协同过滤 文献
《2024年推荐系统中协同过滤算法若干问题的研究》范文
《推荐系统中协同过滤算法若干问题的研究》篇一一、引言随着互联网技术的迅猛发展,大数据时代的到来使得信息过载问题日益严重。
在此背景下,推荐系统应运而生,旨在帮助用户从海量信息中快速找到感兴趣的内容。
协同过滤算法作为推荐系统中的核心技术,近年来受到了广泛关注。
本文将重点研究协同过滤算法在推荐系统中的若干问题,包括算法原理、优缺点、改进方法以及应用前景等方面。
二、协同过滤算法的原理及分类协同过滤算法主要利用用户的历史行为数据,分析用户的兴趣偏好,从而为用户推荐其可能感兴趣的内容。
根据所使用数据的不同,协同过滤算法可分为基于用户的协同过滤和基于物品的协同过滤。
1. 基于用户的协同过滤基于用户的协同过滤主要依据用户的历史行为数据,找到与当前用户兴趣相似的其他用户,然后根据这些相似用户的喜好为用户推荐内容。
该算法的核心在于计算用户之间的相似度。
2. 基于物品的协同过滤基于物品的协同过滤则是通过分析物品之间的相似度,将用户感兴趣的物品推荐给用户。
该算法主要依据物品的历史交互数据,计算物品之间的相似度。
三、协同过滤算法的优缺点分析(一)优点1. 简单易实现:协同过滤算法基于用户的历史行为数据,易于实现且效果良好。
2. 推荐准确:通过分析用户的历史行为和物品之间的相似度,可以为用户推荐其可能感兴趣的内容。
3. 可解释性强:协同过滤算法的推荐结果具有可解释性,用户可以了解推荐的原因和依据。
(二)缺点1. 数据稀疏性问题:在推荐系统中,由于用户的行为数据往往不完整,导致数据稀疏性问题严重,影响推荐效果。
2. 冷启动问题:对于新用户或新物品,由于缺乏历史行为数据,难以进行准确的推荐。
3. 可扩展性问题:随着用户和物品数量的增加,协同过滤算法的计算复杂度也会相应增加,导致系统可扩展性差。
四、协同过滤算法的改进方法针对协同过滤算法的优缺点,学者们提出了多种改进方法,以提高推荐系统的性能。
1. 融合多种数据源:将用户的社交网络信息、物品的属性信息等融入推荐系统,提高推荐的准确性和多样性。
基于协同过滤算法的图书推荐系统研究
基于协同过滤算法的图书推荐系统研究随着互联网技术的发展,人们的阅读习惯也发生了改变,越来越多的人开始选择在网上阅读图书。
在这个大数据时代,如何利用海量的图书数据为读者提供更好的阅读体验成为了一个重要的问题。
而图书推荐系统正是一种能够解决这个问题的有效工具。
一、图书推荐系统的定义图书推荐系统是一种通过分析用户历史阅读记录和喜好来推荐其可能感兴趣的图书的算法系统。
它可以通过对大量用户的阅读行为和数据积累进行分析,找出用户的阅读喜好,从而为用户推荐更加符合其喜好的图书,实现个性化推荐。
二、协同过滤算法的原理在图书推荐系统的实现中,协同过滤算法是一种常用的推荐算法。
该算法的原理是通过分析用户的历史阅读行为以及多个用户之间的相似度,来推荐将来可能会感兴趣的图书。
具体来说,协同过滤算法将用户看作状态矩阵中的每一个元素,同时将物品也看作状态矩阵中的每一个元素。
在此基础上,通过对用户历史阅读记录和物品属性进行分析,协同过滤算法可以计算出每个用户之间的相似度,在此基础上为用户推荐感兴趣的图书。
三、协同过滤算法的应用协同过滤算法在图书推荐系统中的应用非常广泛。
以亚马逊图书推荐系统为例,该系统通过对用户历史购买记录和浏览记录的分析,为用户推荐与其购买记录相似的图书。
此外,国内的一些大型图书网站,如当当网、京东图书等也广泛应用协同过滤算法,通过对用户的历史阅读行为和浏览记录进行分析,为用户推荐与其兴趣相似的图书。
四、协同过滤算法存在的问题及解决方法虽然协同过滤算法在图书推荐系统中的应用非常广泛,但是该算法也存在着一些问题。
首先,协同过滤算法需要评估每个用户之间的相似度,这就需要耗费大量的计算资源。
此外,协同过滤算法仅能够基于历史行为数据进行推荐,且无法理解用户行为背后的动机及其隐含需求。
针对这些问题,一些研究者提出了相应的解决方案。
例如,通过引入深度学习技术,可以大幅度提高协同过滤算法的准确性和效率;通过对用户人口统计学数据和行为数据的联合分析,可以更好地理解用户行为背后的动机和需求。
协同过滤算法英语作文
协同过滤算法英语作文Title: The Application and Advancements of Collaborative Filtering Algorithm。
Collaborative filtering algorithm, a cornerstone in the field of recommender systems, has garnered widespread attention for its ability to predict user preferences and provide personalized recommendations. In recent years, with the exponential growth of online platforms and the increasing volume of data generated by users, collaborative filtering algorithms have become indispensable tools for businesses seeking to enhance user experience and drive engagement. This essay explores the principles, applications, and advancements of collaborative filtering algorithms, shedding light on their significance in today's digital landscape.At its core, collaborative filtering relies on the principle of leveraging collective user behavior to make predictions about the interests of individual users. Byanalyzing user interactions, such as ratings, purchases, and preferences, collaborative filtering algorithmsidentify patterns and similarities among users to generate recommendations. There are two main approaches to collaborative filtering: memory-based and model-based.Memory-based collaborative filtering, also known as neighborhood-based collaborative filtering, operates by calculating similarities between users or items based on their historical interactions. One of the most widely used techniques in this approach is cosine similarity, which measures the cosine of the angle between two vectors representing user preferences. By identifying users with similar preferences, memory-based collaborative filtering generates recommendations based on items liked or purchased by similar users.On the other hand, model-based collaborative filtering involves building a mathematical model based on the user-item interaction data. Techniques such as matrix factorization and singular value decomposition (SVD) are commonly employed to decompose the user-item matrix intolatent factors representing user preferences and item characteristics. By learning these latent factors, model-based collaborative filtering can make accurate predictions even in the presence of sparse data.The applications of collaborative filtering algorithms are manifold, spanning across various industries including e-commerce, media streaming, social networking, and more.E-commerce platforms utilize collaborative filtering to recommend products based on the browsing and purchasing history of users, thereby increasing sales and customer satisfaction. Similarly, media streaming services leverage collaborative filtering to suggest movies, TV shows, or music based on users' past viewing or listening behavior, enhancing user engagement and retention.Furthermore, social networking platforms employ collaborative filtering to recommend friends, groups, or content tailored to the interests and preferences of users. By analyzing the social graph and user interactions, these platforms can foster connections and facilitate content discovery, thereby enriching the user experience.Additionally, collaborative filtering algorithms are usedin content-based filtering and hybrid recommender systems, combining multiple approaches to generate more accurate and diverse recommendations.Despite its effectiveness, collaborative filtering algorithms are not without limitations. One of the primary challenges is the cold start problem, which occurs when new users or items have limited interaction data, making it difficult to generate accurate recommendations. To address this issue, techniques such as demographic filtering, content-based filtering, and hybrid approaches are employed to supplement collaborative filtering and improve recommendation quality.Moreover, collaborative filtering algorithms may suffer from the problem of popularity bias, wherein popular items tend to receive more recommendations, leading to a lack of diversity in recommendations. To mitigate this bias, techniques such as diversity-aware recommendation and serendipity enhancement are employed to ensure that users are exposed to a variety of items across differentcategories.In recent years, significant advancements have been made in collaborative filtering research, driven by innovations in machine learning, deep learning, and data mining techniques. Deep learning models, such as neural collaborative filtering (NCF) and recurrent neural networks (RNNs), have shown promising results in capturing complex patterns and dependencies in user-item interactions, thereby improving recommendation accuracy and scalability.Furthermore, the integration of contextual information, such as temporal dynamics, location-based factors, and social influence, has enhanced the capabilities of collaborative filtering algorithms to provide context-aware recommendations. By considering contextual factors, such as time of day, user location, or social connections, collaborative filtering algorithms can adapt recommendations to better suit the preferences and situational needs of users.In conclusion, collaborative filtering algorithms playa crucial role in the era of big data and personalized recommendation systems. By harnessing the collective wisdom of users, collaborative filtering enables businesses to deliver tailored recommendations that enhance user experience, drive engagement, and foster loyalty. With ongoing research and advancements in machine learning and data science, collaborative filtering algorithms are poised to remain at the forefront of recommender systems, shaping the future of digital commerce and content consumption.。
关于协同过滤推荐算法的研究文献综述
关于协同过滤推荐算法的研究文献综述吴佳炜摘要:协同过滤推荐算法从庞大的数据资源中为用户推荐其感兴趣的内容,在推荐系统中该算法得到广泛应用。
但是随着用户数目和项目资源的不断增加,传统的协同过滤算法暴露出数据稀疏和冷启动等问题,大大降低了用户相似度和项目相似度计算的准确度。
本篇文章介绍了协同过滤算法的基本概念,指出该算法的局限性以及在此基础上研究人员所做的一系列优化改进。
关键词:协同过滤;推荐系统;用户相似性;项目相似性一、引言现今互联网的快速发展,大数据时代应运而生,数据资源的增长速度以几何数量级呈现,个性化推荐技术[1]的出现解决了庞大的用户群体对数据的需求问题,更是广泛应用于数字图书馆[2]、电子商务[3]、新闻网站[4]等系统中。
协同过滤(collaborative filtering)[5]在推荐系统中最为常用,它的根本思想是根据相似的用户群体或者项目群体来向目标用户推荐其可能感兴趣的项目资源。
基于用户的协同过滤推荐算法[6]和基于项目的协同过滤推荐算法[7,8]是构成传统的协同过滤算法的两大主体。
在基于用户的协同过滤推荐算法中,算法依据目标用户的类似用户对项目的评分来预测目标用户对该项目是否感兴趣,然而鉴于部分用户与之相关联的信息量有限,所以对相关项目的评分并不完全,导致用户-项目评分矩阵稀疏度高而不能完全体现其相对关系,从而加大了相似用户群的选择程度,降低了推荐系统的效率。
若通过基于项目的协同过滤推荐算法,依靠未评分目标项目的相似项目的评分来预测目标用户对未评分项目的评分,但是当用户对项目的评分较少时,易导致忽略项目自身属性的问题,降低了推荐效率。
二、协同过滤推荐算法(一)核心内容1、计算相似度为了计算用户或项目之间的相似度,协同过滤推荐算法主要利用皮尔逊相关度系数[9](Pearson Correlation Coefficient,PCC)来实现,其中PCC的取值范围是[-1,1]。
基于协同过滤的图书推荐系统研究
基于协同过滤的图书推荐系统研究随着数字化时代的到来,越来越多的人选择在互联网上购买图书,不仅省去了外出购买的麻烦,而且可以更方便地获取到自己需要的书籍。
然而,在如此多的图书信息当中,如何推荐给用户他们感兴趣的书籍,是一个十分关键的问题。
因此,基于协同过滤的图书推荐系统得到了快速发展,成为了借助计算机算法进行图书推荐的重要手段。
本篇文章将从协同过滤算法的原理、图书推荐系统的设计与实现、推荐效果评估等方面进行探讨。
一、协同过滤算法原理协同过滤算法是一种基于用户喜好行为相似性的推荐算法,在推荐系统中得到广泛应用。
该算法的核心思想是根据用户与物品之间的交互行为来推荐给用户他们可能感兴趣的物品。
在具体实现中,协同过滤算法又可分为基于用户的协同过滤和基于物品的协同过滤两种。
基于用户的协同过滤算法原理为:对于某一用户,通过与其他用户共同喜好的物品来找到兴趣相似的用户,然后推荐这些用户所喜欢的物品给该用户。
具体实现方法是基于用户兴趣历史记录的相似度计算,通过比较两个用户的各个兴趣点之间的相似度来确定他们是否有相似的兴趣,并进一步根据这个相似度来进行推荐。
而基于物品的协同过滤算法原理为:对于某一物品,根据用户喜爱该物品的程度来找到与该物品相似的其他物品,然后推荐这些相似物品给用户。
具体实现方法是通过对每个物品进行相似度计算,根据各个物品与待推荐物品的相似程度来进行推荐。
二、图书推荐系统的设计与实现在协同过滤算法的基础上,图书推荐系统的设计可以分为数据处理、推荐模型选择、推荐结果生成等方面。
1. 数据处理数据处理是任何一个推荐系统的核心。
在图书推荐系统中,数据处理包括用户数据和图书数据的获取和预处理。
对于用户数据,按照用户的个人信息、兴趣偏好、历史购买记录等进行归纳整理;对于图书数据,则按照图书的基本信息、出版社、作者、标签、收藏、评价等信息进行分类整理。
需要注意的是,图书数据获取是一个非常复杂且需要时间成本的过程,需要考虑如何提高数据处理的效率和精准度。
协同过滤算法范文
协同过滤算法范文协同过滤算法(Collaborative Filtering)是一种常用的个性化推荐算法,其核心思想是基于用户和项目之间的相似性进行推荐。
相较于基于内容的推荐算法,协同过滤算法更加注重用户行为数据,因此适用于大规模用户的个性化推荐。
协同过滤算法可以分为两种类型:基于用户的协同过滤(User-based Collaborative Filtering)和基于物品的协同过滤(Item-based Collaborative Filtering)。
基于用户的协同过滤算法首先计算用户间的相似性。
常用的相似性度量方法有余弦相似度、皮尔逊相关系数等。
然后,根据用户的历史行为数据,找到与目标用户最相似的前K个用户。
最后,根据这些相似用户对未知项的评分进行预测,从而为目标用户生成推荐列表。
基于物品的协同过滤算法则是先计算物品间的相似性。
然后,对于目标用户,找到其历史喜欢的物品,并找出与这些物品最相似的前K个物品。
最后,根据这些相似物品的评分情况,为目标用户生成推荐列表。
首先,冷启动问题。
当新用户或新物品加入推荐系统时,由于缺乏相关的历史数据,协同过滤算法很难为其生成准确的推荐结果。
其次,稀疏性问题。
在大规模推荐系统中,用户和物品的数量往往都非常庞大,但用户与物品之间的交互数据往往非常稀疏,导致很难准确计算用户或物品之间的相似性。
还有,可扩展性问题。
当用户或物品的数量很大时,计算用户或物品之间的相似性计算需要耗费大量的计算资源,影响推荐系统的实时性。
为了解决这些问题,研究者们进一步改进了协同过滤算法,提出了一系列的改进算法。
一种改进方法是基于矩阵分解的协同过滤算法(Matrix Factorization)。
矩阵分解可以将用户-物品矩阵分解成两个低维的因子矩阵,通过对这两个因子矩阵的乘积进行预测评分。
矩阵分解算法可以通过优化损失函数来学习到用户和物品的隐含特征,从而减少稀疏性问题的影响,并且能够处理冷启动问题。
基于协同过滤的图书推荐算法研究
基于协同过滤的图书推荐算法研究随着互联网的发展和普及,人们的日常生活中越来越离不开推荐系统。
推荐系统通过分析用户的历史行为数据,提供个性化的商品推荐、信息推送等服务,为用户提供更加便捷、高效、准确的服务。
其中,图书推荐系统是一种常见的应用,其目的是为用户提供与其兴趣相关的书籍推荐,提高用户的阅读体验和服务质量。
本文将从基于协同过滤的图书推荐算法研究这一主题展开探讨。
一、协同过滤算法原理协同过滤作为一种经典的推荐算法,是推荐系统中应用最为广泛的一种方法。
协同过滤算法基于用户的历史行为数据,通过对用户行为数据进行分析,找出用户之间的相似性,从而给用户推荐可能感兴趣的书籍。
协同过滤算法可分为基于用户的协同过滤和基于物品的协同过滤两种。
基于用户的协同过滤算法是根据用户的历史行为数据,从中找到与目标用户行为最相似的一组用户,再将这组用户所喜欢的书籍推荐给目标用户。
而基于物品的协同过滤算法则是根据用户历史行为数据,找到目标用户喜欢的书籍,再根据书籍之间的相似性,向目标用户推荐与其喜欢的书籍相似的书籍。
二、协同过滤算法的实现协同过滤算法的实现过程主要包括用户行为数据的收集、相似度计算和推荐结果生成三个步骤。
1、用户行为数据的收集在图书推荐系统中,用户行为数据主要包括用户的购买记录、阅读记录和评价记录等。
通过对用户行为数据的收集和处理,可以为推荐算法提供参考和依据。
2、相似度计算相似度计算是协同过滤算法的核心步骤。
在基于用户的协同过滤中,我们采用余弦相似度作为相似度的计算方法。
具体地,我们首先将用户行为数据表示成矩阵的形式,每行代表一个用户,每列代表一本书籍,并将矩阵中的缺失值填充为0。
然后,通过计算矩阵中两行之间的余弦相似度,来衡量两个用户之间的相似度。
在基于物品的协同过滤中,我们采用改进的余弦相似度计算方法,对物品之间的相似度进行计算。
3、推荐结果生成推荐结果生成是协同过滤算法的最后一步。
在这一步中,我们首先找出与目标用户相似度最高的一组用户或与目标书籍最相似的一组书籍,然后从这组用户或书籍中选出目标用户还没有购买、阅读或评价过的书籍,作为推荐结果返回给用户。
《2024年度基于信任的协同过滤推荐算法研究》范文
《基于信任的协同过滤推荐算法研究》篇一一、引言在当今的信息时代,互联网技术的飞速发展使得人们面临着一个严重的问题——信息过载。
为了从大量的信息中筛选出用户感兴趣的内容,推荐系统应运而生。
协同过滤推荐算法作为推荐系统中的核心算法之一,一直受到广泛关注。
然而,传统的协同过滤算法在处理稀疏性和冷启动问题时存在一定局限性。
因此,本文提出了一种基于信任的协同过滤推荐算法,以提高推荐系统的准确性和效率。
二、协同过滤推荐算法概述协同过滤推荐算法是一种基于用户行为数据的推荐方法,通过分析用户的历史行为数据,找出相似用户或物品,从而为用户提供推荐。
常见的协同过滤算法包括基于用户的协同过滤和基于物品的协同过滤。
基于用户的协同过滤主要是通过寻找与目标用户兴趣相似的其他用户,然后根据这些用户的喜好为目标用户提供推荐。
而基于物品的协同过滤则是通过分析用户对物品的评分或行为,找出与目标物品相似的其他物品,然后推荐给目标用户。
三、基于信任的协同过滤推荐算法本文提出的基于信任的协同过滤推荐算法,主要思想是在传统的协同过滤算法中引入信任关系。
具体而言,通过分析用户之间的社交网络关系、历史交互记录等,构建一个信任关系网络。
在这个网络中,信任度高的用户对目标用户的推荐将具有更高的权重。
同时,考虑到不同领域专家的信任度可能更高,该算法还结合了领域知识,对专家用户的推荐给予更大权重。
四、算法实现与优化在实现基于信任的协同过滤推荐算法时,首先需要构建一个完整的信任关系网络。
这可以通过分析用户的社交网络、历史交互记录、评价一致性等多种途径实现。
然后,根据信任关系网络计算用户之间的信任度。
在此基础上,结合传统的协同过滤算法,为用户提供推荐。
为了提高算法的准确性和效率,本文还提出了一系列优化措施。
首先,采用矩阵分解技术对用户-物品评分矩阵进行降维处理,以减少计算复杂度。
其次,引入时间因素,考虑用户兴趣的动态变化。
此外,还采用了多种融合策略,将不同来源的信息进行整合,以提高推荐的准确性。
协同过滤在图书推荐中的应用(九)
协同过滤在图书推荐中的应用随着互联网和大数据技术的快速发展,推荐系统越来越成为用户获取个性化信息的重要途径。
其中,协同过滤作为推荐系统的一种重要方法,已经在图书推荐领域得到了广泛的应用。
本文将从推荐系统的基本原理入手,探讨协同过滤在图书推荐中的应用,并分析其优缺点。
一、推荐系统的基本原理推荐系统是利用用户的历史行为数据和物品的相关信息,为用户推荐他们可能感兴趣的物品。
推荐系统的基本原理包括基于内容的推荐和协同过滤两种方法。
基于内容的推荐是根据物品自身的特征和用户的历史偏好进行推荐,而协同过滤是根据用户之间的行为相似性和物品之间的关联性进行推荐。
二、基于用户的协同过滤基于用户的协同过滤是通过分析用户之间的行为相似性进行推荐。
其基本原理是如果两个用户在过去的行为中有很多相似之处,那么他们在未来的行为中也很可能相似。
在图书推荐中,基于用户的协同过滤会根据用户对图书的评分和浏览历史,来发现用户之间的相似性,并向用户推荐他们可能感兴趣的图书。
三、基于物品的协同过滤基于物品的协同过滤是通过分析物品之间的关联性进行推荐。
其基本原理是如果用户对一个物品感兴趣,那么他们也很可能对与这个物品相关联的其他物品感兴趣。
在图书推荐中,基于物品的协同过滤会根据图书的内容和用户对图书的喜好,来发现图书之间的关联性,并向用户推荐与其喜好相似的图书。
四、协同过滤在图书推荐中的应用协同过滤在图书推荐中的应用主要体现在两个方面:一是帮助用户发现新的图书;二是提高图书的推荐精度。
通过分析用户的行为数据和图书的相关信息,协同过滤可以向用户推荐他们可能感兴趣的图书,从而丰富用户的阅读体验。
同时,协同过滤还可以根据用户的偏好和行为,提高图书的推荐精度,让用户更容易找到符合其兴趣的图书。
五、协同过滤在图书推荐中的优缺点协同过滤在图书推荐中有诸多优点,如能够发现用户的潜在兴趣、提高推荐精度等。
但是,协同过滤也存在一些缺点,如对新用户和冷启动物品的推荐困难、数据稀疏性和推荐结果的过度个性化等。
《2024年基于协同过滤算法的个性化电影推荐系统的实现》范文
《基于协同过滤算法的个性化电影推荐系统的实现》篇一一、引言随着互联网技术的快速发展,人们越来越依赖于网络平台来获取信息和娱乐。
在众多在线娱乐服务中,电影推荐系统凭借其能够准确推荐符合用户口味的电影而备受欢迎。
本篇论文旨在介绍基于协同过滤算法的个性化电影推荐系统的实现。
协同过滤算法作为一种经典的推荐算法,其能够有效地分析用户的历史行为和喜好,为不同用户提供个性化的电影推荐。
二、系统概述本系统采用协同过滤算法,通过分析用户的历史观影记录、电影的属性和其他用户的相似度,为用户提供个性化的电影推荐。
系统主要由数据预处理模块、协同过滤模块、推荐结果生成模块和用户界面模块组成。
三、关键技术与方法1. 数据预处理:该模块主要负责收集用户的历史观影记录和电影的属性信息。
这些数据包括用户的观影时间、观影时长、电影的评分等信息。
此外,还需对数据进行清洗和去重等处理,以确保数据的准确性和有效性。
2. 协同过滤算法:本系统采用基于用户的协同过滤算法。
该算法通过计算不同用户之间的相似度,找出与目标用户相似的其他用户,然后根据这些相似用户的喜好来为目标用户推荐电影。
3. 推荐结果生成:该模块根据协同过滤算法的结果,结合电影的属性和其他相关因素,生成个性化的电影推荐结果。
推荐结果以列表的形式展示给用户,包括电影的名称、简介、评分等信息。
4. 用户界面:本系统提供友好的用户界面,方便用户查看和操作。
用户界面包括登录、注册、浏览电影、查看推荐结果等功能。
此外,系统还提供用户反馈功能,以便用户对推荐结果进行评价和改进。
四、系统实现1. 数据采集与处理:通过爬虫程序从各大电影网站和社交媒体平台收集电影信息和用户的历史观影记录。
然后对数据进行清洗和去重等处理,确保数据的准确性和有效性。
2. 协同过滤算法实现:采用基于余弦相似度的算法计算用户之间的相似度。
首先,将用户的观影记录转换为向量形式,然后计算不同用户向量之间的余弦相似度。
接着,根据相似度找出与目标用户相似的其他用户,根据这些相似用户的喜好来为目标用户推荐电影。
《2024年推荐系统中协同过滤算法若干问题的研究》范文
《推荐系统中协同过滤算法若干问题的研究》篇一一、引言随着互联网的快速发展,信息过载问题日益严重,推荐系统应运而生,成为解决信息过载问题的重要手段。
协同过滤算法作为推荐系统中的核心算法,通过分析用户行为数据,发现用户之间的兴趣相似性,从而为用户提供个性化的推荐服务。
本文旨在研究协同过滤算法在推荐系统中的若干问题,分析其优缺点,并提出相应的改进措施。
二、协同过滤算法概述协同过滤算法是一种基于用户行为的推荐算法,其主要思想是利用用户的历史行为数据,分析用户之间的兴趣相似性,然后根据相似用户的偏好为当前用户推荐感兴趣的项目。
协同过滤算法主要包括用户间的协同过滤和基于项目的协同过滤两种方法。
三、协同过滤算法的问题研究(一)数据稀疏性问题数据稀疏性是协同过滤算法面临的主要问题之一。
由于用户的行为数据往往是不完整的,导致在计算用户之间的相似性时,可利用的数据非常有限。
这会导致推荐结果的准确性降低,甚至出现推荐冷启动问题。
为了解决数据稀疏性问题,可以采取多种方法,如基于矩阵分解的协同过滤、基于时间序列的协同过滤等。
(二)冷启动问题冷启动问题是推荐系统面临的另一个重要问题。
对于新用户或新项目,由于缺乏历史行为数据,难以计算其与其他用户或项目之间的相似性。
为了解决冷启动问题,可以结合其他信息源,如用户的社会网络信息、项目的内容信息等,进行综合分析。
此外,还可以采用基于内容的推荐算法,利用项目的元数据等信息进行推荐。
(三)可扩展性问题随着用户规模的扩大和项目数量的增加,协同过滤算法的计算复杂度急剧增加,导致系统可扩展性变差。
为了解决可扩展性问题,可以采用分布式计算、云计算等技术手段,将大规模数据分散到多个节点进行处理,从而提高系统的处理能力和可扩展性。
四、协同过滤算法的改进措施(一)融合多种推荐算法为了提高推荐的准确性和多样性,可以将多种推荐算法进行融合。
例如,可以将协同过滤算法与基于内容的推荐算法、深度学习算法等进行结合,充分利用各种算法的优点,提高推荐效果。
《2024年推荐系统的协同过滤算法与应用研究》范文
《推荐系统的协同过滤算法与应用研究》篇一一、引言随着互联网技术的迅猛发展,信息过载问题日益严重,推荐系统作为一种解决信息过载问题的有效手段,得到了广泛的应用和关注。
协同过滤算法作为推荐系统中的一种重要技术,通过分析用户的行为数据,发现用户之间的兴趣相似性,从而为用户提供个性化的推荐服务。
本文将对推荐系统的协同过滤算法进行深入研究,探讨其原理、应用及优化方法。
二、协同过滤算法的原理协同过滤算法是一种基于用户行为的推荐算法,其基本思想是利用用户的历史行为数据,找出与当前用户兴趣相似的其他用户,然后根据这些相似用户的喜好信息为目标用户进行推荐。
协同过滤算法主要包括基于用户的协同过滤和基于项目的协同过滤两种方法。
1. 基于用户的协同过滤基于用户的协同过滤主要是通过计算用户之间的相似性来找到兴趣相似的用户群体,然后根据目标用户的兴趣和其他相似用户的喜好信息为目标用户进行推荐。
该算法的优点在于可以充分利用用户的历史行为数据,发现用户之间的兴趣相似性;缺点是计算量大,实时性较差。
2. 基于项目的协同过滤基于项目的协同过滤则是通过计算项目之间的相似性来为目标用户推荐相似的项目。
该算法的优点在于可以针对不同的项目进行推荐,提高了推荐的多样性;缺点是对于新项目和新用户的推荐效果较差。
三、协同过滤算法的应用协同过滤算法在推荐系统中得到了广泛的应用,如电影推荐、商品推荐、音乐推荐等。
以电影推荐为例,推荐系统可以通过分析用户的历史观影记录,找出与当前用户兴趣相似的其他用户群体,然后根据这些相似用户的观影喜好为目标用户推荐类似的电影。
此外,协同过滤算法还可以应用于社交网络、电子商务等领域,为用户提供更加个性化的服务。
四、协同过滤算法的优化方法为了提高协同过滤算法的准确性和效率,研究者们提出了许多优化方法。
其中包括:基于矩阵分解的协同过滤算法、基于深度学习的协同过滤算法、融合多种算法的混合推荐等。
这些优化方法可以有效地提高推荐的准确性和多样性,提高用户体验。
协同过滤算法的相关研究
协同过滤算法的相关研究协同过滤算法是推荐系统中最常用的算法之一,它基于用户之间的行为相似度或物品之间的相似度来实现推荐。
随着互联网用户数量的不断增加和数据量的急剧增长,如何有效地实现个性化推荐成为了一个重要的研究方向。
本文将从协同过滤算法的基本原理、发展历程和最新研究进展进行综述。
1.基本原理协同过滤算法主要分为两种:基于用户的协同过滤和基于物品的协同过滤。
基于用户的协同过滤是根据用户之间的行为相似度来进行推荐,即如果两个用户行为相似,那么他们对同一物品的喜好也会相似。
而基于物品的协同过滤则是根据物品之间的相似度来进行推荐,即如果两个物品被同一个用户喜好,那么这两个物品的相似度就会增加。
协同过滤算法的基本原理是通过用户-物品矩阵的稠密度来计算用户之间的相似度或物品之间的相似度。
当用户或物品之间的相似度计算出来后,便可以根据相似度进行推荐,即找到与目标用户或物品相似度最高的用户或物品,将其推荐给目标用户。
2.发展历程协同过滤算法最早起源于1990年代末,随着互联网用户数量的增加和数据量的增长,推荐系统成为了一个研究热点。
最早的协同过滤算法是基于用户的协同过滤算法,通过计算用户之间的相似度来实现推荐。
后来,基于物品的协同过滤算法逐渐兴起,通过计算物品之间的相似度来实现推荐。
在过去的几年里,协同过滤算法得到了广泛的研究和应用。
研究者们提出了许多改进算法,如基于隐语义模型的协同过滤算法、基于矩阵分解的协同过滤算法等。
这些算法在提高推荐准确度、降低计算复杂度等方面都取得了显著的成果。
3.最新研究进展近年来,研究者们在协同过滤算法方面做出了许多新的研究成果。
例如,基于社交信息的协同过滤算法,通过考虑用户之间的社交关系来提高推荐的准确度;基于时间序列的协同过滤算法,通过考虑用户行为的时间序列来提高推荐的准确度。
另外,研究者们也将协同过滤算法与深度学习相结合,提出了许多新的深度学习协同过滤算法。
这些算法在提高推荐准确度、降低计算复杂度等方面都取得了显著的成果。
《2024年基于协同过滤和深度学习的混合推荐算法研究》范文
《基于协同过滤和深度学习的混合推荐算法研究》篇一一、引言随着互联网技术的迅猛发展,信息过载问题日益突出。
在这样的背景下,推荐系统应运而生,其目的是为用户提供个性化、精准的推荐服务。
协同过滤和深度学习是推荐系统中两种常用的技术。
本文将研究基于协同过滤和深度学习的混合推荐算法,以提高推荐准确性和用户体验。
二、相关技术概述1. 协同过滤协同过滤是一种基于用户行为的推荐算法,通过分析用户的历史行为数据,找出相似用户,从而为用户推荐其可能感兴趣的物品。
协同过滤包括用户相似度计算、物品相似度计算和推荐生成等步骤。
2. 深度学习深度学习是机器学习的一个分支,通过模拟人脑神经网络的工作方式进行学习和推理。
在推荐系统中,深度学习可以提取用户和物品的深层特征,从而更准确地预测用户的兴趣和需求。
常用的深度学习模型包括神经网络、卷积神经网络等。
三、混合推荐算法研究本文提出的混合推荐算法将协同过滤和深度学习相结合,充分利用两种技术的优点。
具体步骤如下:1. 数据预处理:对用户行为数据进行清洗和转化,提取出有用的特征信息。
2. 特征提取:利用深度学习模型提取用户和物品的深层特征,包括用户兴趣、物品属性等。
3. 相似度计算:结合协同过滤的思想,计算用户之间的相似度和物品之间的相似度。
可以通过计算用户特征向量的余弦相似度或欧氏距离来衡量用户之间的相似度;通过计算物品特征向量的相似度来衡量物品之间的相似度。
4. 推荐生成:根据用户的历史行为数据、相似度计算结果以及深度学习模型提取的特征信息,生成个性化的推荐结果。
可以采用基于用户的协同过滤、基于物品的协同过滤或混合推荐等方法。
5. 评估与优化:通过实验评估推荐算法的准确性和效果,根据评估结果对算法进行优化和改进。
四、实验与分析本文采用某电商平台的用户行为数据集进行实验。
首先对数据进行预处理,提取出有用的特征信息;然后利用深度学习模型提取用户和物品的深层特征;接着结合协同过滤的思想计算用户和物品的相似度;最后生成个性化的推荐结果。
《2024年基于信任的协同过滤推荐算法研究》范文
《基于信任的协同过滤推荐算法研究》篇一一、引言随着互联网的快速发展和大数据时代的到来,信息过载问题日益严重。
为了解决这一问题,推荐系统应运而生,其中协同过滤推荐算法是应用最广泛的推荐技术之一。
然而,传统的协同过滤推荐算法在处理大规模数据和稀疏数据时存在一定局限性。
因此,本文提出了一种基于信任的协同过滤推荐算法,旨在提高推荐准确性和用户体验。
二、相关研究背景协同过滤推荐算法是一种基于用户行为数据的推荐技术,其核心思想是利用用户的历史行为数据预测用户的未来兴趣。
然而,传统的协同过滤推荐算法在处理用户评分数据时,忽略了用户之间的信任关系。
信任关系在社交网络中具有重要意义,能够提高推荐的准确性和可信度。
因此,基于信任的协同过滤推荐算法成为了研究热点。
三、基于信任的协同过滤推荐算法(一)算法原理基于信任的协同过滤推荐算法的核心思想是利用用户之间的信任关系来改进传统的协同过滤推荐算法。
具体而言,该算法首先构建用户之间的信任网络,然后利用该网络中的信任关系来调整用户相似度计算,从而更准确地预测用户对商品的评分。
(二)算法实现步骤1. 构建用户信任网络:通过分析用户的历史行为数据和社交网络数据,构建用户之间的信任网络。
在信任网络中,每个用户都与其他用户存在一定程度的信任关系。
2. 计算用户相似度:在考虑了信任关系的基础上,计算用户之间的相似度。
这可以通过使用余弦相似度等方法来实现。
3. 预测用户评分:根据用户相似度和信任关系,预测用户对未评分商品的评分。
这可以通过加权平均等方法来实现。
4. 生成推荐列表:根据预测的评分,为用户生成推荐列表。
推荐列表中的商品按照预测评分从高到低排序。
四、实验与分析(一)实验数据集为了验证基于信任的协同过滤推荐算法的有效性,我们使用了两个公开的数据集进行实验。
实验数据集包括电影评分数据集和购物网站商品购买数据集。
(二)实验结果与分析我们对比了基于信任的协同过滤推荐算法与传统协同过滤推荐算法在两个数据集上的表现。
《基于信任的协同过滤推荐算法研究》范文
《基于信任的协同过滤推荐算法研究》篇一一、引言随着互联网的快速发展和大数据时代的到来,信息过载问题日益严重。
为了解决这一问题,推荐系统应运而生,成为了现代信息处理的重要手段。
其中,协同过滤推荐算法因其简单有效而备受关注。
然而,传统的协同过滤算法往往忽略了用户之间的信任关系。
基于信任的协同过滤推荐算法研究旨在弥补这一不足,通过引入信任关系来提高推荐准确性。
本文将探讨基于信任的协同过滤推荐算法的原理、方法及实验结果。
二、背景与意义传统的协同过滤推荐算法主要依据用户的历史行为数据,如浏览、购买、评价等,来预测用户的未来兴趣。
然而,这些算法往往忽视了用户之间的信任关系,导致推荐结果有时偏离用户真实需求。
基于信任的协同过滤推荐算法通过引入用户之间的信任关系,可以更准确地反映用户的兴趣和需求,从而提高推荐准确性。
此外,该算法还有助于增强用户之间的互动和社交性,提升推荐系统的用户体验。
三、算法原理基于信任的协同过滤推荐算法主要包含以下步骤:1. 构建信任网络:根据用户的历史行为数据和社交网络信息,构建一个信任网络。
在这个网络中,节点表示用户,边表示用户之间的信任关系。
2. 计算信任度:通过分析用户的历史行为数据和社交网络信息,计算用户之间的信任度。
信任度反映了用户之间关系的紧密程度和可靠性。
3. 协同过滤:利用计算得到的信任度,对用户的兴趣进行协同过滤。
具体而言,通过分析目标用户的邻居用户的兴趣和行为,以及这些邻居用户与目标用户之间的信任度,为目标用户生成推荐结果。
4. 推荐结果优化:根据用户的反馈信息和实时数据,对推荐结果进行优化和调整,以提高推荐准确性和用户体验。
四、方法与技术在实现基于信任的协同过滤推荐算法时,需要采用以下技术和方法:1. 数据预处理:对用户的历史行为数据进行清洗、去重和格式化等预处理操作,以便后续分析。
2. 信任网络构建:采用图论、机器学习和深度学习等技术,根据用户的历史行为数据和社交网络信息构建信任网络。
《基于信任的协同过滤推荐算法研究》范文
《基于信任的协同过滤推荐算法研究》篇一一、引言随着互联网技术的快速发展和大数据时代的到来,推荐系统在许多领域如电子商务、社交网络和在线媒体平台等发挥着重要作用。
协同过滤是推荐系统中最常用的一种算法,其主要依赖于用户和项目之间的关系。
传统的协同过滤推荐算法主要通过计算用户间的相似度进行推荐,而信任在人际关系中具有举足轻重的地位。
因此,本文旨在研究基于信任的协同过滤推荐算法,以更好地提升推荐系统的准确性和用户满意度。
二、基于信任的协同过滤推荐算法概述基于信任的协同过滤推荐算法,顾名思义,是在传统的协同过滤算法基础上,融入了用户之间的信任关系。
这种方法利用用户的社交网络和交互数据,衡量用户间的信任程度,然后利用这种信任关系进行更准确的推荐。
在构建基于信任的协同过滤推荐算法时,需要考虑以下方面:1. 信任关系的获取:这通常通过分析用户的社交网络、交互记录、评分数据等获得。
2. 信任度的计算:根据不同的数据源和上下文,采用不同的算法计算用户间的信任度。
3. 推荐策略的制定:结合用户的兴趣和信任关系,制定合适的推荐策略。
三、算法研究(一)信任关系的获取与表示在推荐系统中,信任关系的获取主要依靠用户的社会网络信息和行为数据。
具体来说,可以结合用户的评分记录、交互记录、社交网络结构等信息,通过机器学习和图论等方法提取用户间的信任关系。
此外,还可以利用用户对其他用户的评价、反馈等数据来进一步确定信任关系。
这些信任关系可以用图模型、矩阵等形式进行表示。
(二)信任度的计算信任度的计算是算法的核心部分。
常用的计算方法包括基于用户评分的相似度计算法、基于用户行为的马尔科夫链法、基于图模型的PageRank算法等。
此外,还可以考虑结合用户的行为时间、行为频率等动态因素来计算信任度。
在实际应用中,往往需要综合考虑多种因素,根据具体情况选择合适的计算方法。
(三)推荐策略的制定在制定推荐策略时,需要综合考虑用户的兴趣和信任关系。
《2024年基于协同过滤和深度学习的混合推荐算法研究》范文
《基于协同过滤和深度学习的混合推荐算法研究》篇一一、引言随着互联网的快速发展,信息过载问题日益严重,用户面临着从海量数据中筛选出感兴趣信息的挑战。
推荐系统作为一种有效的解决方案,已经广泛应用于各种在线平台。
其中,基于协同过滤和深度学习的混合推荐算法因其高效性和准确性而备受关注。
本文旨在研究基于协同过滤和深度学习的混合推荐算法,以提高推荐系统的性能。
二、协同过滤推荐算法协同过滤是一种基于用户行为的推荐技术,它通过分析用户的历史行为数据,找出相似用户或物品,从而为用户提供推荐。
协同过滤推荐算法主要包括基于用户的协同过滤和基于物品的协同过滤。
基于用户的协同过滤主要是通过寻找与当前用户兴趣相似的其他用户,然后根据这些相似用户的喜好为当前用户提供推荐。
其优点在于可以充分利用用户之间的相似性,但当用户数量巨大时,计算量较大。
基于物品的协同过滤则是通过分析用户对物品的评价和行为,找出相似的物品,然后根据用户的喜好和物品的相似性为用户提供推荐。
这种方法可以为用户发现新的、感兴趣的物品,但忽略了用户的动态变化。
三、深度学习推荐算法深度学习在推荐系统中的应用日益广泛,其主要思想是通过学习用户的隐式或显式反馈,以及物品的特征,来预测用户的偏好并生成推荐。
深度学习推荐算法通常包括多层神经网络,能够自动提取高层次的特征表示,从而更准确地预测用户的偏好。
常见的深度学习推荐算法包括基于深度神经网络的推荐、基于深度协同过滤的推荐等。
这些算法能够处理大规模的数据集,并捕捉到用户和物品之间的复杂关系。
四、混合推荐算法虽然协同过滤和深度学习在推荐系统中都有其优势,但它们也存在一定的局限性。
为了充分发挥各自的优势,研究者们提出了混合推荐算法。
这种算法将协同过滤和深度学习相结合,通过取长补短,提高推荐系统的性能。
混合推荐算法通常包括以下几种方式:基于加权的混合、基于特征组合的混合、基于模型融合的混合等。
其中,基于模型融合的混合策略将协同过滤和深度学习模型进行集成,利用各自的优点进行推荐。
协同过滤外文文献翻译
外文:1】Introduction to RecommenderSystemApproaches of Collaborative Filtering: Nearest Neighborhood and Matrix Factorizationa We are leaving the age of information and entering the age of recommendation.”Like many machine learning techniques, a recommender system makes prediction based on users, historical behaviors. Specifically, it,s to predict user preference for a set of items based on past experience. To build a recommender system, the most two popular approaches are Content-based and Collaborative Filtering.Content-based approach requires a good amount of information of items, own features, rather than using users, interactions and feedbacks. For example, it can be movie attributes such as genre, year, director, actor etc., or textual content of articles that can extracted by applyingNatural Language Processing. Collaborative Filtering, on the other hand, doesn't need anything else except users' historical preference on a set of items. Because it's based on historical data, the core assumption here is that the users who have agreed in the past tend to also agree in the future. In terms of user preference, it usually expressed by two categories. Explicit Rating, is a rate given by a user to an item on a sliding scale, like 5 stars for Titanic. This is the most direct feedback from users to show how much they like an item. Implicit Rating, suggests users preference indirectly, such as page views, clicks, purchase records, whether or not listen to a music track, and so on. In this article, I will take a close look at collaborative filtering that is a traditional and powerful tool for recommender systems.Nearest NeighborhoodThe standard method of Collaborative Filtering is known as Nearest Neighborhood algorithm. There are user-based CF and item-based CF. Let's first look at Userbased CF. We have an n 义m matrix of ratings, with user u, i =1, ...n and item p , j=i, ・・・m. Now we want to predict the rating r if target user i did not watch/rate an item j. The process is to calculate the similarities between target user i and all other users, select the top X similar users, and take the weighted average of ratings from these X users with similarities as weights.2 Similaries(Ui,%t)0fr ij= ------------ 7~^-7 -------------------number of ratingsWhile different people may have different baselines when giving ratings, some people tend to give high scores generally, some are pretty strict even though they are satisfied with items. To avoid this bias, we can subtracteach user,s average rating of all items when computingweighted average, and add it back for target user, shown as below.2 Similaries(u h况口(为一凡)‘尸0 + number of ratingsTwo ways to calculate similarity are PearsonCorrelation and Cosine Similarity.£(% - r iK r kj- r Jt)Pearson Correlation : $1咻蚂,碌)二—'厂门产£(% 一以产£向缶Cosine Similarity : Si(n(u it趣)= ? * = —]J卒卒Basically, the idea is to find the most similar users to your target user (nearest neighbors) and weight their ratings of an item as the prediction of the rating of this item fortarget user.Without knowing anything about items and users themselves, we think two users are similar when they give the same item similar ratings . Analogously, for Item-based CF, we say two items are similar when they received similar ratings from a same user. Then, we will make prediction for a target user on an item by calculating weighted average of ratings on most X similar items from this user. One key advantage of Item-based CF is the stability which is that the ratings on a given item will not change significantly overtime, unlike the tastes of human beings.There are quite a few limitations of this method. It doesn't handle sparsity well when no one in the neighborhoodrated an item that is what you are trying to predict for target user. Also, it's not computational efficient as the growth of the number of users and products.Matrix FactorizationSince sparsity and scalability are the two biggest challenges for standard CF method, it comes a more advanced method that decompose the original sparse matrix to low-dimensional matrices with latent factors/features and less sparsity. That is Matrix Factorization.Beside solving the issues of sparsity and scalability, there's an intuitive explanation of why we need low-dimensional matrices to represent users' preference. A user gave good ratings to movie Avatar, Gravity, and Inception. They are not necessarily 3 separate opinions but showing that this users might be in favor of Sci-Fi movies and there may be many more Sci-Fi movies that this user would like. Unlike specific movies, latent features is expressed by higher-level attributes, and Sci-Fi category is one of latent features in this case. What matrix factorization eventually gives us is how much a user is aligned with a set of latent features,and how much a movie fits into this set of latent features. The advantage of it over standard nearest neighborhood is that even though two users haven,t rated any same movies, it,s still possible to find the similarity between them if they share the similar underlying tastes, again latent features. To see how a matrix being factorized, first thing tounderstand is Singular Value Decomposition(SVD) .Based on Linear Algebra, any real matrix R can be decomposed into 3 matrices U, £, and V. Continuing using movie example, U is an n x r user-latent feature matrix, V is an m x r movie-latent feature matrix. £ is an r x r diagonal matrix containing the singular values of original matrix, simply representing how important a specific feature is to predict user preference.R= UHV TU e E £IR rxr. V E IR rXfnTo sort the values of £ by decreasing absolute value and truncate matrix £ to first k dimensions( k singular values), we can reconstruct the matrix as matrix A. The selection of k should make sure that A is able to capture the most of variance within the original matrix R, so that A is theapproximation of R, A Q R. The difference between A and R is the error that is expected to be minimized. This is exactly the thought of Principle Component Analysis.When matrix R is dense, U and V could be easily factorized analytically. However, a matrix of movie ratings is super sparse. Although there are some imputation methods to fill in missing values , we will turn to a programming approach to just live with those missing values and find factor matrices U and V. Instead of factorizing R via SVD, we are trying find U and V directly with the goal that when U and V multiplied back together the output matrix R, is the closest approximation of R and no more a sparse matrix. This numerical approximation is usually achieved with Non-Negative Matrix Factorization for recommender systems since there is no negative values in ratings.See the formula below. Looking at the predicted rating for specific user and item, item i is noted as a vector q i? and user u is noted as a vector p u such that the dot product of these two vectors is the predicted rating for user u on item i. This value is presented in the matrix R' at row u and column i.Predicted Ratings : r f ui— p4生How do we find optimal 5 and p u? Like most of machine learning task, a loss function is defined to minimize the cost of errors.+ lMr ui is the true ratings from original user-item matrix. Optimization process is to find the optimal matrix P composed by vector p u and matrix Q composed by vector q in order to minimize the sum square error between predicted ratingsand the true ratings r^. Also, L2 regularization has been added to prevent overfitting of user and item vectors. It,s also quite common to add bias term which usually has 3 major components: average rating of all items p, average rating of item i minus p(noted as b u), average rating given by user u minus u(noted as b i).min - (plQi +〃 + 九+ 瓦))2+4(帆『+ ll@lF + 庆 + 导) p国瓦,瓦—OptimizationA few optimization algorithms have been popular to solve Non-Negative Factorization. Alternative Least Square is one of them. Since the loss function is non- convex in this case, there,s no way to reach a global minimum, while it still can reach a great approximation by finding localminimums. Alternative Least Square is to hold user factor matrix constant, adjust item factor matrix by taking derivatives of loss function and setting it equal to 0, and then set item factor matrix constant while adjusting user factor matrix. Repeat the process by switching and adjusting matrices back and forth until convergence. If you apply Scikit-learn NMF model, you will see ALS is the default solver to use, which is also called Coordinate Descent. Pyspark also offers pretty neat decomposition packages that provides more tuning flexibility of ALS itself.Some ThoughtsCollaborative Filtering provides strong predictive power for recommender systems, and requires the least information at the same time. However, it has a few limitations in some particular situations.First, the underlying tastes expressed by latent features are actually not interpretable because there is no content- related properties of metadata. For movie example, it doesn,t necessarily to be genre like Sci-Fi in my example. It can be how motivational the soundtrack is, how good theplot is, and so on. Collaborative Filtering is lack of transparency and explainability of this level of information.On the other hand, Collaborative Filtering is faced with cold start. When a new item coming in, until it has to be rated by substantial number of users, the model is not able to make any personalized recommendations . Similarly, for items from the tail that didn,t get too much data, the model tends to give less weight on them and have popularity bias by recommending more popular items.It,s usually a good idea to have ensemble algorithms to build a more comprehensive machine learning model such as combining content-based filtering by adding some dimensions of keywords that are explainable, but we should always consider the tradeoff betweenmodel/computational complexity and the effectiveness of performance improvement.中文翻译推荐系统介绍协同过滤的方法:最近邻域和矩阵分解“我们正在离开信息时代,而进入推荐时代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mach Learn(2008)72:231–245DOI10.1007/s10994-008-5068-4A collaborativefiltering framework based on both localuser similarity and global user similarityHeng Luo·Changyong Niu·Ruimin Shen·Carsten UllrichReceived:22June2008/Revised:22June2008/Accepted:23June2008/Published online:8July2008 Springer Science+Business Media,LLC2008Abstract Collaborativefiltering as a classical method of information retrieval has been widely used in helping people to deal with information overload.In this paper,we intro-duce the concept of local user similarity and global user similarity,based on surprisal-based vector similarity and the application of the concept of maximin distance in graph theory. Surprisal-based vector similarity expresses the relationship between any two users based on the quantities of information(called surprisal)contained in their ratings.Global user simi-larity defines two users being similar if they can be connected through their locally similar neighbors.Based on both of Local User Similarity and Global User Similarity,we develop a collaborativefiltering framework called LS&GS.An empirical study using the MovieLens dataset shows that our proposed framework outperforms other state-of-the-art collaborative filtering algorithms.Keywords Collaborativefiltering·Similarity measure·Information theory1IntroductionCollaborativefiltering algorithms are widely applied on e-commerce web sites,where they predict user preferences of items taking into consideration the opinions(in the formEditors:Walter Daelemans,Bart Goethals,Katharina Morik.H.Luo()·C.Niu·R.Shen·C.UllrichDepartment of Computer Science and Technology,Shanghai Jiao Tong University,1954Huashan Road, Shanghai200030,Chinae-mail:hengluo@C.Niue-mail:cyniu@R.Shene-mail:rmshen@C.Ullriche-mail:ullrich_c@of preference ratings)of other“similar”users.Generally,there are two major classes of collaborativefiltering algorithms,memory-based algorithms and model-based algorithms (Breese et al.1998).Because of their simplicity and robustness,memory-based algo-rithms are widely applied in practice,e.g.(Herlocker et al.1999;Linden et al.2003; Resnick et al.1994).To estimate a prediction for a particular user(i.e.,an active user), the memory-based algorithmsfirstfind users from the database that are most similar to this active user,and then combine those ratings together.The measurement techniques of the similarity between users include the Pearson Correlation Coefficient(Resnick et al.1994), Vector Space Similarity(VSS)algorithm(Breese et al.1998),and the extended generalized vector space model(Soboroff and Nicholas2000).These algorithms can be considered as user-based algorithms.However in practice,systems based on collaborativefiltering algorithms often face the problem of having at their disposal only an insufficient amount of preferences ratings of their individual users.Therefore,one of the biggest challenges of designing a collaborative filtering system is how to provide accurate recommendations with the sparse user profile data.To estimate an active user’s rating of a particular item,traditional user-based methods firstfind the user’s neighbors(the users who are similar to the active user).Then,the active user’s rating is predicted by averaging the(weighted)known ratings on the item by his/her neighbors.This kind of methods is based on the assumption that similar users have similar rating patterns.Unfortunately,due to the data sparsity problem,firstly,often there does neither exist a sufficient amount of similar neighbors,nor a sufficient amount of ratings of the particular item.The measurement of the similarity between users plays a fundamental role in user-based algorithms(Resnick et al.1994;Wang et al.2006;Jin et al.2004).Traditional methods of computing similarity,however,have two important shortcomings.Firstly,usually all items are treated the same when computing the similarity of users.This is addressed by(Jin et al. 2004),which assign different weights to items in order to allow for items to contribute in different strength to the user similarity calculation.The second problem is that the similarity of two users cannot be calculated if they have not rated any identical item.In other words, due to the data sparsity problem,the neighbors of active user cannot be found.To solve this problem,it seems promising to transitively examine whether the neighbors of the two users are similar.That means we should estimate similarities between any two users from a global perspective.In this paper,we address these two problems by proposing to divide user similarity into two parts,namely local user similarity and global user similarity.Local similarity is deter-mined based on surprisal-based vector similarity(SVS).In SVS,the rating of each item isfirstly modeled as a Laplacian random variable.Then the quantities of information(sur-prisal)contained in the ratings of a specific user will be used to represents his/her prefer-ence.The similarity of any two users’surprisal vector is defined as the local similarity of them.We will show that some of the ratings of the same item carry more discriminative information than others.Furthermore,we argue that less common ratings for a specific item tend to provide more discriminative information than the most common ratings.Second,the global similarity measures the similarity of two users by further considering the extent to which their neighbors are locally similar(using the local similarity).In this way,the global similarity takes the data sparsity problem in consideration by propagating similarity mea-surement.All local similarities of any two users represented as the weights of edges will be used to construct a user graph.The global similarity can be calculated as the maximin distance of any two nodes in the graph.Under global user similarity,two users become more similar if they can be connected through a series of locally similar neighbors.In brief,thelocal similarity attempts to accurately measure the similarity of two users’preference.The global similarity tries tofind more similar users when the data of user’s preference is sparse. On this basis,we propose a collaborativefiltering framework that employs both Local User Similarity and Global User Similarity(LS&GS).The major contributions of this paper are as follows.(1)We propose a novel method(SVS)to compute local user similarity.(2)We apply Maximin distance to capture global relationships of users to address the prob-lem of data sparsity.(3)A collaborativefiltering framework(LS&GS)is proposed to based on local user simi-larity and global user similarity.The remainder of our paper is organized as follows:Sect.2will introduce the necessary background and related work.In Sect.3,we will present the definition of the local user simi-larity and the global user similarity.Section4introduces the proposed collaborativefiltering framework.In Sect.5,the experimental results are provided,followed by the conclusions in Sect.6.2Notations and related workThere are two major classes of collaborativefiltering algorithms:memory-based and model-based approaches(Breese et al.1998).Memory-based algorithms make recommendations based on the entire user profile database.Model-based algorithms,in contrast,use a com-pact model which usually was previously learned from the user profile database to produce recommendations.In this section,we describe the most relevant existing approaches of memory-based al-gorithms and briefly introduce the model-based algorithms.First,we describe the notations that are used throughout this paper.Given a recommendation system consisting of M users and N items,there is a M×N user-item matrix R.Each entry r m,n=x represents the rating that user m gives to item n, where x∈{1,2,...,r max}.The default r m,n value,meaning that the rating is unknown,is0.The user-item matrix can be decomposed into row vectors:R=[u1,...,u M]T,u m=[r m,1,...,r m,N]T,m=1,...,M.The row vector u m represents the ratings of user m for all of N items.Alternatively,the matrix can also be represented by its column vectors:R=[i1,...,i N]T,i n=[r1,n,...,r M,n]T,n=1,...,N.The column vector i n represents the ratings of item m by all of M users.2.1Memory-based approachesMemory-based algorithms were applied successfully in various real-life applications(Her-locker et al.1999;Linden et al.2003).The major types of memory-based approaches are user-based approaches(Breese et al.1998)and item-based approaches(Linden et al.2003; Sarwar et al.2001).The former approaches form a heuristic implementation of the“Word of Mouth”phenomenon(Shardanand and Maes1995).The later one attempts to improve the scalability of collaborativefiltering er-based collaborativefiltering predictsan active user’s interest in a particular item based on rating information from similar user profiles(Breese et al.1998;Herlocker et al.1999;Resnick et al.1994).Each user profile corresponds to a row vector sorted in the user-item matrix.In detail,user-based approaches first calculate all similarities of any two row vectors.For predicting a user’s rating of a par-ticular item,a set of top-N similar users can be identified.Those top-N users’ratings for the item will be averaged as the prediction by weighted.Consequently,the predicted ratingˆr a,y of test item y by test user a is computed asˆr a,y= Kk=1w a,ukr uk,yk=1|w a,uk|where w a,uk denotes the similarity between the test user and his neighbors u k.Item-based approaches use the similarity between items instead of users.First,the simi-larity of items(column vectors in the user-item matrix)can be calculated.Then the unknown ratings can be predicted by averaging the ratings of other similar items rated by this activeuser.That isˆr a,y= Kk=1w y,ikr a,ik Kk=1|w y,ik|,where w y,ik indicates the similarity between the test item and the most similar items i k.Similarity computation methods,such as the Pearson Correlation Coefficient(PCC)al-gorithm(Resnick et al.1994)and the Vector Space Similarity(VS)algorithm(Breese et al. 1998)are applied in user-based and item-based methods.The PCC method defines the similarity between two users w up,u qasw up,u q ={i|r p,i,r q,i=0}(r p,i−¯r p)(r q,i−¯r q){i|r p,i,r q,i=0}(r p,i−¯r p)2·{i|r p,i,r q,i=0}(r q,i−¯r q)2,where¯r p denotes the mean of user p’s ratings.While the VS method defines the similarity asw up,u q ={i|r p,i,r q,i=0}r p,i r q,i{i|r p,i=0}r2p,i·{i|r q,i=0}r2q,i.2.2Model-based approachesThe model-based algorithms present good scalability once they have built the model.How-ever,the overhead introduced for building and updating the model should be counted in when evaluating this kind of algorithms.Various popular model-based algorithms exist,such as the aspect model(AM)(Hofmann and Puzicha1999),the Personality Diagnosis model (PD)(Pennock et al.2000)and the User Rating Profile model(URP)(Marlin2004a).The aspect model(Hofmann and Puzicha1999)is a probabilistic latent-space model, which models individual preferences to a convex combination of preference factors.The latent class variable is associated with each observation pair of a user and an item.The aspect model assumes that users and items are independent from each other given the latent class variable.However,the aspect model cannot perform inference on novel user profiles (Marlin2004b).In other words,in order to make predictions for novel users,AM has to be retrained based on the new training set,which should include the ratings of novel users.The Personality diagnosis approach(Pennock et al.2000)considers each user in the user-item matrix as an individual model.To predict the unknown rating of an item by an active user,PDfirst calculates the likelihood for the active user to be in the‘model’of each training user and then uses the aggregate average of ratings for the item by the training users as the estimator.The User Rating Profile model(Marlin2004a)is a generative,latent variable model which represents each user as a mixture of user attitudes,and the mixing proportions are distributed according to a Dirichlet random variable.URP is different from AM by making novel users’rating predication possible.3Local user similarity and global user similarityThe key to many memory-based approaches is to estimate the similarity between two users (Resnick et al.1994;Jin et al.2004).In this section,we willfirst introduce our method called surprisal-based vector space similarity to compute local user similarity.Then,addressing the data sparsity problem,global user similarity will be proposed.Global user similarity makes two users to become more similar if they can be connected through their locally similar neighbors.3.1Local user similarity(surprisal-based vector space similarity)The Pearson Correlation Coefficient(PCC)algorithm is widely applied in collaborative filtering algorithms to compute user similarity(Breese et al.1998;Linden et al.2003; Resnick et al.1994;Wang et al.2006;Sarwar et al.2001).Breese et al.(1998)proposed that items with similar ratings should have less important impact in determining user similarity than those with different ratings.They suggested using the Inverse User Frequency as the weights of items.Herlocker et al.(1999)adopted vari-ance weighting to improve PCC.The results turned out be to slightly worse than with no weighting(Herlocker et al.1999).The ratings of a specific item are usually centralized around an average attitude.In the PCC algorithm,if two users give an item the same rating,these two ratings will make the two users more similar.We argue that we need to additionally consider the difference between the rating and the average attitude.If the rating is close to the average attitude,the rating only represents that these two users act like most other people.Based on the rating we cannot conclude that the preferences of these two users are similar or dissimilar.On the other hand,if the rating is totally different from the average attitude,the rating will provide more discriminative information to determine whether their preferences are similar.Intuitively, a rarely given rating for an item will be extremely useful to help us distinguish the user which gives the unexpected rating from other users.For example,the movie“Godfather”is highly favored by lots of people.The fact that a user likes the movie tells us almost nothing about his/her preference.In contrast,if a user dislikes the movie and gives it a very low rating(i.e.,the kind of rating that is rare)for it,we can easily distinguish him/her from others and know something about his/her preference(e.g.,that he/she maybe dislike mafia movies).Although most users’ratings of a specific item are centralized around an average attitude, there still exist some users who give much higher(or lower)ratings than the average attitude. In other words,the distribution of the ratings has fat tails.To implement the intuition above, we modeled the rating of each item as Laplacian random variables Laplace(¯u i,b i)ratherthan Gaussian random variables.The probability density function of the Laplacian random variable isf(r|μ,b)=12bexp−|r−μ|b=12bexp(−μ−r)if r<μ,exp(−r−μb)if r>μ.Here,μis a location parameter and b>0is a scale parameter.Given M ratings,in-dependent and identically distributed samples r1,i,r2,i,...,r M,i,then using the maximum likelihood estimator,estimators ofμi and b i are expressed as(Norton1984)ˆμi=1MMp=1r p,i,ˆbi=1MMp=1r p,i−ˆμi.We propose a method for computing local user similarity based on the users’surprisal vector, rather than on the users’ratings er p’s surprisal vector S p is defined as following S p=[s p,1,...,s p,N]T=[sgn(r p,1−ˆμ1)∗I(r p,1),...,sgn(r p,N−ˆμN)∗I(r p,N)]T,p=1,...,M where sgn(r p,1−ˆμi)presents whether the attitude of user p about item i is positive or negative in comparison with the average attitude about the item,and I(r p,i)is the quantity of information(surprisal)of the rating r p,i.I(r p,i)is defined asI(r p,i)=−ln(f(r=r p,i|ˆμi,ˆb i))=ln(2ˆb i)+|r p,i−ˆμi|ˆbi.Given the users’surprisal vectors,we can adopt the Vector SPACE Similarity(VS)al-gorithm to calculate the user local similarity.We call this method surprisal-based vector similarity(SVS),which is defined assim L(u p,u q)={i|r p,i,r q,i=0}s p,i∗s q,i{i|r p,i,r q,i=0}s2p,i·{i|r p,i,r q,i=0}s2q,i.Ma et al.(2007)proposed to add a correlation significance weighting factor that would devalue similarity weights that were based on a small number of co-rated items,simL (u p,u q)=Min(|I up∩I uq|,γ)γsim L(u p,u q)where|I up ∩I uq|is the number of items which user u p and user u q rated in common.Ifthe number of co-rated items is smaller thanγ,the similarity of these users will be deval-ued.This change avoids overestimating the similarities of users who have rated a few items identically,but may not have similar overall preferences.The method is adopted to compute the local user similarity called surprisal-based vector similarity with significance weighting(SVSS).In this paper,we aim to emphasize that less common ratings for a specific item tend to provide more discriminative information than the most common ones.With regard to the choice of the distribution for modeling ratings,some sophisticated variations of the Lapla-cian distribution are available (Kotz et al.2001).3.2Global user similarityUnder this similarity,we can find more neighbors of an active user even when he/she has few immediate neighbors using local user similarity.To attain this,we first construct a user graph using the local similarity as the weight of edges.Then,we use the maximin distance of two users in the graph as the measurement of the global similarity between them.3.2.1User graphWe construct a user graph that describes their relationships,as follows.Definition 1(User graph)A user graph is an undirected weighted graph G =(U,E),where(1)U is the node set (each user is regarded as a node of the graph G );(2)E is the edge set.Associated with each edge e pq ∈E,w pq is a weight subject tow pq >0,w pq =w qp .In this paper,we employ local user similarity as the weights of edges,w pq = sim L (u p ,u q )if sim L (u p ,u q )>0,0else .3.2.2Maximin distance on user graphGiven a user graph G =(U,E),a path from node u p to u q (u p ,u q ∈U)is a sequence of links,P pq =(u p ,...,u i ,...,u q ),u p ,u i ,u q ∈U .If there are K paths between nodes u p and u q ,these paths will be indicated as P 1pq ,P 2pq ,...,P K pq .Given a path between u p and u qthe minimal hop distance of these nodes along any path P j pq is defined as follow:minimalhop j (u p ,u q )=min u i ,u i +1⊂P j pq w i,i +1,∀u i ,u i +1∈P j pq ,1≤j ≤k.The maximal value of the two nodes’minimal hop distance along any paths is called the maximin distance of the two nodes,maximinhop (u p ,u q )=max k =1,...,Kminimalhop k (u p ,u q )=max k =1,...,Kmin u i ,u i +1⊂P k ij w i,i +1 ,∀u i ,u i +1∈P k pq.The corresponding path is called as maximin path.The global similarity of two users is defined as the maximin distance between them:sim G (u p ,u q )=maximinhop (u p ,u q ).For any two users u p and u q,if sim G(u p,u q)=0,it means there are d users form-ing a sequence S={(u p,u1),...,(u d−1,u k),(u d,u q)},and∀(u i,u j)∈S,sim L(u i,u j)≥sim G(u p,u q).It can be interpreted as meaning that user u pfinds a similar user u q through u1,...,u k,while all of these are similar in sequence.From this we can derive the following propositions.Proposition1∀(u p,u q)∈U,sim G(u p,u q)≥0Proof∀u p,u q∈U,w pq≥0sim G(u p,u q)=maxk=1,...,Kminu i,u i+1⊂P k ijw i,i+1,∀u i,u i+1∈P k pq,sim G(u p,u q)≥0.Proposition2∀u p,u q∈U,sim G(u p,u q)≥sim L(u p,u q)Proof If∀u p,u q∈U,w u p,u q=sim L(u p,u q)>0.There is at least one path from u p to u q, (u p,u q).The minimalhop distance of the path(u p,u q),minimalhop i(u p,u q)=w up,u q=sim L(u p,u q),1≤i≤k,sim G(u p,u q)=maximinhop(u p,u q)maxk=1,...,Kminimalhop k(u p,u q)≥w pq=sim L(u p,u q).If∀u p,u q∈U,w u p,u q=0,then sim L(u p,u q)≤0.From Proposition1,sim G(u p,u q)≥simL(u p,u q).That is the global user similarity is non-negative and not less than the local user simi-larity.In addition,if the global user similarity between u p and u q is larger than their local similarity,it means there exists a path between them,along which any consecutive pair of nodes have larger local user similarity than sim L(u p,u q).In other words,two users become more similar because they can be connected through some locally more similar neighbors.The Floyd-Warshall algorithm can be adopted to effectively compute all-pairs maximin distances(Aho and Hopcroft1974;Cormen et al.1992).The complexity of this algorithm is O(N3).In practice,an efficient algorithm(Kim and Choi2007)based on message passing could be used to query the global similarity between a specific user u∗and the rest users, which exhibits a time complexity of O(N2).Previous work(Fouss et al.2007;Gori and Pucci2007)has investigated global similarity measures for collaborativefiltering.In(Fouss et al.2007)and(Gori and Pucci2007),col-laborativefiltering has been modeled as a bipartite graph,where nodes are users and items. These algorithms are random-walk based scoring algorithms,which can be used to rank items according to the active user’s preferences rather than to predict his/her explicit ratings on items.However,our method aims to quantify the active user preferences;in a result it provides more information to recommendation systems than those just ranking items based on the active user’s preferences.4The collaborativefiltering frameworkTaking both local and global users similarity into account,we propose the following col-laborativefiltering framework.To predict an active user’s(u a)rating on a particular item, under local similarity and global similarity wefirstfind his k nearest neighbors both for thek local nearest neighbors(nn kL (u a))and the k global nearest neighbors(nn kG(u a)).Then weemploy both nn kL (u a)and nn kG(u a)to predict the user’s ratingˆr a,i=(1−α)u k∈nn k L(u a)simL(u k,u a)r k,iu k∈nn k L(u a)simL(u k,u a)+αu k∈nn k G(u a)sim G(u k,u a)r k,iu k∈nn k G(u a)sim G(u k,u a).(1)The parameterαdetermines the extent to which the prediction relies on local user similar-ity and global user similarity.Withα=0,it indicates that the prediction depends completely on local user similarity and withα=1,it states that the prediction depends completely on global user similarity.αcan be determined experimentally by using cross-validation.5ExperimentsWe conducted several experiments to examine the performance of the proposed collaborative filtering framework(LU&GU),and address the following questions in particular:(1)How does our approach of computing the local user similarity compare with traditionalmethods?For this question,we employ PCC(Pearson Correlation Coefficient)(Resnick et al.1994),PCCS(Pearson Correlation Coefficient with significance weighting)(Ma et al.2007),SVS(surprisal-based vector similarity)and SVSS(surprisal-based vector similarity with significance weighting)as different methods to compute user similar-ity.Then we use these similarities in the traditional user-based collaborativefiltering (Resnick et al.1994)and compare the performance.(2)How does our collaborativefiltering framework compare with other algorithms?For thisquestion,we compare our method(LS&GS)with the user-base algorithm(Resnick et al.1994),the item-base algorithm(Sarwar et al.2001),the similarity fusion algorithm (SF)(Wang et al.2006)and the effective missing data prediction algorithm(EMDP) (Ma et al.2007).(3)How does the parameterαaffect the accuracy of prediction?Parameterαbalances howmuch the prediction takes into account local similarity and global similarity.We vary the value ofαfrom0to1to observe the differences in performance.5.1Experimental setupWe experimented with a popular database,the MovieLens1dataset by the GroupLens Re-search group at University of Minnesota.The MovieLens data set contains100,000ratings (1–5scales)from943users on1682movies(items),where each user has rated at least20 movies.To compare algorithms more thoroughly,we conducted the experiments under sev-eral configurations.We randomly exacted a subset of500users,altered the training size to be300(200,100)users in the subset,and used the remaining200(300,400)users 1/.as the active users.The respective sets were named MovieLens300,MovieLens200and MovieLens100.As for the ratings from the active users,we varied the number of rat-ings provided by the active users from5,10,and20,naming them Given5,Given10and Given20,respectively.This results in9configurations in total,which we call M300G20, M300G10,M300G5,M200G20,M200G10,M200G5,M100G20,M100G10and M200G5. Different configuration represents different training data sparsity and test item of active user sparsity.These protocols are widely adopted(Wang et al.2006;Ma et al.2007; Xue et al.2005).Furthermore,we also adopted the protocol of“All-but-one”(Breese et al.1998),within which we extracted a single randomly selected rating for each user in the whole data set,and tried to predict its value given all the other ratings the user has voted on. The protocol is also widely adopted(Marlin2004a,2004b;DeCoste2006).In order to examine the performance of our approach and to compare it with experiments reported in the literature,e.g.(Resnick et al.1994;Wang et al.2006;Sarwar et al.2001; Ma et al.2007),we adopted the mean absolute error(MAE)(Sarwar et al.2001).The MAE is computed byfirst summing the absolute errors of the N corresponding ratings-prediction pairs and then averaging the sum.Formally,MAE= Ni=1|r i−ˆr i|N.A smaller value of MAE indicates a better accuracy.5.2Surprisal-based vector similarityIn order to examine the performance of SVSS and SVS,we compared our methods of computing the user similarity with other traditional methods,PCC and PCCS.We used these methods in the traditional user-based collaborativefiltering and compared their per-formance.The parameterγ(used in SVSS and PCCS)of the significance weighting was set to20.We compared SVSS and SVS with other methods in all experimental configurations. The number of nearest neighbors in user-based collaborativefiltering was set as35in all configurations.The results are presented in Table1and Table2.We can see that:(1)SVSS and SVS outperform the other methods in all configurations.(2)The performance of SVSS and SVS improves with the number of items rated by theusers.(3)Significance Weighting improves SVS much more than PCC except in the All-but-oneprotocol.The reason for that is SVS can get more accurate contributions of each rating to the value of similarity than PCC ing significance weighting amplifies the influence.Next,in order to examine the sensitivity of the neighborhood size,we performed an experiment where we varied the number of nearest neighbors that were used and computed the MAE for each variation.In this article,we report only the results for the configurations M100G5and M300G20,however,the other configurations yield similar results.The results are shown in Fig.1.We can observe that the size of neighborhood does affect the performance.Both SVS and SVSS improve the accuracy of prediction as the neighborhood size increases from5to15. For greater values,the curveflattens.Again,SVS and SVSS outperform the other methods.。