sec/10+48;time_show[7]=sec%10+48;time_show[3]=min/10+48;time_show[4]=min%10+48;}if(min>=60){min=0;hour++;time_show[3]=min/10+48;time_show[4]=min%10+48;time_show[0]=hour/10+48;time_show[1]=hour%10+48;}if(hour>=24){hour=0;day++;time_show[0]=hour/10+48;time_show[1]=hour%10+48;date_show[8]=day/10+48;date_show[9]=day%10+48;}if((day>=29&&!leap_year_flag&&month==2)||(day==30&&leap_year_flag&&month==2)||(day==31&&(month==4||month==6||month==9||month==11))||(month==32)){day=1;month++;date_show[8]=day/10+48;date_show[9]=day%10+48;date_show[5]=month/10+48;date_show[6]=month%10+48;}if(month>=13){month=1;year_l++;date_show[5]=month/10+48;date_show[6]=month%10+48;date_show[0]=year_f/10+48;date_show[1]=year_f%10+48;date_show[2]=year_l/10+48;date_show[3]=year_l%10+48;}if(year_l>=100){year_l=0;year_f++;if(((!((year_f*100+year_l)%4))&&((year_f*100+year_l)%100))||(!((year_f*100+year_l)%40 0)))leap_year_flag=1;elseleap_year_flag=0;date_show[0]=year_f/10+48;date_show[1]=year_f%10+48;date_show[2]=year_l/10+48;date_show[3]=year_l%10+48;}timer=0;update_flag=1;if(adjust_flag){time_show[7]=sec%10+48;time_show[6]=sec/10+48;time_show[4]=min%10+48;time_show[3]=min/10+48;time_show[1]=hour%10+48;time_show[0]=hour/10+48;date_show[9]=day%10+48;date_show[8]=day/10+48;date_show[6]=month%10+48;date_show[5]=month/10+48;date_show[3]=year_l%10+48;date_show[2]=year_l/10+48;date_show[1]=year_f%10+48;date_show[0]=year_f/10+48;}}if(adjust_flag&&timer==10){if(!adjust_pos)time_show[7]=' ';else if(adjust_pos==1)time_show[6]=' ';else if(adjust_pos==2)time_show[4]=' ';else if(adjust_pos==3)time_show[3]=' ';else if(adjust_pos==4)time_show[1]=' ';else if(adjust_pos==5)time_show[0]=' ';else if(adjust_pos==6)date_show[9]=' ';else if(adjust_pos==7)date_show[8]=' ';else if(adjust_pos==8)date_show[6]=' ';else if(adjust_pos==9)date_show[5]=' ';else if(adjust_pos==10)date_show[3]=' ';else if(adjust_pos==11)date_show[2]=' ';else if(adjust_pos==12)date_show[1]=' ';else if(adjust_pos==13)date_show[0]=' ';update_flag=1;}if(!min&&!sec&&!adjust_flag)report_flag=1;}unsigned char report(){PlaySoundTick(11);long_delay();if(!min){if(hour<=10){PlaySoundTick(hour);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}else if(hour>10&&hour<20){PlaySoundTick(10);short_delay();PlaySoundTick(hour-10);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}else if(hour==20){PlaySoundTick(2);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}else{short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(hour-20);short_delay();PlaySoundTick(12);short_delay();PlaySoundTick(14);short_delay();}}else{if(hour<=10){PlaySoundTick(hour);short_delay();PlaySoundTick(12);short_delay();}else if(hour>10&&hour<20){PlaySoundTick(10);short_delay();PlaySoundTick(hour-10);short_delay();PlaySoundTick(12);short_delay();}else if(hour==20){PlaySoundTick(2);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(12);short_delay();}else{PlaySoundTick(2);short_delay();short_delay();PlaySoundTick(hour-20);short_delay();PlaySoundTick(12);short_delay();}if(min<=10){PlaySoundTick(min);short_delay();PlaySoundTick(13);short_delay();}else if(min>10&&min%10){PlaySoundTick(min/10);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(min-10*(min/10));short_delay();PlaySoundTick(13);short_delay();}else{PlaySoundTick(min/10);short_delay();PlaySoundTick(10);short_delay();PlaySoundTick(13);short_delay();}}report_flag=0;time_show[7]=sec%10+48;time_show[6]=sec/10+48;time_show[4]=min%10+48;time_show[3]=min/10+48;time_show[1]=hour%10+48;time_show[0]=hour/10+48;date_show[9]=day%10+48;date_show[8]=day/10+48;date_show[6]=month%10+48;date_show[5]=month/10+48;date_show[3]=year_l%10+48;date_show[2]=year_l/10+48;date_show[1]=year_f%10+48;date_show[0]=year_f/10+48;return 0;}Isd1700.h#ifndef _ISD1760_H#define _ISD1760_H#include "main.h"#define ISD1700_PU 0x01#define ISD1700_STOP 0X02 #define ISD1700_REST 0x03 #define ISD1700_CLR_INT 0x04 #define ISD1700_RD_STAUS 0x05 #define ISD1700_RD_PLAY_PTR 0x06 #define ISD1700_PD 0x07#define ISD1700_RD_REC_PTR 0x08 #define ISD1700_DEVID 0x09#define ISD1700_PLAY 0x40 #define ISD1700_REC 0x41 #define ISD1700_ERASE 0x42 #define ISD1700_G_ERASE 0x43 #define ISD1700_RD_APC 0x44 #define ISD1700_WR_APC1 0x45 #define ISD1700_WR_APC2 0x65#define ISD1700_WR_NVCFG 0x46 #define ISD1700_LD_NVCFG 0x47 #define ISD1700_FWD 0x48 #define ISD1700_CHK_MEM 0x49 #define ISD1700_EXTCLK 0x4A #define ISD1700_SET_PLAY 0x80 #define ISD1700_SET_REC 0x81 #define ISD1700_SET_ERASE 0x82 #define NULL 0x00 #define ISD_LED 0x10extern unsigned char data ISD_M_RAM_C[7];extern void init(void);extern void delay_isd(int x);extern void m_sate(void);extern void rest_isd_m_ptr(void);extern unsigned char T_R_m_byte(unsigned char m_data );extern void isd1700_par2_m(unsigned char m_par, unsigned int data_par);extern void isd1700_Npar_m(unsigned char m_par,m_byte_count);extern void isd1700_7byte_m(unsigned char m_par, unsigned int star_addr, unsigned int end_addr);extern void spi_pu (void);extern void spi_stop (void);extern void spi_Rest ( void );extern void spi_CLR_INT(void);extern void spi_RD_STAUS(void);extern void spi_RD_play_ptr(void);extern void spi_pd(void);extern void spi_RD_rec_ptr(void);extern void spi_devid(void);extern void spi_play(void);extern void spi_rec (void);extern void spi_erase (void);extern void spi_G_ERASE (void);extern void spi_rd_apc(void);extern void spi_wr_apc1 (void);extern void spi_wr_apc2 (void);extern void spi_wr_nvcfg (void);extern void spi_ld_nvcfg (void);extern void spi_fwd (void);extern void spi_chk_mem(void);extern void spi_CurrRowAddr(void);extern void seril_back_sate(unsigned char byte_number);extern void spi_set_opt(unsigned char spi_set_m);void init(void);#endifIsd1700.c//#pragma src#include "isd1700.h"#include "sound.h"#define uchar unsigned char#define uint unsigned intsbit DAC_sync=P2^0;sbit DAC_sclk=P2^1;sbit DAC_din =P2^2;bit re_fig;uchar data m_temp;uchar data ISD_M_RAM[7];uchar data ISD_M_RAM_C[7];uchar data *isd_m_ptr;uchar data *back_data_ptr;void init(void);void isd_delay(int x);void m_sate(void);void rest_isd_m_ptr(void);uchar T_R_m_byte( uchar m_data );void isd1700_par2_m(uchar m_par, uint data_par);void isd1700_Npar_m(uchar m_par,m_byte_count); //no parameter m void isd1700_7byte_m(uchar m_par, uint star_addr, uint end_addr);void spi_pu (void);void spi_stop (void);void spi_Rest ( void );void spi_CLR_INT(void);void spi_RD_STAUS(void);void spi_RD_play_ptr(void);void spi_pd(void);void spi_RD_rec_ptr(void);void spi_devid(void);void spi_play(void);void spi_rec (void);void spi_erase (void);void spi_G_ERASE (void);void spi_rd_apc(void);void spi_wr_apc1 (void);void spi_wr_apc2 (void);void spi_wr_nvcfg (void);void spi_ld_nvcfg (void);void spi_fwd (void);void spi_chk_mem(void);void spi_CurrRowAddr(void);void seril_back_sate(uchar byte_number); void spi_set_opt(uchar spi_set_m);void m_sate(void){uchar sate_temp;uint apc_temp;if(RI){ sate_temp=SBUF;if(sate_temp==0x09){ spi_devid();}if(sate_temp==0x44){spi_rd_apc();}if(sate_temp==0x40){spi_play();}if(sate_temp==0x04){spi_CLR_INT();}if(sate_temp==0x05){spi_RD_STAUS();}if(sate_temp==0x43){ spi_G_ERASE();}if(sate_temp==0x01){ spi_pu ();}if(sate_temp==0x02){ spi_stop();}if(sate_temp==0x03){ spi_Rest ();}if(sate_temp==0x06){spi_RD_play_ptr();}if(sate_temp==0x07){spi_pd();}if(sate_temp==0x08){ spi_RD_rec_ptr();}if(sate_temp==0x41){ spi_rec();}if(sate_temp==0x42){ spi_erase();}if(sate_temp==0x45){spi_wr_apc1 ();}if(sate_temp==0x65){ spi_wr_apc2 ();}if(sate_temp==0x46){ spi_wr_nvcfg ();}if(sate_temp==0x47){ spi_ld_nvcfg ();}if(sate_temp==0x48){ spi_fwd ();}if(sate_temp==0x49){ spi_chk_mem();}if(sate_temp==0x60){ spi_CurrRowAddr();}if(sate_temp==0x80){spi_set_opt(ISD1700_SET_PLAY|ISD_LED);//spi_set_opt(ISD1700_SET_PLAY);}if(sate_temp==0x81){spi_set_opt(ISD1700_SET_REC|ISD_LED);//spi_set_opt(ISD1700_SET_REC);ISD_M_RAM_C[0]=ISD1700_SET_REC ;seril_back_sate(1);}if(sate_temp==0x82){spi_set_opt(ISD1700_SET_ERASE|ISD_LED);//spi_set_opt(ISD1700_SET_ERASE);}if(sate_temp==ISD1700_WR_APC2){RI=0;while(!RI);apc_temp=SBUF;apc_temp=apc_temp<<8;RI=0;while(!RI);apc_temp|=SBUF;RI=0;ISD_SS=0;isd1700_par2_m(ISD1700_WR_APC2,apc_temp);ISD_SS=1;}RI=0;}if(re_fig){rest_isd_m_ptr();sate_temp=0;do{SBUF=*back_data_ptr++;while(!TI);TI=0;}while(++sate_temp<=2);re_fig=0;}}void spi_set_opt(uchar spi_set_m){uint start_addr,end_addr;RI=0;while(!RI);start_addr=SBUF;start_addr=start_addr<<8;RI=0;while(!RI);start_addr|=SBUF;RI=0;while(!RI);end_addr=SBUF;end_addr=start_addr<<8;RI=0;while(!RI);end_addr|=SBUF;RI=0;ISD_SS=0;isd1700_7byte_m(spi_set_m, start_addr, end_addr);ISD_SS=1;}void spi_pu (void){ISD_SS=0;isd1700_Npar_m(ISD1700_PU,2);ISD_SS=1;}void spi_stop (void){ISD_SS=0;isd1700_Npar_m(ISD1700_STOP,2);ISD_SS=1;ISD_M_RAM_C[0]=ISD1700_STOP ;seril_back_sate(1);}void spi_Rest (void){ISD_SS=0;isd1700_Npar_m(ISD1700_REST,2);ISD_SS=1;}void spi_CLR_INT(void){ISD_SS=0;isd1700_Npar_m(ISD1700_CLR_INT,2);ISD_SS=1;}void spi_RD_STAUS(void){ uchar i;ISD_SS=0;isd1700_Npar_m(ISD1700_RD_STAUS,3);ISD_SS=1;i=ISD_M_RAM_C[1];//j=ISD_M_RAM_C[2];ISD_M_RAM_C[1]=ISD_M_RAM_C[0];ISD_M_RAM_C[0]=i;seril_back_sate(3);}void spi_CurrRowAddr(void){ uchar i;ISD_SS=0;isd1700_Npar_m(ISD1700_RD_STAUS,3);ISD_SS=1;i=ISD_M_RAM_C[1];ISD_M_RAM_C[1]=ISD_M_RAM_C[0]>>5|ISD_M_RAM_C[1]<<3;ISD_M_RAM_C[0]= i >>5;seril_back_sate(3);}void spi_RD_play_ptr(void){ uchar i;ISD_SS=0;isd1700_Npar_m(ISD1700_RD_PLAY_PTR,4);ISD_SS=1;i=ISD_M_RAM_C[3]&0x03;ISD_M_RAM_C[3]=ISD_M_RAM_C[2];ISD_M_RAM_C[2]=i;seril_back_sate(4);}void spi_pd(void){ISD_SS=0;isd1700_Npar_m(ISD1700_PD,2);ISD_SS=1;}void spi_RD_rec_ptr(void){ uchar i;ISD_SS=0;isd1700_Npar_m(ISD1700_RD_REC_PTR,4);ISD_SS=1;i=ISD_M_RAM_C[3]&0x03;ISD_M_RAM_C[3]=ISD_M_RAM_C[2];ISD_M_RAM_C[2]=i;seril_back_sate(4);}void spi_devid(void){ISD_SS=0;isd1700_Npar_m(ISD1700_DEVID,3);ISD_SS=1;ISD_M_RAM_C[2]=ISD_M_RAM_C[2]&0xf8;seril_back_sate(3);}void spi_play(void){ISD_SS=0;isd1700_Npar_m(ISD1700_PLAY|ISD_LED,2);ISD_SS=1;}void spi_rec (void){ISD_SS=0;isd1700_Npar_m(ISD1700_REC|ISD_LED,2);ISD_SS=1;ISD_M_RAM_C[0]=ISD1700_REC ;seril_back_sate(1);}void spi_erase (void){ISD_SS=0;isd1700_Npar_m(ISD1700_ERASE|ISD_LED,2);ISD_SS=1;}void spi_G_ERASE (void){ISD_SS=0;isd1700_Npar_m(ISD1700_G_ERASE|ISD_LED,2);ISD_SS=1;}void spi_rd_apc(void){ISD_SS=0;isd1700_Npar_m(ISD1700_RD_APC,4);ISD_SS=1;seril_back_sate(4);}void spi_wr_apc1 (void){}void spi_wr_apc2 (void){ISD_SS=0;isd1700_par2_m(ISD1700_WR_APC2, 0x0400);ISD_SS=1;}void spi_wr_nvcfg (void){ISD_SS=0;isd1700_Npar_m(ISD1700_WR_NVCFG,2);ISD_SS=1;}void spi_ld_nvcfg (void){ISD_SS=0;isd1700_Npar_m(ISD1700_LD_NVCFG ,2);ISD_SS=1;}void spi_fwd (void){ISD_SS=0;isd1700_Npar_m(ISD1700_FWD,2);ISD_SS=1;}void spi_chk_mem(void){ISD_SS=0;isd1700_Npar_m(ISD1700_CHK_MEM,2);ISD_SS=1;}void seril_back_sate(uchar byte_number){uchar sate_temp;rest_isd_m_ptr();sate_temp=0;do{SBUF=*back_data_ptr++;while(!TI);TI=0;}while(++sate_temp<byte_number);}void rest_isd_m_ptr(void){isd_m_ptr=ISD_M_RAM;back_data_ptr=ISD_M_RAM_C;}void isd1700_Npar_m (uchar m_par,m_byte_count){uchar i;i=0;ISD_M_RAM[0]=m_par;isd_m_ptr=&ISD_M_RAM[1];do{*isd_m_ptr++=NULL;}while(++i<m_byte_count-1);rest_isd_m_ptr();i=0;do{*back_data_ptr++=T_R_m_byte(*isd_m_ptr++);i++;}while(i<m_byte_count);}void isd1700_par2_m(uchar m_par, uint data_par){uchar i;ISD_M_RAM[0]=m_par;ISD_M_RAM[1]=data_par;ISD_M_RAM[2]=data_par>>8;rest_isd_m_ptr();i=0;do{*back_data_ptr++=T_R_m_byte(*isd_m_ptr++);i++;}while(i<3);}void isd1700_7byte_m(uchar m_par, uint star_addr, uint end_addr) {uchar i;ISD_M_RAM[0]=m_par;ISD_M_RAM[1]=NULL;ISD_M_RAM[2]=star_addr;ISD_M_RAM[3]=star_addr>>8;ISD_M_RAM[4]=end_addr;ISD_M_RAM[5]=end_addr>>8;ISD_M_RAM[6]=NULL;rest_isd_m_ptr();i=0;do{*back_data_ptr++=T_R_m_byte(*isd_m_ptr++);i++;}while(i<=7);}uchar T_R_m_byte( uchar m_data ){uchar bit_nuber;uchar temp;bit_nuber=0;temp=0;do{ISD_SCLK=0;isd_delay(1);if((m_data>>bit_nuber&0x01)!=0){ISD_MOSI=1;}else{ISD_MOSI=0;}if(ISD_MISO){temp=(temp>>1)|0x80;}else{temp=temp>>1;}ISD_SCLK=1;isd_delay(1);}while(++bit_nuber<=7);ISD_MOSI=0;return (temp);}void isd_delay(int x){uchar i;for(; x>=1; x--){for(;i<=20;i++);}}void init(void){TMOD=0x21;SCON=0x50;TL0=0x00; //25msTH0=0x70; //25msTH1=0xE8;TL1=0xE8; //波特率:1200bps(12MHz:0xE6 11.0592MHz:0xE8)ET0=1;EA=1;TR1=1;IT0 = 0;EX0 = 0;spi_pu();spi_devid();}12864.h#ifndef _12864_H#define _12864_H#include "main.h"sbit RS =P3^2;sbit RW=P3^3;sbit EN=P3^4;void buzy();void TransferData(char data1,bit DI);void Dingwei(unsigned char line,unsigned char row);void delayms(unsigned int n);void delay(unsigned int m);void lcd_mesg(unsigned char code *adder1);void displayonechar(unsigned int data2);void initinal(void) ; //LCD字库初始化程序void clrram(void);void lcd_pos(unsigned char ,unsigned char );void write_dat(unsigned char);extern unsigned char time_show[];extern unsigned int aaa;#endif12864.c#include "12864.h"#define DataPort P1void initinal(void) //LCD字库初始化程序{TransferData(0x30,0); //8BIT设置,RE=0: basic instruction setTransferData(0x08,0); //Display on ControlTransferData(0x10,0); //Cursor Display Control光标设置TransferData(0x0C,0); //Display Control,D=1,显示开TransferData(0x01,0); //Display Clear}void buzy(){DataPort=0xff;RW=1;RS=0;EN=1;while(DataPort&0x80);EN=0;}void Dingwei(unsigned char line,unsigned char row) //定位在哪行哪列显示{unsigned int i;switch(line){case 1: i=0x80+row;break;case 2: i=0x90+row;break;case 3: i=0x88+row;break;case 4: i=0x98+row;break;default: i=0x80;break;}TransferData(i,0);delay(1);}void lcd_mesg(unsigned char code *addr) //传送一个字符串{while(*addr>0){TransferData(*addr,1);addr++;}}void TransferData(char data1,bit DI) //传送数据或者命令,当DI=0,传送命令,当DI=1,传送数据.{buzy();RW=0;RS=DI;DataPort=data1;EN=1;EN=0;}void delayms(unsigned int n) //延时10×n毫秒程序{unsigned int i,j;for(i=0;i<3*n;i++)for(j=0;j<2000;j++);}void delay(unsigned int m) //延时程序,微妙级{while(m--){_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}}void write_cmd(unsigned char cmd){RS=0;RW=0;EN=0;P1=cmd;delayms(1);EN=1;delayms(1);EN=0;}void write_dat(unsigned char dat)RS=1;RW=0;EN=0;P1=dat;delayms(1);EN=1;delayms(1);EN=0;}void lcd_pos(unsigned char x,unsigned char y){unsigned char pos;if(x==0)x=0x80;else if(x==1)x=0x90;else if(x==2)x=0x88;else if(x==3)x=0x98;pos=x+y;write_cmd(pos);}void clrram(void){write_cmd(0x30);write_cmd(0x01);}Sound.h#ifndef _SOUND_H#define _SOUND_H#include "main.h"//以下为语音信息对应播放起始地址定义,A为开始,B为结束#define sound_0A 0x0012#define sound_0B 0x0017#define sound_1A 0x0019#define sound_1B 0x0025#define sound_2A 0x0027#define sound_2B 0x002e#define sound_3A 0x002f#define sound_3B 0x0039#define sound_4A 0x003b#define sound_4B 0x0048#define sound_5A 0x004a#define sound_5B 0x004f#define sound_6A 0x0052#define sound_6B 0x0159#define sound_7A 0x005c#define sound_7B 0x0062#define sound_8A 0x0065#define sound_8B 0x0131#define sound_9A 0x006f#define sound_9B 0x015F#define sound_10A 0x0079#define sound_10B 0x015E#define sound_11A 0x0082#define sound_11B 0x018A#define sound_12A 0x0091#define sound_12B 0x0100#define sound_13A 0x009f#define sound_13B 0x0100#define sound_14A 0x00ac#define sound_14B 0x0100void GetSound(unsigned char soundtick); void PlaySoundTick(unsigned char number); void delay_isd(unsigned int time);void short_delay();void long_delay();#endifSound.c#include "sound.h"void GetSound(unsigned char soundtick){ISD_SS=0;switch(soundtick){case 0:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_0A, sound_0B); }break;case 1:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_1A, sound_1B); }break;case 2:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_2A, sound_2B); }break;case 3:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_3A, sound_3B); }break;case 4:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_4A, sound_4B); }break;case 5:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_5A, sound_5B); }break;case 6:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_6A, sound_6B); }break;case 7:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_7A, sound_7B); }break;case 8:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_8A, sound_8B); }break;case 9:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_9A, sound_9B); }break;case 10:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_10A, sound_10B); }break;case 11:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_11A, sound_11B); }break;case 12:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_12A, sound_12B); }break;case 13:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_13A, sound_13B); }break;case 14:{ isd1700_7byte_m(ISD1700_SET_PLAY|ISD_LED, sound_14A, sound_14B); }break;default: break;}ISD_SS=1;}void PlaySoundTick(unsigned char number) {spi_stop ();delay_isd(30000);GetSound(number);}void delay_isd(unsigned int time){while(time--!=0);}void short_delay(){delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);}void long_delay(){short_delay();short_delay();short_delay();short_delay();}Key.h#ifndef _KEY_H#define _KEY_H#include "main.h"sbit KEY1=P2^0;sbit KEY2=P2^1;sbit KEY3=P2^2;sbit KEY4=P2^3;sbit KEY5=P2^4;sbit KEY6=P2^5;sbit KEY7=P2^6;sbit KEY8=P2^7;sbit KEY_SURE=P3^6;void key_delay(unsigned char z); unsigned char keyscan_nor();#endifKey.c#include "key.h"unsigned char keyscan_nor() {if(!KEY1){key_delay(20);if(!KEY1){LED1=0;return 1;}}if(!KEY2){key_delay(20);if(!KEY2){LED2=0;return 2;}}if(!KEY3){key_delay(20);if(!KEY3){LED3=0;return 3;}}if(!KEY4){key_delay(20);if(!KEY4){LED4=0;return 4;}}if(!KEY5){key_delay(20);if(!KEY5){LED5=0;return 5;}}if(!KEY6){key_delay(20);if(!KEY6){LED6=0;return 6;}}if(!KEY7){key_delay(20);if(!KEY7){LED7=0;return 7;}}if(!KEY8){key_delay(20);if(!KEY8){LED8=0;return 8;}}return 0;}void key_delay(unsigned char z) {unsigned char x,y;for(x=z;x>0;x--)for(y=110;y>0;y--); }五.参与制作人员ZYL。

基于单片机的电子万年历设计

基于单片机的电子万年历设计

基于单片机的电子万年历设计一、概述随着科技的快速发展和人们对生活品质的追求,电子设备在日常生活中扮演着越来越重要的角色。

电子万年历作为一种集日期、时间显示于一体的实用电子产品,已经深入到人们的日常生活和工作中。

传统的机械式日历已经无法满足现代人对时间精确性和功能多样性的需求,基于单片机的电子万年历设计应运而生,成为了当前研究的热点之一。

基于单片机的电子万年历设计,旨在利用单片机(如STC89CAT89C51等)的强大计算和控制能力,结合液晶显示屏(LCD)、按键输入等外设,实现时间的准确显示、日期的自动更新、闹钟提醒、温度显示等多样化功能。

该设计不仅具有高度的集成性和可靠性,而且能够通过编程实现各种定制化的功能,满足不同用户的需求。

本文将对基于单片机的电子万年历设计进行详细的介绍和分析,包括设计思路、硬件组成、软件编程等方面。

通过本文的阅读,读者可以了解电子万年历的基本原理和设计方法,掌握单片机在电子万年历设计中的应用技巧,为实际的开发工作提供有益的参考和借鉴。

1.1 研究背景与意义随着科技的不断进步,人们日常生活和工作中对于时间的精度和便捷性的要求日益提高。

传统的机械式日历和简单的电子时钟已经无法满足现代生活的需求。

电子万年历作为一种集时间显示、日历查询、定时提醒等多功能于一体的电子装置,在日常生活、工作乃至科研领域都具有广泛的应用价值。

基于单片机的电子万年历设计,不仅可以提供准确的时间显示,还能实现复杂的日期计算、农历显示、节假日提示等功能,极大地提高了时间管理的效率和便捷性。

单片机作为一种集成度高、功耗低、价格适中的微型计算机,非常适合用于小型化、智能化的电子产品设计,如电子万年历。

本研究的意义在于,通过对基于单片机的电子万年历的设计研究,可以推动微型计算机技术和电子时钟技术的融合发展,提升电子产品的智能化水平,满足人们日益增长的生活和工作需求。

同时,该研究还可以为相关领域的技术人员提供参考和借鉴,推动电子万年历产品的不断创新和优化。

基于单片机的多功能电子万年历设计

基于单片机的多功能电子万年历设计

引言随着生活节奏的日益加快,人们的时间观也越来越重,同时对电子钟表、日历的需求也随之提高。

因此,研究实用电子时钟及其扩展应用,有着非常现实的意义,具有很大的实用价值。

本系统程序由主程序、中断服务函数和多个子函数构成。

主函数主要完成各子函数和中断函数的初始化。

定时中断函数主要完成时钟芯片的定时扫描及键盘扫描。

时钟芯片的读写函数主要是将时间、日历信息读出来,并把要修改具体值写入时钟芯片内部。

系统的硬件设计与电路原理电路设计框图系统硬件概述本电路是由AT89S52单片机为控制核心,具有在线编程功能、低功耗、能在3V的超低压工作。

时钟电路由DS1302提供,它是一种高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、周日、时、分、秒进行计时,工作电压为2.5V~5.5V。

采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。

DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器。

可产生年、月、日、周日、时、分、秒,具有使用寿命长、精度高和低功耗等特点,同时具有掉电自动保存功能。

主控制模块单片机主控制模块的设计AT89S52单片机为40引脚双列直插芯片,有四个I/O口P0,P1,P2,P3,MCS-51单片机共有4个8位的I/O口(P0、P1、P2、P3),每一条I/O线都能独立地作输出或输入。

时钟电路模块时钟电路模块的设计DS1302的引脚排列如图3所示,其中Vcc1为后备电源,Vcc2为主电源。

在主电源关闭的情况下,也能保持时钟的连续运行。

DS1302由Vcc1或Vcc2两者中的较大者供电。

当Vcc2大于Vcc1+0.2V时,Vcc2给DS1302供电;当Vcc2小于Vcc1时,DS1302由Vcc1供电。

X1和X2是振荡源,外接32.768KHz晶振。

RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。

RST输入有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。

单片机课程设计报告电子万年历

单片机课程设计报告电子万年历

单片机课程设计报告电子万年历单片机课程设计报告:电子万年历一、设计简介在本次单片机课程设计中,我们选择了电子万年历作为设计主题。

电子万年历是一种结合了数字电路、单片机技术和实时时钟(RTC)技术的电子产品,它具有显示年份、月份、星期、日、时、分、秒的功能,还可以根据用户的需求进行定时、闹钟、报时等功能。

二、硬件设计我们采用了基于8051内核的单片机作为主控芯片。

该单片机具有丰富的I/O 端口,适于实现各种复杂的输入输出操作。

此外,它还内置了定时器和中断控制器,可以很方便地实现实时时钟功能。

1.显示模块:为了方便用户查看时间信息,我们选用了LCD显示屏作为显示设备。

LCD屏具有功耗低、体积小、显示内容丰富等优点。

2.实时时钟(RTC)模块:我们采用了常用的DS1302芯片作为实时时钟模块。

该芯片可以提供秒、分、时、日、星期、月、年的信息,而且还有可编程的报警功能。

3.按键模块:为了实现人机交互,我们设计了一组按键。

用户可以通过按键来调整时间、设置闹钟等。

4.电源模块:为了保证系统的稳定工作,我们采用了稳定的5V直流电源。

三、软件设计我们采用了C语言编写程序。

程序主要由以下几个部分组成:1.主程序:主程序主要负责读取RTC模块的时间信息,并控制LCD显示屏显示时间。

同时,主程序还要检测按键输入,根据用户的需求进行相应的操作。

2.RTC驱动程序:为了正确地读取和设置DS1302芯片的时间信息,我们编写了相应的驱动程序。

驱动程序包括初始化和读写寄存器两部分。

3.按键处理程序:按键处理程序用于检测按键输入,并根据按键值执行相应的操作。

比如,用户可以通过按键来增加或减少时间,设置闹钟等。

4.LCD显示程序:LCD显示程序用于控制LCD显示屏的显示内容。

在本设计中,我们使用了点阵字符库,将时间信息以字符的形式显示在LCD屏上。

四、测试与验证为了确保我们的电子万年历设计正确无误,我们进行了以下的测试和验证:1.硬件测试:首先,我们对硬件电路进行了测试,确保每个模块都能正常工作。

基于单片机控制的电子万年历设计

基于单片机控制的电子万年历设计

基于单片机控制的电子万年历设计1设计要求功能:电子万年历能显示阳历、时间、室温,并能表明是否是闰年,通过按键实现切换。

本课题以单片机为核心,设计并制作出智能LCD电子钟,具有以下基本功能:计时、秒、分、时、天、周、月、年;能进行时间、年份、日期、星期显示;能区分是否闰年;能检测室温并显示。

扩展功能部分可以通过控制按键使时间暂停、可以调整校正时间并通过按键切换轮流显示时间、年份、日期、星期。

2方案论证与对比2.1液晶显示器控制方式选择采用LCD液晶显示,具有超精致影像画质、十足平面显示、节省空间、节省能源等优点,但按控制方式不同,LCD可分为被动矩阵式LCD及主动矩阵式LCD两种。

可根据不同需要采用不同的方式。

方案一被动矩阵式LCD被动矩阵式LCD在亮度及可视角方面受到较大的限制,反应速度也较慢。

由于画面质量方面的问题,使得这种显示设备不利于发展为桌面型显示器,但成本低廉。

方案二主动矩阵式LCD目前应用比较广泛的主动矩阵式LCD,也称TFT-LCD(Thin Film Transistor-LCD,薄膜晶体管LCD)。

TFT液晶显示器是在画面中的每个像素内建晶体管,可使亮度更明亮、色彩更丰富及更宽广的可视面积。

与CRT显示器相比,LCD显示器的平面显示技术体现为较少的零件、占据较少的桌面及耗电量较小,但CRT技术较为稳定成熟。

相比之下,本设计当中选用方案二主动矩阵式LCD方式。

2.2 并行接口动态显示电路选择可以采取串行接口动态显示电路或者并行接口动态显示电路,比较如下:方案一串行接口动态显示电路利用8051系列单片机内部的串行接口,也可以实现动态显示及键盘处理。

这样不但可以节省8051的并行I/O接口,而且在大多数不用单行口的情况下,可免于扩展接口。

在这种方法中,串行口工作在方式0状态,相当于一个移位寄存器,其输入/输出通过RXD引脚,移位脉冲则由TXD输出。

每次输入或输出8位数据(一个字节)。

基于单片机的电子万年历设计与实现毕业设计论文

基于单片机的电子万年历设计与实现毕业设计论文

毕业设计(论文)专业电子信息工程技术班次 _______姓名 ______指导老师 _______成都工业学院二0一二年基于单片机的电子万年历设计与实现摘要: 随着半导体技术的迅速发展,特别是大规模集成电路出现,给人类生活带来了很多的改变。

尤其是单片机技术的应用产品已经随着社会前进的步伐走进我们的生活。

电子产品的应用可谓多不胜数,电子万年历就是其中的一种。

电子万年历的出现给人们的生活带来的极大的方便。

电子万年历以硬件汇编语言为主体进行软件设计,增加了程序的可读性和可移植性。

系统通过数码管输出显示数据,可以显示当前时间、公农历日期、星期、温度。

本设计着重要描述的就是基于AT89S52的单片机的电子万年历。

本文首先描述系统硬件工作原理,随后介绍了本系统所应用的各硬件接口技术(即芯片驱动程序)和各个接口模块的功能及工作过程。

本设计的主导思想是软硬件相结合来进行各功能模块的编写。

[关键词] 单片机;万年历;AT89S52;DS1302;目录第1章绪论 (1)设计开发背景 (1)国内外研究现状 (1)设计需要解决的主要问题 (1)本文主要工作 (2)本文的组织结构 (2)第2章方案选择与论证 (3)单片机芯片的选择与论证 (3)显示模块选择方案和论证 (3)时钟芯片的选择方案和论证 (3)温度传感器的选择方案与论证 (4)电路设计最终方案决定 (4)第3章系统的设计与实现 (5)电路设计框图 (5)主要电路模块的设计 (5)3.2.1 单片机主控制模板 (5)3.2.2 时钟模块电路的设计 (7)3.2.3公历与农历转换模块 (9)3.2.4 DS18B20温度模块 (12)3.2.5 时间可调模块 (14)3.2.6 显示模块的设计 (14)第4章系统调试与分析 (16)系统软件开发 (16)系统硬件开发 (17)测试分析及设计发展 (17)4.3.1 测试分析 (17)4.3.2 本设计的发展 (18)结语 (19)致谢 (20)参考文献 (21)附录 (22)第1章绪论设计开发背景近年来随着计算机在社会领域的渗透和大规模集成电路的发展,单片机的应用正在不断地走向深入,由于它具有功能强,体积小,功耗低,价格便宜,工作可靠,使用方便等特点,因此特别适合于与控制有关的系统,越来越广泛地应用于自动控制,智能化仪器,仪表,数据采集,军工产品以及家用电器等各个领域,单片机往往是作为一个核心部件来使用,再根据具体硬件结构,以及针对具体应用对象的特点与软件结合,以作完善。

基于AT89C51单片机的多功能电子万年历的设计_毕业设计

基于AT89C51单片机的多功能电子万年历的设计_毕业设计

本科毕业设计(论文)基于AT89C51单片机的多功能电子万年历的设计AT89C51 SCM-BASED ELCTRONICDESIGN CALENDAR学生姓名学院名称信电工程学院专业名称电子信息工程技术指导教师年月日摘要本文介绍了基于AT89C51单片机的多功能电子万年历的硬件结构和软硬件设计方法。

系统以AT89C51单片机为控制器,以串行时钟日历芯片DS1302记录日历和时间,它可以对年、月、日、时、分、秒进行计时,还具有闰年补偿等多种功能。

万年历采用直观的数字显示,可以在LED上同时显示年、月、日、周日、时、分、秒,还具有时间校准等功能。

此万年历具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,具有广阔的市场前景。

关键字AT89C51;电子万年历; DS1302目录第一章引言................................................................................................. 错误!未定义书签。

1.1课题研究的背景 (1)1.2课题的研究目的与意义 (1)1.3课题解决的主要内容 (1)第二章系统的总体设计 (2)2.1系统方案的构想与确定 (2)2.2 器件的选用 (2)2.2.1单片机的选择 (2)第三章系统硬件的设计 (4)3.1系统硬件电路设计 (4)3.1.1系统硬件框图 (4)3.1.2 AT89C51单片机 (4)3.1.3 8位移位寄存器74LS164(串行输入,并行输出) (8)3.1.4 ds1302 (12)第四章系统的软件设计 (15)4.1 主程序 (15)4.2 从1302读取日期和时间程序 (16)4.3系统源代码 (16)第五章 PROTEUS使用 (29)5.1编程环境PROTEUS (29)5.2用PROTEUS ISIS对电子万年历的硬件电路设计 (29)5.3用PROTEUS ISIS进行电子万年历的仿真测试 (33)结论 (36)致谢 (37)参考文献 (38)附录............................................................................................................... 错误!未定义书签。

「基于单片机的多功能电子万年历设计」

「基于单片机的多功能电子万年历设计」

基于单片机的多功能电子万年历设计引言在现代社会中,计算机及其应用已经成为我们生活中不可或缺的一部分。

计算机科技的发展不仅使我们的生活更加便捷,还为我们提供了更多的娱乐和功能选择。

在这样一个科技高度发达的时代,电子万年历作为一种基于单片机技术的应用产品,正逐渐走进人们的生活。

而本文将着重对基于单片机的多功能电子万年历进行设计与实现。

一、设计目标本次设计主要是基于单片机的多功能电子万年历。

设计目标包括:1.显示日期、时间和星期几的功能。

2.具备日历计算功能,能够计算今天是该年的第几天,该周的第几天等信息。

3.具备闹钟和定时器功能。

二、设计思路基于单片机的多功能电子万年历的设计理念是通过单片机与LCD显示屏、温度传感器、按键等外设组合实现多种功能。

具体实现步骤如下:1. 使用单片机和RTC(Real-Time Clock)芯片实现时间的获取和处理。

RTC芯片可以提供准确的时钟信息,单片机可以通过与RTC芯片的通信来读取时钟信息,并进行相应的处理。

2.使用单片机与LCD显示屏进行通信,将获取的时间、日期和星期信息显示在LCD显示屏上。

3.设计按键接口,通过按键的触发实现切换功能或进行相应操作。

例如,通过按键的触发可以实现日期、时间的调整,以及闹钟和定时器的设置等。

4.使用单片机和温度传感器实现温度测量功能。

通过温度传感器读取当前温度信息,并将其显示在LCD屏幕上。

5.使用定时器功能实现闹钟和定时器的功能。

单片机可以通过定时器来控制闹钟和定时器的开启与关闭,并通过LCD屏幕上的显示提醒用户。

三、电路设计本次设计中需要使用的元器件主要包括单片机、RTC芯片、LCD显示屏、温度传感器和按键。

其中,单片机为本次设计的核心控制器,RTC芯片用于提供准确的时钟信息,LCD显示屏用于显示时间、日期和其他信息,温度传感器用于测量当前温度信息,按键用于触发相应的操作。

四、软件设计本次设计中需要编写相应的软件程序,用于读取RTC芯片提供的时钟信息,并将其显示在LCD屏幕上。

基于单片机的电子万年历设计报告

基于单片机的电子万年历设计报告

基于单片机的万年历设计报告一、研究意义随着当今世界经济的快速发展和信息化时代的来临,各种各样的小型智能家电产品陆续出现在我们的生活当中。

日历是人们不可或缺的日常用品。

但一般日历都为纸制用品,使用不便,寿命不长。

电子万年历采用智能电子控制和显示技术,改善了纸制日历的缺陷。

本设计以AT89S52单片机为核心,构成单片机控制电路,AT89C52是一种带8K字节闪速可编程可擦除只读存储器(PEROM)的低电压、高性能CMOS 8位为控制器。

该器件采用ATMEL 非易失存储器制造技术制造,与工业标准的80C51和80C52指令集和输出管脚相兼容。

结合DS1302时钟芯片和24C02 FLASH存储器,完成时间的自动调整和掉电保护,全部信息用液晶显示。

时间、日期调整由三个按键来实现,并可对闹铃开关进行设置。

日历能显示阳历和阴历年、月、日以及星期、时、分、秒。

在显示阴历月份时,能标明是否闰月。

二、总体方案设计本设计以AT89S52单片机为核心,构成单片机控制电路,结合DS1302时钟芯片和24C02 FLASH存储器,显示阳历的年、月、日、星期、时、分、秒和阴历的年、月、日,在显示阴历时间时,能标明是否闰月,同时完成对它们的自动调整和掉电保护,全部信息用液晶显示出来。

输入接口由三个按键来实现,用这三个按键可以对日期和时间进行调整,并可以对闹铃的开关和闹铃的时间进行设置。

闹铃功能通过蜂鸣器来实现。

软件控制程序实现所有的功能。

整机电路使用+5V稳压电源,可稳定工作。

系统框图如图2-1所示,其软硬件设计简单,时间记录准确,可广泛应用于长时间连续显示的系统中。

三、系统硬件设计按照系统设计功能的要求,初步确定设计系统由主控模块、时钟模块、存储模块、键盘接口模块、显示模块和闹铃模块共6个模块组成,电路系统构成框图如图3-1所示。

主控芯片使用52系列AT89S52单片机,时钟芯片使用美国DALLAS公司推出的一种高性能、低功耗、带RAM的实时时钟芯片DS1302,存储模块采用美国ATMEL公司生产的低功耗CMOS串行EEPROM存储芯片AT24C02。

基于51单片机控制的语音报时万年历

基于51单片机控制的语音报时万年历

鉴于 51 单片机控制的语音报时万年历-----20/11/2013 SDU(WH)一.实验要求运用单片机及有关外设实现以下功能:1)万年历实时钟显示2)时间日期可调3)可对时间进行整点报时和随机报时二.方案剖析依据实验要求,采用 STC企业的 8051 系列, STC12C5A16S2加强型 51 单片机。

此单片机功能强盛,拥有片内 EEPROM、1T 分频系数、片内 ADC变换器等较为适用功能,应采用此款。

实验中,对日期和时间进行显示,显示的字符数许多,应采用12864LCD屏幕。

该屏幕操作较为便利,外头电路相对简单,适用性较强。

为了实现要求中的时间日期可调,故按键是不行缺乏的,因此使用了许多的按键。

一方面,单片机的I/O 口较为充分;另一方面,按键许多,选择的余地较大,方便编程控制。

实验中,并未要求对时间和日期进行保留和掉电续运转,因此并未增添EEPROM和DS12C887-RTC芯片。

实质上,对万年向来说,这是较为重要的,但为了方便实现和编程的简单,此处并未增添,而是使用单片机的准时器控制时间,精度有差异。

且上电默认时间为2014-01-01 09:00:00以后需要手动调整为正确时间。

要求中的语音报时功能,这里采用ISD1760 芯片的模块来帮助实现。

此模块经过软件模拟 SPI 协议控制。

先将所需要的声音片段录入芯片的 EEPROM地区,以后读出各段声音的地点段,而后在程序中定义出相应地点予以控制播放哪一声音片段。

三.电路硬件设计实质成效图四.程序代码部分#ifndef _MAIN_H#define _MAIN_H#include ""#include ""#include ""#include ""#include ""#include ""#include ""#include ""#include ""#include ""extern unsigned int count;extern unsigned int key_time[8]; extern unsigned char key_new; extern unsigned char key_old; extern unsigned char stop_flag; extern unsigned char key_follow[8]; extern unsigned int key_num[8];sbit BEEP=P3^7;sbit ISD_SS=P0^7;sbit ISD_MISO=P0^4;sbit ISD_MOSI=P0^5;sbit ISD_SCLK=P0^6;extern unsigned char date_show[]; extern unsigned char time_show[]; extern unsigned char sec;extern unsigned char min;extern unsigned char hour;extern unsigned char day;extern unsigned char month;extern unsigned char year_f;extern unsigned char year_l;extern unsigned char leap_year_flag; extern unsigned char update_flag; extern unsigned char adjust_flag; extern unsigned char key; unsigned char report();#endif#include ""unsigned int count=0;unsigned int key_num[8]=0;unsigned char key_new=0;unsigned char key_old=0;unsigned char stop_flag=0;unsigned char key_follow[8]=0;unsigned char sec=1;unsigned char min=0;unsigned char hour=9;unsigned char day=1;unsigned char month=1;unsigned char year_f=20;unsigned char year_l=14;unsigned char leap_year_flag=0;unsigned char date_show[]="2014-01-01";unsigned char time_show[]="09:00:00";unsigned char update_flag=1; unsignedchar key=0; unsigned char adjust_flag=0;unsigned char adjust_pos=0;unsigned char report_flag=0;void main(){unsigned char i;P2=0XFF;BEEP=0;init();initinal();{buzy();RW=0;RS=DI;DataPort=data1;EN=1;EN=0;}void delayms(unsigned int n)//延时 10× n 毫秒程序{unsigned int i,j;for(i=0;i<3*n;i++)for(j=0;j<2000;j++);}void delay(unsigned int m)//延时程序,奇妙级{while(m--){_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}}void write_cmd(unsigned char cmd){RS=0;RW=0;EN=0;P1=cmd;delayms(1);EN=1;delayms(1);EN=0;}void write_dat(unsigned char dat){RS=1;RW=0;EN=0;P1=dat;delayms(1);EN=1;delayms(1);EN=0;}void lcd_pos(unsigned char x,unsigned char y){unsigned char pos;if(x==0)x=0x80;else if(x==1)x=0x90;else if(x==2)x=0x88;else if(x==3)x=0x98;pos=x+y;write_cmd(pos);}void clrram(void){write_cmd(0x30);write_cmd(0x01);}#ifndef _SOUND_H#define _SOUND_H#include ""// 以下为语音信息对应播放开端地点定义,A 为开始, B 为结束#define sound_0A0x0012#define sound_0B0x0017#define sound_1A0x0019#define sound_1B0x0025#define sound_2A0x0027#define sound_2B0x002e#define sound_3A0x002f#define sound_3B0x0039#define sound_4A0x003b#define sound_4B0x0048#define sound_5A0x004a#define sound_5B0x004f#define sound_6A0x0052#define sound_6B0x0159#define sound_7A0x005c#define sound_7B0x0062#define sound_8A0x0065#define sound_8B0x0131#define sound_9A0x006f#define sound_9B0x015F#define sound_10A0x0079#define sound_10B0x015E#define sound_11A0x0082#define sound_11B0x018A#define sound_12A0x0091#define sound_12B0x0100#define sound_13A0x009f#define sound_13B0x0100#define sound_14A0x00ac#define sound_14B0x0100void GetSound(unsigned char soundtick);void PlaySoundTick(unsigned char number);void delay_isd(unsigned int time);void short_delay();void long_delay();#endif#include ""void GetSound(unsigned char soundtick){ISD_SS=0;switch(soundtick){case0:{isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED,sound_0A, sound_0B); }break;case1:{isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED,sound_1A, sound_1B); }break;case2:{isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED,sound_2A,sound_2B); }break;case 3:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_3A, sound_3B); }break;case 4:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_4A, sound_4B); }break;case 5:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_5A, sound_5B); }break;case 6:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_6A, sound_6B); }break;case 7:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_7A, sound_7B); }break;case 8:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_8A, sound_8B); }break;case 9:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_9A, sound_9B); }break;case 10:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_10A, sound_10B); }break;case 11:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_11A, sound_11B); }break;case 12:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_12A, sound_12B); }break;case 13:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_13A, sound_13B); }break;case 14:{ isd1700_7byte_comm(ISD1700_SET_PLAY|ISD_LED, sound_14A, sound_14B); }break;default: break;}ISD_SS=1;}void PlaySoundTick(unsigned char number){spi_stop ();delay_isd(30000);GetSound(number);}void delay_isd(unsigned int time){while(time--!=0);}void short_delay(){delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);delay_isd(30000);}void long_delay(){short_delay();short_delay();short_delay();short_delay();}#ifndef _KEY_H#define _KEY_H#include ""sbit KEY1=P2^0;sbit KEY2=P2^1;sbit KEY3=P2^2;sbit KEY4=P2^3;sbit KEY5=P2^4;sbit KEY6=P2^5;sbit KEY7=P2^6;sbit KEY8=P2^7;sbit KEY_SURE=P3^6;void key_delay(unsigned char z); unsigned char keyscan_nor();#endif#include ""unsigned char keyscan_nor() {if(!KEY1){key_delay(20);if(!KEY1){LED1=0;return 1;}}if(!KEY2){key_delay(20);if(!KEY2){LED2=0;return 2;}}if(!KEY3){key_delay(20);if(!KEY3){LED3=0;return 3;}}if(!KEY4){key_delay(20);if(!KEY4){LED4=0;return 4;}}if(!KEY5){key_delay(20);if(!KEY5){LED5=0;return 5;}}if(!KEY6){key_delay(20);if(!KEY6){LED6=0;return 6;}}if(!KEY7){key_delay(20);if(!KEY7){LED7=0;return 7;}}if(!KEY8){key_delay(20);if(!KEY8){LED8=0;return 8;}}return 0;}void key_delay(unsigned char z) {unsigned char x,y;for(x=z;x>0;x--)for(y=110;y>0;y--); }五.参加制作人员ZYL。

基于单片机的电子万年历开题报告

基于单片机的电子万年历开题报告

基于单片机的电子万年历开题报告基于单片机的电子万年历开题报告一、项目背景和目的电子万年历作为一种常见的电子设备,具有显示时间、日期、星期、农历等功能。

传统的万年历通常采用机械结构,但随着科技的发展,基于单片机的电子万年历逐渐成为主流。

本项目旨在设计并制作一款基于单片机的电子万年历,以满足人们对时间和日期信息的需求。

二、项目内容和技术路线1. 硬件设计本项目将采用单片机作为控制核心,并配备液晶显示屏、按键、时钟模块等硬件设备。

单片机将负责接收来自时钟模块的时间和日期信息,并将其显示在液晶屏上。

按键将用于用户设置功能,例如调整时间、日期、闹钟等。

2. 软件设计在软件设计方面,我们将使用C语言进行编程。

首先,需要编写程序来读取和处理来自时钟模块的时间和日期数据。

其次,还需要设计用户界面,使用户可以通过按键进行设置和操作。

最后,还需要编写算法来计算农历和星期等信息,并在液晶屏上进行显示。

3. 技术路线在项目的实施过程中,我们将按照以下技术路线进行操作:(1)硬件设计:选择适合的单片机型号,并进行电路设计和元件选择。

(2)软件编程:使用C语言编写程序,实现时间和日期的读取、显示和设置功能。

(3)用户界面设计:设计简洁明了的用户界面,使用户可以方便地进行设置和操作。

(4)农历计算算法:研究并编写农历计算算法,实现农历信息的准确显示。

三、项目预期成果和应用前景1. 预期成果通过本项目的实施,我们预期能够成功设计并制作一款功能完善、操作简便的基于单片机的电子万年历。

该万年历将能够准确显示时间、日期、星期、农历等信息,并具备用户设置功能。

2. 应用前景基于单片机的电子万年历具有广泛的应用前景。

它可以作为一种实用的家用电子设备,方便人们获取时间和日期信息。

同时,它还可以作为一种时尚的礼品,用于商务赠送或个人收藏。

此外,该万年历还可以应用于学校、办公室等场所,作为一种时间管理工具。

四、项目进度和计划1. 项目进度目前,我们已完成项目的立项和需求分析,并开始进行硬件设计和软件编程。

基于单片机的电子万年历的设计与实现毕业论文

基于单片机的电子万年历的设计与实现毕业论文

保密类别编号毕业论文基于单片机的电子万年历的设计与实现摘要电子万年历是一种非常广泛日常计时工具,对现代社会越来越流行.它可以对年、月、日、周日、时、分、秒进行计时,还具有闰年补偿等多种功能,而且DS1302的使用寿命长,误差小。

对于数字电子万年历采用直观的数字显示,可以同时显示年、月、日、周日、时、分、秒和温度等信息,还具有时间校准等功能。

该电路采用AT89S52单片机作为核心,功耗小,能在3V的低压工作,电压可选用3~5V电压供电。

本设计是基于51系列的单片机进行的电子万年历设计,可以显示年月日时分秒及周信息,具有可调整日期和时间功能.在设计的同时对单片机的理论基础和外围扩展知识进行了比较全面准备。

在硬件与软件设计时,没有良好的基础知识和实践经验会受到很大限制,每项功能实现时需要那种硬件,程序该如何编写,算法如何实现等,没有一定的基础就不可能很好的实现.在编写程序过程中发现以现有的相关知识要独自完成编写任务困难重重,在老师和同学的帮助下才完成了程序部分的编写.关键词:单片机万年历DS1302 STC89C52第1章绪论 (1)1。

1 课题研究的背景 (1)1。

2 国内外关于该论题的研究现状和发展趋势 (1)1。

3 本课题研究的目的 (1)第2章系统基本方案选择和论证 (1)2。

1 单片机芯片的选择 (1)2.2 显示模块选择方案和论证 (1)2.3 时钟芯片的选择方案和论证 (1)2。

4 温度传感器的选择方案与论证 (2)第3章系统的硬件设计与实现 (3)3.1电路设计框图 (3)3.2 主要单元电路的设计 (4)3.3 单片机中断系统 (5)3.4 温度采集模块设计 (8)3。

5显示模块的设计 (9)3.6系统的软件设计 (10)结论1。

硬件测试 (12)2.软件测试 (12)参考文献 (13)附录 (14)后记 (16)第1章绪论1.1 课题研究的背景随着微电子技术和超大规模集成电路技术的不断发展家用电子产品不但种类日益丰富而且变得更加经济实用。

基于单片机的日历设计方案

基于单片机的日历设计方案

基于单片机的日历设计方案基于单片机的日历设计方案一、设计背景随着社会的发展,人们的生活节奏越来越快,很容易忽略一些重要的时间节点。

为了方便人们管理时间,并准确地知道日期和时间,设计一款基于单片机的日历是很有必要的。

二、设计目标本设计方案旨在设计一款简单易用、功能全面的基于单片机的日历,具有日期显示、时间显示、闹钟设置等功能。

三、设计方案1. 硬件设计:(1)单片机选择:选择一款具有丰富外设和易于编程的单片机,如STC89C52系列。

(2)显示模块:选择具有较大尺寸和清晰度的液晶显示屏作为日期和时间显示模块。

(3)输入设备:选择合适的按键开关作为用户输入设备,用于设置日期、时间和闹钟等参数。

(4)控制电路:根据单片机引脚接口和外设引脚的要求设计相应的控制电路,实现单片机与显示模块、输入设备的连接和控制。

2. 软件设计:(1)主控程序设计:编写主控程序,主要包括日期和时间的自动更新、闹钟的设置和响铃、功能菜单和参数设置等功能。

(2)日期和时间显示:通过单片机控制液晶显示屏以特定的格式显示当前日期和时间。

(3)闹钟设置:利用按键开关在特定的时间设定闹钟,并在设定的时间到达时触发闹钟响铃。

(4)功能菜单和参数设置:通过按键开关选择不同的功能菜单,如日期设置、时间设置、闹钟设置等,然后根据要求进行参数设置。

四、预期效果该基于单片机的日历设计方案具有以下预期效果:1. 简单易用:用户可以通过按键进行日期、时间和闹钟等参数的设置。

2. 功能全面:可以显示日期、时间,并且具备闹钟设置和响铃的功能。

3. 可靠稳定:硬件电路稳定可靠,软件程序运行准确无误。

五、实施计划1. 准备所需材料和器件,并组装硬件电路。

2. 编写单片机控制程序,实现主控功能。

3. 测试硬件电路和软件程序,确保功能正常。

4. 对设计进行优化和完善,改善用户体验。

5. 编写设计文档,总结设计经验。

六、总结本设计方案基于单片机的日历设计,具备日期显示、时间显示、闹钟设置等功能,能够方便人们管理时间,并提醒重要的时间节点。

基于单片机的电子万年历开题报告

基于单片机的电子万年历开题报告

基于单片机的电子万年历开题报告研究背景电子万年历作为一种常见的电子产品,广泛应用于日常生活和办公场所。

它集成了日历、钟表、温度显示等功能,可以提供精确的时间和日期信息,方便人们日常生活和工作的安排。

然而,传统的电子万年历存在体积庞大、显示效果较差、操作复杂等问题,无法满足现代人们对个性化、高效率的需求。

为了改进传统电子万年历的不足,本项目将利用单片机技术设计和制作一款基于单片机的电子万年历。

通过硬件电路和软件程序的结合,实现更小巧、美观、功能强大的电子万年历。

本开题报告旨在介绍研究的背景、目标和意义,并简要概述设计思路和研究计划。

研究目标本项目的目标是设计一款基于单片机的电子万年历,具备以下特点和功能:1.小巧精致:设计紧凑的物理尺寸,外观美观,携带方便。

2.高清显示:采用液晶显示屏,提供清晰的时间和日期信息显示效果。

3.多种功能:除了传统日历和钟表功能外,还包括温度显示、闹钟、倒计时等实用功能。

4.简单操作:提供简便易用的操作界面,方便用户设置和调整各项功能。

5.节能设计:利用低功耗单片机和合理的电源管理设计,达到节能的目的。

研究意义设计并制作一款基于单片机的电子万年历具有以下重要意义:1.满足个性需求:现代人对电子产品的需求日益增强,通过设计一款高度个性化的电子万年历,满足用户对个性化、多样化功能的需求。

2.提高工作效率:电子万年历作为生活和办公的工具之一,通过提供精确的时间和日期信息,有助于人们提高工作和生活的效率。

3.推动单片机应用:本项目利用单片机技术设计和制作电子万年历,有助于推动单片机在电子产品领域的应用,提高单片机技术水平和应用能力。

设计思路本项目的设计思路主要包括硬件设计和软件设计两个方面。

硬件设计硬件设计部分包括电路设计和外壳设计。

1.电路设计:选择适当的单片机作为主控芯片,设计电源管理电路、时钟电路、显示电路等。

2.外壳设计:根据电子万年历的尺寸要求,设计合适的外壳结构,考虑外观美观、携带方便等因素。

基于51单片机电子万年历设计

基于51单片机电子万年历设计

一、引言电子万年历是一种以数字形式实时显示日期、星期和时间等信息的电子设备。

在现代人日常生活中,万年历是一种常见的小型电子产品。

本文将基于51单片机设计一款简单实用的电子万年历。

二、设计原理1.时钟模块:采用DS1302实时时钟模块。

DS1302通过三线式串行接口与51单片机进行通信,可以实时获取日期、星期和时间等信息。

2.显示模块:使用数码管显示日期、星期和时间等信息。

共使用四块共阳数码管,采用数码管模块进行驱动,通过IO口进行数据传输。

3.按键模块:设计四个按键,分别为设置、上、下和确定。

通过按键来调整日期、星期和时间等信息。

4.闹钟功能:加入闹钟功能,可以设定闹钟时间,到达设定时间时,会有提示音。

5.温湿度传感器:加入温湿度传感器,可以实时监测环境温湿度,并在数码管上进行显示。

6.外部电源:由于51单片机工作电压较高,需要使用外部电源进行供电。

三、硬件设计1.电源电路:使用稳压电源芯片LM7805进行5V稳压,将稳压后的电压供给单片机和各个模块。

2.时钟模块:DS1302模块与单片机通过串行通信进行连接。

时钟模块上的时钟信号、数据信号和复位信号分别与单片机的IO口相连。

3.数码管显示模块:共有四块共阳数码管,通过595芯片进行驱动。

单片机的IO口与595芯片的串行、时钟和锁存引脚相连,595芯片的输出引脚与数码管的各段相连。

4.按键模块:通过电阻分压来实现按键功能,按下按键时,相应的IO口会被拉低。

5.闹钟功能:使用蜂鸣器来产生提示音,通过IO口与单片机相连。

6.温湿度传感器:使用DHT11温湿度传感器。

传感器的数据引脚通过IO口与单片机相连。

四、软件设计1.时钟显示:通过DS1302获取日期、星期和时间等信息,将其转化为数码管需要的编码格式,并通过595芯片进行显示。

2.按键操作:对按键进行扫描,根据按键的不同操作进行相应的处理。

例如按下设置键进行日期和时间的设置,按下上下键进行数值的变化,按下确定键进行数值的确认。

基于c语言单片机智能电子日历课程设计

基于c语言单片机智能电子日历课程设计

基于c语言单片机智能电子日历课程设计课程设计报告课程名称:单片机课程设计报告题目:智能电子日历学生姓名:所在学院:信息科学与工程学院专业班级:学生学号:指导教师:2013 年12 月25 日课程设计任务书摘要本设计是根据我们所学的单片机课程,按照大纲要求对我们进行的一次课程检验,是进行单片机课程训练的必要任务,也对我们掌握单片机应用有很大的帮助。

单片机技术作为电子专业的基础课程之一,对我们将来的工作以及生活和学习都有很密切的联系;近年来随着电子技术和微机计算机的迅速发展,单片机的性能不断更新和提高,应用领域也不断扩大,已经在工业控制、尖端科技、智能仪器、汽车电子系统、办公自动化系统、通信产品等等领域有广泛的应用,成为现代电子系统中最重要的智能化核心器件。

关键词:单片机,电子技术,智能化目录一、概述 (5)二、方案设计与论证 (5)1.单片机芯片选择 (5)2.时间计算模块 (5)3.显示模块 (6)三、单元电路设计 (6)1.单片机最小系统电路…………………………………………………………72.数码管电路 (8)3.按键电路 (9)四、程序设计 (10)1.程序总体思路和分析 (10)2.程序清单 (11)五、结论与心得………………………………………………………………………19六、参考文献 (20)一、概述本系统以STC89C52单片机为控制核心,通过单片机计时器模拟时间输出,并将时间通过数码管实时显示出来,通过相应的按键调整相应的数值和功能。

所以本设计可以分为以下几个模块:显示模块、按键模块、定日输出模块。

下面对各个模块进行逐一分析。

二、方案设计与论证时间计算模块有两种方式,一种利用现成的时间计时芯片实时读取时间,然后显示;第二种是利用STC89C52单片机内部的定时/计数功能,实现时间的计算。

1.单片机芯片选择方案一:采用89C52作为硬件核心采用Flash ROM,内部具有4KB ROM存储空间,能于3V的超低压工作,而且与MCS-51系列单片机完全兼容,但是运用于电路设计中时由于不具备ISP在先编程技术,当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,对芯片的多次拔插会对芯片造成一定的损坏。

一款基于单片机的多功能电子日历的设计

一款基于单片机的多功能电子日历的设计

学术论坛科技创新导报 Science and Technology Innovation Herald245随着当今世界经济的快速发展和信息化时代的来临,各种各样的小型智能家电产品陆续出现在我们的生活当中。

日历是人们不可或缺的日常用品。

多功能电子时钟的设计给人们的生活带来的诸多方便。

本文采用智能电子控制和显示技术,设计一种结合了电子钟和纸制日历的优点组成的多功能电子日历,具有读取方便、显示直观、功能多样、成本低廉等诸多优点,它不仅能显示时间、星期、日期还可显示温度、农历、生肖、二十四节气和公历节日,具有很高的实用价值。

1 方案设计采用AT M E L公司及51系列单片机作为系统的控制核心,系统的灵活性大大增加了。

设计系统由主控模块、时钟模块、温度模块、闹铃模块、键盘接口模块和显示模块共6个模块组成,电路系统构成框图如(图1)所示。

2 硬件设计2.1 时钟模块单片机内部具有定时器,可方便实现定时功能。

但由于系统晶振误差、温漂、中断响应时间的不确定性及定时器重新装载时间常数所带来的误差,决定采用专用时钟芯片。

系统启动工作后先设定时间,后通过室外光强传感器、室内温度传感器、室内湿度的传感器采集数据,将采集的数据送入中央控制器进行处理,并把采集到的光强、温度、湿度、时间的数据实时的显示出来,在根据设定值与采集值比较来控制百叶窗的开合,并且还将报警值与采集值进行比较来进行报警操作。

时钟系统是由时钟芯片DS1302与一个32.768K Hz的晶振所组成。

本系统的时间日期有时、分、秒、星期、年、月、日。

2.2 温度模块采用数字温度传感器,常用的有D S 18B 20,L M 75A 等,它们能将采集到的温度信号直接转换成数字信号,并且方便组网进行多点温度采集,价格相对低廉,功耗也非常低,有很好的温度分辨率,本系统中的室内温度采集是采用温度传感器D S 18B 20,其最大温度分辨率高达0.0625 ℃,精度可以高达±0.5 ℃,待机电流约为0.5 μA,与理论最大值0.5 μA 基本吻合,并且测温范围相对较宽,可达-55 ℃到125 ℃。

基于c语言单片机智能电子日历课程设计

基于c语言单片机智能电子日历课程设计

课程设计报告课程名称:单片机课程设计报告题目:智能电子日历学生姓名:所在学院:信息科学与工程学院专业班级:学生学号:指导教师:2013 年12 月25 日课程设计任务书摘要本设计是根据我们所学的单片机课程,按照大纲要求对我们进行的一次课程检验,是进行单片机课程训练的必要任务,也对我们掌握单片机应用有很大的帮助。

单片机技术作为电子专业的基础课程之一,对我们将来的工作以与生活和学习都有很密切的联系;近年来随着电子技术和微机计算机的迅速发展,单片机的性能不断更新和提高,应用领域也不断扩大,已经在工业控制、尖端科技、智能仪器、汽车电子系统、办公自动化系统、通信产品等等领域有广泛的应用,成为现代电子系统中最重要的智能化核心器件。

关键词:单片机,电子技术,智能化目录一、概述 (5)二、方案设计与论证 (5)1.单片机芯片选择 (5)2.时间计算模块 (5)3.显示模块 (6)三、单元电路设计 (6)1.单片机最小系统电路 (7)2.数码管电路 (8)3.按键电路 (9)四、程序设计 (10)1.程序总体思路和分析 (10)2.程序清单 (11)五、结论与心得 (19)六、参考文献 (20)一、概述本系统以STC89C52单片机为控制核心,通过单片机计时器模拟时间输出,并将时间通过数码管实时显示出来,通过相应的按键调整相应的数值和功能。

所以本设计可以分为以下几个模块:显示模块、按键模块、定日输出模块。

下面对各个模块进行逐一分析。

二、方案设计与论证时间计算模块有两种方式,一种利用现成的时间计时芯片实时读取时间,然后显示;第二种是利用STC89C52单片机内部的定时/计数功能,实现时间的计算。

1.单片机芯片选择方案一:采用89C52作为硬件核心采用Flash ROM,内部具有4KB ROM存储空间,能于3V的超低压工作,而且与MCS-51系列单片机完全兼容,但是运用于电路设计中时由于不具备ISP在先编程技术,当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,对芯片的多次拔插会对芯片造成一定的损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引 言 .
购 买到 一款物 美价 廉 的产 品 是求之 不得 的。 件 。控 制 中心通过 采集 时钟信 号并 对其进 行 就 目前 来 看 , 与 时 钟和 日历 相 关 的产 品很 农 历转 换 、通 过温 度传 感器采 集实 时温度 信 多 ,其 中时钟产 品 以电子表 与钟表 最多 , 日 息、通 过键盘 设定 日历 参数 ,并将所 有 信息 历类 产 品 以万 年历 为主 ;但是 它们 的可视 化 显 示在 L D 确 定好 的 位置 。系统 总体 设 计 C上 界面 显示 效果 并不 是太好 ;为 了解 决这些 问 框 图如 图2 1 示 。 .所 题 ,我们 试想 设计 集 日历显示 界面 、时钟 、 3作 品结 构 . 语音 等 为一体 ,实 现多 功能 、界面 化、人 性 下 面按 系统界 面显示 、核 心控 制单 元、 化 的 电子产 品,为 此我们 设计 出 了 “ 于盛 硬 件及 软件 四方面 对本 系统结 构进 行说 明。 基 群 单片 机的语 音 电子 日历 ”。该系 统具有 清 3 1系 统界面 显示 .
I 皇 燕 …………………………一 婴一
基 于单片机 的语 音 电子 日历
重庆交通大学信 息科 学与 工程 学院 李永平 李 杰 徐一峰 周晓玲
【 摘要 】本设计主要 由控制 中心和界面显示两大部分 组成,以单 片机H 6 F 0 T 6 5  ̄核心,H 20 2 液 晶为主要显示界面。通过时钟芯片采 集时间信 息,并利用软件进行公 B 418 历 与农历的转换 ,使其更具有普遍性;设计独立键 盘,用于调控 日 的 日 历 期、提示、 闹钟等显示信息 ;通过 温度传 感器感知 当前温度并 显示在界面 ;对液 晶显示器进行 背光操作 ,以达到节能 目的;利用单 片机控制语音芯片进行人性化录音报 时、优化 闹钟功能。 【 关键词】语音 电子 日历;单片机;传感器 ;键盘
。P 2 D
图 3 1 T 6 5 EI 图 . H 6 F0J脚

垂l
l 3

t 5
图3 3 H 18 4 时序 图 . B220
图3 5语音电路 .
3 一 4
屯 子 世 界 / 1./ 2 26 0 0

1 _ 艟


I — j

) A≯ ;

. J
—、 f
_ ,



l l

P o o
C7
p o6
: 毒

]_』 一
厂]
厂] _ _ — —

P D3

-T " -
并行接 口和 串行接 口,本次 设计选 用 并行接 口,接 口协 议为 请求 / 答 (E / U Y 握手 应 R QB S ) 方式 。其与H 6 F 0 T 6 5 的接 线 图如 图3 2 示 。 .所 其 中 当应 答 B S 为 高 电 平 时 ,表 示 液 UY
通 过键 盘设 定时 间和 日期 、闹钟及 整点 报时 包 含 了一个 RM 据存 储 器和 一个 可 用 于存 日历 的显示 界面 。系 统设计 中 , 以表格 划分 A数 储 序 号、校 准数据 等非 易失 性数据 的EP O 液 晶显示器 区域 ,然后 将要 显示 的信 息存放 E RM 时间 :另外 ,对液 晶 显示器进 行背 光设 置 , 以达到 节能 的 目的。 界面所 有显示 以表 格划 存储 器 。 本 次 设 计 中采 用 H 6 F 0 T 6 5 内部 晶 到指定 的地 址 ,从 而 显示在 液晶屏 设定 的 区


图3 2 H 18 4 接线 图 . B 2 0 2
图3 4 P F 5 3 C8 6 应用电路

I 5 囊 0

lf i I I
P0 囊 A

A l 垃
随0
] r] 广] l l _ r

& _ 4
卜— f= - :j—■…署
分 ,显 示区域 划分 合理 、清晰 , 视 觉效 果较 振 ,单 片机 最小系 统 只外接 复位 电路 ,如 图 3. 1。 社会 的 飞速发 展促使 智 能化产 业的发 展 好 ,体 现 出本 作 品的多种 功 能。 如 日中天 ,纵 观 电子市场 ,电子 日历之类 的 2 系统工 作原 理 . 3 3系 统硬件 结构 . 产 品很 多 ,可 是它 们 的功能往 往很 单一 ,可 本 设计 以单片 机H 6F0 T 65 为核 心 ,以L D C 本 系 统硬 件 结构 由系统 电源 、H 6 F 0 T 6 5 日历 、 显示 视化 界 面效果 差 。而作 为消 费者 ,如果 能够 液 晶为 主 要 显 示 器 件 , 语音 芯片 为 报 时 器 控 制 系统 、温度 、键盘 、时钟 /
及 语音 六大 模块组 成 。现对 系统 显示单 元 、 时钟/ 日历 和 语 音 三 个 模 块 做 如 下 详 细 说
明。
3 3 1系统显 示单 元硬件 结构 .. 系 统 中所 有信 息通 过H 2 0 2 液 晶进行 B 4 18 显示 。该液 晶显示 硬件 接 口有两种 模式 ,即
. } 、
' F0 / 6 S I T6
; P AO 懈 P A2
PA0
P Al。 i t
DB0
£窖l ' 豫 2
。 誊
p B4
扮 3 跚
— 3。
P A4 P A5
1 3 ) §
DB4 衄 5
j j

晰 的显 示界 面 ,可 通过 键盘对 其显 示 内容进 本 语 音 电子 日历 预 期界 面 显示 如 表3 1 . 行 设定 ,增 强 了系统 的可适 用性 。 所示。 晶忙 于 内部 处理 ,不 能接收 用户命 令 ;BS UY 本 设 计 实 现 了 日历 的界 面 化 显 示 ,智 3 2系 统核心 控制单 元 . 低 电平 时 ,表 示液 晶空 闲 ,等 待接 收用 户命 该 系 统 以单 片机H 6 F 0 T 6 5 为核 心控 制 芯 令 。其 时序 图如3 3 .。 能化 管 理 ,具 体表 现在对 时 间 ( 钟 )、 日 时 片,该 单片机 是一 款AD / 型具有 8 高性 能精 位 设 计 中用到 的底层 驱动 函数有 : 期及 环 境温度 的可 自动 化采集 与实 时显示 , 并 且 具有 1 0 (0 0 0 年 2 0 年一 2 9 年 )的农 历 简指 令集 的F a h O9 l s 单片 机 。其 具有 一 系列 功 转 换 、节 日提醒功 能 ;通过语 音芯 片设置 录 能和 特性 ,其F a h 储 器可 多 次编程 的特 l s存 性给用 户提 供 了极 大 的方便 。存储 器方 面还 音 报时 及 闹钟功 能,赋 予优 美的语 音提 示; Ii C 0;/初 始化 液晶 显示器 n tL D / L Dc d C o e 0:/ 向ld / c 发送命 令 通 过H 20 2液 晶显示 器 的指令集 设定 B 4 18
毡 L
D0 P B0
Pd A
豫 AT P P B5



船 7
尝 。 ÷ l
P O C
噬 . -
f s
P 善 B _ C g f鹜 6 7 j }
P 3 D
耻 ≯ _|P l: 貉
图2 1系统框图
相关文档
最新文档