湖北省武汉市武昌区2018-2019学年七年级上学期数学期末考试试卷及参考答案

合集下载

湖北省武汉市硚口区2018-2019学年七年级(上)期末数学试卷 含解析

湖北省武汉市硚口区2018-2019学年七年级(上)期末数学试卷  含解析

2018-2019学年七年级(上)期末数学试卷一.选择题(共10小题)1.温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃2.x=a是关于x的方程2a+3x=﹣5的解,则a的值是()A.﹣1 B.1 C.﹣5 D.53.下列各组式子中,是同类项的是()A.2xy2与﹣2x2y B.2xy与﹣2yxC.3x与x3D.4xy与4yz4.如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,不仅可以容纳更多的游人,而且延长了游客观光的时间,增加了游人的路程,用你所学的数学的知识能解释这一现象的是()A.经过一点有无数条直线B.两点确定一条直线C.两点之间,线段最短D.直线最短5.下列等式变形,正确的是()A.如果x=y,那么=B.如果ax=ay,那么x=yC.如果S=ab,那么a=D.如果x=y,那么|x﹣3|=|3﹣y|6.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5 B.6 C.7 D.87.一个几何体由若干个相同的正方体组成,它从正面和上面看到的图形如图所示,则这个几何体中正方体的个数最少是()A.5 B.6 C.7 D.88.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C.+10 D.+109.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE 的度数为()A.360°﹣4αB.180°﹣4αC.αD.270°﹣3α10.如图,点A、B、C是直线l上的三个定点,点B是线段AC的三等分点,AB=BC+4m,其中m为大于0的常数,若点D是直线l上的一动点,M、N分别是AD、CD的中点,则MN与BC的数量关系是()A.MN=2BC B.MN=BC C.2MN=3BC D.不确定二.填空题(共6小题)11.2018年双十一天猫网交易额突破了4300000000元,将数4300000000写成4.3×10n的形式,则n=.12.如图,货轮O在航行过程中,发现灯塔A在它的南偏东60°的方向上.同时,在它的北偏东30°发现了客轮B.则∠AOB的度数为=.13.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少学生?设这个班有x名学生,则由题意可列方程.14.在直线l上取三个点A、B、C,线段AB的长为3cm,线段BC的长为4cm,则A、C两点的距离是.15.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x米,根据题意列方程为.16.如图,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,爬行的最短路线有条.三.解答题(共8小题)17.计算:(1)3×(﹣2)2+(﹣28)÷7;(2)(﹣125)÷(﹣5).18.先化简,再求值x+2(y2﹣x)﹣3(x﹣y2),其中x=2,y=﹣3.19.解方程:(1)x﹣3=x+1;(2)x﹣=2+.20.(1)如图1,已知四点A、B、C、D.①连接AB;②画直线BC;③画射线CD;④画点P,使PA+PB+PC+PD的值最小;(2)如图2,将一副三角板如图摆放在一起,则∠ACB的度数为,射线OA、OB、OC组成的所有小于平角的角的和为.21.如表为某篮球比赛过程中部分球队的积分榜(篮球比赛没有平局).(1)观察积分榜,请直接写出球队胜一场积分,负一场积分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共17轮(每个球队各有17场比赛),D队希望最终积分达到30分,你认为有可能实现吗?请说明理由.22.一套仪器由一个A部件和三个B部件构成,用1m3钢材可以做40个A部件或240个B 部件.(1)现要用6m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?(2)设某公司租赁这批仪器x小时,有两种付费方式.方式一:当0<x<10时,每套仪器收取租金50元;当x>10时,超时部分这批仪器整体按每小时300元收费;方式二:当0<x<15时,每套仪器收取租金60元,当x>15时,超时部分这批仪器整体按每小时200元收费.请你替公司谋划一下,当x满足,选方式一节省费用一些;当x满足,选方式二节省费用一些.23.∠AOB与它的补角的差正好等于∠AOB的一半(1)求∠AOB的度数;(2)如图1,过点O作射线OC,使∠AOC=4∠BOC,OD是∠BOC的平分线,求∠AOD的度数;(3)如图2,射线OM与OB重合,射线ON在∠AOB外部,且∠MON=40°,现将∠MON 绕O顺时针旋转n°,0<n<50,若在此过程中,OP平分∠AOM,OQ平分∠BON,试问的值是定值吗?若是,请求出来,若不是,请说明理由.24.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC=,BE=;(2)当线段CE运动到点A在C、E之间时,求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以同样速度返回,同时点Q从A出发,以每秒1个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤16),求t为何值时,P、Q两点间的距离为1个单位长度.参考答案与试题解析一.选择题(共10小题)1.温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:﹣3+8=5,则温度由﹣3℃上升8℃是5℃,故选:A.2.x=a是关于x的方程2a+3x=﹣5的解,则a的值是()A.﹣1 B.1 C.﹣5 D.5【分析】把x=a代入方程,解关于a的一元一次方程即可.【解答】解:把x=a代入方程,得2a+3a=﹣5,所以5a=﹣5解得a=﹣1故选:A.3.下列各组式子中,是同类项的是()A.2xy2与﹣2x2y B.2xy与﹣2yxC.3x与x3D.4xy与4yz【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:A、所含字母指数不同,不是同类项,故选项错误;B、所含字母相同,并且相同字母的指数也相同,是同类项,故选项正确;C、所含字母指数不同,不是同类项,故选项错误;D、所含字母不尽相同,不是同类项,故选项错误.故选:B.4.如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,不仅可以容纳更多的游人,而且延长了游客观光的时间,增加了游人的路程,用你所学的数学的知识能解释这一现象的是()A.经过一点有无数条直线B.两点确定一条直线C.两点之间,线段最短D.直线最短【分析】利用两点之间线段最短进而分析得出答案.【解答】解:这样做增加了游人在桥上行走的路程,理由:利用两点之间线段最短,可得出曲折迂回的九曲桥增加了游人在桥上行走的路程.故选:C.5.下列等式变形,正确的是()A.如果x=y,那么=B.如果ax=ay,那么x=yC.如果S=ab,那么a=D.如果x=y,那么|x﹣3|=|3﹣y|【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.即可解决.【解答】解:A、a=0时,两边都除以a2,无意义,故A错误;B、a=0时,两边都除以a,无意义,故B错误;C、b=0时,两边都除以b,无意义,故C错误;D、如果x=y,那么x﹣3=y﹣3,所以|x﹣3|=|3﹣y|,故D正确;故选:D.6.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5 B.6 C.7 D.8【分析】根据题目中的等量关系是利润率=利润÷成本,根据这个等量关系列方程求解.【解答】解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.7.一个几何体由若干个相同的正方体组成,它从正面和上面看到的图形如图所示,则这个几何体中正方体的个数最少是()A.5 B.6 C.7 D.8【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边上层最多有2个,右边下层最多有2个.所以图中的小正方体最多8块,最少有6块.故选:B.8.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C.+10 D.+10【分析】设每个房间需要粉刷的墙面面积为xm2,根据“每名一级技工比二级技工一天多粉刷10m2墙面”,列方程即可.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.9.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE 的度数为()A.360°﹣4αB.180°﹣4αC.αD.270°﹣3α【分析】设∠DOE=x,则∠BOD=4x、∠BOE=3x,根据角之间的等量关系求出∠AOD、∠COD、∠COE的大小,然后解得x即可.【解答】解:设∠DOE=x,则∠BOD=4x,∵∠BOD=∠BOE+∠EOD,∴∠BOE=3x,∴∠AOD=180°﹣∠BOD=180°﹣4x.∵OC平分∠AOD,∴∠COD=∠AOD=(180°﹣4x)=90°﹣2x.∵∠COE=∠COD+∠DOE=90°﹣2x+x=90°﹣x,由题意有90°﹣x=α,解得x=90°﹣α,则∠BOE=270°﹣3α,故选:D.10.如图,点A、B、C是直线l上的三个定点,点B是线段AC的三等分点,AB=BC+4m,其中m为大于0的常数,若点D是直线l上的一动点,M、N分别是AD、CD的中点,则MN与BC的数量关系是()A.MN=2BC B.MN=BC C.2MN=3BC D.不确定【分析】可用特殊值法,设坐标轴上的点A为0,C为12m,求出B的值,得出BC的长度,设D为x,则M为,N为,即可求出MN的长度为6m,可算出MN与BC的关系.【解答】解:设坐标轴上的点A为0,C为12m,∵AB=BC+4m,∴B为8m,∴BC=4m,设D为x,则M为,N为,∴MN为6m,∴2MN=3BC,故选:C.二.填空题(共6小题)11.2018年双十一天猫网交易额突破了4300000000元,将数4300000000写成4.3×10n的形式,则n=9 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4300000000=4.3×109.故答案为:912.如图,货轮O在航行过程中,发现灯塔A在它的南偏东60°的方向上.同时,在它的北偏东30°发现了客轮B.则∠AOB的度数为=90°.【分析】首先根据方向角的定义作出图形,根据图形即可求解.【解答】解:∠AOB=180°﹣60°﹣30°=90°.故答案为:90°.13.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少学生?设这个班有x名学生,则由题意可列方程3x+20=4x﹣25 .【分析】等量关系:书本数=每人分3本,则剩余20本=每人分4本,则还缺25本.【解答】解:根据题意,得:3x+20=4x﹣25.14.在直线l上取三个点A、B、C,线段AB的长为3cm,线段BC的长为4cm,则A、C两点的距离是7cm或1cm.【分析】讨论:当点C在AB的延长线上时,计算BC+AB得到AC的长;当点C在AB的反向延长线上时,计算BC﹣AB得到AC的长.【解答】解:当点C在AB的延长线上时,AC=BC+AB=4+3=7(cm);当点C在AB的反向延长线上时,AC=BC﹣AB=4﹣3=1(cm),即A、C两点的距离是7cm或1cm.故答案为7cm或1cm.15.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x米,根据题意列方程为2x﹣2×15=340×2 .【分析】设这时汽车离山谷x米,根据司机按喇叭时,汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离,列出方程,求解即可.【解答】解:设按喇叭时,汽车离山谷x米,根据题意列方程为 2x﹣2×15=340×2.故答案为:2x﹣2×15=340×2.16.如图,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,爬行的最短路线有 6 条.【分析】根据线段的性质:两点之间线段最短,把正方体展开,直接连接A、B两点可得最短路线.【解答】解:如果要爬行到顶点B,有三种情况:若蚂蚁爬行时经过面AD,可将这个正方体展开,在展开图上连接AB,与棱a(或b)交于点D1(或D2),小蚂蚁线段AD1→D1B(或AD2→D2B)爬行,路线最短;类似地,蚂蚁经过面AC和AE爬行到顶点B,也分别有两条最短路线,因此,蚂蚁爬行的最短践线有6条.故答案为:6.三.解答题(共8小题)17.计算:(1)3×(﹣2)2+(﹣28)÷7;(2)(﹣125)÷(﹣5).【分析】(1)根据有理数的乘方、有理数的乘除法和加法可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)3×(﹣2)2+(﹣28)÷7=3×4+(﹣4)=12+(﹣4)=8;(2)(﹣125)÷(﹣5)=(﹣125﹣)×(﹣)=25+=25.18.先化简,再求值x+2(y2﹣x)﹣3(x﹣y2),其中x=2,y=﹣3.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x+y2﹣2x﹣x+y2=﹣3x+y2,当x=2,y=﹣3时,原式=(﹣3)2﹣3×2=9﹣6=3.19.解方程:(1)x﹣3=x+1;(2)x﹣=2+.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:x﹣x=1+3,合并得:﹣x=4,系数化为1得:x=﹣8;(2)去分母得:4x﹣(x﹣1)=2×4+2(x﹣3),去括号得:4x﹣x+1=8+2x﹣6,移项得:4x﹣x﹣2x=8﹣6﹣1,合并得:x=1.20.(1)如图1,已知四点A、B、C、D.①连接AB;②画直线BC;③画射线CD;④画点P,使PA+PB+PC+PD的值最小;(2)如图2,将一副三角板如图摆放在一起,则∠ACB的度数为135°,射线OA、OB、OC组成的所有小于平角的角的和为150°.【分析】(1)根据语句画图:①连接AB;②画直线BC;③画射线CD;④AC和BD相交于点即为P;(2)根据一副三角板的摆放即可求解.【解答】解:(1)如图,①线段AB即为所求的图形;②直线BC即为所求作的图形;③射线CD即为所求作的图形;④连接AC和BD相交于点P,点P即为所求作的点;(2)观察图形可知:∠ACB=∠ACO+∠OCB=45°+90°=135°;射线OA、OB、OC组成的所有小于平角的角的和为150°.故答案为135°、150°.21.如表为某篮球比赛过程中部分球队的积分榜(篮球比赛没有平局).(1)观察积分榜,请直接写出球队胜一场积 2 分,负一场积 1 分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共17轮(每个球队各有17场比赛),D队希望最终积分达到30分,你认为有可能实现吗?请说明理由.【分析】(1)观察积分榜由C球队和D球队即可求解;(2)设设E队胜x场,则负(11﹣x)场,根据等量关系:E队积分是13分列出方程求解即可;(3)设后6场胜x场,根据等量关系:D队积分是30分列出方程求解即可.【解答】解:(1)观察积分榜,球队胜一场积2分,负一场积1分.故答案为:2,1;(2)设E队胜x场,则负(11﹣x)场,可得2x+11﹣x=13,解得x=2.∴E队胜2场,负9场;(3)不可能实现,理由如下:∵D队前11场得17分,∴设后6场胜x场,∴2x+6﹣x=30﹣17,∴x=7>6,∴不可能实现.22.一套仪器由一个A部件和三个B部件构成,用1m3钢材可以做40个A部件或240个B 部件.(1)现要用6m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?(2)设某公司租赁这批仪器x小时,有两种付费方式.方式一:当0<x<10时,每套仪器收取租金50元;当x>10时,超时部分这批仪器整体按每小时300元收费;方式二:当0<x<15时,每套仪器收取租金60元,当x>15时,超时部分这批仪器整体按每小时200元收费.请你替公司谋划一下,当x满足,选方式一节省费用一些;当x满足,选方式二节省费用一些.【分析】(1)设应用ym3钢材做A部件,则应用(6﹣y)m3钢材做B部件,根据一个A 部件和三个B部件刚好配成套,列方程求解;(2)根据费用相等,列出方程求出x,进一步即可求解.【解答】解:(1)设应用ym3钢材做A部件,用(6﹣y)m3钢材做B部件,则可配成这种仪器40y套,则3×40y=240(6﹣y)解得:y=4,6﹣y=2,40y=160.答:应用4m3做A部件,用2m3做B部件,恰好配成160套这种仪器(2)依题意有:50×160+300(x﹣10)=60×160+200(x﹣15),解得x=16,故0<x<16,选方式一节省费用一些;x>16,选方式二节省费用一些.23.∠AOB与它的补角的差正好等于∠AOB的一半(1)求∠AOB的度数;(2)如图1,过点O作射线OC,使∠AOC=4∠BOC,OD是∠BOC的平分线,求∠AOD的度数;(3)如图2,射线OM与OB重合,射线ON在∠AOB外部,且∠MON=40°,现将∠MON 绕O顺时针旋转n°,0<n<50,若在此过程中,OP平分∠AOM,OQ平分∠BON,试问的值是定值吗?若是,请求出来,若不是,请说明理由.【分析】(1)设∠AOB=x°,根据题意列方程即可得到结论;(2)①当OC在∠AOB的内部时,②当OC在∠AOB外部时,根据角的和差和角平分线的定义即可得到结论;(3)根据角的和差和角平分线的定义即可得到结论.【解答】解:(1)设∠AOB=x°,依题意得:x﹣(180﹣x)=x∴x=120答:∠AOB的度数是120°(2)①当OC在∠AOB的内部时,∠AOD=∠AOC+∠COD设∠BOC=y°,则∠AOC=4y°,∴y+4y=120,y=24,∴∠AOC=96°,∠BOC=24°,∴OD平分∠BOC,∴∠COD=∠BOC=12°,∴∠AOD=96°+12°=108°,②当OC在∠AOB外部时,同理可求∠AOD=140°,∴∠AOD的度数为108°或140°;(3)∵∠MON绕O顺时针旋转n°,∴∠AOM=(120+n)°∵OP平分∠AOM,∴∠AOP=()°∵OQ平分∠BON,∴∠MOQ=∠BOQ=()°,∴∠POQ=120+40+n﹣∠AOP﹣∠MOQ,=160+n﹣﹣=160+n﹣=80°,∴∠AOP﹣∠BOQ=﹣=40°,∴==.24.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=16 ,AC= 6 ,BE= 2 ;(2)当线段CE运动到点A在C、E之间时,求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以同样速度返回,同时点Q从A出发,以每秒1个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤16),求t为何值时,P、Q两点间的距离为1个单位长度.【分析】(1)由数轴上A、B两点对应的数分别是﹣4、12,可得AB的长;由CE=8,CF =1,可得EF的长,由点F是AE的中点,可得AF的长,从而AC可由AF减CF求得;用AB的长减去2倍的EF的长即为BE的长;(2)设AF=FE=x,则CF=8﹣x,用含x的式子表示出BE,即可得出答案;(3)分①当0<t≤6时;②当6<t≤12时,两种情况讨论计算即可得解.【解答】(1)∵数轴上A、B两点对应的数分别是﹣4、12,∴AB=16;∵CE=8,CF=1,∴EF=7∵点F是AE的中点.∴AF=EF=7∴AC=AF﹣CF=7﹣1=6BE=AB﹣AE=16﹣7×2=2故答案为:16,6,2;(2)∵点F是AE的中点∴AF=EF设AF=FE=x,∴CF=8﹣x∴BE=16﹣2x=2(8﹣x)∴BE=2CF(3)①当0<t≤6时,P对应数:﹣6+3t,Q对应数﹣4+tPQ=|﹣4+t﹣(﹣6+3t)|=|﹣2t+2|依题意得:|﹣2t+2|=1解得:t=或②当6<t≤12时,P对应数12﹣3(t﹣6)=30﹣3t,Q对应数﹣4+t PQ=|30﹣3t﹣(﹣4+t)|=|﹣4t+34|依题意得:|﹣4t+34|=1解得:t=或∴t为秒,秒,秒,秒时,两点距离是1.。

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。

湖北武昌区2018-2019学年度第一学期期末学业水平测试

湖北武昌区2018-2019学年度第一学期期末学业水平测试

湖北武昌区2018-2019学年度第一学期期末学业水平测试七年级数学试卷注意事项:1、本试卷共三个大题,满分100分,考试时间120分钟;2、请用黑色水性笔或钢笔在答题卡上作答,所有试题在试卷上作答均无效;3、选择题在答题卡用2B 铅笔作答。

一、选择题(每题2分,共20分) 1. 5-的相反数是()A .15B .15- C .5 D .5-2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应为 ()A .517.410⨯B .51.7410⨯C .417.410⨯D .60.17410⨯3. 下列各式中,不相等...的是()A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32- 4. 下列是一元一次方程的是()A .2230x x --=B .25x y +=C .112xx+= D .10x += 5. 如图,下列结论正确的是()A. c a b >>B.11b c>C. ||||a b <D. 0abc >6. 下列等式变形正确的是()A. 若35x -=,则35x =-B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+ D. 若3(1)21x x +-=,则3321x x +-= 7. 下列结论正确的是()A. 23ab -和2b a 是同类项B.π2不是单项式 C. a 比a -大D. 2是方程214x +=的解8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是()A. B. C. D.9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是 ()A. 点A 在线段BC 上B. 点B 在线段AC 上C. 点C 在线段AB 上D. 点A 在线段CB 的延长线上10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是 () A. 6 B. 5 C. 4 D. 3二、填空题(每题3分,共30分)11.如果+15表示高出标准水位15米,那么-4表示 .12.我国南海海域面积约为3500000 k ,用科学记数法表示数3500000为 . 13.下列说法:①-a 是负数;②一个数的绝对值一定是正数;③一个有理数不是正数就是负数;④平方等于本身的数是0和1.其中正确的是 .14.已知与是同类项,则 5m+3n 的值是 . 15.若x ,y 互为相反数,a 、b 互为倒数,则代数式的值为 . 16.在直线上顺次取A 、B 、C 三点,使得AB=5cm, BC=3cm .如果O 是线段AC 的中点,那么线段OC 的长度是____.17.若 ,则 ____.18.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后.A 、B 丙地间的河道长度会 .(填“变短”,“变长”或“不变”),其原因是.从正面看从上面看19.下列式子按一定规律排列,,,……则第2017个式子是 . 20.在正方形ABCD中,E为DC边上的一点,沿线段BE对折后,若∠ABF比∠EBF大15,则∠EBF的度数为: .三、解答题(共50分)21.(共10分,每小题5分)(1)计算(2)解方程22.(6分)已知x-2y=l,求一的值.23. (6分)一个角的补角比它的余角的3倍少20,求这个角的度数.24. (8分)有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点到原点的距离相等.(1)用“”“”“”填空:b 0,a+b 0,a-c 0,b-c 0;(4分)(2)化简.(4分)25.(10分)如图所示,点0为直线AB上一点,∠AOC=50,OD平分∠AOC,∠DOE=90.(1)请你数一数,图中有多少个小于平角的角:(2分)(2)求出∠BOD的度数;(3分)(3)试判断OE是否平分∠BOC,并说明理由.(5分)26.(10分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:每本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(3分)( 2)买多少本时到两个商店付的钱一样?(3分)(3)小明现有32元钱,最多可买多少本?(4分)2018—2019学年第一学期七年级期末考试数学试卷答案一、选择题(每题2分,共20分)题号 1 2 3 4 5 6 7 8 9 10 答案 C B A D B D A C C B二、填空题(每题3分,共30分) 11. 低于标准水位4米 12.13. ④ 14. 13 15. -316. 4 cm 17. -8 18. 两点确定一条直线,变短, 两点间线段最短 19.40334034a 20.25°三、解答题(共50分) 21. (共10分,每小题5分)(1)解:原式=-27÷9-6+4……………(3分) =-3-6+4……………(4分) =-5……………(5分) (2)解:去分母得:……………(2分)去括号得:……………(4分)移项合并得: 系数化为1得:……………(5分)22. (6分)解:5x-3y-(x+y)-2(3x-4y) =5x-3y-x-y-6x+8y ……………(2分) =-2x+4y ……………(3分) =-2(x-2y) ……………(5分) 因为x-2y=1所以原式=-2×1=-2……………(6分)23.(6分)解:设这个角为x 度,……………(1分) 则180°-x=3(90°-x )-20°,……………(3分) 解得:x=35°.……………(5分)答:这个角的度数是35°.……………(6分)24.(8分)解:(1) <,=, >, <……………(4分) (2)原式=……………(2分)=a-c+b ……………(4分)25.(10分)解:(1)共有9个小于平角的角;……………(2分)(2)因为OD 平分∠AOC ,所以∠AOD =12∠AOC =25°, 所以∠BOD =180°-25°=155°;……………(3分) (3)解OE 平分∠BOC. ……………(1分)理由如下:因为∠DOE =90°,∠COD =25°,所以∠COE =90°-25°=65°. 因为∠AOC =50°,所以∠BOC =180°-50°=130°. ……………(2分)所以∠COE =21∠BOC ,所以OE 是否平分∠BOC. ……………(2分)26. (10分)解:(1)甲店需付款10+10×0.7=17元;(1分) 乙店需付款20×0.8=16元,……………(2分) 所以到乙商店省钱. ……………(3分) (2)设买x 本时到两个商店付的钱一样。

湖北省武汉市汉阳区2018-2019学年七年级(上)期末数学试卷 含解析

湖北省武汉市汉阳区2018-2019学年七年级(上)期末数学试卷  含解析

2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共小10题,每小题3分,共30分)1.﹣2的绝对值等于()A.﹣B.C.﹣2 D.22.下列各组项中是同类项的是()A.3x2y和﹣3xy2B.﹣0.2a2b和﹣b2aC.3abc和ab D.﹣x和πx3.不管从那个方向看,视图都是圆的几何体是()A.球B.正方体C.圆柱D.圆锥4.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我5.下列等式变形正确的是()A.如果s=ab,那么b=B.如果x=y,则C.如果x﹣3=y﹣3,那么x﹣y=0D.如果mx=my,那么x=y6.解方程4(x﹣1)﹣x=2(x+),步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=1+4;③合并同类项,得3x=5;④系数化为1,得.检验知,不是原方程的解,说明解题的四个步骤中有错误,其中做错的一步是()A.①B.②C.③D.④7.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形有()A.1个B.2个C.3个D.4个8.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它的北偏东40°方向上又发现了客轮B,则∠AOB的度数为()A.100°B.80°C.70°D.110°9.在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍、问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是()A.32+x=2×18 B.32+x=2(38﹣x)C.52﹣x=2(18+x)D.52﹣x=2×1810.利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系绕,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d ×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生,那么表示7班学生的识别图案是()A.B.C.D.11.我们定义:如果两个角的差的绝对值等90°,就可以称这两个角互为垂角,例如:∠1=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角),如图,OC⊥AB于点O,OE⊥OD,图中所有互为垂角的角有()A.2对B.3对C.4对D.6对12.如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE,若图中所有线段的长度之和是线段AD长度的7倍,则的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.某天最高气温为8℃,最低气温为﹣1℃,则这天的最高气温比最低气温高℃.14.计算﹣3a﹣(b﹣3a)的结果是.15.计算:45°39′+65°41′=.16.一个角的补角比它的余角的2倍大35°,则这个角的度数为.17.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为cm.18.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.三、解答题(本大题共8小题,共72分)19.计算(1)(2)20.先化简,再求值(1),其中x=﹣2,y=(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x,y满足21.解方程(1)2x﹣3=x+1(2)22.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?23.如图,C为线段AB上一点,D为AC的中点,E为BC的中点,F为DE的中点.(1)若AC=4,BC=6,求CF的长;(2)若AB=16CF,求的值.24.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?25.缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳个人所得税(应纳税所得额=税前收总额﹣国家规定扣除专项金额﹣免征额).级数应纳税所得额税率%1 不超过3000元的 32 超过3000元至12000元的部分103 超过12000元至25000元的部分20………根据以上信息,解决以下问题:(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是元.26.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON 的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD 内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠B0C在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=∠DON.求t的值.参考答案与试题解析一.选择题(共12小题)1.﹣2的绝对值等于()A.﹣B.C.﹣2 D.2【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选:D.2.下列各组项中是同类项的是()A.3x2y和﹣3xy2B.﹣0.2a2b和﹣b2aC.3abc和ab D.﹣x和πx【分析】根据同类项的定义判断:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:A、3x2y和﹣3xy2不是同类项,故本选项错误;B、﹣0.2a2b和﹣b2a不是同类项,故本选项错误;C、3abc和ab,不是同类项,故本选项错误;D、﹣x和πx,是同类项,故本选项正确.故选:D.3.不管从那个方向看,视图都是圆的几何体是()A.球B.正方体C.圆柱D.圆锥【分析】根据常见几何体的三视图,可得答案.【解答】解:球的三视图都是圆,故选:A.4.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.5.下列等式变形正确的是()A.如果s=ab,那么b=B.如果x=y,则C.如果x﹣3=y﹣3,那么x﹣y=0D.如果mx=my,那么x=y【分析】依据等式的基本性质进行判断,即可得出结论.【解答】解:A.如果s=ab,那么b=,故本选项不合题意;B.如果x=y,a≠0,则,故本选项不合题意;C.如果x﹣3=y﹣3,那么x=y,即x﹣y=0,故本选项符合题意;D.如果mx=my,m≠0,那么x=y,故本选项不合题意;故选:C.6.解方程4(x﹣1)﹣x=2(x+),步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=1+4;③合并同类项,得3x=5;④系数化为1,得.检验知,不是原方程的解,说明解题的四个步骤中有错误,其中做错的一步是()A.①B.②C.③D.④【分析】观察可得移项出现错误.【解答】解:观察得:其中做错的一步是②,故选:B.7.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形有()A.1个B.2个C.3个D.4个【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第三个图形中∠α=∠β,第四个图形∠α和∠β互补.【解答】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,第四个图形∠α+∠β=180°,不相等,因此∠α=∠β的图形个数共有3个.故选:C.8.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它的北偏东40°方向上又发现了客轮B,则∠AOB的度数为()A.100°B.80°C.70°D.110°【分析】首先根据方向角的定义作出图形,根据图形即可求解.【解答】解:∠AOB=180°﹣60°﹣40°=80°.故选:B.9.在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍、问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是()A.32+x=2×18 B.32+x=2(38﹣x)C.52﹣x=2(18+x)D.52﹣x=2×18【分析】首先理解题意找出题中存在的等量关系:原来拔草的人数+支援拔草的人数=2(原来植树的人数+支援植树的人数),根据此等式列方程即可.【解答】解:设支援拔草的有x人,则支援植树的为(20﹣x)人,现在拔草的总人数为(32+x)人,植树的总人数为(18+20﹣x=38﹣x)人.根据等量关系列方程得,32+x=2(38﹣x).故选:B.10.利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系绕,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d ×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生,那么表示7班学生的识别图案是()A.B.C.D.【分析】由该生为7班学生,可得出关于a,b,c,d的方程,结合a,b,c,d均为1或0,即可求出a,b,c,d的值,再由黑色小正方形表示1白色小正方形表示0,即可得出结论.【解答】解:依题意,得:8a+4b+2c+d=7,∵a,b,c,d均为1或0,∴a=0,b=c=d=1.故选:B.11.我们定义:如果两个角的差的绝对值等90°,就可以称这两个角互为垂角,例如:∠1=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角),如图,OC⊥AB于点O,OE⊥OD,图中所有互为垂角的角有()A.2对B.3对C.4对D.6对【分析】由OC⊥AB,OE⊥OD,得出∠AOE和∠COE、∠COD和∠BOD、∠COE和∠COD,∠AOE和∠BOD互为垂角,即可得出结果.【解答】解:∵OC⊥AB,OE⊥OD,∴∠AOE和∠COE、∠COD和∠BOD、∠COE和∠COD,∠AOE和∠BOD互为垂角,故选:C.12.如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE,若图中所有线段的长度之和是线段AD长度的7倍,则的值为()A.B.C.D.【分析】根据已知条件用x和y表示线段BD和AE,再用x和y表示其它线段即可求解.【解答】解:设CD=2BD=2x,CE=2AE=2y,则BD=x,AE=y,BE=2y﹣3x,所有线段和AE+AB+AD+AC+EB+ED+EC+BD+BC+DC=4y+3(2y﹣3x)+2x+2x+3(2y﹣3x)+2x+2x+2x+2x+2x=7(y+2y﹣3x+x),由图形可知:y=2x,则AD=y+2y﹣3x+x=3y﹣2x=4x,AC=3y=6x,∴=,故选:A.二.填空题(共6小题)13.某天最高气温为8℃,最低气温为﹣1℃,则这天的最高气温比最低气温高9 ℃.【分析】根据题意列出式子,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣1)=8+1=9℃.即这天的最高气温比最低气温高9℃.故答案为:914.计算﹣3a﹣(b﹣3a)的结果是﹣b.【分析】直接去括号进而合并同类项即可得出答案.【解答】解:﹣3a﹣(b﹣3a)=﹣3a﹣b+3a=﹣b.故答案为:﹣b.15.计算:45°39′+65°41′=111°20′.【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.【解答】解:45°39′+65°41′=111°20′,故答案为:111°20′.16.一个角的补角比它的余角的2倍大35°,则这个角的度数为35°.【分析】设出所求的角为x,则它的补角为180°﹣x,余角为90°﹣x,根据题意列出方程,再解方程即可.【解答】解:设这个角的度数是x,则它的补角为:180°﹣x,余角为90°﹣x;由题意,得:(180°﹣x)﹣2(90°﹣x)=35°,解得:x=35°,故答案为:35°.17.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为2或22 cm.【分析】根据两点间的距离分两种情况计算即可.【解答】解:当两条线段一端重合,另一端在同一方向时,此时两根木条的中点之间的距离为12﹣10=2(cm);当两条线段一端重合,另一端方向相反时,此时两根木条的中点之间的距离为10+12=22(cm);故答案为2或22.18.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9 .【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.三.解答题(共8小题)19.计算(1)(2)【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:(1)=3﹣2=1;(2)=(5)2﹣(﹣8)=()2+8=()2+8=+8==.20.先化简,再求值(1),其中x=﹣2,y=(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x,y满足【分析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:(1)原式=x﹣2x﹣y2﹣x+y2=﹣3x﹣y2,将x=﹣2,y=代入得:原式=6﹣=5;(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,∵|x+1|+(y﹣)2=0,∴x=﹣1,y=,将x=﹣1,y=代入得:原式=﹣5.21.解方程(1)2x﹣3=x+1(2)【分析】(1)根据移项、合并同类型、系数化为1即可求解;(2)根据去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)2x﹣x+1+3x=4;(2)2(x+3)=12﹣3(3﹣2x)2x+6=12﹣9+6x4x=3x=.22.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.【解答】解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),答:买羊人数为21人,羊价为150元.23.如图,C为线段AB上一点,D为AC的中点,E为BC的中点,F为DE的中点.(1)若AC=4,BC=6,求CF的长;(2)若AB=16CF,求的值.【分析】(1)根据线段的中点定义求出DF的长,再根据线段的和差即可求解;(2)分两种情况画图,再根据线段中点定义即可求解.【解答】解:(1)∵D为AC的中点,∴AD=CD=AC=2∵E为BC中点,∴CE=BE=BC=3∴DE=DC+CE=5∵F为DE中点∴DF=DE=∴CF=DF﹣DC=﹣2=(2)当F在C点右侧时,如图:设AD=CD=x,CE=BE=y,则DF=DE=(x+y)∴CF=DF﹣DC=(y﹣x)∴由AB=16CF得:2(x+y)=8(y﹣x),∴5x=3y∴②当F在C点的左侧时,如图:CF=DC﹣DF=(x﹣y)2(x+y)=16×(x﹣y)∴5x=3y,∴==综上:=或.24.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.25.缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳个人所得税(应纳税所得额=税前收总额﹣国家规定扣除专项金额﹣免征额).级数应纳税所得额税率%1 不超过3000元的 32 超过3000元至12000元的部分103 超过12000元至25000元的部分20………根据以上信息,解决以下问题:(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税60 元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是14000 元.【分析】(1)根据级数1缴纳个人所得税;(2)小明爸爸在第2级中的税,设他的应纳税所得额为a元,根据题意列出方程并解答;(3)设小明的爸爸应纳税所得额是x元,则小明的妈妈应纳税所得额是(20000﹣x)元,由于爸爸的应纳税所得额高于妈妈的应纳税所得额,所以妈妈的应该是第2级中的税率,爸爸的应是第3级中的税率.【解答】解:(1)由题意知,2000×3%=60(元)故答案是:60;(2)易知:小明爸爸在第2级中的税,设他的应纳税所得额为a元,则90+(a﹣3000)×10%=590.解得a=8000.∴小明爸爸应纳税所得额为8000元(3)设小明的爸爸应纳税所得额是x元,则小明的妈妈应纳税所得额是(20000﹣x)元,由题意得:(20000﹣x)×10%+20%x=1780解得x=14000故答案是:14000.26.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON 的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD 内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠B0C在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=∠DON.求t的值.【分析】(1)根据角平分线的定义进行角的计算即可;(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;(3)根据(2)中前一种情况用含t的式子表示角度,再根据已知条件即可求解.【解答】解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB∠BOD=(∠AOB+∠BOD)=∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=∠AOC∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=∠AOC∠BOD+∠BOC=(∠AOC+∠BOD)+∠BOC=(∠AOD﹣∠BOC)+∠BOC=×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中的第一种情况,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t的值为21.。

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。

最新2018-2019年七年级上期末数学试卷含答案解析

最新2018-2019年七年级上期末数学试卷含答案解析

七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。

初中数学湖北省武汉市武昌区七年级上学期期末考试数学考试题(有答案)

初中数学湖北省武汉市武昌区七年级上学期期末考试数学考试题(有答案)

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:四个有理数﹣1,2,0,﹣3,其中最小的是A.﹣1 B.2 C.0 D.﹣3试题2:﹣3的相反数是A.3 B. C. D.﹣3 试题3:我国南海探明可燃冰储量约19400000000立方米,19400000000用科学记数法表示为A.1.94×1010B.0.194×1010 C.1.94×109 D.19.4×109试题4:将下列平面图形绕轴旋转一周,可得到图中所示的立体图形是A. B. C. D.试题5:代数式与是同类项,则常数n的值为A.2 B.3 C.4 D.6试题6:若x=﹣1是关于x的方程2x+5a=3的解,则a的值为A. B.4 C.1 D.﹣1试题7:下列运算中正确的是A.3a+2b=5ab B. C. D.试题8:我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得A. B. C. D.试题9:在数轴上表示有理数a,﹣a,﹣b-1的点如图所示,则A.﹣b<﹣a B.< C.> D.b-1<a试题10:一列数,按一定规律排列成﹣1,3,﹣9,27,﹣81,…,从中取出三个相邻的数,若三个数的和为a,则这三个数中最大的数与最小的数的差为A. B. C. D.试题11:某市2018年元旦的最低气温为﹣1℃,最高气温为7℃,这一天的最高气温比最低气温高℃.试题12:30°30′=°.试题13:单项式的次数是.试题14:若一个角比它的补角大36°,则这个角为°.试题15:已知点A、B、C在直线l上,若BC=AC,则=.试题16:如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,第2018次输出的结果为.(﹣3)+7+8+(﹣9).试题18:.试题19:3x+2=7-2x.试题20:.试题21:先化简,再求值:,其中x=﹣2,y=﹣1.试题22:笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,6支圆珠笔;小明买6本笔记本,3支圆珠笔.(1)买这些笔记本和圆珠笔小红和小明一共花费多少元钱?(2)若每本笔记本比每支圆珠笔贵2元,求小明比小红多花费了多少元钱?试题23:如图,∠AOC与∠BOC互余,OD平分∠BOC,∠EOC=2∠AOE.(1)若∠AOD=75°,求∠AOE的度数.(2)若∠DOE=54°,求∠EOC的度数.2018年元旦,某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种善品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中是盈利还是亏损了?如果是盈利,求商场销售甲、乙两种商品各一件盈利了多少元?如果是亏损,求销售甲、乙两种商品各一件亏损了多少元?试题25:如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.试题26:如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;(3)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120),则n=时,∠MON=2∠BOC.图1 图2试题1答案:D试题2答案: A试题3答案: A试题4答案: B试题5答案: B试题6答案: C试题7答案: B试题8答案: C试题9答案: D试题10答案: C试题11答案: 8试题12答案: 30.5试题13答案:3试题14答案:108试题15答案:或试题16答案:4试题17答案:3试题18答案:试题19答案:x=1试题20答案:x=5试题21答案:原式==7试题22答案:(1)共共花费(9x+9y)元(2)小明:6x+3y 小红:3x+6y (6x+3y)-(3x+6y)=3x-3y 小明比小红多花费:3(x-y)=6元试题23答案:试题24答案:试题25答案:试题26答案:。

武汉市2019学年度上学期期末考试七年级数学试卷

武汉市2019学年度上学期期末考试七年级数学试卷

A.8
B.6
C.4
7.下面计算正确的是( )
D. m n
) D.无法确定
三、解答题(共 8 小题,共 72 分)
下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形,填空的位置不需
要写过程.
17.(本题 8 分)计算:
(1) 3-7-﹙-7﹚+﹙-6﹚;
(2)-23 ×2 1 +﹙- 3 ﹚ 2 ÷﹙- 1 ﹚ 3 ;
ba
-1
0
c1
22.(本题 10 分)已知含字母 m,n 的代数式是:3m2 2(n2 mn 3) 3(m2 2n2) 4(mn m 1) . (1)化简这个代数式. (2)小明取 m,n 互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于 0.那么 小明所取的字母 n 的值等于多少? (3)聪明的小智从化简的代数式中发现,只要字母 n 取一个固定的数,无论字母 m 取何数,代数 式的值恒为一个不变的数,那么小智所取的字母 n 的值是多少呢?
24.(本题 12 分)已知点 A , B 在数轴上表示的数分别为 a,b,且 a 6 (b 18)2 0(规定: 数轴上 A , B 两点之间的距离记为 AB ). (1)求 b a 的值. (2)数轴上是否存在点 C ,使得 CA 3CB ?若存在,请求出点 C 所表示的数;若不存在,请说
14.已知代数式x+2y的值是3,则代数式2x+4y+1的值是__________.
15. 若 a 与 b 互为相反数, c 与 d 互为倒数,则 2019a 2018b bcd =

16.在长方形 ABCD 内,将两张边长分别为 a 和 b(a>b)的正方形纸片按图 1、图 2 两种方式放
置(图 1、图 2 中两张正方形纸片均有部分重叠),长方形 ABCD 内未被这两张正方形纸片覆盖的

2018-2019学年七年级上学期期末考试数学试题(解析版)

2018-2019学年七年级上学期期末考试数学试题(解析版)

2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。

武昌区2018~2019学年度第一学期期末学业水平测试七年级数学试卷

武昌区2018~2019学年度第一学期期末学业水平测试七年级数学试卷

武昌区2018~2019学年度第一学期期末学业水平测试七年级数学试卷(考试时间:90分钟;满分:100分)★友情提示:①所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;②试题未要求对结果取近似值的,不得采取近似计算一、选择题(本大题共10小题,每小3分,共30分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.3倒数等于()A.3 B.C.﹣3 D.﹣2.下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2| 3.下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x4下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣x y+xy=0 D.a4+a2=a65.方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=36.下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=27.下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D .两点之间,线段最短8.如图所示的几何体,从正面看到的平面图形是( )A .B .C .D .9.下列表达错误的是( ) A .比a 的2倍大1的数是2a +1 B .a 的相反数与b 的和是﹣a +b C .比a 的平方小的数是a 2﹣1 D .a 的2倍与b 的差的3倍是2a ﹣3b10.已知a 、b 、c 在数轴上位置如图,则|a +b |+|a +c |﹣|b ﹣c |=( )A .0B .2a +2bC .2b ﹣2cD .2a +2c二、填空题(本大题共6小题,每小题3分,共18分.请将答案填入答题卡...的相应位置)11.2= .12.比较大小,4- 3(用“>”,“<”或“=”填空). 13.写出一个关于x 的一元一次方程,且它的解为3,如 . 14.若,67︒=∠A 则A ∠的余角= .15.几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺4棵树苗.若设参与种树的人数为x 人,可列方程 .16.如图,用大小相同的小正方形拼大正方形,拼第1个大正方形需要4个小正方形,拼第2个大正方形需要9个小正方形,拼第3个大正方形需要16个小正方形,……,按照这样的拼法,第9个大正方形比第8个大正方形多 个小正方形.三、解答题(本大题共7小题,共52分.请在答题卡...的相应位置作答) 17.(6分)计算:()()395324+⨯---÷.18.(6分)如图,平面内有A 、B 、C 、D 四点.按下列语句画图.(1)画直线AB ,射线BD ,线段BC ; (2)连接AC ,交射线BD 于点E .19.(6分)先化简,再求值:()y x y x 43)5(+-+,其中,21=x 32=y .20.(6分)解方程:211132x x -+-=. (第18题图)ABCD21.(8分)如图,已知AOE ∠是平角,,30︒=∠EOD ,4BOA BOD ∠=∠且OC 平分BOD ∠,求AOC ∠的度数.22.(10分)为了鼓励市民节约用水,某市水费实行阶梯式计量水价.每户每月用水量不超过25吨,收费标准为每吨a 元;若每户每月用水量超过25吨时,其中前25吨还是每吨a 元,超出的部分收费标准为每吨b 元.下表是小明家一至四月份用水量和缴纳水费情况.根据表格提供的数据,回答:月份 一 二 三 四 用水量(吨) 16 18 30 35 水费(元)32366580(1)a=________;b=________;(2)若小明家五月份用水32吨,则应缴水费 元;(3)若小明家六月份应缴水费102.5元,则六月份他们家的用水量是多少吨?(第21题图)BCDEOA23.(10分)如图1,已知在数轴上有A 、B 两点,点A 表示的数是6-,点B 表示的数是9.点P 在数轴上从点A 出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q 在数轴上从点B 出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q 到达点A 时,两点同时停止运动.设运动时间为t 秒.(1)AB = ;1t =时,点Q 表示的数是 ;当t = 时,P 、Q 两点相遇; (2)如图2,若点M 为线段AP 的中点,点N 为线段BP 中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长; (3)如图3,若点M 为线段AP 的中点,点T 为线段BQ 中点,则点M 表示的数为________;点T 表示的数为________ ;MT =_________ .(用含t 的代数式填空)(第23题图1)AB-69QPBANM-69P(第23题图2)BATM-69Q 0P(第23题图3)2018-2019学年第一学期七年级期末质量检测数学试题参考答案及评分说明说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分100分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分.(4)评分只给整数分.选择题和填空题不给中间分.一、选择题(本大题共10小题,每小题3分,共30分)1.3倒数等于()A.3 B.C.﹣3 D.﹣【解答】解:3倒数等于,故选:B.2.下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选D3.下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x【解答】解:a3与b3所含的字母不同,不是同类项;2a2b与﹣a2b是同类项;﹣ab2c与﹣5b2c所含字母不同,不是同类项;x2与2x相同字母的指数不相同,不是同类项.故选B.4.下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣xy+xy=0 D.a4+a2=a6【解答】解:A、3m+3n=6mn,错误;B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;C、﹣xy+xy=0,正确;D、a4+a2=a6,错误;故选C.5.方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=3【解答】解:方程两边都乘以﹣3得,x=﹣27.故选A.6.下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2 C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=2【解答】解:A、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;B、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;C、3x+2=4x移项,得3x﹣4x=﹣2,故本选项错误;D、3x+2=4x移项,得3x﹣4x=﹣2,所以,4x﹣3x=2,故本选项正确.故选D.7.下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【解答】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.8.如图所示的几何体,从正面看到的平面图形是()A.B. C.D.【解答】解:从正面看易得此几何体的主视图是一个梯形.故选C9.下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D .a 的2倍与b 的差的3倍是2a ﹣3b【解答】解:A 、依题意得:2a +1,故本选项不符合题意; B 、依题意得:﹣a +b ,故本选项不符合题意; C 、依题意得:a 2﹣1,故本选项不符合题意; D 、依题意得:3(2a ﹣b ),故本选项符合题意; 故选:D .10.已知a 、b 、c 在数轴上位置如图,则|a +b |+|a +c |﹣|b ﹣c |=( )A .0B .2a +2bC .2b ﹣2cD .2a +2c【解答】解:由图可知,c <a <0<b ,|c |>|b |>|a |, 则|a +b |+|a +c |﹣|b ﹣c | =a +b ﹣a ﹣c ﹣b +c =0. 故选:A .二、填空题(本大题共6小题,每小题3分,共18分) 11.2; 12.<; 13.答案不唯一,如:30x -=;14.︒23;15.4635-=+x x ; 16.19. 三、解答题(本大题共7小题,共52分)17.解:原式=9(15)(8)4+---÷ ………………………………………………………2分 =9152-+ …………………………………………………………………4分 =4- …………………………………………………………………………6分18.EABCD(1)画直线AB ,射线BD ,线段BC ………………………………………………………3分 (2)连接AC , …………………………………………………………………………………4分找到点E ,并标出点E . ………………………………………………………………6分19.解:原式=y x y x 435--+ ……………………………………………………………2分=y x 32- …………………………………………………………………4分当21=x ,32=y 时, 原式=323212⨯-⨯………………………………………………………………………5分121-=-= ………………………………………………………………………6分20.解: ()()221316x x --+= …………………………………………………………2分42336x x ---= …………………………………………………………………4分 43623x x -=++ …………………………………………………………………5分 11x =………………………………………………………………………………6分21.解:AOE ∠是平角,︒=∠30EOD150AOD ︒∴∠= …………………………………………………………………………2分 BOA BOD ∠=∠4又︒=∠+∠150BOD BOA ︒=∠+∠∴1504BOA BOA︒=∠∴30BOA ,︒=∠120BOD ………………………………………………………4分 OC 平分BOD ∠︒=∠=∠∴6021BOD BOC ……………………………………………………………6分︒=∠+∠=∠∴90BOC AOB AOC ……………………………………………………8分22.解: (1) 2=a ;3=b …………………………………………………………………2分 (2)若小明家五月份用水32吨,则应缴水费 71 元;…………………………………3分 (3)因为505.102>,所以六月份的用水量超过25吨……………………………………4分设六月份用水量为x 吨,…………………………………………………………………5分 ()5.102253252=-+⨯x ………………………………………………………………7分解得:5.42=x ………………………………………………………………9分答:小明家六月份用水量为42.5吨. ………………………………………………………10分23.解:(1)15 ; 6 ; 3 ;……………………………………………………………3分(2)答:MN 长度不变,理由如下 :………………………………………………4分七年级数学试题 第11页(共4页) M 为AP 中点,N 为BP 中点AP MP 21=∴,BP NP 21= …………………………………………………5分 NP MP MN +=∴()BP AP +=21 …………………………………………………………6分 AB 21= 1521⨯=5.7= …………………………………………………………7分 (3) 6-t ; t 239-; t 2515-. .……………………………………………………10分。

湖北省武汉市武昌区2018-2019学年七年级上期末调研数学试题及答案

湖北省武汉市武昌区2018-2019学年七年级上期末调研数学试题及答案

湖北省武汉市武昌区2018-2019学年七年级上期末调研数学试题及答案一、选择题(共12小题,每小题3分,共36分)1.-2的倒数是( )A .-2B .2C .-21D .21 2.电冰箱的冷藏室温度是5℃,冷冻室温度是-2℃,则电冰箱冷藏室比冷冻室温度高( )A .3℃B .7℃C .-7℃D .-3℃3.从权威部门获悉,中国海洋面积是2 898 000平方公里,数2 897 000用科学记数法表示为( )A .2018×104B .28.97×105C .2.897×106D .0.2018×1074.图1是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )5.单项式-2x 3y 的( )A .系数为2,次数为3B .系数为-2,次数为3C .系数为2,次数为4D .系数为-2,次数为46.下列各式中运算正确的是( )A .2(a -1)=2a -1B .a 2+a 2=2a 2C .2a 3-3a 3=a 3D .a 2b -ab 2=07.若关于x 的一元一次方程ax +3x =2的解是x =1,则a 的值为( )A .1B .-1C .5D .-58.下列说法中正确的是( )A .两点确定一条直线B .两条射线组成的图形叫做角C .两点之间直线最短D .若AB =BC ,则点B 为AC 的中点9.如图,C 为线段AB 上一点,D 为线段BC 的中点,AB =20,AD =14,则AC 的长为( )A .6B .7C .8D .1010.如图,已知O 为直线AB 上一点,OC 平分∠BOE ,OD ⊥OC 于点O ,则与∠DOE 互补的角是( )A .∠EOCB .∠AOCC .∠AOED .∠BOD11.某商店换季准备打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的成本为( )A .230元B .250元C .270元D .300元12.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =3∠DOE ,∠COE =α,则∠BOE 的度数为( )A .αB .180°-2αC .360°-4αD .2α-60°二、填空题(本题共4小题,每小题3分,共12分)13.比较大小:-2_______-714.38°15′=__________°15.当x =_______时,3x +1的值与2(3-x)的值互为相反数16.已知有理数a ,b 满足ab <0,|a|>|b|,2(a +b)=|b -a|,则ba 的值为_______ 三、解答题(共9个小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形17.计算:(1) 3-7-(-7)+(-6) (2) 2)32(942-⨯÷-18.先化简再求值:(-x 2+5x)-(x -3)-4x ,其中x =-119.解方程:(1) 3x -2=4+x (2) x +23-x =3+312-x20.已知,点A 、B 、C 在同一直线上,且AB =3,BC =1,求AC 的长21.某村小麦种植面积是a 公顷,水稻种植面积比小麦种植面积的2倍还多25公顷,玉米的种植面积比小麦种植面积少5公顷,列式计算水稻种植面积比玉米种植面积大多少公顷?22.如图,已知OB 平分∠AOC ,OD 平分∠COE ,∠AOD =110°,∠BOE =100°,求∠AOE 的度数23.整理一批图书,如果由一个人单独做要用30小时,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?24.如图,C 为线段AB 延长线上一点,D 为线段BC 上一点,CD =2BD ,E 为线段AC 上一点,CE =2AE(1) 若AB =18,BC =21,求DE 的长(2) 若AB =a ,求DE 的长(用含a 的代数式表示)(3) 若图中所有线段的长度之和是线段AD 长度的7倍,则AD/AC 的值为_______25.如果两个角的差的绝对值等于90°,就称这两个角互为垂角,例如:∠1=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角)(1) 如图1,O 为直线AB 上一点,OC ⊥AB 于点O ,OE ⊥OD 于点O ,直接指出图中所有互为垂角的角(2) 如果一个角的垂角等于这个角的补角的32,求这个角的度数 (3) 如图2,O 为直线AB 上一点,∠AOC =75°,将整个图形绕点O 逆时针旋转n (0<n <90),直线AB 旋转到A 1B 1,OC 旋转到OC 1,作射线OP ,使∠BOP =∠BOB 1,求:当n 为何值时,∠POA 1与∠AOC 1互为垂角。

2018-2019学年七年级(上)期末数学试卷含答案解析

2018-2019学年七年级(上)期末数学试卷含答案解析

2018-2019学年七年级(上)期末数学试卷一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×1063.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣15.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=138.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°二、填空题(每小题3分,共计30分)9.﹣3的绝对值是.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是℃.11.多项式2x2+xy+3是次三项式.12.已知∠A=70°,则∠A的补角是度.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.20.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为,分针1分钟转过的角度为;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?2018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:A.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1390000用科学记数法表示为1.39×106.故选B.3.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b【考点】合并同类项.【分析】根据合并同类项的法则,合并同类项是把同类项系数相加减而字母和字母的指数不变,即可解答.【解答】解:A、2a﹣a=a,故错误;B、2a与b不是同类项,故错误;C、3a2+2a2=5a2,故错误;D、正确;故选:D.4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣1【考点】解一元一次方程.【分析】先移项,再合并同类项,最后化系数为1,从而得到方程的解.【解答】解:移项得:﹣3x+2x=4﹣2,合并得:﹣x=2,系数化为1得:x=﹣2.故选B.5.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.【考点】几何体的展开图.【分析】由棱锥的侧面展开图的特征可知答案.【解答】解:棱锥的侧面是三角形.故选:C.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=13【考点】由实际问题抽象出一元一次方程.【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数13元,明确了等量关系再列方程就不那么难了.【解答】解:设B种饮料单价为x元/瓶,则A种饮料单价为(x﹣1)元,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,可得方程为:2(x﹣1)+3x=13.故选A.8.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.二、填空题(每小题3分,共计30分)9.﹣3的绝对值是3.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是11℃.【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为5﹣(﹣6)=11℃.故答案为:11.11.多项式2x2+xy+3是二次三项式.【考点】多项式.【分析】直接利用多项式的次数即单项式最高次数,进而得出答案.【解答】解:多项式2x2+xy+3是二次三项式.故答案为:二.12.已知∠A=70°,则∠A的补角是110度.【考点】余角和补角.【分析】根据补角的定义,两个角的和是180°即可求解.【解答】解:∠A的补角是:180°﹣∠A=180°﹣70°=110°.故答案是:110.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为﹣4.【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得m=2,n﹣3=3,解得n=6,m﹣n=2﹣6=﹣4,故答案为:﹣4.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为7.【考点】一元一次方程的解.【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=﹣2代入方程2x+m=1﹣x就得到关于m的方程,从而求出m的值.【解答】解:把x=﹣2代入方程2x+m=1﹣x,得:﹣4+m=1+2,解得:m=7.故答案为:7.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为14.【考点】两点间的距离.【分析】根据点P是线段MN的中点,可得MN=2PN,再根据PN=7,求出线段MN的长为多少即可.【解答】解:∵点P是线段MN的中点,∴MN=2PN=2×7=14.故答案为:14.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为120°.【考点】角的计算;角平分线的定义.【分析】根据角平分线的性质得出∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,进而求出x的值,即可得出答案.【解答】解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【考点】平行线;认识立体图形;对顶角、邻补角;垂线段最短.【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)﹣5+(﹣2)﹣(﹣3)=﹣7+3=﹣4(2)﹣22×3﹣(﹣3)+6﹣|﹣5|=﹣12+3+6﹣5=﹣8(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3=64﹣3[﹣9+6]+3+=64+9+3+=7620.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=时,原式=51.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=2,解得:x=1;(2)去括号得:3x﹣4x+4=2x+10,移项合并得:﹣3x=6,解得:x=﹣2;(3)去分母得:3x+3﹣6=4﹣6x,移项合并得:9x=7,解得:x=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).【考点】作图-三视图.【分析】由已知条件可知,主视图有2行,每行小正方数形数目为4;左视图有2行,每行小正方形数目为3;俯视图有3行,每行小正方数形数目为4.据此即可画出图形.【解答】解:画出这个长方体的三视图如图所示.23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于m的方程,解方程求得m的值,然后代入所求的解析式即可求解.【解答】解:把x=2代入方程得:2﹣(m﹣2)=4,解得:m=﹣4,则m2﹣(6m+2)=16﹣(﹣24+2)=38.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是垂直.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)【考点】作图—复杂作图;点到直线的距离;平行线的性质.【分析】(1)分别根据垂线与平行线的性质与即可画出图形;(2)根据平行线的性质即可得出结论;(3)用刻度尺量出C点到直线AB的距离即可.【解答】解:(1)如图,线段CD与直线EF即为所求;(2)∵EF∥AB,CH⊥AB,∴EF⊥CH.(3)C点到直线AB的距离约为2.5cm.故答案为:垂直.25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.【考点】对顶角、邻补角.【分析】(1)由邻补角定义即可得出结果;(2)由对顶角相等得出∠BOD=∠AOC=74°,由角平分线定义即可得出结果;(3)求出∠BOF=∠DOF﹣∠BOD=16°,即可得出∠EOF的度数.【解答】解:(1)∵∠AOC=74°,∴∠BOC=180°﹣74°=106°;(2)∵∠BOD=∠AOC=74°,OE平分∠BOD,∴∠BOE=∠BOD=37°;(3)∵∠BOF=∠DOF﹣∠BOD=90°﹣74°=16°,∴∠EOF=∠BOE+∠BOF=37°+16°=53°.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?【考点】一元一次方程的应用;钟面角.【分析】(1)钟表表盘共360°,被分成12大格,每一个大格是360°÷12=30°.(2)分①当分针在时针上方时②当分针在时针下方时两种情况列出方程解答即可.【解答】解:(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°,故答案为:30°,6°(2)设在下午3点至4点之间,从下午3点开始,经过x分钟,时针与分针成60°角.①当分针在时针上方时,由题意得:﹣6x=60解得:②当分针在时针下方时,由题意得:解得:.答:在下午3点至4点之间,从下午3点开始,经过或分钟,时针与分针成60°角.。

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中最小的数是A. B. 0 C. D.【答案】D【解析】解:,四个数中最小的数是.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.2.巢湖是中国五大淡水湖之一,位于安徽省中部,最大水容积达亿立方米,其中“亿”用科学记数法可表示为A. B. C. D.【答案】B【解析】解:“亿”用科学记数法可表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关系式正确的是A. B. C. D.【答案】C【解析】解:A、,错误;B、,错误;C、15^{\circ}5’'/>,正确;D、15^{\circ}5’'/>,错误;故选:C.根据,求得结果.本题考查了度分秒的换算,相对比较简单,注意以60为进制即可.4.“把弯曲的公路改直就可以缩短路程”,其中蕴含的数学道理是A. 经过两点有一条直线,并且只有一条直线B. 直线比曲线短C. 两点之间的所有连线中,直线最短D. 两点之间的所有连线中,线段最短【答案】D【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.5.在数轴上点M表示的数为,与点M距离等于3个单位长度的点表示的数为A. 1B.C. 或1D. 或5【答案】C【解析】解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是;与点M距离等于3个单位长度的点在M左边时,该点表示的数是,故选:C.与点M距离等于3个单位长度的点在M左右两边各一个,分别用M表示的数为加减3即可.本题考查数轴的相关知识运用分类讨论和数形结合思想是解答此类问题的关键.6.如图,若AB,CD相交于点O,,则下列结论不正确的是A. 与互为余角B. 与互为余角C. 与互为补角D. 与互为补角【答案】C【解析】解:,,,,,,故A、B、D选项正确,C错误.故选:C.直接利用垂直的定义结合互余以及互补的定义分析得出答案.此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.7.在解方程过程中,以下变形正确的是A. B. C.D.【答案】A【解析】解:去分母得:,去括号得:,故选:A.方程两边乘以6去分母得到结果,即可作出判断.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.8.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利,另七年级个亏损,则在这次买卖中,商店的盈亏情况是A. 盈利元B. 盈利6元C. 不盈不亏D. 亏损6元【答案】D【解析】解:设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据题意得:,,解得:,,元.答:商店亏损6元.故选:D.设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据售价进价利润,即可得出关于的一元一次方程,解之即可得出的值,再利用利润售价进价即可找出商店的盈亏情况.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.9.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母所对应的点重合.A. AB. BC. CD. D【答案】D【解析】解:设数轴上的一个整数为x,由题意可知当时为整数,A点与x重合;当时为整数,D点与x重合;当时为整数,C点与x重合;当时为整数,B点与x重合;而,所以数轴上的1949所对应的点与圆周上字母D重合.故选:D.因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示的数都与D点重合,依此按序类推.本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.有理数a,b,c在数轴上的对应点如图所示,化简代数式,结果为A. B. C. D.【答案】C【解析】解:由数轴知,,,故选:C.由数轴知,,,去绝对值合并同类项即可.本题考查绝对值的性质确定绝对值符号内代数式的性质符号是解答此类题目的关键.二、填空题(本大题共6小题,共24.0分)11.如果向东走10米记作米,那么向西走15米可记作______米【答案】【解析】解:向东走10米记作米,向西走15米记作米.故答案为:.明确“正”和“负”所表示的意义,再根据题意作答.本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.若的值与2互为相反数,则x的值为______.【答案】【解析】解:的值与2互为相反数,,解得:.故答案为:.直接利用相反数的定义得出,进而得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.13.如图是某市2015年至2018年各年底私人汽车拥有量折线统计图从中可以看出该市私人汽车数量增加最多的年份是______年【答案】~【解析】解:由图可得,~年增加辆,~年增加辆,~年增加辆,故答案为:~.根据函数图象中的数据,可以求得该市私人汽车数量增加最多的年份.本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为______.【答案】【解析】解:由题意,可得这个三位数为:.故答案为.根据m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,即m扩大了10倍,n不变,即可得出答案.主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.15.当时,代数式的值为3,则______.【答案】1【解析】解:根据题意,将代入,得:,则原式,故答案为:1.由已知条件得出,代入原式计算可得.本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.16.已知,,OM平分,ON平分,那么等于______度【答案】或80【解析】解:当射线OC在内部时,,OM平分,ON平分,,,;当射线OC在外部时,,OM平分,ON平分,,,,故答案为:或80.分射线OC在内部和外部两种可能来解答.本题考查角平分线的意义分类讨论是解答此题的关键.三、计算题(本大题共3小题,共24.0分)17.计算:【答案】解:原式.【解析】根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.先化简再求值:,其中,.【答案】解:原式当,时,原式【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.《九章算术》是中国古代数学的经典著作书中有一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”意思是:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多出11文钱;如果每人出6文钱,又会缺16文钱问买鸡的人数、买鸡的钱数各是多少?请解答这个题目.【答案】解:设买鸡的人数为x,则鸡的钱数为文钱,根据题意,得:,解得:,则,答:买鸡的人数为9,则鸡的钱数为70文钱.【解析】设买鸡的人数为x,则鸡的钱数为文钱,根据“每人出6文钱,又会缺16文钱”列出方程求解可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.四、解答题(本大题共3小题,共32.0分)20.解方程.【答案】解:去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.某中学为了了解学生参加体育运动的兴趣情况,从全校学生中随机抽取部分学生进行调查,对样本数据整理后画出如下统计图统计图不够完整请结合图中信息解答下列问题:此样本的样本容量为:______;补全条形统计图;求兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.【答案】200【解析】解:样本容量为:,故答案为:200;兴趣为“高”的学生有:人,补全的条形统计图如右图所示;兴趣为“中”的学生所占的百分比是:,兴趣为“中”的学生对应扇形的圆心角是:.根据统计图中兴趣为“极高”的学生所占的百分比和人数,可以求得此样本的容量;根据中的结果,可以求得条形统计图中兴趣为“高”的学生人数,从而可以将条形统计图补充完整;根据统计图中的数据可以求得兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.本题考查条形统计图、扇形统计图、总体、个体、样本、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,数轴上点A表示的数为,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动设运动时间为t秒.,B两点间的距离等于______,线段AB的中点表示的数为______;用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;求当t为何值时,?若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.【答案】20 6【解析】解:点A表示的数为,点B表示的数为16,,B两点间的距离等于,线段AB的中点表示的数为故答案为:20,6点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,点P表示的数为:,点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,点Q表示的数为:,故答案为:,或6答:或6时,线段MN的长度不会变化,点M为PA的中点,点N为PB的中点,,由数轴上两点距离可求A,B两点间的距离,由中点公式可求线段AB的中点表示的数;由题意可求解;由题意可列方程可求t的值;由线段中点的性质可求MN的值不变.本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.。

初中数学 武汉市武昌区七年级上期末数学考试卷含答案解析

初中数学 武汉市武昌区七年级上期末数学考试卷含答案解析

xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型 选择题填空题简答题xx 题 xx 题 xx 题 总分 得分一、xx 题(每空xx 分,共xx 分)试题1:四个有理数2、1、0、﹣1,其中最小的是( ) A .1 B .0 C .﹣1 D .2 试题2:相反数等于其本身的数是( )A .1B .0C .±1D .0,±1 试题3:据统计部门预测,到2020年武汉市常住人口将达到约14500000人,数14500000用科学记数法表示为( ) A .0.145×108B .1.45×107C .14.5×106D .145×105试题4:如图,一个长方形绕轴l 旋转一周得到的立体图形是( )A .棱锥B .圆锥C .圆柱D .球 试题5:多项式y 2+y+1是( )评卷人得分A.二次二项式 B.二次三项式 C.三次二项式 D.三次三项式试题6:已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为( )A.﹣1 B.0 C.1 D.2试题7:下面计算正确的( )A.3x2﹣x2=3 B.a+b=ab C.3+x=3x D.﹣ab+ba=0试题8:甲厂有某种原料180吨,运出2x吨,乙厂有同样的原料120吨,运进x吨,现在甲厂原料比乙厂原料多30吨,根据题意列方程,则下列所列方程正确的是( )A.(180﹣2x)﹣(120+x)=30 B.(180+2x)﹣(120﹣x)=30C.(180﹣2x)﹣(120﹣x)=30 D.(180+2x)﹣(120+x)=30试题9:如图,数轴上每相邻两点相距一个单位长度,点A、B、C、D对应的位置如图所示,它们对应的数分别是a、b、c、d,且d﹣b+c=10,那么点A对应的数是( )A.﹣6 B.﹣3 C.0 D.正数试题10:如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是( )A.3b﹣2a B. C. D.试题11:如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记__________米.试题12:34°30′=__________°.试题13:若单项式3xy m与﹣xy2是同类项,则m的值是__________.试题14:如图,∠AOB与∠BOC互补,OM平分∠BOC,且∠BOM=35°,则∠AOB=__________°.试题15:如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD=__________cm.试题16:已知x、y、z为有理数,且|x+y+z+1|=x+y﹣z﹣2,则=__________.试题17:7﹣(﹢2)+(﹣4)试题18:(﹣1)2×5+(﹣2)3÷4.试题19:试题20:.试题21:先化简,再求值:ab+(a2﹣ab)﹣(a2﹣2ab),其中a=1,b=2.试题22:某工厂第一车间有x人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有__________人?(2)调动后,第一车间的人数为__________ 人,第二车间的人数为__________人;(3)求调动后,第一车间的人数比第二车间的人数多几人?试题23:如图,AD=,E是BC的中点,BE=,求线段AC和DE的长.试题24:下表是2015﹣2016赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.排名球队场次胜平负进球主场进球客场进球积分1 切尔西 6 ?? 1 13 8 5 132 基辅迪纳摩 63 2 1 8 3 5 113 波尔图 6 3 1 2 9 x 5 104 特拉维夫马卡比 6 0 0 6 1 1 0 0备注积分=胜场积分+平场积分+负场积分(1)表格中波尔图队的主场进球数x的值为__________,本次足球小组赛胜一场积分__________,平一场积分__________,负一场积分__________;(2)欧洲冠军杯奖金分配方案为:参加第一阶段小组赛6场比赛每支球队可以获得参赛奖金1200万欧元,以外,小组赛中每获胜一场可以再获得150万欧元,平一场获得50万欧元.请根据表格提供的信息,求出在第一阶段小组赛结束后,切尔西队一共能获得多少万欧元的奖金?已知数轴上,点O为原点,点A对应的数为9,点B对应的数为6,点C在点B右侧,长度为2个单位的线段BC在数轴上移动.(1)如图1,当线段BC在O、A两点之间移动到某一位置时恰好满足线段AC=OB,求此时b的值;(2)当线段BC在数轴上沿射线AO方向移动的过程中,若存在AC﹣0B=AB,求此时满足条件的b值;(3)当线段BC在数轴上移动时,满足关系式|AC﹣OB|=|AB﹣OC|,则此时的b的取值范围是__________.试题26:已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=__________.试题1答案:C【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:﹣1<0<1<2,最小的是﹣1.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.试题2答案:B【考点】相反数.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数的定义,则相反数等于其本身的数只有0.故选B.【点评】主要考查了相反数的定义,要求掌握并灵活运用.试题3答案:B【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将14500000用科学记数法表示为1.45×107.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题4答案:C【考点】点、线、面、体.【分析】本题是一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.【解答】解:如图,一个长方形绕轴l旋转一周得到的立体图形是圆柱.故选:C.【点评】本题主要考查点、线、面、体,圆柱的定义,根据圆柱体的形成可作出判断.试题5答案:B【考点】多项式.【分析】根据几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:多项式y2+y+1是二次三项式,故选:B.【点评】此题主要考查了多项式,关键是掌握与多项式相关的定义.试题6答案:A【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算,即可求出m的值.【解答】解:把x=2代入方程得:2m+2=0,解得:m=﹣1,故选A.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.试题7答案:D【考点】合并同类项.【专题】计算题;整式.【分析】原式各项合并同类项得到结果,即可做出判断.【解答】解:A、原式=2x2,错误;B、原式为最简结果,错误;C、原式为最简结果,错误;D、原式=0,正确,故选D【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.试题8答案:A【考点】由实际问题抽象出一元一次方程.【分析】由题意可知:甲厂现有某种原料180﹣2x吨,乙厂现有同样的原料120+x吨,根据现在甲厂原料比乙厂原料多30吨,列出方程解答即可.【解答】解:由题意可知:(180﹣2x)﹣(120+x)=30.故选:A.【点评】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.试题9答案:B【考点】数轴.【专题】探究型.【分析】根据题意可以设点A表示的数为x,从而可以分别表示出点B、C、D,根据d﹣b+c=10,可以求得x的值,从而得到点A对应的数,本题得以解决.【解答】解:设点A对应的数是x,∵数轴上每相邻两点相距一个单位长度,∴点B表示数位:x+3,点C表示的数是:x+6,点D表示的数是:x+10,又∵点A、B、C、D对应的位置如图所示,它们对应的数分别是a、b、c、d,且d﹣b+c=10,∴x+10﹣(x+3)+(x+6)=10,解得x=﹣3.故选B.【点评】本题考查数轴,解题的关键是明确数轴的特点,根据数轴可以分别表示出各个数.试题10答案:B【考点】整式的加减.【专题】计算题;整式.【分析】设小长方形的长为x,宽为y,根据题意求出x﹣y的值,即为长与宽的差.【解答】解:设小长方形的长为x,宽为y,根据题意得:a+y﹣x=b+x﹣y,即2x﹣2y=a﹣b,整理得:x﹣y=,则小长方形的长与宽的差是,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.试题11答案:﹣2米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“高”和“低”相对,若水库的水位高于标准水位3米时,记作+3米,则低于标准水位2米时,应记﹣2米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.试题12答案:34.5°.【考点】度分秒的换算.【分析】根据小单位化大单位除以进率,可得答案.【解答】解:34°30′=34°+30÷60=34.5°,故答案为:34.5.【点评】本题考查了度分秒的换算,利用小单位化大单位除以进率是解题关键.试题13答案:2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求出m的值.【解答】解:∵单项式3xy m与﹣xy2是同类项,∴m=2,故答案为:2.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.试题14答案:110°.【考点】余角和补角.【分析】根据补角定义可得∠AOB+∠BOC=180°,再根据角平分线定义可得∠BOC的度数,然后可得∠AOB的度数.【解答】解:∵∠AOB与∠BOC互补,∴∠AOB+∠BOC=180°,∵OM平分∠BOC,∴∠BOC=2∠BOM=70°,∴∠AOB=110°,故答案为:110.【点评】此题主要考查了补角和角平分线,关键是掌握两个角和为180°,这两个角称为互为补角.试题15答案:3cm.【考点】两点间的距离.【分析】根据AB与CD之间的关系计算即可.【解答】解:设CD=x,∵AB=9,AD=3CD,∴AD=3x,BD=9﹣3x,AC=2x,BC=9﹣2x,∵AB+AC+CD+BD+AD+BC=40,∴9+2x+x+9﹣3x+3x+9﹣2x=30,∴x=3故答案为:3.【点评】本题考查的是两点间的距离的计算,正确理解题意、灵活运用数形结合思想是解题的关键.试题16答案:0.【考点】绝对值.【专题】计算题;推理填空题.【分析】根据绝对值的意义得到|x+y+z+1|=x+y+z+1或|x+y+z+1|=﹣(x+y+z+1),则x+y+z+1=x+y﹣z﹣2或﹣(x+y+z+1)=x+y﹣z﹣2,解得z=﹣或x+y=,然后把z=﹣或x+y=分别代入中计算即可.【解答】解:∵|x+y+z+1|=x+y+z+1或|x+y+z+1|=﹣(x+y+z+1),∴x+y+z+1=x+y﹣z﹣2或﹣(x+y+z+1)=x+y﹣z﹣2,∴z=﹣或x+y=,当z=﹣时,=(x+y﹣)[2×(﹣)+3]=0;当x+y=时,=(﹣)(2z+3)=0,综上所述,的值为0.故答案为0.【点评】本题考查了绝对值:当a是正数时,a的绝对值是它本身a;当a是负数时,a的绝对值是它的相反数﹣a;当a是零时,a的绝对值是零.试题17答案:原式=7﹣2﹣4=7﹣6=1;试题18答案:原式=1×5﹣8÷4=5﹣2=3.试题19答案:移项合并得:x=5;试题20答案:去分母得:3(3+x)﹣6=2(x+2),去括号得:9+3x﹣6=2x+4,移项合并得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.试题21答案:【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=ab+a2﹣ab﹣a2+2ab=2ab,当a=1,b=2时,原式=4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.试题22答案:【考点】整式的加减;列代数式.【专题】计算题.【分析】(1)表示出第二车间的人数,进而表示出两个车间的总人数;(2)表示出调动后两车间的人数即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)根据题意得:x+x﹣30=(x﹣30)人;(2)根据题意得:调动后,第一车间人数为(x+10)人;第二车间人数为(x﹣40)人;(3)根据题意得:(x+10)﹣(x﹣40)=x+50(人),则调动后,第一车间的人数比第二车间的人数多(x+50)人.故答案为:(1)(x﹣30);(2)(x+10);(x﹣40)【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.试题23答案:【考点】两点间的距离.【分析】根据线段中点的性质,可得BC的长,根据线段的和差,可得AC的长,可得关于DB的方程,根据解方程,可得DB的长,再根据线段的和差,可得答案.【解答】解:由E是BC的中点,BE=,得BC=2BE=2×2=4cm,AB=3×2=6cm,由线段的和差,得AC=AB+BC=4+6=10cm;AB=AD+DB,即DB+DB=6,解得DB=4cm.由线段的和差,得DE=DB+BE=6+4=10cm.【点评】本题考查了两点间的距离,利用线段的和差得出关于DB的方程式解题关键.试题24答案:【考点】一元一次方程的应用.【分析】(1)根据波尔图队总进球数=主场进球数+客场进球数,即可求出x的值;由特拉维夫马卡比队负6场积0分,可知负一场积0分.设胜一场积x分,平一场积y分,根据排名2,3的积分数列出方程组,求解即可;(2)设切尔西队胜a场数,则平(6﹣x﹣1)场,根据积分为13列出方程,解方程进而求解即可.【解答】解:(1)由题意得x=9﹣5=4;设胜一场积x分,平一场积y分,根据题意得,解得.即胜一场积3分,平一场积1分,负一场积0分.故答案为4;3分,1分,0分;(2)设切尔西队胜a场数,则平(6﹣a﹣1)场,根据题意得3a+(6﹣a﹣1)=13,解得a=4.切尔西队一共能获奖金:1200+150×4+50×1=1850(万).答:在第一阶段小组赛结束后,切尔西队一共能获得1850万欧元的奖金.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.试题25答案:【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)由题意可知B点表示的数比点C对应的数少2,进一步用b表示出AC、OB之间的距离,联立方程求得b的数值即可;(2)分别用b表示出AC、OB、AB,进一步利用AC﹣0B=AB建立方程求得答案即可;(3)分别用b表示出AC、OB、AB、OC,进一步利用|AC﹣OB|=|AB﹣OC|建立方程求得答案即可.【解答】解:(1)由题意得:9﹣(b+2)=b,解得:b=3.5.答:线段AC=OB,此时b的值是3.5.(2)由题意得:9﹣(b+2)﹣b=(9﹣b),解得:b=.答:若AC﹣0B=AB,满足条件的b值是.(3)由题意可得:|9﹣(b+2)﹣b|=|9﹣b﹣(b+2)|,整理得|7﹣2b|=|7﹣2b|,由|7﹣2b|=|7﹣2b|可知7﹣2b=0,解得b==3.5.故答案为b=3.5.【点评】本题考查了一元一次方程的应用,考查了数轴与两点间的距离的计算,根据数轴确定出线段的长度是解题的关键.试题26答案:【考点】角的计算;角平分线的定义.【分析】(1)首先根据角平分线的定义求得∠EOB和∠COF的度数,然后根据∠EOF=∠EOB+∠COF求解;(2)解法与(1)相同,只是∠AOC=∠AOB+n°,∠BOD=∠COD+n°;(3)利用n表示出∠AOD,求得∠EOF的度数,根据∠AOD+∠EOF=6∠COD列方程求解.【解答】解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠EOB=∠AOB=×100°=50°,∠COF=∠COD=×40°=20°,∴∠EOF=∠EOB+∠COF=50°+20°=70°;(2)∠AOE﹣∠BOF的值是定值,理由是:∠AOC=∠AOB+n°,∠BOD=∠COD+n°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=∠AOC=(100°+n°),∠BOF=∠BOD=(40°+n°),∴∠AOE﹣∠BOF=(100°+n°)﹣(40°+n°)=30°;(3)∠AOD=∠AOB+∠COD+n°=100°+40°+n°=140°+n°,∠EOF=∠EOC+∠COF=∠EOC+∠COD﹣∠DOF=(100°+n°)+40°﹣(40°+n°)=70°,∵∠AOD+∠EOF=6∠COD,∴(140+n)+70°=6×40,∴n=30.故答案是:30.【点评】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.。

2018-2019学年湖北省武汉市东湖高新区七年级(上)期末数学试卷(解析版)

2018-2019学年湖北省武汉市东湖高新区七年级(上)期末数学试卷(解析版)

2018-2019学年湖北省武汉市东湖高新区七年级(上)期末数学试卷一、选择题(本大题共小10题,每小题3分,共30分)1.﹣5的相反数是()A.B.C.﹣5D.52.单项式﹣3ab的系数和次数分别是()A.﹣3、2B.﹣3、1C.2、﹣3D.3、23.下列说法正确的是()A.符号相反的数互为相反数B.任何有理数均有倒数C.一个数的绝对值越大,表示它的点在数轴上越靠右D.一个数的绝对值越大,表示它的点在数轴上离原点越远4.用四舍五入法对2.098176分别取近似值,其中正确的是()A.2.09(精确到0.01)B.2.098(精确到千分位)C.2.0(精确到十分位)D.2.0981(精确到0.0001)5.如图,已知点O在直线AB上,∠BOC=90°,则∠AOE的余角是()A.∠COE B.∠BOC C.∠BOE D.∠AOE6.如图所示是一种包装盒的展开图,厂家准备在它的山下两个面上都印上醒目的产品商标图案(用图中的“”表示),则印有商标图案的另一个面为()A.A B.B C.D D.E7.如图,C是AB的中点,D是BC的中点,下列等式不正确的是()A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB 8.几个人共同种一批树苗,如果每人种10棵,则剩下6颗树苗未种;如果每人种12颗,则缺6树苗,若设参与种树的有x人,则可列方程为()A.10x﹣6=12x+6B.10x+6=12x﹣6C.10+6x=12﹣6x D.10x+6=12﹣69.有一列数a1,a2,…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2019等于()A.2019B.2C.﹣1D.10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.31二、填空题(本大题共6小题,每小题3分,共18分)11.2018年12月7日,DC漫画公司出品的电影《海王》在大陆上映,上映后不到十天,电影票房就突破了10亿,请将数据10亿用科学记数法表示为.12.已知一个角为53°17′,则它的补角为.13.若2x m﹣1+6=0是关于x的一元一次方程,则m的值为.14.如图,将三角形ABC纸片沿MN折叠,使点A落在点Aʹ处,若∠AʹMB=50°,则∠AMN=度.15.已知多式x﹣3y﹣1的值为3,则代数式1﹣x+y的值为.16.已知线段AB=20,点C在BA的延长线上,点D在直线AB上,AC=12,BD=16,点M是线段CD的中点,则AM的长为.三、解答题(本大题共8小题,共72分)17.计算:(1)12﹣(﹣18)+(﹣7)+(﹣15)(2)﹣23÷×(﹣)218.﹣1=﹣.19.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.20.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=40°,∠DOE=30°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=35°,求∠AOC的度数.21.下列两个式:2﹣=2×+1,5﹣=5×+1.给出定义如下:我们称使等式a﹣b =ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b),数对(2,),和(5,)都是“共生有理数对”.(1)数对(﹣2,1)和(3,)中是“共生有理数对”的是;(2)若(a,﹣)是“共生有理数对”,求a的值.22.中雅七年级(1)班想买一些运动器材供班上同学阳光体育课间使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?23.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.24.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB 在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)2018-2019学年湖北省武汉市东湖高新区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分)1.﹣5的相反数是()A.B.C.﹣5D.5【解答】解:﹣5的相反数是5.故选:D.2.单项式﹣3ab的系数和次数分别是()A.﹣3、2B.﹣3、1C.2、﹣3D.3、2【解答】解:单项式﹣3ab的系数和次数分别是:﹣3,2.故选:A.3.下列说法正确的是()A.符号相反的数互为相反数B.任何有理数均有倒数C.一个数的绝对值越大,表示它的点在数轴上越靠右D.一个数的绝对值越大,表示它的点在数轴上离原点越远【解答】解:A,符号相反的数互为相反数,例如:2和﹣3,符号相反,却不是相反数,故此选项错误;B,任何有理数均有倒数,例如:0,故此选项错误;C,一个数的绝对值越大,表示它的点在数轴上越靠右,也可能靠左,故此选项错误;D,一个数的绝对值越大,表示它的点在数轴上离原点越远,故此选项正确;故选:D.4.用四舍五入法对2.098176分别取近似值,其中正确的是()A.2.09(精确到0.01)B.2.098(精确到千分位)C.2.0(精确到十分位)D.2.0981(精确到0.0001)【解答】解:A、2.098176≈2.10(精确到0.01),所以A选项错误;B、2.098176≈2.098(精确到千分位),所以B选项正确;C、2.098176≈2.1(精确到十分位),所以C选项错误;D、2.098176≈2.0982(精确到0.0001),所以D选项错误.故选:B.5.如图,已知点O在直线AB上,∠BOC=90°,则∠AOE的余角是()A.∠COE B.∠BOC C.∠BOE D.∠AOE【解答】解:已知点O在直线AB上,∠BOC=90°,∴∠AOC=90°,∴∠AOE+∠COE=90°,∴∠AOE的余角是∠COE,故选:A.6.如图所示是一种包装盒的展开图,厂家准备在它的山下两个面上都印上醒目的产品商标图案(用图中的“”表示),则印有商标图案的另一个面为()A.A B.B C.D D.E【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“B”与面“C”相对,面“A”与面“D”相对,面“R”与面“E”相对.故选:D.7.如图,C是AB的中点,D是BC的中点,下列等式不正确的是()A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB 【解答】解:∵C是AB的中点,D是BC的中点∴AC=BC=AB,CD=BD=BC∵CD=AD﹣AC∴CD=AD﹣BC故A正确∵CD=BC﹣DB∴CD=AC﹣DB故B正确∵AC=BC=AB,CD=BD=BC∴CD=AB故C错误∵CD=BC﹣DB∴CD=AB﹣DB故D正确故选:C.8.几个人共同种一批树苗,如果每人种10棵,则剩下6颗树苗未种;如果每人种12颗,则缺6树苗,若设参与种树的有x人,则可列方程为()A.10x﹣6=12x+6B.10x+6=12x﹣6C.10+6x=12﹣6x D.10x+6=12﹣6【解答】解:设参与种树的有x人,则可列方程为:10x+6=12x﹣6.故选:B.9.有一列数a1,a2,…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2019等于()A.2019B.2C.﹣1D.【解答】解:∵a1=2,a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,结果是2、、﹣1循环,2019是3的整数倍.故选:C.10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.31【解答】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∵CD=2,线段AB的长度是一个正整数,AB>CD,∴当AB=8时,3AB+CD=3×8+2=26,当AB=9时,3AB+CD=3×9+2=29,当AB=10时,3AB+CD=3×10+2=32.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)11.2018年12月7日,DC漫画公司出品的电影《海王》在大陆上映,上映后不到十天,电影票房就突破了10亿,请将数据10亿用科学记数法表示为1×109.【解答】解:10亿=10 0000 0000=1×109.故答案为:1×109.12.已知一个角为53°17′,则它的补角为126°43′.【解答】解:一个角为53°17′,则它的补角=180°﹣53°17′=126°43′;故答案为:126°43′.13.若2x m﹣1+6=0是关于x的一元一次方程,则m的值为2.【解答】解:根据题意得:m﹣1=1,解得m=2.故答案为:214.如图,将三角形ABC纸片沿MN折叠,使点A落在点Aʹ处,若∠AʹMB=50°,则∠AMN=65度.【解答】解:∵将三角形ABC纸片沿MN折叠,使点A落在点Aʹ处,∴∠AMN=∠A'MN,∵∠AMN+∠A'MN+∠A'MB=180°,∴2∠AMN=180°﹣50°,∴∠AMN=65°,故答案为:65.15.已知多式x﹣3y﹣1的值为3,则代数式1﹣x+y的值为﹣1.【解答】解:由x﹣3y﹣1=3得x﹣3y=4,∴1﹣x+y=1﹣=1﹣2=﹣1,故答案为:﹣1.16.已知线段AB=20,点C在BA的延长线上,点D在直线AB上,AC=12,BD=16,点M是线段CD的中点,则AM的长为4或12.【解答】解:如图1,当D在线段AB上时,∵AB=20,AC=12,∴BC=AB+AC=32,∵BD=16,∴CD=16,∵点M是线段CD的中点,∴CM=CD=8,∴AM=AC﹣CM=4;如图2,当D在AB的延长线上时,∵AB=20,AC=12,∴BC=AB+AC=32,∵BD=16,∴CD=BC+BD=48,∵点M是线段CD的中点,∴CM=CD=24,∴AM=CM﹣AC=24﹣12=12,故答案为:4或12.三、解答题(本大题共8小题,共72分)17.计算:(1)12﹣(﹣18)+(﹣7)+(﹣15)(2)﹣23÷×(﹣)2【解答】解:(1)12﹣(﹣18)+(﹣7)+(﹣15)=12+18﹣7﹣15=30﹣22=8;(2)﹣23÷×(﹣)2=﹣8÷×=﹣18×=﹣8.18.﹣1=﹣.【解答】解:去分母得:30x+20﹣20=10x﹣5﹣8x﹣4,移项合并得:28x=﹣9,解得:x=﹣.19.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.【解答】解:5(3a2b﹣ab2)﹣(ab2+3a2b)=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××﹣6××=1﹣=.20.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=40°,∠DOE=30°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=35°,求∠AOC的度数.【解答】解:(1)∵OB是∠AOC的平分线,OD是∠COE的平分线∴∠COB=∠BOA=40°,∠COD=∠DOE=30°∴∠BOD=∠COD+∠COB=70°;(2)由题意得:∠AOD+∠BOD=180°,∵OD平分∠COE,∠DOE=35°,∴∠COD=∠DOE=35°,设∠AOB=x,则∠AOD=2x+35°,∠BOD=x+35°,∴2x+35°+x+35°=180°,解得:x=,∴∠AOC=2x=.21.下列两个式:2﹣=2×+1,5﹣=5×+1.给出定义如下:我们称使等式a﹣b =ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b),数对(2,),和(5,)都是“共生有理数对”.(1)数对(﹣2,1)和(3,)中是“共生有理数对”的是(3,);(2)若(a,﹣)是“共生有理数对”,求a的值.【解答】解:(1)∵﹣2﹣1=﹣3,﹣2×1+1=﹣1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×+1,∴(3,)是“共生有理数对”,故答案为:(3,);(2)因为若(a,﹣)是“共生有理数对”所以a﹣(﹣)=a×(﹣)+1解得:a=﹣.22.中雅七年级(1)班想买一些运动器材供班上同学阳光体育课间使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?【解答】解:(1)设篮球的单价为x元/个,排球的单价为y元/个,根据题意得:,解得:.答:篮球的单价为90元/个,排球的单价为60元/个.(2)按套装打折购买两套(剩下的零买)需付费用为:10×(90+60)×0.8+5×90+3×60=1830(元),按套装打折购买三套需付费用为:15×(90+60)×0.8=1800(元),按满减活动购买需付费用为:15×90+13×60﹣200=1930(元).∵1800<1830<1930,∴按套装打折购买三套更划算.23.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为﹣10、5;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.【解答】解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.24.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB 在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)【解答】解:(1)解:∵∠COE=140°,∴∠COD=180°﹣∠COE=40°,又∵OA平分∠COD,∴∠AOC=∠COD=20°,∵∠AOB=90°,∴∠BOC=90°﹣∠AOC=70°;(2)存在①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2;②当OC平分∠AOD时,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;③当OD平分∠AOC时,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;综上所述:t=2,t=8或32;(3)或,理由如下:设运动时间为t,则有①当90+10t=2(40+15t)时,t=②当270﹣10t=2(320﹣15t)时,t=所以t的值为或.。

湖北省武汉市武珞2018-2019学年度七年级上数学期末复习试卷(有答案)AlAlHM

湖北省武汉市武珞2018-2019学年度七年级上数学期末复习试卷(有答案)AlAlHM

湖北省武汉市武珞2018-2019学年度(上)七年级数学期末复习试卷一、选择题1.有理数﹣的倒数是( B )A.B.﹣2 C.2 D.12.下列结论中,错误的个数为( C )﹣(﹣2)2=4;﹣5÷=﹣5;;=﹣3;﹣33=﹣9.A.2个B.3个C.4个D.5个3.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于( D )A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy4.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为( C )A.4a+5b B.a+b C.a+5b D.a+7b5.关于多项式,下列说法正确的是 AA.它的常数项是 B.它是二次三项式C.它的二次项系数为 D.它的三次项系数为06.下列说法错误的是( C )A. m是单项式也是整式 B.(m-n)是多项式也是整式C.整式一定是单项式 D.整式不一定是多项式7、下列式子去括号正确的是(D)A.-(-2x+5)=-2x-5 B.(4x-2)=-2x+2C.(2m-3n)=m+n D.-(m-2x)=-m+2x8、若2a m b4n与a2n-3b8是同类项,则m与n的值分别是(A)A.1,2B.2,1C.1,1D.1,39.方程3(x+1)=2x-1的解是( A )A.x=-4 B.x=1 C.x=2 D.x=-210.如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=CB﹣EB;③CE=CD+DB﹣AC;④CE=AE+CB﹣AB.其中,正确的是( C )A.①②B.①②③C.①②④D.①②③④二.填空题11.计算:|﹣|+|﹣|﹣|﹣|= 0 .12.已知数轴上点A表示的数为﹣3,点B表示的数为4,若点C到A的距离与点C到B的距离相等,则点C表示的有理数是0.5 .13.一辆客车上原有(6a﹣2b)人,中途下车一半人数,又上车若干人,这时车上共有(12a ﹣5b)人.则中途上车的乘客是(9a﹣4b)人.14.若关于x的整式(8x2﹣6ax+14)﹣(8x2﹣6x+6)的值与x无关,则a的值是 1 .15、若多项式+3x +7的值为10,则多项式的6+9x-7值为216.如图,将一副三角板叠在一起,使它们的直角顶点重合于O点,且∠AOB=155°,则∠COD= 25°.三.解答题17、先化简,再求值:(1) -()+(4x+),其中x=-2【答案】-2 (2)已知2,3a b =-=,求22221(93)(72)2(1)23ab a b ab a b -+-++-的值.【答案】 -3118.大刚计算“一个整式A 减去2ab ﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac ﹣2ab .请你帮他求出正确答案.解:由题意可知:A+(2ab ﹣3bc+4ac )=2bc+ac ﹣2ab ,A=2bc+ac ﹣2ab ﹣(2ab ﹣3bc+4ac )=2bc+ac ﹣2ab ﹣2ab+3bc ﹣4ac=5bc ﹣3ac ﹣4ab∴A ﹣(2ab ﹣3bc+4ac )=5bc ﹣3ac ﹣4ab ﹣2ab+3bc ﹣4ac=8bc ﹣7ac ﹣6ab19、有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x-3)+(-5x 2+6x-1)-3,其中x=2010.”小明做题时把“x=2010”错抄成了“x=2001”.但他计算的结果却是正确的,请你说明这是什么原因?【答案】原式=-120.老师在黑板上出了一道解方程的题421312+-=-x x ,小明马上举手,要求到黑板上做,他是这样做的:)2(31)12(4+-=-x x ……………… …① 63148--=-x x …………………… …②46138+-=+x x …………………… …③111-=x ………………………………… ④111-=x ………………………………… ⑤ 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、填空题
11.
________.
12.
________.
13. 若单项式
与 的和是单项式,则常数
14. 若 与 互为补角,并且 的一半比
15. 已知点 , , 在直线 上,

的值是________.
小 ,则 为________.

,则 ________.
16. 如图,下列各正方中的四个数之间均具有相同的规律,根据此规律,第 个正方形中 ____.
21.
22.
23.
24.
21. 如图,点 在直线 上,

互补, 平分
.
(1) 若
,则
的度数为;
(2) 若
,求
的度数;
22. 甲组的4工人12月份完成的总工作量比这个月人均额定工作量的3倍少1件,乙组的6名工人12月份完成的总工作量
比这个月人均额定工作量的5倍多7件.如果甲组工人这个月实际完成的人均工作量比乙组这个月实际完成的人均工作量少2
)
A.
B.
C.
D . 3046×104
4. 下列图形中可以作为一个正方体的展开图的是( )
A.
B.
C.
D.
5. 单项式
的次数是( )
A.2B.3C.5D.6
6. 若
是关于 的方程
的解,则 的值为( )
A . 1 B . -1 C . 7 D . -7 7. 下列运算中正确的是( )
A.
B.
C.
D.
8. 长江上有 , 两个港口,一艘轮船从 到 顺水航行要用时 ,从 到 (航线相同)逆水航行要用时 ,
件,那么这个月人均额定工作量是多少件?
23. 点 在线段 上,
.
(1) 如图1, , 两点同时从 , 出发,分别以

的速度沿直线 向左运动;
①在 还未到达 点时,求 的值;
②当 在 右侧时(点 与 不重合),取 中点 , 的中点是 ,求
的值;
(2) 若 是直线 上一点,且
.求 的值.
24. 已知
(本题中的角均大于 且小于
湖北省武汉市武昌区2018-2019学年七年级上学期数学期末考试试卷
一、单选题
1. 四个有理数﹣3、﹣1、0、2,其中比﹣2小的有理数是( ) A . ﹣3 B . ﹣1 C . 0 D . 2 2. -5的绝对值是()
A . 5 B . -5 C . D .
3. 改革开放40年来,我国贫困人口从1978年的7.7亿人减少到2017年的30460000人.30460000用科学记数法表示为(
己知水流的速度为
,求轮船在静水中的航行速度是多少?若设轮船在静水中的航行速度为,则可列方程为(源自)A.B.
C.
D.
9. 有理数 , , 在数轴上对应点的位置如图所示,且
,则下列选项中一定成立的是( )
A.
B. C.
D.
10. 如图,点 , 在线段 上,
()
, 是 的中点, 是 的中点,
,则 的长为
A.5B.6C.7D.8
,则 的值为____
三、解答题
17. 计算 (1) (2) 18. 解方程 (1) (2)

.

.
19. 先化简,再求值:
,其中 ,
.
20. 甲地的海拔高度是 米,乙地的海拔高度比甲地海拔高度的 倍多 米,丙地的海拔高度比甲地海拔高度的 倍
少 米.
(1) 三地的海拔高度和一共是多少米?;
(2) 乙地的海拔高度比丙地的海拔高度高多少米?
)
(1) 如图1,在
内部作
,若
,求
的度数;
(2) 如图2,在
内部作
,在
内, 在
内,且


,求
的度数;
(3) 射线 从 的位置出发绕点 顺时针以每秒 的速度旋转,时间为 秒(


,射线 平分
,射线 平分
.若
,则 秒.
参考答案
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
).射线 平
14. 15. 16. 17. 18. 19. 20.
相关文档
最新文档