2007年理科数学试卷及答案-全国1

合集下载

2007年高考数学卷(全国卷Ⅰ.理)含详解

2007年高考数学卷(全国卷Ⅰ.理)含详解

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2【解析】1i (1)1i 111i 22222a a i a a i +-++-+=+=++,∵1i1i 2a +++是实数,∴102a -=,解得a =1.选B .(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向【解析】由a ·b =0,得a 与b 垂直,选A .(4)已知双曲线的离心率为2,焦点是(40)-,,(4,0),则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=【解析】由2ca=及焦点是(40)-,,(4,0),得4c =,2a =,24a =,∴22212b c a =-=,∴双曲线方程为221412x y -=.故选A .(5)设a b ∈R ,,集合{}1{0}b a b a b a+=,,,,,则b a -=( )A .1B .-1C .2D .-2【解析】由{}1{0}b a b a b a+=,,,,知0a b +=或0a =.若0a =则ba无意义,故只有0a b +=,1b =(若1ba=,这与0a b +=矛盾),∴1a =-,2b a -=.故选C .(6)下面给出的四个点中,到直线10x y -+=,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-,【解析】逐一检查,选C .(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45111||||5AD A B =1A 所成角的余弦值为45,选D .(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【解析】若“()f x ,()g x 均为偶函数”则()()f x f x -=,()()g x g x -=当然有()()h x h x -=;反之则未必,故选B .(10)21()n x x-的展开式中,常数项为15,则n =( )A 1D 1 C 1B 1AD CBA (综合法)(坐标法)A 1C 1 B 1AD CB第(7)题D 1A .3B .4C .5D .6【解析】21()n x x-的展开式的通项公式为(22)()(23)1r n rr r n r r n n T C x x C x---+==,若常数项为15,令23015rnn r C -=⎧⎪⎨=⎪⎩,64n r =⎧⎨=⎩,选D . (11)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C)(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .2()33ππ,B .()62ππ,C .(0)3π,D .()66ππ-,()0x >,则第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答) 【解析】填36.从班委会5名成员中选出3名,共35A 种;其中甲、乙之一担任文娱委员的1224A A 种,则不同的选法共有35A -1224A A =36种.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .【解析】()f x =3()xx ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比AC1A A 0(16)题。

2007年北京卷数学(理科)含详细解答

2007年北京卷数学(理科)含详细解答

2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ< ,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)xf x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =5.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种6.若不等式组220x y x y y x y a -0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( )A.43a ≥ B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥7.如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一8.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③ B.①② C.③ D.②2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.22(1)i =+.10.若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.11.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =.12.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是.13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于 . 14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式. 16.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小; (III )求CD 与平面AOB 所成角的最大值.17.(本小题共14分)矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程;(II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接OCADB圆外切,求动圆P 的圆心的轨迹方程. 18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示. (I )求合唱团学生参加活动的人均次数;(II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(I )求面积S 以x 为自变量的函数式,并写出其定义域;(II )求面积S 的最大值.20.已知集合{}12(2)k A a a a k = ,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n . 若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;(II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.A2007年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)答案1.∵ ,∴ 当cos θ<0,tan θ>0时,θ∈第三象限;当cos θ>0,tan θ<0时,θ∈第四象限,选C 。

2007年高考全国1卷数学理科试卷含答案

2007年高考全国1卷数学理科试卷含答案

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D 1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e e 2x -x x x -+=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。

2007年高考理科数学试题及参考答案(陕西卷)1

2007年高考理科数学试题及参考答案(陕西卷)1


所对的边长分别为


,设命题p:
,命题q:
是等边三角形,那么命题p是命题q的 ( )
A.充分不必要条件
B.必要不充分条件.
C.充要条件
D.既不充分也不必要条件
8.已知函数

单调,则
的图象不可能是( )
A.
B.
C.
D.
9.如图是网络工作者用来解释网络运作的蛇形模型:数字1出现在第一 行;数字2,3出现在第二行;数字6,5,4(从左到右)出现在第三行; 数字7,8,9,10出现在第四行,依此类推2011出现在( ) A.第63行,从左到右第5个数 B.第63行,从左到右第6个数 C.第63行,从左到右第57个数 D.第63行,从左到右第58个数
,故f(x)在[0,2]上是减函数, ∴此时f(x)max= f(0)=0,符合题设 …………11分 (ii)当0<a<2时,
故 f(x)在[0,a]上是减函数,在在[a,2]上是增函数 ∴此时f(x)max=max{f(0),f(2)}=0, 又f(0)=0,∴f(2)≤0,即
解之得
一、选择题:本大题共10小题,每小题5分,共50分. 1.已知
,且

,则
为( ) A.
B.
C. D.
2.若 ,则下列不等式中不能成立的是 ( )
A. B. C. D.
3.已知 是平面, 是两条不重合的直线,下列说法正确的是 ( )
A.“若
”是随机事件 B.“若
”是必然事件 C.“若
”是必然事件 D.“若
(1)求 (2)若
, 为数列Байду номын сангаас的前 项和,存在正整数 ,使得 ,求实数 的取值范围。

2007年高考.安徽卷.理科数学试题及解答

2007年高考.安徽卷.理科数学试题及解答

2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效.4. 考试结束,监考员将试题卷和答题卡一并收回.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =+球的体积公式 (1)122n n n ++++= 34π3V R = 222(1)(21)126n n n n +++++= 其中R 表示球的半径22333(1)124n n n ++++= 第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)下列函数中,反函数是其自身的函数为( )(A)[)+∞∈=,0,)(3x x x f (B )[)+∞∞-∈=,,)(3x x x f(C)),(,)(+∞-∞∈=x c x f x (D)),0(,1)(+∞∈=x xx f (2)设l,m,n 均为直线,其中m,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的( )(A )充分不必要条件 (B )必要不充分条件(C)充分必要条件 (D )既不充分也不必要条件(3)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( )(A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1(4)若a 为实数,i ai 212++=-2I ,则a 等于( ) (A )2(B )-2 (C )22 (D )-22(5)若}{822x 2 -≤Z ∈=x A ,{}1log |R 2 x x B ∈=,则)(C R B A ⋂的元素个数为( ) (A )0(B )1 (C )2 (D )3(6)函数()3sin 2f x x π⎛⎫=-⎪3⎝⎭的图象为C , ①图象C 关于直线1112x =π对称; ②函数()f x 在区间5ππ⎛⎫- ⎪1212⎝⎭,内是增函数; ③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( )A .0B .1C .2D .3(7)如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为( )(A )15- (B )154- (C )122- (D )12-(8)半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( )(A ))33arccos(-(B ))36arccos(- (C ))31arccos(-(D ))41arccos(- (9)如图,1F 和2F 分别是双曲线)0,0(12222 b a br a x =-的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为( )(A )3(B )5 (C )25 (D )31+(10)以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ -P 等于(A ))(σμφ+-)(σμφ-(B ))1()1(--φφ (C ))1(σμφ-(D ))(2σμφ-(11)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为( )(A )0 (B )1 (C )3 (D )5(在此卷上答题无效)绝密★启用前2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅱ卷(非选择题 共95分)注意事项:请用0.5毫米黑色水签字笔在答题卡...上书写作答,在试题卷上书写作答无效............ 二、填空题:本大共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(12)若(2x 3+x 1)a 的展开式中含有常数项,则最小的正整数n 等于 .(13)在四面体O-ABC 中,D c b a ,,,===为BC 的中点,E 为AD 的中点,则= (用a ,b ,c 表示).(14)如图,抛物线y =-x 2+1与x 轴的正半轴交于点A ,将线段OA 的n 等分点从左至右依次记为P 1,P 2,…,P n -1,过这些分点分别作x 轴的垂线,与抛物线的交点依次为Q 1,Q 2,…,Q n -1,从而得到n -1个直角三角形△Q 1OP 1, △Q 2P 1P 2,…,△Q n -1P n -1P n -1,当n →∞时,这些三角形的面积之和的极限为 .(15)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号..). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤.(16)(本小题满分12分)已知0<a <)82cos()(,4πβπ+=x x f 为的最小正周期,),1),41(tan(-+=βa a 求ααβααsin cos )(2sin cos 22-++.(17) (本小题满分14分)如图,在六面体ABCD -A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,四边形A 1B 1C 1D 1是边长为1的正方形,DD 1⊥平面A 1B 1C 1D 1,DD 1⊥平面ABCD ,DD 1=2.(Ⅰ)求证: 11C A 与AC 共面,11D B 与BD 共面.(Ⅱ)求证:平面;1111BDD B ACC A 平面⊥(Ⅲ)求二面角C BB A --1的大小(用反三角函数值表示).(18) (本小题满分14分)设a≥0,f (x)=x-1-ln2 x+2a ln x(x>0).(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0.+∞)内的单调性并求极值;(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.(19) (本小题满分12分)如图,曲线G的方程为y2=20(y≥0).以原点为圆心,以t(t >0)为半径的圆分别与曲线G和y轴的正半轴相交于点A与点B.直线AB与x轴相交于点C.(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值.(20) (本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到.....的只数...两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇(Ⅰ)写出ξ的分布列(不要求写出计算过程);(Ⅱ)求数学期望Eξ;(Ⅲ)求概率P(ξ≥Eξ).(21) (本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)a-1,第二年所交纳的储备金就变为a2(1+r)a-2,……,以T n表示到第n年末所累计的储备金总额.(Ⅰ)写出T n与T n-1(n≥2)的递推关系式;(Ⅱ)求证:T n=A n+B n,其中{A n}是一个等比数列,{B n}是一个等差数列.数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分.(1)D (2)A (3)B (4)B (5)C (6)C(7)A (8)C (9)D (10)B (11)D二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(12)7 (13)c b a 414121++ (14)31 (15)①③④⑤三、解答题(16)本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.本小题满分12分.解:因为β为)8π2cos()(+=x x f 的最小正周期,故π=β. 因a ·b =m ,又a ·b =2)41tan(cos -+βa a , 故.2)41tan(cos +=+m a a β 由于4π0 a ,所以 ααααααβαsin cos π)22sin(cos 2sin cos )(2sin cos 222-++=+++a =αααααααααsin cos )sin (cos cos 2sin cos 2sin cos 22-+=-+ =).2(2)4πtan(cos 2tan 1tan 1cos 2m +=+=-+ααααα (17)本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法):以D 为原点,以DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系xyz D -如图,则有A (2,0,0),B (2,2,0),C (0,2,0),).2,0,0(),2,1,0(),2,1,1(),2,0,1(1111D C B A (Ⅰ)证明:),0,2,2(),0,1,1(11-=-=C A),0,2,2(),0,1,1(11==B D.2,21111B D C A ==∴平行,与平行,1111B D C A ∴ 于是11C A 与AC 共面,11D B 与BD 共面. (Ⅱ)证明:,)=,,(),,=(00222001-∙∙DD ,)=,,(),,0022022-∙∙ .1DD ⊥⊥∴,,是平面与111BDD B DB DD 内的两条相交直线,.11BDD B AC 平面⊥∴又平面,过AC ACC A 11.1111BDD B ACC A 平面平面⊥∴ (Ⅲ)解:.210211201111),,=(),,,=(),,,=(----CC BB AA 设的法向量,为平面11111),,(ABB A z y x n = ,02,021111111==--=∙=+-=∙z y x BB n z x n于是).1,0,2(,2,1,0111====n z z y 则取设的法向量,为平面11222),,(BCC B z y x m =.02,022212221=+-=∙=+--=∙z y CC m z y x BB m于是).1,2,0(,2,1,0222====m y z x 则取.51,cos =∙=n m n m n m .51arccos π1---∴的大小为二面角C BB A解法2(综合法):(Ⅰ)证明:,平面平面ABCD D D D C B A D D ⊥⊥111111,111111,D C B A DC D D DA D D 平面,⊥⊥∴∥平面ABCD .于是11D C ∥CD ,11A D ∥DA.设E ,F 分别为DA ,DC 的中点,连结EF ,,,11F C E A有E A 1∥F C D D 11,∥.1,1,1==DF DE D D∴E A 1∥,1F C于是11C A ∥.EF由DE =DF =1,得EF ∥AC ,故11C A ∥,AC11C A 与AC 共面. 过点,,连结,则于点平面作OF OE F C O B E A O B O ABCD O B B . // , // 111111⊥ 于是. // // 1111OF OE C B OF A B OE =∴,,.,1111AD OE D A A B ⊥∴⊥.,1111CD OF D C C B ⊥∴⊥所以点O 在BD 上,故.11共面与DB B D(Ⅱ)证明:,11AC D D ABCD D D ⊥∴⊥,平面又BD ⊥AC (正方形的对角线互相垂直),111BDD B BD D D 是平面与内的两条相交直线,.11BDD B AC 平面⊥∴又平面,111111BDD B ACC A AC ACC A 平面平面,过⊥∴ (Ⅲ)解:∵直线DB 是直线,1DB AC ABCD B B ⊥上的射影,在平面 根据三垂线定理,有AC ⊥.1B B过点A 在平面,,111MO MC M B B AM A ABB ,连结于内作⊥ 则,平面AMC B B ⊥1于是,,MO B B MC B B ⊥⊥11所以,∠AMC 是二面角.1的一个平面角C B B A -- 根据勾股定理,有.6,5,5111===B B C C A A有,1B B OM ⊥,310,310,32,3211====∙CM AM BM B B OB O B OM = ,512cos 222-=∙-+=∠CM AM AC CM AM AMC ,51arccos π-=∠AMC 二面角.51arccos π1---的大小为C BB A (18)本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力,本小题满分14分. (Ⅰ)解:根据求导法则得.0,2In 21)( x xa x x x f +-=' 故,0,2In 2)()( x a x x x xf x F +-='= 于是.0,221)( x x x x x F -=-='F (2)=2-2In2+2a . (Ⅱ)证明:由.022In 2)2()(0 a F x F a +-=≥的极小值知,于是由上表知,对一切.0)()(),,0( x xf x F x '=+∞∈恒有从而当.,0)(,0)(0)内单调增加在(故时,恒有+∞'x f x f x所以当.0In 2In 1,0)1()(12x a x x f x f x +--=即时, 故当.1In 2In 12+-x a x x x 时,恒有 (19)本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力,综合分析问题的能力.本小题满分12分.解:(Ⅰ)由题意知,A (a a 2,).因为.2,22t a a t OA =+=所以由于)1.(2,02a a t t +=故有由点B (0,t )C (c ,0)的坐标知,直线BC 的方程为 .1=+ty c x 又因点A 在直线BC 上,故有,12=+ta c a 将(1)代入上式,得,1)2(2=++a a a c a解得.)2(22+++=a a c (Ⅱ)因为的斜率为所以直线CD a a D ),)2(2,2(++,1)2(2)2(2))2(22(2)2(22)2(2-=++=+++-++=-++=a a a a a a c a a k CD所以直线CD 的斜率为定值.(20)本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分.解:(1)ξ的分布列为(Ⅱ)数学期望为E ξ=.2)435261(282=⨯+⨯+⨯ (Ⅲ)所求的概率 .28152812345)2()(=++++=≥=≥ξξξP E P (21)本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力,考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有).2()1(1≥++=-n a r T T n n n(Ⅱ)得反复使用上述关系式,对2,11≥=n a T=++++=++=---n a n n n n a r a r T a r T T )1()1()1(1221=.)1()1()1(12211n n a a a r a r a r a +++++++---① 在①式两端同乘1+r ,得 ).1()1()1()1()1(21121r a r a r a r a T r n n n a n ++++++++=+--② ②-①,得[]n n n n n a r r r d r a rT -++++++++=--)1()1()1()1(211 =[],)1(1)1(1n n n a r a r r rd -++--+ 即.)1(2121rd r a n r d r r d r a T n n +--++= 如果记,,)1(2121n r d rd r a B r r d r a A n n n -+-=++= 则,n n n B A T +=其中{}{}是以为公比的等比数列为首项,以是以n n B r r r rd r a A ;)0(1)1(21+++ .21为公差的等差数列为首项,r d r d r d r a --+-。

2007年全国统一高考数学试卷(理科)(全国卷一)及解析

2007年全国统一高考数学试卷(理科)(全国卷一)及解析

2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C. D.2.(4分)设a是实数,且是实数,则a=()A.B.1 C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A. B.2 C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B. C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C. D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1 C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA 1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A. B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK ⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B. C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x >0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C 的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b 时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C 两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b 1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.。

浙江2007年全国各地高考理科数学试题及参考答案

浙江2007年全国各地高考理科数学试题及参考答案

2007年全国各地高考(浙江卷)数学(理工类)全解全析第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“1x >”是“2x x >”的( )A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】:A【分析】:由2x x >可得01<>x x 或,∴1x >可得到2x x >,但2x x >得不到1x >.故选A.(2)若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =则( )A.126ωϕπ==, B .123ωϕπ==, C.26ωϕπ==, D.23ωϕπ==, 【答案】:D【分析】:由2 2.T ππωω==∴=由(0)2sin sin f ϕϕ===.23ϕϕππ<∴=故选D .(3)直线210x y -+=关于直线1x =对称的直线方程是( ) A.210x y +-= B.210x y +-= C.230x y +-=D.230x y +-=【答案】:D【分析】:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于1x =对称点为(2-x,y)在直线210x y -+=上,0122=+--∴y x 化简得230x y +-=故选答案D.解法二:根据直线210x y -+=关于直线1x =对称的直线斜率是互为相反数得答案A 或D, 再根据两直线交点在直线1x =选答案D.(4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是半径为6米 的圆面,则需安装这种喷水龙头的个数最少是( ) A.3 B.4 C.5 D.6【答案】B【分析】:因为龙头的喷洒面积为36π113≈,正方形面积为256,故至少三个龙头。

2007年普通高等学校招生全国统一考试理科数学试卷及答案-北京卷

2007年普通高等学校招生全国统一考试理科数学试卷及答案-北京卷

2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知cos tan 0θθ<,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)xf x x =<≤的反函数的定义域为( ) A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =5.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种6.若不等式组220x y x y y x y a-0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( )A.43a ≥B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥ 7.如果正数abcd ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一8.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( ) A.①③ B.①② C.③ D.②2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.22(1)i =+.10.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为 ;数列{}n na 中数值最小的项是第项.11.在ABC △中,若1tan 3A =,150C =,1BC =,则AB =.12.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若AB =∅,则实数a 的取值范围是.13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于.14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式. 16.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小; (III )求CD 与平面AOB 所成角的最大值.17.(本小题共14分)矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程. 18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I )求合唱团学生参加活动的人均次数; (II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(III )从合唱团中任选两名学生,用ξ表示这两人参加活动次OCADB数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(I )求面积S 以x 为自变量的函数式,并写出其定义域; (II )求面积S 的最大值.20.已知集合{}12(2)k A a a a k =,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n . 若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ; (II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.2007年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)答案一、选择题(本大题共8小题,每小题5分,共40分)1.C 2.B 3.D 4.A5.B6.D7.A 8.D二、填空题(本大题共6小题,每小题5分,共30分) 9.i -10.211n -311.212.(23),A13.72514.1 2三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I )12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+, 解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,. 当1n =时,上式也成立,所以22(12)n a n n n =-+=,,. 16.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, 又二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,CE ∴==又12DE AO ==.AD∴在Rt CDE △中,tan CE CDE DE ===. ∴异面直线AO 与CD所成角的大小为arctan3. (III )由(I )知,CO ⊥平面AOB ,CDO ∴∠是CD 与平面AOB 所成的角,且2tan OC CDO OD OD==. 当OD 最小时,CDO ∠最大, 这时,OD AB ⊥,垂足为D ,3OA OBOD AB==,tan CDO =,CD ∴与平面AOB 所成角的最大值为arctan3. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,,(200)C ,,,(01D , (00OA ∴=,,(2CD =-,cos OA CD OA CD OA CD∴<>=,664322==. ∴异面直线AO 与CD 所成角的大小为arccos4(III )同解法一17.(共14分)解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,.x所以M 为矩形ABCD 外接圆的圆心.又AM ==从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切,所以PM PN =+即PM PN -=故点P 的轨迹是以M N ,为焦点,实轴长为因为实半轴长a =2c =.所以虚半轴长b ==从而动圆P的圆心的轨迹方程为221(22x y x -=≤. 18.(共13分)解:由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40. (I )该合唱团学生参加活动的人均次数为1102503402302.3100100⨯+⨯+⨯==.(II )从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为222105040021004199C C C P C ++==. (III )从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A ,“这两人中一人参加2次活动,另一人参加3次活动”为事件B ,“这两人中一人参加1次活动,另一人参加3次活动”为事件C .易知(1)()()P P A P B ξ==+111110505040241001005099C C C C C C =+=; (2)()P P C ξ==1110402100899C C C ==; ξ的分布列:ξ的数学期望:0129999993E ξ=⨯+⨯+⨯=. 19.(共13分)解:(I )依题意,以AB 的中点O 为原点建立直角坐标系O xy -(如图),则点C 的横坐标为x .点C 的纵坐标y 满足方程22221(0)4x y y r r+=≥,解得)y x r =<<221(22)22S x r r x =+-222()x r r x =+-,其定义域为{}0x x r <<.(II )记222()4()()0f x x r r x x r =+-<<,, 则2()8()(2)f x x r r x '=+-. 令()0f x '=,得12x r =. 因为当02r x <<时,()0f x '>;当2rx r <<时,()0f x'<,所以12f r ⎛⎫⎪⎝⎭是()f x 的最大值. 因此,当12x r =时,S 22r =. 即梯形面积S 的最大值为22r . 20.(共13分)(I )解:集合{}0123,,,不具有性质P .集合{}123-,,具有性质P ,其相应的集合S 和T 是{}(13)(31)S =--,,,,{}(21)23T =-(),,,.(II )证明:首先,由A 中元素构成的有序数对()i j a a ,共有2k 个.因为0A ∉,所以()(12)i i a a T i k ∉=,,,,;又因为当a A ∈时,a A -∉时,a A -∉,所以当()i j a a T ∈,时,()(12)j i a a T i j k ∉=,,,,,. 从而,集合T 中元素的个数最多为21(1)()22k k k k --=, 即(1)2k k n -≤. (III )解:m n =,证明如下:(1)对于()a b S ∈,,根据定义,a A ∈,b A ∈,且a b A +∈,从而()a b b T +∈,.如果()a b ,与()c d ,是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d +=+与b d =中也至少有一个不成立.故()a b b +,与()c d d +,也是T 的不同元素.可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,(2)对于()a b T ∈,,根据定义,a A ∈,b A ∈,且a b A -∈,从而()a b b S -∈,.如果()a b ,与()c d ,是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也不至少有一个不成立,故()a b b -,与()c d d -,也是S 的不同元素.可见,T 中元素的个数不多于S 中元素的个数,即n m ≤, 由(1)(2)可知,m n =.。

【历年经典高考】2007年理科数学试卷及答案-全国1

【历年经典高考】2007年理科数学试卷及答案-全国1

2007年普通高等学校招生全国统一·考试·理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.·考试·结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…, 一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i 1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10ba b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-, (7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分) 某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABC D -中,底面ABCD 为平行四边形,侧面SBC ⊥底面A B C D .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e x x f x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于AC ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一·考试· 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D(11)C(12)A二、填空题:(13)36(14)3()x x ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =+3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯ 240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥,故SA AD ⊥,由AD BC ==,SA =AO 1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C ,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. 22cos 11OG DS OG DSα==,sin 11β= 所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20x x g x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=, 所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,221132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n=2,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -≤, 也即430k k b a -< 当1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(32)2)23k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….笔记卡。

2007全国高考理科数学试题及答案安徽

2007全国高考理科数学试题及答案安徽

2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致. 2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式(1)122n n n ++++=34π3V R =222(1)(21)126n n n n +++++=其中R 表示球的半径22333(1)124n n n ++++=第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,反函数是其自身的函数为( )A .2()[0)f x x x =∈+∞,,B .3()()f x x x =∈-∞+∞,,C .()e ()xf x x =∈-∞+∞,,D .1()(0)f x x x=∈+∞,, 2.设l m n ,,均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意x ∈R ,不等式x ax ≥恒成立,则实数a 的取值范围是( ) A .1a <-B .1a ≤C .1a <D .1a ≥4.若a 为实数,2i2i 1+2ia +=-,则a 等于( )A .2B .2-C .22D .22-5.若22{228}{log 1}xA xB x x -=∈<=∈>Z R≤,,则()A B R ð的元素个数为( ) A .0B .1C .2D .36.函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C , ①图象C 关于直线1112x =π对称; ②函数()f x 在区间5ππ⎛⎫-⎪1212⎝⎭,内是增函数; ③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0 B .1 C .2D .37.如果点P 在平面区域22021020x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A .51-B .415- C .221- D .21-8.半径为1的球面上的四点A B C D ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( )A .3arccos 3⎛⎫- ⎪ ⎪⎝⎭B .6arccos 3⎛⎫- ⎪ ⎪⎝⎭C .1arccos 3⎛⎫- ⎪⎝⎭D .1arccos 4⎛⎫-⎪⎝⎭9.如图,1F 和2F 分别是双曲线22221(00)x ya b a b -=>>, 的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且2F AB △是等边三角形,则双 曲线的离心率为( ) A .3B .5Ay2F1FBOx第9题图C .52D .13+10.以()x ∅表示标准正态总体在区间()x -∞,内取值的概率,若随机变量ξ服从正态分布2()N μσ,,则概率()P ξμσ-<等于( )A .()()μσμσ∅+-∅-B .(1)(1)∅-∅-C .1μσ-⎛⎫∅⎪⎝⎭D .2()μσ∅+11.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .52007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效. 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.12.若312nx x ⎛⎫+ ⎪⎝⎭的展开式中含有常数项,则最小的正整数n 等于 .13.在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).14.如图,抛物线21y x =-+与x 轴的正半轴交于点A , 将线段OA 的n 等分点从左至右依次记为121n P P P -,,,, 过这些分点分别作x 轴的垂线,与抛物线的交点依次为121n Q Q Q -,,,,从而得到1n -个直角三角形11Q OP △, 212121n n n Q PP Q P P ---△,,△.当n →∞时,这些三角形 的面积之和的极限为 .yx1Q 2Q1n Q +21y x =+1P 2P2n P - 1n P - O第14题图15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 1(cos 2)4αβα⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,,,a b ,且a b m =.求22cos sin 2()cos sin ααβαα++-的值. 17.(本小题满分14分)如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为 2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面 1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示). 18.(本小题满分14分)设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.ABCD1A1B1C 1D第17题图19.(本小题满分12分)如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C .(Ⅰ)求点A 的横坐标a 与点C 的横坐标c 的关系式(Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 20.(本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子,6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇.....的只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程); (Ⅱ)求数学期望E ξ; (Ⅲ)求概率()P E ξξ≥.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+,.以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.x y B A O a 2a + C D2:2G y x =第19题图2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分. 1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.C 9.D 10.B 11.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.713.111244++a b c 14.1315.①③④⑤三、解答题16.本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.本小题满分12分. 解:因为β为π()cos 28f x x ⎛⎫=+⎪⎝⎭的最小正周期,故πβ=. 因m =·a b ,又1cos tan 24ααβ⎛⎫=+- ⎪⎝⎭ab ··. 故1cos tan 24m ααβ⎛⎫+=+ ⎪⎝⎭·. 由于π04α<<,所以 222cos sin 2()2cos sin(22π)cos sin cos sin ααβαααααα++++=--22cos sin 22cos (cos sin )cos sin cos sin ααααααααα++==--1tan π2cos 2cos tan 2(2)1tan 4m ααααα+⎛⎫==+=+ ⎪-⎝⎭·.17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分.解法1(向量法):以D 为原点,以1DADC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,.(Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-==,,,,,,,,,,,∵. 111122AC AC DB D B ==,∴. AC ∴与11AC 平行,DB 与11DB 平行, 于是11AC 与AC 共面,11BD 与BD 共面. (Ⅱ)证明:1(002)(220)0DD AC =-=,,,,··, (220)(220)0DB AC =-=,,,,··,1DD AC ⊥∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=-,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+=n ·,111120BB x y z =--+=n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+=m ·,12220CC y z =-+=m ·.于是20x =,取21z =,则22y =,(021)=,,m . 1cos 5==,m n m n m n ·. ABCD1A 1B 1C 1D xyz∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DA DC ,的中点,连结11EF A E C F ,,,有111111A E D D C F D D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11A C EF ∥.由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11A C 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴.1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.ABCD1A1B1C 1DMOEF过点A 在平面11ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角. 根据勾股定理,有111556A A C C B B ===,,. 1OM B B ⊥∵,有1123B O OB OM B B ==·,23BM =,103AM =,103CM =. 2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.本小题满分14分. (Ⅰ)解:根据求导法则有2ln 2()10x af x x x x'=-+>,, 故()()2ln 20F x xf x x x a x '==-+>,, 于是22()10x F x x x x-'=-=>,, 列表如下:x(02),2 (2)+,∞ ()F x ' -0 +()F x极小值(2)F故知()F x 在(02),内是减函数,在(2)+,∞内是增函数,所以,在2x =处取得极小值(2)22ln 22F a =-+.(Ⅱ)证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>.于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. 所以当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>.故当1x >时,恒有2ln 2ln 1x x a x >-+.19.本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力、综合分析问题的能力.本小题满分12分.解:(Ⅰ)由题意知,(2)A a a ,. 因为OA t =,所以222a a t +=.由于0t >,故有22t a a =+. (1) 由点(0)(0)B t C c ,,,的坐标知, 直线BC 的方程为1x yc t+=. 又因点A 在直线BC 上,故有21a a c t+=, 将(1)代入上式,得21(2)a a c a a +=+, 解得22(2)c a a =+++.(Ⅱ)因为(22(2))D a a ++,,所以直线CD 的斜率为2(2)2(2)2(2)122(22(2))2(2)CD a a a k a c a a a a +++====-+-+-+++-+.所以直线CD 的斜率为定值.20.本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分. 解:(Ⅰ)ξ的分布列为:ξ 0 1 2 3 4 5 6P728 628 528 428 328 228 128(Ⅱ)数学期望为2(162534)228E ξ=⨯+⨯+⨯=. (Ⅲ)所求的概率为5432115()(2)2828P E P ξξξ++++===≥≥.xyB AO a2a + C D2:2G y x =11 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥.(Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++, ①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++ ②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r =+--++-. 即1122(1)n n a r d a r dd T r n r r r ++=+--. 如果记12(1)n n a r d A r r +=+,12n a r d dB n r r +=--,则n n n T A B =+.其中{}n A 是以12(1)a r dr r ++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr -为公差的等差数列.。

2007年高考数学考试真题含答案合辑一

2007年高考数学考试真题含答案合辑一

2007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致. 2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式(1)122n n n ++++=34π3V R =222(1)(21)126n n n n +++++=其中R 表示球的半径22333(1)124n n n ++++=第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,反函数是其自身的函数为( ) A .2()[0)f x x x =∈+∞,,B .3()()f x x x =∈-∞+∞,, C .()e ()x f x x =∈-∞+∞,, D .1()(0)f x x x=∈+∞,, 2.设l m n ,,均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意x ∈R ,不等式x ax ≥恒成立,则实数a 的取值范围是( ) A .1a <-B .1a ≤C .1a <D .1a ≥4.若a=,则a 等于( )AB.C.D.-5.若22{228}{lo g 1}xA xB x x -=∈<=∈>Z R ≤,,则()A B R ð的元素个数为( )A .0B .1C .2D .36.函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C , ①图象C 关于直线1112x =π对称; ②函数()f x 在区间5ππ⎛⎫-⎪1212⎝⎭,内是增函数; ③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0 B .1 C .2D .37.如果点P 在平面区域22021020x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A1B1- C.1 D18.半径为1的球面上的四点A B C D ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( )A.arccos 3⎛- ⎝⎭B.arccos 3⎛⎫- ⎪ ⎪⎝⎭C .1arccos 3⎛⎫- ⎪⎝⎭D .1arccos 4⎛⎫-⎪⎝⎭9.如图,1F 和2F 分别是双曲线22221(00)x ya b a b -=>>, 的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且2F AB △是等边三角形,则双 曲线的离心率为( ) AB第9题图C.2D.110.以()x ∅表示标准正态总体在区间()x -∞,内取值的概率,若随机变量ξ服从正态分布2()N μσ,,则概率()P ξμσ-<等于( )A .()()μσμσ∅+-∅-B .(1)(1)∅-∅-C .1μσ-⎛⎫∅⎪⎝⎭D .2()μσ∅+11.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .52007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效. 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.12.若32nx ⎛+ ⎝的展开式中含有常数项,则最小的正整数n 等于 .13.在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE =(用,,a b c 表示).14.如图,抛物线21y x =-+与x 轴的正半轴交于点A , 将线段OA 的n 等分点从左至右依次记为121n P P P - ,,,, 过这些分点分别作x 轴的垂线,与抛物线的交点依次为 121n Q Q Q - ,,,,从而得到1n -个直角三角形11Q OP △,212121n n n Q PP Q P P --- △,,△.当n →∞时,这些三角形 的面积之和的极限为 .yx1Q 2Q1n Q +21y x =+1P 2P2n P - 1n P - O第14题图15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号). ①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 1(cos 2)4αβα⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,,,a b ,且 a b m =.求22cos sin 2()cos sin ααβαα++-的值. 17.(本小题满分14分)如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为 2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面 1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示). 18.(本小题满分14分)设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.ABCD1A1B1C 1D第17题图19.(本小题满分12分)如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C .(Ⅰ)求点A 的横坐标a 与点C 的横坐标c 的关系式(Ⅱ)设曲线G 上点D 的横坐标为2a +求证:直线CD 的斜率为定值. 20.(本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子,6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇.....的只数.(Ⅰ)写出ξ的分布列(不要求写出计算过程); (Ⅱ)求数学期望E ξ; (Ⅲ)求概率()P E ξξ≥.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+, .以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2x第19题图2007年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分55分. 1.D 2.A 3.B 4.B 5.C 6.C 7.A 8.C 9.D 10.B 11.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.713.111244++a b c 14.1315.①③④⑤三、解答题16.本小题主要考查周期函数、平面向量数量积与三角函数基本关系式,考查运算能力和推理能力.本小题满分12分. 解:因为β为π()cos 28f x x ⎛⎫=+⎪⎝⎭的最小正周期,故πβ=. 因m =·a b ,又1cos tan 24ααβ⎛⎫=+- ⎪⎝⎭a b ··. 故1cos tan 24m ααβ⎛⎫+=+ ⎪⎝⎭·. 由于π04α<<,所以 222cos sin 2()2cos sin(22π)cos sin cos sin ααβαααααα++++=--22cos sin 22cos (cos sin )cos sin cos sin ααααααααα++==--1tan π2cos 2cos tan 2(2)1tan 4m ααααα+⎛⎫==+=+ ⎪-⎝⎭·.17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分.解法1(向量法): 以D 为原点,以1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,.(Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-==,,,,,,,,,,,∵. 111122AC AC DB D B ==,∴. AC ∴与11AC 平行,DB 与11DB 平行, 于是11AC 与AC 共面,11B D 与BD 共面. (Ⅱ)证明:1(002)(220)0DD AC =-= ,,,,··, (220)(220)0DB AC =-= ,,,,··, 1DD AC ⊥ ∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=- ,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+= n ·,111120BB x y z =--+= n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+= m ·,12220CC y z =-+= m ·.于是20x =,取21z =,则22y =,(021)=,,m . 1cos 5==,m n m n m n ·.∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DADC ,的中点,连结11EF A E C F ,,, 有111111A E D DC FD D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11AC EF ∥.由1DE DF ==,得EF AC ∥,故11AC AC ∥,11AC 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴.1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD . (Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.ABCD1A1B1C 1DMOE F过点A 在平面11ABB A 内作1AM BB ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B =. 1OM B B ⊥∵,有11B O OB OM B B ==·BM =AM =CM = 2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.本小题满分14分. (Ⅰ)解:根据求导法则有2ln 2()10x af x x x x'=-+>,, 故()()2ln 20F x xf x x x a x '==-+>,, 于是22()10x F x x x x-'=-=>,, 列表如下:故知()F x 在(02),内是减函数,在(2)+,∞内是增函数,所以,在2x =处取得极小值(2)22ln 22F a =-+.(Ⅱ)证明:由0a ≥知,()F x 的极小值(2)22ln 220F a =-+>.于是由上表知,对一切(0)x ∈+,∞,恒有()()0F x xf x '=>. 从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞内单调增加. 所以当1x >时,()(1)0f x f >=,即21ln 2ln 0x x a x --+>.故当1x >时,恒有2ln 2ln 1x x a x >-+.19.本小题综合考查平面解析几何知识,主要涉及平面直角坐标系中的两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系,考查运算能力与思维能力、综合分析问题的能力.本小题满分12分.解:(Ⅰ)由题意知,(A a . 因为OA t =,所以222a a t +=.由于0t >,故有t = (1)由点(0)(0)B t C c ,,,的坐标知, 直线BC 的方程为1x yc t+=. 又因点A 在直线BC上,故有1a c t+=, 将(1)代入上式,得1a c +=,解得2c a =+(Ⅱ)因为(2D a +,所以直线CD 的斜率为1CD k ====-.所以直线CD 的斜率为定值.20.本小题主要考查等可能场合下的事件概率的计算、离散型随机变量的分布列、数学期望的概念及其计算,考查分析问题及解决实际问题的能力.本小题满分13分. 解:(Ⅰ)ξ的分布列为:(Ⅱ)数学期望为2(162534)228E ξ=⨯+⨯+⨯=. (Ⅲ)所求的概率为5432115()(2)2828P E P ξξξ++++===≥≥.2x =21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++ ,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r=+--++-. 即1122(1)nn a r d a r d d T r n r r r ++=+--.如果记12(1)nn a r d A r r +=+,12n a r d d B n r r+=--,则n n n T A B =+. 其中{}n A 是以12(1)a r dr r ++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr-为公差的等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第I 至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2.答第I 卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第II 卷时,必须用0.5毫米黑色黑水签字笔在答题卡上.....书写.在试题卷上作答无........效.. 4.考试结束,监考员将试题和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么球的体积公式(1)122n n n ++++=34π3V R =222(1)(21)126n n n n +++++=其中R 表示球的半径22333(1)124n n n ++++=第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}21A x x ==,{}2230B x x x =--=,则A B = ( ) A.{}3B.{}1C.∅D.{}1-2.椭圆2241x y +=的离心率为( )B.34D.233.等差数列{}n a 的前n 项和为n S ,若21a =,33a =,则4S =( ) A.12 B.10 C.8 D.64.下列函数中,反函数是其自身的函数为( )A.2()f x x =,[0)x ∈+∞,B.3()()f x x x =∈-∞+∞,, C.()e ()xf x x =∈-∞+∞,,D.1()f x x=,(0)x ∈+∞,5.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为2,则a 的值为( )A.2-或2B.12或32C.2或0 D.2-或0 6.设t ,m ,n 均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 7.图中的图象所表示的函数的解析式为( )A.312y x =- (02)x ≤≤B.33122y x =-- (02)x ≤≤C.312y x =--(02)x ≤≤ D.11y x =--(02)x ≤≤8.设1a >,且2log (1)a m a =+,log (1)a n a =-,log (2)a p a =,则m n p ,,的大小关系为( ) A.n m p >>B.m p n >>C.m n p >>D.p m n >>9.如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A.321C.1110.把边长为ABCD 沿对角线AC 折成直二面角,折成直二面角后,在A B C D ,,,四点所在的球面上,B 与D 两点之间的球面距离为( )C.π B.π2 D.π311.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A.0B.1C.3D.52007年普通高等学校招生全国统一考试(安微卷)数学(文科)第II 卷(非选择题共95分)第7题图注意事项:请用0.5毫米黑色墨水签字笔在答题卡...上书写作答,在试题卷上书写作答无效........... 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 12.已知52345012345(1)x a a x a x a x a x a x -=+++++,则024135()()a a a a a a ++++的值等于.13.在四面体O ABC -中,OA a = ,OB b = ,OC c =,D 为BC 的中点,E 为AD 的中点,则OE =(用a b c ,,表示)14.在正方体上任意选择两条棱,则这两条棱相互平行的概率为. 15.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是(写出所有正确结论的编号..). ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分) 解不等式(311)(sin 2)0x x --->.17.(本小题满分14分) 如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示) 18.(本小题满分14分)设F 是抛物线2:4G x y =的焦点.(I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =,延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值.ABCD1A1B1C 1D19.(本小题满分13分)在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔. (I )求笼内恰好剩下....1只果蝇的概率; (II )求笼内至少剩下....5只果蝇的概率. 20.(本小题满分14分) 设函数232()cos 4sincos 43422x xf x x t t t t =--++-+,x ∈R , 其中1t ≤,将()f x 的最小值记为()g t . (I )求()g t 的表达式;(II )讨论()g t 在区间(11)-,内的单调性并求极值. 21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+, .以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(文史)参考答案一、选择题:本题考查基本知识的基本运算.每小题5分,满分55分.1.D 2.A 3.C 4.D 5.C 6.A7.B 8.B 9.A 10.C 11.D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.256-13.111244a b c ++ 14.31115.①②③三、解答题16.本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力.本小题满分10分.解:因为对任意x ∈R ,sin 20x -<,所以原不等式等价于3110x --<. 即311x -<,1311x -<-<,032x <<,故解为203x <<. 所以原不等式的解集为203x x ⎧⎫<<⎨⎬⎩⎭. 17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法): 以D 为原点,以1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,.(Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-== ,,,,,,,,,,,∵. 111122AC AC DB D B == ,∴. AC ∴与11AC 平行,DB 与11DB 平行, 于是11AC 与AC 共面,11B D 与BD 共面. (Ⅱ)证明:1(002)(220)0DD AC =-= ,,,,··,(220)(220)0DB AC =-= ,,,,··,1DD AC ⊥ ∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=- ,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+= ·n ,111120BB x y z =--+= n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+= m ·,12220CC y z =-+= m ·.于是20x =,取21z =,则22y =,(021)=,,m . 1cos 5==,m n m n m n ·. ∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DADC ,的中点,连结11EF A E C F ,,, 有111111A E D DC FD D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11AC EF ∥.ABCD1A1B1C 1DMOE F由1DE DF ==,得EF AC ∥,故11AC AC ∥,11AC 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴.1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD . (Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面1ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B =. 1OM B B ⊥∵,有11B O OB OM B B ==·BM =AM =CM = 2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力.本小题满分14分.解:(I )设切点204x Q x ⎛⎫ ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为2000()42x xy x x -=-. 即20424x x y x =-. 因为点(0)P -4,在切线上. 所以2044x -=-,2016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,.由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.因直线AC 过焦点(01)F ,,所以直线AC 的方程为1y kx =+. 点A C ,的坐标满足方程组214y kx x y =+⎧⎨=⎩,,得2440x kx --=,由根与系数的关系知121244.x x k x x +=⎧⎨=-⎩,24(1)AC k ===+.因为AC BD ⊥,所以BD 的斜率为1k -,从而BD 的方程为11y x k=-+. 同理可求得22214(1)41k BD k k ⎛⎫+⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭. 2222218(1)18(2)322ABCDk S AC BD k k k +===++≥.当1k =时,等号成立.所以,四边形ABCD 面积的最小值为32.19.本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力.本小题满分13分. 解:以k A 表示恰剩下k 只果蝇的事件(016)k = ,,,. 以m B 表示至少剩下m 只果蝇的事件(016)m = ,,,. 可以有多种不同的计算()k P A 的方法.方法1(组合模式):当事件k A 发生时,第8k -只飞出的蝇子是苍蝇,且在前7k -只飞出的蝇子中有1只是苍蝇,所以17287()28kk C k P A C --==. 方法2(排列模式):当事件k A 发生时,共飞走8k -只蝇子,其中第8k -只飞出的蝇子是苍蝇,哪一只?有两种不同可能.在前7k -只飞出的蝇子中有6k -只是果蝇,有68kC -种不同的选择可能,还需考虑这7k -只蝇子的排列顺序.所以162688(7)!7()28kk kC C k kP A A ----== . 由上式立得163()2814P A ==; 356563()()()()28P B P A A P A P A =+=+=. 20.本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力.本小题满分14分. 解:(I )我们有232()cos 4sin cos 43422x xf x x t t t t =--++-+222sin 12sin 434x t t t t =--++-+ 223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+.由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,.列表如下:由此可见,()g t 在区间112⎛⎫--⎪⎝⎭,和112⎛⎫ ⎪⎝⎭,单调增加,在区间1122⎛⎫- ⎪⎝⎭,单调减小,极小值为122g ⎛⎫= ⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭. 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++ ,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r=+--++-. 即1122(1)nn a r d a r d d T r n r r r ++=+--.如果记12(1)nn a r d A r r +=+,12n a r d d B n r r+=--,则n n n T A B =+. 其中{}n A 是以12(1)a r dr r ++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr-为公差的等差数列.2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ< ,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)xf x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =5.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种6.若不等式组220x y x y y x y a -0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( )A.43a ≥ B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥7.如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一8.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③ B.①② C.③ D.②2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.22(1)i =+.10.若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.11.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = .12.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是 .13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于 . 14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;(II )求{}n a 的通项公式. 16.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小; (III )求CD 与平面AOB 所成角的最大值.17.(本小题共14分)矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;OCADB(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程. 18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I )求合唱团学生参加活动的人均次数; (II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(I )求面积S 以x 为自变量的函数式,并写出其定义域; (II )求面积S 的最大值.20.已知集合{}12(2)k A a a a k = ,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n . 若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;(II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.123A2007年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)答案一、选择题(本大题共8小题,每小题5分,共40分)1.C 2.B 3.D 4.A5.B6.D7.A 8.D二、填空题(本大题共6小题,每小题5分,共30分)9.i - 10.211n - 31112.(23),13.72514.12三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I )12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+, 解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+= ,,. 当1n =时,上式也成立, 所以22(12)n a n n n =-+= ,,. 16.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, 又 二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O = ,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,CE ∴=又12DE AO ==∴在Rt CDE △中,tan 3CE CDE DE ===. ∴异面直线AO 与CD所成角的大小为. (III )由(I )知,CO ⊥平面AOB ,CDO ∴∠是CD 与平面AOB 所成的角,且2tan OC CDO OD OD==. 当OD 最小时,CDO ∠最大, 这时,OD AB ⊥,垂足为D,OA OB OD AB ==tan CDO = CD ∴与平面AOB所成角的最大值为. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,,(200)C ,,,D ,(00OA ∴= ,,(CD =-,cos OA CDOACD OA CD∴<>=,xOCADBE==∴异面直线AO与CD所成角的大小为arccos4.(III)同解法一17.(共14分)解:(I)因为AB边所在直线的方程为360x y--=,且AD与AB垂直,所以直线AD的斜率为3-.又因为点(11)T-,在直线AD上,所以AD边所在直线的方程为13(1)y x-=-+.320x y++=.(II)由36032=0x yx y--=⎧⎨++⎩,解得点A的坐标为(02)-,,因为矩形ABCD两条对角线的交点为(20)M,.所以M为矩形ABCD外接圆的圆心.又AM==从而矩形ABCD外接圆的方程为22(2)8x y-+=.(III)因为动圆P过点N,所以PN是该圆的半径,又因为动圆P与圆M外切,所以PM PN=+即PM PN-=故点P的轨迹是以M N,为焦点,实轴长为因为实半轴长a=2c=.所以虚半轴长b==从而动圆P的圆心的轨迹方程为221(22x yx-=≤.18.(共13分)解:由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40.。

2007年高考数学卷(四川.理)含详解

2007年高考数学卷(四川.理)含详解

2007年普通高等学校招生全国统一考试(四川卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题: (1)复数211i ii +-+的值是 (A )0 (B)1 (C)-1 (D)1(2)函数f (x )=1+log 2x 与g(x )=2-x +1在同一直角坐标系下的图象大致是(3)2211lim 21x x x x →-=-- (A )0 (B)1 (C)21 (D)32 (4)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 (A )BD ∥平面CB 1D 1 (B )AC 1⊥BD(C )AC 1⊥平面CB 1D 1 (D )异面直线AD 与CB 1角为60° (5)如果双曲线12422=-y x 上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 (A )364 (B )362 (C )62 (D )32(6)设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的球面距离都是2π,且三面角B -OA -C 的大小为3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是 (A )67π (B )45π (C )34π (D )23π(7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为(A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a(8)已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点A 、B ,则|AB |等于(A )3 (B )4 (C )23 (D )24(9)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的32倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为(A )36万元 (B )31.2万元 (C )30.4万元 (D )24万元 (10)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有(A )288个 (B )240个 (C )144个 (D )126个 (11)如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上, 则△ABC 的边长是(A )32(B )364 (C )4173 (D )3212 (12)已知一组抛物线1212++=bx ax y ,其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x =1交点处的切线相互平行的概率是(A )121 (B )607 (C )256 (D )255二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上.(13)若函数f (x )=e -(m -u )2 (c 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +u = .(14)如图,在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面三角形的边长为1, 则BC 1与侧面ACC 1A 1所成的角是 .(15)已知⊙O 的方程是x 2+y 2-2=0, ⊙O ’的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和 ⊙O ’所引的切线长相等,则动点P 的轨迹方程是 . (16)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 (写出所言 )三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值.(Ⅱ)求β.(18)(本小题满分12分)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望ξE ,并求该商家拒收这批产品的概率.(19)(本小题满分12分)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.(20)(本小题满分12分)设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.已知函数42)(+=x x f ,设曲线)(x f y =在点()处的切线与x 轴线发点()()其中xn 为实数(21)(本小题满分12分)(22)(本小题满分14分)设函数),1,(11)(N x n N n n x f n∈∈⎪⎭⎫⎝⎛+= 且.(Ⅰ)当x =6时,求nn ⎪⎭⎫⎝⎛+11的展开式中二项式系数最大的项;(Ⅱ)对任意的实数x ,证明2)2()2(f x f +>);)()()((的导函数是x f x f x f ''(Ⅲ)是否存在N a ∈,使得an <∑-⎪⎭⎫ ⎝⎛+nk k 111<n a )1(+恒成立?若存在,试证明你的结论并求出a 的值;若不存在,请说明理由.2007年普通高等学校招生全国统一考试(四川卷)理科数学参考答案一.选择题:本题考察基础知识和基本运算,每小题5分,满分60分(1) A (2) C (3) D (4) D (5) A (6) C (7) A (8) C (9) B (10) B (11) D (12) B 二.填空题:本题考察基础知识和基本运算,每小题4分,满分16分 (13)1 (14)6π(15)32x = (16)① ④三.解答题:(17)本题考察三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力。

2007年全国高考理科数学试题及答案-山东

2007年全国高考理科数学试题及答案-山东

2007年山东高考数学理科 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项.(1)若cos isin z θθ=+(i 为虚数单位),则使21z =-的θ值可能是( ) A .6πB .4π C .3π D .2π (2)已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = ( ) A .{}11-,B .{}1-C .{}0D .{}10-,(3)下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④(4)设11132a ⎧⎫∈-⎨⎬⎩⎭,,,,则使函数ay x =的定义域为R 且为奇函数的所有a 值为( )A .1,3B .1-,1C .1-,3D .1-,1,3(5)函数sin 2cos 263y x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的最小正周期和最大值分别为( ) A .π,1B .πC .2π,1D .2π(6)给出下列三个等式:()()()f xy f x f y =+,()()()f x y f x f y +=,()()()1()()f x f y f x y f x f y ++=-,下列函数中不满足其中任何一个等式的是( )A .()3xf x =B .()sin f x x =C .2()log f x x =D .()tan f x x =(7)命题“对任意的x ∈R ,3210x x -+≤”的否定是( ) A .不存在x ∈R ,3210x x -+≤①正方形 ②圆锥 ③三棱台 ④正四棱锥B .存在x ∈R ,3210x x -+≤ C .存在x ∈R ,3210x x -+> D .对任意的x ∈R ,3210x x -+>(8)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,45(9)下列各小题中,p 是q 的充要条件的是( ) ①p :2m <-或6m >;q :23y x mx m =+++有两个不同的零点. ②():1()f x p f x -=;:()q y f x =是偶函数. ③:cos cos p αβ=;:tan tan q αβ=. ④:p A B A = ;:U Uq B A ⊆痧.A .①②B .②③C .③④D .①④(10)阅读右边的程序框图,若输入的n 是100,则输出的变量S 和T 的值依次是( ) A .2500,2500 B .2550,2550 C .2500,2550 D .2550,2500`(11)在直角ABC △中,CD 是斜边AB 上的高,则下列等式不成立的是( )A .2AC AC AB = B .2BC BA BC =C .2AB AC CD =D .22()()AC AB BA BC CD AB⨯=(12)位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位`于点(23),的概率是( )秒A .212⎛⎫ ⎪⎝⎭B .3231C 2⎛⎫ ⎪⎝⎭C .2231C 2⎛⎫ ⎪⎝⎭D .312231C C 2⎛⎫ ⎪⎝⎭第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.答案须填在题中横线上.(13)设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA与x 轴正向的夹角为60,则OA为 .(14)设D 是不等式组21023041x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤,≥,≤≤,≥表示的平面区域,则D 中的点()P x y ,到直线10x y +=距离的最大值是 .(15)与直线20x y +-=和曲线221212540x y x y +---=都相切的半径最小的圆的标准方程是 .(16)函数log (3)1a y x =+-(01)a a >≠且,的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) 设数列{}n a 满足211233333n n n a a a a -++++=…,a ∈*N . (Ⅰ)求数列{}n a 的通项; (Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S . (18)(本小题满分12分)设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计).(Ⅰ)求方程20x bx c ++=有实根的概率; (Ⅱ)求ξ的分布列和数学期望;(Ⅲ)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率. (19)(本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,AB DC ∥.(Ⅰ)设E 是DC 的中点,求证:1D E ∥平面11A BD ; (Ⅱ)求二面角11A BD C --的余弦值.(20)(本小题满分12分)如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距海里,问乙船每小时航行多少海里?(21)(本小题满分12分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. (22)(本小题满分14分) 设函数2()ln(1)f x x b x =++,其中0b ≠. (Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>- ⎪⎝⎭都成立.2007年普通高等学校招生全国统一考试(山东卷)BCD A1A1D 1C1BE1A2A乙理科数学参考答案第Ⅰ卷一、选择题 (1)D (2)B (3)D(4)A (5)A (6)B (7)C (8)A(9)D(10)D(11)C(12)B第Ⅱ卷二、填空题 (13)2p(14) (15)22(2)(2)2x y -+-=(16)8三、解答题 (17)(本小题满分12分)解:(Ⅰ)211233333n n na a a a -++++=…, ① ∴当2n ≥时,22123113333n n n a a a a ---++++=…. ② ①-②得1133n n a -=,13n n a =.在①中,令1n =,得113a =.13n n a ∴=.(Ⅱ)n nnb a =, 3n n b n ∴=.23323333n n S n ∴=+⨯+⨯++…, ③ 23413323333n n S n +∴=+⨯+⨯++…. ④④-③得12323(3333)n n n S n +∴=-++++….即13(13)2313n n n S n +-=--,1(21)3344n n n S +-∴=+.(18)(本小题满分12分)解:(Ⅰ)由题意知:设基本事件空间为Ω,记“方程20x bx c ++=没有实根”为事件A ,“方程20x bx c ++=有且仅有一个实根”为事件B ,“方程20x bx c ++=有两个相异实数”为事件C ,则{}()126b c b c Ω==,,,,…,, {}2()40126A b c b c b c =-<=,,,,,…,, {}2()40126B b c b c b c =-==,,,,,…,, {}2()40126C b c b c b c =->=,,,,,…,,所以Ω是的基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个. 又因为B C ,是互斥事件, 故所求概率21719()()363636P P B B C =+=+=. (Ⅱ)由题意,ξ的可能取值为012,,,则{}17036P ξ==, {}1118P ξ==,{}17236P ξ==,故ξ的分布列为:所以ξ的数学期望0121361836E ξ=⨯+⨯+⨯=.(Ⅲ)记“先后两次出现的点数有中5”为事件D ,“方程20x bx c ++=有实数”为事件E ,由上面分析得11()36P D =,7()36P D E = , ()7()()11P D E P E D P D ∴== .(19)(本小题满分12分)解法一:(Ⅰ)连结BE ,则四边形DABE 为正方形,1D 1C11BE AD A D ∴==,且11BE AD A D ∥∥,∴四边形11A D EB 为平行四边形.11D E A B ∴∥.又1D E ⊄平面1A BD ,1A B ⊂平面1A BD ,1D E ∴∥平面1A BD .(Ⅱ)以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设1DA =,则(000)D ,,,(100)A ,,,(110)B ,,,(022)C ,,,1(102)A ,,, 1(102)DA ∴= ,,,(110)DB =,,,设()x y z =,,n 为平面1A BD 的一个法向量.由1DA ⊥ n ,DB ⊥ n ,得200.x z x y +=⎧⎨+=⎩,取1z =,则(231)=-,,n .又2(023)DC = ,,,(110)DB =,,, 设111()x y z =,,m 为平面1C BD 的一个法向量,由DC ⊥ m ,DB ⊥m , 得11112200.y z x y +=⎧⎨+=⎩,取11z =,则(111)=-,,m ,设m 与n 的夹角为a ,二面角11A BD C --为θ,显然θ为锐角,cos 3θ∴===- m n m n .cos 3θ∴=,即所求二面角11A BD C --的余弦为3. 解法二:(Ⅰ)以D 为原点,1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设DA a =,由题意知:(000)D ,,,(00)A a ,,,(0)B a a ,,,(020)C a ,,,1(022)C a a ,,,1(02)A a a ,,,1(002)D a ,,,(00)E a ,,.1(02)D E a a ∴=- ,,,1(02)DA a a = ,,,(0)DB a a =,,,又(02)(0)(02)a a a a a a -=-,,,,,,,1D E DB DA ∴=- .1DA DB ⊂ ,平面1A BD ,1D E ⊄平面1A BD , 1D E ∴∥平面1A BD .(Ⅱ)取DB 的中点F ,1DC 的中点M ,连结1A F ,FM , 由(Ⅰ)及题意得知:022a a F ⎛⎫ ⎪⎝⎭,,,(0)M a a ,,,1222a a FA a ⎛⎫∴=- ⎪⎝⎭ ,,,22a a FM a ⎛⎫=- ⎪⎝⎭ ,,,12(0)022a a FA DB a a a ⎛⎫=-= ⎪⎝⎭ ,,,,,(0)022a a FM DB a a a ⎛⎫+=-+= ⎪⎝⎭ ,,,,.1FA DB ∴⊥,FM DB ⊥, 1A FM ∴∠为所求二面角的平面角.111cos FA FMA FM FA FM∴=∠2a a a a a a ⎛⎫⎛⎫-- ⎪ ⎪=,,,,2222a a a --+==. 所以二面角11A BD C --的余弦值为3. 解法三:(Ⅰ)证明:如解法一图,连结1AD ,AE , 设11AD A D G = ,AE BD F = ,连结GF , 由题意知G 是1A D 的中点,又E 是CD 的中点,∴四边形ABED 是平行四边形,故F 是AE 的中点, ∴在1AED △中,1GF D E ∥,又GF ⊂平面1A BD ,1D E ⊄平面1A BD ,1D E ∴∥平面1A BD .(Ⅱ)如图,在四边形ABCD 中,设AD a =, AB AD = ,AD DC ⊥,AB DC ∥, AD AB ∴⊥.故BD =,由(Ⅰ)得2222222BC BE EC a a a =+=+=,2DC a =, 90DBC ∴= ∠,即BD BC ⊥.又1BD BB ⊥,BD ∴⊥平面11BCC B ,又1BC ⊂平面11BCC B ,1BD BC ∴⊥,取1DC 的中点M ,连结1A F ,FM ,BCDA1A1D 1C1BEF M H由题意知:1FM BC ∴∥,FM BD ∴⊥.又11A D A B =,1A F BD ∴⊥.1A FM ∴∠为二面角11A BD C --的平面角.连结1A M ,在1A FM △中, 由题意知:12A F a =,1122FM BC ===, 取11D C 的中点H ,连结1A H ,HM , 在1Rt A HM △中,1A H = ,HM a =,1A M ∴=.2221111cos 2A F FM A M A FM A F FM+-∴= ∠222933a a a +-=3=. ∴二面角11A BD C --的余弦值为3. (20)(本小题满分12分)解法一:如图,连结11A B,由已知22A B =122060A A ==1221A A A B ∴=,又12218012060A A B =-=∠,122A A B ∴△是等边三角形,1A2A1212A B A A ∴==由已知,1120A B =,1121056045B A B =-= ∠,在121A B B △中,由余弦定理,22212111212122cos 45B B A B A B A B A B =+-22202202=+-⨯⨯ 200=.12B B ∴=因此,乙船的速度的大小为6020⨯=(海里/小时).答:乙船每小时航行海里.解法二:如图,连结21A B ,由已知1220A B =,122060A A ==,112105B A A = ∠, cos105cos(4560)=+cos 45cos60sin 45sin 60=-=,sin105sin(4560)=+sin 45cos60cos 45sin 60=+=.在211A A B △中,由余弦定理,22221221211122cos105A B A B A A A B A A =+-22202204=+-⨯⨯1A2A100(4=+.1110(1A B ∴=.由正弦定理1112111222sin sin A B A A B B A A A B === ∠∠, 12145A A B ∴= ∠,即121604515B A B =-= ∠,cos15sin1054==.在112B A B △中,由已知12A B =,由余弦定理,22212112221222cos15B B A B A B A B A B =++22210(1210(1=+-⨯+⨯200=.12B B ∴=乙船的速度的大小为6020=海里/小时.答:乙船每小时航行海里. (21)(本小题满分12分)解:(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:3a c +=,1a c -=,2a ∴=,1c =,2223b a c ∴=-=.∴椭圆的标准方程为22143x y +=. (Ⅱ)设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=,22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,则, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+,因为以AB 为直径的圆过椭圆的右顶点(20)D ,,1AD BD k k ∴=-,即1212122y yx x =--- , 1212122()40y y x x x x ∴+-++=,2222223(4)4(3)1640343434m k m mk k k k --∴+++=+++, 2291640m mk k ∴++=.解得:12m k =-,227k m =-,且均满足22340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),,与已知矛盾; 当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫ ⎪⎝⎭,. (22)(本小题满分14分)解:(Ⅰ)由题意知,()f x 的定义域为(1)-+∞,,322()211b x x bf x x x x ++'=+=++ 设2()22g x x x b =-+,其图象的对称轴为1(1)2x =-∈-+∞,, max 11()22g x g b ⎛⎫∴=-=-+ ⎪⎝⎭.当12b >时,max 1()02g x b =-+>, 即2()230g x x x b =+->在(1)-+∞,上恒成立,∴当(1)x ∈-+∞,时,()0f x '>, ∴当12b >时,函数()f x 在定义域(1)-+∞,上单调递增. (Ⅱ)①由(Ⅰ)得,当12b >时,函数()f x 无极值点.②12b =时,3122()01x f x x ⎛⎫+ ⎪⎝⎭'==+有两个相同的解12x =-, 112x ⎛⎫∈-- ⎪⎝⎭ ,时,()0f x '>,12x ⎛⎫∈-+∞ ⎪⎝⎭,时,()0f x '>,12b ∴=时,函数()f x 在(1)-+∞,上无极值点. ③当12b <时,()0f x '=有两个不同解,1x =2x =,0b <时,1112x -=<-,2102x --=>,即1(1)x ∈-+∞,,[)21x ∈-+∞,. 0b ∴<时,()f x ',()f x 随x 的变化情况如下表:由此表可知:0b <时,()f x 有惟一极小值点112x --=,当102b <<时,11x =>-,12(1)x x ∴∈-+∞,,此时,()f x ',()f x 随x 的变化情况如下表:由此表可知:102b <<时,()f x 有一个极大值112x -=和一个极小值点212x -=;综上所述:0b <时,()f x 有惟一最小值点x =;102b <<时,()f x 有一个极大值点12x -=和一个极小值点1x x -=;12b ≥时,()f x 无极值点.(Ⅲ)当1b =-时,函数2()ln(1)f x x x =-+, 令函数222()()ln(1)h x x f x x x x =-=-++,则22213(1)()3211x x h x x x x x +-'=-+=++. ∴当[)0x ∈+∞,时,()0f x '>,所以函数()h x 在[)0+∞,上单调递增, 又(0)0h =.(0)x ∴∈+∞,时,恒有()(0)0h x h >=,即23ln(1)x x x >-+恒成立.故当(0)x ∈+∞,时,有23ln(1)x x x +>-. 对任意正整数n 取1(0)x n =∈+∞,,则有23111ln 1n n n⎛⎫+>- ⎪⎝⎭. 所以结论成立.。

2007年高考真题试卷全国卷Ⅰ数学理科参考答案

2007年高考真题试卷全国卷Ⅰ数学理科参考答案

2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D(11)C(12)A二、填空题:(13)36(14)3()x x ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯ 240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥,故SA AD ⊥,由AD BC ==,SA =AO 1SO =,SD =.SAB △的面积211122S ABSA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C ,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. 22cos 11OG DS OG DSα==,sin 11β= 所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=, 所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 22212221221)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,221132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n=2,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -≤, 也即430k k b a -< 当1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(32)2)23k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。

2007年全国统一高考数学试卷(理科)(全国卷一)及答案

2007年全国统一高考数学试卷(理科)(全国卷一)及答案

2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C.D.2.(4分)设a是实数,且是实数,则a=()A.B.1 C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C.D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1 C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b ﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b 的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x ﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B.C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A 的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为η200250300P0.40.40.2∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x ≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax 相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k 时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.。

2007年普通高等学校招生全国统一考试(北京卷)(数学理)word版含答案

2007年普通高等学校招生全国统一考试(北京卷)(数学理)word版含答案

2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知cos tan 0θθ<,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角D.第一或第四象限角2.函数()3(02)x f x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =5.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种B.960种C.720种D.480种6.若不等式组220x y x y y x y a -0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( )A.43a ≥ B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥7.如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一8.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( ) A.①③B.①②C.③D.②2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.22(1)i =+.10.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.11.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = .12.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若AB =∅,则实数a 的取值范围是.13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于.14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式. 16.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小; (III )求CD 与平面AOB 所成角的最大值.OCADB17.(本小题共14分)矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程. 18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I )求合唱团学生参加活动的人均次数;(II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率. (III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ. 19.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(I )求面积S 以x 为自变量的函数式,并写出其定义域; (II )求面积S 的最大值.20.已知集合{}12(2)k A a a a k =,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,.其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n . 若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;123A(II)对任何具有性质P的集合A,证明:(1)2k kn≤;(III)判断m和n的大小关系,并证明你的结论.2007年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)答案一、选择题(本大题共8小题,每小题5分,共40分)1.∵ cos tan 0θθ<,∴ 当cos θ<0,tan θ>0时,θ∈第三象限;当cos θ>0,tan θ<0时,θ∈第四象限,选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10ba b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:A1B1A1D 1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分) 某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分) 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC = ∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<;(Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =+3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭.3A π⎛⎫<+< ⎪⎝⎭, 所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元). (19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥, 故SA AD ⊥,由AD BC ==,SA =AO =1SO =,SD =.SAB △的面积112S AB == 连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S = , 解得h =A设SD 与平面SAB 所成角为α,则sin 11h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(0CB =,0SA CB = ,所以SA BC ⊥. (Ⅱ)取AB 中点E ,0E ⎫⎪⎪⎝⎭,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.cos 11OG DS OG DSα==,sin 11β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥.(当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾.综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 21221)32k BD x x k +=-==+ ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =+11)(n n a a +=-.所以,数列{n a是首项为21的等比数列,1)n n a -=,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2,112b a ==,所以11b a ≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤,也即430k k b a -<- 当1n k =+时,13423k k k b b b ++-=+k =(3023k k b b --=>+,又1323k b <=-+,所以1(32)2)23k k k b b b +---=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。

相关文档
最新文档