数据结构-一元多项式的计算

合集下载

数据结构课程设计报告一元多项式的计算

数据结构课程设计报告一元多项式的计算

一元多项式的计算一、 需求分析建立一元多项式并按照指数降序排列输出多项式,将一元多项式输入并存储在内存中,能够完成两个多项式的加减运算并输出结果二、 概要设计存储结构:一元多项式的表示在计算机内可以用链表来表示,为了节省存储空间,只存储多项式中系数非零的项。

链表中的每一个结点存放多项式的一个系数非零项,它包含三个域,分别存放该项的系数、指数以及指向下一个多项式项结点的指针。

创建一元多项式链表,对一元多项式的运算中会出现的各种可能情况进行分析,实现一元多项式的相加、相减操作。

基本算法: 1、输入输出(1)功能:将要进行运算的多项式输入输出。

(2)数据流入:要输入的多项式的系数与指数。

(3)数据流出:合并同类项后的多项式。

(4)程序流程图:多项式输入流程图如图1所示。

(5)测试要点:输入的多项式是否正确,若输入错误则重新输入开始 申请结点空间输入多项式各项的系数 x, 指数 y输出已输入的多项式合并同类项结束否是是否输入正确图表 12、多项式的加法(1)功能:将两多项式相加。

(2)数据流入:输入函数。

(3)数据流出:多项式相加后的结果。

(4)程序流程图:多项式的加法流程图如图2所示。

(5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。

图表 2开始 定义存储结果的空链 r是否输出存储多项式的和的链r结束 是 否同指数项系数相加后存入r 直接把p 中各项存入r直接把q 中各项存入r存储多项式2的空链Q 是否为空存储多项式1的空链P 是否为空合并同类项3、多项式的减法(1)功能:将两多项式相减。

(2)数据流入:调用输入函数。

(3)数据流出:多项式相减后的结果。

(4)程序流程图:多项式的减法流程图如图3所示。

(5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。

开始定义存储结果的空链是否合并同类项结束是 否同指数项系数相加后存入r把p 中各项系数改变符号后存入直接把q 中各项存入r存储多项式2的空链Q 是否为空 存储多项式1的空链P 是否为空输出存储多项式图表 3三、详细设计#include<stdio.h>#include<malloc.h>#include<stdlib.h>typedef struct Polynomial{float coef;int expn;struct Polynomial *next;}*Polyn,Polynomial;/**************合并同类项********************/ void Insert(Polyn p,Polyn h){if(p->coef==0) //系数为0的话释放结点free(p);else //如果系数不为0{Polyn q1,q2;q1=h;q2=h->next;while(q2&&p->expn<q2->expn)//查找插入位置{q1=q2;q2=q2->next;}if(q2&&p->expn==q2->expn)//将指数相同相合并{q2->coef+=p->coef;free(p);if(!q2->coef) //系数为0的话释放结点{q1->next=q2->next;free(q2);}}else{ //指数为新时将结点插入p->next=q2;q1->next=p;}}}/*****************合并同类项,并按升幂排序*****************/ Polyn HeBing(Polyn &L){Polyn p1,p2,p3,p4,p5,p6;float t1;int t2;p1=L->next;while(p1!=NULL) //非递减顺序排列{p2=p1->next;while(p2!=NULL){if(p1->expn>p2->expn){t1=p1->coef;t2=p1->expn;p1->coef=p2->coef;p1->expn=p2->expn;p2->coef=t1;p2->expn=t2;}p2=p2->next;}p1=p1->next;}p3=L->next;while(p3!=NULL) //合并同类项{p4=p3->next;while(p4!=NULL){if(p3->expn==p4->expn){p3->coef=p3->coef+p4->coef;p3->next=p4->next;free(p4);p4=p3->next;}elsep4=p4->next;}p3=p3->next;}p5=L;while(p5->next!=NULL) //删除零项{p6=p5->next;if(p6->coef==0){p5->next=p6->next;free(p6);}p5=p5->next;}return L;}/*****************建立一个多项式****************/ Polyn CreatPolyn(Polyn &p){Polyn h,s;p=(Polyn)malloc(sizeof(struct Polynomial));if(!p)exit(1);p->coef=0;p->expn=-1;p->next=NULL;h=p;scanf("%f%d",&p->coef,&p->expn);while(p->coef!=0||p->expn!=0)//输入数据{s=(Polyn)malloc(sizeof(struct Polynomial));if(!s)exit(1);s->coef=p->coef;s->expn=p->expn;h->next=s;h=s;scanf("%f%d",&p->coef,&p->expn);}h->next=NULL;HeBing(p);return p;}/******************多项式的销毁***************/ void DestroyPolyn(Polyn p){Polyn q1,q2;q1=p->next;q2=q1->next;while(q1->next){free(q1);q1=q2;q2=q2->next;}}/*************输出多项式**************/void PrintPolyn(Polyn P){Polyn q=P->next;int flag=1;if(!q){putchar('0');printf("\n");return;} //若多项式为空,输出0while (q){if(q->coef>0&&flag!=1) putchar('+'); //系数大于0且不是第一项if(q->coef!=1&&q->coef!=-1)//系数非1或-1的普通情况{printf("%g",q->coef);if(q->expn==1) putchar('X');else if(q->expn) printf("X^%d",q->expn);}else{if(q->coef==1){if(!q->expn) putchar('1');elseif(q->expn==1) putchar('X');else printf("X^%d",q->expn);}if(q->coef==-1){if(!q->expn) printf("-1");elseif(q->expn==1) printf("-X");else printf("-X^%d",q->expn);}}q=q->next;flag++;}printf("\n");}/************辅助乘法和加法运算*************/int compare(Polyn a,Polyn b){if(a&&b){if(!b||a->expn>b->expn)return 1;elseif(!a||a->expn<b->expn)return -1;elsereturn 0;}elseif(!a&&b)return -1;//a多项式已空,但b多项式非空elsereturn 1;//b多项式已空,但a多项式非空}/*************多项式的加法*********************/ Polyn AddPolyn(Polyn pa,Polyn pb){Polyn qa=pa->next;Polyn qb=pb->next;Polyn headc,hc,qc;hc=(Polyn)malloc(sizeof(struct Polynomial));hc->next=NULL;headc=hc;while(qa||qb){qc=(Polyn)malloc(sizeof(struct Polynomial));switch(compare(qa,qb)){case 1:{qc->coef=qa->coef;qc->expn=qa->expn;qa=qa->next;break;}case 0:{qc->coef=qa->coef+qb->coef;qc->expn=qa->expn;qa=qa->next;qb=qb->next;break;}case -1:{qc->coef=qb->coef;qc->expn=qb->expn;qb=qb->next;break;}}if(qc->coef!=0){qc->next=hc->next;hc->next=qc;hc=qc;}else free(qc);//当相加系数为0时,释放该结点}HeBing(headc);return headc;}/************多项式的减法*****************/Polyn SubstractPolyn(Polyn pa,Polyn pb){Polyn h=pb;Polyn p=pb->next;Polyn pd;while(p) //将pb的系数取反{p->coef*=-1;p=p->next;}pd=AddPolyn(pa,h);for(p=h->next;p;p=p->next) //恢复pb的系数p->coef*=-1;HeBing(pd);return pd;}/*****************多项式的乘法*********************/Polyn MultiplyPolyn(Polyn pa,Polyn pb){Polyn hf,pf;Polyn qa=pa->next;Polyn qb=pb->next;hf=(Polyn)malloc(sizeof(struct Polynomial));hf->next=NULL;for(;qa;qa=qa->next){for(qb=pb->next;qb;qb=qb->next){pf=(Polyn)malloc(sizeof(struct Polynomial));pf->coef=qa->coef*qb->coef;pf->expn=qa->expn+qb->expn;Insert(pf,hf);//调用Insert函数以合并指数相同的项}}HeBing(hf);return hf;}/*******************主函数*******************/void main(){Polyn p1, p2, p3, p4, p5;CreatPolyn(p1);CreatPolyn(p2);PrintPolyn(p1);PrintPolyn(p2);p3=AddPolyn(p1, p2);PrintPolyn(p3);p4=SubstractPolyn(p1, p2);PrintPolyn(p4);p5=MultiplyPolyn(p1, p2);PrintPolyn(p5);DestroyPolyn(p1);DestroyPolyn(p2);DestroyPolyn(p3);DestroyPolyn(p4);DestroyPolyn(p5);}四、调试结果1.测试的数据及结果2.算法的时间复杂度及改进算法的时间复杂度:一元多项式的加法运算的时间复杂度为O(m+n),减法运算的时间复杂度为O(m-n),其中m,n分别表示二个一元多项式的项数。

数据结构实验报告-一元多项式

数据结构实验报告-一元多项式

数据结构实验报告-一元多项式
实验目的
1.使用C语言编写一元多项式运算的程序
2.理解和掌握链表的基本概念和操作
3.熟悉链表在实际问题中的应用
实验内容
1.设计一元多项式数据结构,支持多项式的输入、输出、加、减、乘、求导等计算。

2.使用链表来实现多项式数据结构。

3.编写测试程序,测试多项式数据结构的正确性和效率。

实验步骤
1.设计一元多项式数据结构,包括多项式中的每一项所包含的系数和指数,以及链表节点结构体定义。

typedef struct node
{
float coef; // 系数
int expn; // 指数
struct node *next; // 指向下一个节点的指针
} Node, *pNode;
2.按照上述定义的结构体,实现多项式的输入函数。

3.利用链表实现多项式的加法函数。

6.编写测试程序,测试多项式数据结构的正确性和效率。

实验结果
1.输入第一个多项式为 3x^3+2x^2+3 第二个多项式为 2x^3+x^2+4x+1
2.经过程序的处理,两个多项式的加法结果为 5.00x^3+
3.00x^2+
4.00x+4.00
两个多项式的乘法结果为
6.00x^6+10.00x^5+5.00x^4+10.00x^3+14.00x^2+19.00x+3.00
第一个多项式求导结果为 9.00x^2+4.00x
1.链表可以有效地实现多项式数据结构的存储和操作,具有较好的效率和灵活性。

2.通过本次实验,能够更加深入地理解数据结构中链表的应用,有助于提高编程能力和实际问题解决能力。

一元多项式计算(数据结构课程设计)

一元多项式计算(数据结构课程设计)

一元多项式计算(数据结构课程设计)一、系统设计1、算法思想根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应指数相加(减),若其和(差)不为零,则构成“和(差)多项式”中的一项;对于两个一元多项式中所有指数不相同的项,则分别写到“和(差)多项式”中去。

因为多项式指数最高项以及项数是不确定的,因此采用线性链表的存储结构便于实现一元多项式的运算。

为了节省空间,我采用两个链表分别存放多项式a 和多项式b,对于最后计算所得的多项式则利用多项式a进行存储。

主要用到了单链表的插入和删除操作。

(1)一元多项式加法运算它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就应该相加;相加的和不为零的话,用头插法建立一个新的节点。

P 的指数小于q的指数的话就应该复制q的节点到多项式中。

P的指数大于q的指数的话,就应该复制p节点到多项式中。

当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生。

当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生。

(2)一元多项式的减法运算它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就相减;相加的和不为零的话,用头插法建立一个新的节点。

p的指数小于q的指数的话,就应该复制q的节点到多项式中。

P的指数大于q的指数的话就应该复制p的节点到多项式中,并且建立的节点的系数为原来的相反数;当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生。

当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生,并且建立的节点的系数为原来的相反数。

2、概要设计(1)主函数流程图:(注:a代表第一个一元二次方程,b代表第二个一元二次方程)(2)一元多项式计算算法用类C语言表示:Typedef struct00{ //项的表示,多项式的项作为LinkList的数据元素Float coef;//细数Int expn;//指数}term,ElemType;//两个类型名:term用于本ADT,ElemType为LinkList的数据对象名Typedef LinkList polynomial://用带表头的节点的有序链表表示多项式//基本操作的函数原型说明Void CreatePolyn(polynomail&P);//输入n的系数和指数,建立表示一元多项式的有序链表P 销毁一元多项式P Void DestroyPolyn(polynomailP);销毁一元多项式PvoidPrintPoly(polynomail P);//打印输入一元多项式PIntPolynLength(polynnomail P);//返回一元多项式P中的项数void CreatPolyn(polynomail&Pa.polunomail&Pb);//完成多项式相加运算,即:Pa=Pa+Pb,并贤惠一元多项式Pb voidSubtractPolyn(polunomail&Papolunomail&Pb);//完成多项式相减运算,即:Pa=Pa-Pb,并销毁一元多项式Pb//基本操作的算法描述Int cmp(tem a,temp b);//依a的指数值<(或=)(或>b的住数值,分别返回-1、0和+1Void CreatePolyn(polynomail&P,int m){//输入m项的系数和指数,建立表示一元多项式的有序链表PInitList(P);h=GetHead(P);E.coef=0.0; e.expn=-1;S erCurElem(h,e);//设置头结点的数据元素For (i=1;i<=m;++i){ //依次输入m个非零项Scanf(e.coef,e.epn);If(!LocateElem(P,e,q,(*cmp)())){//当前链表中不存在该指数项If(MakeNode(s,e))InsFirst(q,s);//生成节点并插入链表}}}//CreatPolun二、详细设计1、算法实现(1)输入一元多项式函数:void shuchu(pnode *head){pnode *p;int one_time=1;p=head;while(p!=NULL) /*如果不为空*/{if(one_time==1){if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/printf("%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/else if(p->xishu==1||p->xishu==-1)printf("X^%d",p->zhishu); /*如果系数是1的话就直接输出+x*//*如果系数是-1的话就直接输出-x号*/else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);one_time=0;}else{if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/{if(p->xishu>0)printf("+%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/}else if(p->xishu==1) /*如果系数是1的话就直接输出+x号*/printf("+X^%d",p->zhishu);else if(p->xishu==-1) /*如果系数是-1的话就直接输出-x号*/printf("X^%d",p->zhishu);else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("+%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/printf("%5.2fX^%d",p->xishu,p->zhishu);}p=p->next; /*指向下一个指针*/}printf("\n");}(2)加法函数/*两个多项式的加法运算*/pnode * add(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r; /*headc为头指针,r,s为临时指针,p指向第1个多项式并向右移动,q指向第2个多项式并向右移动*/float x; /*x为系数的求和*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*2个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu+q->xishu; /*系数就应该相加*/if(x!=0) /*相加的和不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话,就应该复制q节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next; /*q向右移动*/}else/*p的系数大于q的系数的话,就应该复制p节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}/*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/ while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}/*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/ while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}(3)减法函数/*两个多项式的加法运算*/pnode * add(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r; /*headc为头指针,r,s为临时指针,p指向第1个多项式并向右移动,q指向第2个多项式并向右移动*/float x; /*x为系数的求和*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*2个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu+q->xishu; /*系数就应该相加*/if(x!=0) /*相加的和不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话,就应该复制q节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next; /*q向右移动*/}else/*p的系数大于q的系数的话,就应该复制p节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}/*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/ while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}/*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/ while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}2、程序代码/*一元多项式计算*//*程序功能:能够按照指数降序排列建立并输出多项式;能够完成两个多项式的相加、相减,并将结果输出;*//*提示:输入完一元多项式之后,输入“0 0”结束本一元多项式的输入*//*注意:系数只精确到百分位,最大系数只能为999.99,指数为整数.如果需要输入更大的系数,可以对程序中5.2%f进行相应的修改*/#include<stdio.h>#include<malloc.h>#include<stdlib.h>#include<conio.h>/*建立结构体*/typedef struct pnode{float xishu; /*系数*/int zhishu; /*指数*/struct pnode *next; /*下一个指针*/}pnode;/*用头插法生成一个多项式,系数和指数输入0时退出输入*/pnode * creat()int m;float n;pnode *head,*rear,*s; /*head为头指针,rear和s为临时指针*/ head=(pnode *)malloc(sizeof(pnode));rear=head; /*指向头*/scanf("%f",&n); /*系数*/scanf("%d",&m); /*输入指数*/while(n!=0) /*输入0退出*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=n;s->zhishu=m;s->next=NULL;rear->next=s; /*头插法*/rear=s;scanf("%f",&n); /*输入系数*/scanf("%d",&m); /*输入指数*/}head=head->next; /*第一个头没有用到*/return head;}/*调整多项式*/void tiaozhen(pnode *head){pnode *p,*q,*t;float temp;p=head;while(p!=NULL){q=p;t=q->next;while(t!=NULL){if(t->zhishu>q->zhishu)q=t;t=t->next;}temp=p->xishu;p->xishu=q->xishu;q->xishu=temp;temp=p->zhishu;p->zhishu=q->zhishu;q->zhishu=temp;p=p->next;}/*显示一个多项式*/void shuchu(pnode *head){pnode *p;int one_time=1;p=head;while(p!=NULL) /*如果不为空*/{if(one_time==1){if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/printf("%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/else if(p->xishu==1||p->xishu==-1)printf("X^%d",p->zhishu); /*如果系数是1的话就直接输出+x*//*如果系数是-1的话就直接输出-x号*/else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);one_time=0;}else{if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/{if(p->xishu>0)printf("+%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/}else if(p->xishu==1) /*如果系数是1的话就直接输出+x号*/printf("+X^%d",p->zhishu);else if(p->xishu==-1) /*如果系数是-1的话就直接输出-x号*/printf("X^%d",p->zhishu);else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("+%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);}p=p->next; /*指向下一个指针*/}printf("\n");/*两个多项式的加法运算*/pnode * add(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r; /*headc为头指针,r,s为临时指针,p指向第1个多项式并向右移动,q指向第2个多项式并向右移动*/float x; /*x为系数的求和*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*2个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu+q->xishu; /*系数就应该相加*/if(x!=0) /*相加的和不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话,就应该复制q节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next; /*q向右移动*/}else/*p的系数大于q的系数的话,就应该复制p节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}/*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/ while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}/*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/ while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}/*两个多项式的减法运算*/pnode * sub(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r;float x; /*x为系数相减*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*两个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu-q->xishu; /*系数相减*/if(x!=0) /*相减的差不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=-q->xishu; /*建立的节点的系数为原来的相反数*/s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}else{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}while(p!=NULL) /*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}while(q!=NULL) /*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=-q->xishu; /*建立的节点的系数为原来的相反数*/ s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}void add_main(){pnode * a,*b,*c;printf("\n输入第一个一元多项式:\n系数指数\n");a=creat();tiaozhen(a);printf("\n输入第二个一元多项式:\n系数指数\n");b=creat();tiaozhen(b);c=add(a,b);printf("第一个一元多项式如下:");shuchu(a);printf("第二个一元多项式如下:");shuchu(b);printf("两式相加如下:");shuchu(c);}void sub_main(){pnode * a,*b,*c;printf("\n输入第一个一元多项式:\n系数指数\n");a=creat();tiaozhen(a);printf("\n输入第二个一元多项式:\n系数指数\n");b=creat();tiaozhen(b);c=sub(a,b);printf("第一个一元多项式如下:");shuchu(a);printf("第二个一元多项式如下:");shuchu(b);printf("两式相减如下:");shuchu(c);}void open(){printf("\n****************************************************\n");printf(" 功能项: * 1 两个一元多项式相加;2 两个一元多项式相减;0 退出*\n");printf("****************************************************\n\n请选择操作: ");}void main(){int choose;open();while(choose!=0){scanf("%d",&choose);getchar();switch(choose){case 0:return;case 1:printf("\n 两个一元多项式相加\n");add_main();choose=-1;open();break;case 2:printf("\n 两个一元多项式相减\n");sub_main();choose=-1;open();break;default:printf("没有该选项!请重新选择操作!\n\n");open();}}}三、测试方案及结果1、测试方案在Visual C++ 6.0环境中调试运行。

c语言数据结构实现——一元多项式的基本运算

c语言数据结构实现——一元多项式的基本运算

文章标题:深入理解C语言中的数据结构实现——一元多项式的基本运算在C语言中,数据结构是非常重要的一个概念,它为我们处理各种复杂的数据提供了便利。

其中,一元多项式的基本运算是数据结构中的一个重要内容,它涉及到多种数据结构的操作和算法,是我们学习C 语言中数据结构的一个重要入口。

在本文中,我们将深入探讨C语言中一元多项式的基本运算,帮助读者更深入地理解这一重要的概念。

一、一元多项式的表示方式在C语言中,一元多项式可以使用数组来表示。

每个数组元素对应一个项,数组的下标对应每一项的次数,数组的值对应该项的系数。

一个一元多项式可以表示为:```cfloat polynomial[10] = {0, 1, 2, 0, 4}; // 表示多项式 1 + 2x + 4x^4 ```二、一元多项式的基本运算1. 一元多项式的加法有两个多项式 A 和 B,它们分别表示为 `float polynomialA[10]` 和`float polynomialB[10]`,那么它们的加法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] + polynomialB[i];}```2. 一元多项式的减法一元多项式的减法是指将两个多项式相减得到一个新的多项式。

与加法类似,多项式 A 和 B 的减法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] - polynomialB[i];}```3. 一元多项式的乘法式 A 和 B 的乘法运算可以表示为:```cfor (int i = 0; i < 10; i++) {for (int j = 0; j < 10; j++) {polynomialC[i+j] += polynomialA[i] * polynomialB[j];}}```4. 一元多项式的除法一元多项式的除法涉及到较为复杂的算法,需要考虑余数和商的处理。

数据结构一元多项式的运算

数据结构一元多项式的运算

数据结构一元多项式的运算数据结构一元多项式的运算1、引言1.1 研究背景1.2 研究目的2、一元多项式的定义2.1 一元多项式的概念2.2 一元多项式的表示方法2.3 一元多项式的次数和系数2.4 一元多项式的零多项式和常数项2.5 一元多项式的加法运算2.6 一元多项式的减法运算2.7 一元多项式的乘法运算3、一元多项式的特殊运算3.1 一元多项式的乘方运算3.2 一元多项式的取余运算3.3 一元多项式的求导运算3.4 一元多项式的积分运算3.5 一元多项式的复合运算4、一元多项式的应用4.1 一元多项式在数学中的应用4.2 一元多项式在计算机科学中的应用4.3 一元多项式在工程领域中的应用5、实例分析5.1 实例一:一元多项式的相加减5.2 实例二:一元多项式的乘法运算5.3 实例三:一元多项式的特殊运算应用6、结论附件:附件一:一元多项式的代码实现示例法律名词及注释:1.一元多项式: 指仅有一个未知数的多项式。

2.多项式的次数: 多项式中各项最高次幂的次数。

3.多项式的系数: 多项式中各项中未知数的系数。

4.零多项式: 所有系数均为0的多项式。

5.常数项: 多项式中次数为0的项,即常数项。

6.多项式的加法运算: 将两个多项式相同次项的系数相加。

7.多项式的减法运算: 将两个多项式相同次项的系数相减。

8.多项式的乘法运算: 将两个多项式的各项相乘,并根据指数相加合并同类项。

9.多项式的乘方运算: 将一个多项式自乘n次。

10.多项式的取余运算: 两个多项式相除后的余数部分。

11.多项式的求导运算: 对多项式中的每一项进行求导操作。

12.多项式的积分运算: 对多项式中的每一项进行积分操作。

13.多项式的复合运算: 将一个多项式代入另一个多项式中进行运算。

数据结构一元多项式的运算

数据结构一元多项式的运算

数据结构一元多项式的运算第一章引言在计算机科学中,数据结构是指一组数据和数据之间的关系,以及在这组数据上定义的一组操作。

数据结构是计算机算法的基础,它能够提高数据的组织和处理效率。

本文将详细介绍一元多项式的运算,包括多项式的表示方式以及常见的运算操作。

第二章多项式的表示方式多项式可表示为一系列项的和,其中每一项由系数和指数组成。

常见的表示方式有两种:________1.数组表示法:________将多项式的每一项按照指数从小到大的顺序存储在一个数组中。

数组的下标表示项的指数,数组的元素存储项的系数。

例如,多项式 P(x) = 2x^3 + 3x^2 ●4x + 1 可表示为数组 1, -4, 3, 2。

2.链表表示法:________将多项式的每一项作为链表的一个节点,节点包含指数和系数两个属性,通过链表的方式连接起来。

例如,多项式 P(x) = 2x^3 + 3x^2 ●4x + 1 可表示为链表的形式:________2 ->3 -> -4 -> 1---● ---● ---● ----x^3 x^2 x 1第三章多项式的基本运算多项式的基本运算包括多项式的加法、减法、乘法和求导。

1.多项式的加法:________将两个多项式相加,实际上是将对应指数的系数相加。

例如,多项式 P(x) = 2x^3 + 3x^2 ●4x + 1和多项式 Q(x) = x^2 + 2x + 3 相加得到多项式 R(x) = 2x^3 +4x^2 ●2x + 4。

2.多项式的减法:________将一个多项式减去另一个多项式,实际上是将对应指数的系数相减。

例如,将多项式 P(x) 减去多项式 Q(x) 得到多项式 R(x) = 2x^3 + 2x^2 ●6x ●2。

3.多项式的乘法:________将两个多项式相乘,实际上是将一个多项式的每一项与另一个多项式的每一项相乘,然后将结果相加。

例如,将多项式 P(x) = 2x^3 + 3x^2 ●4x + 1 与多项式 Q(x) =x^2 + 2x + 3 相乘得到多项式 R(x) = 2x^5 + 7x^4 ●4x^3 +9x^2 ●5x + 3。

c语言数据结构实现——一元多项式的基本运算

c语言数据结构实现——一元多项式的基本运算

c语言数据结构实现——一元多项式的基本运算在C语言中,一元多项式的表示与运算是常见的数据结构操作之一。

一元多项式由一系列具有相同变量的单项式组成,每个单项式由系数和指数组成。

本文将介绍如何使用C语言实现一元多项式的基本运算,包括多项式的创建、求和、差、乘积等操作。

首先,我们需要定义一个结构体来表示单项式。

每个单项式由一个系数和一个指数组成,我们可以将其定义如下:```cstruct term{float coefficient; // 系数int exponent; // 指数};typedef struct term Term;```接下来,我们可以定义一个结构体来表示一元多项式。

一元多项式由一系列单项式组成,可以使用一个动态数组来存储这些单项式。

```cstruct polynomial{Term* terms; // 单项式数组int num_terms; // 单项式数量};typedef struct polynomial Polynomial;```现在,我们可以开始实现一元多项式的基本运算了。

1. 创建一元多项式要创建一元多项式,我们需要输入每个单项式的系数和指数。

我们可以使用动态内存分配来创建一个适应输入的单项式数组。

```cPolynomial create_polynomial(){Polynomial poly;printf("请输入多项式的项数:");scanf("%d", &poly.num_terms);poly.terms = (Term*)malloc(poly.num_terms * sizeof(Term));for(int i = 0; i < poly.num_terms; i++){printf("请输入第%d个单项式的系数和指数:", i+1);scanf("%f %d", &poly.terms[i].coefficient, &poly.terms[i].exponent);}return poly;}```2. 求两个一元多项式的和两个一元多项式的和等于对应指数相同的单项式系数相加的结果。

数据结构 一元多项式的计算

数据结构  一元多项式的计算

项目一一元多项式的计算问题1.1设计题目与要求1.1.1设计题目1)一元多项式计算任务:能够按照指数降序排列建立并输出多项式;能够完成两个多项式的相加、相减,并将结果输入;基本要求:在上交资料中请写明:存储结构、多项式相加的基本过程的算法(可以使用程序流程图)、源程序、测试数据和结果、算法的时间复杂度、另外可以提出算法的改进方法;本程序关键点是如何将输入的两个多项式相加、相减操作。

①如何将输入的一元多项式按指数的降序排列②如何确定要输入的多项式的项数;③如何将输入的两个一元多项式显示出来。

④如何将输入的两个一元多项式进行相加操作。

⑤如何将输入的两个一元多项式进行相减操作。

本程序是通过链表实现一元多项式的相加减操作。

1.1.2、任务定义此程序需要完成如下的要求:将多项式按照指数降序排列建立并输出,将两个一元多项式进行相加、相减操作,并将结果输入。

a:输入多项式的项数并建立多项式;b:输出多项式,输出形式分别为浮点和整数序列,序列按指数升序排列;c:多项式a和b相加,建立多项式a+b;d:多项式a和b相减,建立多项式a-b。

e:多项式的输出。

1.2 数据结构的选择和概要设计:1.2.1数据结构的选用A:基于链表中的节点可以动态生成的特点,以及链表可以灵活的添加或删除节点的数据结构,为了实现任意多项式的加法,减法,因此选择单链表的结构体,它有一个系数,指数,下一个指针3个元属;例如,图1中的两个线性链表分别表示一元多项式和一元多项式。

从图中可见,每个结点表示多项式中的一项。

图1 多项式表的单链存储结构B:本设计使用了以下数据结构:typedef struct node{int xs; /*系数*/int zs; /*指数*/struct node * next; /*next指针*/}Dnode,* Dnodelist;C:设计本程序需用到八个模块,用到以下八个子函数如下:1.Dnodelist Creat_node(void) /*链表初始化*/2.int Insert_node(Dnodelist D,int xs,int zs) /*插入函数*/3.Dnodelist Creat_Dmeth(int length) /*创建多项式*/4.Dnodelist Addresult(Dnodelist D1,Dnodelist D2) /*多项式相加*/5.Dnodelist Subresult(Dnodelist D1,Dnodelist D2) /*多项式相减*/6.Dnodelist select(Dnodelist D1,Dnodelist D2) /*选择函数*/7void Show(Dnodelist D) /*显示(输出)函数*/8void main()主程序模块调用链一元多项式的各种基本操作模块。

数据结构课程设计-一元多项式的加法、减法、乘法的实现

数据结构课程设计-一元多项式的加法、减法、乘法的实现

一、设计题目一元多项式的加法、减法、乘法的实现。

二、主要内容设有一元多项式A m(x)和B n(x).A m(x)=A0+A1x1+A2x2+A3x3+… +A m x mB n(x)=B0+B1x1+B2x2+B3x3+… +B n x n请实现求M(x)= A m(x)+B n(x)、M(x)= A m(x)-B n(x)和M(x)= A m(x)×B n(x)。

要求:1) 首先判定多项式是否稀疏2) 采用动态存储结构实现;3) 结果M(x)中无重复阶项和无零系数项;4) 要求输出结果的升幂和降幂两种排列情况三、具体要求及应提交的材料1.每个同学以自己的学号和姓名建一个文件夹,如:“312009*********张三”。

里面应包括:学生按照课程设计的具体要求所开发的所有源程序(应该放到一个文件夹中)、任务书和课程设计说明书的电子文档。

2.打印的课程设计说明书(注意:在封面后夹入打印的“任务书”以后再装订)。

四、主要技术路线提示为把多个小功能结合成一个完整的小软件,需使用“菜单设计”技术(可以是控制台方式下的命令行形式,若能做成图形方式则更好)。

五、进度安排共计两周时间,建议进度安排如下:选题,应该在上机实验之前完成需求分析、概要设计可分配4学时完成详细设计可分配4学时调试和分析可分配10学时。

2学时的机动,可用于答辩及按教师要求修改课程设计说明书。

注:只用课内上机时间一般不能完成设计任务,所以需要学生自行安排时间做补充。

六、推荐参考资料(不少于3篇)[1]苏仕华等编著,数据结构课程设计,机械工业出版社,2007[2]严蔚敏等编著,数据结构(C语言版),清华大学出版社,2003[3]严蔚敏等编著,数据结构题集(C语言版),清华大学出版社,2003指导教师签名日期年月日系主任审核日期年月日摘要分析了matlab,mathmatic,maple等数学软件对一元多项式的计算过程,步骤后。

由于这些软件比较大功能齐全,但是实用性不强。

数据结构课程设计——一元多项式计算

数据结构课程设计——一元多项式计算

数据结构课程设计——一元多项式计算一、课程设计题目及要求二、设计思路和方法三、程序流程图四、程序代码及注释五、测试结果及分析六、结论七、参考文献本次课程设计的题目为“一元多项式计算”,要求设计一个程序,能够实现一元多项式的加、减、乘、求导和求值等操作。

在设计思路和方法上,我们采用了链表的数据结构来存储多项式,同时设计了相应的函数来实现各种操作。

程序的流程图如下所示:插入流程图)程序的代码及注释如下所示:插入代码及注释)在测试结果及分析方面,我们对程序进行了多组测试,并对其进行了详细的分析和比较。

结果表明,我们的程序能够正确地实现各种操作,并且具有较高的效率和稳定性。

综上所述,本次课程设计的目标已经得到了圆满地实现,我们对于所取得的成果感到非常满意。

同时,我们也希望能够通过这次课程设计,加深对于数据结构及其应用的理解和掌握,为今后的研究和工作打下坚实的基础。

设计目标:本课程设计旨在结合理论与实际应用,提高学生组织数据及编写大型程序的能力。

通过掌握数据组织、算法设计和算法性能分析的方法,培养学生良好的程序设计能力。

具体实现是利用单链表表示一元多项式,实现多项式的输入、建立、输出、相加、相减和相乘。

总体设计:2.1 数据结构描述与定义:一元多项式定义系数和指数结构如下:coef,expn和next。

定义多项式的结构为线性链表的存储结构,每个结点包含三个元素:系数coef,指数expn和指向下一个结点的指针*next。

多个单项式通过指针连接起来,形成一个多项式。

2.2 模块设计:从实现多项式运算过程的角度来分析,至少需要以下子功能模块:多项式创建、销毁、输出、相加、相减和相乘。

定义并调用的函数有:Insert、CreatePolyn、DestroyPolyn、PrintPolyn、AddPolyn、SubtractPolyn、XXX和main函数。

注:该文章中没有明显的格式错误和需要删除的段落,因此没有进行小幅度改写。

数据结构一元多项式的运算

数据结构一元多项式的运算

数据结构一元多项式的运算第一章引言在计算机科学中,数据结构是研究非原子数据对象的组织、存储和管理的科学和技术。

一元多项式是代数中的基本概念之一,它在计算机科学中有着广泛的应用。

本文将介绍一元多项式的运算,包括多项式的表示、加法、减法、乘法等操作。

第二章多项式的表示1.稀疏数组表示法稀疏数组表示法是一种常用的多项式表示方法。

它通过一个数组来存储多项式中非零项的指数和系数。

数组的下标表示项的指数,数组元素表示项的系数。

对于没有出现的指数,数组元素为零。

2.链表表示法链表表示法是另一种常用的多项式表示方法。

每个节点包含项的指数和系数,并通过指针串接成链表。

链表的节点可以按照指数的升序或降序排列。

第三章多项式的加法多项式的加法是指将两个多项式相加得到一个新的多项式。

具体操作如下:1.根据多项式的表示方法,分别遍历两个多项式的非零项。

2.比较当前项的指数大小,如果两个指数相等,则将系数相加得到新的系数,并将结果加入结果多项式中。

3.如果一个多项式的指数大于另一个多项式的指数,则将该项加入结果多项式中。

4.重复以上操作,直到遍历完所有的非零项。

第四章多项式的减法多项式的减法是指将两个多项式相减得到一个新的多项式。

具体操作如下:1.根据多项式的表示方法,分别遍历被减数和减数的非零项。

2.比较当前项的指数大小,如果两个指数相等,则将被减数的系数减去减数的系数得到新的系数,并将结果加入结果多项式中。

3.如果被减数的指数大于减数的指数,则将该项加入结果多项式中,并将被减数的系数变为相反数。

4.重复以上操作,直到遍历完所有的非零项。

第五章多项式的乘法多项式的乘法是指将两个多项式相乘得到一个新的多项式。

具体操作如下:1.创建一个结果多项式,将其初始化为零多项式。

2.根据多项式的表示方法,分别遍历两个多项式的非零项。

3.将两个项的系数相乘得到新的系数,并将两个项的指数相加得到新的指数。

4.将新的系数和指数合并为一个项,并将该项加入结果多项式中。

数据结构课程设计-一元多项式的四则运算

数据结构课程设计-一元多项式的四则运算

一元多项式的四则运算学生姓名:指导老师:摘要本课程设计主要解决一元多项式的运算问题,通过链表的使用,实现对一元多项式的构建、录入、存储、打印、以及之间的运算。

在本课程设计中,程序设计语言为C++语言,程序运行平台为Windows/98/2000/XP,程序采用了链表存储方法以及结构化和模块化的设计方法,通过调试运行,可以进行多项式的加、减、乘运算,勉强实现了设计目标,并且经过适当完善后,将可应用到实际中解决某些问题。

关键词程序设计; C++ ;一元多项式;运算1 引言一般来说,我们只知道数学上的一元多项式的运算,这一般都是用笔来进行运算的,然而此课程设计将一元多项式的运算用电脑来进行,只需要将多项式输入,然后就可以出结果,速度快,省去了认为计算的环节,在现实中带来不少方便。

1.1 课题背景一元多项式的运算,虽然无法直接在除数学外的其他领域作出贡献,但是在数学上,它可以为人们解决一些自己动笔动手很难解决的问题,比如说那些很长很长的多项式,用笔算可能要算半天,但是用该程序,只需短短的几秒钟,所以它给人们带来了不少方便,同时相信它也能间接地为其他领域做出贡献。

1.2 课程设计目的个人觉得,该数据结构课程设计一方面可以让自己更加熟悉那些些常用的数据结构,掌握数据结构内在的逻辑关系,以及它们在计算机中的存储表示,和对它们实行的各种运算;另一方面,可以让自己对于整体和局部,以及结构化和模块化编程有一个更深层次的了解。

作为网络工程的学生,虽然之前有过一次C语言课程设计,但是深知自己编程能力尚为欠缺,所以这一次数据结构课程设计是对我的编程能力和组织能力的又一次考验。

1.3课程设计内容本课程设计是用链表实现一元多项式的存储及运算,其中包括多项式系数及指数的录入(即一元多项式的录入),以及储存、一元多项式的显示、一元多项式之间的加、减、乘法运算。

2 设计思路与方案2.1设计思路该系统使用C++语言进行开发和实现,程序中的各个功能分别由不同的的函数实现,然后在main函数中调用实现。

数据结构实验-一元多项式的加法运算

数据结构实验-一元多项式的加法运算

一元多项式加法一、实验目的通过实现多项式加法,对链表有更深入的了解二、实验内容问题描述:设计一个一元稀疏多项式简单的加法计算器实现要求:一元稀疏多项式简单计算器的基本功能是:(1)输入并建立多项式:1785937)(x x x x A +++=;879228)(x x x x B -+=(2)输出多项式(3)多项式A 和B 相加,建立多项式C =A +B ,并输出相加的结果多项式C(4)选作:多项式A 和B 相减,建立多项式C =A -B ,并输出相减的结果多项式D 方法说明:(1)多项式的输入与存储用带表头结点的单链表存储多项式,链表中的每个节点分别存储多项式各项的系数和指数,即每从键盘输入多项式的一对数(系数,指数),可对应建立链表的一个结点。

每个节点的结构为:建立两个链表,其中pa 和pb 分别为它们的头指针:pb结果链表Pa(或者是Pc)Pc(2)多项式数据类型的定义struct tagNode{float coef;int exp;struct tagNode *next;typedef struct tagNode Node;typedef struct tagNode* pNode;(3)主要算法①创建两个链表,分别存放多项式1和多项式2,这两个链表中的节点是按指数降序或者升序排列的②多项式相加,下面给出多项式相加的部分实现/*下面的函数实现两个多项式的相加,要相加的链表分别由pa和pb指向(其中,pa,pb都是分配了空间的头结点)。

相加的结果直接由pa指向的链表保存,即是在pa链表中添加或删除(当系数因为相加为0的情况下)一些结点,构成结果。

相加的链表中指数按从小到大的顺序排列好的,是升序链表。

*/void add_poly(Node *pa,Node *pb){Node *p=pa->pNext;//链表1,将来的结果也放在此Node *q=pb->pNext;//链表2Node *pre=pa;Node *u;//临时用float x;while (p!=NULL && q!=NULL)//当两个链表都不为空{if (p->exp<q->exp)//比较链表1跟链表2当前节点的指数大小,链表1也是存放结果的地方{pre=p;p=p->pNext;//p指向要比较的下一个结点。

一元多项式的计算,数据结构程序设计图形界面

一元多项式的计算,数据结构程序设计图形界面

一元多项式的计算,数据结构程序设计图形界面
对于一元多项式的计算,可以使用链表来存储每一项的系数和指数,然后进行加减乘除等运算。

具体实现的步骤如下:
1. 定义一个多项式节点的结构体,包含两个成员:系数和指数。

2. 定义一个链表结构体,包含两个成员:头节点和尾节点。

3. 实现链表的初始化函数、插入节点函数、删除节点函数、遍历链表函数等基本操作。

4. 实现多项式加法、减法、乘法、除法等运算函数。

对于加减法,可以遍历两个链表,依次将相同指数的项相加或相减;对于乘法,可以使用两个for循环遍历两个链表,将每一项相乘并按照指数相加;对于除法,可以使用辗转相除法,将被除数一部分一部分地减去除数,直到余数小于除数为止,每一部分的商可视为一项。

对于数据结构程序设计图形界面,可以使用Qt等UI框架来实现。

可以使用布局管理器来设计UI界面,使用信号与槽机制来处理用户的操作输入,将用户输入的参数传递给多项式计算函数,最终将计算结果显示在UI界面上。

数据结构一元多项式的运算-无删减范文

数据结构一元多项式的运算-无删减范文

数据结构一元多项式的运算数据结构一元多项式的运算简介一元多项式是数学中常见的概念,用于表示一个变量的多项式表达式。

在计算机科学中,经常需要对一元多项式进行各种运算,如加法、减法、乘法等。

为了实现这些运算,可以使用数据结构来存储和操作一元多项式。

本文将介绍一元多项式的数据结构和常见的运算方法,并给出相应的代码示例。

数据结构一元多项式可以用链表来表示。

每个节点包含两个部分:系数(coefficient)和指数(exponent)。

系数表示该项的权重,指数表示该项的幂次。

链表的每个节点按照指数的升序排列。

以下是一个一元多项式的链表表示的示例:```markdown1.2x^2 + 3.7x^4 - 0.5x^3 -2.1x^1 + 4.0``````markdownNode 1: coefficient=1.2, exponent=2Node 2: coefficient=3.7, exponent=4Node 3: coefficient=-0.5, exponent=3Node 4: coefficient=-2.1, exponent=1Node 5: coefficient=4.0, exponent=0```运算方法加法运算两个一元多项式相加可以按照如下步骤进行:1. 遍历两个链表的节点,分别取出当前节点的系数和指数。

2. 如果两个节点的指数相等,将系数相加,并将其作为结果链表的节点。

3. 如果两个节点的指数不相等,将指数较小的节点插入结果链表,并继续遍历指数较大的节点。

4. 当其中一个链表遍历完后,直接将另一个链表的节点插入结果链表。

以下是加法运算的代码示例:```pythondef addPolynomials(p1, p2):result = Nonetl = Nonewhile p1 is not None and p2 is not None:if p1.exponent == p2.exponent:coef_sum = p1.coefficient + p2.coefficient if coef_sum != 0:node = Node(coef_sum, p1.exponent)if result is None:result = tl = nodeelse:tl.next = nodetl = nodep1 = p1.nextp2 = p2.nextelif p1.exponent > p2.exponent:node = Node(p1.coefficient, p1.exponent) if result is None:result = tl = nodeelse:tl.next = nodetl = nodep1 = p1.nextelse:node = Node(p2.coefficient, p2.exponent) if result is None:result = tl = nodeelse:tl.next = nodetl = nodep2 = p2.nextwhile p1 is not None:node = Node(p1.coefficient, p1.exponent)if result is None:result = tl = nodeelse:tl.next = nodetl = nodep1 = p1.nextwhile p2 is not None:node = Node(p2.coefficient, p2.exponent) if result is None:result = tl = nodeelse:tl.next = nodetl = nodep2 = p2.nextreturn result```减法运算减法运算可以看作加法运算的特殊情况,即将第二个多项式的系数取负数,再进行加法运算。

数据结构和算法-一元多项式运算算法(加法)

数据结构和算法-一元多项式运算算法(加法)

数据结构和算法-⼀元多项式运算算法(加法)算法名称:⼀元多项式算法算法介绍:加法运算:将具有与相同幂项的系数相加即可得到合并后的多项式。

若某个幂项只存在于⼀个多项式中,则直接合并到结果中举例利⽤代码实现这⾥主要使⽤了链表,通过3个函数来进⾏操作。

分别是Inpu函数,Add运算函数,打印函数。

代码:1. /*采⽤链表的⽅式*/2. #include<stdio.h>3. #include<stdlib.h>4. #include<limits.h>5. typedef struct polyn //定义多项式的结构6. {7.8. float coef; //系数项9. int expn; //指数10. struct polyn *next; //指向下⼀项11. }POLYN,*pPOLYN;12. void PolynInput(pPOLYN *p) //输⼊⼀元多项式13. {14. int i,min=INT_MIN; //INT_MIN是int型的最⼩数15. pPOLYN p1,p2; //分别表⽰2个多项式的指针16. if(!(*p=(POLYN *)malloc(sizeof(POLYN)))) //为头结点分配内存17. {18.19. printf("内存分配失败 \n");20. exit(0);21. }22. (*p)->coef=0; //设置头结点的系数为023. printf("输⼊该多项式的项数:");24. scanf("%d",&((*p)->expn));25. (*p)->next=NULL;26. for(i=0;i<(*p)->expn;i++) //输⼊多项式各项27. {28. if(!(p1=(pPOLYN)malloc(sizeof(POLYN)))) //分配⼀个多项式的内存29. {30. printf("内存分配失败: \n");31. exit(0);32. }33. printf("第%d项系数:",i+1);34. scanf("%f",&(p1->coef));35. do{36. printf("第%d项指数:",i+1);37. scanf("%d",&(p1->expn));38. if(p1->expn<min)39. printf("\n前项=指数值不能⼩于前⼀项指数值%d!\n重新输⼊\n",(*p)->next->expn);40. }while(p1->expn<min);41. min=p1->expn;42. p1->next=(*p)->next;43. (*p)->next=p1;44. }45. p1=(*p)->next; //合并多项式中指数值相同的项46. while(p1)47. {48. p2=p1->next; //取下⼀节点49. while(p2 && p2->expn==p1->expn) //若节点有效,节点与q节点的指数相同50. {51. p1->coef+=p2->coef; //累加系数52. p1->next=p2->next; //删除r指向的节点53. free(p2);54. p2=p1->next;56. }57. p1=p1->next;58. }59. }60. void PolynPrint(pPOLYN p) //输出多项式61. {62. pPOLYN p1;63. int i;64. printf("\n\n计算后的多项式共有%d项 \n",p->expn);65. p1=p->next;66. i=1;67. while(p1)68. {69. printf("第%d项,系数:%g,指数:%d\n",i++,p1->coef,p1->expn);70. p1=p1->next;71. }72. printf("\n");73. }74. void PolynAdd(pPOLYN pa,pPOLYN pb) //多项式相加pa=pa+pb75. {76.77. pPOLYN pa1,pb1,pc1,p;78. pa1=pa->next; //指向被加链表的第⼀个有效项79. pb1=pb->next; //指向加链表的第⼀个有效项80. pc1=pa; //指向被加链表81. pc1->next=NULL;82. pa->expn=0; //清空多项式项⽬数据83. while(pa1 && pb1) //两个多项式都未结束84. {85.86. if(pa1->expn > pb1->expn) //如果pa1指数⼤于pb187. {88. pc1->next=pa1; //将pa1指数加⼊结果链表中89. pc1=pa1;90. pa1=pa1->next; //处理pa1中的下⼀项91. pc1->next=NULL;92.93. }else if(pa1->expn < pb1->expn) //pa1的指数⼩于pb1的指数94. {95. pc1->next=pb1; //将pb1指数加⼊结果链表中96. pc1=pb1;97. pb1=pb1->next; //处理pb1的下⼀项98. pc1->next=NULL;99. }else { //pa1指数等于pb1指数,进⾏系统相加100. pa1->coef+=pb1->coef; //累加素数101. if(pa1->coef!=0) //若系数不为0102. {103. pc1->next=pa1; //将相加结果添加到结果链表中104. pc1=pa1;105. pa1=pa1->next; //处理pa1的下⼀项106. pc1->next=NULL;107. p=pb1;108. pb1=pb1->next; //处理pb1的下⼀项109. free(p);110. }111. else{ //系数为0,则不记录该项112. p=pa1; //⽤p指向pa1中的该项113. pa1=pa1->next; //链表中删除该项114. free(p); //释放该项所占⽤内存115. p=pb1; //⽤临时指针指向pb1中的该项116. pb1=pa1->next; //链表中删除该项117. free(p); //释放该项所占⽤内存118. pa->expn--; //后⾯要进⾏累加操作,此处先减119. }120. }121. pa-pa->expn++; //累加⼀个结果项122. }123. if(pa1) //若pa1中还有项124. {125. pc1->next=pa1; //将pa1中的项添加到结果链表中126. while(pa1)127. {128.129. pa->expn++;130. pa1=pa1->next;131. }132. }133. if(pb1) //若pb1中还有项134. {135.136. pc1->next=pb1; //将pb1中的项添加到结果链表中137. while(pb1)138. {140. pb1=pb1->next;141. }142. }143. free(pb); //释放pb头链所占的内存空间144. }145. int main()146. {147. pPOLYN pa=NULL,pb=NULL; //指向多项式链表的指针148. printf("输⼊第⼀个多项式数据:\n");149. PolynInput(&pa); //调⽤函数输⼊⼀个多项式150. printf("\n输⼊第⼆个多项式数据:\n");151. PolynInput(&pb); //调⽤函数,输⼊另⼀个多项式152. PolynAdd(pa,pb); //调⽤多项式相加函数153. printf("\n两个多项式之和为:");154. PolynPrint(pa); //输出运算得到的多项式155. getch();156. return 0;157. }附件列表。

数据结构一元多项式的运算

数据结构一元多项式的运算

数据结构一元多项式的运算在计算机科学和数学领域中,数据结构一元多项式的运算具有重要的地位。

一元多项式是指形如$P(x) = a_n x^n + a_{n-1} x^{n-1} +\cdots + a_1 x + a_0$ 的表达式,其中$a_i$ 是系数,$x$ 是变量,$n$ 是多项式的次数。

要有效地处理一元多项式,需要选择合适的数据结构来存储它们,并设计相应的算法来进行各种运算,如加法、减法、乘法和除法等。

常见的数据结构用于表示一元多项式有两种:顺序存储结构和链式存储结构。

顺序存储结构通常使用数组来存储多项式的系数。

可以将系数按照多项式的次数从高到低依次存放在数组的相应位置。

这种方式简单直观,但存在一些局限性。

例如,如果多项式的次数很高,但大部分系数为零,会浪费大量的存储空间。

而且,对于多项式的插入和删除操作,效率也比较低。

相比之下,链式存储结构更加灵活。

每个节点可以存储一个系数和对应的指数,然后通过指针将这些节点连接起来。

这样可以有效地节省存储空间,并且对于多项式的动态修改操作更加方便。

接下来,让我们详细探讨一下一元多项式的加法运算。

假设我们有两个一元多项式$P(x) = 3x^3 + 2x^2 5x + 1$ 和$Q(x) = 2x^3 4x^2 + 6x 3$ 。

要进行加法运算,我们需要将相同次数的项的系数相加。

首先,比较两个多项式的最高次数。

在这个例子中,都是 3 次。

然后,从高次项开始逐次相加。

对于 3 次项,系数分别为 3 和 2,相加得到 5,所以相加后的多项式的 3 次项系数为 5。

对于 2 次项,系数分别为 2 和-4,相加得到-2。

依此类推,最后得到相加后的多项式为$5x^3 2x^2 + x 2$ 。

在实现加法运算的算法时,需要考虑两个多项式的长度可能不同的情况。

可以使用两个指针分别遍历两个多项式,当其中一个指针到达末尾时,将另一个多项式剩余的项直接添加到结果多项式中。

数据结构PTA-一元多项式的乘法与加法运算数组链表

数据结构PTA-一元多项式的乘法与加法运算数组链表

数据结构PTA-⼀元多项式的乘法与加法运算数组链表⼀元多项式的乘法与加法运算输⼊格式:输⼊分2⾏,每⾏分别先给出多项式⾮零项的个数,再以指数递降⽅式输⼊⼀个多项式⾮零项系数和指数(绝对值均为不超过1000的整数)。

数字间以空格分隔。

输出格式:输出分2⾏,分别以指数递降⽅式输出乘积多项式以及和多项式⾮零项的系数和指数。

数字间以空格分隔,但结尾不能有多余空格。

零多项式应输出0 0。

输⼊样例:4 3 4 -5 26 1 -2 03 5 20 -74 3 1输出样例:15 24 -25 22 30 21 -10 20 -21 8 35 6 -33 5 14 4 -15 3 18 2 -6 15 20 -4 4 -5 2 9 1 -2 0思路⽤了太多次链表实在是⽤吐了,虽然运⾏起来很爽,但是编写太⿇烦了,换数组解决。

这⾥参考了⼀下其他⼤佬的思路问题的关键在于变量其实是两个(指数和系数),放在⼀起紧挨着或分成两个数组都不好处理,尤其是多项式相乘是⼀种交叉相乘的计算。

⽐较巧妙的处理⽅式是将取数组的位置为指数,该位置对应的值为系数。

应注意反之不可,因为可以存在n倍的x0(即常数),⽽不存在0倍的x n。

区别于其他⼲扰数可以通过初始化数组为0来实现。

参考:https:///yuxiaoba/p/8326018.htmlhttps:///Jie-Fei/p/10138885.html代码:#include<bits/stdc++.h>using namespace std;#define P 10000int main(){int a[10000]= {0},b[10000]= {0};//输⼊数组int c[10000]= {0},d[10000]= {0};//结果数组int n,m;int i,j;int flag; //⽤于判断输出空格int x,y; //系数&指数scanf("%d",&n);for(i=0; i<n; i++){scanf("%d %d",&x,&y);a[y]=x; //指数为位置,系数为数组}scanf("%d",&m); //同上输⼊for(i=0; i<m; i++){scanf("%d %d",&x,&y);b[y]=x;}for(i=P-1; i>=0; i--) //////////两数相乘{if(a[i]!=0){for(j=0; j<P; j++){if(b[j]!=0){c[i+j]+=a[i]*b[j];}}}}flag=0; //输出乘式 for(i=P-1; i>=0; i--){if(c[i]!=0){if(flag!=0)printf(" ");printf("%d %d",c[i],i);flag++;}}if(flag==0 ) //扣分点{printf("0 0");}printf("\n"); //换⾏for(i=P-1; i>=0; i--) //两式相加 {if(a[i]!=0)d[i]+=a[i];if(b[i]!=0)d[i]+=b[i];}flag=0; //输出加式 for(i=P-1; i>=0; i--){if(d[i]!=0){if(flag!=0)printf(" ");printf("%d %d",d[i],i);flag++;}}if(flag==0 ) //扣分点{printf("0 0");}}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计成果学院: 计算机工程学院班级: 13计科一班学生姓名: 学号:设计地点(单位):设计题目:一元多项式的计算完成日期:年月日成绩(五级记分制): _________________教师签名:_________________________目录1 需求分析 (1)2 概要设计 (2)2.1一元多项式的建立 (2)2.2显示一元多项式 (2)2.3一元多项式减法运算 (2)2.4一元多项式加法运算 (2)2.5 设计优缺点 (2)3详细设计 (3)3.1一元多项式的输入输出流程图 (3)3.2一元多项式的加法流程图 (3)3.3一元多项式的减法流程图 (4)3.4用户操作函数 (5)4编码 (6)5调试分析 (6)4测试结果及运行效果 (8)5系统开发所用到的技术 (10)参考文献 (11)附录全部代码 (12)1、需求分析建立一元多项式并按照指数降序排列输出多项式,将一元多项式输入并存储在内存中,能够完成两个多项式的加减运算并输出结果。

随着科学技术的发展,计算机领域不断取得新的研究成果。

计算机在代替和延伸脑力劳动方面发挥越来越重要的作用,不仅在工业方面而且在日常生活中也越来越离不开计算机。

尤其是在学校里,要处理大量的学生数据。

随着科学技术的不断提高,计算机科学日渐成熟,其强大的功能已为人们深刻认识,它已进入人类社会的各个领域并发挥着越来越重要的作用.一元多项式在日常生活中应用也比较广泛,在数学领域,我们看似简单的问题,用程序编码出来其实要考虑很多思想,一元多项式的表示在计算机内可以用链表来表示,为了节省存储空间,只存储多项式中系数非零的项,链表中的每一个结点存放多项式的一个系数非零项,它包含三个域,分别存放该项的系数,指数以及指向下一个多项式结点的指针,创建一元多项式链表,对一元多项式的运算中会出现的各种可能情况进行分析,实现一元多项式的相加,相减操作。

算法不像我们平时用眼睛直观观察到的,电脑只会运行在逻辑上有条理合理的东西,不会进行变通,在编写算法时,要认真考虑算法的每一步的运算,之后程序该做什么等问题。

①能够按照多项式变量的指数降序创建一个多项式;②能够对已创建的多项式进行显示;③能够对已创建的多项式之间的加法运算;④能够对已创建的多项式之间的减法运算;⑤能够对已创建的多项式进行删除;⑥能够实现计算器退出操作;2.1一元多项式的建立输入多项式采用头插法的方式,输入多项式中一个项的系数和指数,就产生一个新的节点,建立起它的右指针,并用头结点指向它;为了判断一个多项式是否输入结束,定义一个结束标志,当输入非0时就继续,当输入0时,就结束一个多项式的输入。

2.2显示一元多项式如果系数是大于0的话就直接输出系数,如果系数是正的话前面就要加+号,如果系数是1的话就直接输出+x,如果系数是-1的话就直接输出-x号,如果系数是大于0的话就输出+系数x^指数的形式,如果系数小于0的话就输出系数x^指数的形式。

2.3一元多项式减法运算它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就相减;相加的和不为零的话,用头插法建立一个新的节点,p的指数小于q的指数的话,就应该复制q的节点到多项式中,p的指数大于q的指数的话就应该复制p的节点到多项式中,并且建立的节点的系数为原来的相反数,当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生,当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生,并且建立的节点的系数为原来的相反数。

2.4一元多项式加法运算它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就相加;相加的和不为零的话,用头插法建立一个新的节点,p的指数小于q的指数的话,就应该复制q的节点到多项式中,p的指数大于q的指数的话就应该复制p的节点到多项式中,当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生,当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生。

2.5 设计优缺点优点:1.能够实现一元多项式的加,减运算,算法也不是很复杂,容易理解,在空间复杂度上比较节省存储空间。

2.所有的操作大多是在内存中实现,增加操作的速度,在操作的时候我们可以利用链表来实现随机的操作,十分的方便。

缺点:1.这个算法具有一般性,对于有些特殊的一元多项式采用顺序存储会比较方便,在时间复杂度上可以节省很多算法的时间。

2.在最坏的情况下,即n+1个系数都不为零,则比只存储系数的方法(顺序存储)多存储一倍的数据,对于非零系数多的多项式则不宜采用这种表示。

3.1一元多项式的输入输出流程图1、输入输出(1)功能:将要进行运算的多项式输入输出。

(2)数据流入:要输入的多项式的系数与指数。

(3)数据流出:合并同类项后的多项式。

程序流程图:多项式输入流程图如图3-1所示。

(4)测试要点:输入的多项式是否正确,若输入错误则从新输入。

图3-1 多项式输入流程图3.2一元多项式的加法流程图2、一元多项式的加法(1)功能:将两多项式相加。

(2)数据流入:输入函数。

(3)数据流出:多项式相加后的结果。

(4)程序流程图:多项式的加法流程图如图3-2所示。

测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算图3-2 多项式的加法流程图3.3一元多项式的减法流程图3、一元多项式的减法(5)功能:将两多项式相减。

(6)数据流入:输入函数。

(7)数据流出:多项式相减后的结果。

(8)程序流程图:多项式的减法流程图如图3-3所示。

测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算图3-3 多项式的减法流程图3.4用户操作函数Typedef struct pnode{//项的表示,多项式的项作为pnode的数据元素Float xishu; //系数Int zhishu;//指数/*用头插法生成一个多项式,系数和指数输入0时退出输入*/pnode *creat()/*调整多项式*/void tiaozhen(pnode *head)/*输出一元多项式函数:*/void shuchu(pnode *head)/*两个多项式的加法运算*/pnode*add(pnode*heada,pnode*headb)/*相加的函数*/void add_main()/*减法函数*/void sub_main()4编码函数流程:pnode L=NULL; //定义一个链表,即我们所操作的链表信息都可从这个变量获得void main(){//初始化链表InitList(L );//调用用户界面,接受用户的操作选择switch();}创建链表(程序开始)—>初始化链表—>调用用户界面,接受用户的操作选择—>错误提示,请用户重新操作->#include<stdio.h>#include<malloc.h>#include<stdlib.h>#include<conio.h>5调试分析主要的调试过程有三个:1.对一元多项式的输出,输出函数void shuchu(pnode *head),在开始界面上调整,字段的布局,刚开始时由于换行没有加上,界面如下图5-1 调试之前经过修改之后,界面变得整洁一点,用户更能接受一点,修改之后的图如下:图5-2 调试之后测试输入“1“页面正常,说明逻辑设计正确。

2. 链表的调试。

总得来说链表的调试是相对简单的,毕竟都是在内存里运行的,记录和显示数据的。

调试阶段最重要的还是耐性和细心。

要有足够的耐性去对待令人烦躁的错误,一步步细心的调试,就会查出错误的所在。

我们进行调试、测试是为了让我们的代码、程序更加健壮,质量更高。

所以,我们不要畏惧报错,这是个学习进步的过程。

我们应在错误中,认识到自己的不足与薄弱的知识点,提高自己的编写代码能力和改正错误的能力。

6.测试结果及运行效果运行程序后的登陆后的界面,在其中,可以选择:两个一元多项式相加、两个一元多项式相减,可以按1,2,或者按0键退出。

图6-1登陆后的界面输入1进入一元多项式相加页面后,需要输入第一个一元多项式的系数和指数,注意这里的指数是按降序排列的,系数可以是正的,负的也可以是小数,以输入0 0为结束标志,再按Enter键,输入第二个一元多项式的系数和指数。

图6-2进入一元多项式的操作界面操作完成之后,界面出现的结果如图所示:图6-3 一元多项式运行的结果界面一元多项式的减法操作也是一样的进行,运行的结果如下:图6-4一元多项式减法的运行结果图6-5退出界面7.系统开发所用到的技术操作系统: Windows 7开发软件: Devc++技术:功能模块(函数);指针;结构;链表;模块与函数:功能模块:求解较小问题的算法与程序称作“功能模块”,各功能模块可以先单独设计,然后将求解所有的子问题的模块组合成求解原问题的程序。

将一个大问题分解成多个解决小问题的模块的设计思想。

由功能模块组成程序的结构:主控模块和模块组成。

模块还可细分。

自顶向下,逐步分解的设计思想函数:完成相对独立功能和程序。

模块独立:功能独立的子功能模块之间的关系简单,使用独立变量,模块规模适当:分解模块要注意层次:(1)对问题抽象化(2)设计时细化设计原则:高内聚,低耦合指针就是指向变量和对象的地址。

指针的用途非常广泛,比如如果你想通过函数改变一个变量的值,就得用指针而不能用值传递。

还有在很多时候变量,特别是对象的数据量实在太大,程序员就会用指针来做形参,只需要传递一个地址就行,大大提高了效率。

指针就是指向变量和对象的地址。

指针的用途非常广泛,比如如果你想通过函数改变一个变量的值,就得用指针而不能用值传递。

还有在很多时候变量,特别是对象的数据量实在太大,程序员就会用指针来做形参,只需要传递一个地址就行,大大提高了效率。

c语言之所以强大,以及其自由性,很大部分体现在其灵活的指针运用上。

因此,说指针是c语言的灵魂,一点都不为过。

链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。

链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。

每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。

相比于线性表顺序结构,链表比较方便插入和删除操作。

参考文献[1] 李素若,陈万华等编著.数据结构(c语言描述).北京:中国水利水电出版社,2014.[2] 李素若,琚辉,严永松等编著.数据结构习题解答及上机指导.北京:中国水利水电出版社,2014.[3] 任正云,李素若编著.C语言程序设计.北京:中国水利水电出版社,2011.附录全部代码//一元多项式计算//程序功能:能够按照指数降序排列建立并输出多项式;能够完成两个多项式的相加、相减,并将结果输出//提示;输入完一个多项式之后,输入“00”结束本一元多项式的输入//注意;系数只精确到百分位,最大系数只能为999.99,指数为整数,如果需要输入更大的系数,可以对程序中5.2%f进行相应的修改#include<stdio.h>#include<malloc.h>#include<stdlib.h>#include<conio.h>//建立结构体typedef struct pnode{float xishu;//系数int zhishu;//指数struct pnode *next;//下一个指针}pnode;void open_(){printf("\n*********************************************\n");printf("功能项:\n 1 两个一元多项式相加;\n 2 两个一元多项式相减:\n 0 退出*\n");printf("***********************************************\n\n请选择操作:");}//调整多项式void tiaozhen(pnode *head){pnode *p,*q,*t;float temp;p=head;while(p!=NULL)q=p;t=q->next;while(t!=NULL){if(t->zhishu>q->zhishu)q=t;t=t->next;}temp=p->xishu;p->xishu=q->xishu;q->xishu=temp;temp=p->zhishu;p->zhishu=q->zhishu;q->zhishu=temp;p=p->next;}}//用头插法生成一个多项式,系数和指数输入0时退出输入pnode *creat(){int m;float n;pnode *head,*rear,*s;//head为头指针,rear和s为临时指针head=(pnode*)malloc(sizeof(pnode));rear=head;//指向头scanf("%f",&n);//系数scanf("%d",&m);//输入指数while(n!=0)//输入0退出{s=(pnode *)malloc(sizeof(pnode));s->xishu=n;s->zhishu=m;s->next=NULL;rear->next=s;//头插法rear=s;scanf("%f",&n);//输入系数scanf("%d",&m);//输入指数}//12//head=head->next;//第一个头没有用到return head;}//输出一元多项式函数:void shuchu(pnode *head){pnode *p;int one_time=1;p=head;while(p!=NULL)//如果不为空{if(one_time==1){if(p->zhishu==0)//如果指数为0的话,直接输出系数printf("%5.2f",p->xishu);//如果系数是正的话前面就要加+号else if(p->xishu==1||p->xishu==-1)printf("X^%d",p->zhishu);//如果系数是1的话就直接输出+x //如果系数是-1的话就直接输出-x号else if(p->xishu>0)//如果系数是大于0的话就输出+系数x^指数的形式printf("%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0)//如果系数小于0的话就输出系数x^指数的形式printf("%5.2fX^%d",p->xishu,p->zhishu);one_time=0;}else{if(p->zhishu==0)//如果指数为0的话,直接输出系数{if(p->xishu>0)printf("+%5.2f",p->xishu);//如果系数是正的话前面就要加+号elseprintf("%5.2f",p->xishu);}else if(p->xishu==1)//如果系数是1的话就直接输出+x号printf("+X^%d",p->zhishu);else if(p->xishu==-1)//如果系数是-1的话就直接输出-x号printf("X^%d",p->zhishu);else if(p->xishu>0)//如果系数是大于0的话就输出+系数x^指数的形式printf("+%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0)//如果系数是小于0的话就输出系数x^指数的形式printf("%5.2fX^%d",p->xishu,p->zhishu);}p=p->next;//指向下一个指针}printf("\n");}//两个多项式的加法运算pnode*add(pnode*heada,pnode*headb){pnode*headc,*p,*q,*s,*r;//headc为头指针,r,s为临时指针,p指向第一个多项式并向右移动,q指向第2个多项式并向右移动float x;//x为系数的求和p=heada;//指向第一个多项式的头q=headb;//指向第二个多项式的头headc=(pnode*)malloc(sizeof(pnode));//开辟空间r=headc;while(p!=NULL&&q!=NULL)//2个多项式的某一项都不为空时{if(p->zhishu==q->zhishu)//指数相等的话{x=p->xishu+q->xishu;//系数就应该相加if(x!=0)//相加的和不为0的话{s=(pnode*)malloc(sizeof(pnode));//用头插法建立一个新的节点s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next;//2个多项式都向右移动}else if(p->zhishu<q->zhishu)//p的系数小于q的系数的话,就应该复制q节点到多项式中{s=(pnode*)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;//q向右移动}else//p的系数大于q的系数的话,就应该复制p节点到多项式中{s=(pnode*)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;//p向右移动}}//当第二个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;r->next=s;r=s;p=p->next;}//当第一个多项式空,第一个数不为空时,将第2个数剩下的全用新节点产生while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL;//最后剖指向空headc=headc->next;//第一个头没右用到return headc;//返回头节点}//两个多项式的减法函数pnode *sub(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r;//headc为头指针,r,s为临时指针,p指向第一个多项式并向右移动,q指向第二个多项式并向右移动float x;//x为系数的求和p=heada;//指向第一个多项式的头q=headb;//指向第二个多项式的头headc=(pnode*)malloc(sizeof(pnode));//开辟空间r=headc;while(p!=NULL&&q!=NULL) //两个多项式的某一项都不为空时{if(p->zhishu==q->zhishu)//指数相等的话{x=p->xishu-q->xishu;//系数就应该相减if(x!=0){s=(pnode*)malloc(sizeof(pnode));//用头插法建立一个新的节点s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next;//2个多项式都向右移}else if(p->zhishu<q->zhishu)//p的指数小于q的指数的话,就应该复制q节点到多项式{s=(pnode*)malloc(sizeof(pnode));s->xishu=-q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;//q向右移动}else if(p->zhishu>q->zhishu)//p的系数大于q的系数的话,就应该复制p节点到多项式{s=(pnode*)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;///p向右移动}}//当第二个多项式空,第一个数不为空时,将第一个数剩下的全用新节点产生while(p!=NULL){s=(pnode*)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}//当第一个多项式空,第一个数不为空时,将第二个数剩下的全用新节点产生while(q!=NULL){s=(pnode*)malloc(sizeof(pnode));s->xishu=-q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL;//最后指向空headc=headc->next;//第一个头没有用到return headc;//返回头接点}void add_main(){pnode *a,*b,*c;printf("\n输入第一个一元多项式:\n系数指数\n");a=creat();tiaozhen(a);//17printf("\n输入第二个一元多项式:\n系数指数\n");b=creat();tiaozhen(b);c=add(a,b);printf("第一个一元多项式如下:");shuchu(a);printf("第二个一元多项式如下:");shuchu(b);printf("两式相加如下:");shuchu(c);}void sub_main(){pnode *a,*b,*c;printf("\n输入第一个一元多项式:\n系数指数\n");a=creat();tiaozhen(a);printf("\n输入第二个一元多项式:\n系数指数\n");b=creat();tiaozhen(b);c=sub(a,b);printf("第一个一元多项式如下:");shuchu(a);printf("第二个一元多项式如下:");shuchu(b);printf("两式相减如下:");shuchu(c);}int main(){int choose=1;open_();//18while(choose!=0){scanf("%d",&choose);switch(choose){case 0:return 0;case 1:printf("\n两个一元多项式相加");add_main();choose=-1;open_();break;case 2:printf("\n两个一元多项式相减");sub_main();choose=-1;open_();break;default:printf("没有该选项!请重新选择操作!\n\n");open_();}}return 0;}。

相关文档
最新文档