风机低电压穿越的作用
低电压穿越技术(2011-9-28)
风力发电低电压穿越技术1. 低电压穿越技术的提出在风电场容量相对较小并且分散接入时,系统故障时风电场退出运行不会对系统稳定造成影响。
随着风电装机容量在系统中所占比例增加,风电场的运行对系统稳定性的影响将不容忽视。
世界各国电力系统对风电场接入电网时的要求越来越严格,甚至以火电机组的标准对风电场提出要求。
包括低电压穿越(Low Voltage Ride Through ,LVRT )能力,无功控制能力,甚至是有功功率控制能力等,其中LVRT 被认为是对风电机组设计制造技术的最大挑战。
2. 低电压穿越的定义及要求定义:低电压穿越(LVRT ),指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。
要求①:我国对于风电装机容量占其他电源总容量比例大于5%的省(区域)级电网,要求该电网电机组能够保证不脱网连续运行。
3. LVRT 国内外研究现状风力发电系统,根据发电机转速,可以分为失速型与变速恒频型,其中变速恒频又可以分为双馈型和直驱型;根据传动链组成,可以分为有齿轮箱和直接驭动型;有齿轮箱又可以分为多级齿轮+高速发电机型与单级齿轮+低速发电机型。
目前市场上风机类型可概括为三类,即直接并网的定速异步机FSIG(fixed speed induction generator)、同步直驱式风机PMSG(permanent magnetic synchronous generator)和双馈异步式风机DFIG(doubly-fed induction generator)。
这三种机型, FSIG 属于淘汰机型,以后的发展趋势是PMSG 和DFIG 。
①目前,各国对低电压穿越的要求不同,其中在行业中影响最大的是德国的E.ON 标准。
②低电压穿越特性曲线主要是由故障期间的电压最低值(即低电压穿越曲线中U/UN 的最小值)电压最低点的时间长度和故障恢复时间来决定。
风机低电压穿越标准
风机低电压穿越标准风机低电压穿越标准是风力发电系统中重要的技术要求和规范,旨在确保风力发电机组在电网故障或电压跌落时能够安全、稳定地运行。
下面将详细介绍风机低电压穿越标准的定义、目的、实现方法和实际应用。
一、定义风机低电压穿越标准是指风力发电机组在电网电压跌落时,能够保持并网运行,并且不发生停机或脱网等异常情况的能力要求。
在风力发电系统中,由于风速的不稳定性和电网的复杂性,经常会出现电网电压跌落的情况。
如果风力发电机组不能在低电压情况下保持稳定运行,将会对电网的稳定性和电力系统的可靠性造成严重影响。
因此,风机低电压穿越标准是衡量风力发电机组性能的重要指标之一。
二、目的风机低电压穿越标准的目的是为了确保风力发电机组在电网故障或电压跌落时能够持续供电,减少对电网的冲击和影响,同时避免风力发电机组的停机和脱网等情况发生,提高电力系统的可靠性和稳定性。
此外,风机低电压穿越标准还有助于保护风力发电机组的设备和部件,延长其使用寿命。
三、实现方法为了满足风机低电压穿越标准的要求,需要在风力发电机组的控制系统和结构设计等方面进行优化和完善。
以下是实现风机低电压穿越的常用方法:1.控制系统优化:通过对风力发电机组的控制系统进行优化,可以提高其在低电压情况下的运行稳定性。
例如,可以采用矢量控制方法,通过调节励磁电流来控制发电机的输出电压,使其在低电压情况下保持稳定运行。
2.增加储能装置:在风力发电机组中增加储能装置,如超级电容器、飞轮储能等,可以在电网故障或电压跌落时提供一定的电能支持,保证风力发电机组的正常运行。
3.采用变换器技术:通过采用变换器技术,可以实现对发电机输出电压的稳定控制,使其在低电压情况下保持稳定运行。
常用的变换器包括DC/DC变换器和AC/DC变换器等。
4.加强电网支撑:加强电网的支撑能力,提高电网的稳定性,可以有效降低电网故障和电压跌落的发生率,从而减少对风力发电机组的冲击和影响。
四、实际应用风机低电压穿越标准在实际应用中具有重要的意义和作用。
低电压穿越
低电压穿越(LVRT),指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。
是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。
不同国家(和地区)所提出的LVRT要求不尽相同。
目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了新的电网运行准则,定量地给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。
这就要求风力发电系统具有较强的低电压穿越(LVRT)能力,同时能方便地为电网提供无功功率支持,但目前的双馈型风力发电技术是否能够应对自如,学术界尚有争论,而永磁直接驱动型变速恒频风力发电系统已被证实在这方面拥有出色的性能。
[1]低电压穿低电压穿越能力是当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。
风电机组应该具有低电压穿越能力:a)风电场必须具有在电压跌至20%额定电压时能够维持并网运行620ms的低电压穿越能力;b)风电场电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场必须保持并网运行;c)风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。
风电机组低电压穿越(LVRT)能力的深度对机组造价影响很大,根据实际系统对风电机组进行合理的LVRT能力设计很有必要。
对变速风电机组LVRT 原理进行了理论分析,对多种实现方案进行了比较。
在电力系统仿真分析软件DIgSILENT/PowerFactory中建立双馈变速风电机组及LVRT功能模型。
以地区电网为例,详细分析系统故障对风电机组机端电压的影响,依据不同的风电场接入方案计算风电机组LVRT能力的电压限值,对风电机组进行合理的 LVRT能力设计。
低电压穿越原理
低电压穿越原理
低电压穿越原理是指在电力系统中,当电压降至较低水平时,电流能够继续穿越导线,保持电力传输的正常运行。
它是电力系统中一项重要的保护措施,可防止系统中断电或设备损坏。
低电压穿越原理基于欧姆定律,即电流等于电压除以电阻。
当电压降低时,电流可以通过降低电阻或增加电流来实现电力传输。
在电力系统中,常用的低电压穿越方式有以下几种:
1. 电流增大:当电压降低时,可以通过增大电流来保持电力传输。
这可以通过增加电源的输出电流或使用电流增强设备来实现。
2. 降低负载:降低负载可使电流减小,从而使电力传输能够继续。
这可以通过减少负载的电流需求或使用负载控制装置来实现。
3. 提高导线导电能力:导线的导电能力主要由其截面积和导体材料决定。
通过增加导线的截面积或使用更好的导体材料,可以提高导线的导电能力,从而使电流能够在低电压下穿越。
4. 使用补偿装置:补偿装置可以通过提供额外的电力来弥补电压降低。
这可以通过使用电容器、电感器或稳压装置等来实现。
综上所述,低电压穿越原理是通过增加电流、降低负载、提高导线导电能力或使用补偿装置等方式来保持电力传输的正常运
行。
这些方法可以根据实际情况和需求来选择和应用,以确保电力系统的稳定运行。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术双馈式风力发电机是一种常见的风力发电机类型,其具有低启动转矩、高风能利用率和良好的可调谐性等特点,因此在风力发电行业中得到了广泛的应用。
双馈式风力发电机在发电过程中可能会遇到低电压穿越的问题,这种情况在风力发电系统中并不少见,因此针对双馈式风力发电机低电压穿越技术的研究和分析具有重要的意义。
双馈式风力发电机低电压穿越技术主要是指当风速下降,风力发电机所受的风能也会减小,导致风力发电机输出电压下降,当输出电压降至一定水平以下时,会影响风力发电机的正常运行,甚至会导致系统的停机。
研究双馈式风力发电机在低电压工况下的性能和运行特性对于提高风力发电系统的可靠性和稳定性具有重要的意义。
双馈式风力发电机低电压穿越技术涉及到的主要问题是风力发电机的控制策略和控制逻辑。
在低电压工况下,风力发电机需要根据实际情况采取相应的控制策略,以保证风力发电机的正常运行并最大限度地利用风能。
一种常见的控制策略是采用双馈风力发电机转子侧变流器的控制方式,即通过调节转子侧变流器的参数来调整转子的功率因数,以保证风力发电机在低电压工况下仍能保持较高的输出功率和效率。
双馈式风力发电机低电压穿越技术还涉及到风力发电机的电气保护和安全控制。
在低电压工况下,风力发电机容易发生电气故障和过载现象,因此需要采取相应的电气保护措施来保护风力发电机的安全运行。
还需要针对低电压穿越情况制定相应的安全控制策略,以避免因电压过低导致的系统故障和停机情况。
针对双馈式风力发电机低电压穿越技术的研究还需要对其性能进行分析和评估。
通过对双馈式风力发电机在低电压工况下的功率特性、效率特性和稳定性进行分析和评估,可以为风力发电系统的设计和运行提供重要的参考依据。
还可以通过对双馈式风力发电机在低电压工况下的性能进行模拟和仿真研究,来验证控制策略和电气保护措施的有效性和可靠性。
双馈式风力发电机低电压穿越技术是风力发电领域的重要研究方向,其研究对于提高风力发电系统的可靠性和稳定性具有重要的意义。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术一、双馈式风力发电机简介双馈式风力发电机是一种能有效调节转子速度的风力发电机,其主要特点是在转子绕组中引入了一个次级电流,较大地提高了发电机的转矩与功率因数,从而提高了风力发电机的整体性能。
与传统的固定式风力发电机相比,双馈式风力发电机有着更高的风能利用效率和更好的低电压穿越能力。
其工作原理主要是通过定子绕组的多级变压器和双馈路,使得风力发电机能够在较低的电网电压下继续运行,从而提高了风电的可靠性和稳定性。
1. 低电压穿越现象在一些特殊情况下,比如电网故障或者风速急剧下降等情况下,风力发电系统所接入的电网电压可能急剧下降,甚至出现短暂的停电情况。
针对这种情况,传统的固定式风力发电机可能因为电网电压下降而无法继续正常运行,甚至发生机组停机。
而双馈式风力发电机则能够通过其特有的双馈路和多级变压器的设计,使得发电机能够在较低的电网电压下继续运行,从而避免了由于电网电压下降而引起的停机现象,提高了风力发电系统的可靠性。
双馈式风力发电机低电压穿越技术的主要原理是通过其次级电流的调节,使得风力发电机能够在电网电压下降的情况下,自动地调节转子速度和输出功率,以保证发电机的安全稳定运行。
具体来说,当电网电压下降时,通过次级电流的调节,可以在一定程度上提高转子的磁场励磁,从而提高发电机的输出功率,使得风力发电系统在低电压情况下仍能够继续正常运行。
双馈式风力发电机低电压穿越技术具有以下几点优势:(1)提高了风力发电系统的可靠性和稳定性。
在电网电压下降的情况下,双馈式风力发电机可以通过调节次级电流和转矩,使得发电机能够在较低的电网电压下继续运行,避免了由于电网电压下降而引起的停机现象,提高了风力发电系统的可靠性。
(2)提高了风能的利用效率。
通过低电压穿越技术,双馈式风力发电机可以在较低的电网电压下继续正常运行,保证了风能的稳定利用,提高了风力发电系统的整体性能。
(3)降低了对电网的影响。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术【摘要】本文主要从双馈式风力发电机低电压穿越技术的角度进行探讨。
首先介绍了双馈式风力发电机的基本原理和结构,然后详细说明了低电压穿越技术的概念和应用。
接着分析了双馈式风力发电机在低电压状态下的工作原理,并以实际案例进行了深入分析。
最后对该技术的发展趋势和未来的技术改进提出了展望。
通过本文的阐述,读者可以更全面地了解双馈式风力发电机低电压穿越技术的重要性和应用前景,为风能利用领域的发展提供参考。
【关键词】风力发电机,双馈式,低电压穿越技术,原理,应用案例分析,技术改进,发展。
1. 引言1.1 引言双馈式风力发电机低电压穿越技术是一种在风力发电领域中广泛应用的关键技术之一。
随着风力发电产业的快速发展,如何有效处理双馈式风力发电机在低电压情况下的运行问题已成为产业发展中亟待解决的难题。
本文将对双馈式风力发电机低电压穿越技术进行深入浅析,探讨其原理、应用案例以及技术改进与发展方向,旨在为风力发电行业的技术进步和产业发展提供一定的参考和借鉴。
双馈式风力发电机是一种较为成熟和常见的风力发电机型号,其具有高效率、稳定性强等优点,在风力发电领域占据着重要地位。
而双馈式风力发电机在实际运行中面临的低电压问题,往往会导致发电机输出功率下降、系统稳定性降低等负面影响。
如何设计和应用有效的低电压穿越技术,成为提高发电机运行效率、保障系统安全稳定运行的关键。
通过深入研究和探讨双馈式风力发电机低电压穿越技术,可以更好地了解其运行原理和技术特点,为进一步完善相关技术和开发新型风力发电机提供参考。
本文将从以上几个方面进行详细剖析,旨在为读者提供全面的技术介绍和研究成果,帮助推动双馈式风力发电机低电压穿越技术在实际应用中的进一步发展和优化。
2. 正文2.1 双馈式风力发电机简介双馈式风力发电机是一种常用于风力发电领域的变速恒频发电机。
它的特点是在转子上设置有一个辅助绕组,这个绕组可以通过一个AC/DC/AC的转换器将电能输送到电网中。
风力发电机组低电压穿越技术探析
风力发电机组低电压穿越技术探析摘要:近年来,随着科技水平的不断提高,风力发电技术体系日益成熟,风电产业规模呈现出爆发式增长态势。
但在接入电网出现运行故障、电压异常波动时,将会对风电系统与风力发电机组的运行状态造成影响,可能出现风电机组脱网解列问题,对发电企业造成严重的损失。
因此,本文围绕风力发电机组低电压穿越技术的应用问题进行探讨,希望通过改善风电机组低电压穿越性能,解决这一问题。
关键词:风力发电机组;低电压穿越技术;应用一、风力发电机组低电压穿越技术概述1.技术原理风电机组低电压穿越技术是当风力发电系统所接入电网出现各类运行故障、电压跌落现象时,将会实时向所接入电网提供无功功率支撑,以此做到对电网正常运行状态的快速恢复,在短时间内将跌落的电压值调整至安全范围,避免风电机组出现局部或是大规模脱网现象。
根据低电压穿越技术要求可知,在电网电压异常波动时,如若实时电压值、故障发生时间处于风机跳闸区域时,将会对风电机组采取必要的脱网解列措施,避免风电机组受到外部因素影响出现损坏问题。
而在实时电压值、故障发生时间保持在曲线上方区域时,会持续向所接入电网提供无功功率,风电机组将保持并网运行状态。
2.技术标准现阶段,在应用低电压穿越技术时,为取得应有的技术作用,保障风电机组运行安全稳定,必须满足不脱网运行、具备无功支持以及有功恢复使用功能的技术应用标准,具体如下。
(1)不脱网运行。
在风电场运行过程中,如若实时并网点电压值稳定保持在相应电压轮廓线上方区域中,要求风电机组稳定保持为并网运行状态,禁止风电机组出现脱网解列现象。
在电网电压脱落后,风电机组将在一定时间内仍旧保持并网运行状态,提供无功功率补偿,将电网电压值快速提升至额定值。
如若电网电压值在一定时间没有得到有效恢复、处于电压轮廓线下方区域时,将风电机组从电网中切出。
(2)无功支持。
根据技术实际应用情况来看,在出现电网三相电压对称跌落、并网点电压小于额定值90%现象时,都将对所接入电网提供无功电流,起到控制电网稳定运行、快速恢复正常电压值的作用。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术双馈式风力发电机低电压穿越技术是指在风力发电系统中,当受到低电压影响时,通过双馈式风力发电机的技术手段,依然可以保持正常运行,并尽可能减小对发电机的影响。
这项技术在提高风力发电机稳定性和可靠性方面具有重要意义。
接下来,我们将对双馈式风力发电机低电压穿越技术进行一定的浅析。
一、双馈式风力发电机简介双馈式风力发电机是目前常见的一种风力发电机结构。
它的主要特点是在转子上设置两套独立的绕组,分别是定子绕组和转子绕组。
传统风力发电机通常采用固定磁极和定子绕组的方式,工作在同步运转模式下。
而双馈式风力发电机通过在转子上设置绕组,实现了外接转子发电机的结构,使得发电机在一定程度上具有了可调节的功率特性,从而提高了风能的利用效率。
二、双馈式风力发电机低电压穿越技术的意义在风力发电系统中,由于风速的不稳定性以及外部环境等因素的影响,往往会出现电网电压下降的情况。
当电网电压下降至发电机的额定电压以下时,传统的固定磁极风力发电机会出现失速现象,无法继续正常发电。
而双馈式风力发电机通过其独特的结构和控制方式,可以相对灵活地应对低电压情况,尽可能减小对发电机的影响,保持正常运行。
三、双馈式风力发电机低电压穿越技术的实现方式1. 转子侧功率控制当发电机所接电网电压下降时,可以通过控制变流器改变转子侧功率的输出,以实现对电网电压的支撑。
变流器可以根据电网电压的变化,调整转子侧的功率输出,保持发电机继续运行。
这种方式可以避免发电机失速,延长发电机的寿命,提高系统的可靠性。
2. 电网电压感应控制另一种方式是通过感应电网电压的变化,实现对发电机的控制。
当电网电压下降时,发电机系统可以通过感应电网电压的变化,调整转子侧功率输出,进而保持系统的稳定运行。
这种方式相对简单,成本较低,适用于一些对控制精度要求不高的场合。
四、双馈式风力发电机低电压穿越技术的优势1. 提高了系统的稳定性和可靠性双馈式风力发电机低电压穿越技术,使得发电机在电网电压下降的情况下仍然可以保持正常运行,大大提高了系统的稳定性和可靠性。
低电压穿越
风电并网低压穿越的相关规定:
2、电网电压跌落时FSIG、PMSG、DFIG的暂态特 性
电压跌落(Voltage Dip)也称电压骤降、电压 下跌或电压凹陷,是供电系统的一种较为突出的电能 质量问题,指电网电压均方根值在短时间突然下降的 事件,电气与电子工程师协会(IEEE),将其定义为下降 到额定值的90%~10%。 • 大电机启动引起的电压跌落 • 电机的再加速引起的电压跌落 • 电网故障引起的电压跌落(2)PMSG的LVRT实现源自①故障时间短且电压跌落幅值小
适当地增大直流侧电容的容量,提高直流电容的 额定电压,这样在电压跌落的时候,可以把直流母线的 电压限定值调高,使功率不平衡发生时,过剩的能量能 在电容上得到暂时的缓冲,以储存多余的能量,并且允 许网侧的逆变器电流增大,以输出更多的能量,最终达 到两侧的功率基本平衡。
(1)FSIG和DFIG的暂态特性
(2)同步直驱式风机(PMSG)的电压跌落暂态特性
PMSG定子经变流器与电网相接,发电机和电网不存在 直接耦合。
3.不同类型风机的LVRT实现方法
(1)FSIG的LVRT实现
FSIG在电网电压跌落时最大的问题就是电磁转矩 的衰减使得转速上升。 ①判断故障后快速变桨以改变机械转矩,从而降低转 速; ②安装一个静态无功补偿器,来对各种功率等级无功 进行实时补偿; ③通过采用静态同步补偿器来调节电压,该方法也能 使FISG低电压穿越能力得到提高,而且该方法的补偿 电流不会随着电压的下降而下降。
②故障时间长的深度电压跌落
增加Crowbar保护电路以吸收掉多余的能量,从而 达到所期望的目的。具体方法如下:
a.发电机定子侧Crowbar保护方案
b.直流侧基于耗能型Crowbar的过电压保护方案
低电压穿越(LVRT)
低电压穿越能力是当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low V oltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。
风电机组应该具有低电压穿越能力:a)风电场必须具有在电压跌至20%额定电压时能够维持并网运行620ms的低电压穿越能力;b)风电场电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场必须保持并网运行;c)风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。
风电机组低电压穿越(LVRT)能力的深度对机组造价影响非常大,根据实际系统对风电机组进行合理的LVRT能力设计很有必要。
对变速风电机组LVRT原理进行了理论分析,对多种实现方案进行了比较。
在电力系统仿真分析软件DIgSILENT/PowerFactory中建立双馈变速风电机组及LVRT功能模型。
以地区电网为例,详细分析系统故障对风电机组机端电压的影响,依据不同的风电场接入方案计算风电机组LVRT能力的电压限值,对风电机组进行合理的LVRT能力设计。
结果表明,风电机组LVRT能力的深度主要由系统接线和风电场接入方案决定。
设计风电机组LVRT能力时,机组运行曲线的电压限值应根据具体接入方案进行分析计算。
解决:需要改动控制系统,变流器和变桨系统。
国内的标准将是20%电压,625ms,接近awea的标准。
针对不同的发电机类型有不同的实现方法,最早采用也是最普遍的方案是采用CROWBAR,有的已经安装在变频器之中,根据不同的系统要求选择低电压穿越能力的大小,即电压跌落深度和时间,具体要求根据电网标准要求。
风电制造商采用得较多的方法,在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。
低电压穿越原理
低电压穿越原理
低电压穿越原理
一、概述
低电压穿越是指在电力系统中,由于各种原因导致电网电压降低到一定程度,使得负荷设备无法正常工作,但经过一段时间后,电网电压又自行恢复到正常水平的现象。
这种现象对于电力系统的稳定运行和设备的安全运行具有重要意义。
二、原因
低电压穿越的原因很多,主要包括以下几个方面:
1. 负荷突然增加:当负荷突然增加时,可能会导致供电系统中的变压器输出电压下降。
2. 线路故障:线路故障可能导致某些区域的供电能力下降。
3. 发电机故障:发生发电机故障时,可能会导致整个系统的供电能力下降。
4. 供应不足:当供应不足时,可能会导致整个系统的供电能力下降。
三、影响
低电压穿越对于设备和系统都有很大影响:
1. 设备方面:当负荷所需功率大于变压器额定容量时,变压器的输出
电压将下降,可能会导致设备无法正常工作,甚至损坏设备。
2. 系统方面:低电压穿越可能导致整个系统的稳定性下降,进而影响到系统的安全运行。
四、解决方法
为了避免低电压穿越对设备和系统造成影响,需要采取一些措施:1. 增加发电容量:通过增加发电容量来提高供应能力,从而避免低电压穿越。
2. 优化负荷:通过优化负荷分布和负荷控制来减少负荷突然增加对供应系统造成的冲击。
3. 增加变电站容量:通过增加变电站容量来提高供应能力。
4. 配置自动调节装置:配置自动调节装置可以在发生低电压穿越时及时调节输出功率,从而保证设备正常工作。
五、结论
低电压穿越是一个常见的问题,在实际运行中必须引起重视。
为了保证设备和系统的安全运行,需要采取一系列措施来避免低电压穿越对设备和系统造成影响。
有关风力发电低电压穿越技术的分析分析技术风力发电低电压穿越风力发电机
有关风力发电低电压穿越技术的分析摘要:近些年来,风力发电在供电总量中的比重逐年增加,再加上风力穿透功率的不断上升,风力发电对于地区性电网稳定性影响越来越大,如果电网出现故障导致电压跌落,风力机组通过解列来解决问题势必会造成系统的不稳定,严重还会造成局部甚至是整个系统的全面崩溃,而低电压穿越技术就是在这个背景下开始受到各界的关注。
文章首先描述了我国目前风力发电低电压穿越技术的相关规定,其次分析不同风机主要机型在电网电压跌落时表现的具体特征,最后对不同机型暂态特征以及低电压穿越技术进行了详细分析。
关键词:风力发电;低电压;穿越技术中图分类号: TM315 文献标识码: A1.前言当今世界风力发电厂装机容量正处于逐年上升的态势,目前在欧美一些发达国家,风力发电在全国电网供电中所占的比重非常高,例如欧洲的丹麦风力大点比例已经超过了20%,而风力发电有比较容易产生运行故障,所以必须考虑在电网发生故障的时候风机的运行状态对整个电网稳定性的影响,所以目前世界上众多的电网公司都集合自身实际对风力发电机组并网提出了更多更高的技术性要求,而低电压穿越技术正是能够解决这个问题的新技术,而低电压穿越技术又是公认的风电机组设计中最难的一项技术,穿越技术的使用性能将会直接的影响到风机的大规模使用。
低电压穿越技术就是在风机并网点电压出现跌落现象的过程中,风机仍然能够保持并网,甚至还可能会给电网提供一定量的功率,支持电网的恢复,还有可能直接坚持到电网恢复正常。
电压跌落必然会给电机带来相应的暂态过程,例如过电压、过电流或者是转速上升等现象,情况严重还会影响到风机以及风机控制系统安全运作。
通常情况下如果是电网出现故障,风机就会实行被动式的自我保护程序,也就是立刻解列,还会保障风机的安全运行,这在风力发电电网穿透率相对较低的时候是可以接受的,但是一旦风力发电在整个电网中占得比重很大,那么整个系统的恢复难度就会增加,可能会增加故障产生的可能性,严重的会导致整个系统的解列瘫痪,所以有效的低电压穿越技术能够有效的稳定风场电网。
关于低电压穿越
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术
双馈式风力发电机是目前广泛应用于风力发电场的一种发电机。
其特点是通过转子上
布置的双馈转换器将风能转化为电能。
在发电过程中,双馈转换器可以实现对转子和线路
的双重控制,提高了发电机的效率和可靠性。
在风力发电场中,由于复杂的环境和风能波动的影响,双馈式风力发电机可能会出现
低电压情况。
低电压会导致发电机无法正常工作,影响发电场的稳定运行。
为了解决这个
问题,研究人员提出了低电压穿越技术。
低电压穿越技术是指在低电压情况下,通过改变双馈转换器的运行模式,使发电机能
够继续运行并输出电能。
目前常用的低电压穿越技术主要有两种:定子电流反向控制和转
子电流反向控制。
定子电流反向控制是指在低电压情况下,通过改变双馈转换器中的定子电流方向,使
发电机能够继续工作。
具体来说,当发电机检测到低电压时,控制系统会将定子电流反向,从而改变发电机的工作模式。
这种方法可以在低电压情况下提供一定的电压和功率输出,
但是由于改变了定子电流方向,会增加发电机的损耗和热量。
双馈式风力发电机低电压穿越技术是目前解决发电场低电压问题的有效途径。
不论是
定子电流反向控制还是转子电流反向控制,都可以使发电机在低电压情况下继续运行,并
提供一定的电压和功率输出。
不同的控制方案各有优劣,需要根据具体情况选择合适的技
术方案。
低电压穿越技术
低电压穿越技术一、低电压穿越技术概述随着风力发电在电网中所占比例的增加,电网公司要求风力发电系统需像传统发电系统一样,在电网发生故障时具有继续并网运行的能力。
电网发生故障引起电压跌落会给风力发电机组带来一系列暂态过程(如转速升高、过电压和过电流等),当风力发电在电网中占有较大比例时,机组的解列会增加系统恢复难度,甚至使故障恶化。
因此目前新的电网规则要求当电网发生短路故障时风力发电机组能够保持并网,甚至能够向电网提供一定的无功功率支持,直到电网恢复正常,这个过程被称为风力发电机组“穿越”了这个低电压时间(区域),即低电压穿越(Low Voltage Ride Through,LVRT)。
1.风力发电机组故障穿越并网要求各国相继提出了越来越严格的故障穿越标准,要求机组在电网故障情况下能够按照标准规定的时间继续并网运行。
图4-26为德国、英国、美国和丹麦4国故障穿越标准中电网电压跌落程度与风电机组需持续并网运行的时间的规定。
图4-26 各国故障穿越标准各国制定的故障穿越标准中,除包含图4-26所示的并网时间要求外,一般都包含以下4个方面的规定:(1)公共耦合点的电网电压有效值的跌落程度与要求机组继续并网运行时间长短的关系。
(2)电网线电压有效值的跌落程度与输出无功功率的关系。
(3)故障切除后,有功功率的恢复速率。
(4)频率的波动与输出有功功率的关系。
我国国家电网公司制定了风力发电机组低电压穿越标准。
标准规定:风电场内的风电机组具有在并网点电压跌至20%额定电压时能保持并网运行625ms的低电压穿越能力,如图4-27所示。
风电场并网点电压在发生跌落2s内能够恢复到额定电压90%时,风电场内的风电机组能够保持不脱网运行。
2.关于双馈风力发电机的低电压穿越的特殊性图4-27 中国的低电压穿越标准与其他机型相比,双馈异步风力发电机在电压跌落期间面临的威胁最大。
电压跌落出现的暂态转子过电流、过电压会损坏电力电子器件,而电磁转矩的衰减也会导致转速的上升。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术双馈式风力发电机是一种常见且效率较高的风力发电机,其独特的低电压穿越技术在电网故障情况下具有较好的维稳能力。
本文将从原理、特点和应用前景三个方面对双馈式风力发电机低电压穿越技术进行浅析。
双馈式风力发电机低电压穿越技术的原理是将风力发电机的转子与电网之间的变压器一起接入发电机的转子回路中,形成一个双馈结构。
在电网电压发生故障导致电压下降时,变压器的作用使得风力发电机的转子电压保持在较高的水平,从而使得发电机能够持续输出功率,提高了发电机的可靠性和维稳能力。
双馈式风力发电机低电压穿越技术具有以下几个特点。
具有较好的电压稳定性。
在电网电压下降时,双馈风力发电机能够自动调节转子电压,使得发电机能够稳定输出功率。
具有较高的发电效率。
双馈风力发电机的转子回路中加入了变压器,使得电力能够充分传输到电网中,减少了损耗,提高了发电效率。
具有较好的自抗扰性。
双馈风力发电机能够自动调节转子电压,对电网电压的抖动具有较好的自适应能力。
双馈式风力发电机低电压穿越技术具有广泛的应用前景。
随着风力发电行业的迅速发展,对风力发电机的可靠性和维稳能力提出了更高的要求。
双馈式风力发电机低电压穿越技术能够有效地解决电网故障对发电机的影响,提高了风力发电机的可靠性和供电质量,有助于推动风力发电技术的进一步发展。
双馈式风力发电机低电压穿越技术通过将变压器与发电机的转子回路连接,实现了转子电压的自动调节,提高了发电机的可靠性和维稳能力。
该技术具有较好的电压稳定性、发电效率和自抗扰性,有着广泛的应用前景。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术双馈式风力发电机是现代风力发电系统中常用的一种发电机类型。
它采用双回路结构,在主回路中,由于受制于转子功率控制器的限制,风力发电机输出功率只能达到额定功率的一部分。
而在副回路中,通过转子功率控制器和电力电子器件,将风力发电机的剩余功率变成电网中的有功电能注入。
这种结构能够提高风力发电机的转子利用率,提高发电效率。
低电压穿越技术是双馈式风力发电机的一项重要技术。
当电网电压下降到很低的电压水平时,风力发电机的输出电压也将跟随下降,甚至低于电网的电压水平,导致电网无法接受发电机的输电。
为了解决这个问题,双馈式风力发电机采用了低电压穿越技术。
低电压穿越技术是指在电网电压降低到一定程度时,通过改变转子功率控制器的控制策略,使风力发电机调整输出电压,能够维持在一个较低的电压水平,以保持与电网的连接稳定。
有两种主要的低电压穿越技术:无功电压提升和有功限制。
无功电压提升是通过转子功率控制器调整转子侧电容的容量,改变发电机输出电压和功率因数的关系。
当电网电压下降时,转子功率控制器会主动提高转子侧的电容容量,从而改变发电机的功率因数,将发电机的无功功率提高,而有功功率相对减少。
这样可以使发电机的输出电压维持在一个较低的水平,保持与电网的连接稳定。
低电压穿越技术的实施需要转子功率控制器具备较高的响应速度和精度,以便能够及时调整发电机的输出电压。
还需要合理的控制算法和保护措施,以保证风力发电机和电网的安全运行。
双馈式风力发电机低电压穿越技术是提高风力发电机转子利用率和发电效率的重要手段。
它能够在电网电压下降时,通过调节发电机的输出电压和功率因数,维持与电网的连接稳定。
这对于风力发电系统的安全运行具有重要意义。
风力发电低电压穿越技术浅析
风力发电低电压穿越技术浅析摘要:随着工业化的进程加快,能源问题日趋尖锐化,世界各国都在开发新的可再生能源,利用风力发电也在全球范围内日趋盛行。
我国的风电的装机容量在近几年内也获得了快速地增长。
低电压穿越是风里电网中的重要技术,我国的风力电网系统的快速发展对低电压穿越技术提出了新的要求和挑战。
关键词:风力发电系统;低电压;穿越1低电压穿越概述低电压穿越即LVRT,指在电网发生故障或者电压下跌时,在一定的下跌范围内风机能够保持并网不脱落,向电网提供无功功率,直到电网恢复正常,从而“穿越”这个低电压时间或低电压区域。
具体来说,当电压发生故障时,风发机组在这段时间内地控制不能引起电网的相位变化和功率波动。
电网电压发生跌落的这段时间,电网只管输电系统的短路电流而忽视风电场内部的短路电流。
可以这么说,低电压的穿越技术是决定一个风电系统技术高低的重要指标。
世界各个国家和地区根据其电网状况不同,对低电压穿越技术的指标提出的要求不同。
技术指标的制定往往为各国关注的焦点,特别是发达国家将其作为经济发展的战略重点。
德国的输电系统运营商E.on公司在2003年提出了低电压穿越的概念,2006年制定了并网标准。
由于德国北部的风机密度高,对LVRT的要求如下:当电压跌落至15%~45%时,要求风机一直提供无功支持,并能保持并网至少625ms。
而在电压跌落至90%以上,风机一直保持并网运行。
我国在2009年制订了风电场并网标准。
当电网跌落低于额定电压的1/5,风力发电机保持与电网相连接,并保持运行625ms,风电场并网点电压跌落后,三秒钟之内能还原至90%的额定电压。
2 LVRT技术在风力发电低压穿越中的应用(1)已建成风电场的改造对于已经建成的风电场,如果不具有LVRT能力,必须适应当前的并网规则要求,对风电场进行改造,目前有几种方案可供选择:在风电场采用动态无功补偿装置,动态提供风电机组暂态过程所消耗的无功,以恢复机端电压;安装可控串补效限制风电场机端输出电流,提高风电场机端电压;利用串联制动电阻在电网故障时提升风电机组端电压,并吸收过剩有功功率,进而提高风电场LVRT能力;安装超导储能装置,提高风电场机端电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使 电网电压恢复正常变得困难, 甚至会造成无法恢 复的局 系统全部发送解列。由此可见 , 为了维护风 电场电网整体的安全性 步降低, 和 稳 定性 , 应用L vR T 技 术是 非 常必 要 的。 面, 整 个系统 瘫痪 。 2 . 2 P MS G 的暂 态现 象 世界各国对于风力发电机组在低压穿越方面都十分重视 , 通过 P MS G在定子 侧加 置有AC / DC / AC 变流器, 与电网之 间呈 间 各 国的不同的保护模式进行总结, 我们可以归纳为以下几点: 第一, 电网电压的突然降低使得输 出功率随之降低, 但 风电场 内包括的全部风电机组在实施并网发电的整个过程中都需 接连接的的状态 。
风机低电压穿越的作用
王小明
应 用 范围十分 广泛 。 全球经济 的飞速发展, 对能源的需求量不断加大, 能源供应 面 穿 越 能 力已经有 了显著 的提 高 , 临巨大的压力。 新能源的开发和利用为传统能源的短缺提供了有效 2 . 电压跌 落对不 同风机 的影响 的补 充 , 大 大缓 解 了能 源供 应 的压 力。 风能 作为 无限 的 能源 , 近 年 来 现今主要有三种类型的风机占据市场主体, 即直接并网的定速
电池应安装在通风清洁阴凉干燥的地方环境温度对电池的充放影响很大温度过高会使电池过充电温度过低会使电池充电不足因此环境温度一般在25左右为设备的防雷措施分析电力系统220电压us稳定可靠性分析在建设规划中应一并考虑电力系统通信站应急ups电源房的防雷措施雷电过电压及电磁干扰防护以保护通信电源设备及人身安全确保电力通信网建设及运行管理工作
1 . 风 机低电 压穿越概 述
家的重点关注和扶持。 风 电机组容量的增加, 为 电能生产提供了有 成 转 子产 生较 大 的 电势和 电流 , 从而 使 得转 子 电路 中 , 原有 的 电 路 F S I G是 鼠笼 式 转 子, 从 电 网内 电压 开始 趺 力的补偿, 为缓解传统能源发电的紧迫性起到重要作用。 但是在实 和 电压 值 都会 显 著加 大 。 直 至恢复到正常的期间内, 短时过 电流处于转子所能承受 电流 践 中我们也清楚的看到, 风 电机组在运行的过程总, 一旦电网有故 落, 障发生 , 电网中的输 出电压频率会发生大幅度的变化, 对 电网系统 最 大值 的 范 围之 内, 转 子不 会 因此而 受 到损 坏 。 而 在D I F G的转 子 侧 / DC / AC 变换器, 而变换器等元器件在对过电压和过 电 运行的稳定性造成严重的影响。 为了有效解决这一矛盾, 各国在风 加装有AC 力发电的过程 中中都非常注重低电压穿越技术的应用, 在对低电压 流的承受能力相对比较薄弱, 倘若不对电压跌落采取有效的措施加 承受能力薄弱的底子期间会受到过高转子电流的破坏 , 从 穿越技术方面的研究也不断的加大投入力度, 力求使其更加具有规 以控制, 范性 、 有 效性 和 安全 性 。 而发生故障或者毁损; 但是对转子电流加以控制势必会造成变流器 过 电压同样会对变流器造成损坏 , 同时变流器在 低电压穿越 ( 以下简称L v 1 T) , 指的是当风电机组在并网的过 电压大幅度升高, 功率的输入与输出方面可能会存在不 匹配性, 这就很有可能造成直 程 中会 出现 点电压大幅度降低的现象 , 通过低 电压穿越技术来保 持风机并 网的同时还能提供一定程度的无功功率用以对 电网持续 流 电线 的 电压 发 生 升 降 变 化 。由此 可见 , 相 对来 说 D F I G较 之 F S I G 在L VR T方面 更为 复 杂 。 电网故 障 , 特 别 是不 对 称 故 障 , 在 从 运行提供支持直至电网能够恢复正常的运行, 最终实现在低 电压时 来说 , 电机 的 电磁 转 矩 会 发生 频 繁 的波 动 , 对其 间段或者 区域的 “ 穿越”。 电压的大幅度跌落会造成 电机出现转速 故障 到 恢 复 的过 度 期 间 , 从而对风机运行的稳定性及其使用 升高、 过 电流 、 过 电压等一系列暂态。 通畅如果电网在运行过程中 它机械部件会造成一定的冲击, 定子电压发生跌落, 直接对电机输出功率造 突然产生故障 , 风机处于自我保护会立即解列 , 从而保证风机不被 寿命造成不利的影响。 因此必须对捕获到的功率进行必要的控制 , 否则会 损坏。 但是需要注意的是风力发电在电网中所占的比重较低的状态 成不利的影响 , 造成 电机转数不断上升, 在如果风速过高, 就算故障已经被切除 , 下, 此种情况是能够接受的, 如果风力发电在电网中占的比重较大, 电磁转矩 已经增加 , 也很快对 电机不断上升的转速加 以控制。 转速 如果突然采取被动自我保护, 会对整个系统造成严重的影响, 恢复 则定子端的电压随之进一 起 来 比 较 困难 , 严重 的 还 可能 使 故 障扩 大 , 造成 其 他 机 组 乃至 整 个 的不断升高必然会造成无功功率的增加 ,
成为世界各国研究和开发的重点能源, 特 别是风力发电成为各 国风 异步机 ( 以下简称F S I G) , 同步直驱式风机 ( 以下简称P MS G) , 双 能资源利用的重点。 近年来 , 我国风 电机组容量不断发展扩大, 随 馈异 步式 风 机 ( 以下简 称DF I G ) , 如 图1 所示 为 三种 主要 风机 类 型 的 着技 术的不断革新 , 风电机组穿越功率方面越发强大, 功率穿越标 拓扑 结构 。 准范围已经基本确定 。 风 电机组的类 型也在不断的增加 , 特别是 双 馈式风电机组 的开发和应用 , 使我国风电机组在技术上又迈上了一
个 新 台阶 , 进 一步 促 进 了我 国风 电事 业的 发展 。 2 . 1 F S I G 和D F I G 的 暂态 现 象 F S I G 和DF I G 两 种风 机 都 是 在定 子 侧 与电 网直 接 进行 联 接 , 这 种直接连接的方式使得其对电网中电压的变化非常敏感, 电压的起
伏升降直接造成电机定子端的电压随之发生变化, 从而使定子磁链 如果有部队称 故障发生时会有负序分量存在。 风力发 电在我国现今电力生产 中占有非常重要 的地位, 经过多 中由产生直流成分, 年的研究和探索, 风电能源建设项 目的数量不链中存在直 大, 以其 可 再 生 、 能源 利 用 率 高 、 效 能 好、 环 保性 的优 势 特点受 到 国 流量和负序分量时, 相对于转子而言就会产生大的转差, 由此会造